1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "memcpyopt"
67 
68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
69 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
70 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
71 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
72 
73 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
74                                   bool &VariableIdxFound,
75                                   const DataLayout &DL) {
76   // Skip over the first indices.
77   gep_type_iterator GTI = gep_type_begin(GEP);
78   for (unsigned i = 1; i != Idx; ++i, ++GTI)
79     /*skip along*/;
80 
81   // Compute the offset implied by the rest of the indices.
82   int64_t Offset = 0;
83   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
84     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
85     if (!OpC)
86       return VariableIdxFound = true;
87     if (OpC->isZero()) continue;  // No offset.
88 
89     // Handle struct indices, which add their field offset to the pointer.
90     if (StructType *STy = GTI.getStructTypeOrNull()) {
91       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
92       continue;
93     }
94 
95     // Otherwise, we have a sequential type like an array or vector.  Multiply
96     // the index by the ElementSize.
97     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
98     Offset += Size*OpC->getSExtValue();
99   }
100 
101   return Offset;
102 }
103 
104 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
105 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
106 /// might be &A[40]. In this case offset would be -8.
107 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
108                             const DataLayout &DL) {
109   Ptr1 = Ptr1->stripPointerCasts();
110   Ptr2 = Ptr2->stripPointerCasts();
111 
112   // Handle the trivial case first.
113   if (Ptr1 == Ptr2) {
114     Offset = 0;
115     return true;
116   }
117 
118   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
119   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
120 
121   bool VariableIdxFound = false;
122 
123   // If one pointer is a GEP and the other isn't, then see if the GEP is a
124   // constant offset from the base, as in "P" and "gep P, 1".
125   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
126     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
127     return !VariableIdxFound;
128   }
129 
130   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
131     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
132     return !VariableIdxFound;
133   }
134 
135   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
136   // base.  After that base, they may have some number of common (and
137   // potentially variable) indices.  After that they handle some constant
138   // offset, which determines their offset from each other.  At this point, we
139   // handle no other case.
140   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
141     return false;
142 
143   // Skip any common indices and track the GEP types.
144   unsigned Idx = 1;
145   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
146     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
147       break;
148 
149   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
150   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
151   if (VariableIdxFound) return false;
152 
153   Offset = Offset2-Offset1;
154   return true;
155 }
156 
157 namespace {
158 
159 /// Represents a range of memset'd bytes with the ByteVal value.
160 /// This allows us to analyze stores like:
161 ///   store 0 -> P+1
162 ///   store 0 -> P+0
163 ///   store 0 -> P+3
164 ///   store 0 -> P+2
165 /// which sometimes happens with stores to arrays of structs etc.  When we see
166 /// the first store, we make a range [1, 2).  The second store extends the range
167 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
168 /// two ranges into [0, 3) which is memset'able.
169 struct MemsetRange {
170   // Start/End - A semi range that describes the span that this range covers.
171   // The range is closed at the start and open at the end: [Start, End).
172   int64_t Start, End;
173 
174   /// StartPtr - The getelementptr instruction that points to the start of the
175   /// range.
176   Value *StartPtr;
177 
178   /// Alignment - The known alignment of the first store.
179   unsigned Alignment;
180 
181   /// TheStores - The actual stores that make up this range.
182   SmallVector<Instruction*, 16> TheStores;
183 
184   bool isProfitableToUseMemset(const DataLayout &DL) const;
185 };
186 
187 } // end anonymous namespace
188 
189 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
190   // If we found more than 4 stores to merge or 16 bytes, use memset.
191   if (TheStores.size() >= 4 || End-Start >= 16) return true;
192 
193   // If there is nothing to merge, don't do anything.
194   if (TheStores.size() < 2) return false;
195 
196   // If any of the stores are a memset, then it is always good to extend the
197   // memset.
198   for (Instruction *SI : TheStores)
199     if (!isa<StoreInst>(SI))
200       return true;
201 
202   // Assume that the code generator is capable of merging pairs of stores
203   // together if it wants to.
204   if (TheStores.size() == 2) return false;
205 
206   // If we have fewer than 8 stores, it can still be worthwhile to do this.
207   // For example, merging 4 i8 stores into an i32 store is useful almost always.
208   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
209   // memset will be split into 2 32-bit stores anyway) and doing so can
210   // pessimize the llvm optimizer.
211   //
212   // Since we don't have perfect knowledge here, make some assumptions: assume
213   // the maximum GPR width is the same size as the largest legal integer
214   // size. If so, check to see whether we will end up actually reducing the
215   // number of stores used.
216   unsigned Bytes = unsigned(End-Start);
217   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
218   if (MaxIntSize == 0)
219     MaxIntSize = 1;
220   unsigned NumPointerStores = Bytes / MaxIntSize;
221 
222   // Assume the remaining bytes if any are done a byte at a time.
223   unsigned NumByteStores = Bytes % MaxIntSize;
224 
225   // If we will reduce the # stores (according to this heuristic), do the
226   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
227   // etc.
228   return TheStores.size() > NumPointerStores+NumByteStores;
229 }
230 
231 namespace {
232 
233 class MemsetRanges {
234   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
235 
236   /// A sorted list of the memset ranges.
237   SmallVector<MemsetRange, 8> Ranges;
238 
239   const DataLayout &DL;
240 
241 public:
242   MemsetRanges(const DataLayout &DL) : DL(DL) {}
243 
244   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
245 
246   const_iterator begin() const { return Ranges.begin(); }
247   const_iterator end() const { return Ranges.end(); }
248   bool empty() const { return Ranges.empty(); }
249 
250   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
251     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
252       addStore(OffsetFromFirst, SI);
253     else
254       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
255   }
256 
257   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
258     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
259 
260     addRange(OffsetFromFirst, StoreSize,
261              SI->getPointerOperand(), SI->getAlignment(), SI);
262   }
263 
264   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
265     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
266     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
267   }
268 
269   void addRange(int64_t Start, int64_t Size, Value *Ptr,
270                 unsigned Alignment, Instruction *Inst);
271 };
272 
273 } // end anonymous namespace
274 
275 /// Add a new store to the MemsetRanges data structure.  This adds a
276 /// new range for the specified store at the specified offset, merging into
277 /// existing ranges as appropriate.
278 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
279                             unsigned Alignment, Instruction *Inst) {
280   int64_t End = Start+Size;
281 
282   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
283     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
284 
285   // We now know that I == E, in which case we didn't find anything to merge
286   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
287   // to insert a new range.  Handle this now.
288   if (I == Ranges.end() || End < I->Start) {
289     MemsetRange &R = *Ranges.insert(I, MemsetRange());
290     R.Start        = Start;
291     R.End          = End;
292     R.StartPtr     = Ptr;
293     R.Alignment    = Alignment;
294     R.TheStores.push_back(Inst);
295     return;
296   }
297 
298   // This store overlaps with I, add it.
299   I->TheStores.push_back(Inst);
300 
301   // At this point, we may have an interval that completely contains our store.
302   // If so, just add it to the interval and return.
303   if (I->Start <= Start && I->End >= End)
304     return;
305 
306   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
307   // but is not entirely contained within the range.
308 
309   // See if the range extends the start of the range.  In this case, it couldn't
310   // possibly cause it to join the prior range, because otherwise we would have
311   // stopped on *it*.
312   if (Start < I->Start) {
313     I->Start = Start;
314     I->StartPtr = Ptr;
315     I->Alignment = Alignment;
316   }
317 
318   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
319   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
320   // End.
321   if (End > I->End) {
322     I->End = End;
323     range_iterator NextI = I;
324     while (++NextI != Ranges.end() && End >= NextI->Start) {
325       // Merge the range in.
326       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
327       if (NextI->End > I->End)
328         I->End = NextI->End;
329       Ranges.erase(NextI);
330       NextI = I;
331     }
332   }
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                         MemCpyOptLegacyPass Pass
337 //===----------------------------------------------------------------------===//
338 
339 namespace {
340 
341 class MemCpyOptLegacyPass : public FunctionPass {
342   MemCpyOptPass Impl;
343 
344 public:
345   static char ID; // Pass identification, replacement for typeid
346 
347   MemCpyOptLegacyPass() : FunctionPass(ID) {
348     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
349   }
350 
351   bool runOnFunction(Function &F) override;
352 
353 private:
354   // This transformation requires dominator postdominator info
355   void getAnalysisUsage(AnalysisUsage &AU) const override {
356     AU.setPreservesCFG();
357     AU.addRequired<AssumptionCacheTracker>();
358     AU.addRequired<DominatorTreeWrapperPass>();
359     AU.addRequired<MemoryDependenceWrapperPass>();
360     AU.addRequired<AAResultsWrapperPass>();
361     AU.addRequired<TargetLibraryInfoWrapperPass>();
362     AU.addPreserved<GlobalsAAWrapperPass>();
363     AU.addPreserved<MemoryDependenceWrapperPass>();
364   }
365 };
366 
367 } // end anonymous namespace
368 
369 char MemCpyOptLegacyPass::ID = 0;
370 
371 /// The public interface to this file...
372 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
373 
374 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
375                       false, false)
376 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
377 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
378 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
379 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
380 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
381 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
382 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
383                     false, false)
384 
385 /// When scanning forward over instructions, we look for some other patterns to
386 /// fold away. In particular, this looks for stores to neighboring locations of
387 /// memory. If it sees enough consecutive ones, it attempts to merge them
388 /// together into a memcpy/memset.
389 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
390                                                  Value *StartPtr,
391                                                  Value *ByteVal) {
392   const DataLayout &DL = StartInst->getModule()->getDataLayout();
393 
394   // Okay, so we now have a single store that can be splatable.  Scan to find
395   // all subsequent stores of the same value to offset from the same pointer.
396   // Join these together into ranges, so we can decide whether contiguous blocks
397   // are stored.
398   MemsetRanges Ranges(DL);
399 
400   BasicBlock::iterator BI(StartInst);
401   for (++BI; !BI->isTerminator(); ++BI) {
402     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
403       // If the instruction is readnone, ignore it, otherwise bail out.  We
404       // don't even allow readonly here because we don't want something like:
405       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
406       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
407         break;
408       continue;
409     }
410 
411     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
412       // If this is a store, see if we can merge it in.
413       if (!NextStore->isSimple()) break;
414 
415       // Check to see if this stored value is of the same byte-splattable value.
416       Value *StoredByte = isBytewiseValue(NextStore->getOperand(0));
417       if (isa<UndefValue>(ByteVal) && StoredByte)
418         ByteVal = StoredByte;
419       if (ByteVal != StoredByte)
420         break;
421 
422       // Check to see if this store is to a constant offset from the start ptr.
423       int64_t Offset;
424       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
425                            DL))
426         break;
427 
428       Ranges.addStore(Offset, NextStore);
429     } else {
430       MemSetInst *MSI = cast<MemSetInst>(BI);
431 
432       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
433           !isa<ConstantInt>(MSI->getLength()))
434         break;
435 
436       // Check to see if this store is to a constant offset from the start ptr.
437       int64_t Offset;
438       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
439         break;
440 
441       Ranges.addMemSet(Offset, MSI);
442     }
443   }
444 
445   // If we have no ranges, then we just had a single store with nothing that
446   // could be merged in.  This is a very common case of course.
447   if (Ranges.empty())
448     return nullptr;
449 
450   // If we had at least one store that could be merged in, add the starting
451   // store as well.  We try to avoid this unless there is at least something
452   // interesting as a small compile-time optimization.
453   Ranges.addInst(0, StartInst);
454 
455   // If we create any memsets, we put it right before the first instruction that
456   // isn't part of the memset block.  This ensure that the memset is dominated
457   // by any addressing instruction needed by the start of the block.
458   IRBuilder<> Builder(&*BI);
459 
460   // Now that we have full information about ranges, loop over the ranges and
461   // emit memset's for anything big enough to be worthwhile.
462   Instruction *AMemSet = nullptr;
463   for (const MemsetRange &Range : Ranges) {
464     if (Range.TheStores.size() == 1) continue;
465 
466     // If it is profitable to lower this range to memset, do so now.
467     if (!Range.isProfitableToUseMemset(DL))
468       continue;
469 
470     // Otherwise, we do want to transform this!  Create a new memset.
471     // Get the starting pointer of the block.
472     StartPtr = Range.StartPtr;
473 
474     // Determine alignment
475     unsigned Alignment = Range.Alignment;
476     if (Alignment == 0) {
477       Type *EltType =
478         cast<PointerType>(StartPtr->getType())->getElementType();
479       Alignment = DL.getABITypeAlignment(EltType);
480     }
481 
482     AMemSet =
483       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
484 
485     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
486                                                    : Range.TheStores) dbgs()
487                                               << *SI << '\n';
488                dbgs() << "With: " << *AMemSet << '\n');
489 
490     if (!Range.TheStores.empty())
491       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
492 
493     // Zap all the stores.
494     for (Instruction *SI : Range.TheStores) {
495       MD->removeInstruction(SI);
496       SI->eraseFromParent();
497     }
498     ++NumMemSetInfer;
499   }
500 
501   return AMemSet;
502 }
503 
504 static unsigned findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
505   unsigned StoreAlign = SI->getAlignment();
506   if (!StoreAlign)
507     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
508   return StoreAlign;
509 }
510 
511 static unsigned findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
512   unsigned LoadAlign = LI->getAlignment();
513   if (!LoadAlign)
514     LoadAlign = DL.getABITypeAlignment(LI->getType());
515   return LoadAlign;
516 }
517 
518 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
519                                      const LoadInst *LI) {
520   unsigned StoreAlign = findStoreAlignment(DL, SI);
521   unsigned LoadAlign = findLoadAlignment(DL, LI);
522   return MinAlign(StoreAlign, LoadAlign);
523 }
524 
525 // This method try to lift a store instruction before position P.
526 // It will lift the store and its argument + that anything that
527 // may alias with these.
528 // The method returns true if it was successful.
529 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
530                    const LoadInst *LI) {
531   // If the store alias this position, early bail out.
532   MemoryLocation StoreLoc = MemoryLocation::get(SI);
533   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
534     return false;
535 
536   // Keep track of the arguments of all instruction we plan to lift
537   // so we can make sure to lift them as well if appropriate.
538   DenseSet<Instruction*> Args;
539   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
540     if (Ptr->getParent() == SI->getParent())
541       Args.insert(Ptr);
542 
543   // Instruction to lift before P.
544   SmallVector<Instruction*, 8> ToLift;
545 
546   // Memory locations of lifted instructions.
547   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
548 
549   // Lifted callsites.
550   SmallVector<ImmutableCallSite, 8> CallSites;
551 
552   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
553 
554   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
555     auto *C = &*I;
556 
557     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
558 
559     bool NeedLift = false;
560     if (Args.erase(C))
561       NeedLift = true;
562     else if (MayAlias) {
563       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
564         return isModOrRefSet(AA.getModRefInfo(C, ML));
565       });
566 
567       if (!NeedLift)
568         NeedLift =
569             llvm::any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) {
570               return isModOrRefSet(AA.getModRefInfo(C, CS));
571             });
572     }
573 
574     if (!NeedLift)
575       continue;
576 
577     if (MayAlias) {
578       // Since LI is implicitly moved downwards past the lifted instructions,
579       // none of them may modify its source.
580       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
581         return false;
582       else if (auto CS = ImmutableCallSite(C)) {
583         // If we can't lift this before P, it's game over.
584         if (isModOrRefSet(AA.getModRefInfo(P, CS)))
585           return false;
586 
587         CallSites.push_back(CS);
588       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
589         // If we can't lift this before P, it's game over.
590         auto ML = MemoryLocation::get(C);
591         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
592           return false;
593 
594         MemLocs.push_back(ML);
595       } else
596         // We don't know how to lift this instruction.
597         return false;
598     }
599 
600     ToLift.push_back(C);
601     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
602       if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
603         if (A->getParent() == SI->getParent())
604           Args.insert(A);
605   }
606 
607   // We made it, we need to lift
608   for (auto *I : llvm::reverse(ToLift)) {
609     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
610     I->moveBefore(P);
611   }
612 
613   return true;
614 }
615 
616 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
617   if (!SI->isSimple()) return false;
618 
619   // Avoid merging nontemporal stores since the resulting
620   // memcpy/memset would not be able to preserve the nontemporal hint.
621   // In theory we could teach how to propagate the !nontemporal metadata to
622   // memset calls. However, that change would force the backend to
623   // conservatively expand !nontemporal memset calls back to sequences of
624   // store instructions (effectively undoing the merging).
625   if (SI->getMetadata(LLVMContext::MD_nontemporal))
626     return false;
627 
628   const DataLayout &DL = SI->getModule()->getDataLayout();
629 
630   // Load to store forwarding can be interpreted as memcpy.
631   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
632     if (LI->isSimple() && LI->hasOneUse() &&
633         LI->getParent() == SI->getParent()) {
634 
635       auto *T = LI->getType();
636       if (T->isAggregateType()) {
637         AliasAnalysis &AA = LookupAliasAnalysis();
638         MemoryLocation LoadLoc = MemoryLocation::get(LI);
639 
640         // We use alias analysis to check if an instruction may store to
641         // the memory we load from in between the load and the store. If
642         // such an instruction is found, we try to promote there instead
643         // of at the store position.
644         Instruction *P = SI;
645         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
646           if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
647             P = &I;
648             break;
649           }
650         }
651 
652         // We found an instruction that may write to the loaded memory.
653         // We can try to promote at this position instead of the store
654         // position if nothing alias the store memory after this and the store
655         // destination is not in the range.
656         if (P && P != SI) {
657           if (!moveUp(AA, SI, P, LI))
658             P = nullptr;
659         }
660 
661         // If a valid insertion position is found, then we can promote
662         // the load/store pair to a memcpy.
663         if (P) {
664           // If we load from memory that may alias the memory we store to,
665           // memmove must be used to preserve semantic. If not, memcpy can
666           // be used.
667           bool UseMemMove = false;
668           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
669             UseMemMove = true;
670 
671           uint64_t Size = DL.getTypeStoreSize(T);
672 
673           IRBuilder<> Builder(P);
674           Instruction *M;
675           if (UseMemMove)
676             M = Builder.CreateMemMove(
677                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
678                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size,
679                 SI->isVolatile());
680           else
681             M = Builder.CreateMemCpy(
682                 SI->getPointerOperand(), findStoreAlignment(DL, SI),
683                 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size,
684                 SI->isVolatile());
685 
686           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
687                             << *M << "\n");
688 
689           MD->removeInstruction(SI);
690           SI->eraseFromParent();
691           MD->removeInstruction(LI);
692           LI->eraseFromParent();
693           ++NumMemCpyInstr;
694 
695           // Make sure we do not invalidate the iterator.
696           BBI = M->getIterator();
697           return true;
698         }
699       }
700 
701       // Detect cases where we're performing call slot forwarding, but
702       // happen to be using a load-store pair to implement it, rather than
703       // a memcpy.
704       MemDepResult ldep = MD->getDependency(LI);
705       CallInst *C = nullptr;
706       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
707         C = dyn_cast<CallInst>(ldep.getInst());
708 
709       if (C) {
710         // Check that nothing touches the dest of the "copy" between
711         // the call and the store.
712         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
713         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
714         AliasAnalysis &AA = LookupAliasAnalysis();
715         MemoryLocation StoreLoc = MemoryLocation::get(SI);
716         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
717              I != E; --I) {
718           if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
719             C = nullptr;
720             break;
721           }
722           // The store to dest may never happen if an exception can be thrown
723           // between the load and the store.
724           if (I->mayThrow() && !CpyDestIsLocal) {
725             C = nullptr;
726             break;
727           }
728         }
729       }
730 
731       if (C) {
732         bool changed = performCallSlotOptzn(
733             LI, SI->getPointerOperand()->stripPointerCasts(),
734             LI->getPointerOperand()->stripPointerCasts(),
735             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
736             findCommonAlignment(DL, SI, LI), C);
737         if (changed) {
738           MD->removeInstruction(SI);
739           SI->eraseFromParent();
740           MD->removeInstruction(LI);
741           LI->eraseFromParent();
742           ++NumMemCpyInstr;
743           return true;
744         }
745       }
746     }
747   }
748 
749   // There are two cases that are interesting for this code to handle: memcpy
750   // and memset.  Right now we only handle memset.
751 
752   // Ensure that the value being stored is something that can be memset'able a
753   // byte at a time like "0" or "-1" or any width, as well as things like
754   // 0xA0A0A0A0 and 0.0.
755   auto *V = SI->getOperand(0);
756   if (Value *ByteVal = isBytewiseValue(V)) {
757     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
758                                               ByteVal)) {
759       BBI = I->getIterator(); // Don't invalidate iterator.
760       return true;
761     }
762 
763     // If we have an aggregate, we try to promote it to memset regardless
764     // of opportunity for merging as it can expose optimization opportunities
765     // in subsequent passes.
766     auto *T = V->getType();
767     if (T->isAggregateType()) {
768       uint64_t Size = DL.getTypeStoreSize(T);
769       unsigned Align = SI->getAlignment();
770       if (!Align)
771         Align = DL.getABITypeAlignment(T);
772       IRBuilder<> Builder(SI);
773       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
774                                      Size, Align, SI->isVolatile());
775 
776       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
777 
778       MD->removeInstruction(SI);
779       SI->eraseFromParent();
780       NumMemSetInfer++;
781 
782       // Make sure we do not invalidate the iterator.
783       BBI = M->getIterator();
784       return true;
785     }
786   }
787 
788   return false;
789 }
790 
791 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
792   // See if there is another memset or store neighboring this memset which
793   // allows us to widen out the memset to do a single larger store.
794   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
795     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
796                                               MSI->getValue())) {
797       BBI = I->getIterator(); // Don't invalidate iterator.
798       return true;
799     }
800   return false;
801 }
802 
803 /// Takes a memcpy and a call that it depends on,
804 /// and checks for the possibility of a call slot optimization by having
805 /// the call write its result directly into the destination of the memcpy.
806 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
807                                          Value *cpySrc, uint64_t cpyLen,
808                                          unsigned cpyAlign, CallInst *C) {
809   // The general transformation to keep in mind is
810   //
811   //   call @func(..., src, ...)
812   //   memcpy(dest, src, ...)
813   //
814   // ->
815   //
816   //   memcpy(dest, src, ...)
817   //   call @func(..., dest, ...)
818   //
819   // Since moving the memcpy is technically awkward, we additionally check that
820   // src only holds uninitialized values at the moment of the call, meaning that
821   // the memcpy can be discarded rather than moved.
822 
823   // Lifetime marks shouldn't be operated on.
824   if (Function *F = C->getCalledFunction())
825     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
826       return false;
827 
828   // Deliberately get the source and destination with bitcasts stripped away,
829   // because we'll need to do type comparisons based on the underlying type.
830   CallSite CS(C);
831 
832   // Require that src be an alloca.  This simplifies the reasoning considerably.
833   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
834   if (!srcAlloca)
835     return false;
836 
837   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
838   if (!srcArraySize)
839     return false;
840 
841   const DataLayout &DL = cpy->getModule()->getDataLayout();
842   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
843                      srcArraySize->getZExtValue();
844 
845   if (cpyLen < srcSize)
846     return false;
847 
848   // Check that accessing the first srcSize bytes of dest will not cause a
849   // trap.  Otherwise the transform is invalid since it might cause a trap
850   // to occur earlier than it otherwise would.
851   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
852     // The destination is an alloca.  Check it is larger than srcSize.
853     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
854     if (!destArraySize)
855       return false;
856 
857     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
858                         destArraySize->getZExtValue();
859 
860     if (destSize < srcSize)
861       return false;
862   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
863     // The store to dest may never happen if the call can throw.
864     if (C->mayThrow())
865       return false;
866 
867     if (A->getDereferenceableBytes() < srcSize) {
868       // If the destination is an sret parameter then only accesses that are
869       // outside of the returned struct type can trap.
870       if (!A->hasStructRetAttr())
871         return false;
872 
873       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
874       if (!StructTy->isSized()) {
875         // The call may never return and hence the copy-instruction may never
876         // be executed, and therefore it's not safe to say "the destination
877         // has at least <cpyLen> bytes, as implied by the copy-instruction",
878         return false;
879       }
880 
881       uint64_t destSize = DL.getTypeAllocSize(StructTy);
882       if (destSize < srcSize)
883         return false;
884     }
885   } else {
886     return false;
887   }
888 
889   // Check that dest points to memory that is at least as aligned as src.
890   unsigned srcAlign = srcAlloca->getAlignment();
891   if (!srcAlign)
892     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
893   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
894   // If dest is not aligned enough and we can't increase its alignment then
895   // bail out.
896   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
897     return false;
898 
899   // Check that src is not accessed except via the call and the memcpy.  This
900   // guarantees that it holds only undefined values when passed in (so the final
901   // memcpy can be dropped), that it is not read or written between the call and
902   // the memcpy, and that writing beyond the end of it is undefined.
903   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
904                                    srcAlloca->user_end());
905   while (!srcUseList.empty()) {
906     User *U = srcUseList.pop_back_val();
907 
908     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
909       for (User *UU : U->users())
910         srcUseList.push_back(UU);
911       continue;
912     }
913     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
914       if (!G->hasAllZeroIndices())
915         return false;
916 
917       for (User *UU : U->users())
918         srcUseList.push_back(UU);
919       continue;
920     }
921     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
922       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
923           IT->getIntrinsicID() == Intrinsic::lifetime_end)
924         continue;
925 
926     if (U != C && U != cpy)
927       return false;
928   }
929 
930   // Check that src isn't captured by the called function since the
931   // transformation can cause aliasing issues in that case.
932   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
933     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
934       return false;
935 
936   // Since we're changing the parameter to the callsite, we need to make sure
937   // that what would be the new parameter dominates the callsite.
938   DominatorTree &DT = LookupDomTree();
939   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
940     if (!DT.dominates(cpyDestInst, C))
941       return false;
942 
943   // In addition to knowing that the call does not access src in some
944   // unexpected manner, for example via a global, which we deduce from
945   // the use analysis, we also need to know that it does not sneakily
946   // access dest.  We rely on AA to figure this out for us.
947   AliasAnalysis &AA = LookupAliasAnalysis();
948   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
949   // If necessary, perform additional analysis.
950   if (isModOrRefSet(MR))
951     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
952   if (isModOrRefSet(MR))
953     return false;
954 
955   // We can't create address space casts here because we don't know if they're
956   // safe for the target.
957   if (cpySrc->getType()->getPointerAddressSpace() !=
958       cpyDest->getType()->getPointerAddressSpace())
959     return false;
960   for (unsigned i = 0; i < CS.arg_size(); ++i)
961     if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
962         cpySrc->getType()->getPointerAddressSpace() !=
963         CS.getArgument(i)->getType()->getPointerAddressSpace())
964       return false;
965 
966   // All the checks have passed, so do the transformation.
967   bool changedArgument = false;
968   for (unsigned i = 0; i < CS.arg_size(); ++i)
969     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
970       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
971         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
972                                       cpyDest->getName(), C);
973       changedArgument = true;
974       if (CS.getArgument(i)->getType() == Dest->getType())
975         CS.setArgument(i, Dest);
976       else
977         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
978                           CS.getArgument(i)->getType(), Dest->getName(), C));
979     }
980 
981   if (!changedArgument)
982     return false;
983 
984   // If the destination wasn't sufficiently aligned then increase its alignment.
985   if (!isDestSufficientlyAligned) {
986     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
987     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
988   }
989 
990   // Drop any cached information about the call, because we may have changed
991   // its dependence information by changing its parameter.
992   MD->removeInstruction(C);
993 
994   // Update AA metadata
995   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
996   // handled here, but combineMetadata doesn't support them yet
997   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
998                          LLVMContext::MD_noalias,
999                          LLVMContext::MD_invariant_group};
1000   combineMetadata(C, cpy, KnownIDs, true);
1001 
1002   // Remove the memcpy.
1003   MD->removeInstruction(cpy);
1004   ++NumMemCpyInstr;
1005 
1006   return true;
1007 }
1008 
1009 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1010 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1011 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1012                                                   MemCpyInst *MDep) {
1013   // We can only transforms memcpy's where the dest of one is the source of the
1014   // other.
1015   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1016     return false;
1017 
1018   // If dep instruction is reading from our current input, then it is a noop
1019   // transfer and substituting the input won't change this instruction.  Just
1020   // ignore the input and let someone else zap MDep.  This handles cases like:
1021   //    memcpy(a <- a)
1022   //    memcpy(b <- a)
1023   if (M->getSource() == MDep->getSource())
1024     return false;
1025 
1026   // Second, the length of the memcpy's must be the same, or the preceding one
1027   // must be larger than the following one.
1028   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1029   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1030   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1031     return false;
1032 
1033   AliasAnalysis &AA = LookupAliasAnalysis();
1034 
1035   // Verify that the copied-from memory doesn't change in between the two
1036   // transfers.  For example, in:
1037   //    memcpy(a <- b)
1038   //    *b = 42;
1039   //    memcpy(c <- a)
1040   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1041   //
1042   // TODO: If the code between M and MDep is transparent to the destination "c",
1043   // then we could still perform the xform by moving M up to the first memcpy.
1044   //
1045   // NOTE: This is conservative, it will stop on any read from the source loc,
1046   // not just the defining memcpy.
1047   MemDepResult SourceDep =
1048       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1049                                    M->getIterator(), M->getParent());
1050   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1051     return false;
1052 
1053   // If the dest of the second might alias the source of the first, then the
1054   // source and dest might overlap.  We still want to eliminate the intermediate
1055   // value, but we have to generate a memmove instead of memcpy.
1056   bool UseMemMove = false;
1057   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1058                     MemoryLocation::getForSource(MDep)))
1059     UseMemMove = true;
1060 
1061   // If all checks passed, then we can transform M.
1062 
1063   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1064   // example we could be moving from movaps -> movq on x86.
1065   IRBuilder<> Builder(M);
1066   if (UseMemMove)
1067     Builder.CreateMemMove(M->getRawDest(), M->getDestAlignment(),
1068                           MDep->getRawSource(), MDep->getSourceAlignment(),
1069                           M->getLength(), M->isVolatile());
1070   else
1071     Builder.CreateMemCpy(M->getRawDest(), M->getDestAlignment(),
1072                          MDep->getRawSource(), MDep->getSourceAlignment(),
1073                          M->getLength(), M->isVolatile());
1074 
1075   // Remove the instruction we're replacing.
1076   MD->removeInstruction(M);
1077   M->eraseFromParent();
1078   ++NumMemCpyInstr;
1079   return true;
1080 }
1081 
1082 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1083 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1084 /// weren't copied over by \p MemCpy.
1085 ///
1086 /// In other words, transform:
1087 /// \code
1088 ///   memset(dst, c, dst_size);
1089 ///   memcpy(dst, src, src_size);
1090 /// \endcode
1091 /// into:
1092 /// \code
1093 ///   memcpy(dst, src, src_size);
1094 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1095 /// \endcode
1096 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1097                                                   MemSetInst *MemSet) {
1098   // We can only transform memset/memcpy with the same destination.
1099   if (MemSet->getDest() != MemCpy->getDest())
1100     return false;
1101 
1102   // Check that there are no other dependencies on the memset destination.
1103   MemDepResult DstDepInfo =
1104       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1105                                    MemCpy->getIterator(), MemCpy->getParent());
1106   if (DstDepInfo.getInst() != MemSet)
1107     return false;
1108 
1109   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1110   Value *Dest = MemCpy->getRawDest();
1111   Value *DestSize = MemSet->getLength();
1112   Value *SrcSize = MemCpy->getLength();
1113 
1114   // By default, create an unaligned memset.
1115   unsigned Align = 1;
1116   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1117   // of the sum.
1118   const unsigned DestAlign =
1119       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1120   if (DestAlign > 1)
1121     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1122       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1123 
1124   IRBuilder<> Builder(MemCpy);
1125 
1126   // If the sizes have different types, zext the smaller one.
1127   if (DestSize->getType() != SrcSize->getType()) {
1128     if (DestSize->getType()->getIntegerBitWidth() >
1129         SrcSize->getType()->getIntegerBitWidth())
1130       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1131     else
1132       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1133   }
1134 
1135   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1136   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1137   Value *MemsetLen = Builder.CreateSelect(
1138       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1139   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
1140                        MemsetLen, Align);
1141 
1142   MD->removeInstruction(MemSet);
1143   MemSet->eraseFromParent();
1144   return true;
1145 }
1146 
1147 /// Transform memcpy to memset when its source was just memset.
1148 /// In other words, turn:
1149 /// \code
1150 ///   memset(dst1, c, dst1_size);
1151 ///   memcpy(dst2, dst1, dst2_size);
1152 /// \endcode
1153 /// into:
1154 /// \code
1155 ///   memset(dst1, c, dst1_size);
1156 ///   memset(dst2, c, dst2_size);
1157 /// \endcode
1158 /// When dst2_size <= dst1_size.
1159 ///
1160 /// The \p MemCpy must have a Constant length.
1161 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1162                                                MemSetInst *MemSet) {
1163   AliasAnalysis &AA = LookupAliasAnalysis();
1164 
1165   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1166   // memcpying from the same address. Otherwise it is hard to reason about.
1167   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1168     return false;
1169 
1170   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1171   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1172   // Make sure the memcpy doesn't read any more than what the memset wrote.
1173   // Don't worry about sizes larger than i64.
1174   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
1175     return false;
1176 
1177   IRBuilder<> Builder(MemCpy);
1178   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1179                        CopySize, MemCpy->getDestAlignment());
1180   return true;
1181 }
1182 
1183 /// Perform simplification of memcpy's.  If we have memcpy A
1184 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1185 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1186 /// circumstances). This allows later passes to remove the first memcpy
1187 /// altogether.
1188 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1189   // We can only optimize non-volatile memcpy's.
1190   if (M->isVolatile()) return false;
1191 
1192   // If the source and destination of the memcpy are the same, then zap it.
1193   if (M->getSource() == M->getDest()) {
1194     MD->removeInstruction(M);
1195     M->eraseFromParent();
1196     return false;
1197   }
1198 
1199   // If copying from a constant, try to turn the memcpy into a memset.
1200   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1201     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1202       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
1203         IRBuilder<> Builder(M);
1204         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1205                              M->getDestAlignment(), false);
1206         MD->removeInstruction(M);
1207         M->eraseFromParent();
1208         ++NumCpyToSet;
1209         return true;
1210       }
1211 
1212   MemDepResult DepInfo = MD->getDependency(M);
1213 
1214   // Try to turn a partially redundant memset + memcpy into
1215   // memcpy + smaller memset.  We don't need the memcpy size for this.
1216   if (DepInfo.isClobber())
1217     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1218       if (processMemSetMemCpyDependence(M, MDep))
1219         return true;
1220 
1221   // The optimizations after this point require the memcpy size.
1222   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1223   if (!CopySize) return false;
1224 
1225   // There are four possible optimizations we can do for memcpy:
1226   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1227   //   b) call-memcpy xform for return slot optimization.
1228   //   c) memcpy from freshly alloca'd space or space that has just started its
1229   //      lifetime copies undefined data, and we can therefore eliminate the
1230   //      memcpy in favor of the data that was already at the destination.
1231   //   d) memcpy from a just-memset'd source can be turned into memset.
1232   if (DepInfo.isClobber()) {
1233     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1234       // FIXME: Can we pass in either of dest/src alignment here instead
1235       // of conservatively taking the minimum?
1236       unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
1237       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1238                                CopySize->getZExtValue(), Align,
1239                                C)) {
1240         MD->removeInstruction(M);
1241         M->eraseFromParent();
1242         return true;
1243       }
1244     }
1245   }
1246 
1247   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1248   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1249       SrcLoc, true, M->getIterator(), M->getParent());
1250 
1251   if (SrcDepInfo.isClobber()) {
1252     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1253       return processMemCpyMemCpyDependence(M, MDep);
1254   } else if (SrcDepInfo.isDef()) {
1255     Instruction *I = SrcDepInfo.getInst();
1256     bool hasUndefContents = false;
1257 
1258     if (isa<AllocaInst>(I)) {
1259       hasUndefContents = true;
1260     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1261       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1262         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1263           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
1264             hasUndefContents = true;
1265     }
1266 
1267     if (hasUndefContents) {
1268       MD->removeInstruction(M);
1269       M->eraseFromParent();
1270       ++NumMemCpyInstr;
1271       return true;
1272     }
1273   }
1274 
1275   if (SrcDepInfo.isClobber())
1276     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1277       if (performMemCpyToMemSetOptzn(M, MDep)) {
1278         MD->removeInstruction(M);
1279         M->eraseFromParent();
1280         ++NumCpyToSet;
1281         return true;
1282       }
1283 
1284   return false;
1285 }
1286 
1287 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1288 /// not to alias.
1289 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1290   AliasAnalysis &AA = LookupAliasAnalysis();
1291 
1292   if (!TLI->has(LibFunc_memmove))
1293     return false;
1294 
1295   // See if the pointers alias.
1296   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1297                     MemoryLocation::getForSource(M)))
1298     return false;
1299 
1300   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1301                     << "\n");
1302 
1303   // If not, then we know we can transform this.
1304   Type *ArgTys[3] = { M->getRawDest()->getType(),
1305                       M->getRawSource()->getType(),
1306                       M->getLength()->getType() };
1307   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1308                                                  Intrinsic::memcpy, ArgTys));
1309 
1310   // MemDep may have over conservative information about this instruction, just
1311   // conservatively flush it from the cache.
1312   MD->removeInstruction(M);
1313 
1314   ++NumMoveToCpy;
1315   return true;
1316 }
1317 
1318 /// This is called on every byval argument in call sites.
1319 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1320   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1321   // Find out what feeds this byval argument.
1322   Value *ByValArg = CS.getArgument(ArgNo);
1323   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1324   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1325   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1326       MemoryLocation(ByValArg, ByValSize), true,
1327       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1328   if (!DepInfo.isClobber())
1329     return false;
1330 
1331   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1332   // a memcpy, see if we can byval from the source of the memcpy instead of the
1333   // result.
1334   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1335   if (!MDep || MDep->isVolatile() ||
1336       ByValArg->stripPointerCasts() != MDep->getDest())
1337     return false;
1338 
1339   // The length of the memcpy must be larger or equal to the size of the byval.
1340   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1341   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1342     return false;
1343 
1344   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1345   // then it is some target specific value that we can't know.
1346   unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1347   if (ByValAlign == 0) return false;
1348 
1349   // If it is greater than the memcpy, then we check to see if we can force the
1350   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1351   AssumptionCache &AC = LookupAssumptionCache();
1352   DominatorTree &DT = LookupDomTree();
1353   if (MDep->getSourceAlignment() < ByValAlign &&
1354       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1355                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1356     return false;
1357 
1358   // The address space of the memcpy source must match the byval argument
1359   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1360       ByValArg->getType()->getPointerAddressSpace())
1361     return false;
1362 
1363   // Verify that the copied-from memory doesn't change in between the memcpy and
1364   // the byval call.
1365   //    memcpy(a <- b)
1366   //    *b = 42;
1367   //    foo(*a)
1368   // It would be invalid to transform the second memcpy into foo(*b).
1369   //
1370   // NOTE: This is conservative, it will stop on any read from the source loc,
1371   // not just the defining memcpy.
1372   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1373       MemoryLocation::getForSource(MDep), false,
1374       CS.getInstruction()->getIterator(), MDep->getParent());
1375   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1376     return false;
1377 
1378   Value *TmpCast = MDep->getSource();
1379   if (MDep->getSource()->getType() != ByValArg->getType())
1380     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1381                               "tmpcast", CS.getInstruction());
1382 
1383   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1384                     << "  " << *MDep << "\n"
1385                     << "  " << *CS.getInstruction() << "\n");
1386 
1387   // Otherwise we're good!  Update the byval argument.
1388   CS.setArgument(ArgNo, TmpCast);
1389   ++NumMemCpyInstr;
1390   return true;
1391 }
1392 
1393 /// Executes one iteration of MemCpyOptPass.
1394 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1395   bool MadeChange = false;
1396 
1397   DominatorTree &DT = LookupDomTree();
1398 
1399   // Walk all instruction in the function.
1400   for (BasicBlock &BB : F) {
1401     // Skip unreachable blocks. For example processStore assumes that an
1402     // instruction in a BB can't be dominated by a later instruction in the
1403     // same BB (which is a scenario that can happen for an unreachable BB that
1404     // has itself as a predecessor).
1405     if (!DT.isReachableFromEntry(&BB))
1406       continue;
1407 
1408     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1409         // Avoid invalidating the iterator.
1410       Instruction *I = &*BI++;
1411 
1412       bool RepeatInstruction = false;
1413 
1414       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1415         MadeChange |= processStore(SI, BI);
1416       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1417         RepeatInstruction = processMemSet(M, BI);
1418       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1419         RepeatInstruction = processMemCpy(M);
1420       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1421         RepeatInstruction = processMemMove(M);
1422       else if (auto CS = CallSite(I)) {
1423         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1424           if (CS.isByValArgument(i))
1425             MadeChange |= processByValArgument(CS, i);
1426       }
1427 
1428       // Reprocess the instruction if desired.
1429       if (RepeatInstruction) {
1430         if (BI != BB.begin())
1431           --BI;
1432         MadeChange = true;
1433       }
1434     }
1435   }
1436 
1437   return MadeChange;
1438 }
1439 
1440 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1441   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1442   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1443 
1444   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1445     return AM.getResult<AAManager>(F);
1446   };
1447   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1448     return AM.getResult<AssumptionAnalysis>(F);
1449   };
1450   auto LookupDomTree = [&]() -> DominatorTree & {
1451     return AM.getResult<DominatorTreeAnalysis>(F);
1452   };
1453 
1454   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1455                             LookupAssumptionCache, LookupDomTree);
1456   if (!MadeChange)
1457     return PreservedAnalyses::all();
1458 
1459   PreservedAnalyses PA;
1460   PA.preserveSet<CFGAnalyses>();
1461   PA.preserve<GlobalsAA>();
1462   PA.preserve<MemoryDependenceAnalysis>();
1463   return PA;
1464 }
1465 
1466 bool MemCpyOptPass::runImpl(
1467     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1468     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1469     std::function<AssumptionCache &()> LookupAssumptionCache_,
1470     std::function<DominatorTree &()> LookupDomTree_) {
1471   bool MadeChange = false;
1472   MD = MD_;
1473   TLI = TLI_;
1474   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1475   LookupAssumptionCache = std::move(LookupAssumptionCache_);
1476   LookupDomTree = std::move(LookupDomTree_);
1477 
1478   // If we don't have at least memset and memcpy, there is little point of doing
1479   // anything here.  These are required by a freestanding implementation, so if
1480   // even they are disabled, there is no point in trying hard.
1481   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1482     return false;
1483 
1484   while (true) {
1485     if (!iterateOnFunction(F))
1486       break;
1487     MadeChange = true;
1488   }
1489 
1490   MD = nullptr;
1491   return MadeChange;
1492 }
1493 
1494 /// This is the main transformation entry point for a function.
1495 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1496   if (skipFunction(F))
1497     return false;
1498 
1499   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1500   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1501 
1502   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1503     return getAnalysis<AAResultsWrapperPass>().getAAResults();
1504   };
1505   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1506     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1507   };
1508   auto LookupDomTree = [this]() -> DominatorTree & {
1509     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1510   };
1511 
1512   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1513                       LookupDomTree);
1514 }
1515