1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Operator.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "memcpyopt"
67 
68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
69 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
70 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
71 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
72 
73 namespace {
74 
75 /// Represents a range of memset'd bytes with the ByteVal value.
76 /// This allows us to analyze stores like:
77 ///   store 0 -> P+1
78 ///   store 0 -> P+0
79 ///   store 0 -> P+3
80 ///   store 0 -> P+2
81 /// which sometimes happens with stores to arrays of structs etc.  When we see
82 /// the first store, we make a range [1, 2).  The second store extends the range
83 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
84 /// two ranges into [0, 3) which is memset'able.
85 struct MemsetRange {
86   // Start/End - A semi range that describes the span that this range covers.
87   // The range is closed at the start and open at the end: [Start, End).
88   int64_t Start, End;
89 
90   /// StartPtr - The getelementptr instruction that points to the start of the
91   /// range.
92   Value *StartPtr;
93 
94   /// Alignment - The known alignment of the first store.
95   unsigned Alignment;
96 
97   /// TheStores - The actual stores that make up this range.
98   SmallVector<Instruction*, 16> TheStores;
99 
100   bool isProfitableToUseMemset(const DataLayout &DL) const;
101 };
102 
103 } // end anonymous namespace
104 
105 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
106   // If we found more than 4 stores to merge or 16 bytes, use memset.
107   if (TheStores.size() >= 4 || End-Start >= 16) return true;
108 
109   // If there is nothing to merge, don't do anything.
110   if (TheStores.size() < 2) return false;
111 
112   // If any of the stores are a memset, then it is always good to extend the
113   // memset.
114   for (Instruction *SI : TheStores)
115     if (!isa<StoreInst>(SI))
116       return true;
117 
118   // Assume that the code generator is capable of merging pairs of stores
119   // together if it wants to.
120   if (TheStores.size() == 2) return false;
121 
122   // If we have fewer than 8 stores, it can still be worthwhile to do this.
123   // For example, merging 4 i8 stores into an i32 store is useful almost always.
124   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
125   // memset will be split into 2 32-bit stores anyway) and doing so can
126   // pessimize the llvm optimizer.
127   //
128   // Since we don't have perfect knowledge here, make some assumptions: assume
129   // the maximum GPR width is the same size as the largest legal integer
130   // size. If so, check to see whether we will end up actually reducing the
131   // number of stores used.
132   unsigned Bytes = unsigned(End-Start);
133   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
134   if (MaxIntSize == 0)
135     MaxIntSize = 1;
136   unsigned NumPointerStores = Bytes / MaxIntSize;
137 
138   // Assume the remaining bytes if any are done a byte at a time.
139   unsigned NumByteStores = Bytes % MaxIntSize;
140 
141   // If we will reduce the # stores (according to this heuristic), do the
142   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
143   // etc.
144   return TheStores.size() > NumPointerStores+NumByteStores;
145 }
146 
147 namespace {
148 
149 class MemsetRanges {
150   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
151 
152   /// A sorted list of the memset ranges.
153   SmallVector<MemsetRange, 8> Ranges;
154 
155   const DataLayout &DL;
156 
157 public:
158   MemsetRanges(const DataLayout &DL) : DL(DL) {}
159 
160   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
161 
162   const_iterator begin() const { return Ranges.begin(); }
163   const_iterator end() const { return Ranges.end(); }
164   bool empty() const { return Ranges.empty(); }
165 
166   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
167     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
168       addStore(OffsetFromFirst, SI);
169     else
170       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
171   }
172 
173   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
174     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
175 
176     addRange(OffsetFromFirst, StoreSize,
177              SI->getPointerOperand(), SI->getAlignment(), SI);
178   }
179 
180   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
181     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
182     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
183   }
184 
185   void addRange(int64_t Start, int64_t Size, Value *Ptr,
186                 unsigned Alignment, Instruction *Inst);
187 };
188 
189 } // end anonymous namespace
190 
191 /// Add a new store to the MemsetRanges data structure.  This adds a
192 /// new range for the specified store at the specified offset, merging into
193 /// existing ranges as appropriate.
194 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
195                             unsigned Alignment, Instruction *Inst) {
196   int64_t End = Start+Size;
197 
198   range_iterator I = partition_point(
199       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
200 
201   // We now know that I == E, in which case we didn't find anything to merge
202   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
203   // to insert a new range.  Handle this now.
204   if (I == Ranges.end() || End < I->Start) {
205     MemsetRange &R = *Ranges.insert(I, MemsetRange());
206     R.Start        = Start;
207     R.End          = End;
208     R.StartPtr     = Ptr;
209     R.Alignment    = Alignment;
210     R.TheStores.push_back(Inst);
211     return;
212   }
213 
214   // This store overlaps with I, add it.
215   I->TheStores.push_back(Inst);
216 
217   // At this point, we may have an interval that completely contains our store.
218   // If so, just add it to the interval and return.
219   if (I->Start <= Start && I->End >= End)
220     return;
221 
222   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
223   // but is not entirely contained within the range.
224 
225   // See if the range extends the start of the range.  In this case, it couldn't
226   // possibly cause it to join the prior range, because otherwise we would have
227   // stopped on *it*.
228   if (Start < I->Start) {
229     I->Start = Start;
230     I->StartPtr = Ptr;
231     I->Alignment = Alignment;
232   }
233 
234   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
235   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
236   // End.
237   if (End > I->End) {
238     I->End = End;
239     range_iterator NextI = I;
240     while (++NextI != Ranges.end() && End >= NextI->Start) {
241       // Merge the range in.
242       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
243       if (NextI->End > I->End)
244         I->End = NextI->End;
245       Ranges.erase(NextI);
246       NextI = I;
247     }
248   }
249 }
250 
251 //===----------------------------------------------------------------------===//
252 //                         MemCpyOptLegacyPass Pass
253 //===----------------------------------------------------------------------===//
254 
255 namespace {
256 
257 class MemCpyOptLegacyPass : public FunctionPass {
258   MemCpyOptPass Impl;
259 
260 public:
261   static char ID; // Pass identification, replacement for typeid
262 
263   MemCpyOptLegacyPass() : FunctionPass(ID) {
264     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
265   }
266 
267   bool runOnFunction(Function &F) override;
268 
269 private:
270   // This transformation requires dominator postdominator info
271   void getAnalysisUsage(AnalysisUsage &AU) const override {
272     AU.setPreservesCFG();
273     AU.addRequired<AssumptionCacheTracker>();
274     AU.addRequired<DominatorTreeWrapperPass>();
275     AU.addRequired<MemoryDependenceWrapperPass>();
276     AU.addRequired<AAResultsWrapperPass>();
277     AU.addRequired<TargetLibraryInfoWrapperPass>();
278     AU.addPreserved<GlobalsAAWrapperPass>();
279     AU.addPreserved<MemoryDependenceWrapperPass>();
280   }
281 };
282 
283 } // end anonymous namespace
284 
285 char MemCpyOptLegacyPass::ID = 0;
286 
287 /// The public interface to this file...
288 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
289 
290 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
291                       false, false)
292 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
293 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
294 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
295 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
296 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
297 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
298 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
299                     false, false)
300 
301 /// When scanning forward over instructions, we look for some other patterns to
302 /// fold away. In particular, this looks for stores to neighboring locations of
303 /// memory. If it sees enough consecutive ones, it attempts to merge them
304 /// together into a memcpy/memset.
305 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
306                                                  Value *StartPtr,
307                                                  Value *ByteVal) {
308   const DataLayout &DL = StartInst->getModule()->getDataLayout();
309 
310   // Okay, so we now have a single store that can be splatable.  Scan to find
311   // all subsequent stores of the same value to offset from the same pointer.
312   // Join these together into ranges, so we can decide whether contiguous blocks
313   // are stored.
314   MemsetRanges Ranges(DL);
315 
316   BasicBlock::iterator BI(StartInst);
317   for (++BI; !BI->isTerminator(); ++BI) {
318     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
319       // If the instruction is readnone, ignore it, otherwise bail out.  We
320       // don't even allow readonly here because we don't want something like:
321       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
322       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
323         break;
324       continue;
325     }
326 
327     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
328       // If this is a store, see if we can merge it in.
329       if (!NextStore->isSimple()) break;
330 
331       // Check to see if this stored value is of the same byte-splattable value.
332       Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL);
333       if (isa<UndefValue>(ByteVal) && StoredByte)
334         ByteVal = StoredByte;
335       if (ByteVal != StoredByte)
336         break;
337 
338       // Check to see if this store is to a constant offset from the start ptr.
339       Optional<int64_t> Offset =
340           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
341       if (!Offset)
342         break;
343 
344       Ranges.addStore(*Offset, NextStore);
345     } else {
346       MemSetInst *MSI = cast<MemSetInst>(BI);
347 
348       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
349           !isa<ConstantInt>(MSI->getLength()))
350         break;
351 
352       // Check to see if this store is to a constant offset from the start ptr.
353       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
354       if (!Offset)
355         break;
356 
357       Ranges.addMemSet(*Offset, MSI);
358     }
359   }
360 
361   // If we have no ranges, then we just had a single store with nothing that
362   // could be merged in.  This is a very common case of course.
363   if (Ranges.empty())
364     return nullptr;
365 
366   // If we had at least one store that could be merged in, add the starting
367   // store as well.  We try to avoid this unless there is at least something
368   // interesting as a small compile-time optimization.
369   Ranges.addInst(0, StartInst);
370 
371   // If we create any memsets, we put it right before the first instruction that
372   // isn't part of the memset block.  This ensure that the memset is dominated
373   // by any addressing instruction needed by the start of the block.
374   IRBuilder<> Builder(&*BI);
375 
376   // Now that we have full information about ranges, loop over the ranges and
377   // emit memset's for anything big enough to be worthwhile.
378   Instruction *AMemSet = nullptr;
379   for (const MemsetRange &Range : Ranges) {
380     if (Range.TheStores.size() == 1) continue;
381 
382     // If it is profitable to lower this range to memset, do so now.
383     if (!Range.isProfitableToUseMemset(DL))
384       continue;
385 
386     // Otherwise, we do want to transform this!  Create a new memset.
387     // Get the starting pointer of the block.
388     StartPtr = Range.StartPtr;
389 
390     // Determine alignment
391     const Align Alignment = DL.getValueOrABITypeAlignment(
392         MaybeAlign(Range.Alignment),
393         cast<PointerType>(StartPtr->getType())->getElementType());
394 
395     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
396                                    Alignment);
397     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
398                                                    : Range.TheStores) dbgs()
399                                               << *SI << '\n';
400                dbgs() << "With: " << *AMemSet << '\n');
401 
402     if (!Range.TheStores.empty())
403       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
404 
405     // Zap all the stores.
406     for (Instruction *SI : Range.TheStores) {
407       MD->removeInstruction(SI);
408       SI->eraseFromParent();
409     }
410     ++NumMemSetInfer;
411   }
412 
413   return AMemSet;
414 }
415 
416 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
417   unsigned StoreAlign = SI->getAlignment();
418   if (!StoreAlign)
419     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
420   return StoreAlign;
421 }
422 
423 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
424   unsigned LoadAlign = LI->getAlignment();
425   if (!LoadAlign)
426     LoadAlign = DL.getABITypeAlignment(LI->getType());
427   return LoadAlign;
428 }
429 
430 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
431                                      const LoadInst *LI) {
432   unsigned StoreAlign = findStoreAlignment(DL, SI);
433   unsigned LoadAlign = findLoadAlignment(DL, LI);
434   return MinAlign(StoreAlign, LoadAlign);
435 }
436 
437 // This method try to lift a store instruction before position P.
438 // It will lift the store and its argument + that anything that
439 // may alias with these.
440 // The method returns true if it was successful.
441 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
442                    const LoadInst *LI) {
443   // If the store alias this position, early bail out.
444   MemoryLocation StoreLoc = MemoryLocation::get(SI);
445   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
446     return false;
447 
448   // Keep track of the arguments of all instruction we plan to lift
449   // so we can make sure to lift them as well if appropriate.
450   DenseSet<Instruction*> Args;
451   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
452     if (Ptr->getParent() == SI->getParent())
453       Args.insert(Ptr);
454 
455   // Instruction to lift before P.
456   SmallVector<Instruction*, 8> ToLift;
457 
458   // Memory locations of lifted instructions.
459   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
460 
461   // Lifted calls.
462   SmallVector<const CallBase *, 8> Calls;
463 
464   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
465 
466   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
467     auto *C = &*I;
468 
469     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
470 
471     bool NeedLift = false;
472     if (Args.erase(C))
473       NeedLift = true;
474     else if (MayAlias) {
475       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
476         return isModOrRefSet(AA.getModRefInfo(C, ML));
477       });
478 
479       if (!NeedLift)
480         NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
481           return isModOrRefSet(AA.getModRefInfo(C, Call));
482         });
483     }
484 
485     if (!NeedLift)
486       continue;
487 
488     if (MayAlias) {
489       // Since LI is implicitly moved downwards past the lifted instructions,
490       // none of them may modify its source.
491       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
492         return false;
493       else if (const auto *Call = dyn_cast<CallBase>(C)) {
494         // If we can't lift this before P, it's game over.
495         if (isModOrRefSet(AA.getModRefInfo(P, Call)))
496           return false;
497 
498         Calls.push_back(Call);
499       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
500         // If we can't lift this before P, it's game over.
501         auto ML = MemoryLocation::get(C);
502         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
503           return false;
504 
505         MemLocs.push_back(ML);
506       } else
507         // We don't know how to lift this instruction.
508         return false;
509     }
510 
511     ToLift.push_back(C);
512     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
513       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
514         if (A->getParent() == SI->getParent()) {
515           // Cannot hoist user of P above P
516           if(A == P) return false;
517           Args.insert(A);
518         }
519       }
520   }
521 
522   // We made it, we need to lift
523   for (auto *I : llvm::reverse(ToLift)) {
524     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
525     I->moveBefore(P);
526   }
527 
528   return true;
529 }
530 
531 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
532   if (!SI->isSimple()) return false;
533 
534   // Avoid merging nontemporal stores since the resulting
535   // memcpy/memset would not be able to preserve the nontemporal hint.
536   // In theory we could teach how to propagate the !nontemporal metadata to
537   // memset calls. However, that change would force the backend to
538   // conservatively expand !nontemporal memset calls back to sequences of
539   // store instructions (effectively undoing the merging).
540   if (SI->getMetadata(LLVMContext::MD_nontemporal))
541     return false;
542 
543   const DataLayout &DL = SI->getModule()->getDataLayout();
544 
545   // Load to store forwarding can be interpreted as memcpy.
546   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
547     if (LI->isSimple() && LI->hasOneUse() &&
548         LI->getParent() == SI->getParent()) {
549 
550       auto *T = LI->getType();
551       if (T->isAggregateType()) {
552         AliasAnalysis &AA = LookupAliasAnalysis();
553         MemoryLocation LoadLoc = MemoryLocation::get(LI);
554 
555         // We use alias analysis to check if an instruction may store to
556         // the memory we load from in between the load and the store. If
557         // such an instruction is found, we try to promote there instead
558         // of at the store position.
559         Instruction *P = SI;
560         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
561           if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
562             P = &I;
563             break;
564           }
565         }
566 
567         // We found an instruction that may write to the loaded memory.
568         // We can try to promote at this position instead of the store
569         // position if nothing alias the store memory after this and the store
570         // destination is not in the range.
571         if (P && P != SI) {
572           if (!moveUp(AA, SI, P, LI))
573             P = nullptr;
574         }
575 
576         // If a valid insertion position is found, then we can promote
577         // the load/store pair to a memcpy.
578         if (P) {
579           // If we load from memory that may alias the memory we store to,
580           // memmove must be used to preserve semantic. If not, memcpy can
581           // be used.
582           bool UseMemMove = false;
583           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
584             UseMemMove = true;
585 
586           uint64_t Size = DL.getTypeStoreSize(T);
587 
588           IRBuilder<> Builder(P);
589           Instruction *M;
590           if (UseMemMove)
591             M = Builder.CreateMemMove(
592                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
593                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
594           else
595             M = Builder.CreateMemCpy(
596                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
597                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
598 
599           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
600                             << *M << "\n");
601 
602           MD->removeInstruction(SI);
603           SI->eraseFromParent();
604           MD->removeInstruction(LI);
605           LI->eraseFromParent();
606           ++NumMemCpyInstr;
607 
608           // Make sure we do not invalidate the iterator.
609           BBI = M->getIterator();
610           return true;
611         }
612       }
613 
614       // Detect cases where we're performing call slot forwarding, but
615       // happen to be using a load-store pair to implement it, rather than
616       // a memcpy.
617       MemDepResult ldep = MD->getDependency(LI);
618       CallInst *C = nullptr;
619       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
620         C = dyn_cast<CallInst>(ldep.getInst());
621 
622       if (C) {
623         // Check that nothing touches the dest of the "copy" between
624         // the call and the store.
625         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
626         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
627         AliasAnalysis &AA = LookupAliasAnalysis();
628         MemoryLocation StoreLoc = MemoryLocation::get(SI);
629         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
630              I != E; --I) {
631           if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
632             C = nullptr;
633             break;
634           }
635           // The store to dest may never happen if an exception can be thrown
636           // between the load and the store.
637           if (I->mayThrow() && !CpyDestIsLocal) {
638             C = nullptr;
639             break;
640           }
641         }
642       }
643 
644       if (C) {
645         bool changed = performCallSlotOptzn(
646             LI, SI->getPointerOperand()->stripPointerCasts(),
647             LI->getPointerOperand()->stripPointerCasts(),
648             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
649             findCommonAlignment(DL, SI, LI), C);
650         if (changed) {
651           MD->removeInstruction(SI);
652           SI->eraseFromParent();
653           MD->removeInstruction(LI);
654           LI->eraseFromParent();
655           ++NumMemCpyInstr;
656           return true;
657         }
658       }
659     }
660   }
661 
662   // There are two cases that are interesting for this code to handle: memcpy
663   // and memset.  Right now we only handle memset.
664 
665   // Ensure that the value being stored is something that can be memset'able a
666   // byte at a time like "0" or "-1" or any width, as well as things like
667   // 0xA0A0A0A0 and 0.0.
668   auto *V = SI->getOperand(0);
669   if (Value *ByteVal = isBytewiseValue(V, DL)) {
670     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
671                                               ByteVal)) {
672       BBI = I->getIterator(); // Don't invalidate iterator.
673       return true;
674     }
675 
676     // If we have an aggregate, we try to promote it to memset regardless
677     // of opportunity for merging as it can expose optimization opportunities
678     // in subsequent passes.
679     auto *T = V->getType();
680     if (T->isAggregateType()) {
681       uint64_t Size = DL.getTypeStoreSize(T);
682       const Align MA =
683           DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()), T);
684       IRBuilder<> Builder(SI);
685       auto *M =
686           Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, MA);
687 
688       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
689 
690       MD->removeInstruction(SI);
691       SI->eraseFromParent();
692       NumMemSetInfer++;
693 
694       // Make sure we do not invalidate the iterator.
695       BBI = M->getIterator();
696       return true;
697     }
698   }
699 
700   return false;
701 }
702 
703 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
704   // See if there is another memset or store neighboring this memset which
705   // allows us to widen out the memset to do a single larger store.
706   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
707     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
708                                               MSI->getValue())) {
709       BBI = I->getIterator(); // Don't invalidate iterator.
710       return true;
711     }
712   return false;
713 }
714 
715 /// Takes a memcpy and a call that it depends on,
716 /// and checks for the possibility of a call slot optimization by having
717 /// the call write its result directly into the destination of the memcpy.
718 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
719                                          Value *cpySrc, uint64_t cpyLen,
720                                          unsigned cpyAlign, CallInst *C) {
721   // The general transformation to keep in mind is
722   //
723   //   call @func(..., src, ...)
724   //   memcpy(dest, src, ...)
725   //
726   // ->
727   //
728   //   memcpy(dest, src, ...)
729   //   call @func(..., dest, ...)
730   //
731   // Since moving the memcpy is technically awkward, we additionally check that
732   // src only holds uninitialized values at the moment of the call, meaning that
733   // the memcpy can be discarded rather than moved.
734 
735   // Lifetime marks shouldn't be operated on.
736   if (Function *F = C->getCalledFunction())
737     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
738       return false;
739 
740   // Deliberately get the source and destination with bitcasts stripped away,
741   // because we'll need to do type comparisons based on the underlying type.
742   CallSite CS(C);
743 
744   // Require that src be an alloca.  This simplifies the reasoning considerably.
745   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
746   if (!srcAlloca)
747     return false;
748 
749   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
750   if (!srcArraySize)
751     return false;
752 
753   const DataLayout &DL = cpy->getModule()->getDataLayout();
754   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
755                      srcArraySize->getZExtValue();
756 
757   if (cpyLen < srcSize)
758     return false;
759 
760   // Check that accessing the first srcSize bytes of dest will not cause a
761   // trap.  Otherwise the transform is invalid since it might cause a trap
762   // to occur earlier than it otherwise would.
763   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
764     // The destination is an alloca.  Check it is larger than srcSize.
765     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
766     if (!destArraySize)
767       return false;
768 
769     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
770                         destArraySize->getZExtValue();
771 
772     if (destSize < srcSize)
773       return false;
774   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
775     // The store to dest may never happen if the call can throw.
776     if (C->mayThrow())
777       return false;
778 
779     if (A->getDereferenceableBytes() < srcSize) {
780       // If the destination is an sret parameter then only accesses that are
781       // outside of the returned struct type can trap.
782       if (!A->hasStructRetAttr())
783         return false;
784 
785       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
786       if (!StructTy->isSized()) {
787         // The call may never return and hence the copy-instruction may never
788         // be executed, and therefore it's not safe to say "the destination
789         // has at least <cpyLen> bytes, as implied by the copy-instruction",
790         return false;
791       }
792 
793       uint64_t destSize = DL.getTypeAllocSize(StructTy);
794       if (destSize < srcSize)
795         return false;
796     }
797   } else {
798     return false;
799   }
800 
801   // Check that dest points to memory that is at least as aligned as src.
802   unsigned srcAlign = srcAlloca->getAlignment();
803   if (!srcAlign)
804     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
805   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
806   // If dest is not aligned enough and we can't increase its alignment then
807   // bail out.
808   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
809     return false;
810 
811   // Check that src is not accessed except via the call and the memcpy.  This
812   // guarantees that it holds only undefined values when passed in (so the final
813   // memcpy can be dropped), that it is not read or written between the call and
814   // the memcpy, and that writing beyond the end of it is undefined.
815   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
816                                    srcAlloca->user_end());
817   while (!srcUseList.empty()) {
818     User *U = srcUseList.pop_back_val();
819 
820     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
821       for (User *UU : U->users())
822         srcUseList.push_back(UU);
823       continue;
824     }
825     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
826       if (!G->hasAllZeroIndices())
827         return false;
828 
829       for (User *UU : U->users())
830         srcUseList.push_back(UU);
831       continue;
832     }
833     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
834       if (IT->isLifetimeStartOrEnd())
835         continue;
836 
837     if (U != C && U != cpy)
838       return false;
839   }
840 
841   // Check that src isn't captured by the called function since the
842   // transformation can cause aliasing issues in that case.
843   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
844     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
845       return false;
846 
847   // Since we're changing the parameter to the callsite, we need to make sure
848   // that what would be the new parameter dominates the callsite.
849   DominatorTree &DT = LookupDomTree();
850   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
851     if (!DT.dominates(cpyDestInst, C))
852       return false;
853 
854   // In addition to knowing that the call does not access src in some
855   // unexpected manner, for example via a global, which we deduce from
856   // the use analysis, we also need to know that it does not sneakily
857   // access dest.  We rely on AA to figure this out for us.
858   AliasAnalysis &AA = LookupAliasAnalysis();
859   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
860   // If necessary, perform additional analysis.
861   if (isModOrRefSet(MR))
862     MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT);
863   if (isModOrRefSet(MR))
864     return false;
865 
866   // We can't create address space casts here because we don't know if they're
867   // safe for the target.
868   if (cpySrc->getType()->getPointerAddressSpace() !=
869       cpyDest->getType()->getPointerAddressSpace())
870     return false;
871   for (unsigned i = 0; i < CS.arg_size(); ++i)
872     if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
873         cpySrc->getType()->getPointerAddressSpace() !=
874         CS.getArgument(i)->getType()->getPointerAddressSpace())
875       return false;
876 
877   // All the checks have passed, so do the transformation.
878   bool changedArgument = false;
879   for (unsigned i = 0; i < CS.arg_size(); ++i)
880     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
881       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
882         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
883                                       cpyDest->getName(), C);
884       changedArgument = true;
885       if (CS.getArgument(i)->getType() == Dest->getType())
886         CS.setArgument(i, Dest);
887       else
888         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
889                           CS.getArgument(i)->getType(), Dest->getName(), C));
890     }
891 
892   if (!changedArgument)
893     return false;
894 
895   // If the destination wasn't sufficiently aligned then increase its alignment.
896   if (!isDestSufficientlyAligned) {
897     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
898     cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign));
899   }
900 
901   // Drop any cached information about the call, because we may have changed
902   // its dependence information by changing its parameter.
903   MD->removeInstruction(C);
904 
905   // Update AA metadata
906   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
907   // handled here, but combineMetadata doesn't support them yet
908   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
909                          LLVMContext::MD_noalias,
910                          LLVMContext::MD_invariant_group,
911                          LLVMContext::MD_access_group};
912   combineMetadata(C, cpy, KnownIDs, true);
913 
914   // Remove the memcpy.
915   MD->removeInstruction(cpy);
916   ++NumMemCpyInstr;
917 
918   return true;
919 }
920 
921 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
922 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
923 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
924                                                   MemCpyInst *MDep) {
925   // We can only transforms memcpy's where the dest of one is the source of the
926   // other.
927   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
928     return false;
929 
930   // If dep instruction is reading from our current input, then it is a noop
931   // transfer and substituting the input won't change this instruction.  Just
932   // ignore the input and let someone else zap MDep.  This handles cases like:
933   //    memcpy(a <- a)
934   //    memcpy(b <- a)
935   if (M->getSource() == MDep->getSource())
936     return false;
937 
938   // Second, the length of the memcpy's must be the same, or the preceding one
939   // must be larger than the following one.
940   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
941   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
942   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
943     return false;
944 
945   AliasAnalysis &AA = LookupAliasAnalysis();
946 
947   // Verify that the copied-from memory doesn't change in between the two
948   // transfers.  For example, in:
949   //    memcpy(a <- b)
950   //    *b = 42;
951   //    memcpy(c <- a)
952   // It would be invalid to transform the second memcpy into memcpy(c <- b).
953   //
954   // TODO: If the code between M and MDep is transparent to the destination "c",
955   // then we could still perform the xform by moving M up to the first memcpy.
956   //
957   // NOTE: This is conservative, it will stop on any read from the source loc,
958   // not just the defining memcpy.
959   MemDepResult SourceDep =
960       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
961                                    M->getIterator(), M->getParent());
962   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
963     return false;
964 
965   // If the dest of the second might alias the source of the first, then the
966   // source and dest might overlap.  We still want to eliminate the intermediate
967   // value, but we have to generate a memmove instead of memcpy.
968   bool UseMemMove = false;
969   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
970                     MemoryLocation::getForSource(MDep)))
971     UseMemMove = true;
972 
973   // If all checks passed, then we can transform M.
974   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
975                     << *MDep << '\n' << *M << '\n');
976 
977   // TODO: Is this worth it if we're creating a less aligned memcpy? For
978   // example we could be moving from movaps -> movq on x86.
979   IRBuilder<> Builder(M);
980   if (UseMemMove)
981     Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
982                           MDep->getRawSource(), MDep->getSourceAlignment(),
983                           M->getLength(), M->isVolatile());
984   else
985     Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
986                          MDep->getRawSource(), MDep->getSourceAlignment(),
987                          M->getLength(), M->isVolatile());
988 
989   // Remove the instruction we're replacing.
990   MD->removeInstruction(M);
991   M->eraseFromParent();
992   ++NumMemCpyInstr;
993   return true;
994 }
995 
996 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
997 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
998 /// weren't copied over by \p MemCpy.
999 ///
1000 /// In other words, transform:
1001 /// \code
1002 ///   memset(dst, c, dst_size);
1003 ///   memcpy(dst, src, src_size);
1004 /// \endcode
1005 /// into:
1006 /// \code
1007 ///   memcpy(dst, src, src_size);
1008 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1009 /// \endcode
1010 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1011                                                   MemSetInst *MemSet) {
1012   // We can only transform memset/memcpy with the same destination.
1013   if (MemSet->getDest() != MemCpy->getDest())
1014     return false;
1015 
1016   // Check that there are no other dependencies on the memset destination.
1017   MemDepResult DstDepInfo =
1018       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1019                                    MemCpy->getIterator(), MemCpy->getParent());
1020   if (DstDepInfo.getInst() != MemSet)
1021     return false;
1022 
1023   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1024   Value *Dest = MemCpy->getRawDest();
1025   Value *DestSize = MemSet->getLength();
1026   Value *SrcSize = MemCpy->getLength();
1027 
1028   // By default, create an unaligned memset.
1029   unsigned Align = 1;
1030   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1031   // of the sum.
1032   const unsigned DestAlign =
1033       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1034   if (DestAlign > 1)
1035     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1036       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1037 
1038   IRBuilder<> Builder(MemCpy);
1039 
1040   // If the sizes have different types, zext the smaller one.
1041   if (DestSize->getType() != SrcSize->getType()) {
1042     if (DestSize->getType()->getIntegerBitWidth() >
1043         SrcSize->getType()->getIntegerBitWidth())
1044       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1045     else
1046       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1047   }
1048 
1049   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1050   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1051   Value *MemsetLen = Builder.CreateSelect(
1052       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1053   Builder.CreateMemSet(
1054       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1055                         SrcSize),
1056       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1057 
1058   MD->removeInstruction(MemSet);
1059   MemSet->eraseFromParent();
1060   return true;
1061 }
1062 
1063 /// Determine whether the instruction has undefined content for the given Size,
1064 /// either because it was freshly alloca'd or started its lifetime.
1065 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1066   if (isa<AllocaInst>(I))
1067     return true;
1068 
1069   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1070     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1071       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1072         if (LTSize->getZExtValue() >= Size->getZExtValue())
1073           return true;
1074 
1075   return false;
1076 }
1077 
1078 /// Transform memcpy to memset when its source was just memset.
1079 /// In other words, turn:
1080 /// \code
1081 ///   memset(dst1, c, dst1_size);
1082 ///   memcpy(dst2, dst1, dst2_size);
1083 /// \endcode
1084 /// into:
1085 /// \code
1086 ///   memset(dst1, c, dst1_size);
1087 ///   memset(dst2, c, dst2_size);
1088 /// \endcode
1089 /// When dst2_size <= dst1_size.
1090 ///
1091 /// The \p MemCpy must have a Constant length.
1092 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1093                                                MemSetInst *MemSet) {
1094   AliasAnalysis &AA = LookupAliasAnalysis();
1095 
1096   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1097   // memcpying from the same address. Otherwise it is hard to reason about.
1098   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1099     return false;
1100 
1101   // A known memset size is required.
1102   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1103   if (!MemSetSize)
1104     return false;
1105 
1106   // Make sure the memcpy doesn't read any more than what the memset wrote.
1107   // Don't worry about sizes larger than i64.
1108   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1109   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1110     // If the memcpy is larger than the memset, but the memory was undef prior
1111     // to the memset, we can just ignore the tail. Technically we're only
1112     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1113     // easily represent this location, we use the full 0..CopySize range.
1114     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1115     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1116         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1117     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1118       CopySize = MemSetSize;
1119     else
1120       return false;
1121   }
1122 
1123   IRBuilder<> Builder(MemCpy);
1124   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize,
1125                        MaybeAlign(MemCpy->getDestAlignment()));
1126   return true;
1127 }
1128 
1129 /// Perform simplification of memcpy's.  If we have memcpy A
1130 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1131 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1132 /// circumstances). This allows later passes to remove the first memcpy
1133 /// altogether.
1134 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1135   // We can only optimize non-volatile memcpy's.
1136   if (M->isVolatile()) return false;
1137 
1138   // If the source and destination of the memcpy are the same, then zap it.
1139   if (M->getSource() == M->getDest()) {
1140     MD->removeInstruction(M);
1141     M->eraseFromParent();
1142     return false;
1143   }
1144 
1145   // If copying from a constant, try to turn the memcpy into a memset.
1146   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1147     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1148       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1149                                            M->getModule()->getDataLayout())) {
1150         IRBuilder<> Builder(M);
1151         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1152                              MaybeAlign(M->getDestAlignment()), false);
1153         MD->removeInstruction(M);
1154         M->eraseFromParent();
1155         ++NumCpyToSet;
1156         return true;
1157       }
1158 
1159   MemDepResult DepInfo = MD->getDependency(M);
1160 
1161   // Try to turn a partially redundant memset + memcpy into
1162   // memcpy + smaller memset.  We don't need the memcpy size for this.
1163   if (DepInfo.isClobber())
1164     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1165       if (processMemSetMemCpyDependence(M, MDep))
1166         return true;
1167 
1168   // The optimizations after this point require the memcpy size.
1169   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1170   if (!CopySize) return false;
1171 
1172   // There are four possible optimizations we can do for memcpy:
1173   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1174   //   b) call-memcpy xform for return slot optimization.
1175   //   c) memcpy from freshly alloca'd space or space that has just started its
1176   //      lifetime copies undefined data, and we can therefore eliminate the
1177   //      memcpy in favor of the data that was already at the destination.
1178   //   d) memcpy from a just-memset'd source can be turned into memset.
1179   if (DepInfo.isClobber()) {
1180     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1181       // FIXME: Can we pass in either of dest/src alignment here instead
1182       // of conservatively taking the minimum?
1183       unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
1184       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1185                                CopySize->getZExtValue(), Align,
1186                                C)) {
1187         MD->removeInstruction(M);
1188         M->eraseFromParent();
1189         return true;
1190       }
1191     }
1192   }
1193 
1194   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1195   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1196       SrcLoc, true, M->getIterator(), M->getParent());
1197 
1198   if (SrcDepInfo.isClobber()) {
1199     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1200       return processMemCpyMemCpyDependence(M, MDep);
1201   } else if (SrcDepInfo.isDef()) {
1202     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1203       MD->removeInstruction(M);
1204       M->eraseFromParent();
1205       ++NumMemCpyInstr;
1206       return true;
1207     }
1208   }
1209 
1210   if (SrcDepInfo.isClobber())
1211     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1212       if (performMemCpyToMemSetOptzn(M, MDep)) {
1213         MD->removeInstruction(M);
1214         M->eraseFromParent();
1215         ++NumCpyToSet;
1216         return true;
1217       }
1218 
1219   return false;
1220 }
1221 
1222 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1223 /// not to alias.
1224 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1225   AliasAnalysis &AA = LookupAliasAnalysis();
1226 
1227   if (!TLI->has(LibFunc_memmove))
1228     return false;
1229 
1230   // See if the pointers alias.
1231   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1232                     MemoryLocation::getForSource(M)))
1233     return false;
1234 
1235   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1236                     << "\n");
1237 
1238   // If not, then we know we can transform this.
1239   Type *ArgTys[3] = { M->getRawDest()->getType(),
1240                       M->getRawSource()->getType(),
1241                       M->getLength()->getType() };
1242   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1243                                                  Intrinsic::memcpy, ArgTys));
1244 
1245   // MemDep may have over conservative information about this instruction, just
1246   // conservatively flush it from the cache.
1247   MD->removeInstruction(M);
1248 
1249   ++NumMoveToCpy;
1250   return true;
1251 }
1252 
1253 /// This is called on every byval argument in call sites.
1254 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1255   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1256   // Find out what feeds this byval argument.
1257   Value *ByValArg = CS.getArgument(ArgNo);
1258   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1259   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1260   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1261       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1262       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1263   if (!DepInfo.isClobber())
1264     return false;
1265 
1266   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1267   // a memcpy, see if we can byval from the source of the memcpy instead of the
1268   // result.
1269   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1270   if (!MDep || MDep->isVolatile() ||
1271       ByValArg->stripPointerCasts() != MDep->getDest())
1272     return false;
1273 
1274   // The length of the memcpy must be larger or equal to the size of the byval.
1275   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1276   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1277     return false;
1278 
1279   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1280   // then it is some target specific value that we can't know.
1281   unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1282   if (ByValAlign == 0) return false;
1283 
1284   // If it is greater than the memcpy, then we check to see if we can force the
1285   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1286   AssumptionCache &AC = LookupAssumptionCache();
1287   DominatorTree &DT = LookupDomTree();
1288   if (MDep->getSourceAlignment() < ByValAlign &&
1289       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1290                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1291     return false;
1292 
1293   // The address space of the memcpy source must match the byval argument
1294   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1295       ByValArg->getType()->getPointerAddressSpace())
1296     return false;
1297 
1298   // Verify that the copied-from memory doesn't change in between the memcpy and
1299   // the byval call.
1300   //    memcpy(a <- b)
1301   //    *b = 42;
1302   //    foo(*a)
1303   // It would be invalid to transform the second memcpy into foo(*b).
1304   //
1305   // NOTE: This is conservative, it will stop on any read from the source loc,
1306   // not just the defining memcpy.
1307   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1308       MemoryLocation::getForSource(MDep), false,
1309       CS.getInstruction()->getIterator(), MDep->getParent());
1310   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1311     return false;
1312 
1313   Value *TmpCast = MDep->getSource();
1314   if (MDep->getSource()->getType() != ByValArg->getType())
1315     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1316                               "tmpcast", CS.getInstruction());
1317 
1318   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1319                     << "  " << *MDep << "\n"
1320                     << "  " << *CS.getInstruction() << "\n");
1321 
1322   // Otherwise we're good!  Update the byval argument.
1323   CS.setArgument(ArgNo, TmpCast);
1324   ++NumMemCpyInstr;
1325   return true;
1326 }
1327 
1328 /// Executes one iteration of MemCpyOptPass.
1329 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1330   bool MadeChange = false;
1331 
1332   DominatorTree &DT = LookupDomTree();
1333 
1334   // Walk all instruction in the function.
1335   for (BasicBlock &BB : F) {
1336     // Skip unreachable blocks. For example processStore assumes that an
1337     // instruction in a BB can't be dominated by a later instruction in the
1338     // same BB (which is a scenario that can happen for an unreachable BB that
1339     // has itself as a predecessor).
1340     if (!DT.isReachableFromEntry(&BB))
1341       continue;
1342 
1343     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1344         // Avoid invalidating the iterator.
1345       Instruction *I = &*BI++;
1346 
1347       bool RepeatInstruction = false;
1348 
1349       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1350         MadeChange |= processStore(SI, BI);
1351       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1352         RepeatInstruction = processMemSet(M, BI);
1353       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1354         RepeatInstruction = processMemCpy(M);
1355       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1356         RepeatInstruction = processMemMove(M);
1357       else if (auto CS = CallSite(I)) {
1358         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1359           if (CS.isByValArgument(i))
1360             MadeChange |= processByValArgument(CS, i);
1361       }
1362 
1363       // Reprocess the instruction if desired.
1364       if (RepeatInstruction) {
1365         if (BI != BB.begin())
1366           --BI;
1367         MadeChange = true;
1368       }
1369     }
1370   }
1371 
1372   return MadeChange;
1373 }
1374 
1375 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1376   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1377   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1378 
1379   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1380     return AM.getResult<AAManager>(F);
1381   };
1382   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1383     return AM.getResult<AssumptionAnalysis>(F);
1384   };
1385   auto LookupDomTree = [&]() -> DominatorTree & {
1386     return AM.getResult<DominatorTreeAnalysis>(F);
1387   };
1388 
1389   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1390                             LookupAssumptionCache, LookupDomTree);
1391   if (!MadeChange)
1392     return PreservedAnalyses::all();
1393 
1394   PreservedAnalyses PA;
1395   PA.preserveSet<CFGAnalyses>();
1396   PA.preserve<GlobalsAA>();
1397   PA.preserve<MemoryDependenceAnalysis>();
1398   return PA;
1399 }
1400 
1401 bool MemCpyOptPass::runImpl(
1402     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1403     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1404     std::function<AssumptionCache &()> LookupAssumptionCache_,
1405     std::function<DominatorTree &()> LookupDomTree_) {
1406   bool MadeChange = false;
1407   MD = MD_;
1408   TLI = TLI_;
1409   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1410   LookupAssumptionCache = std::move(LookupAssumptionCache_);
1411   LookupDomTree = std::move(LookupDomTree_);
1412 
1413   // If we don't have at least memset and memcpy, there is little point of doing
1414   // anything here.  These are required by a freestanding implementation, so if
1415   // even they are disabled, there is no point in trying hard.
1416   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1417     return false;
1418 
1419   while (true) {
1420     if (!iterateOnFunction(F))
1421       break;
1422     MadeChange = true;
1423   }
1424 
1425   MD = nullptr;
1426   return MadeChange;
1427 }
1428 
1429 /// This is the main transformation entry point for a function.
1430 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1431   if (skipFunction(F))
1432     return false;
1433 
1434   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1435   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1436 
1437   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1438     return getAnalysis<AAResultsWrapperPass>().getAAResults();
1439   };
1440   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1441     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1442   };
1443   auto LookupDomTree = [this]() -> DominatorTree & {
1444     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1445   };
1446 
1447   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1448                       LookupDomTree);
1449 }
1450