1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/Argument.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/Operator.h" 47 #include "llvm/IR/PassManager.h" 48 #include "llvm/IR/Type.h" 49 #include "llvm/IR/User.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/MathExtras.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include <algorithm> 60 #include <cassert> 61 #include <cstdint> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "memcpyopt" 67 68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 69 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 70 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 71 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 72 73 namespace { 74 75 /// Represents a range of memset'd bytes with the ByteVal value. 76 /// This allows us to analyze stores like: 77 /// store 0 -> P+1 78 /// store 0 -> P+0 79 /// store 0 -> P+3 80 /// store 0 -> P+2 81 /// which sometimes happens with stores to arrays of structs etc. When we see 82 /// the first store, we make a range [1, 2). The second store extends the range 83 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 84 /// two ranges into [0, 3) which is memset'able. 85 struct MemsetRange { 86 // Start/End - A semi range that describes the span that this range covers. 87 // The range is closed at the start and open at the end: [Start, End). 88 int64_t Start, End; 89 90 /// StartPtr - The getelementptr instruction that points to the start of the 91 /// range. 92 Value *StartPtr; 93 94 /// Alignment - The known alignment of the first store. 95 unsigned Alignment; 96 97 /// TheStores - The actual stores that make up this range. 98 SmallVector<Instruction*, 16> TheStores; 99 100 bool isProfitableToUseMemset(const DataLayout &DL) const; 101 }; 102 103 } // end anonymous namespace 104 105 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 106 // If we found more than 4 stores to merge or 16 bytes, use memset. 107 if (TheStores.size() >= 4 || End-Start >= 16) return true; 108 109 // If there is nothing to merge, don't do anything. 110 if (TheStores.size() < 2) return false; 111 112 // If any of the stores are a memset, then it is always good to extend the 113 // memset. 114 for (Instruction *SI : TheStores) 115 if (!isa<StoreInst>(SI)) 116 return true; 117 118 // Assume that the code generator is capable of merging pairs of stores 119 // together if it wants to. 120 if (TheStores.size() == 2) return false; 121 122 // If we have fewer than 8 stores, it can still be worthwhile to do this. 123 // For example, merging 4 i8 stores into an i32 store is useful almost always. 124 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 125 // memset will be split into 2 32-bit stores anyway) and doing so can 126 // pessimize the llvm optimizer. 127 // 128 // Since we don't have perfect knowledge here, make some assumptions: assume 129 // the maximum GPR width is the same size as the largest legal integer 130 // size. If so, check to see whether we will end up actually reducing the 131 // number of stores used. 132 unsigned Bytes = unsigned(End-Start); 133 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 134 if (MaxIntSize == 0) 135 MaxIntSize = 1; 136 unsigned NumPointerStores = Bytes / MaxIntSize; 137 138 // Assume the remaining bytes if any are done a byte at a time. 139 unsigned NumByteStores = Bytes % MaxIntSize; 140 141 // If we will reduce the # stores (according to this heuristic), do the 142 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 143 // etc. 144 return TheStores.size() > NumPointerStores+NumByteStores; 145 } 146 147 148 static Align findStoreAlignment(const DataLayout &DL, const StoreInst *SI) { 149 return DL.getValueOrABITypeAlignment(SI->getAlign(), 150 SI->getOperand(0)->getType()); 151 } 152 153 static Align findLoadAlignment(const DataLayout &DL, const LoadInst *LI) { 154 return DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType()); 155 } 156 157 static Align findCommonAlignment(const DataLayout &DL, const StoreInst *SI, 158 const LoadInst *LI) { 159 Align StoreAlign = findStoreAlignment(DL, SI); 160 Align LoadAlign = findLoadAlignment(DL, LI); 161 return commonAlignment(StoreAlign, LoadAlign); 162 } 163 164 namespace { 165 166 class MemsetRanges { 167 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 168 169 /// A sorted list of the memset ranges. 170 SmallVector<MemsetRange, 8> Ranges; 171 172 const DataLayout &DL; 173 174 public: 175 MemsetRanges(const DataLayout &DL) : DL(DL) {} 176 177 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 178 179 const_iterator begin() const { return Ranges.begin(); } 180 const_iterator end() const { return Ranges.end(); } 181 bool empty() const { return Ranges.empty(); } 182 183 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 184 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 185 addStore(OffsetFromFirst, SI); 186 else 187 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 188 } 189 190 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 191 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 192 193 addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(), 194 findStoreAlignment(DL, SI).value(), SI); 195 } 196 197 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 198 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 199 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 200 } 201 202 void addRange(int64_t Start, int64_t Size, Value *Ptr, 203 unsigned Alignment, Instruction *Inst); 204 }; 205 206 } // end anonymous namespace 207 208 /// Add a new store to the MemsetRanges data structure. This adds a 209 /// new range for the specified store at the specified offset, merging into 210 /// existing ranges as appropriate. 211 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 212 unsigned Alignment, Instruction *Inst) { 213 int64_t End = Start+Size; 214 215 range_iterator I = partition_point( 216 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 217 218 // We now know that I == E, in which case we didn't find anything to merge 219 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 220 // to insert a new range. Handle this now. 221 if (I == Ranges.end() || End < I->Start) { 222 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 223 R.Start = Start; 224 R.End = End; 225 R.StartPtr = Ptr; 226 R.Alignment = Alignment; 227 R.TheStores.push_back(Inst); 228 return; 229 } 230 231 // This store overlaps with I, add it. 232 I->TheStores.push_back(Inst); 233 234 // At this point, we may have an interval that completely contains our store. 235 // If so, just add it to the interval and return. 236 if (I->Start <= Start && I->End >= End) 237 return; 238 239 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 240 // but is not entirely contained within the range. 241 242 // See if the range extends the start of the range. In this case, it couldn't 243 // possibly cause it to join the prior range, because otherwise we would have 244 // stopped on *it*. 245 if (Start < I->Start) { 246 I->Start = Start; 247 I->StartPtr = Ptr; 248 I->Alignment = Alignment; 249 } 250 251 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 252 // is in or right at the end of I), and that End >= I->Start. Extend I out to 253 // End. 254 if (End > I->End) { 255 I->End = End; 256 range_iterator NextI = I; 257 while (++NextI != Ranges.end() && End >= NextI->Start) { 258 // Merge the range in. 259 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 260 if (NextI->End > I->End) 261 I->End = NextI->End; 262 Ranges.erase(NextI); 263 NextI = I; 264 } 265 } 266 } 267 268 //===----------------------------------------------------------------------===// 269 // MemCpyOptLegacyPass Pass 270 //===----------------------------------------------------------------------===// 271 272 namespace { 273 274 class MemCpyOptLegacyPass : public FunctionPass { 275 MemCpyOptPass Impl; 276 277 public: 278 static char ID; // Pass identification, replacement for typeid 279 280 MemCpyOptLegacyPass() : FunctionPass(ID) { 281 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 282 } 283 284 bool runOnFunction(Function &F) override; 285 286 private: 287 // This transformation requires dominator postdominator info 288 void getAnalysisUsage(AnalysisUsage &AU) const override { 289 AU.setPreservesCFG(); 290 AU.addRequired<AssumptionCacheTracker>(); 291 AU.addRequired<DominatorTreeWrapperPass>(); 292 AU.addRequired<MemoryDependenceWrapperPass>(); 293 AU.addRequired<AAResultsWrapperPass>(); 294 AU.addRequired<TargetLibraryInfoWrapperPass>(); 295 AU.addPreserved<GlobalsAAWrapperPass>(); 296 AU.addPreserved<MemoryDependenceWrapperPass>(); 297 } 298 }; 299 300 } // end anonymous namespace 301 302 char MemCpyOptLegacyPass::ID = 0; 303 304 /// The public interface to this file... 305 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 306 307 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 308 false, false) 309 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 310 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 311 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 312 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 313 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 314 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 315 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 316 false, false) 317 318 /// When scanning forward over instructions, we look for some other patterns to 319 /// fold away. In particular, this looks for stores to neighboring locations of 320 /// memory. If it sees enough consecutive ones, it attempts to merge them 321 /// together into a memcpy/memset. 322 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 323 Value *StartPtr, 324 Value *ByteVal) { 325 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 326 327 // Okay, so we now have a single store that can be splatable. Scan to find 328 // all subsequent stores of the same value to offset from the same pointer. 329 // Join these together into ranges, so we can decide whether contiguous blocks 330 // are stored. 331 MemsetRanges Ranges(DL); 332 333 BasicBlock::iterator BI(StartInst); 334 for (++BI; !BI->isTerminator(); ++BI) { 335 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 336 // If the instruction is readnone, ignore it, otherwise bail out. We 337 // don't even allow readonly here because we don't want something like: 338 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 339 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 340 break; 341 continue; 342 } 343 344 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 345 // If this is a store, see if we can merge it in. 346 if (!NextStore->isSimple()) break; 347 348 // Check to see if this stored value is of the same byte-splattable value. 349 Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL); 350 if (isa<UndefValue>(ByteVal) && StoredByte) 351 ByteVal = StoredByte; 352 if (ByteVal != StoredByte) 353 break; 354 355 // Check to see if this store is to a constant offset from the start ptr. 356 Optional<int64_t> Offset = 357 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 358 if (!Offset) 359 break; 360 361 Ranges.addStore(*Offset, NextStore); 362 } else { 363 MemSetInst *MSI = cast<MemSetInst>(BI); 364 365 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 366 !isa<ConstantInt>(MSI->getLength())) 367 break; 368 369 // Check to see if this store is to a constant offset from the start ptr. 370 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 371 if (!Offset) 372 break; 373 374 Ranges.addMemSet(*Offset, MSI); 375 } 376 } 377 378 // If we have no ranges, then we just had a single store with nothing that 379 // could be merged in. This is a very common case of course. 380 if (Ranges.empty()) 381 return nullptr; 382 383 // If we had at least one store that could be merged in, add the starting 384 // store as well. We try to avoid this unless there is at least something 385 // interesting as a small compile-time optimization. 386 Ranges.addInst(0, StartInst); 387 388 // If we create any memsets, we put it right before the first instruction that 389 // isn't part of the memset block. This ensure that the memset is dominated 390 // by any addressing instruction needed by the start of the block. 391 IRBuilder<> Builder(&*BI); 392 393 // Now that we have full information about ranges, loop over the ranges and 394 // emit memset's for anything big enough to be worthwhile. 395 Instruction *AMemSet = nullptr; 396 for (const MemsetRange &Range : Ranges) { 397 if (Range.TheStores.size() == 1) continue; 398 399 // If it is profitable to lower this range to memset, do so now. 400 if (!Range.isProfitableToUseMemset(DL)) 401 continue; 402 403 // Otherwise, we do want to transform this! Create a new memset. 404 // Get the starting pointer of the block. 405 StartPtr = Range.StartPtr; 406 407 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 408 MaybeAlign(Range.Alignment)); 409 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 410 : Range.TheStores) dbgs() 411 << *SI << '\n'; 412 dbgs() << "With: " << *AMemSet << '\n'); 413 414 if (!Range.TheStores.empty()) 415 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 416 417 // Zap all the stores. 418 for (Instruction *SI : Range.TheStores) { 419 MD->removeInstruction(SI); 420 SI->eraseFromParent(); 421 } 422 ++NumMemSetInfer; 423 } 424 425 return AMemSet; 426 } 427 428 // This method try to lift a store instruction before position P. 429 // It will lift the store and its argument + that anything that 430 // may alias with these. 431 // The method returns true if it was successful. 432 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P, 433 const LoadInst *LI) { 434 // If the store alias this position, early bail out. 435 MemoryLocation StoreLoc = MemoryLocation::get(SI); 436 if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc))) 437 return false; 438 439 // Keep track of the arguments of all instruction we plan to lift 440 // so we can make sure to lift them as well if appropriate. 441 DenseSet<Instruction*> Args; 442 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 443 if (Ptr->getParent() == SI->getParent()) 444 Args.insert(Ptr); 445 446 // Instruction to lift before P. 447 SmallVector<Instruction*, 8> ToLift; 448 449 // Memory locations of lifted instructions. 450 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 451 452 // Lifted calls. 453 SmallVector<const CallBase *, 8> Calls; 454 455 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 456 457 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 458 auto *C = &*I; 459 460 bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None)); 461 462 bool NeedLift = false; 463 if (Args.erase(C)) 464 NeedLift = true; 465 else if (MayAlias) { 466 NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) { 467 return isModOrRefSet(AA.getModRefInfo(C, ML)); 468 }); 469 470 if (!NeedLift) 471 NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) { 472 return isModOrRefSet(AA.getModRefInfo(C, Call)); 473 }); 474 } 475 476 if (!NeedLift) 477 continue; 478 479 if (MayAlias) { 480 // Since LI is implicitly moved downwards past the lifted instructions, 481 // none of them may modify its source. 482 if (isModSet(AA.getModRefInfo(C, LoadLoc))) 483 return false; 484 else if (const auto *Call = dyn_cast<CallBase>(C)) { 485 // If we can't lift this before P, it's game over. 486 if (isModOrRefSet(AA.getModRefInfo(P, Call))) 487 return false; 488 489 Calls.push_back(Call); 490 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 491 // If we can't lift this before P, it's game over. 492 auto ML = MemoryLocation::get(C); 493 if (isModOrRefSet(AA.getModRefInfo(P, ML))) 494 return false; 495 496 MemLocs.push_back(ML); 497 } else 498 // We don't know how to lift this instruction. 499 return false; 500 } 501 502 ToLift.push_back(C); 503 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 504 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 505 if (A->getParent() == SI->getParent()) { 506 // Cannot hoist user of P above P 507 if(A == P) return false; 508 Args.insert(A); 509 } 510 } 511 } 512 513 // We made it, we need to lift 514 for (auto *I : llvm::reverse(ToLift)) { 515 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 516 I->moveBefore(P); 517 } 518 519 return true; 520 } 521 522 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 523 if (!SI->isSimple()) return false; 524 525 // Avoid merging nontemporal stores since the resulting 526 // memcpy/memset would not be able to preserve the nontemporal hint. 527 // In theory we could teach how to propagate the !nontemporal metadata to 528 // memset calls. However, that change would force the backend to 529 // conservatively expand !nontemporal memset calls back to sequences of 530 // store instructions (effectively undoing the merging). 531 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 532 return false; 533 534 const DataLayout &DL = SI->getModule()->getDataLayout(); 535 536 // Load to store forwarding can be interpreted as memcpy. 537 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 538 if (LI->isSimple() && LI->hasOneUse() && 539 LI->getParent() == SI->getParent()) { 540 541 auto *T = LI->getType(); 542 if (T->isAggregateType()) { 543 AliasAnalysis &AA = LookupAliasAnalysis(); 544 MemoryLocation LoadLoc = MemoryLocation::get(LI); 545 546 // We use alias analysis to check if an instruction may store to 547 // the memory we load from in between the load and the store. If 548 // such an instruction is found, we try to promote there instead 549 // of at the store position. 550 Instruction *P = SI; 551 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 552 if (isModSet(AA.getModRefInfo(&I, LoadLoc))) { 553 P = &I; 554 break; 555 } 556 } 557 558 // We found an instruction that may write to the loaded memory. 559 // We can try to promote at this position instead of the store 560 // position if nothing alias the store memory after this and the store 561 // destination is not in the range. 562 if (P && P != SI) { 563 if (!moveUp(AA, SI, P, LI)) 564 P = nullptr; 565 } 566 567 // If a valid insertion position is found, then we can promote 568 // the load/store pair to a memcpy. 569 if (P) { 570 // If we load from memory that may alias the memory we store to, 571 // memmove must be used to preserve semantic. If not, memcpy can 572 // be used. 573 bool UseMemMove = false; 574 if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc)) 575 UseMemMove = true; 576 577 uint64_t Size = DL.getTypeStoreSize(T); 578 579 IRBuilder<> Builder(P); 580 Instruction *M; 581 if (UseMemMove) 582 M = Builder.CreateMemMove( 583 SI->getPointerOperand(), findStoreAlignment(DL, SI), 584 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); 585 else 586 M = Builder.CreateMemCpy( 587 SI->getPointerOperand(), findStoreAlignment(DL, SI), 588 LI->getPointerOperand(), findLoadAlignment(DL, LI), Size); 589 590 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 591 << *M << "\n"); 592 593 MD->removeInstruction(SI); 594 SI->eraseFromParent(); 595 MD->removeInstruction(LI); 596 LI->eraseFromParent(); 597 ++NumMemCpyInstr; 598 599 // Make sure we do not invalidate the iterator. 600 BBI = M->getIterator(); 601 return true; 602 } 603 } 604 605 // Detect cases where we're performing call slot forwarding, but 606 // happen to be using a load-store pair to implement it, rather than 607 // a memcpy. 608 MemDepResult ldep = MD->getDependency(LI); 609 CallInst *C = nullptr; 610 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 611 C = dyn_cast<CallInst>(ldep.getInst()); 612 613 if (C) { 614 // Check that nothing touches the dest of the "copy" between 615 // the call and the store. 616 Value *CpyDest = SI->getPointerOperand()->stripPointerCasts(); 617 bool CpyDestIsLocal = isa<AllocaInst>(CpyDest); 618 AliasAnalysis &AA = LookupAliasAnalysis(); 619 MemoryLocation StoreLoc = MemoryLocation::get(SI); 620 for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); 621 I != E; --I) { 622 if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) { 623 C = nullptr; 624 break; 625 } 626 // The store to dest may never happen if an exception can be thrown 627 // between the load and the store. 628 if (I->mayThrow() && !CpyDestIsLocal) { 629 C = nullptr; 630 break; 631 } 632 } 633 } 634 635 if (C) { 636 bool changed = performCallSlotOptzn( 637 LI, SI->getPointerOperand()->stripPointerCasts(), 638 LI->getPointerOperand()->stripPointerCasts(), 639 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 640 findCommonAlignment(DL, SI, LI).value(), C); 641 if (changed) { 642 MD->removeInstruction(SI); 643 SI->eraseFromParent(); 644 MD->removeInstruction(LI); 645 LI->eraseFromParent(); 646 ++NumMemCpyInstr; 647 return true; 648 } 649 } 650 } 651 } 652 653 // There are two cases that are interesting for this code to handle: memcpy 654 // and memset. Right now we only handle memset. 655 656 // Ensure that the value being stored is something that can be memset'able a 657 // byte at a time like "0" or "-1" or any width, as well as things like 658 // 0xA0A0A0A0 and 0.0. 659 auto *V = SI->getOperand(0); 660 if (Value *ByteVal = isBytewiseValue(V, DL)) { 661 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 662 ByteVal)) { 663 BBI = I->getIterator(); // Don't invalidate iterator. 664 return true; 665 } 666 667 // If we have an aggregate, we try to promote it to memset regardless 668 // of opportunity for merging as it can expose optimization opportunities 669 // in subsequent passes. 670 auto *T = V->getType(); 671 if (T->isAggregateType()) { 672 uint64_t Size = DL.getTypeStoreSize(T); 673 const Align MA = 674 DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()), T); 675 IRBuilder<> Builder(SI); 676 auto *M = 677 Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, MA); 678 679 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 680 681 MD->removeInstruction(SI); 682 SI->eraseFromParent(); 683 NumMemSetInfer++; 684 685 // Make sure we do not invalidate the iterator. 686 BBI = M->getIterator(); 687 return true; 688 } 689 } 690 691 return false; 692 } 693 694 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 695 // See if there is another memset or store neighboring this memset which 696 // allows us to widen out the memset to do a single larger store. 697 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 698 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 699 MSI->getValue())) { 700 BBI = I->getIterator(); // Don't invalidate iterator. 701 return true; 702 } 703 return false; 704 } 705 706 /// Takes a memcpy and a call that it depends on, 707 /// and checks for the possibility of a call slot optimization by having 708 /// the call write its result directly into the destination of the memcpy. 709 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, 710 Value *cpySrc, uint64_t cpyLen, 711 unsigned cpyAlign, CallInst *C) { 712 // The general transformation to keep in mind is 713 // 714 // call @func(..., src, ...) 715 // memcpy(dest, src, ...) 716 // 717 // -> 718 // 719 // memcpy(dest, src, ...) 720 // call @func(..., dest, ...) 721 // 722 // Since moving the memcpy is technically awkward, we additionally check that 723 // src only holds uninitialized values at the moment of the call, meaning that 724 // the memcpy can be discarded rather than moved. 725 726 // Lifetime marks shouldn't be operated on. 727 if (Function *F = C->getCalledFunction()) 728 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 729 return false; 730 731 // Deliberately get the source and destination with bitcasts stripped away, 732 // because we'll need to do type comparisons based on the underlying type. 733 CallSite CS(C); 734 735 // Require that src be an alloca. This simplifies the reasoning considerably. 736 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 737 if (!srcAlloca) 738 return false; 739 740 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 741 if (!srcArraySize) 742 return false; 743 744 const DataLayout &DL = cpy->getModule()->getDataLayout(); 745 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 746 srcArraySize->getZExtValue(); 747 748 if (cpyLen < srcSize) 749 return false; 750 751 // Check that accessing the first srcSize bytes of dest will not cause a 752 // trap. Otherwise the transform is invalid since it might cause a trap 753 // to occur earlier than it otherwise would. 754 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 755 // The destination is an alloca. Check it is larger than srcSize. 756 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 757 if (!destArraySize) 758 return false; 759 760 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * 761 destArraySize->getZExtValue(); 762 763 if (destSize < srcSize) 764 return false; 765 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 766 // The store to dest may never happen if the call can throw. 767 if (C->mayThrow()) 768 return false; 769 770 if (A->getDereferenceableBytes() < srcSize) { 771 // If the destination is an sret parameter then only accesses that are 772 // outside of the returned struct type can trap. 773 if (!A->hasStructRetAttr()) 774 return false; 775 776 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 777 if (!StructTy->isSized()) { 778 // The call may never return and hence the copy-instruction may never 779 // be executed, and therefore it's not safe to say "the destination 780 // has at least <cpyLen> bytes, as implied by the copy-instruction", 781 return false; 782 } 783 784 uint64_t destSize = DL.getTypeAllocSize(StructTy); 785 if (destSize < srcSize) 786 return false; 787 } 788 } else { 789 return false; 790 } 791 792 // Check that dest points to memory that is at least as aligned as src. 793 unsigned srcAlign = srcAlloca->getAlignment(); 794 if (!srcAlign) 795 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); 796 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 797 // If dest is not aligned enough and we can't increase its alignment then 798 // bail out. 799 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 800 return false; 801 802 // Check that src is not accessed except via the call and the memcpy. This 803 // guarantees that it holds only undefined values when passed in (so the final 804 // memcpy can be dropped), that it is not read or written between the call and 805 // the memcpy, and that writing beyond the end of it is undefined. 806 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 807 srcAlloca->user_end()); 808 while (!srcUseList.empty()) { 809 User *U = srcUseList.pop_back_val(); 810 811 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 812 for (User *UU : U->users()) 813 srcUseList.push_back(UU); 814 continue; 815 } 816 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 817 if (!G->hasAllZeroIndices()) 818 return false; 819 820 for (User *UU : U->users()) 821 srcUseList.push_back(UU); 822 continue; 823 } 824 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 825 if (IT->isLifetimeStartOrEnd()) 826 continue; 827 828 if (U != C && U != cpy) 829 return false; 830 } 831 832 // Check that src isn't captured by the called function since the 833 // transformation can cause aliasing issues in that case. 834 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 835 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 836 return false; 837 838 // Since we're changing the parameter to the callsite, we need to make sure 839 // that what would be the new parameter dominates the callsite. 840 DominatorTree &DT = LookupDomTree(); 841 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 842 if (!DT.dominates(cpyDestInst, C)) 843 return false; 844 845 // In addition to knowing that the call does not access src in some 846 // unexpected manner, for example via a global, which we deduce from 847 // the use analysis, we also need to know that it does not sneakily 848 // access dest. We rely on AA to figure this out for us. 849 AliasAnalysis &AA = LookupAliasAnalysis(); 850 ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 851 // If necessary, perform additional analysis. 852 if (isModOrRefSet(MR)) 853 MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT); 854 if (isModOrRefSet(MR)) 855 return false; 856 857 // We can't create address space casts here because we don't know if they're 858 // safe for the target. 859 if (cpySrc->getType()->getPointerAddressSpace() != 860 cpyDest->getType()->getPointerAddressSpace()) 861 return false; 862 for (unsigned i = 0; i < CS.arg_size(); ++i) 863 if (CS.getArgument(i)->stripPointerCasts() == cpySrc && 864 cpySrc->getType()->getPointerAddressSpace() != 865 CS.getArgument(i)->getType()->getPointerAddressSpace()) 866 return false; 867 868 // All the checks have passed, so do the transformation. 869 bool changedArgument = false; 870 for (unsigned i = 0; i < CS.arg_size(); ++i) 871 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 872 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 873 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 874 cpyDest->getName(), C); 875 changedArgument = true; 876 if (CS.getArgument(i)->getType() == Dest->getType()) 877 CS.setArgument(i, Dest); 878 else 879 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 880 CS.getArgument(i)->getType(), Dest->getName(), C)); 881 } 882 883 if (!changedArgument) 884 return false; 885 886 // If the destination wasn't sufficiently aligned then increase its alignment. 887 if (!isDestSufficientlyAligned) { 888 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 889 cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign)); 890 } 891 892 // Drop any cached information about the call, because we may have changed 893 // its dependence information by changing its parameter. 894 MD->removeInstruction(C); 895 896 // Update AA metadata 897 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 898 // handled here, but combineMetadata doesn't support them yet 899 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 900 LLVMContext::MD_noalias, 901 LLVMContext::MD_invariant_group, 902 LLVMContext::MD_access_group}; 903 combineMetadata(C, cpy, KnownIDs, true); 904 905 // Remove the memcpy. 906 MD->removeInstruction(cpy); 907 ++NumMemCpyInstr; 908 909 return true; 910 } 911 912 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 913 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 914 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 915 MemCpyInst *MDep) { 916 // We can only transforms memcpy's where the dest of one is the source of the 917 // other. 918 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 919 return false; 920 921 // If dep instruction is reading from our current input, then it is a noop 922 // transfer and substituting the input won't change this instruction. Just 923 // ignore the input and let someone else zap MDep. This handles cases like: 924 // memcpy(a <- a) 925 // memcpy(b <- a) 926 if (M->getSource() == MDep->getSource()) 927 return false; 928 929 // Second, the length of the memcpy's must be the same, or the preceding one 930 // must be larger than the following one. 931 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 932 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 933 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 934 return false; 935 936 AliasAnalysis &AA = LookupAliasAnalysis(); 937 938 // Verify that the copied-from memory doesn't change in between the two 939 // transfers. For example, in: 940 // memcpy(a <- b) 941 // *b = 42; 942 // memcpy(c <- a) 943 // It would be invalid to transform the second memcpy into memcpy(c <- b). 944 // 945 // TODO: If the code between M and MDep is transparent to the destination "c", 946 // then we could still perform the xform by moving M up to the first memcpy. 947 // 948 // NOTE: This is conservative, it will stop on any read from the source loc, 949 // not just the defining memcpy. 950 MemDepResult SourceDep = 951 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 952 M->getIterator(), M->getParent()); 953 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 954 return false; 955 956 // If the dest of the second might alias the source of the first, then the 957 // source and dest might overlap. We still want to eliminate the intermediate 958 // value, but we have to generate a memmove instead of memcpy. 959 bool UseMemMove = false; 960 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 961 MemoryLocation::getForSource(MDep))) 962 UseMemMove = true; 963 964 // If all checks passed, then we can transform M. 965 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 966 << *MDep << '\n' << *M << '\n'); 967 968 // TODO: Is this worth it if we're creating a less aligned memcpy? For 969 // example we could be moving from movaps -> movq on x86. 970 IRBuilder<> Builder(M); 971 if (UseMemMove) 972 Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 973 MDep->getRawSource(), MDep->getSourceAlign(), 974 M->getLength(), M->isVolatile()); 975 else 976 Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 977 MDep->getRawSource(), MDep->getSourceAlign(), 978 M->getLength(), M->isVolatile()); 979 980 // Remove the instruction we're replacing. 981 MD->removeInstruction(M); 982 M->eraseFromParent(); 983 ++NumMemCpyInstr; 984 return true; 985 } 986 987 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 988 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 989 /// weren't copied over by \p MemCpy. 990 /// 991 /// In other words, transform: 992 /// \code 993 /// memset(dst, c, dst_size); 994 /// memcpy(dst, src, src_size); 995 /// \endcode 996 /// into: 997 /// \code 998 /// memcpy(dst, src, src_size); 999 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1000 /// \endcode 1001 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1002 MemSetInst *MemSet) { 1003 // We can only transform memset/memcpy with the same destination. 1004 if (MemSet->getDest() != MemCpy->getDest()) 1005 return false; 1006 1007 // Check that there are no other dependencies on the memset destination. 1008 MemDepResult DstDepInfo = 1009 MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, 1010 MemCpy->getIterator(), MemCpy->getParent()); 1011 if (DstDepInfo.getInst() != MemSet) 1012 return false; 1013 1014 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1015 Value *Dest = MemCpy->getRawDest(); 1016 Value *DestSize = MemSet->getLength(); 1017 Value *SrcSize = MemCpy->getLength(); 1018 1019 // By default, create an unaligned memset. 1020 unsigned Align = 1; 1021 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1022 // of the sum. 1023 const unsigned DestAlign = 1024 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1025 if (DestAlign > 1) 1026 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1027 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1028 1029 IRBuilder<> Builder(MemCpy); 1030 1031 // If the sizes have different types, zext the smaller one. 1032 if (DestSize->getType() != SrcSize->getType()) { 1033 if (DestSize->getType()->getIntegerBitWidth() > 1034 SrcSize->getType()->getIntegerBitWidth()) 1035 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1036 else 1037 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1038 } 1039 1040 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1041 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1042 Value *MemsetLen = Builder.CreateSelect( 1043 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1044 Builder.CreateMemSet( 1045 Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest, 1046 SrcSize), 1047 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1048 1049 MD->removeInstruction(MemSet); 1050 MemSet->eraseFromParent(); 1051 return true; 1052 } 1053 1054 /// Determine whether the instruction has undefined content for the given Size, 1055 /// either because it was freshly alloca'd or started its lifetime. 1056 static bool hasUndefContents(Instruction *I, ConstantInt *Size) { 1057 if (isa<AllocaInst>(I)) 1058 return true; 1059 1060 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1061 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1062 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1063 if (LTSize->getZExtValue() >= Size->getZExtValue()) 1064 return true; 1065 1066 return false; 1067 } 1068 1069 /// Transform memcpy to memset when its source was just memset. 1070 /// In other words, turn: 1071 /// \code 1072 /// memset(dst1, c, dst1_size); 1073 /// memcpy(dst2, dst1, dst2_size); 1074 /// \endcode 1075 /// into: 1076 /// \code 1077 /// memset(dst1, c, dst1_size); 1078 /// memset(dst2, c, dst2_size); 1079 /// \endcode 1080 /// When dst2_size <= dst1_size. 1081 /// 1082 /// The \p MemCpy must have a Constant length. 1083 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1084 MemSetInst *MemSet) { 1085 AliasAnalysis &AA = LookupAliasAnalysis(); 1086 1087 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1088 // memcpying from the same address. Otherwise it is hard to reason about. 1089 if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1090 return false; 1091 1092 // A known memset size is required. 1093 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); 1094 if (!MemSetSize) 1095 return false; 1096 1097 // Make sure the memcpy doesn't read any more than what the memset wrote. 1098 // Don't worry about sizes larger than i64. 1099 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); 1100 if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) { 1101 // If the memcpy is larger than the memset, but the memory was undef prior 1102 // to the memset, we can just ignore the tail. Technically we're only 1103 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1104 // easily represent this location, we use the full 0..CopySize range. 1105 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1106 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1107 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); 1108 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) 1109 CopySize = MemSetSize; 1110 else 1111 return false; 1112 } 1113 1114 IRBuilder<> Builder(MemCpy); 1115 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize, 1116 MaybeAlign(MemCpy->getDestAlignment())); 1117 return true; 1118 } 1119 1120 /// Perform simplification of memcpy's. If we have memcpy A 1121 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1122 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1123 /// circumstances). This allows later passes to remove the first memcpy 1124 /// altogether. 1125 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) { 1126 // We can only optimize non-volatile memcpy's. 1127 if (M->isVolatile()) return false; 1128 1129 // If the source and destination of the memcpy are the same, then zap it. 1130 if (M->getSource() == M->getDest()) { 1131 MD->removeInstruction(M); 1132 M->eraseFromParent(); 1133 return false; 1134 } 1135 1136 // If copying from a constant, try to turn the memcpy into a memset. 1137 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1138 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1139 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1140 M->getModule()->getDataLayout())) { 1141 IRBuilder<> Builder(M); 1142 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1143 MaybeAlign(M->getDestAlignment()), false); 1144 MD->removeInstruction(M); 1145 M->eraseFromParent(); 1146 ++NumCpyToSet; 1147 return true; 1148 } 1149 1150 MemDepResult DepInfo = MD->getDependency(M); 1151 1152 // Try to turn a partially redundant memset + memcpy into 1153 // memcpy + smaller memset. We don't need the memcpy size for this. 1154 if (DepInfo.isClobber()) 1155 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 1156 if (processMemSetMemCpyDependence(M, MDep)) 1157 return true; 1158 1159 // The optimizations after this point require the memcpy size. 1160 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 1161 if (!CopySize) return false; 1162 1163 // There are four possible optimizations we can do for memcpy: 1164 // a) memcpy-memcpy xform which exposes redundance for DSE. 1165 // b) call-memcpy xform for return slot optimization. 1166 // c) memcpy from freshly alloca'd space or space that has just started its 1167 // lifetime copies undefined data, and we can therefore eliminate the 1168 // memcpy in favor of the data that was already at the destination. 1169 // d) memcpy from a just-memset'd source can be turned into memset. 1170 if (DepInfo.isClobber()) { 1171 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 1172 // FIXME: Can we pass in either of dest/src alignment here instead 1173 // of conservatively taking the minimum? 1174 unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment()); 1175 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 1176 CopySize->getZExtValue(), Align, 1177 C)) { 1178 MD->removeInstruction(M); 1179 M->eraseFromParent(); 1180 return true; 1181 } 1182 } 1183 } 1184 1185 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1186 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1187 SrcLoc, true, M->getIterator(), M->getParent()); 1188 1189 if (SrcDepInfo.isClobber()) { 1190 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1191 return processMemCpyMemCpyDependence(M, MDep); 1192 } else if (SrcDepInfo.isDef()) { 1193 if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) { 1194 MD->removeInstruction(M); 1195 M->eraseFromParent(); 1196 ++NumMemCpyInstr; 1197 return true; 1198 } 1199 } 1200 1201 if (SrcDepInfo.isClobber()) 1202 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1203 if (performMemCpyToMemSetOptzn(M, MDep)) { 1204 MD->removeInstruction(M); 1205 M->eraseFromParent(); 1206 ++NumCpyToSet; 1207 return true; 1208 } 1209 1210 return false; 1211 } 1212 1213 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1214 /// not to alias. 1215 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1216 AliasAnalysis &AA = LookupAliasAnalysis(); 1217 1218 if (!TLI->has(LibFunc_memmove)) 1219 return false; 1220 1221 // See if the pointers alias. 1222 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 1223 MemoryLocation::getForSource(M))) 1224 return false; 1225 1226 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1227 << "\n"); 1228 1229 // If not, then we know we can transform this. 1230 Type *ArgTys[3] = { M->getRawDest()->getType(), 1231 M->getRawSource()->getType(), 1232 M->getLength()->getType() }; 1233 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1234 Intrinsic::memcpy, ArgTys)); 1235 1236 // MemDep may have over conservative information about this instruction, just 1237 // conservatively flush it from the cache. 1238 MD->removeInstruction(M); 1239 1240 ++NumMoveToCpy; 1241 return true; 1242 } 1243 1244 /// This is called on every byval argument in call sites. 1245 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) { 1246 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); 1247 // Find out what feeds this byval argument. 1248 Value *ByValArg = CS.getArgument(ArgNo); 1249 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1250 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1251 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1252 MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true, 1253 CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); 1254 if (!DepInfo.isClobber()) 1255 return false; 1256 1257 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1258 // a memcpy, see if we can byval from the source of the memcpy instead of the 1259 // result. 1260 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1261 if (!MDep || MDep->isVolatile() || 1262 ByValArg->stripPointerCasts() != MDep->getDest()) 1263 return false; 1264 1265 // The length of the memcpy must be larger or equal to the size of the byval. 1266 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1267 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1268 return false; 1269 1270 // Get the alignment of the byval. If the call doesn't specify the alignment, 1271 // then it is some target specific value that we can't know. 1272 unsigned ByValAlign = CS.getParamAlignment(ArgNo); 1273 if (ByValAlign == 0) return false; 1274 1275 // If it is greater than the memcpy, then we check to see if we can force the 1276 // source of the memcpy to the alignment we need. If we fail, we bail out. 1277 AssumptionCache &AC = LookupAssumptionCache(); 1278 DominatorTree &DT = LookupDomTree(); 1279 if (MDep->getSourceAlignment() < ByValAlign && 1280 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, 1281 CS.getInstruction(), &AC, &DT) < ByValAlign) 1282 return false; 1283 1284 // The address space of the memcpy source must match the byval argument 1285 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1286 ByValArg->getType()->getPointerAddressSpace()) 1287 return false; 1288 1289 // Verify that the copied-from memory doesn't change in between the memcpy and 1290 // the byval call. 1291 // memcpy(a <- b) 1292 // *b = 42; 1293 // foo(*a) 1294 // It would be invalid to transform the second memcpy into foo(*b). 1295 // 1296 // NOTE: This is conservative, it will stop on any read from the source loc, 1297 // not just the defining memcpy. 1298 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1299 MemoryLocation::getForSource(MDep), false, 1300 CS.getInstruction()->getIterator(), MDep->getParent()); 1301 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1302 return false; 1303 1304 Value *TmpCast = MDep->getSource(); 1305 if (MDep->getSource()->getType() != ByValArg->getType()) 1306 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1307 "tmpcast", CS.getInstruction()); 1308 1309 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1310 << " " << *MDep << "\n" 1311 << " " << *CS.getInstruction() << "\n"); 1312 1313 // Otherwise we're good! Update the byval argument. 1314 CS.setArgument(ArgNo, TmpCast); 1315 ++NumMemCpyInstr; 1316 return true; 1317 } 1318 1319 /// Executes one iteration of MemCpyOptPass. 1320 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1321 bool MadeChange = false; 1322 1323 DominatorTree &DT = LookupDomTree(); 1324 1325 // Walk all instruction in the function. 1326 for (BasicBlock &BB : F) { 1327 // Skip unreachable blocks. For example processStore assumes that an 1328 // instruction in a BB can't be dominated by a later instruction in the 1329 // same BB (which is a scenario that can happen for an unreachable BB that 1330 // has itself as a predecessor). 1331 if (!DT.isReachableFromEntry(&BB)) 1332 continue; 1333 1334 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1335 // Avoid invalidating the iterator. 1336 Instruction *I = &*BI++; 1337 1338 bool RepeatInstruction = false; 1339 1340 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1341 MadeChange |= processStore(SI, BI); 1342 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1343 RepeatInstruction = processMemSet(M, BI); 1344 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1345 RepeatInstruction = processMemCpy(M); 1346 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1347 RepeatInstruction = processMemMove(M); 1348 else if (auto CS = CallSite(I)) { 1349 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 1350 if (CS.isByValArgument(i)) 1351 MadeChange |= processByValArgument(CS, i); 1352 } 1353 1354 // Reprocess the instruction if desired. 1355 if (RepeatInstruction) { 1356 if (BI != BB.begin()) 1357 --BI; 1358 MadeChange = true; 1359 } 1360 } 1361 } 1362 1363 return MadeChange; 1364 } 1365 1366 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1367 auto &MD = AM.getResult<MemoryDependenceAnalysis>(F); 1368 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1369 1370 auto LookupAliasAnalysis = [&]() -> AliasAnalysis & { 1371 return AM.getResult<AAManager>(F); 1372 }; 1373 auto LookupAssumptionCache = [&]() -> AssumptionCache & { 1374 return AM.getResult<AssumptionAnalysis>(F); 1375 }; 1376 auto LookupDomTree = [&]() -> DominatorTree & { 1377 return AM.getResult<DominatorTreeAnalysis>(F); 1378 }; 1379 1380 bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis, 1381 LookupAssumptionCache, LookupDomTree); 1382 if (!MadeChange) 1383 return PreservedAnalyses::all(); 1384 1385 PreservedAnalyses PA; 1386 PA.preserveSet<CFGAnalyses>(); 1387 PA.preserve<GlobalsAA>(); 1388 PA.preserve<MemoryDependenceAnalysis>(); 1389 return PA; 1390 } 1391 1392 bool MemCpyOptPass::runImpl( 1393 Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, 1394 std::function<AliasAnalysis &()> LookupAliasAnalysis_, 1395 std::function<AssumptionCache &()> LookupAssumptionCache_, 1396 std::function<DominatorTree &()> LookupDomTree_) { 1397 bool MadeChange = false; 1398 MD = MD_; 1399 TLI = TLI_; 1400 LookupAliasAnalysis = std::move(LookupAliasAnalysis_); 1401 LookupAssumptionCache = std::move(LookupAssumptionCache_); 1402 LookupDomTree = std::move(LookupDomTree_); 1403 1404 // If we don't have at least memset and memcpy, there is little point of doing 1405 // anything here. These are required by a freestanding implementation, so if 1406 // even they are disabled, there is no point in trying hard. 1407 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) 1408 return false; 1409 1410 while (true) { 1411 if (!iterateOnFunction(F)) 1412 break; 1413 MadeChange = true; 1414 } 1415 1416 MD = nullptr; 1417 return MadeChange; 1418 } 1419 1420 /// This is the main transformation entry point for a function. 1421 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1422 if (skipFunction(F)) 1423 return false; 1424 1425 auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 1426 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1427 1428 auto LookupAliasAnalysis = [this]() -> AliasAnalysis & { 1429 return getAnalysis<AAResultsWrapperPass>().getAAResults(); 1430 }; 1431 auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & { 1432 return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1433 }; 1434 auto LookupDomTree = [this]() -> DominatorTree & { 1435 return getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1436 }; 1437 1438 return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache, 1439 LookupDomTree); 1440 } 1441