1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
16 #include "llvm/Transforms/Scalar.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/IRBuilder.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include <algorithm>
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "memcpyopt"
32 
33 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
34 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
35 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
36 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
37 
38 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
39                                   bool &VariableIdxFound,
40                                   const DataLayout &DL) {
41   // Skip over the first indices.
42   gep_type_iterator GTI = gep_type_begin(GEP);
43   for (unsigned i = 1; i != Idx; ++i, ++GTI)
44     /*skip along*/;
45 
46   // Compute the offset implied by the rest of the indices.
47   int64_t Offset = 0;
48   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
49     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
50     if (!OpC)
51       return VariableIdxFound = true;
52     if (OpC->isZero()) continue;  // No offset.
53 
54     // Handle struct indices, which add their field offset to the pointer.
55     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
56       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
57       continue;
58     }
59 
60     // Otherwise, we have a sequential type like an array or vector.  Multiply
61     // the index by the ElementSize.
62     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
63     Offset += Size*OpC->getSExtValue();
64   }
65 
66   return Offset;
67 }
68 
69 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
70 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
71 /// might be &A[40]. In this case offset would be -8.
72 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
73                             const DataLayout &DL) {
74   Ptr1 = Ptr1->stripPointerCasts();
75   Ptr2 = Ptr2->stripPointerCasts();
76 
77   // Handle the trivial case first.
78   if (Ptr1 == Ptr2) {
79     Offset = 0;
80     return true;
81   }
82 
83   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
84   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
85 
86   bool VariableIdxFound = false;
87 
88   // If one pointer is a GEP and the other isn't, then see if the GEP is a
89   // constant offset from the base, as in "P" and "gep P, 1".
90   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
91     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
92     return !VariableIdxFound;
93   }
94 
95   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
96     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
97     return !VariableIdxFound;
98   }
99 
100   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
101   // base.  After that base, they may have some number of common (and
102   // potentially variable) indices.  After that they handle some constant
103   // offset, which determines their offset from each other.  At this point, we
104   // handle no other case.
105   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
106     return false;
107 
108   // Skip any common indices and track the GEP types.
109   unsigned Idx = 1;
110   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
111     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
112       break;
113 
114   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
115   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
116   if (VariableIdxFound) return false;
117 
118   Offset = Offset2-Offset1;
119   return true;
120 }
121 
122 
123 /// Represents a range of memset'd bytes with the ByteVal value.
124 /// This allows us to analyze stores like:
125 ///   store 0 -> P+1
126 ///   store 0 -> P+0
127 ///   store 0 -> P+3
128 ///   store 0 -> P+2
129 /// which sometimes happens with stores to arrays of structs etc.  When we see
130 /// the first store, we make a range [1, 2).  The second store extends the range
131 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
132 /// two ranges into [0, 3) which is memset'able.
133 namespace {
134 struct MemsetRange {
135   // Start/End - A semi range that describes the span that this range covers.
136   // The range is closed at the start and open at the end: [Start, End).
137   int64_t Start, End;
138 
139   /// StartPtr - The getelementptr instruction that points to the start of the
140   /// range.
141   Value *StartPtr;
142 
143   /// Alignment - The known alignment of the first store.
144   unsigned Alignment;
145 
146   /// TheStores - The actual stores that make up this range.
147   SmallVector<Instruction*, 16> TheStores;
148 
149   bool isProfitableToUseMemset(const DataLayout &DL) const;
150 };
151 } // end anon namespace
152 
153 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
154   // If we found more than 4 stores to merge or 16 bytes, use memset.
155   if (TheStores.size() >= 4 || End-Start >= 16) return true;
156 
157   // If there is nothing to merge, don't do anything.
158   if (TheStores.size() < 2) return false;
159 
160   // If any of the stores are a memset, then it is always good to extend the
161   // memset.
162   for (Instruction *SI : TheStores)
163     if (!isa<StoreInst>(SI))
164       return true;
165 
166   // Assume that the code generator is capable of merging pairs of stores
167   // together if it wants to.
168   if (TheStores.size() == 2) return false;
169 
170   // If we have fewer than 8 stores, it can still be worthwhile to do this.
171   // For example, merging 4 i8 stores into an i32 store is useful almost always.
172   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
173   // memset will be split into 2 32-bit stores anyway) and doing so can
174   // pessimize the llvm optimizer.
175   //
176   // Since we don't have perfect knowledge here, make some assumptions: assume
177   // the maximum GPR width is the same size as the largest legal integer
178   // size. If so, check to see whether we will end up actually reducing the
179   // number of stores used.
180   unsigned Bytes = unsigned(End-Start);
181   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
182   if (MaxIntSize == 0)
183     MaxIntSize = 1;
184   unsigned NumPointerStores = Bytes / MaxIntSize;
185 
186   // Assume the remaining bytes if any are done a byte at a time.
187   unsigned NumByteStores = Bytes % MaxIntSize;
188 
189   // If we will reduce the # stores (according to this heuristic), do the
190   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
191   // etc.
192   return TheStores.size() > NumPointerStores+NumByteStores;
193 }
194 
195 
196 namespace {
197 class MemsetRanges {
198   /// A sorted list of the memset ranges.
199   SmallVector<MemsetRange, 8> Ranges;
200   typedef SmallVectorImpl<MemsetRange>::iterator range_iterator;
201   const DataLayout &DL;
202 public:
203   MemsetRanges(const DataLayout &DL) : DL(DL) {}
204 
205   typedef SmallVectorImpl<MemsetRange>::const_iterator const_iterator;
206   const_iterator begin() const { return Ranges.begin(); }
207   const_iterator end() const { return Ranges.end(); }
208   bool empty() const { return Ranges.empty(); }
209 
210   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
211     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
212       addStore(OffsetFromFirst, SI);
213     else
214       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
215   }
216 
217   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
218     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
219 
220     addRange(OffsetFromFirst, StoreSize,
221              SI->getPointerOperand(), SI->getAlignment(), SI);
222   }
223 
224   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
225     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
226     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
227   }
228 
229   void addRange(int64_t Start, int64_t Size, Value *Ptr,
230                 unsigned Alignment, Instruction *Inst);
231 
232 };
233 
234 } // end anon namespace
235 
236 
237 /// Add a new store to the MemsetRanges data structure.  This adds a
238 /// new range for the specified store at the specified offset, merging into
239 /// existing ranges as appropriate.
240 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
241                             unsigned Alignment, Instruction *Inst) {
242   int64_t End = Start+Size;
243 
244   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
245     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
246 
247   // We now know that I == E, in which case we didn't find anything to merge
248   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
249   // to insert a new range.  Handle this now.
250   if (I == Ranges.end() || End < I->Start) {
251     MemsetRange &R = *Ranges.insert(I, MemsetRange());
252     R.Start        = Start;
253     R.End          = End;
254     R.StartPtr     = Ptr;
255     R.Alignment    = Alignment;
256     R.TheStores.push_back(Inst);
257     return;
258   }
259 
260   // This store overlaps with I, add it.
261   I->TheStores.push_back(Inst);
262 
263   // At this point, we may have an interval that completely contains our store.
264   // If so, just add it to the interval and return.
265   if (I->Start <= Start && I->End >= End)
266     return;
267 
268   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
269   // but is not entirely contained within the range.
270 
271   // See if the range extends the start of the range.  In this case, it couldn't
272   // possibly cause it to join the prior range, because otherwise we would have
273   // stopped on *it*.
274   if (Start < I->Start) {
275     I->Start = Start;
276     I->StartPtr = Ptr;
277     I->Alignment = Alignment;
278   }
279 
280   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
281   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
282   // End.
283   if (End > I->End) {
284     I->End = End;
285     range_iterator NextI = I;
286     while (++NextI != Ranges.end() && End >= NextI->Start) {
287       // Merge the range in.
288       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
289       if (NextI->End > I->End)
290         I->End = NextI->End;
291       Ranges.erase(NextI);
292       NextI = I;
293     }
294   }
295 }
296 
297 //===----------------------------------------------------------------------===//
298 //                         MemCpyOptLegacyPass Pass
299 //===----------------------------------------------------------------------===//
300 
301 namespace {
302   class MemCpyOptLegacyPass : public FunctionPass {
303     MemCpyOptPass Impl;
304   public:
305     static char ID; // Pass identification, replacement for typeid
306     MemCpyOptLegacyPass() : FunctionPass(ID) {
307       initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
308     }
309 
310     bool runOnFunction(Function &F) override;
311 
312   private:
313     // This transformation requires dominator postdominator info
314     void getAnalysisUsage(AnalysisUsage &AU) const override {
315       AU.setPreservesCFG();
316       AU.addRequired<AssumptionCacheTracker>();
317       AU.addRequired<DominatorTreeWrapperPass>();
318       AU.addRequired<MemoryDependenceWrapperPass>();
319       AU.addRequired<AAResultsWrapperPass>();
320       AU.addRequired<TargetLibraryInfoWrapperPass>();
321       AU.addPreserved<GlobalsAAWrapperPass>();
322       AU.addPreserved<MemoryDependenceWrapperPass>();
323     }
324 
325     // Helper functions
326     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
327     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
328     bool processMemCpy(MemCpyInst *M);
329     bool processMemMove(MemMoveInst *M);
330     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
331                               uint64_t cpyLen, unsigned cpyAlign, CallInst *C);
332     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep);
333     bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep);
334     bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep);
335     bool processByValArgument(CallSite CS, unsigned ArgNo);
336     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
337                                       Value *ByteVal);
338 
339     bool iterateOnFunction(Function &F);
340   };
341 
342   char MemCpyOptLegacyPass::ID = 0;
343 }
344 
345 /// The public interface to this file...
346 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
347 
348 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
349                       false, false)
350 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
351 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
352 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
353 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
354 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
355 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
356 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
357                     false, false)
358 
359 /// When scanning forward over instructions, we look for some other patterns to
360 /// fold away. In particular, this looks for stores to neighboring locations of
361 /// memory. If it sees enough consecutive ones, it attempts to merge them
362 /// together into a memcpy/memset.
363 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
364                                                  Value *StartPtr,
365                                                  Value *ByteVal) {
366   const DataLayout &DL = StartInst->getModule()->getDataLayout();
367 
368   // Okay, so we now have a single store that can be splatable.  Scan to find
369   // all subsequent stores of the same value to offset from the same pointer.
370   // Join these together into ranges, so we can decide whether contiguous blocks
371   // are stored.
372   MemsetRanges Ranges(DL);
373 
374   BasicBlock::iterator BI(StartInst);
375   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
376     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
377       // If the instruction is readnone, ignore it, otherwise bail out.  We
378       // don't even allow readonly here because we don't want something like:
379       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
380       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
381         break;
382       continue;
383     }
384 
385     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
386       // If this is a store, see if we can merge it in.
387       if (!NextStore->isSimple()) break;
388 
389       // Check to see if this stored value is of the same byte-splattable value.
390       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
391         break;
392 
393       // Check to see if this store is to a constant offset from the start ptr.
394       int64_t Offset;
395       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
396                            DL))
397         break;
398 
399       Ranges.addStore(Offset, NextStore);
400     } else {
401       MemSetInst *MSI = cast<MemSetInst>(BI);
402 
403       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
404           !isa<ConstantInt>(MSI->getLength()))
405         break;
406 
407       // Check to see if this store is to a constant offset from the start ptr.
408       int64_t Offset;
409       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
410         break;
411 
412       Ranges.addMemSet(Offset, MSI);
413     }
414   }
415 
416   // If we have no ranges, then we just had a single store with nothing that
417   // could be merged in.  This is a very common case of course.
418   if (Ranges.empty())
419     return nullptr;
420 
421   // If we had at least one store that could be merged in, add the starting
422   // store as well.  We try to avoid this unless there is at least something
423   // interesting as a small compile-time optimization.
424   Ranges.addInst(0, StartInst);
425 
426   // If we create any memsets, we put it right before the first instruction that
427   // isn't part of the memset block.  This ensure that the memset is dominated
428   // by any addressing instruction needed by the start of the block.
429   IRBuilder<> Builder(&*BI);
430 
431   // Now that we have full information about ranges, loop over the ranges and
432   // emit memset's for anything big enough to be worthwhile.
433   Instruction *AMemSet = nullptr;
434   for (const MemsetRange &Range : Ranges) {
435 
436     if (Range.TheStores.size() == 1) continue;
437 
438     // If it is profitable to lower this range to memset, do so now.
439     if (!Range.isProfitableToUseMemset(DL))
440       continue;
441 
442     // Otherwise, we do want to transform this!  Create a new memset.
443     // Get the starting pointer of the block.
444     StartPtr = Range.StartPtr;
445 
446     // Determine alignment
447     unsigned Alignment = Range.Alignment;
448     if (Alignment == 0) {
449       Type *EltType =
450         cast<PointerType>(StartPtr->getType())->getElementType();
451       Alignment = DL.getABITypeAlignment(EltType);
452     }
453 
454     AMemSet =
455       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
456 
457     DEBUG(dbgs() << "Replace stores:\n";
458           for (Instruction *SI : Range.TheStores)
459             dbgs() << *SI << '\n';
460           dbgs() << "With: " << *AMemSet << '\n');
461 
462     if (!Range.TheStores.empty())
463       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
464 
465     // Zap all the stores.
466     for (Instruction *SI : Range.TheStores) {
467       MD->removeInstruction(SI);
468       SI->eraseFromParent();
469     }
470     ++NumMemSetInfer;
471   }
472 
473   return AMemSet;
474 }
475 
476 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
477                                      const LoadInst *LI) {
478   unsigned StoreAlign = SI->getAlignment();
479   if (!StoreAlign)
480     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
481   unsigned LoadAlign = LI->getAlignment();
482   if (!LoadAlign)
483     LoadAlign = DL.getABITypeAlignment(LI->getType());
484 
485   return std::min(StoreAlign, LoadAlign);
486 }
487 
488 // This method try to lift a store instruction before position P.
489 // It will lift the store and its argument + that anything that
490 // may alias with these.
491 // The method returns true if it was successful.
492 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P) {
493   // If the store alias this position, early bail out.
494   MemoryLocation StoreLoc = MemoryLocation::get(SI);
495   if (AA.getModRefInfo(P, StoreLoc) != MRI_NoModRef)
496     return false;
497 
498   // Keep track of the arguments of all instruction we plan to lift
499   // so we can make sure to lift them as well if apropriate.
500   DenseSet<Instruction*> Args;
501   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
502     if (Ptr->getParent() == SI->getParent())
503       Args.insert(Ptr);
504 
505   // Instruction to lift before P.
506   SmallVector<Instruction*, 8> ToLift;
507 
508   // Memory locations of lifted instructions.
509   SmallVector<MemoryLocation, 8> MemLocs;
510   MemLocs.push_back(StoreLoc);
511 
512   // Lifted callsites.
513   SmallVector<ImmutableCallSite, 8> CallSites;
514 
515   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
516     auto *C = &*I;
517 
518     bool MayAlias = AA.getModRefInfo(C) != MRI_NoModRef;
519 
520     bool NeedLift = false;
521     if (Args.erase(C))
522       NeedLift = true;
523     else if (MayAlias) {
524       NeedLift = any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
525         return AA.getModRefInfo(C, ML);
526       });
527 
528       if (!NeedLift)
529         NeedLift = any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) {
530           return AA.getModRefInfo(C, CS);
531         });
532     }
533 
534     if (!NeedLift)
535       continue;
536 
537     if (MayAlias) {
538       if (auto CS = ImmutableCallSite(C)) {
539         // If we can't lift this before P, it's game over.
540         if (AA.getModRefInfo(P, CS) != MRI_NoModRef)
541           return false;
542 
543         CallSites.push_back(CS);
544       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
545         // If we can't lift this before P, it's game over.
546         auto ML = MemoryLocation::get(C);
547         if (AA.getModRefInfo(P, ML) != MRI_NoModRef)
548           return false;
549 
550         MemLocs.push_back(ML);
551       } else
552         // We don't know how to lift this instruction.
553         return false;
554     }
555 
556     ToLift.push_back(C);
557     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
558       if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
559         if (A->getParent() == SI->getParent())
560           Args.insert(A);
561   }
562 
563   // We made it, we need to lift
564   for (auto *I : reverse(ToLift)) {
565     DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
566     I->moveBefore(P);
567   }
568 
569   return true;
570 }
571 
572 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
573   if (!SI->isSimple()) return false;
574 
575   // Avoid merging nontemporal stores since the resulting
576   // memcpy/memset would not be able to preserve the nontemporal hint.
577   // In theory we could teach how to propagate the !nontemporal metadata to
578   // memset calls. However, that change would force the backend to
579   // conservatively expand !nontemporal memset calls back to sequences of
580   // store instructions (effectively undoing the merging).
581   if (SI->getMetadata(LLVMContext::MD_nontemporal))
582     return false;
583 
584   const DataLayout &DL = SI->getModule()->getDataLayout();
585 
586   // Load to store forwarding can be interpreted as memcpy.
587   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
588     if (LI->isSimple() && LI->hasOneUse() &&
589         LI->getParent() == SI->getParent()) {
590 
591       auto *T = LI->getType();
592       if (T->isAggregateType()) {
593         AliasAnalysis &AA = LookupAliasAnalysis();
594         MemoryLocation LoadLoc = MemoryLocation::get(LI);
595 
596         // We use alias analysis to check if an instruction may store to
597         // the memory we load from in between the load and the store. If
598         // such an instruction is found, we try to promote there instead
599         // of at the store position.
600         Instruction *P = SI;
601         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
602           if (AA.getModRefInfo(&I, LoadLoc) & MRI_Mod) {
603             P = &I;
604             break;
605           }
606         }
607 
608         // We found an instruction that may write to the loaded memory.
609         // We can try to promote at this position instead of the store
610         // position if nothing alias the store memory after this and the store
611         // destination is not in the range.
612         if (P && P != SI) {
613           if (!moveUp(AA, SI, P))
614             P = nullptr;
615         }
616 
617         // If a valid insertion position is found, then we can promote
618         // the load/store pair to a memcpy.
619         if (P) {
620           // If we load from memory that may alias the memory we store to,
621           // memmove must be used to preserve semantic. If not, memcpy can
622           // be used.
623           bool UseMemMove = false;
624           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
625             UseMemMove = true;
626 
627           unsigned Align = findCommonAlignment(DL, SI, LI);
628           uint64_t Size = DL.getTypeStoreSize(T);
629 
630           IRBuilder<> Builder(P);
631           Instruction *M;
632           if (UseMemMove)
633             M = Builder.CreateMemMove(SI->getPointerOperand(),
634                                       LI->getPointerOperand(), Size,
635                                       Align, SI->isVolatile());
636           else
637             M = Builder.CreateMemCpy(SI->getPointerOperand(),
638                                      LI->getPointerOperand(), Size,
639                                      Align, SI->isVolatile());
640 
641           DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI
642                        << " => " << *M << "\n");
643 
644           MD->removeInstruction(SI);
645           SI->eraseFromParent();
646           MD->removeInstruction(LI);
647           LI->eraseFromParent();
648           ++NumMemCpyInstr;
649 
650           // Make sure we do not invalidate the iterator.
651           BBI = M->getIterator();
652           return true;
653         }
654       }
655 
656       // Detect cases where we're performing call slot forwarding, but
657       // happen to be using a load-store pair to implement it, rather than
658       // a memcpy.
659       MemDepResult ldep = MD->getDependency(LI);
660       CallInst *C = nullptr;
661       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
662         C = dyn_cast<CallInst>(ldep.getInst());
663 
664       if (C) {
665         // Check that nothing touches the dest of the "copy" between
666         // the call and the store.
667         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
668         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
669         AliasAnalysis &AA = LookupAliasAnalysis();
670         MemoryLocation StoreLoc = MemoryLocation::get(SI);
671         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
672              I != E; --I) {
673           if (AA.getModRefInfo(&*I, StoreLoc) != MRI_NoModRef) {
674             C = nullptr;
675             break;
676           }
677           // The store to dest may never happen if an exception can be thrown
678           // between the load and the store.
679           if (I->mayThrow() && !CpyDestIsLocal) {
680             C = nullptr;
681             break;
682           }
683         }
684       }
685 
686       if (C) {
687         bool changed = performCallSlotOptzn(
688             LI, SI->getPointerOperand()->stripPointerCasts(),
689             LI->getPointerOperand()->stripPointerCasts(),
690             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
691             findCommonAlignment(DL, SI, LI), C);
692         if (changed) {
693           MD->removeInstruction(SI);
694           SI->eraseFromParent();
695           MD->removeInstruction(LI);
696           LI->eraseFromParent();
697           ++NumMemCpyInstr;
698           return true;
699         }
700       }
701     }
702   }
703 
704   // There are two cases that are interesting for this code to handle: memcpy
705   // and memset.  Right now we only handle memset.
706 
707   // Ensure that the value being stored is something that can be memset'able a
708   // byte at a time like "0" or "-1" or any width, as well as things like
709   // 0xA0A0A0A0 and 0.0.
710   auto *V = SI->getOperand(0);
711   if (Value *ByteVal = isBytewiseValue(V)) {
712     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
713                                               ByteVal)) {
714       BBI = I->getIterator(); // Don't invalidate iterator.
715       return true;
716     }
717 
718     // If we have an aggregate, we try to promote it to memset regardless
719     // of opportunity for merging as it can expose optimization opportunities
720     // in subsequent passes.
721     auto *T = V->getType();
722     if (T->isAggregateType()) {
723       uint64_t Size = DL.getTypeStoreSize(T);
724       unsigned Align = SI->getAlignment();
725       if (!Align)
726         Align = DL.getABITypeAlignment(T);
727       IRBuilder<> Builder(SI);
728       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
729                                      Size, Align, SI->isVolatile());
730 
731       DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
732 
733       MD->removeInstruction(SI);
734       SI->eraseFromParent();
735       NumMemSetInfer++;
736 
737       // Make sure we do not invalidate the iterator.
738       BBI = M->getIterator();
739       return true;
740     }
741   }
742 
743   return false;
744 }
745 
746 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
747   // See if there is another memset or store neighboring this memset which
748   // allows us to widen out the memset to do a single larger store.
749   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
750     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
751                                               MSI->getValue())) {
752       BBI = I->getIterator(); // Don't invalidate iterator.
753       return true;
754     }
755   return false;
756 }
757 
758 
759 /// Takes a memcpy and a call that it depends on,
760 /// and checks for the possibility of a call slot optimization by having
761 /// the call write its result directly into the destination of the memcpy.
762 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
763                                          Value *cpySrc, uint64_t cpyLen,
764                                          unsigned cpyAlign, CallInst *C) {
765   // The general transformation to keep in mind is
766   //
767   //   call @func(..., src, ...)
768   //   memcpy(dest, src, ...)
769   //
770   // ->
771   //
772   //   memcpy(dest, src, ...)
773   //   call @func(..., dest, ...)
774   //
775   // Since moving the memcpy is technically awkward, we additionally check that
776   // src only holds uninitialized values at the moment of the call, meaning that
777   // the memcpy can be discarded rather than moved.
778 
779   // Lifetime marks shouldn't be operated on.
780   if (Function *F = C->getCalledFunction())
781     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
782       return false;
783 
784   // Deliberately get the source and destination with bitcasts stripped away,
785   // because we'll need to do type comparisons based on the underlying type.
786   CallSite CS(C);
787 
788   // Require that src be an alloca.  This simplifies the reasoning considerably.
789   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
790   if (!srcAlloca)
791     return false;
792 
793   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
794   if (!srcArraySize)
795     return false;
796 
797   const DataLayout &DL = cpy->getModule()->getDataLayout();
798   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
799                      srcArraySize->getZExtValue();
800 
801   if (cpyLen < srcSize)
802     return false;
803 
804   // Check that accessing the first srcSize bytes of dest will not cause a
805   // trap.  Otherwise the transform is invalid since it might cause a trap
806   // to occur earlier than it otherwise would.
807   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
808     // The destination is an alloca.  Check it is larger than srcSize.
809     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
810     if (!destArraySize)
811       return false;
812 
813     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
814                         destArraySize->getZExtValue();
815 
816     if (destSize < srcSize)
817       return false;
818   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
819     // The store to dest may never happen if the call can throw.
820     if (C->mayThrow())
821       return false;
822 
823     if (A->getDereferenceableBytes() < srcSize) {
824       // If the destination is an sret parameter then only accesses that are
825       // outside of the returned struct type can trap.
826       if (!A->hasStructRetAttr())
827         return false;
828 
829       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
830       if (!StructTy->isSized()) {
831         // The call may never return and hence the copy-instruction may never
832         // be executed, and therefore it's not safe to say "the destination
833         // has at least <cpyLen> bytes, as implied by the copy-instruction",
834         return false;
835       }
836 
837       uint64_t destSize = DL.getTypeAllocSize(StructTy);
838       if (destSize < srcSize)
839         return false;
840     }
841   } else {
842     return false;
843   }
844 
845   // Check that dest points to memory that is at least as aligned as src.
846   unsigned srcAlign = srcAlloca->getAlignment();
847   if (!srcAlign)
848     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
849   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
850   // If dest is not aligned enough and we can't increase its alignment then
851   // bail out.
852   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
853     return false;
854 
855   // Check that src is not accessed except via the call and the memcpy.  This
856   // guarantees that it holds only undefined values when passed in (so the final
857   // memcpy can be dropped), that it is not read or written between the call and
858   // the memcpy, and that writing beyond the end of it is undefined.
859   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
860                                    srcAlloca->user_end());
861   while (!srcUseList.empty()) {
862     User *U = srcUseList.pop_back_val();
863 
864     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
865       for (User *UU : U->users())
866         srcUseList.push_back(UU);
867       continue;
868     }
869     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
870       if (!G->hasAllZeroIndices())
871         return false;
872 
873       for (User *UU : U->users())
874         srcUseList.push_back(UU);
875       continue;
876     }
877     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
878       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
879           IT->getIntrinsicID() == Intrinsic::lifetime_end)
880         continue;
881 
882     if (U != C && U != cpy)
883       return false;
884   }
885 
886   // Check that src isn't captured by the called function since the
887   // transformation can cause aliasing issues in that case.
888   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
889     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
890       return false;
891 
892   // Since we're changing the parameter to the callsite, we need to make sure
893   // that what would be the new parameter dominates the callsite.
894   DominatorTree &DT = LookupDomTree();
895   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
896     if (!DT.dominates(cpyDestInst, C))
897       return false;
898 
899   // In addition to knowing that the call does not access src in some
900   // unexpected manner, for example via a global, which we deduce from
901   // the use analysis, we also need to know that it does not sneakily
902   // access dest.  We rely on AA to figure this out for us.
903   AliasAnalysis &AA = LookupAliasAnalysis();
904   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
905   // If necessary, perform additional analysis.
906   if (MR != MRI_NoModRef)
907     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
908   if (MR != MRI_NoModRef)
909     return false;
910 
911   // All the checks have passed, so do the transformation.
912   bool changedArgument = false;
913   for (unsigned i = 0; i < CS.arg_size(); ++i)
914     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
915       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
916         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
917                                       cpyDest->getName(), C);
918       changedArgument = true;
919       if (CS.getArgument(i)->getType() == Dest->getType())
920         CS.setArgument(i, Dest);
921       else
922         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
923                           CS.getArgument(i)->getType(), Dest->getName(), C));
924     }
925 
926   if (!changedArgument)
927     return false;
928 
929   // If the destination wasn't sufficiently aligned then increase its alignment.
930   if (!isDestSufficientlyAligned) {
931     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
932     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
933   }
934 
935   // Drop any cached information about the call, because we may have changed
936   // its dependence information by changing its parameter.
937   MD->removeInstruction(C);
938 
939   // Update AA metadata
940   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
941   // handled here, but combineMetadata doesn't support them yet
942   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
943                          LLVMContext::MD_noalias,
944                          LLVMContext::MD_invariant_group};
945   combineMetadata(C, cpy, KnownIDs);
946 
947   // Remove the memcpy.
948   MD->removeInstruction(cpy);
949   ++NumMemCpyInstr;
950 
951   return true;
952 }
953 
954 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
955 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
956 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
957                                                   MemCpyInst *MDep) {
958   // We can only transforms memcpy's where the dest of one is the source of the
959   // other.
960   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
961     return false;
962 
963   // If dep instruction is reading from our current input, then it is a noop
964   // transfer and substituting the input won't change this instruction.  Just
965   // ignore the input and let someone else zap MDep.  This handles cases like:
966   //    memcpy(a <- a)
967   //    memcpy(b <- a)
968   if (M->getSource() == MDep->getSource())
969     return false;
970 
971   // Second, the length of the memcpy's must be the same, or the preceding one
972   // must be larger than the following one.
973   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
974   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
975   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
976     return false;
977 
978   AliasAnalysis &AA = LookupAliasAnalysis();
979 
980   // Verify that the copied-from memory doesn't change in between the two
981   // transfers.  For example, in:
982   //    memcpy(a <- b)
983   //    *b = 42;
984   //    memcpy(c <- a)
985   // It would be invalid to transform the second memcpy into memcpy(c <- b).
986   //
987   // TODO: If the code between M and MDep is transparent to the destination "c",
988   // then we could still perform the xform by moving M up to the first memcpy.
989   //
990   // NOTE: This is conservative, it will stop on any read from the source loc,
991   // not just the defining memcpy.
992   MemDepResult SourceDep =
993       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
994                                    M->getIterator(), M->getParent());
995   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
996     return false;
997 
998   // If the dest of the second might alias the source of the first, then the
999   // source and dest might overlap.  We still want to eliminate the intermediate
1000   // value, but we have to generate a memmove instead of memcpy.
1001   bool UseMemMove = false;
1002   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1003                     MemoryLocation::getForSource(MDep)))
1004     UseMemMove = true;
1005 
1006   // If all checks passed, then we can transform M.
1007 
1008   // Make sure to use the lesser of the alignment of the source and the dest
1009   // since we're changing where we're reading from, but don't want to increase
1010   // the alignment past what can be read from or written to.
1011   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1012   // example we could be moving from movaps -> movq on x86.
1013   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
1014 
1015   IRBuilder<> Builder(M);
1016   if (UseMemMove)
1017     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
1018                           Align, M->isVolatile());
1019   else
1020     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
1021                          Align, M->isVolatile());
1022 
1023   // Remove the instruction we're replacing.
1024   MD->removeInstruction(M);
1025   M->eraseFromParent();
1026   ++NumMemCpyInstr;
1027   return true;
1028 }
1029 
1030 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1031 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1032 /// weren't copied over by \p MemCpy.
1033 ///
1034 /// In other words, transform:
1035 /// \code
1036 ///   memset(dst, c, dst_size);
1037 ///   memcpy(dst, src, src_size);
1038 /// \endcode
1039 /// into:
1040 /// \code
1041 ///   memcpy(dst, src, src_size);
1042 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1043 /// \endcode
1044 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1045                                                   MemSetInst *MemSet) {
1046   // We can only transform memset/memcpy with the same destination.
1047   if (MemSet->getDest() != MemCpy->getDest())
1048     return false;
1049 
1050   // Check that there are no other dependencies on the memset destination.
1051   MemDepResult DstDepInfo =
1052       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1053                                    MemCpy->getIterator(), MemCpy->getParent());
1054   if (DstDepInfo.getInst() != MemSet)
1055     return false;
1056 
1057   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1058   Value *Dest = MemCpy->getRawDest();
1059   Value *DestSize = MemSet->getLength();
1060   Value *SrcSize = MemCpy->getLength();
1061 
1062   // By default, create an unaligned memset.
1063   unsigned Align = 1;
1064   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1065   // of the sum.
1066   const unsigned DestAlign =
1067       std::max(MemSet->getAlignment(), MemCpy->getAlignment());
1068   if (DestAlign > 1)
1069     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1070       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1071 
1072   IRBuilder<> Builder(MemCpy);
1073 
1074   // If the sizes have different types, zext the smaller one.
1075   if (DestSize->getType() != SrcSize->getType()) {
1076     if (DestSize->getType()->getIntegerBitWidth() >
1077         SrcSize->getType()->getIntegerBitWidth())
1078       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1079     else
1080       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1081   }
1082 
1083   Value *MemsetLen =
1084       Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize),
1085                            ConstantInt::getNullValue(DestSize->getType()),
1086                            Builder.CreateSub(DestSize, SrcSize));
1087   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
1088                        MemsetLen, Align);
1089 
1090   MD->removeInstruction(MemSet);
1091   MemSet->eraseFromParent();
1092   return true;
1093 }
1094 
1095 /// Transform memcpy to memset when its source was just memset.
1096 /// In other words, turn:
1097 /// \code
1098 ///   memset(dst1, c, dst1_size);
1099 ///   memcpy(dst2, dst1, dst2_size);
1100 /// \endcode
1101 /// into:
1102 /// \code
1103 ///   memset(dst1, c, dst1_size);
1104 ///   memset(dst2, c, dst2_size);
1105 /// \endcode
1106 /// When dst2_size <= dst1_size.
1107 ///
1108 /// The \p MemCpy must have a Constant length.
1109 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1110                                                MemSetInst *MemSet) {
1111   AliasAnalysis &AA = LookupAliasAnalysis();
1112 
1113   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1114   // memcpying from the same address. Otherwise it is hard to reason about.
1115   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1116     return false;
1117 
1118   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1119   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1120   // Make sure the memcpy doesn't read any more than what the memset wrote.
1121   // Don't worry about sizes larger than i64.
1122   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
1123     return false;
1124 
1125   IRBuilder<> Builder(MemCpy);
1126   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1127                        CopySize, MemCpy->getAlignment());
1128   return true;
1129 }
1130 
1131 /// Perform simplification of memcpy's.  If we have memcpy A
1132 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1133 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1134 /// circumstances). This allows later passes to remove the first memcpy
1135 /// altogether.
1136 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1137   // We can only optimize non-volatile memcpy's.
1138   if (M->isVolatile()) return false;
1139 
1140   // If the source and destination of the memcpy are the same, then zap it.
1141   if (M->getSource() == M->getDest()) {
1142     MD->removeInstruction(M);
1143     M->eraseFromParent();
1144     return false;
1145   }
1146 
1147   // If copying from a constant, try to turn the memcpy into a memset.
1148   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1149     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1150       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
1151         IRBuilder<> Builder(M);
1152         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1153                              M->getAlignment(), false);
1154         MD->removeInstruction(M);
1155         M->eraseFromParent();
1156         ++NumCpyToSet;
1157         return true;
1158       }
1159 
1160   MemDepResult DepInfo = MD->getDependency(M);
1161 
1162   // Try to turn a partially redundant memset + memcpy into
1163   // memcpy + smaller memset.  We don't need the memcpy size for this.
1164   if (DepInfo.isClobber())
1165     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1166       if (processMemSetMemCpyDependence(M, MDep))
1167         return true;
1168 
1169   // The optimizations after this point require the memcpy size.
1170   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1171   if (!CopySize) return false;
1172 
1173   // There are four possible optimizations we can do for memcpy:
1174   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1175   //   b) call-memcpy xform for return slot optimization.
1176   //   c) memcpy from freshly alloca'd space or space that has just started its
1177   //      lifetime copies undefined data, and we can therefore eliminate the
1178   //      memcpy in favor of the data that was already at the destination.
1179   //   d) memcpy from a just-memset'd source can be turned into memset.
1180   if (DepInfo.isClobber()) {
1181     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1182       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1183                                CopySize->getZExtValue(), M->getAlignment(),
1184                                C)) {
1185         MD->removeInstruction(M);
1186         M->eraseFromParent();
1187         return true;
1188       }
1189     }
1190   }
1191 
1192   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1193   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1194       SrcLoc, true, M->getIterator(), M->getParent());
1195 
1196   if (SrcDepInfo.isClobber()) {
1197     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1198       return processMemCpyMemCpyDependence(M, MDep);
1199   } else if (SrcDepInfo.isDef()) {
1200     Instruction *I = SrcDepInfo.getInst();
1201     bool hasUndefContents = false;
1202 
1203     if (isa<AllocaInst>(I)) {
1204       hasUndefContents = true;
1205     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1206       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1207         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1208           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
1209             hasUndefContents = true;
1210     }
1211 
1212     if (hasUndefContents) {
1213       MD->removeInstruction(M);
1214       M->eraseFromParent();
1215       ++NumMemCpyInstr;
1216       return true;
1217     }
1218   }
1219 
1220   if (SrcDepInfo.isClobber())
1221     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1222       if (performMemCpyToMemSetOptzn(M, MDep)) {
1223         MD->removeInstruction(M);
1224         M->eraseFromParent();
1225         ++NumCpyToSet;
1226         return true;
1227       }
1228 
1229   return false;
1230 }
1231 
1232 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1233 /// not to alias.
1234 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1235   AliasAnalysis &AA = LookupAliasAnalysis();
1236 
1237   if (!TLI->has(LibFunc::memmove))
1238     return false;
1239 
1240   // See if the pointers alias.
1241   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1242                     MemoryLocation::getForSource(M)))
1243     return false;
1244 
1245   DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1246                << "\n");
1247 
1248   // If not, then we know we can transform this.
1249   Type *ArgTys[3] = { M->getRawDest()->getType(),
1250                       M->getRawSource()->getType(),
1251                       M->getLength()->getType() };
1252   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1253                                                  Intrinsic::memcpy, ArgTys));
1254 
1255   // MemDep may have over conservative information about this instruction, just
1256   // conservatively flush it from the cache.
1257   MD->removeInstruction(M);
1258 
1259   ++NumMoveToCpy;
1260   return true;
1261 }
1262 
1263 /// This is called on every byval argument in call sites.
1264 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1265   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1266   // Find out what feeds this byval argument.
1267   Value *ByValArg = CS.getArgument(ArgNo);
1268   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1269   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1270   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1271       MemoryLocation(ByValArg, ByValSize), true,
1272       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1273   if (!DepInfo.isClobber())
1274     return false;
1275 
1276   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1277   // a memcpy, see if we can byval from the source of the memcpy instead of the
1278   // result.
1279   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1280   if (!MDep || MDep->isVolatile() ||
1281       ByValArg->stripPointerCasts() != MDep->getDest())
1282     return false;
1283 
1284   // The length of the memcpy must be larger or equal to the size of the byval.
1285   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1286   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1287     return false;
1288 
1289   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1290   // then it is some target specific value that we can't know.
1291   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
1292   if (ByValAlign == 0) return false;
1293 
1294   // If it is greater than the memcpy, then we check to see if we can force the
1295   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1296   AssumptionCache &AC = LookupAssumptionCache();
1297   DominatorTree &DT = LookupDomTree();
1298   if (MDep->getAlignment() < ByValAlign &&
1299       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1300                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1301     return false;
1302 
1303   // Verify that the copied-from memory doesn't change in between the memcpy and
1304   // the byval call.
1305   //    memcpy(a <- b)
1306   //    *b = 42;
1307   //    foo(*a)
1308   // It would be invalid to transform the second memcpy into foo(*b).
1309   //
1310   // NOTE: This is conservative, it will stop on any read from the source loc,
1311   // not just the defining memcpy.
1312   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1313       MemoryLocation::getForSource(MDep), false,
1314       CS.getInstruction()->getIterator(), MDep->getParent());
1315   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1316     return false;
1317 
1318   Value *TmpCast = MDep->getSource();
1319   if (MDep->getSource()->getType() != ByValArg->getType())
1320     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1321                               "tmpcast", CS.getInstruction());
1322 
1323   DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1324                << "  " << *MDep << "\n"
1325                << "  " << *CS.getInstruction() << "\n");
1326 
1327   // Otherwise we're good!  Update the byval argument.
1328   CS.setArgument(ArgNo, TmpCast);
1329   ++NumMemCpyInstr;
1330   return true;
1331 }
1332 
1333 /// Executes one iteration of MemCpyOptPass.
1334 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1335   bool MadeChange = false;
1336 
1337   // Walk all instruction in the function.
1338   for (BasicBlock &BB : F) {
1339     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1340       // Avoid invalidating the iterator.
1341       Instruction *I = &*BI++;
1342 
1343       bool RepeatInstruction = false;
1344 
1345       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1346         MadeChange |= processStore(SI, BI);
1347       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1348         RepeatInstruction = processMemSet(M, BI);
1349       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1350         RepeatInstruction = processMemCpy(M);
1351       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1352         RepeatInstruction = processMemMove(M);
1353       else if (auto CS = CallSite(I)) {
1354         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1355           if (CS.isByValArgument(i))
1356             MadeChange |= processByValArgument(CS, i);
1357       }
1358 
1359       // Reprocess the instruction if desired.
1360       if (RepeatInstruction) {
1361         if (BI != BB.begin())
1362           --BI;
1363         MadeChange = true;
1364       }
1365     }
1366   }
1367 
1368   return MadeChange;
1369 }
1370 
1371 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1372 
1373   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1374   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1375 
1376   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1377     return AM.getResult<AAManager>(F);
1378   };
1379   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1380     return AM.getResult<AssumptionAnalysis>(F);
1381   };
1382   auto LookupDomTree = [&]() -> DominatorTree & {
1383     return AM.getResult<DominatorTreeAnalysis>(F);
1384   };
1385 
1386   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1387                             LookupAssumptionCache, LookupDomTree);
1388   if (!MadeChange)
1389     return PreservedAnalyses::all();
1390   PreservedAnalyses PA;
1391   PA.preserve<GlobalsAA>();
1392   PA.preserve<MemoryDependenceAnalysis>();
1393   return PA;
1394 }
1395 
1396 bool MemCpyOptPass::runImpl(
1397     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1398     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1399     std::function<AssumptionCache &()> LookupAssumptionCache_,
1400     std::function<DominatorTree &()> LookupDomTree_) {
1401   bool MadeChange = false;
1402   MD = MD_;
1403   TLI = TLI_;
1404   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1405   LookupAssumptionCache = std::move(LookupAssumptionCache_);
1406   LookupDomTree = std::move(LookupDomTree_);
1407 
1408   // If we don't have at least memset and memcpy, there is little point of doing
1409   // anything here.  These are required by a freestanding implementation, so if
1410   // even they are disabled, there is no point in trying hard.
1411   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
1412     return false;
1413 
1414   while (1) {
1415     if (!iterateOnFunction(F))
1416       break;
1417     MadeChange = true;
1418   }
1419 
1420   MD = nullptr;
1421   return MadeChange;
1422 }
1423 
1424 /// This is the main transformation entry point for a function.
1425 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1426   if (skipFunction(F))
1427     return false;
1428 
1429   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1430   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1431 
1432   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1433     return getAnalysis<AAResultsWrapperPass>().getAAResults();
1434   };
1435   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1436     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1437   };
1438   auto LookupDomTree = [this]() -> DominatorTree & {
1439     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1440   };
1441 
1442   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1443                       LookupDomTree);
1444 }
1445