1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/Argument.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DerivedTypes.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GetElementPtrTypeIterator.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/IRBuilder.h" 41 #include "llvm/IR/InstrTypes.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/LLVMContext.h" 47 #include "llvm/IR/Module.h" 48 #include "llvm/IR/Operator.h" 49 #include "llvm/IR/PassManager.h" 50 #include "llvm/IR/Type.h" 51 #include "llvm/IR/User.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/InitializePasses.h" 54 #include "llvm/Pass.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Transforms/Scalar.h" 60 #include "llvm/Transforms/Utils/Local.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstdint> 64 #include <utility> 65 66 using namespace llvm; 67 68 #define DEBUG_TYPE "memcpyopt" 69 70 static cl::opt<bool> 71 EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(true), cl::Hidden, 72 cl::desc("Use MemorySSA-backed MemCpyOpt.")); 73 74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 75 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 76 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 77 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 78 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 79 80 namespace { 81 82 /// Represents a range of memset'd bytes with the ByteVal value. 83 /// This allows us to analyze stores like: 84 /// store 0 -> P+1 85 /// store 0 -> P+0 86 /// store 0 -> P+3 87 /// store 0 -> P+2 88 /// which sometimes happens with stores to arrays of structs etc. When we see 89 /// the first store, we make a range [1, 2). The second store extends the range 90 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 91 /// two ranges into [0, 3) which is memset'able. 92 struct MemsetRange { 93 // Start/End - A semi range that describes the span that this range covers. 94 // The range is closed at the start and open at the end: [Start, End). 95 int64_t Start, End; 96 97 /// StartPtr - The getelementptr instruction that points to the start of the 98 /// range. 99 Value *StartPtr; 100 101 /// Alignment - The known alignment of the first store. 102 unsigned Alignment; 103 104 /// TheStores - The actual stores that make up this range. 105 SmallVector<Instruction*, 16> TheStores; 106 107 bool isProfitableToUseMemset(const DataLayout &DL) const; 108 }; 109 110 } // end anonymous namespace 111 112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 113 // If we found more than 4 stores to merge or 16 bytes, use memset. 114 if (TheStores.size() >= 4 || End-Start >= 16) return true; 115 116 // If there is nothing to merge, don't do anything. 117 if (TheStores.size() < 2) return false; 118 119 // If any of the stores are a memset, then it is always good to extend the 120 // memset. 121 for (Instruction *SI : TheStores) 122 if (!isa<StoreInst>(SI)) 123 return true; 124 125 // Assume that the code generator is capable of merging pairs of stores 126 // together if it wants to. 127 if (TheStores.size() == 2) return false; 128 129 // If we have fewer than 8 stores, it can still be worthwhile to do this. 130 // For example, merging 4 i8 stores into an i32 store is useful almost always. 131 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 132 // memset will be split into 2 32-bit stores anyway) and doing so can 133 // pessimize the llvm optimizer. 134 // 135 // Since we don't have perfect knowledge here, make some assumptions: assume 136 // the maximum GPR width is the same size as the largest legal integer 137 // size. If so, check to see whether we will end up actually reducing the 138 // number of stores used. 139 unsigned Bytes = unsigned(End-Start); 140 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 141 if (MaxIntSize == 0) 142 MaxIntSize = 1; 143 unsigned NumPointerStores = Bytes / MaxIntSize; 144 145 // Assume the remaining bytes if any are done a byte at a time. 146 unsigned NumByteStores = Bytes % MaxIntSize; 147 148 // If we will reduce the # stores (according to this heuristic), do the 149 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 150 // etc. 151 return TheStores.size() > NumPointerStores+NumByteStores; 152 } 153 154 namespace { 155 156 class MemsetRanges { 157 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 158 159 /// A sorted list of the memset ranges. 160 SmallVector<MemsetRange, 8> Ranges; 161 162 const DataLayout &DL; 163 164 public: 165 MemsetRanges(const DataLayout &DL) : DL(DL) {} 166 167 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 168 169 const_iterator begin() const { return Ranges.begin(); } 170 const_iterator end() const { return Ranges.end(); } 171 bool empty() const { return Ranges.empty(); } 172 173 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 174 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 175 addStore(OffsetFromFirst, SI); 176 else 177 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 178 } 179 180 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 181 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 182 183 addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(), 184 SI->getAlign().value(), SI); 185 } 186 187 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 188 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 189 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 190 } 191 192 void addRange(int64_t Start, int64_t Size, Value *Ptr, 193 unsigned Alignment, Instruction *Inst); 194 }; 195 196 } // end anonymous namespace 197 198 /// Add a new store to the MemsetRanges data structure. This adds a 199 /// new range for the specified store at the specified offset, merging into 200 /// existing ranges as appropriate. 201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 202 unsigned Alignment, Instruction *Inst) { 203 int64_t End = Start+Size; 204 205 range_iterator I = partition_point( 206 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 207 208 // We now know that I == E, in which case we didn't find anything to merge 209 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 210 // to insert a new range. Handle this now. 211 if (I == Ranges.end() || End < I->Start) { 212 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 213 R.Start = Start; 214 R.End = End; 215 R.StartPtr = Ptr; 216 R.Alignment = Alignment; 217 R.TheStores.push_back(Inst); 218 return; 219 } 220 221 // This store overlaps with I, add it. 222 I->TheStores.push_back(Inst); 223 224 // At this point, we may have an interval that completely contains our store. 225 // If so, just add it to the interval and return. 226 if (I->Start <= Start && I->End >= End) 227 return; 228 229 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 230 // but is not entirely contained within the range. 231 232 // See if the range extends the start of the range. In this case, it couldn't 233 // possibly cause it to join the prior range, because otherwise we would have 234 // stopped on *it*. 235 if (Start < I->Start) { 236 I->Start = Start; 237 I->StartPtr = Ptr; 238 I->Alignment = Alignment; 239 } 240 241 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 242 // is in or right at the end of I), and that End >= I->Start. Extend I out to 243 // End. 244 if (End > I->End) { 245 I->End = End; 246 range_iterator NextI = I; 247 while (++NextI != Ranges.end() && End >= NextI->Start) { 248 // Merge the range in. 249 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 250 if (NextI->End > I->End) 251 I->End = NextI->End; 252 Ranges.erase(NextI); 253 NextI = I; 254 } 255 } 256 } 257 258 //===----------------------------------------------------------------------===// 259 // MemCpyOptLegacyPass Pass 260 //===----------------------------------------------------------------------===// 261 262 namespace { 263 264 class MemCpyOptLegacyPass : public FunctionPass { 265 MemCpyOptPass Impl; 266 267 public: 268 static char ID; // Pass identification, replacement for typeid 269 270 MemCpyOptLegacyPass() : FunctionPass(ID) { 271 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 272 } 273 274 bool runOnFunction(Function &F) override; 275 276 private: 277 // This transformation requires dominator postdominator info 278 void getAnalysisUsage(AnalysisUsage &AU) const override { 279 AU.setPreservesCFG(); 280 AU.addRequired<AssumptionCacheTracker>(); 281 AU.addRequired<DominatorTreeWrapperPass>(); 282 AU.addPreserved<DominatorTreeWrapperPass>(); 283 AU.addPreserved<GlobalsAAWrapperPass>(); 284 AU.addRequired<TargetLibraryInfoWrapperPass>(); 285 if (!EnableMemorySSA) 286 AU.addRequired<MemoryDependenceWrapperPass>(); 287 AU.addPreserved<MemoryDependenceWrapperPass>(); 288 AU.addRequired<AAResultsWrapperPass>(); 289 AU.addPreserved<AAResultsWrapperPass>(); 290 if (EnableMemorySSA) 291 AU.addRequired<MemorySSAWrapperPass>(); 292 AU.addPreserved<MemorySSAWrapperPass>(); 293 } 294 }; 295 296 } // end anonymous namespace 297 298 char MemCpyOptLegacyPass::ID = 0; 299 300 /// The public interface to this file... 301 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 302 303 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 304 false, false) 305 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 306 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 307 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 309 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 310 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 311 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 312 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 313 false, false) 314 315 // Check that V is either not accessible by the caller, or unwinding cannot 316 // occur between Start and End. 317 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 318 Instruction *End) { 319 assert(Start->getParent() == End->getParent() && "Must be in same block"); 320 if (!Start->getFunction()->doesNotThrow() && 321 !isa<AllocaInst>(getUnderlyingObject(V))) { 322 for (const Instruction &I : 323 make_range(Start->getIterator(), End->getIterator())) { 324 if (I.mayThrow()) 325 return true; 326 } 327 } 328 return false; 329 } 330 331 void MemCpyOptPass::eraseInstruction(Instruction *I) { 332 if (MSSAU) 333 MSSAU->removeMemoryAccess(I); 334 if (MD) 335 MD->removeInstruction(I); 336 I->eraseFromParent(); 337 } 338 339 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 340 // Start and End must be in the same block 341 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 342 const MemoryUseOrDef *Start, 343 const MemoryUseOrDef *End) { 344 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 345 for (const MemoryAccess &MA : 346 make_range(++Start->getIterator(), End->getIterator())) { 347 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 348 Loc))) 349 return true; 350 } 351 return false; 352 } 353 354 // Check for mod of Loc between Start and End, excluding both boundaries. 355 // Start and End can be in different blocks. 356 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, 357 const MemoryUseOrDef *Start, 358 const MemoryUseOrDef *End) { 359 // TODO: Only walk until we hit Start. 360 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 361 End->getDefiningAccess(), Loc); 362 return !MSSA->dominates(Clobber, Start); 363 } 364 365 /// When scanning forward over instructions, we look for some other patterns to 366 /// fold away. In particular, this looks for stores to neighboring locations of 367 /// memory. If it sees enough consecutive ones, it attempts to merge them 368 /// together into a memcpy/memset. 369 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 370 Value *StartPtr, 371 Value *ByteVal) { 372 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 373 374 // Okay, so we now have a single store that can be splatable. Scan to find 375 // all subsequent stores of the same value to offset from the same pointer. 376 // Join these together into ranges, so we can decide whether contiguous blocks 377 // are stored. 378 MemsetRanges Ranges(DL); 379 380 BasicBlock::iterator BI(StartInst); 381 382 // Keeps track of the last memory use or def before the insertion point for 383 // the new memset. The new MemoryDef for the inserted memsets will be inserted 384 // after MemInsertPoint. It points to either LastMemDef or to the last user 385 // before the insertion point of the memset, if there are any such users. 386 MemoryUseOrDef *MemInsertPoint = nullptr; 387 // Keeps track of the last MemoryDef between StartInst and the insertion point 388 // for the new memset. This will become the defining access of the inserted 389 // memsets. 390 MemoryDef *LastMemDef = nullptr; 391 for (++BI; !BI->isTerminator(); ++BI) { 392 if (MSSAU) { 393 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 394 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 395 if (CurrentAcc) { 396 MemInsertPoint = CurrentAcc; 397 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 398 LastMemDef = CurrentDef; 399 } 400 } 401 402 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 403 // If the instruction is readnone, ignore it, otherwise bail out. We 404 // don't even allow readonly here because we don't want something like: 405 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 406 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 407 break; 408 continue; 409 } 410 411 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 412 // If this is a store, see if we can merge it in. 413 if (!NextStore->isSimple()) break; 414 415 Value *StoredVal = NextStore->getValueOperand(); 416 417 // Don't convert stores of non-integral pointer types to memsets (which 418 // stores integers). 419 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 420 break; 421 422 // Check to see if this stored value is of the same byte-splattable value. 423 Value *StoredByte = isBytewiseValue(StoredVal, DL); 424 if (isa<UndefValue>(ByteVal) && StoredByte) 425 ByteVal = StoredByte; 426 if (ByteVal != StoredByte) 427 break; 428 429 // Check to see if this store is to a constant offset from the start ptr. 430 Optional<int64_t> Offset = 431 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 432 if (!Offset) 433 break; 434 435 Ranges.addStore(*Offset, NextStore); 436 } else { 437 MemSetInst *MSI = cast<MemSetInst>(BI); 438 439 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 440 !isa<ConstantInt>(MSI->getLength())) 441 break; 442 443 // Check to see if this store is to a constant offset from the start ptr. 444 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 445 if (!Offset) 446 break; 447 448 Ranges.addMemSet(*Offset, MSI); 449 } 450 } 451 452 // If we have no ranges, then we just had a single store with nothing that 453 // could be merged in. This is a very common case of course. 454 if (Ranges.empty()) 455 return nullptr; 456 457 // If we had at least one store that could be merged in, add the starting 458 // store as well. We try to avoid this unless there is at least something 459 // interesting as a small compile-time optimization. 460 Ranges.addInst(0, StartInst); 461 462 // If we create any memsets, we put it right before the first instruction that 463 // isn't part of the memset block. This ensure that the memset is dominated 464 // by any addressing instruction needed by the start of the block. 465 IRBuilder<> Builder(&*BI); 466 467 // Now that we have full information about ranges, loop over the ranges and 468 // emit memset's for anything big enough to be worthwhile. 469 Instruction *AMemSet = nullptr; 470 for (const MemsetRange &Range : Ranges) { 471 if (Range.TheStores.size() == 1) continue; 472 473 // If it is profitable to lower this range to memset, do so now. 474 if (!Range.isProfitableToUseMemset(DL)) 475 continue; 476 477 // Otherwise, we do want to transform this! Create a new memset. 478 // Get the starting pointer of the block. 479 StartPtr = Range.StartPtr; 480 481 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 482 MaybeAlign(Range.Alignment)); 483 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 484 : Range.TheStores) dbgs() 485 << *SI << '\n'; 486 dbgs() << "With: " << *AMemSet << '\n'); 487 if (!Range.TheStores.empty()) 488 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 489 490 if (MSSAU) { 491 assert(LastMemDef && MemInsertPoint && 492 "Both LastMemDef and MemInsertPoint need to be set"); 493 auto *NewDef = 494 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 495 ? MSSAU->createMemoryAccessBefore( 496 AMemSet, LastMemDef, MemInsertPoint) 497 : MSSAU->createMemoryAccessAfter( 498 AMemSet, LastMemDef, MemInsertPoint)); 499 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 500 LastMemDef = NewDef; 501 MemInsertPoint = NewDef; 502 } 503 504 // Zap all the stores. 505 for (Instruction *SI : Range.TheStores) 506 eraseInstruction(SI); 507 508 ++NumMemSetInfer; 509 } 510 511 return AMemSet; 512 } 513 514 // This method try to lift a store instruction before position P. 515 // It will lift the store and its argument + that anything that 516 // may alias with these. 517 // The method returns true if it was successful. 518 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 519 // If the store alias this position, early bail out. 520 MemoryLocation StoreLoc = MemoryLocation::get(SI); 521 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 522 return false; 523 524 // Keep track of the arguments of all instruction we plan to lift 525 // so we can make sure to lift them as well if appropriate. 526 DenseSet<Instruction*> Args; 527 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 528 if (Ptr->getParent() == SI->getParent()) 529 Args.insert(Ptr); 530 531 // Instruction to lift before P. 532 SmallVector<Instruction *, 8> ToLift{SI}; 533 534 // Memory locations of lifted instructions. 535 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 536 537 // Lifted calls. 538 SmallVector<const CallBase *, 8> Calls; 539 540 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 541 542 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 543 auto *C = &*I; 544 545 // Make sure hoisting does not perform a store that was not guaranteed to 546 // happen. 547 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 548 return false; 549 550 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 551 552 bool NeedLift = false; 553 if (Args.erase(C)) 554 NeedLift = true; 555 else if (MayAlias) { 556 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 557 return isModOrRefSet(AA->getModRefInfo(C, ML)); 558 }); 559 560 if (!NeedLift) 561 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 562 return isModOrRefSet(AA->getModRefInfo(C, Call)); 563 }); 564 } 565 566 if (!NeedLift) 567 continue; 568 569 if (MayAlias) { 570 // Since LI is implicitly moved downwards past the lifted instructions, 571 // none of them may modify its source. 572 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 573 return false; 574 else if (const auto *Call = dyn_cast<CallBase>(C)) { 575 // If we can't lift this before P, it's game over. 576 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 577 return false; 578 579 Calls.push_back(Call); 580 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 581 // If we can't lift this before P, it's game over. 582 auto ML = MemoryLocation::get(C); 583 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 584 return false; 585 586 MemLocs.push_back(ML); 587 } else 588 // We don't know how to lift this instruction. 589 return false; 590 } 591 592 ToLift.push_back(C); 593 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 594 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 595 if (A->getParent() == SI->getParent()) { 596 // Cannot hoist user of P above P 597 if(A == P) return false; 598 Args.insert(A); 599 } 600 } 601 } 602 603 // Find MSSA insertion point. Normally P will always have a corresponding 604 // memory access before which we can insert. However, with non-standard AA 605 // pipelines, there may be a mismatch between AA and MSSA, in which case we 606 // will scan for a memory access before P. In either case, we know for sure 607 // that at least the load will have a memory access. 608 // TODO: Simplify this once P will be determined by MSSA, in which case the 609 // discrepancy can no longer occur. 610 MemoryUseOrDef *MemInsertPoint = nullptr; 611 if (MSSAU) { 612 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 613 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 614 } else { 615 const Instruction *ConstP = P; 616 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 617 ++LI->getReverseIterator())) { 618 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 619 MemInsertPoint = MA; 620 break; 621 } 622 } 623 } 624 } 625 626 // We made it, we need to lift. 627 for (auto *I : llvm::reverse(ToLift)) { 628 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 629 I->moveBefore(P); 630 if (MSSAU) { 631 assert(MemInsertPoint && "Must have found insert point"); 632 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 633 MSSAU->moveAfter(MA, MemInsertPoint); 634 MemInsertPoint = MA; 635 } 636 } 637 } 638 639 return true; 640 } 641 642 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 643 if (!SI->isSimple()) return false; 644 645 // Avoid merging nontemporal stores since the resulting 646 // memcpy/memset would not be able to preserve the nontemporal hint. 647 // In theory we could teach how to propagate the !nontemporal metadata to 648 // memset calls. However, that change would force the backend to 649 // conservatively expand !nontemporal memset calls back to sequences of 650 // store instructions (effectively undoing the merging). 651 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 652 return false; 653 654 const DataLayout &DL = SI->getModule()->getDataLayout(); 655 656 Value *StoredVal = SI->getValueOperand(); 657 658 // Not all the transforms below are correct for non-integral pointers, bail 659 // until we've audited the individual pieces. 660 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 661 return false; 662 663 // Load to store forwarding can be interpreted as memcpy. 664 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 665 if (LI->isSimple() && LI->hasOneUse() && 666 LI->getParent() == SI->getParent()) { 667 668 auto *T = LI->getType(); 669 if (T->isAggregateType()) { 670 MemoryLocation LoadLoc = MemoryLocation::get(LI); 671 672 // We use alias analysis to check if an instruction may store to 673 // the memory we load from in between the load and the store. If 674 // such an instruction is found, we try to promote there instead 675 // of at the store position. 676 // TODO: Can use MSSA for this. 677 Instruction *P = SI; 678 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 679 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 680 P = &I; 681 break; 682 } 683 } 684 685 // We found an instruction that may write to the loaded memory. 686 // We can try to promote at this position instead of the store 687 // position if nothing alias the store memory after this and the store 688 // destination is not in the range. 689 if (P && P != SI) { 690 if (!moveUp(SI, P, LI)) 691 P = nullptr; 692 } 693 694 // If a valid insertion position is found, then we can promote 695 // the load/store pair to a memcpy. 696 if (P) { 697 // If we load from memory that may alias the memory we store to, 698 // memmove must be used to preserve semantic. If not, memcpy can 699 // be used. 700 bool UseMemMove = false; 701 if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc)) 702 UseMemMove = true; 703 704 uint64_t Size = DL.getTypeStoreSize(T); 705 706 IRBuilder<> Builder(P); 707 Instruction *M; 708 if (UseMemMove) 709 M = Builder.CreateMemMove( 710 SI->getPointerOperand(), SI->getAlign(), 711 LI->getPointerOperand(), LI->getAlign(), Size); 712 else 713 M = Builder.CreateMemCpy( 714 SI->getPointerOperand(), SI->getAlign(), 715 LI->getPointerOperand(), LI->getAlign(), Size); 716 717 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 718 << *M << "\n"); 719 720 if (MSSAU) { 721 auto *LastDef = 722 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 723 auto *NewAccess = 724 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 725 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 726 } 727 728 eraseInstruction(SI); 729 eraseInstruction(LI); 730 ++NumMemCpyInstr; 731 732 // Make sure we do not invalidate the iterator. 733 BBI = M->getIterator(); 734 return true; 735 } 736 } 737 738 // Detect cases where we're performing call slot forwarding, but 739 // happen to be using a load-store pair to implement it, rather than 740 // a memcpy. 741 CallInst *C = nullptr; 742 if (EnableMemorySSA) { 743 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 744 MSSA->getWalker()->getClobberingMemoryAccess(LI))) { 745 // The load most post-dom the call. Limit to the same block for now. 746 // TODO: Support non-local call-slot optimization? 747 if (LoadClobber->getBlock() == SI->getParent()) 748 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 749 } 750 } else { 751 MemDepResult ldep = MD->getDependency(LI); 752 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 753 C = dyn_cast<CallInst>(ldep.getInst()); 754 } 755 756 if (C) { 757 // Check that nothing touches the dest of the "copy" between 758 // the call and the store. 759 MemoryLocation StoreLoc = MemoryLocation::get(SI); 760 if (EnableMemorySSA) { 761 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), 762 MSSA->getMemoryAccess(SI))) 763 C = nullptr; 764 } else { 765 for (BasicBlock::iterator I = --SI->getIterator(), 766 E = C->getIterator(); 767 I != E; --I) { 768 if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) { 769 C = nullptr; 770 break; 771 } 772 } 773 } 774 } 775 776 if (C) { 777 bool changed = performCallSlotOptzn( 778 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 779 LI->getPointerOperand()->stripPointerCasts(), 780 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 781 commonAlignment(SI->getAlign(), LI->getAlign()), C); 782 if (changed) { 783 eraseInstruction(SI); 784 eraseInstruction(LI); 785 ++NumMemCpyInstr; 786 return true; 787 } 788 } 789 } 790 } 791 792 // There are two cases that are interesting for this code to handle: memcpy 793 // and memset. Right now we only handle memset. 794 795 // Ensure that the value being stored is something that can be memset'able a 796 // byte at a time like "0" or "-1" or any width, as well as things like 797 // 0xA0A0A0A0 and 0.0. 798 auto *V = SI->getOperand(0); 799 if (Value *ByteVal = isBytewiseValue(V, DL)) { 800 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 801 ByteVal)) { 802 BBI = I->getIterator(); // Don't invalidate iterator. 803 return true; 804 } 805 806 // If we have an aggregate, we try to promote it to memset regardless 807 // of opportunity for merging as it can expose optimization opportunities 808 // in subsequent passes. 809 auto *T = V->getType(); 810 if (T->isAggregateType()) { 811 uint64_t Size = DL.getTypeStoreSize(T); 812 IRBuilder<> Builder(SI); 813 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 814 SI->getAlign()); 815 816 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 817 818 if (MSSAU) { 819 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI))); 820 auto *LastDef = 821 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 822 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 823 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 824 } 825 826 eraseInstruction(SI); 827 NumMemSetInfer++; 828 829 // Make sure we do not invalidate the iterator. 830 BBI = M->getIterator(); 831 return true; 832 } 833 } 834 835 return false; 836 } 837 838 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 839 // See if there is another memset or store neighboring this memset which 840 // allows us to widen out the memset to do a single larger store. 841 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 842 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 843 MSI->getValue())) { 844 BBI = I->getIterator(); // Don't invalidate iterator. 845 return true; 846 } 847 return false; 848 } 849 850 /// Takes a memcpy and a call that it depends on, 851 /// and checks for the possibility of a call slot optimization by having 852 /// the call write its result directly into the destination of the memcpy. 853 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 854 Instruction *cpyStore, Value *cpyDest, 855 Value *cpySrc, uint64_t cpyLen, 856 Align cpyAlign, CallInst *C) { 857 // The general transformation to keep in mind is 858 // 859 // call @func(..., src, ...) 860 // memcpy(dest, src, ...) 861 // 862 // -> 863 // 864 // memcpy(dest, src, ...) 865 // call @func(..., dest, ...) 866 // 867 // Since moving the memcpy is technically awkward, we additionally check that 868 // src only holds uninitialized values at the moment of the call, meaning that 869 // the memcpy can be discarded rather than moved. 870 871 // Lifetime marks shouldn't be operated on. 872 if (Function *F = C->getCalledFunction()) 873 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 874 return false; 875 876 // Require that src be an alloca. This simplifies the reasoning considerably. 877 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 878 if (!srcAlloca) 879 return false; 880 881 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 882 if (!srcArraySize) 883 return false; 884 885 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 886 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 887 srcArraySize->getZExtValue(); 888 889 if (cpyLen < srcSize) 890 return false; 891 892 // Check that accessing the first srcSize bytes of dest will not cause a 893 // trap. Otherwise the transform is invalid since it might cause a trap 894 // to occur earlier than it otherwise would. 895 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen), 896 DL, C, DT)) 897 return false; 898 899 // Make sure that nothing can observe cpyDest being written early. There are 900 // a number of cases to consider: 901 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 902 // the transform. 903 // 2. C itself may not access cpyDest (prior to the transform). This is 904 // checked further below. 905 // 3. If cpyDest is accessible to the caller of this function (potentially 906 // captured and not based on an alloca), we need to ensure that we cannot 907 // unwind between C and cpyStore. This is checked here. 908 // 4. If cpyDest is potentially captured, there may be accesses to it from 909 // another thread. In this case, we need to check that cpyStore is 910 // guaranteed to be executed if C is. As it is a non-atomic access, it 911 // renders accesses from other threads undefined. 912 // TODO: This is currently not checked. 913 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) 914 return false; 915 916 // Check that dest points to memory that is at least as aligned as src. 917 Align srcAlign = srcAlloca->getAlign(); 918 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 919 // If dest is not aligned enough and we can't increase its alignment then 920 // bail out. 921 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 922 return false; 923 924 // Check that src is not accessed except via the call and the memcpy. This 925 // guarantees that it holds only undefined values when passed in (so the final 926 // memcpy can be dropped), that it is not read or written between the call and 927 // the memcpy, and that writing beyond the end of it is undefined. 928 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 929 while (!srcUseList.empty()) { 930 User *U = srcUseList.pop_back_val(); 931 932 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 933 append_range(srcUseList, U->users()); 934 continue; 935 } 936 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 937 if (!G->hasAllZeroIndices()) 938 return false; 939 940 append_range(srcUseList, U->users()); 941 continue; 942 } 943 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 944 if (IT->isLifetimeStartOrEnd()) 945 continue; 946 947 if (U != C && U != cpyLoad) 948 return false; 949 } 950 951 // Check that src isn't captured by the called function since the 952 // transformation can cause aliasing issues in that case. 953 for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI) 954 if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI)) 955 return false; 956 957 // Since we're changing the parameter to the callsite, we need to make sure 958 // that what would be the new parameter dominates the callsite. 959 if (!DT->dominates(cpyDest, C)) { 960 // Support moving a constant index GEP before the call. 961 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 962 if (GEP && GEP->hasAllConstantIndices() && 963 DT->dominates(GEP->getPointerOperand(), C)) 964 GEP->moveBefore(C); 965 else 966 return false; 967 } 968 969 // In addition to knowing that the call does not access src in some 970 // unexpected manner, for example via a global, which we deduce from 971 // the use analysis, we also need to know that it does not sneakily 972 // access dest. We rely on AA to figure this out for us. 973 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 974 // If necessary, perform additional analysis. 975 if (isModOrRefSet(MR)) 976 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 977 if (isModOrRefSet(MR)) 978 return false; 979 980 // We can't create address space casts here because we don't know if they're 981 // safe for the target. 982 if (cpySrc->getType()->getPointerAddressSpace() != 983 cpyDest->getType()->getPointerAddressSpace()) 984 return false; 985 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 986 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 987 cpySrc->getType()->getPointerAddressSpace() != 988 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 989 return false; 990 991 // All the checks have passed, so do the transformation. 992 bool changedArgument = false; 993 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 994 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 995 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 996 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 997 cpyDest->getName(), C); 998 changedArgument = true; 999 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1000 C->setArgOperand(ArgI, Dest); 1001 else 1002 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1003 Dest, C->getArgOperand(ArgI)->getType(), 1004 Dest->getName(), C)); 1005 } 1006 1007 if (!changedArgument) 1008 return false; 1009 1010 // If the destination wasn't sufficiently aligned then increase its alignment. 1011 if (!isDestSufficientlyAligned) { 1012 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1013 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1014 } 1015 1016 // Drop any cached information about the call, because we may have changed 1017 // its dependence information by changing its parameter. 1018 if (MD) 1019 MD->removeInstruction(C); 1020 1021 // Update AA metadata 1022 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1023 // handled here, but combineMetadata doesn't support them yet 1024 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1025 LLVMContext::MD_noalias, 1026 LLVMContext::MD_invariant_group, 1027 LLVMContext::MD_access_group}; 1028 combineMetadata(C, cpyLoad, KnownIDs, true); 1029 1030 ++NumCallSlot; 1031 return true; 1032 } 1033 1034 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1035 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1036 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1037 MemCpyInst *MDep) { 1038 // We can only transforms memcpy's where the dest of one is the source of the 1039 // other. 1040 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1041 return false; 1042 1043 // If dep instruction is reading from our current input, then it is a noop 1044 // transfer and substituting the input won't change this instruction. Just 1045 // ignore the input and let someone else zap MDep. This handles cases like: 1046 // memcpy(a <- a) 1047 // memcpy(b <- a) 1048 if (M->getSource() == MDep->getSource()) 1049 return false; 1050 1051 // Second, the length of the memcpy's must be the same, or the preceding one 1052 // must be larger than the following one. 1053 if (MDep->getLength() != M->getLength()) { 1054 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1055 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 1056 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1057 return false; 1058 } 1059 1060 // Verify that the copied-from memory doesn't change in between the two 1061 // transfers. For example, in: 1062 // memcpy(a <- b) 1063 // *b = 42; 1064 // memcpy(c <- a) 1065 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1066 // 1067 // TODO: If the code between M and MDep is transparent to the destination "c", 1068 // then we could still perform the xform by moving M up to the first memcpy. 1069 if (EnableMemorySSA) { 1070 // TODO: It would be sufficient to check the MDep source up to the memcpy 1071 // size of M, rather than MDep. 1072 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1073 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1074 return false; 1075 } else { 1076 // NOTE: This is conservative, it will stop on any read from the source loc, 1077 // not just the defining memcpy. 1078 MemDepResult SourceDep = 1079 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 1080 M->getIterator(), M->getParent()); 1081 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1082 return false; 1083 } 1084 1085 // If the dest of the second might alias the source of the first, then the 1086 // source and dest might overlap. We still want to eliminate the intermediate 1087 // value, but we have to generate a memmove instead of memcpy. 1088 bool UseMemMove = false; 1089 if (!AA->isNoAlias(MemoryLocation::getForDest(M), 1090 MemoryLocation::getForSource(MDep))) 1091 UseMemMove = true; 1092 1093 // If all checks passed, then we can transform M. 1094 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1095 << *MDep << '\n' << *M << '\n'); 1096 1097 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1098 // example we could be moving from movaps -> movq on x86. 1099 IRBuilder<> Builder(M); 1100 Instruction *NewM; 1101 if (UseMemMove) 1102 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1103 MDep->getRawSource(), MDep->getSourceAlign(), 1104 M->getLength(), M->isVolatile()); 1105 else 1106 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1107 MDep->getRawSource(), MDep->getSourceAlign(), 1108 M->getLength(), M->isVolatile()); 1109 1110 if (MSSAU) { 1111 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1112 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1113 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1114 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1115 } 1116 1117 // Remove the instruction we're replacing. 1118 eraseInstruction(M); 1119 ++NumMemCpyInstr; 1120 return true; 1121 } 1122 1123 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1124 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1125 /// weren't copied over by \p MemCpy. 1126 /// 1127 /// In other words, transform: 1128 /// \code 1129 /// memset(dst, c, dst_size); 1130 /// memcpy(dst, src, src_size); 1131 /// \endcode 1132 /// into: 1133 /// \code 1134 /// memcpy(dst, src, src_size); 1135 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1136 /// \endcode 1137 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1138 MemSetInst *MemSet) { 1139 // We can only transform memset/memcpy with the same destination. 1140 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1141 return false; 1142 1143 // Check that src and dst of the memcpy aren't the same. While memcpy 1144 // operands cannot partially overlap, exact equality is allowed. 1145 if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(), 1146 LocationSize::precise(1)), 1147 MemoryLocation(MemCpy->getDest(), 1148 LocationSize::precise(1)))) 1149 return false; 1150 1151 if (EnableMemorySSA) { 1152 // We know that dst up to src_size is not written. We now need to make sure 1153 // that dst up to dst_size is not accessed. (If we did not move the memset, 1154 // checking for reads would be sufficient.) 1155 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1156 MSSA->getMemoryAccess(MemSet), 1157 MSSA->getMemoryAccess(MemCpy))) { 1158 return false; 1159 } 1160 } else { 1161 // We have already checked that dst up to src_size is not accessed. We 1162 // need to make sure that there are no accesses up to dst_size either. 1163 MemDepResult DstDepInfo = MD->getPointerDependencyFrom( 1164 MemoryLocation::getForDest(MemSet), false, MemCpy->getIterator(), 1165 MemCpy->getParent()); 1166 if (DstDepInfo.getInst() != MemSet) 1167 return false; 1168 } 1169 1170 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1171 Value *Dest = MemCpy->getRawDest(); 1172 Value *DestSize = MemSet->getLength(); 1173 Value *SrcSize = MemCpy->getLength(); 1174 1175 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1176 return false; 1177 1178 // If the sizes are the same, simply drop the memset instead of generating 1179 // a replacement with zero size. 1180 if (DestSize == SrcSize) { 1181 eraseInstruction(MemSet); 1182 return true; 1183 } 1184 1185 // By default, create an unaligned memset. 1186 unsigned Align = 1; 1187 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1188 // of the sum. 1189 const unsigned DestAlign = 1190 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1191 if (DestAlign > 1) 1192 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1193 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1194 1195 IRBuilder<> Builder(MemCpy); 1196 1197 // If the sizes have different types, zext the smaller one. 1198 if (DestSize->getType() != SrcSize->getType()) { 1199 if (DestSize->getType()->getIntegerBitWidth() > 1200 SrcSize->getType()->getIntegerBitWidth()) 1201 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1202 else 1203 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1204 } 1205 1206 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1207 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1208 Value *MemsetLen = Builder.CreateSelect( 1209 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1210 Instruction *NewMemSet = Builder.CreateMemSet( 1211 Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest, 1212 SrcSize), 1213 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1214 1215 if (MSSAU) { 1216 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1217 "MemCpy must be a MemoryDef"); 1218 // The new memset is inserted after the memcpy, but it is known that its 1219 // defining access is the memset about to be removed which immediately 1220 // precedes the memcpy. 1221 auto *LastDef = 1222 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1223 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1224 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1225 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1226 } 1227 1228 eraseInstruction(MemSet); 1229 return true; 1230 } 1231 1232 /// Determine whether the instruction has undefined content for the given Size, 1233 /// either because it was freshly alloca'd or started its lifetime. 1234 static bool hasUndefContents(Instruction *I, Value *Size) { 1235 if (isa<AllocaInst>(I)) 1236 return true; 1237 1238 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1239 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1240 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1241 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1242 if (LTSize->getZExtValue() >= CSize->getZExtValue()) 1243 return true; 1244 } 1245 1246 return false; 1247 } 1248 1249 static bool hasUndefContentsMSSA(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1250 MemoryDef *Def, Value *Size) { 1251 if (MSSA->isLiveOnEntryDef(Def)) 1252 return isa<AllocaInst>(getUnderlyingObject(V)); 1253 1254 if (IntrinsicInst *II = 1255 dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1256 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1257 ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1258 1259 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1260 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1261 LTSize->getZExtValue() >= CSize->getZExtValue()) 1262 return true; 1263 } 1264 1265 // If the lifetime.start covers a whole alloca (as it almost always 1266 // does) and we're querying a pointer based on that alloca, then we know 1267 // the memory is definitely undef, regardless of how exactly we alias. 1268 // The size also doesn't matter, as an out-of-bounds access would be UB. 1269 AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)); 1270 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1271 DataLayout DL = Alloca->getModule()->getDataLayout(); 1272 if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL)) 1273 if (*AllocaSize == LTSize->getValue() * 8) 1274 return true; 1275 } 1276 } 1277 } 1278 1279 return false; 1280 } 1281 1282 /// Transform memcpy to memset when its source was just memset. 1283 /// In other words, turn: 1284 /// \code 1285 /// memset(dst1, c, dst1_size); 1286 /// memcpy(dst2, dst1, dst2_size); 1287 /// \endcode 1288 /// into: 1289 /// \code 1290 /// memset(dst1, c, dst1_size); 1291 /// memset(dst2, c, dst2_size); 1292 /// \endcode 1293 /// When dst2_size <= dst1_size. 1294 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1295 MemSetInst *MemSet) { 1296 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1297 // memcpying from the same address. Otherwise it is hard to reason about. 1298 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1299 return false; 1300 1301 Value *MemSetSize = MemSet->getLength(); 1302 Value *CopySize = MemCpy->getLength(); 1303 1304 if (MemSetSize != CopySize) { 1305 // Make sure the memcpy doesn't read any more than what the memset wrote. 1306 // Don't worry about sizes larger than i64. 1307 1308 // A known memset size is required. 1309 ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1310 if (!CMemSetSize) 1311 return false; 1312 1313 // A known memcpy size is also required. 1314 ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize); 1315 if (!CCopySize) 1316 return false; 1317 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1318 // If the memcpy is larger than the memset, but the memory was undef prior 1319 // to the memset, we can just ignore the tail. Technically we're only 1320 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1321 // easily represent this location, we use the full 0..CopySize range. 1322 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1323 bool CanReduceSize = false; 1324 if (EnableMemorySSA) { 1325 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1326 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1327 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1328 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1329 if (hasUndefContentsMSSA(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1330 CanReduceSize = true; 1331 } else { 1332 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1333 MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent()); 1334 if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize)) 1335 CanReduceSize = true; 1336 } 1337 1338 if (!CanReduceSize) 1339 return false; 1340 CopySize = MemSetSize; 1341 } 1342 } 1343 1344 IRBuilder<> Builder(MemCpy); 1345 Instruction *NewM = 1346 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1347 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1348 if (MSSAU) { 1349 auto *LastDef = 1350 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1351 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1352 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1353 } 1354 1355 return true; 1356 } 1357 1358 /// Perform simplification of memcpy's. If we have memcpy A 1359 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1360 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1361 /// circumstances). This allows later passes to remove the first memcpy 1362 /// altogether. 1363 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1364 // We can only optimize non-volatile memcpy's. 1365 if (M->isVolatile()) return false; 1366 1367 // If the source and destination of the memcpy are the same, then zap it. 1368 if (M->getSource() == M->getDest()) { 1369 ++BBI; 1370 eraseInstruction(M); 1371 return true; 1372 } 1373 1374 // If copying from a constant, try to turn the memcpy into a memset. 1375 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1376 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1377 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1378 M->getModule()->getDataLayout())) { 1379 IRBuilder<> Builder(M); 1380 Instruction *NewM = 1381 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1382 MaybeAlign(M->getDestAlignment()), false); 1383 if (MSSAU) { 1384 auto *LastDef = 1385 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1386 auto *NewAccess = 1387 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1388 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1389 } 1390 1391 eraseInstruction(M); 1392 ++NumCpyToSet; 1393 return true; 1394 } 1395 1396 if (EnableMemorySSA) { 1397 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1398 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); 1399 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1400 const MemoryAccess *DestClobber = 1401 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1402 1403 // Try to turn a partially redundant memset + memcpy into 1404 // memcpy + smaller memset. We don't need the memcpy size for this. 1405 // The memcpy most post-dom the memset, so limit this to the same basic 1406 // block. A non-local generalization is likely not worthwhile. 1407 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1408 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1409 if (DestClobber->getBlock() == M->getParent()) 1410 if (processMemSetMemCpyDependence(M, MDep)) 1411 return true; 1412 1413 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1414 AnyClobber, MemoryLocation::getForSource(M)); 1415 1416 // There are four possible optimizations we can do for memcpy: 1417 // a) memcpy-memcpy xform which exposes redundance for DSE. 1418 // b) call-memcpy xform for return slot optimization. 1419 // c) memcpy from freshly alloca'd space or space that has just started 1420 // its lifetime copies undefined data, and we can therefore eliminate 1421 // the memcpy in favor of the data that was already at the destination. 1422 // d) memcpy from a just-memset'd source can be turned into memset. 1423 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1424 if (Instruction *MI = MD->getMemoryInst()) { 1425 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1426 if (auto *C = dyn_cast<CallInst>(MI)) { 1427 // The memcpy must post-dom the call. Limit to the same block for 1428 // now. Additionally, we need to ensure that there are no accesses 1429 // to dest between the call and the memcpy. Accesses to src will be 1430 // checked by performCallSlotOptzn(). 1431 // TODO: Support non-local call-slot optimization? 1432 if (C->getParent() == M->getParent() && 1433 !accessedBetween(*AA, DestLoc, MD, MA)) { 1434 // FIXME: Can we pass in either of dest/src alignment here instead 1435 // of conservatively taking the minimum? 1436 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1437 M->getSourceAlign().valueOrOne()); 1438 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), 1439 CopySize->getZExtValue(), Alignment, 1440 C)) { 1441 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1442 << " call: " << *C << "\n" 1443 << " memcpy: " << *M << "\n"); 1444 eraseInstruction(M); 1445 ++NumMemCpyInstr; 1446 return true; 1447 } 1448 } 1449 } 1450 } 1451 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1452 return processMemCpyMemCpyDependence(M, MDep); 1453 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1454 if (performMemCpyToMemSetOptzn(M, MDep)) { 1455 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1456 eraseInstruction(M); 1457 ++NumCpyToSet; 1458 return true; 1459 } 1460 } 1461 } 1462 1463 if (hasUndefContentsMSSA(MSSA, AA, M->getSource(), MD, M->getLength())) { 1464 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1465 eraseInstruction(M); 1466 ++NumMemCpyInstr; 1467 return true; 1468 } 1469 } 1470 } else { 1471 MemDepResult DepInfo = MD->getDependency(M); 1472 1473 // Try to turn a partially redundant memset + memcpy into 1474 // memcpy + smaller memset. We don't need the memcpy size for this. 1475 if (DepInfo.isClobber()) 1476 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 1477 if (processMemSetMemCpyDependence(M, MDep)) 1478 return true; 1479 1480 // There are four possible optimizations we can do for memcpy: 1481 // a) memcpy-memcpy xform which exposes redundance for DSE. 1482 // b) call-memcpy xform for return slot optimization. 1483 // c) memcpy from freshly alloca'd space or space that has just started 1484 // its lifetime copies undefined data, and we can therefore eliminate 1485 // the memcpy in favor of the data that was already at the destination. 1486 // d) memcpy from a just-memset'd source can be turned into memset. 1487 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1488 if (DepInfo.isClobber()) { 1489 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 1490 // FIXME: Can we pass in either of dest/src alignment here instead 1491 // of conservatively taking the minimum? 1492 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1493 M->getSourceAlign().valueOrOne()); 1494 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), 1495 CopySize->getZExtValue(), Alignment, C)) { 1496 eraseInstruction(M); 1497 ++NumMemCpyInstr; 1498 return true; 1499 } 1500 } 1501 } 1502 } 1503 1504 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1505 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( 1506 SrcLoc, true, M->getIterator(), M->getParent()); 1507 1508 if (SrcDepInfo.isClobber()) { 1509 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1510 return processMemCpyMemCpyDependence(M, MDep); 1511 } else if (SrcDepInfo.isDef()) { 1512 if (hasUndefContents(SrcDepInfo.getInst(), M->getLength())) { 1513 eraseInstruction(M); 1514 ++NumMemCpyInstr; 1515 return true; 1516 } 1517 } 1518 1519 if (SrcDepInfo.isClobber()) 1520 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1521 if (performMemCpyToMemSetOptzn(M, MDep)) { 1522 eraseInstruction(M); 1523 ++NumCpyToSet; 1524 return true; 1525 } 1526 } 1527 1528 return false; 1529 } 1530 1531 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1532 /// not to alias. 1533 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1534 if (!TLI->has(LibFunc_memmove)) 1535 return false; 1536 1537 // See if the pointers alias. 1538 if (!AA->isNoAlias(MemoryLocation::getForDest(M), 1539 MemoryLocation::getForSource(M))) 1540 return false; 1541 1542 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1543 << "\n"); 1544 1545 // If not, then we know we can transform this. 1546 Type *ArgTys[3] = { M->getRawDest()->getType(), 1547 M->getRawSource()->getType(), 1548 M->getLength()->getType() }; 1549 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1550 Intrinsic::memcpy, ArgTys)); 1551 1552 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1553 // aliasing guarantees). 1554 1555 // MemDep may have over conservative information about this instruction, just 1556 // conservatively flush it from the cache. 1557 if (MD) 1558 MD->removeInstruction(M); 1559 1560 ++NumMoveToCpy; 1561 return true; 1562 } 1563 1564 /// This is called on every byval argument in call sites. 1565 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1566 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1567 // Find out what feeds this byval argument. 1568 Value *ByValArg = CB.getArgOperand(ArgNo); 1569 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1570 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1571 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1572 MemCpyInst *MDep = nullptr; 1573 if (EnableMemorySSA) { 1574 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1575 if (!CallAccess) 1576 return false; 1577 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1578 CallAccess->getDefiningAccess(), Loc); 1579 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1580 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1581 } else { 1582 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1583 Loc, true, CB.getIterator(), CB.getParent()); 1584 if (!DepInfo.isClobber()) 1585 return false; 1586 MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1587 } 1588 1589 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1590 // a memcpy, see if we can byval from the source of the memcpy instead of the 1591 // result. 1592 if (!MDep || MDep->isVolatile() || 1593 ByValArg->stripPointerCasts() != MDep->getDest()) 1594 return false; 1595 1596 // The length of the memcpy must be larger or equal to the size of the byval. 1597 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1598 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1599 return false; 1600 1601 // Get the alignment of the byval. If the call doesn't specify the alignment, 1602 // then it is some target specific value that we can't know. 1603 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1604 if (!ByValAlign) return false; 1605 1606 // If it is greater than the memcpy, then we check to see if we can force the 1607 // source of the memcpy to the alignment we need. If we fail, we bail out. 1608 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1609 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1610 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1611 DT) < *ByValAlign) 1612 return false; 1613 1614 // The address space of the memcpy source must match the byval argument 1615 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1616 ByValArg->getType()->getPointerAddressSpace()) 1617 return false; 1618 1619 // Verify that the copied-from memory doesn't change in between the memcpy and 1620 // the byval call. 1621 // memcpy(a <- b) 1622 // *b = 42; 1623 // foo(*a) 1624 // It would be invalid to transform the second memcpy into foo(*b). 1625 if (EnableMemorySSA) { 1626 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1627 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1628 return false; 1629 } else { 1630 // NOTE: This is conservative, it will stop on any read from the source loc, 1631 // not just the defining memcpy. 1632 MemDepResult SourceDep = MD->getPointerDependencyFrom( 1633 MemoryLocation::getForSource(MDep), false, 1634 CB.getIterator(), MDep->getParent()); 1635 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1636 return false; 1637 } 1638 1639 Value *TmpCast = MDep->getSource(); 1640 if (MDep->getSource()->getType() != ByValArg->getType()) { 1641 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1642 "tmpcast", &CB); 1643 // Set the tmpcast's DebugLoc to MDep's 1644 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1645 TmpCast = TmpBitCast; 1646 } 1647 1648 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1649 << " " << *MDep << "\n" 1650 << " " << CB << "\n"); 1651 1652 // Otherwise we're good! Update the byval argument. 1653 CB.setArgOperand(ArgNo, TmpCast); 1654 ++NumMemCpyInstr; 1655 return true; 1656 } 1657 1658 /// Executes one iteration of MemCpyOptPass. 1659 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1660 bool MadeChange = false; 1661 1662 // Walk all instruction in the function. 1663 for (BasicBlock &BB : F) { 1664 // Skip unreachable blocks. For example processStore assumes that an 1665 // instruction in a BB can't be dominated by a later instruction in the 1666 // same BB (which is a scenario that can happen for an unreachable BB that 1667 // has itself as a predecessor). 1668 if (!DT->isReachableFromEntry(&BB)) 1669 continue; 1670 1671 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1672 // Avoid invalidating the iterator. 1673 Instruction *I = &*BI++; 1674 1675 bool RepeatInstruction = false; 1676 1677 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1678 MadeChange |= processStore(SI, BI); 1679 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1680 RepeatInstruction = processMemSet(M, BI); 1681 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1682 RepeatInstruction = processMemCpy(M, BI); 1683 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1684 RepeatInstruction = processMemMove(M); 1685 else if (auto *CB = dyn_cast<CallBase>(I)) { 1686 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1687 if (CB->isByValArgument(i)) 1688 MadeChange |= processByValArgument(*CB, i); 1689 } 1690 1691 // Reprocess the instruction if desired. 1692 if (RepeatInstruction) { 1693 if (BI != BB.begin()) 1694 --BI; 1695 MadeChange = true; 1696 } 1697 } 1698 } 1699 1700 return MadeChange; 1701 } 1702 1703 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1704 auto *MD = !EnableMemorySSA ? &AM.getResult<MemoryDependenceAnalysis>(F) 1705 : AM.getCachedResult<MemoryDependenceAnalysis>(F); 1706 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1707 auto *AA = &AM.getResult<AAManager>(F); 1708 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1709 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1710 auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F) 1711 : AM.getCachedResult<MemorySSAAnalysis>(F); 1712 1713 bool MadeChange = 1714 runImpl(F, MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr); 1715 if (!MadeChange) 1716 return PreservedAnalyses::all(); 1717 1718 PreservedAnalyses PA; 1719 PA.preserveSet<CFGAnalyses>(); 1720 PA.preserve<GlobalsAA>(); 1721 if (MD) 1722 PA.preserve<MemoryDependenceAnalysis>(); 1723 if (MSSA) 1724 PA.preserve<MemorySSAAnalysis>(); 1725 return PA; 1726 } 1727 1728 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_, 1729 TargetLibraryInfo *TLI_, AliasAnalysis *AA_, 1730 AssumptionCache *AC_, DominatorTree *DT_, 1731 MemorySSA *MSSA_) { 1732 bool MadeChange = false; 1733 MD = MD_; 1734 TLI = TLI_; 1735 AA = AA_; 1736 AC = AC_; 1737 DT = DT_; 1738 MSSA = MSSA_; 1739 MemorySSAUpdater MSSAU_(MSSA_); 1740 MSSAU = MSSA_ ? &MSSAU_ : nullptr; 1741 // If we don't have at least memset and memcpy, there is little point of doing 1742 // anything here. These are required by a freestanding implementation, so if 1743 // even they are disabled, there is no point in trying hard. 1744 if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) 1745 return false; 1746 1747 while (true) { 1748 if (!iterateOnFunction(F)) 1749 break; 1750 MadeChange = true; 1751 } 1752 1753 if (MSSA_ && VerifyMemorySSA) 1754 MSSA_->verifyMemorySSA(); 1755 1756 MD = nullptr; 1757 return MadeChange; 1758 } 1759 1760 /// This is the main transformation entry point for a function. 1761 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1762 if (skipFunction(F)) 1763 return false; 1764 1765 auto *MDWP = !EnableMemorySSA 1766 ? &getAnalysis<MemoryDependenceWrapperPass>() 1767 : getAnalysisIfAvailable<MemoryDependenceWrapperPass>(); 1768 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1769 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1770 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1771 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1772 auto *MSSAWP = EnableMemorySSA 1773 ? &getAnalysis<MemorySSAWrapperPass>() 1774 : getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1775 1776 return Impl.runImpl(F, MDWP ? & MDWP->getMemDep() : nullptr, TLI, AA, AC, DT, 1777 MSSAWP ? &MSSAWP->getMSSA() : nullptr); 1778 } 1779