1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "memcpyopt" 67 68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 69 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 70 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 71 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 72 73 namespace { 74 75 /// Represents a range of memset'd bytes with the ByteVal value. 76 /// This allows us to analyze stores like: 77 /// store 0 -> P+1 78 /// store 0 -> P+0 79 /// store 0 -> P+3 80 /// store 0 -> P+2 81 /// which sometimes happens with stores to arrays of structs etc. When we see 82 /// the first store, we make a range [1, 2). The second store extends the range 83 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 84 /// two ranges into [0, 3) which is memset'able. 85 struct MemsetRange { 86 // Start/End - A semi range that describes the span that this range covers. 87 // The range is closed at the start and open at the end: [Start, End). 88 int64_t Start, End; 89 90 /// StartPtr - The getelementptr instruction that points to the start of the 91 /// range. 92 Value *StartPtr; 93 94 /// Alignment - The known alignment of the first store. 95 unsigned Alignment; 96 97 /// TheStores - The actual stores that make up this range. 98 SmallVector<Instruction*, 16> TheStores; 99 100 bool isProfitableToUseMemset(const DataLayout &DL) const; 101 }; 102 103 } // end anonymous namespace 104 105 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 106 // If we found more than 4 stores to merge or 16 bytes, use memset. 107 if (TheStores.size() >= 4 || End-Start >= 16) return true; 108 109 // If there is nothing to merge, don't do anything. 110 if (TheStores.size() < 2) return false; 111 112 // If any of the stores are a memset, then it is always good to extend the 113 // memset. 114 for (Instruction *SI : TheStores) 115 if (!isa<StoreInst>(SI)) 116 return true; 117 118 // Assume that the code generator is capable of merging pairs of stores 119 // together if it wants to. 120 if (TheStores.size() == 2) return false; 121 122 // If we have fewer than 8 stores, it can still be worthwhile to do this. 123 // For example, merging 4 i8 stores into an i32 store is useful almost always. 124 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 125 // memset will be split into 2 32-bit stores anyway) and doing so can 126 // pessimize the llvm optimizer. 127 // 128 // Since we don't have perfect knowledge here, make some assumptions: assume 129 // the maximum GPR width is the same size as the largest legal integer 130 // size. If so, check to see whether we will end up actually reducing the 131 // number of stores used. 132 unsigned Bytes = unsigned(End-Start); 133 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 134 if (MaxIntSize == 0) 135 MaxIntSize = 1; 136 unsigned NumPointerStores = Bytes / MaxIntSize; 137 138 // Assume the remaining bytes if any are done a byte at a time. 139 unsigned NumByteStores = Bytes % MaxIntSize; 140 141 // If we will reduce the # stores (according to this heuristic), do the 142 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 143 // etc. 144 return TheStores.size() > NumPointerStores+NumByteStores; 145 } 146 147 namespace { 148 149 class MemsetRanges { 150 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 151 152 /// A sorted list of the memset ranges. 153 SmallVector<MemsetRange, 8> Ranges; 154 155 const DataLayout &DL; 156 157 public: 158 MemsetRanges(const DataLayout &DL) : DL(DL) {} 159 160 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 161 162 const_iterator begin() const { return Ranges.begin(); } 163 const_iterator end() const { return Ranges.end(); } 164 bool empty() const { return Ranges.empty(); } 165 166 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 167 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 168 addStore(OffsetFromFirst, SI); 169 else 170 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 171 } 172 173 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 174 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 175 176 addRange(OffsetFromFirst, StoreSize, 177 SI->getPointerOperand(), SI->getAlignment(), SI); 178 } 179 180 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 181 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 182 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 183 } 184 185 void addRange(int64_t Start, int64_t Size, Value *Ptr, 186 unsigned Alignment, Instruction *Inst); 187 }; 188 189 } // end anonymous namespace 190 191 /// Add a new store to the MemsetRanges data structure. This adds a 192 /// new range for the specified store at the specified offset, merging into 193 /// existing ranges as appropriate. 194 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 195 unsigned Alignment, Instruction *Inst) { 196 int64_t End = Start+Size; 197 198 range_iterator I = partition_point( 199 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 200 201 // We now know that I == E, in which case we didn't find anything to merge 202 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 203 // to insert a new range. Handle this now. 204 if (I == Ranges.end() || End < I->Start) { 205 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 206 R.Start = Start; 207 R.End = End; 208 R.StartPtr = Ptr; 209 R.Alignment = Alignment; 210 R.TheStores.push_back(Inst); 211 return; 212 } 213 214 // This store overlaps with I, add it. 215 I->TheStores.push_back(Inst); 216 217 // At this point, we may have an interval that completely contains our store. 218 // If so, just add it to the interval and return. 219 if (I->Start <= Start && I->End >= End) 220 return; 221 222 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 223 // but is not entirely contained within the range. 224 225 // See if the range extends the start of the range. In this case, it couldn't 226 // possibly cause it to join the prior range, because otherwise we would have 227 // stopped on *it*. 228 if (Start < I->Start) { 229 I->Start = Start; 230 I->StartPtr = Ptr; 231 I->Alignment = Alignment; 232 } 233 234 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 235 // is in or right at the end of I), and that End >= I->Start. Extend I out to 236 // End. 237 if (End > I->End) { 238 I->End = End; 239 range_iterator NextI = I; 240 while (++NextI != Ranges.end() && End >= NextI->Start) { 241 // Merge the range in. 242 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 243 if (NextI->End > I->End) 244 I->End = NextI->End; 245 Ranges.erase(NextI); 246 NextI = I; 247 } 248 } 249 } 250 251 //===----------------------------------------------------------------------===// 252 // MemCpyOptLegacyPass Pass 253 //===----------------------------------------------------------------------===// 254 255 namespace { 256 257 class MemCpyOptLegacyPass : public FunctionPass { 258 MemCpyOptPass Impl; 259 260 public: 261 static char ID; // Pass identification, replacement for typeid 262 263 MemCpyOptLegacyPass() : FunctionPass(ID) { 264 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 265 } 266 267 bool runOnFunction(Function &F) override; 268 269 private: 270 // This transformation requires dominator postdominator info 271 void getAnalysisUsage(AnalysisUsage &AU) const override { 272 AU.setPreservesCFG(); 273 AU.addRequired<AssumptionCacheTracker>(); 274 AU.addRequired<DominatorTreeWrapperPass>(); 275 AU.addRequired<MemoryDependenceWrapperPass>(); 276 AU.addRequired<AAResultsWrapperPass>(); 277 AU.addRequired<TargetLibraryInfoWrapperPass>(); 278 AU.addPreserved<GlobalsAAWrapperPass>(); 279 AU.addPreserved<MemoryDependenceWrapperPass>(); 280 } 281 }; 282 283 } // end anonymous namespace 284 285 char MemCpyOptLegacyPass::ID = 0; 286 287 /// The public interface to this file... 288 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 289 290 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 291 false, false) 292 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 293 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 294 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 295 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 296 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 297 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 298 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 299 false, false) 300 301 /// When scanning forward over instructions, we look for some other patterns to 302 /// fold away. In particular, this looks for stores to neighboring locations of 303 /// memory. If it sees enough consecutive ones, it attempts to merge them 304 /// together into a memcpy/memset. 305 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 306 Value *StartPtr, 307 Value *ByteVal) { 308 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 309 310 // Okay, so we now have a single store that can be splatable. Scan to find 311 // all subsequent stores of the same value to offset from the same pointer. 312 // Join these together into ranges, so we can decide whether contiguous blocks 313 // are stored. 314 MemsetRanges Ranges(DL); 315 316 BasicBlock::iterator BI(StartInst); 317 for (++BI; !BI->isTerminator(); ++BI) { 318 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 319 // If the instruction is readnone, ignore it, otherwise bail out. We 320 // don't even allow readonly here because we don't want something like: 321 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 322 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 323 break; 324 continue; 325 } 326 327 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 328 // If this is a store, see if we can merge it in. 329 if (!NextStore->isSimple()) break; 330 331 // Check to see if this stored value is of the same byte-splattable value. 332 Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL); 333 if (isa<UndefValue>(ByteVal) && StoredByte) 334 ByteVal = StoredByte; 335 if (ByteVal != StoredByte) 336 break; 337 338 // Check to see if this store is to a constant offset from the start ptr. 339 Optional<int64_t> Offset = 340 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 341 if (!Offset) 342 break; 343 344 Ranges.addStore(*Offset, NextStore); 345 } else { 346 MemSetInst *MSI = cast<MemSetInst>(BI); 347 348 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 349 !isa<ConstantInt>(MSI->getLength())) 350 break; 351 352 // Check to see if this store is to a constant offset from the start ptr. 353 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 354 if (!Offset) 355 break; 356 357 Ranges.addMemSet(*Offset, MSI); 358 } 359 } 360 361 // If we have no ranges, then we just had a single store with nothing that 362 // could be merged in. This is a very common case of course. 363 if (Ranges.empty()) 364 return nullptr; 365 366 // If we had at least one store that could be merged in, add the starting 367 // store as well. We try to avoid this unless there is at least something 368 // interesting as a small compile-time optimization. 369 Ranges.addInst(0, StartInst); 370 371 // If we create any memsets, we put it right before the first instruction that 372 // isn't part of the memset block. This ensure that the memset is dominated 373 // by any addressing instruction needed by the start of the block. 374 IRBuilder<> Builder(&*BI); 375 376 // Now that we have full information about ranges, loop over the ranges and 377 // emit memset's for anything big enough to be worthwhile. 378 Instruction *AMemSet = nullptr; 379 for (const MemsetRange &Range : Ranges) { 380 if (Range.TheStores.size() == 1) continue; 381 382 // If it is profitable to lower this range to memset, do so now. 383 if (!Range.isProfitableToUseMemset(DL)) 384 continue; 385 386 // Otherwise, we do want to transform this! Create a new memset. 387 // Get the starting pointer of the block. 388 StartPtr = Range.StartPtr; 389 390 // Determine alignment 391 const Align Alignment = DL.getValueOrABITypeAlignment( 392 MaybeAlign(Range.Alignment), 393 cast<PointerType>(StartPtr->getType())->getElementType()); 394 395 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 396 Alignment); 397 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 398 : Range.TheStores) dbgs() 399 << *SI << '\n'; 400 dbgs() << "With: " << *AMemSet << '\n'); 401 402 if (!Range.TheStores.empty()) 403 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 404 405 // Zap all the stores. 406 for (Instruction *SI : Range.TheStores) { 407 MD->removeInstruction(SI); 408 SI->eraseFromParent(); 409 } 410 ++NumMemSetInfer; 411 } 412 413 return AMemSet; 414 } 415 416 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) { 417 unsigned StoreAlign = SI->getAlignment(); 418 if (!StoreAlign) 419 StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); 420 return StoreAlign; 421 } 422 423 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) { 424 unsigned LoadAlign = LI->getAlignment(); 425 if (!LoadAlign) 426 LoadAlign = DL.getABITypeAlignment(LI->getType()); 427 return LoadAlign; 428 } 429 430 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI, 431 const LoadInst *LI) { 432 unsigned StoreAlign = findStoreAlignment(DL, SI); 433 unsigned LoadAlign = findLoadAlignment(DL, LI); 434 return MinAlign(StoreAlign, LoadAlign); 435 } 436 437 // This method try to lift a store instruction before position P. 438 // It will lift the store and its argument + that anything that 439 // may alias with these. 440 // The method returns true if it was successful. 441 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P, 442 const LoadInst *LI) { 443 // If the store alias this position, early bail out. 444 MemoryLocation StoreLoc = MemoryLocation::get(SI); 445 if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc))) 446 return false; 447 448 // Keep track of the arguments of all instruction we plan to lift 449 // so we can make sure to lift them as well if appropriate. 450 DenseSet<Instruction*> Args; 451 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 452 if (Ptr->getParent() == SI->getParent()) 453 Args.insert(Ptr); 454 455 // Instruction to lift before P. 456 SmallVector<Instruction*, 8> ToLift; 457 458 // Memory locations of lifted instructions. 459 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 460 461 // Lifted calls. 462 SmallVector<const CallBase *, 8> Calls; 463 464 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 465 466 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 467 auto *C = &*I; 468 469 bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None)); 470 471 bool NeedLift = false; 472 if (Args.erase(C)) 473 NeedLift = true; 474 else if (MayAlias) { 475 NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) { 476 return isModOrRefSet(AA.getModRefInfo(C, ML)); 477 }); 478 479 if (!NeedLift) 480 NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) { 481 return isModOrRefSet(AA.getModRefInfo(C, Call)); 482 }); 483 } 484 485 if (!NeedLift) 486 continue; 487 488 if (MayAlias) { 489 // Since LI is implicitly moved downwards past the lifted instructions, 490 // none of them may modify its source. 491 if (isModSet(AA.getModRefInfo(C, LoadLoc))) 492 return false; 493 else if (const auto *Call = dyn_cast<CallBase>(C)) { 494 // If we can't lift this before P, it's game over. 495 if (isModOrRefSet(AA.getModRefInfo(P, Call))) 496 return false; 497 498 Calls.push_back(Call); 499 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 500 // If we can't lift this before P, it's game over. 501 auto ML = MemoryLocation::get(C); 502 if (isModOrRefSet(AA.getModRefInfo(P, ML))) 503 return false; 504 505 MemLocs.push_back(ML); 506 } else 507 // We don't know how to lift this instruction. 508 return false; 509 } 510 511 ToLift.push_back(C); 512 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 513 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 514 if (A->getParent() == SI->getParent()) { 515 // Cannot hoist user of P above P 516 if(A == P) return false; 517 Args.insert(A); 518 } 519 } 520 } 521 522 // We made it, we need to lift 523 for (auto *I : llvm::reverse(ToLift)) { 524 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 525 I->moveBefore(P); 526 } 527 528 return true; 529 } 530 531 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 532 if (!SI->isSimple()) return false; 533 534 // Avoid merging nontemporal stores since the resulting 535 // memcpy/memset would not be able to preserve the nontemporal hint. 536 // In theory we could teach how to propagate the !nontemporal metadata to 537 // memset calls. However, that change would force the backend to 538 // conservatively expand !nontemporal memset calls back to sequences of 539 // store instructions (effectively undoing the merging). 540 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 541 return false; 542 543 const DataLayout &DL = SI->getModule()->getDataLayout(); 544 545 // Load to store forwarding can be interpreted as memcpy. 546 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 547 if (LI->isSimple() && LI->hasOneUse() && 548 LI->getParent() == SI->getParent()) { 549 550 auto *T = LI->getType(); 551 if (T->isAggregateType()) { 552 AliasAnalysis &AA = LookupAliasAnalysis(); 553 MemoryLocation LoadLoc = MemoryLocation::get(LI); 554 555 // We use alias analysis to check if an instruction may store to 556 // the memory we load from in between the load and the store. If 557 // such an instruction is found, we try to promote there instead 558 // of at the store position. 559 Instruction *P = SI; 560 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 561 if (isModSet(AA.getModRefInfo(&I, LoadLoc))) { 562 P = &I; 563 break; 564 } 565 } 566 567 // We found an instruction that may write to the loaded memory. 568 // We can try to promote at this position instead of the store 569 // position if nothing alias the store memory after this and the store 570 // destination is not in the range. 571 if (P && P != SI) { 572 if (!moveUp(AA, SI, P, LI)) 573 P = nullptr; 574 } 575 576 // If a valid insertion position is found, then we can promote 577 // the load/store pair to a memcpy. 578 if (P) { 579 // If we load from memory that may alias the memory we store to, 580 // memmove must be used to preserve semantic. If not, memcpy can 581 // be used. 582 bool UseMemMove = false; 583 if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc)) 584 UseMemMove = true; 585 586 uint64_t Size = DL.getTypeStoreSize(T); 587 588 IRBuilder<> Builder(P); 589 Instruction *M; 590 if (UseMemMove) 591 M = Builder.CreateMemMove( 592 SI->getPointerOperand(), findStoreAlignment(DL, SI), 593 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); 594 else 595 M = Builder.CreateMemCpy( 596 SI->getPointerOperand(), findStoreAlignment(DL, SI), 597 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); 598 599 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 600 << *M << "\n"); 601 602 MD->removeInstruction(SI); 603 SI->eraseFromParent(); 604 MD->removeInstruction(LI); 605 LI->eraseFromParent(); 606 ++NumMemCpyInstr; 607 608 // Make sure we do not invalidate the iterator. 609 BBI = M->getIterator(); 610 return true; 611 } 612 } 613 614 // Detect cases where we're performing call slot forwarding, but 615 // happen to be using a load-store pair to implement it, rather than 616 // a memcpy. 617 MemDepResult ldep = MD->getDependency(LI); 618 CallInst *C = nullptr; 619 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 620 C = dyn_cast<CallInst>(ldep.getInst()); 621 622 if (C) { 623 // Check that nothing touches the dest of the "copy" between 624 // the call and the store. 625 Value *CpyDest = SI->getPointerOperand()->stripPointerCasts(); 626 bool CpyDestIsLocal = isa<AllocaInst>(CpyDest); 627 AliasAnalysis &AA = LookupAliasAnalysis(); 628 MemoryLocation StoreLoc = MemoryLocation::get(SI); 629 for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); 630 I != E; --I) { 631 if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) { 632 C = nullptr; 633 break; 634 } 635 // The store to dest may never happen if an exception can be thrown 636 // between the load and the store. 637 if (I->mayThrow() && !CpyDestIsLocal) { 638 C = nullptr; 639 break; 640 } 641 } 642 } 643 644 if (C) { 645 bool changed = performCallSlotOptzn( 646 LI, SI->getPointerOperand()->stripPointerCasts(), 647 LI->getPointerOperand()->stripPointerCasts(), 648 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 649 findCommonAlignment(DL, SI, LI), C); 650 if (changed) { 651 MD->removeInstruction(SI); 652 SI->eraseFromParent(); 653 MD->removeInstruction(LI); 654 LI->eraseFromParent(); 655 ++NumMemCpyInstr; 656 return true; 657 } 658 } 659 } 660 } 661 662 // There are two cases that are interesting for this code to handle: memcpy 663 // and memset. Right now we only handle memset. 664 665 // Ensure that the value being stored is something that can be memset'able a 666 // byte at a time like "0" or "-1" or any width, as well as things like 667 // 0xA0A0A0A0 and 0.0. 668 auto *V = SI->getOperand(0); 669 if (Value *ByteVal = isBytewiseValue(V, DL)) { 670 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 671 ByteVal)) { 672 BBI = I->getIterator(); // Don't invalidate iterator. 673 return true; 674 } 675 676 // If we have an aggregate, we try to promote it to memset regardless 677 // of opportunity for merging as it can expose optimization opportunities 678 // in subsequent passes. 679 auto *T = V->getType(); 680 if (T->isAggregateType()) { 681 uint64_t Size = DL.getTypeStoreSize(T); 682 const Align MA = 683 DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()), T); 684 IRBuilder<> Builder(SI); 685 auto *M = 686 Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, MA); 687 688 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 689 690 MD->removeInstruction(SI); 691 SI->eraseFromParent(); 692 NumMemSetInfer++; 693 694 // Make sure we do not invalidate the iterator. 695 BBI = M->getIterator(); 696 return true; 697 } 698 } 699 700 return false; 701 } 702 703 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 704 // See if there is another memset or store neighboring this memset which 705 // allows us to widen out the memset to do a single larger store. 706 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 707 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 708 MSI->getValue())) { 709 BBI = I->getIterator(); // Don't invalidate iterator. 710 return true; 711 } 712 return false; 713 } 714 715 /// Takes a memcpy and a call that it depends on, 716 /// and checks for the possibility of a call slot optimization by having 717 /// the call write its result directly into the destination of the memcpy. 718 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, 719 Value *cpySrc, uint64_t cpyLen, 720 unsigned cpyAlign, CallInst *C) { 721 // The general transformation to keep in mind is 722 // 723 // call @func(..., src, ...) 724 // memcpy(dest, src, ...) 725 // 726 // -> 727 // 728 // memcpy(dest, src, ...) 729 // call @func(..., dest, ...) 730 // 731 // Since moving the memcpy is technically awkward, we additionally check that 732 // src only holds uninitialized values at the moment of the call, meaning that 733 // the memcpy can be discarded rather than moved. 734 735 // Lifetime marks shouldn't be operated on. 736 if (Function *F = C->getCalledFunction()) 737 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 738 return false; 739 740 // Deliberately get the source and destination with bitcasts stripped away, 741 // because we'll need to do type comparisons based on the underlying type. 742 CallSite CS(C); 743 744 // Require that src be an alloca. This simplifies the reasoning considerably. 745 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 746 if (!srcAlloca) 747 return false; 748 749 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 750 if (!srcArraySize) 751 return false; 752 753 const DataLayout &DL = cpy->getModule()->getDataLayout(); 754 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 755 srcArraySize->getZExtValue(); 756 757 if (cpyLen < srcSize) 758 return false; 759 760 // Check that accessing the first srcSize bytes of dest will not cause a 761 // trap. Otherwise the transform is invalid since it might cause a trap 762 // to occur earlier than it otherwise would. 763 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 764 // The destination is an alloca. Check it is larger than srcSize. 765 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 766 if (!destArraySize) 767 return false; 768 769 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * 770 destArraySize->getZExtValue(); 771 772 if (destSize < srcSize) 773 return false; 774 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 775 // The store to dest may never happen if the call can throw. 776 if (C->mayThrow()) 777 return false; 778 779 if (A->getDereferenceableBytes() < srcSize) { 780 // If the destination is an sret parameter then only accesses that are 781 // outside of the returned struct type can trap. 782 if (!A->hasStructRetAttr()) 783 return false; 784 785 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 786 if (!StructTy->isSized()) { 787 // The call may never return and hence the copy-instruction may never 788 // be executed, and therefore it's not safe to say "the destination 789 // has at least <cpyLen> bytes, as implied by the copy-instruction", 790 return false; 791 } 792 793 uint64_t destSize = DL.getTypeAllocSize(StructTy); 794 if (destSize < srcSize) 795 return false; 796 } 797 } else { 798 return false; 799 } 800 801 // Check that dest points to memory that is at least as aligned as src. 802 unsigned srcAlign = srcAlloca->getAlignment(); 803 if (!srcAlign) 804 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); 805 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 806 // If dest is not aligned enough and we can't increase its alignment then 807 // bail out. 808 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 809 return false; 810 811 // Check that src is not accessed except via the call and the memcpy. This 812 // guarantees that it holds only undefined values when passed in (so the final 813 // memcpy can be dropped), that it is not read or written between the call and 814 // the memcpy, and that writing beyond the end of it is undefined. 815 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 816 srcAlloca->user_end()); 817 while (!srcUseList.empty()) { 818 User *U = srcUseList.pop_back_val(); 819 820 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 821 for (User *UU : U->users()) 822 srcUseList.push_back(UU); 823 continue; 824 } 825 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 826 if (!G->hasAllZeroIndices()) 827 return false; 828 829 for (User *UU : U->users()) 830 srcUseList.push_back(UU); 831 continue; 832 } 833 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 834 if (IT->isLifetimeStartOrEnd()) 835 continue; 836 837 if (U != C && U != cpy) 838 return false; 839 } 840 841 // Check that src isn't captured by the called function since the 842 // transformation can cause aliasing issues in that case. 843 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 844 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 845 return false; 846 847 // Since we're changing the parameter to the callsite, we need to make sure 848 // that what would be the new parameter dominates the callsite. 849 DominatorTree &DT = LookupDomTree(); 850 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 851 if (!DT.dominates(cpyDestInst, C)) 852 return false; 853 854 // In addition to knowing that the call does not access src in some 855 // unexpected manner, for example via a global, which we deduce from 856 // the use analysis, we also need to know that it does not sneakily 857 // access dest. We rely on AA to figure this out for us. 858 AliasAnalysis &AA = LookupAliasAnalysis(); 859 ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 860 // If necessary, perform additional analysis. 861 if (isModOrRefSet(MR)) 862 MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT); 863 if (isModOrRefSet(MR)) 864 return false; 865 866 // We can't create address space casts here because we don't know if they're 867 // safe for the target. 868 if (cpySrc->getType()->getPointerAddressSpace() != 869 cpyDest->getType()->getPointerAddressSpace()) 870 return false; 871 for (unsigned i = 0; i < CS.arg_size(); ++i) 872 if (CS.getArgument(i)->stripPointerCasts() == cpySrc && 873 cpySrc->getType()->getPointerAddressSpace() != 874 CS.getArgument(i)->getType()->getPointerAddressSpace()) 875 return false; 876 877 // All the checks have passed, so do the transformation. 878 bool changedArgument = false; 879 for (unsigned i = 0; i < CS.arg_size(); ++i) 880 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 881 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 882 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 883 cpyDest->getName(), C); 884 changedArgument = true; 885 if (CS.getArgument(i)->getType() == Dest->getType()) 886 CS.setArgument(i, Dest); 887 else 888 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 889 CS.getArgument(i)->getType(), Dest->getName(), C)); 890 } 891 892 if (!changedArgument) 893 return false; 894 895 // If the destination wasn't sufficiently aligned then increase its alignment. 896 if (!isDestSufficientlyAligned) { 897 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 898 cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign)); 899 } 900 901 // Drop any cached information about the call, because we may have changed 902 // its dependence information by changing its parameter. 903 MD->removeInstruction(C); 904 905 // Update AA metadata 906 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 907 // handled here, but combineMetadata doesn't support them yet 908 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 909 LLVMContext::MD_noalias, 910 LLVMContext::MD_invariant_group, 911 LLVMContext::MD_access_group}; 912 combineMetadata(C, cpy, KnownIDs, true); 913 914 // Remove the memcpy. 915 MD->removeInstruction(cpy); 916 ++NumMemCpyInstr; 917 918 return true; 919 } 920 921 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 922 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 923 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 924 MemCpyInst *MDep) { 925 // We can only transforms memcpy's where the dest of one is the source of the 926 // other. 927 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 928 return false; 929 930 // If dep instruction is reading from our current input, then it is a noop 931 // transfer and substituting the input won't change this instruction. Just 932 // ignore the input and let someone else zap MDep. This handles cases like: 933 // memcpy(a <- a) 934 // memcpy(b <- a) 935 if (M->getSource() == MDep->getSource()) 936 return false; 937 938 // Second, the length of the memcpy's must be the same, or the preceding one 939 // must be larger than the following one. 940 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 941 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 942 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 943 return false; 944 945 AliasAnalysis &AA = LookupAliasAnalysis(); 946 947 // Verify that the copied-from memory doesn't change in between the two 948 // transfers. For example, in: 949 // memcpy(a <- b) 950 // *b = 42; 951 // memcpy(c <- a) 952 // It would be invalid to transform the second memcpy into memcpy(c <- b). 953 // 954 // TODO: If the code between M and MDep is transparent to the destination "c", 955 // then we could still perform the xform by moving M up to the first memcpy. 956 // 957 // NOTE: This is conservative, it will stop on any read from the source loc, 958 // not just the defining memcpy. 959 MemDepResult SourceDep = 960 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 961 M->getIterator(), M->getParent()); 962 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 963 return false; 964 965 // If the dest of the second might alias the source of the first, then the 966 // source and dest might overlap. We still want to eliminate the intermediate 967 // value, but we have to generate a memmove instead of memcpy. 968 bool UseMemMove = false; 969 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 970 MemoryLocation::getForSource(MDep))) 971 UseMemMove = true; 972 973 // If all checks passed, then we can transform M. 974 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 975 << *MDep << '\n' << *M << '\n'); 976 977 // TODO: Is this worth it if we're creating a less aligned memcpy? For 978 // example we could be moving from movaps -> movq on x86. 979 IRBuilder<> Builder(M); 980 if (UseMemMove) 981 Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(), 982 MDep->getRawSource(), MDep->getSourceAlignment(), 983 M->getLength(), M->isVolatile()); 984 else 985 Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(), 986 MDep->getRawSource(), MDep->getSourceAlignment(), 987 M->getLength(), M->isVolatile()); 988 989 // Remove the instruction we're replacing. 990 MD->removeInstruction(M); 991 M->eraseFromParent(); 992 ++NumMemCpyInstr; 993 return true; 994 } 995 996 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 997 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 998 /// weren't copied over by \p MemCpy. 999 /// 1000 /// In other words, transform: 1001 /// \code 1002 /// memset(dst, c, dst_size); 1003 /// memcpy(dst, src, src_size); 1004 /// \endcode 1005 /// into: 1006 /// \code 1007 /// memcpy(dst, src, src_size); 1008 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1009 /// \endcode 1010 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1011 MemSetInst *MemSet) { 1012 // We can only transform memset/memcpy with the same destination. 1013 if (MemSet->getDest() != MemCpy->getDest()) 1014 return false; 1015 1016 // Check that there are no other dependencies on the memset destination. 1017 MemDepResult DstDepInfo = 1018 MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, 1019 MemCpy->getIterator(), MemCpy->getParent()); 1020 if (DstDepInfo.getInst() != MemSet) 1021 return false; 1022 1023 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1024 Value *Dest = MemCpy->getRawDest(); 1025 Value *DestSize = MemSet->getLength(); 1026 Value *SrcSize = MemCpy->getLength(); 1027 1028 // By default, create an unaligned memset. 1029 unsigned Align = 1; 1030 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1031 // of the sum. 1032 const unsigned DestAlign = 1033 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1034 if (DestAlign > 1) 1035 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1036 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1037 1038 IRBuilder<> Builder(MemCpy); 1039 1040 // If the sizes have different types, zext the smaller one. 1041 if (DestSize->getType() != SrcSize->getType()) { 1042 if (DestSize->getType()->getIntegerBitWidth() > 1043 SrcSize->getType()->getIntegerBitWidth()) 1044 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1045 else 1046 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1047 } 1048 1049 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1050 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1051 Value *MemsetLen = Builder.CreateSelect( 1052 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1053 Builder.CreateMemSet( 1054 Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest, 1055 SrcSize), 1056 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1057 1058 MD->removeInstruction(MemSet); 1059 MemSet->eraseFromParent(); 1060 return true; 1061 } 1062 1063 /// Determine whether the instruction has undefined content for the given Size, 1064 /// either because it was freshly alloca'd or started its lifetime. 1065 static bool hasUndefContents(Instruction *I, ConstantInt *Size) { 1066 if (isa<AllocaInst>(I)) 1067 return true; 1068 1069 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1070 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1071 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1072 if (LTSize->getZExtValue() >= Size->getZExtValue()) 1073 return true; 1074 1075 return false; 1076 } 1077 1078 /// Transform memcpy to memset when its source was just memset. 1079 /// In other words, turn: 1080 /// \code 1081 /// memset(dst1, c, dst1_size); 1082 /// memcpy(dst2, dst1, dst2_size); 1083 /// \endcode 1084 /// into: 1085 /// \code 1086 /// memset(dst1, c, dst1_size); 1087 /// memset(dst2, c, dst2_size); 1088 /// \endcode 1089 /// When dst2_size <= dst1_size. 1090 /// 1091 /// The \p MemCpy must have a Constant length. 1092 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1093 MemSetInst *MemSet) { 1094 AliasAnalysis &AA = LookupAliasAnalysis(); 1095 1096 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1097 // memcpying from the same address. Otherwise it is hard to reason about. 1098 if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1099 return false; 1100 1101 // A known memset size is required. 1102 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); 1103 if (!MemSetSize) 1104 return false; 1105 1106 // Make sure the memcpy doesn't read any more than what the memset wrote. 1107 // Don't worry about sizes larger than i64. 1108 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); 1109 if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) { 1110 // If the memcpy is larger than the memset, but the memory was undef prior 1111 // to the memset, we can just ignore the tail. Technically we're only 1112 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1113 // easily represent this location, we use the full 0..CopySize range. 1114 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1115 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1116 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); 1117 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) 1118 CopySize = MemSetSize; 1119 else 1120 return false; 1121 } 1122 1123 IRBuilder<> Builder(MemCpy); 1124 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize, 1125 MaybeAlign(MemCpy->getDestAlignment())); 1126 return true; 1127 } 1128 1129 /// Perform simplification of memcpy's. If we have memcpy A 1130 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1131 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1132 /// circumstances). This allows later passes to remove the first memcpy 1133 /// altogether. 1134 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) { 1135 // We can only optimize non-volatile memcpy's. 1136 if (M->isVolatile()) return false; 1137 1138 // If the source and destination of the memcpy are the same, then zap it. 1139 if (M->getSource() == M->getDest()) { 1140 MD->removeInstruction(M); 1141 M->eraseFromParent(); 1142 return false; 1143 } 1144 1145 // If copying from a constant, try to turn the memcpy into a memset. 1146 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1147 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1148 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1149 M->getModule()->getDataLayout())) { 1150 IRBuilder<> Builder(M); 1151 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1152 MaybeAlign(M->getDestAlignment()), false); 1153 MD->removeInstruction(M); 1154 M->eraseFromParent(); 1155 ++NumCpyToSet; 1156 return true; 1157 } 1158 1159 MemDepResult DepInfo = MD->getDependency(M); 1160 1161 // Try to turn a partially redundant memset + memcpy into 1162 // memcpy + smaller memset. We don't need the memcpy size for this. 1163 if (DepInfo.isClobber()) 1164 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 1165 if (processMemSetMemCpyDependence(M, MDep)) 1166 return true; 1167 1168 // The optimizations after this point require the memcpy size. 1169 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 1170 if (!CopySize) return false; 1171 1172 // There are four possible optimizations we can do for memcpy: 1173 // a) memcpy-memcpy xform which exposes redundance for DSE. 1174 // b) call-memcpy xform for return slot optimization. 1175 // c) memcpy from freshly alloca'd space or space that has just started its 1176 // lifetime copies undefined data, and we can therefore eliminate the 1177 // memcpy in favor of the data that was already at the destination. 1178 // d) memcpy from a just-memset'd source can be turned into memset. 1179 if (DepInfo.isClobber()) { 1180 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 1181 // FIXME: Can we pass in either of dest/src alignment here instead 1182 // of conservatively taking the minimum? 1183 unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment()); 1184 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 1185 CopySize->getZExtValue(), Align, 1186 C)) { 1187 MD->removeInstruction(M); 1188 M->eraseFromParent(); 1189 return true; 1190 } 1191 } 1192 } 1193 1194 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1195 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1196 SrcLoc, true, M->getIterator(), M->getParent()); 1197 1198 if (SrcDepInfo.isClobber()) { 1199 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1200 return processMemCpyMemCpyDependence(M, MDep); 1201 } else if (SrcDepInfo.isDef()) { 1202 if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) { 1203 MD->removeInstruction(M); 1204 M->eraseFromParent(); 1205 ++NumMemCpyInstr; 1206 return true; 1207 } 1208 } 1209 1210 if (SrcDepInfo.isClobber()) 1211 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1212 if (performMemCpyToMemSetOptzn(M, MDep)) { 1213 MD->removeInstruction(M); 1214 M->eraseFromParent(); 1215 ++NumCpyToSet; 1216 return true; 1217 } 1218 1219 return false; 1220 } 1221 1222 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1223 /// not to alias. 1224 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1225 AliasAnalysis &AA = LookupAliasAnalysis(); 1226 1227 if (!TLI->has(LibFunc_memmove)) 1228 return false; 1229 1230 // See if the pointers alias. 1231 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 1232 MemoryLocation::getForSource(M))) 1233 return false; 1234 1235 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1236 << "\n"); 1237 1238 // If not, then we know we can transform this. 1239 Type *ArgTys[3] = { M->getRawDest()->getType(), 1240 M->getRawSource()->getType(), 1241 M->getLength()->getType() }; 1242 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1243 Intrinsic::memcpy, ArgTys)); 1244 1245 // MemDep may have over conservative information about this instruction, just 1246 // conservatively flush it from the cache. 1247 MD->removeInstruction(M); 1248 1249 ++NumMoveToCpy; 1250 return true; 1251 } 1252 1253 /// This is called on every byval argument in call sites. 1254 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) { 1255 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); 1256 // Find out what feeds this byval argument. 1257 Value *ByValArg = CS.getArgument(ArgNo); 1258 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1259 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1260 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1261 MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true, 1262 CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); 1263 if (!DepInfo.isClobber()) 1264 return false; 1265 1266 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1267 // a memcpy, see if we can byval from the source of the memcpy instead of the 1268 // result. 1269 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1270 if (!MDep || MDep->isVolatile() || 1271 ByValArg->stripPointerCasts() != MDep->getDest()) 1272 return false; 1273 1274 // The length of the memcpy must be larger or equal to the size of the byval. 1275 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1276 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1277 return false; 1278 1279 // Get the alignment of the byval. If the call doesn't specify the alignment, 1280 // then it is some target specific value that we can't know. 1281 unsigned ByValAlign = CS.getParamAlignment(ArgNo); 1282 if (ByValAlign == 0) return false; 1283 1284 // If it is greater than the memcpy, then we check to see if we can force the 1285 // source of the memcpy to the alignment we need. If we fail, we bail out. 1286 AssumptionCache &AC = LookupAssumptionCache(); 1287 DominatorTree &DT = LookupDomTree(); 1288 if (MDep->getSourceAlignment() < ByValAlign && 1289 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, 1290 CS.getInstruction(), &AC, &DT) < ByValAlign) 1291 return false; 1292 1293 // The address space of the memcpy source must match the byval argument 1294 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1295 ByValArg->getType()->getPointerAddressSpace()) 1296 return false; 1297 1298 // Verify that the copied-from memory doesn't change in between the memcpy and 1299 // the byval call. 1300 // memcpy(a <- b) 1301 // *b = 42; 1302 // foo(*a) 1303 // It would be invalid to transform the second memcpy into foo(*b). 1304 // 1305 // NOTE: This is conservative, it will stop on any read from the source loc, 1306 // not just the defining memcpy. 1307 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1308 MemoryLocation::getForSource(MDep), false, 1309 CS.getInstruction()->getIterator(), MDep->getParent()); 1310 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1311 return false; 1312 1313 Value *TmpCast = MDep->getSource(); 1314 if (MDep->getSource()->getType() != ByValArg->getType()) 1315 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1316 "tmpcast", CS.getInstruction()); 1317 1318 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1319 << " " << *MDep << "\n" 1320 << " " << *CS.getInstruction() << "\n"); 1321 1322 // Otherwise we're good! Update the byval argument. 1323 CS.setArgument(ArgNo, TmpCast); 1324 ++NumMemCpyInstr; 1325 return true; 1326 } 1327 1328 /// Executes one iteration of MemCpyOptPass. 1329 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1330 bool MadeChange = false; 1331 1332 DominatorTree &DT = LookupDomTree(); 1333 1334 // Walk all instruction in the function. 1335 for (BasicBlock &BB : F) { 1336 // Skip unreachable blocks. For example processStore assumes that an 1337 // instruction in a BB can't be dominated by a later instruction in the 1338 // same BB (which is a scenario that can happen for an unreachable BB that 1339 // has itself as a predecessor). 1340 if (!DT.isReachableFromEntry(&BB)) 1341 continue; 1342 1343 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1344 // Avoid invalidating the iterator. 1345 Instruction *I = &*BI++; 1346 1347 bool RepeatInstruction = false; 1348 1349 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1350 MadeChange |= processStore(SI, BI); 1351 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1352 RepeatInstruction = processMemSet(M, BI); 1353 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1354 RepeatInstruction = processMemCpy(M); 1355 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1356 RepeatInstruction = processMemMove(M); 1357 else if (auto CS = CallSite(I)) { 1358 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 1359 if (CS.isByValArgument(i)) 1360 MadeChange |= processByValArgument(CS, i); 1361 } 1362 1363 // Reprocess the instruction if desired. 1364 if (RepeatInstruction) { 1365 if (BI != BB.begin()) 1366 --BI; 1367 MadeChange = true; 1368 } 1369 } 1370 } 1371 1372 return MadeChange; 1373 } 1374 1375 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1376 auto &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1377 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1378 1379 auto LookupAliasAnalysis = [&]() -> AliasAnalysis & { 1380 return AM.getResult<AAManager>(F); 1381 }; 1382 auto LookupAssumptionCache = [&]() -> AssumptionCache & { 1383 return AM.getResult<AssumptionAnalysis>(F); 1384 }; 1385 auto LookupDomTree = [&]() -> DominatorTree & { 1386 return AM.getResult<DominatorTreeAnalysis>(F); 1387 }; 1388 1389 bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis, 1390 LookupAssumptionCache, LookupDomTree); 1391 if (!MadeChange) 1392 return PreservedAnalyses::all(); 1393 1394 PreservedAnalyses PA; 1395 PA.preserveSet<CFGAnalyses>(); 1396 PA.preserve<GlobalsAA>(); 1397 PA.preserve<MemoryDependenceAnalysis>(); 1398 return PA; 1399 } 1400 1401 bool MemCpyOptPass::runImpl( 1402 Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, 1403 std::function<AliasAnalysis &()> LookupAliasAnalysis_, 1404 std::function<AssumptionCache &()> LookupAssumptionCache_, 1405 std::function<DominatorTree &()> LookupDomTree_) { 1406 bool MadeChange = false; 1407 MD = MD_; 1408 TLI = TLI_; 1409 LookupAliasAnalysis = std::move(LookupAliasAnalysis_); 1410 LookupAssumptionCache = std::move(LookupAssumptionCache_); 1411 LookupDomTree = std::move(LookupDomTree_); 1412 1413 // If we don't have at least memset and memcpy, there is little point of doing 1414 // anything here. These are required by a freestanding implementation, so if 1415 // even they are disabled, there is no point in trying hard. 1416 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) 1417 return false; 1418 1419 while (true) { 1420 if (!iterateOnFunction(F)) 1421 break; 1422 MadeChange = true; 1423 } 1424 1425 MD = nullptr; 1426 return MadeChange; 1427 } 1428 1429 /// This is the main transformation entry point for a function. 1430 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1431 if (skipFunction(F)) 1432 return false; 1433 1434 auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 1435 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1436 1437 auto LookupAliasAnalysis = [this]() -> AliasAnalysis & { 1438 return getAnalysis<AAResultsWrapperPass>().getAAResults(); 1439 }; 1440 auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & { 1441 return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1442 }; 1443 auto LookupDomTree = [this]() -> DominatorTree & { 1444 return getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1445 }; 1446 1447 return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache, 1448 LookupDomTree); 1449 } 1450