1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs various transformations related to eliminating memcpy 11 // calls, or transforming sets of stores into memset's. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/IRBuilder.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include <algorithm> 35 using namespace llvm; 36 37 #define DEBUG_TYPE "memcpyopt" 38 39 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 40 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 41 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 42 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 43 44 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, 45 bool &VariableIdxFound, 46 const DataLayout &DL) { 47 // Skip over the first indices. 48 gep_type_iterator GTI = gep_type_begin(GEP); 49 for (unsigned i = 1; i != Idx; ++i, ++GTI) 50 /*skip along*/; 51 52 // Compute the offset implied by the rest of the indices. 53 int64_t Offset = 0; 54 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 55 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 56 if (!OpC) 57 return VariableIdxFound = true; 58 if (OpC->isZero()) continue; // No offset. 59 60 // Handle struct indices, which add their field offset to the pointer. 61 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 62 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 63 continue; 64 } 65 66 // Otherwise, we have a sequential type like an array or vector. Multiply 67 // the index by the ElementSize. 68 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 69 Offset += Size*OpC->getSExtValue(); 70 } 71 72 return Offset; 73 } 74 75 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and 76 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2 77 /// might be &A[40]. In this case offset would be -8. 78 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, 79 const DataLayout &DL) { 80 Ptr1 = Ptr1->stripPointerCasts(); 81 Ptr2 = Ptr2->stripPointerCasts(); 82 83 // Handle the trivial case first. 84 if (Ptr1 == Ptr2) { 85 Offset = 0; 86 return true; 87 } 88 89 GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 90 GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 91 92 bool VariableIdxFound = false; 93 94 // If one pointer is a GEP and the other isn't, then see if the GEP is a 95 // constant offset from the base, as in "P" and "gep P, 1". 96 if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { 97 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL); 98 return !VariableIdxFound; 99 } 100 101 if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { 102 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL); 103 return !VariableIdxFound; 104 } 105 106 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 107 // base. After that base, they may have some number of common (and 108 // potentially variable) indices. After that they handle some constant 109 // offset, which determines their offset from each other. At this point, we 110 // handle no other case. 111 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 112 return false; 113 114 // Skip any common indices and track the GEP types. 115 unsigned Idx = 1; 116 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 117 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 118 break; 119 120 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL); 121 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL); 122 if (VariableIdxFound) return false; 123 124 Offset = Offset2-Offset1; 125 return true; 126 } 127 128 129 /// Represents a range of memset'd bytes with the ByteVal value. 130 /// This allows us to analyze stores like: 131 /// store 0 -> P+1 132 /// store 0 -> P+0 133 /// store 0 -> P+3 134 /// store 0 -> P+2 135 /// which sometimes happens with stores to arrays of structs etc. When we see 136 /// the first store, we make a range [1, 2). The second store extends the range 137 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 138 /// two ranges into [0, 3) which is memset'able. 139 namespace { 140 struct MemsetRange { 141 // Start/End - A semi range that describes the span that this range covers. 142 // The range is closed at the start and open at the end: [Start, End). 143 int64_t Start, End; 144 145 /// StartPtr - The getelementptr instruction that points to the start of the 146 /// range. 147 Value *StartPtr; 148 149 /// Alignment - The known alignment of the first store. 150 unsigned Alignment; 151 152 /// TheStores - The actual stores that make up this range. 153 SmallVector<Instruction*, 16> TheStores; 154 155 bool isProfitableToUseMemset(const DataLayout &DL) const; 156 }; 157 } // end anon namespace 158 159 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 160 // If we found more than 4 stores to merge or 16 bytes, use memset. 161 if (TheStores.size() >= 4 || End-Start >= 16) return true; 162 163 // If there is nothing to merge, don't do anything. 164 if (TheStores.size() < 2) return false; 165 166 // If any of the stores are a memset, then it is always good to extend the 167 // memset. 168 for (unsigned i = 0, e = TheStores.size(); i != e; ++i) 169 if (!isa<StoreInst>(TheStores[i])) 170 return true; 171 172 // Assume that the code generator is capable of merging pairs of stores 173 // together if it wants to. 174 if (TheStores.size() == 2) return false; 175 176 // If we have fewer than 8 stores, it can still be worthwhile to do this. 177 // For example, merging 4 i8 stores into an i32 store is useful almost always. 178 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 179 // memset will be split into 2 32-bit stores anyway) and doing so can 180 // pessimize the llvm optimizer. 181 // 182 // Since we don't have perfect knowledge here, make some assumptions: assume 183 // the maximum GPR width is the same size as the largest legal integer 184 // size. If so, check to see whether we will end up actually reducing the 185 // number of stores used. 186 unsigned Bytes = unsigned(End-Start); 187 unsigned MaxIntSize = DL.getLargestLegalIntTypeSize(); 188 if (MaxIntSize == 0) 189 MaxIntSize = 1; 190 unsigned NumPointerStores = Bytes / MaxIntSize; 191 192 // Assume the remaining bytes if any are done a byte at a time. 193 unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize; 194 195 // If we will reduce the # stores (according to this heuristic), do the 196 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 197 // etc. 198 return TheStores.size() > NumPointerStores+NumByteStores; 199 } 200 201 202 namespace { 203 class MemsetRanges { 204 /// A sorted list of the memset ranges. 205 SmallVector<MemsetRange, 8> Ranges; 206 typedef SmallVectorImpl<MemsetRange>::iterator range_iterator; 207 const DataLayout &DL; 208 public: 209 MemsetRanges(const DataLayout &DL) : DL(DL) {} 210 211 typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator; 212 const_iterator begin() const { return Ranges.begin(); } 213 const_iterator end() const { return Ranges.end(); } 214 bool empty() const { return Ranges.empty(); } 215 216 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 217 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 218 addStore(OffsetFromFirst, SI); 219 else 220 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 221 } 222 223 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 224 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 225 226 addRange(OffsetFromFirst, StoreSize, 227 SI->getPointerOperand(), SI->getAlignment(), SI); 228 } 229 230 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 231 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 232 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); 233 } 234 235 void addRange(int64_t Start, int64_t Size, Value *Ptr, 236 unsigned Alignment, Instruction *Inst); 237 238 }; 239 240 } // end anon namespace 241 242 243 /// Add a new store to the MemsetRanges data structure. This adds a 244 /// new range for the specified store at the specified offset, merging into 245 /// existing ranges as appropriate. 246 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 247 unsigned Alignment, Instruction *Inst) { 248 int64_t End = Start+Size; 249 250 range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start, 251 [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; }); 252 253 // We now know that I == E, in which case we didn't find anything to merge 254 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 255 // to insert a new range. Handle this now. 256 if (I == Ranges.end() || End < I->Start) { 257 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 258 R.Start = Start; 259 R.End = End; 260 R.StartPtr = Ptr; 261 R.Alignment = Alignment; 262 R.TheStores.push_back(Inst); 263 return; 264 } 265 266 // This store overlaps with I, add it. 267 I->TheStores.push_back(Inst); 268 269 // At this point, we may have an interval that completely contains our store. 270 // If so, just add it to the interval and return. 271 if (I->Start <= Start && I->End >= End) 272 return; 273 274 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 275 // but is not entirely contained within the range. 276 277 // See if the range extends the start of the range. In this case, it couldn't 278 // possibly cause it to join the prior range, because otherwise we would have 279 // stopped on *it*. 280 if (Start < I->Start) { 281 I->Start = Start; 282 I->StartPtr = Ptr; 283 I->Alignment = Alignment; 284 } 285 286 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 287 // is in or right at the end of I), and that End >= I->Start. Extend I out to 288 // End. 289 if (End > I->End) { 290 I->End = End; 291 range_iterator NextI = I; 292 while (++NextI != Ranges.end() && End >= NextI->Start) { 293 // Merge the range in. 294 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 295 if (NextI->End > I->End) 296 I->End = NextI->End; 297 Ranges.erase(NextI); 298 NextI = I; 299 } 300 } 301 } 302 303 //===----------------------------------------------------------------------===// 304 // MemCpyOpt Pass 305 //===----------------------------------------------------------------------===// 306 307 namespace { 308 class MemCpyOpt : public FunctionPass { 309 MemoryDependenceAnalysis *MD; 310 TargetLibraryInfo *TLI; 311 public: 312 static char ID; // Pass identification, replacement for typeid 313 MemCpyOpt() : FunctionPass(ID) { 314 initializeMemCpyOptPass(*PassRegistry::getPassRegistry()); 315 MD = nullptr; 316 TLI = nullptr; 317 } 318 319 bool runOnFunction(Function &F) override; 320 321 private: 322 // This transformation requires dominator postdominator info 323 void getAnalysisUsage(AnalysisUsage &AU) const override { 324 AU.setPreservesCFG(); 325 AU.addRequired<AssumptionCacheTracker>(); 326 AU.addRequired<DominatorTreeWrapperPass>(); 327 AU.addRequired<MemoryDependenceAnalysis>(); 328 AU.addRequired<AAResultsWrapperPass>(); 329 AU.addRequired<TargetLibraryInfoWrapperPass>(); 330 AU.addPreserved<GlobalsAAWrapperPass>(); 331 AU.addPreserved<MemoryDependenceAnalysis>(); 332 } 333 334 // Helper functions 335 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); 336 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI); 337 bool processMemCpy(MemCpyInst *M); 338 bool processMemMove(MemMoveInst *M); 339 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, 340 uint64_t cpyLen, unsigned cpyAlign, CallInst *C); 341 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep); 342 bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep); 343 bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep); 344 bool processByValArgument(CallSite CS, unsigned ArgNo); 345 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr, 346 Value *ByteVal); 347 348 bool iterateOnFunction(Function &F); 349 }; 350 351 char MemCpyOpt::ID = 0; 352 } 353 354 /// The public interface to this file... 355 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } 356 357 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 358 false, false) 359 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 360 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 361 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 362 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 363 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 364 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 365 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 366 false, false) 367 368 /// When scanning forward over instructions, we look for some other patterns to 369 /// fold away. In particular, this looks for stores to neighboring locations of 370 /// memory. If it sees enough consecutive ones, it attempts to merge them 371 /// together into a memcpy/memset. 372 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst, 373 Value *StartPtr, Value *ByteVal) { 374 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 375 376 // Okay, so we now have a single store that can be splatable. Scan to find 377 // all subsequent stores of the same value to offset from the same pointer. 378 // Join these together into ranges, so we can decide whether contiguous blocks 379 // are stored. 380 MemsetRanges Ranges(DL); 381 382 BasicBlock::iterator BI(StartInst); 383 for (++BI; !isa<TerminatorInst>(BI); ++BI) { 384 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 385 // If the instruction is readnone, ignore it, otherwise bail out. We 386 // don't even allow readonly here because we don't want something like: 387 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 388 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 389 break; 390 continue; 391 } 392 393 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 394 // If this is a store, see if we can merge it in. 395 if (!NextStore->isSimple()) break; 396 397 // Check to see if this stored value is of the same byte-splattable value. 398 if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) 399 break; 400 401 // Check to see if this store is to a constant offset from the start ptr. 402 int64_t Offset; 403 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, 404 DL)) 405 break; 406 407 Ranges.addStore(Offset, NextStore); 408 } else { 409 MemSetInst *MSI = cast<MemSetInst>(BI); 410 411 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 412 !isa<ConstantInt>(MSI->getLength())) 413 break; 414 415 // Check to see if this store is to a constant offset from the start ptr. 416 int64_t Offset; 417 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL)) 418 break; 419 420 Ranges.addMemSet(Offset, MSI); 421 } 422 } 423 424 // If we have no ranges, then we just had a single store with nothing that 425 // could be merged in. This is a very common case of course. 426 if (Ranges.empty()) 427 return nullptr; 428 429 // If we had at least one store that could be merged in, add the starting 430 // store as well. We try to avoid this unless there is at least something 431 // interesting as a small compile-time optimization. 432 Ranges.addInst(0, StartInst); 433 434 // If we create any memsets, we put it right before the first instruction that 435 // isn't part of the memset block. This ensure that the memset is dominated 436 // by any addressing instruction needed by the start of the block. 437 IRBuilder<> Builder(&*BI); 438 439 // Now that we have full information about ranges, loop over the ranges and 440 // emit memset's for anything big enough to be worthwhile. 441 Instruction *AMemSet = nullptr; 442 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); 443 I != E; ++I) { 444 const MemsetRange &Range = *I; 445 446 if (Range.TheStores.size() == 1) continue; 447 448 // If it is profitable to lower this range to memset, do so now. 449 if (!Range.isProfitableToUseMemset(DL)) 450 continue; 451 452 // Otherwise, we do want to transform this! Create a new memset. 453 // Get the starting pointer of the block. 454 StartPtr = Range.StartPtr; 455 456 // Determine alignment 457 unsigned Alignment = Range.Alignment; 458 if (Alignment == 0) { 459 Type *EltType = 460 cast<PointerType>(StartPtr->getType())->getElementType(); 461 Alignment = DL.getABITypeAlignment(EltType); 462 } 463 464 AMemSet = 465 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); 466 467 DEBUG(dbgs() << "Replace stores:\n"; 468 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) 469 dbgs() << *Range.TheStores[i] << '\n'; 470 dbgs() << "With: " << *AMemSet << '\n'); 471 472 if (!Range.TheStores.empty()) 473 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 474 475 // Zap all the stores. 476 for (SmallVectorImpl<Instruction *>::const_iterator 477 SI = Range.TheStores.begin(), 478 SE = Range.TheStores.end(); SI != SE; ++SI) { 479 MD->removeInstruction(*SI); 480 (*SI)->eraseFromParent(); 481 } 482 ++NumMemSetInfer; 483 } 484 485 return AMemSet; 486 } 487 488 489 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 490 if (!SI->isSimple()) return false; 491 492 // Avoid merging nontemporal stores since the resulting 493 // memcpy/memset would not be able to preserve the nontemporal hint. 494 // In theory we could teach how to propagate the !nontemporal metadata to 495 // memset calls. However, that change would force the backend to 496 // conservatively expand !nontemporal memset calls back to sequences of 497 // store instructions (effectively undoing the merging). 498 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 499 return false; 500 501 const DataLayout &DL = SI->getModule()->getDataLayout(); 502 503 // Detect cases where we're performing call slot forwarding, but 504 // happen to be using a load-store pair to implement it, rather than 505 // a memcpy. 506 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 507 if (LI->isSimple() && LI->hasOneUse() && 508 LI->getParent() == SI->getParent()) { 509 MemDepResult ldep = MD->getDependency(LI); 510 CallInst *C = nullptr; 511 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 512 C = dyn_cast<CallInst>(ldep.getInst()); 513 514 if (C) { 515 // Check that nothing touches the dest of the "copy" between 516 // the call and the store. 517 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 518 MemoryLocation StoreLoc = MemoryLocation::get(SI); 519 for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); 520 I != E; --I) { 521 if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) { 522 C = nullptr; 523 break; 524 } 525 } 526 } 527 528 if (C) { 529 unsigned storeAlign = SI->getAlignment(); 530 if (!storeAlign) 531 storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); 532 unsigned loadAlign = LI->getAlignment(); 533 if (!loadAlign) 534 loadAlign = DL.getABITypeAlignment(LI->getType()); 535 536 bool changed = performCallSlotOptzn( 537 LI, SI->getPointerOperand()->stripPointerCasts(), 538 LI->getPointerOperand()->stripPointerCasts(), 539 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 540 std::min(storeAlign, loadAlign), C); 541 if (changed) { 542 MD->removeInstruction(SI); 543 SI->eraseFromParent(); 544 MD->removeInstruction(LI); 545 LI->eraseFromParent(); 546 ++NumMemCpyInstr; 547 return true; 548 } 549 } 550 } 551 } 552 553 // There are two cases that are interesting for this code to handle: memcpy 554 // and memset. Right now we only handle memset. 555 556 // Ensure that the value being stored is something that can be memset'able a 557 // byte at a time like "0" or "-1" or any width, as well as things like 558 // 0xA0A0A0A0 and 0.0. 559 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0))) 560 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 561 ByteVal)) { 562 BBI = I->getIterator(); // Don't invalidate iterator. 563 return true; 564 } 565 566 return false; 567 } 568 569 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 570 // See if there is another memset or store neighboring this memset which 571 // allows us to widen out the memset to do a single larger store. 572 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 573 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 574 MSI->getValue())) { 575 BBI = I->getIterator(); // Don't invalidate iterator. 576 return true; 577 } 578 return false; 579 } 580 581 582 /// Takes a memcpy and a call that it depends on, 583 /// and checks for the possibility of a call slot optimization by having 584 /// the call write its result directly into the destination of the memcpy. 585 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy, 586 Value *cpyDest, Value *cpySrc, 587 uint64_t cpyLen, unsigned cpyAlign, 588 CallInst *C) { 589 // The general transformation to keep in mind is 590 // 591 // call @func(..., src, ...) 592 // memcpy(dest, src, ...) 593 // 594 // -> 595 // 596 // memcpy(dest, src, ...) 597 // call @func(..., dest, ...) 598 // 599 // Since moving the memcpy is technically awkward, we additionally check that 600 // src only holds uninitialized values at the moment of the call, meaning that 601 // the memcpy can be discarded rather than moved. 602 603 // Deliberately get the source and destination with bitcasts stripped away, 604 // because we'll need to do type comparisons based on the underlying type. 605 CallSite CS(C); 606 607 // Require that src be an alloca. This simplifies the reasoning considerably. 608 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 609 if (!srcAlloca) 610 return false; 611 612 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 613 if (!srcArraySize) 614 return false; 615 616 const DataLayout &DL = cpy->getModule()->getDataLayout(); 617 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 618 srcArraySize->getZExtValue(); 619 620 if (cpyLen < srcSize) 621 return false; 622 623 // Check that accessing the first srcSize bytes of dest will not cause a 624 // trap. Otherwise the transform is invalid since it might cause a trap 625 // to occur earlier than it otherwise would. 626 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 627 // The destination is an alloca. Check it is larger than srcSize. 628 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 629 if (!destArraySize) 630 return false; 631 632 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * 633 destArraySize->getZExtValue(); 634 635 if (destSize < srcSize) 636 return false; 637 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 638 if (A->getDereferenceableBytes() < srcSize) { 639 // If the destination is an sret parameter then only accesses that are 640 // outside of the returned struct type can trap. 641 if (!A->hasStructRetAttr()) 642 return false; 643 644 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 645 if (!StructTy->isSized()) { 646 // The call may never return and hence the copy-instruction may never 647 // be executed, and therefore it's not safe to say "the destination 648 // has at least <cpyLen> bytes, as implied by the copy-instruction", 649 return false; 650 } 651 652 uint64_t destSize = DL.getTypeAllocSize(StructTy); 653 if (destSize < srcSize) 654 return false; 655 } 656 } else { 657 return false; 658 } 659 660 // Check that dest points to memory that is at least as aligned as src. 661 unsigned srcAlign = srcAlloca->getAlignment(); 662 if (!srcAlign) 663 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); 664 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 665 // If dest is not aligned enough and we can't increase its alignment then 666 // bail out. 667 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 668 return false; 669 670 // Check that src is not accessed except via the call and the memcpy. This 671 // guarantees that it holds only undefined values when passed in (so the final 672 // memcpy can be dropped), that it is not read or written between the call and 673 // the memcpy, and that writing beyond the end of it is undefined. 674 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 675 srcAlloca->user_end()); 676 while (!srcUseList.empty()) { 677 User *U = srcUseList.pop_back_val(); 678 679 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 680 for (User *UU : U->users()) 681 srcUseList.push_back(UU); 682 continue; 683 } 684 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 685 if (!G->hasAllZeroIndices()) 686 return false; 687 688 for (User *UU : U->users()) 689 srcUseList.push_back(UU); 690 continue; 691 } 692 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 693 if (IT->getIntrinsicID() == Intrinsic::lifetime_start || 694 IT->getIntrinsicID() == Intrinsic::lifetime_end) 695 continue; 696 697 if (U != C && U != cpy) 698 return false; 699 } 700 701 // Check that src isn't captured by the called function since the 702 // transformation can cause aliasing issues in that case. 703 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 704 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 705 return false; 706 707 // Since we're changing the parameter to the callsite, we need to make sure 708 // that what would be the new parameter dominates the callsite. 709 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 710 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 711 if (!DT.dominates(cpyDestInst, C)) 712 return false; 713 714 // In addition to knowing that the call does not access src in some 715 // unexpected manner, for example via a global, which we deduce from 716 // the use analysis, we also need to know that it does not sneakily 717 // access dest. We rely on AA to figure this out for us. 718 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 719 ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize); 720 // If necessary, perform additional analysis. 721 if (MR != MRI_NoModRef) 722 MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); 723 if (MR != MRI_NoModRef) 724 return false; 725 726 // All the checks have passed, so do the transformation. 727 bool changedArgument = false; 728 for (unsigned i = 0; i < CS.arg_size(); ++i) 729 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 730 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 731 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 732 cpyDest->getName(), C); 733 changedArgument = true; 734 if (CS.getArgument(i)->getType() == Dest->getType()) 735 CS.setArgument(i, Dest); 736 else 737 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 738 CS.getArgument(i)->getType(), Dest->getName(), C)); 739 } 740 741 if (!changedArgument) 742 return false; 743 744 // If the destination wasn't sufficiently aligned then increase its alignment. 745 if (!isDestSufficientlyAligned) { 746 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 747 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 748 } 749 750 // Drop any cached information about the call, because we may have changed 751 // its dependence information by changing its parameter. 752 MD->removeInstruction(C); 753 754 // Update AA metadata 755 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 756 // handled here, but combineMetadata doesn't support them yet 757 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 758 LLVMContext::MD_noalias, 759 LLVMContext::MD_invariant_group}; 760 combineMetadata(C, cpy, KnownIDs); 761 762 // Remove the memcpy. 763 MD->removeInstruction(cpy); 764 ++NumMemCpyInstr; 765 766 return true; 767 } 768 769 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 770 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 771 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) { 772 // We can only transforms memcpy's where the dest of one is the source of the 773 // other. 774 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 775 return false; 776 777 // If dep instruction is reading from our current input, then it is a noop 778 // transfer and substituting the input won't change this instruction. Just 779 // ignore the input and let someone else zap MDep. This handles cases like: 780 // memcpy(a <- a) 781 // memcpy(b <- a) 782 if (M->getSource() == MDep->getSource()) 783 return false; 784 785 // Second, the length of the memcpy's must be the same, or the preceding one 786 // must be larger than the following one. 787 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 788 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 789 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 790 return false; 791 792 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 793 794 // Verify that the copied-from memory doesn't change in between the two 795 // transfers. For example, in: 796 // memcpy(a <- b) 797 // *b = 42; 798 // memcpy(c <- a) 799 // It would be invalid to transform the second memcpy into memcpy(c <- b). 800 // 801 // TODO: If the code between M and MDep is transparent to the destination "c", 802 // then we could still perform the xform by moving M up to the first memcpy. 803 // 804 // NOTE: This is conservative, it will stop on any read from the source loc, 805 // not just the defining memcpy. 806 MemDepResult SourceDep = 807 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 808 M->getIterator(), M->getParent()); 809 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 810 return false; 811 812 // If the dest of the second might alias the source of the first, then the 813 // source and dest might overlap. We still want to eliminate the intermediate 814 // value, but we have to generate a memmove instead of memcpy. 815 bool UseMemMove = false; 816 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 817 MemoryLocation::getForSource(MDep))) 818 UseMemMove = true; 819 820 // If all checks passed, then we can transform M. 821 822 // Make sure to use the lesser of the alignment of the source and the dest 823 // since we're changing where we're reading from, but don't want to increase 824 // the alignment past what can be read from or written to. 825 // TODO: Is this worth it if we're creating a less aligned memcpy? For 826 // example we could be moving from movaps -> movq on x86. 827 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); 828 829 IRBuilder<> Builder(M); 830 if (UseMemMove) 831 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), 832 Align, M->isVolatile()); 833 else 834 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), 835 Align, M->isVolatile()); 836 837 // Remove the instruction we're replacing. 838 MD->removeInstruction(M); 839 M->eraseFromParent(); 840 ++NumMemCpyInstr; 841 return true; 842 } 843 844 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 845 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 846 /// weren't copied over by \p MemCpy. 847 /// 848 /// In other words, transform: 849 /// \code 850 /// memset(dst, c, dst_size); 851 /// memcpy(dst, src, src_size); 852 /// \endcode 853 /// into: 854 /// \code 855 /// memcpy(dst, src, src_size); 856 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 857 /// \endcode 858 bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 859 MemSetInst *MemSet) { 860 // We can only transform memset/memcpy with the same destination. 861 if (MemSet->getDest() != MemCpy->getDest()) 862 return false; 863 864 // Check that there are no other dependencies on the memset destination. 865 MemDepResult DstDepInfo = 866 MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, 867 MemCpy->getIterator(), MemCpy->getParent()); 868 if (DstDepInfo.getInst() != MemSet) 869 return false; 870 871 // Use the same i8* dest as the memcpy, killing the memset dest if different. 872 Value *Dest = MemCpy->getRawDest(); 873 Value *DestSize = MemSet->getLength(); 874 Value *SrcSize = MemCpy->getLength(); 875 876 // By default, create an unaligned memset. 877 unsigned Align = 1; 878 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 879 // of the sum. 880 const unsigned DestAlign = 881 std::max(MemSet->getAlignment(), MemCpy->getAlignment()); 882 if (DestAlign > 1) 883 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 884 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 885 886 IRBuilder<> Builder(MemCpy); 887 888 // If the sizes have different types, zext the smaller one. 889 if (DestSize->getType() != SrcSize->getType()) { 890 if (DestSize->getType()->getIntegerBitWidth() > 891 SrcSize->getType()->getIntegerBitWidth()) 892 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 893 else 894 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 895 } 896 897 Value *MemsetLen = 898 Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize), 899 ConstantInt::getNullValue(DestSize->getType()), 900 Builder.CreateSub(DestSize, SrcSize)); 901 Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1), 902 MemsetLen, Align); 903 904 MD->removeInstruction(MemSet); 905 MemSet->eraseFromParent(); 906 return true; 907 } 908 909 /// Transform memcpy to memset when its source was just memset. 910 /// In other words, turn: 911 /// \code 912 /// memset(dst1, c, dst1_size); 913 /// memcpy(dst2, dst1, dst2_size); 914 /// \endcode 915 /// into: 916 /// \code 917 /// memset(dst1, c, dst1_size); 918 /// memset(dst2, c, dst2_size); 919 /// \endcode 920 /// When dst2_size <= dst1_size. 921 /// 922 /// The \p MemCpy must have a Constant length. 923 bool MemCpyOpt::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 924 MemSetInst *MemSet) { 925 // This only makes sense on memcpy(..., memset(...), ...). 926 if (MemSet->getRawDest() != MemCpy->getRawSource()) 927 return false; 928 929 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); 930 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); 931 // Make sure the memcpy doesn't read any more than what the memset wrote. 932 // Don't worry about sizes larger than i64. 933 if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue()) 934 return false; 935 936 IRBuilder<> Builder(MemCpy); 937 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 938 CopySize, MemCpy->getAlignment()); 939 return true; 940 } 941 942 /// Perform simplification of memcpy's. If we have memcpy A 943 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 944 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 945 /// circumstances). This allows later passes to remove the first memcpy 946 /// altogether. 947 bool MemCpyOpt::processMemCpy(MemCpyInst *M) { 948 // We can only optimize non-volatile memcpy's. 949 if (M->isVolatile()) return false; 950 951 // If the source and destination of the memcpy are the same, then zap it. 952 if (M->getSource() == M->getDest()) { 953 MD->removeInstruction(M); 954 M->eraseFromParent(); 955 return false; 956 } 957 958 // If copying from a constant, try to turn the memcpy into a memset. 959 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 960 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 961 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { 962 IRBuilder<> Builder(M); 963 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 964 M->getAlignment(), false); 965 MD->removeInstruction(M); 966 M->eraseFromParent(); 967 ++NumCpyToSet; 968 return true; 969 } 970 971 MemDepResult DepInfo = MD->getDependency(M); 972 973 // Try to turn a partially redundant memset + memcpy into 974 // memcpy + smaller memset. We don't need the memcpy size for this. 975 if (DepInfo.isClobber()) 976 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 977 if (processMemSetMemCpyDependence(M, MDep)) 978 return true; 979 980 // The optimizations after this point require the memcpy size. 981 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 982 if (!CopySize) return false; 983 984 // There are four possible optimizations we can do for memcpy: 985 // a) memcpy-memcpy xform which exposes redundance for DSE. 986 // b) call-memcpy xform for return slot optimization. 987 // c) memcpy from freshly alloca'd space or space that has just started its 988 // lifetime copies undefined data, and we can therefore eliminate the 989 // memcpy in favor of the data that was already at the destination. 990 // d) memcpy from a just-memset'd source can be turned into memset. 991 if (DepInfo.isClobber()) { 992 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 993 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 994 CopySize->getZExtValue(), M->getAlignment(), 995 C)) { 996 MD->removeInstruction(M); 997 M->eraseFromParent(); 998 return true; 999 } 1000 } 1001 } 1002 1003 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1004 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1005 SrcLoc, true, M->getIterator(), M->getParent()); 1006 1007 if (SrcDepInfo.isClobber()) { 1008 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1009 return processMemCpyMemCpyDependence(M, MDep); 1010 } else if (SrcDepInfo.isDef()) { 1011 Instruction *I = SrcDepInfo.getInst(); 1012 bool hasUndefContents = false; 1013 1014 if (isa<AllocaInst>(I)) { 1015 hasUndefContents = true; 1016 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1017 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1018 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1019 if (LTSize->getZExtValue() >= CopySize->getZExtValue()) 1020 hasUndefContents = true; 1021 } 1022 1023 if (hasUndefContents) { 1024 MD->removeInstruction(M); 1025 M->eraseFromParent(); 1026 ++NumMemCpyInstr; 1027 return true; 1028 } 1029 } 1030 1031 if (SrcDepInfo.isClobber()) 1032 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1033 if (performMemCpyToMemSetOptzn(M, MDep)) { 1034 MD->removeInstruction(M); 1035 M->eraseFromParent(); 1036 ++NumCpyToSet; 1037 return true; 1038 } 1039 1040 return false; 1041 } 1042 1043 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1044 /// not to alias. 1045 bool MemCpyOpt::processMemMove(MemMoveInst *M) { 1046 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 1047 1048 if (!TLI->has(LibFunc::memmove)) 1049 return false; 1050 1051 // See if the pointers alias. 1052 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 1053 MemoryLocation::getForSource(M))) 1054 return false; 1055 1056 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n"); 1057 1058 // If not, then we know we can transform this. 1059 Module *Mod = M->getParent()->getParent()->getParent(); 1060 Type *ArgTys[3] = { M->getRawDest()->getType(), 1061 M->getRawSource()->getType(), 1062 M->getLength()->getType() }; 1063 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, 1064 ArgTys)); 1065 1066 // MemDep may have over conservative information about this instruction, just 1067 // conservatively flush it from the cache. 1068 MD->removeInstruction(M); 1069 1070 ++NumMoveToCpy; 1071 return true; 1072 } 1073 1074 /// This is called on every byval argument in call sites. 1075 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) { 1076 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); 1077 // Find out what feeds this byval argument. 1078 Value *ByValArg = CS.getArgument(ArgNo); 1079 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1080 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1081 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1082 MemoryLocation(ByValArg, ByValSize), true, 1083 CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); 1084 if (!DepInfo.isClobber()) 1085 return false; 1086 1087 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1088 // a memcpy, see if we can byval from the source of the memcpy instead of the 1089 // result. 1090 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1091 if (!MDep || MDep->isVolatile() || 1092 ByValArg->stripPointerCasts() != MDep->getDest()) 1093 return false; 1094 1095 // The length of the memcpy must be larger or equal to the size of the byval. 1096 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1097 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1098 return false; 1099 1100 // Get the alignment of the byval. If the call doesn't specify the alignment, 1101 // then it is some target specific value that we can't know. 1102 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); 1103 if (ByValAlign == 0) return false; 1104 1105 // If it is greater than the memcpy, then we check to see if we can force the 1106 // source of the memcpy to the alignment we need. If we fail, we bail out. 1107 AssumptionCache &AC = 1108 getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 1109 *CS->getParent()->getParent()); 1110 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1111 if (MDep->getAlignment() < ByValAlign && 1112 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, 1113 CS.getInstruction(), &AC, &DT) < ByValAlign) 1114 return false; 1115 1116 // Verify that the copied-from memory doesn't change in between the memcpy and 1117 // the byval call. 1118 // memcpy(a <- b) 1119 // *b = 42; 1120 // foo(*a) 1121 // It would be invalid to transform the second memcpy into foo(*b). 1122 // 1123 // NOTE: This is conservative, it will stop on any read from the source loc, 1124 // not just the defining memcpy. 1125 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1126 MemoryLocation::getForSource(MDep), false, 1127 CS.getInstruction()->getIterator(), MDep->getParent()); 1128 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1129 return false; 1130 1131 Value *TmpCast = MDep->getSource(); 1132 if (MDep->getSource()->getType() != ByValArg->getType()) 1133 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1134 "tmpcast", CS.getInstruction()); 1135 1136 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n" 1137 << " " << *MDep << "\n" 1138 << " " << *CS.getInstruction() << "\n"); 1139 1140 // Otherwise we're good! Update the byval argument. 1141 CS.setArgument(ArgNo, TmpCast); 1142 ++NumMemCpyInstr; 1143 return true; 1144 } 1145 1146 /// Executes one iteration of MemCpyOpt. 1147 bool MemCpyOpt::iterateOnFunction(Function &F) { 1148 bool MadeChange = false; 1149 1150 // Walk all instruction in the function. 1151 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { 1152 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { 1153 // Avoid invalidating the iterator. 1154 Instruction *I = &*BI++; 1155 1156 bool RepeatInstruction = false; 1157 1158 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1159 MadeChange |= processStore(SI, BI); 1160 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1161 RepeatInstruction = processMemSet(M, BI); 1162 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1163 RepeatInstruction = processMemCpy(M); 1164 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1165 RepeatInstruction = processMemMove(M); 1166 else if (auto CS = CallSite(I)) { 1167 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 1168 if (CS.isByValArgument(i)) 1169 MadeChange |= processByValArgument(CS, i); 1170 } 1171 1172 // Reprocess the instruction if desired. 1173 if (RepeatInstruction) { 1174 if (BI != BB->begin()) --BI; 1175 MadeChange = true; 1176 } 1177 } 1178 } 1179 1180 return MadeChange; 1181 } 1182 1183 /// This is the main transformation entry point for a function. 1184 bool MemCpyOpt::runOnFunction(Function &F) { 1185 if (skipOptnoneFunction(F)) 1186 return false; 1187 1188 bool MadeChange = false; 1189 MD = &getAnalysis<MemoryDependenceAnalysis>(); 1190 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1191 1192 // If we don't have at least memset and memcpy, there is little point of doing 1193 // anything here. These are required by a freestanding implementation, so if 1194 // even they are disabled, there is no point in trying hard. 1195 if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy)) 1196 return false; 1197 1198 while (1) { 1199 if (!iterateOnFunction(F)) 1200 break; 1201 MadeChange = true; 1202 } 1203 1204 MD = nullptr; 1205 return MadeChange; 1206 } 1207