1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/MemorySSA.h"
28 #include "llvm/Analysis/MemorySSAUpdater.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/Argument.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GetElementPtrTypeIterator.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/IRBuilder.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/Module.h"
48 #include "llvm/IR/Operator.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/User.h"
52 #include "llvm/IR/Value.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Transforms/Scalar.h"
60 #include "llvm/Transforms/Utils/Local.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstdint>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 #define DEBUG_TYPE "memcpyopt"
69 
70 // TODO: Actually implement MemorySSA-based MemCpyOpt.
71 static cl::opt<bool>
72     EnableMemorySSA("enable-memcpyopt-memoryssa", cl::init(false), cl::Hidden,
73                     cl::desc("Use MemorySSA-backed MemCpyOpt."));
74 
75 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
76 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
77 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
78 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
79 STATISTIC(NumCallSlot,    "Number of call slot optimizations performed");
80 
81 namespace {
82 
83 /// Represents a range of memset'd bytes with the ByteVal value.
84 /// This allows us to analyze stores like:
85 ///   store 0 -> P+1
86 ///   store 0 -> P+0
87 ///   store 0 -> P+3
88 ///   store 0 -> P+2
89 /// which sometimes happens with stores to arrays of structs etc.  When we see
90 /// the first store, we make a range [1, 2).  The second store extends the range
91 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
92 /// two ranges into [0, 3) which is memset'able.
93 struct MemsetRange {
94   // Start/End - A semi range that describes the span that this range covers.
95   // The range is closed at the start and open at the end: [Start, End).
96   int64_t Start, End;
97 
98   /// StartPtr - The getelementptr instruction that points to the start of the
99   /// range.
100   Value *StartPtr;
101 
102   /// Alignment - The known alignment of the first store.
103   unsigned Alignment;
104 
105   /// TheStores - The actual stores that make up this range.
106   SmallVector<Instruction*, 16> TheStores;
107 
108   bool isProfitableToUseMemset(const DataLayout &DL) const;
109 };
110 
111 } // end anonymous namespace
112 
113 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
114   // If we found more than 4 stores to merge or 16 bytes, use memset.
115   if (TheStores.size() >= 4 || End-Start >= 16) return true;
116 
117   // If there is nothing to merge, don't do anything.
118   if (TheStores.size() < 2) return false;
119 
120   // If any of the stores are a memset, then it is always good to extend the
121   // memset.
122   for (Instruction *SI : TheStores)
123     if (!isa<StoreInst>(SI))
124       return true;
125 
126   // Assume that the code generator is capable of merging pairs of stores
127   // together if it wants to.
128   if (TheStores.size() == 2) return false;
129 
130   // If we have fewer than 8 stores, it can still be worthwhile to do this.
131   // For example, merging 4 i8 stores into an i32 store is useful almost always.
132   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
133   // memset will be split into 2 32-bit stores anyway) and doing so can
134   // pessimize the llvm optimizer.
135   //
136   // Since we don't have perfect knowledge here, make some assumptions: assume
137   // the maximum GPR width is the same size as the largest legal integer
138   // size. If so, check to see whether we will end up actually reducing the
139   // number of stores used.
140   unsigned Bytes = unsigned(End-Start);
141   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
142   if (MaxIntSize == 0)
143     MaxIntSize = 1;
144   unsigned NumPointerStores = Bytes / MaxIntSize;
145 
146   // Assume the remaining bytes if any are done a byte at a time.
147   unsigned NumByteStores = Bytes % MaxIntSize;
148 
149   // If we will reduce the # stores (according to this heuristic), do the
150   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
151   // etc.
152   return TheStores.size() > NumPointerStores+NumByteStores;
153 }
154 
155 namespace {
156 
157 class MemsetRanges {
158   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
159 
160   /// A sorted list of the memset ranges.
161   SmallVector<MemsetRange, 8> Ranges;
162 
163   const DataLayout &DL;
164 
165 public:
166   MemsetRanges(const DataLayout &DL) : DL(DL) {}
167 
168   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
169 
170   const_iterator begin() const { return Ranges.begin(); }
171   const_iterator end() const { return Ranges.end(); }
172   bool empty() const { return Ranges.empty(); }
173 
174   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
175     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
176       addStore(OffsetFromFirst, SI);
177     else
178       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
179   }
180 
181   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
182     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
183 
184     addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
185              SI->getAlign().value(), SI);
186   }
187 
188   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
189     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
190     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
191   }
192 
193   void addRange(int64_t Start, int64_t Size, Value *Ptr,
194                 unsigned Alignment, Instruction *Inst);
195 };
196 
197 } // end anonymous namespace
198 
199 /// Add a new store to the MemsetRanges data structure.  This adds a
200 /// new range for the specified store at the specified offset, merging into
201 /// existing ranges as appropriate.
202 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
203                             unsigned Alignment, Instruction *Inst) {
204   int64_t End = Start+Size;
205 
206   range_iterator I = partition_point(
207       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
208 
209   // We now know that I == E, in which case we didn't find anything to merge
210   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
211   // to insert a new range.  Handle this now.
212   if (I == Ranges.end() || End < I->Start) {
213     MemsetRange &R = *Ranges.insert(I, MemsetRange());
214     R.Start        = Start;
215     R.End          = End;
216     R.StartPtr     = Ptr;
217     R.Alignment    = Alignment;
218     R.TheStores.push_back(Inst);
219     return;
220   }
221 
222   // This store overlaps with I, add it.
223   I->TheStores.push_back(Inst);
224 
225   // At this point, we may have an interval that completely contains our store.
226   // If so, just add it to the interval and return.
227   if (I->Start <= Start && I->End >= End)
228     return;
229 
230   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
231   // but is not entirely contained within the range.
232 
233   // See if the range extends the start of the range.  In this case, it couldn't
234   // possibly cause it to join the prior range, because otherwise we would have
235   // stopped on *it*.
236   if (Start < I->Start) {
237     I->Start = Start;
238     I->StartPtr = Ptr;
239     I->Alignment = Alignment;
240   }
241 
242   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
243   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
244   // End.
245   if (End > I->End) {
246     I->End = End;
247     range_iterator NextI = I;
248     while (++NextI != Ranges.end() && End >= NextI->Start) {
249       // Merge the range in.
250       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
251       if (NextI->End > I->End)
252         I->End = NextI->End;
253       Ranges.erase(NextI);
254       NextI = I;
255     }
256   }
257 }
258 
259 //===----------------------------------------------------------------------===//
260 //                         MemCpyOptLegacyPass Pass
261 //===----------------------------------------------------------------------===//
262 
263 namespace {
264 
265 class MemCpyOptLegacyPass : public FunctionPass {
266   MemCpyOptPass Impl;
267 
268 public:
269   static char ID; // Pass identification, replacement for typeid
270 
271   MemCpyOptLegacyPass() : FunctionPass(ID) {
272     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
273   }
274 
275   bool runOnFunction(Function &F) override;
276 
277 private:
278   // This transformation requires dominator postdominator info
279   void getAnalysisUsage(AnalysisUsage &AU) const override {
280     AU.setPreservesCFG();
281     AU.addRequired<AssumptionCacheTracker>();
282     AU.addRequired<DominatorTreeWrapperPass>();
283     AU.addPreserved<DominatorTreeWrapperPass>();
284     AU.addPreserved<GlobalsAAWrapperPass>();
285     AU.addRequired<TargetLibraryInfoWrapperPass>();
286     AU.addRequired<MemoryDependenceWrapperPass>();
287     AU.addPreserved<MemoryDependenceWrapperPass>();
288     AU.addRequired<AAResultsWrapperPass>();
289     AU.addPreserved<AAResultsWrapperPass>();
290     if (EnableMemorySSA)
291       AU.addRequired<MemorySSAWrapperPass>();
292     AU.addPreserved<MemorySSAWrapperPass>();
293   }
294 };
295 
296 } // end anonymous namespace
297 
298 char MemCpyOptLegacyPass::ID = 0;
299 
300 /// The public interface to this file...
301 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
302 
303 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
304                       false, false)
305 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
306 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
307 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
308 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
309 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
310 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
311 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
312                     false, false)
313 
314 // Check that V is either not accessible by the caller, or unwinding cannot
315 // occur between Start and End.
316 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
317                                          Instruction *End) {
318   assert(Start->getParent() == End->getParent() && "Must be in same block");
319   if (!Start->getFunction()->doesNotThrow() &&
320       !isa<AllocaInst>(getUnderlyingObject(V))) {
321     for (const Instruction &I :
322          make_range(Start->getIterator(), End->getIterator())) {
323       if (I.mayThrow())
324         return true;
325     }
326   }
327   return false;
328 }
329 
330 void MemCpyOptPass::eraseInstruction(Instruction *I) {
331   if (MSSAU)
332     MSSAU->removeMemoryAccess(I);
333   MD->removeInstruction(I);
334   I->eraseFromParent();
335 }
336 
337 /// When scanning forward over instructions, we look for some other patterns to
338 /// fold away. In particular, this looks for stores to neighboring locations of
339 /// memory. If it sees enough consecutive ones, it attempts to merge them
340 /// together into a memcpy/memset.
341 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
342                                                  Value *StartPtr,
343                                                  Value *ByteVal) {
344   const DataLayout &DL = StartInst->getModule()->getDataLayout();
345 
346   // Okay, so we now have a single store that can be splatable.  Scan to find
347   // all subsequent stores of the same value to offset from the same pointer.
348   // Join these together into ranges, so we can decide whether contiguous blocks
349   // are stored.
350   MemsetRanges Ranges(DL);
351 
352   BasicBlock::iterator BI(StartInst);
353 
354   // Keeps track of the last memory use or def before the insertion point for
355   // the new memset. The new MemoryDef for the inserted memsets will be inserted
356   // after MemInsertPoint. It points to either LastMemDef or to the last user
357   // before the insertion point of the memset, if there are any such users.
358   MemoryUseOrDef *MemInsertPoint = nullptr;
359   // Keeps track of the last MemoryDef between StartInst and the insertion point
360   // for the new memset. This will become the defining access of the inserted
361   // memsets.
362   MemoryDef *LastMemDef = nullptr;
363   for (++BI; !BI->isTerminator(); ++BI) {
364     if (MSSAU) {
365       auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
366           MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
367       if (CurrentAcc) {
368         MemInsertPoint = CurrentAcc;
369         if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
370           LastMemDef = CurrentDef;
371       }
372     }
373 
374     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
375       // If the instruction is readnone, ignore it, otherwise bail out.  We
376       // don't even allow readonly here because we don't want something like:
377       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
378       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
379         break;
380       continue;
381     }
382 
383     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
384       // If this is a store, see if we can merge it in.
385       if (!NextStore->isSimple()) break;
386 
387       Value *StoredVal = NextStore->getValueOperand();
388 
389       // Don't convert stores of non-integral pointer types to memsets (which
390       // stores integers).
391       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
392         break;
393 
394       // Check to see if this stored value is of the same byte-splattable value.
395       Value *StoredByte = isBytewiseValue(StoredVal, DL);
396       if (isa<UndefValue>(ByteVal) && StoredByte)
397         ByteVal = StoredByte;
398       if (ByteVal != StoredByte)
399         break;
400 
401       // Check to see if this store is to a constant offset from the start ptr.
402       Optional<int64_t> Offset =
403           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
404       if (!Offset)
405         break;
406 
407       Ranges.addStore(*Offset, NextStore);
408     } else {
409       MemSetInst *MSI = cast<MemSetInst>(BI);
410 
411       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
412           !isa<ConstantInt>(MSI->getLength()))
413         break;
414 
415       // Check to see if this store is to a constant offset from the start ptr.
416       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
417       if (!Offset)
418         break;
419 
420       Ranges.addMemSet(*Offset, MSI);
421     }
422   }
423 
424   // If we have no ranges, then we just had a single store with nothing that
425   // could be merged in.  This is a very common case of course.
426   if (Ranges.empty())
427     return nullptr;
428 
429   // If we had at least one store that could be merged in, add the starting
430   // store as well.  We try to avoid this unless there is at least something
431   // interesting as a small compile-time optimization.
432   Ranges.addInst(0, StartInst);
433 
434   // If we create any memsets, we put it right before the first instruction that
435   // isn't part of the memset block.  This ensure that the memset is dominated
436   // by any addressing instruction needed by the start of the block.
437   IRBuilder<> Builder(&*BI);
438 
439   // Now that we have full information about ranges, loop over the ranges and
440   // emit memset's for anything big enough to be worthwhile.
441   Instruction *AMemSet = nullptr;
442   for (const MemsetRange &Range : Ranges) {
443     if (Range.TheStores.size() == 1) continue;
444 
445     // If it is profitable to lower this range to memset, do so now.
446     if (!Range.isProfitableToUseMemset(DL))
447       continue;
448 
449     // Otherwise, we do want to transform this!  Create a new memset.
450     // Get the starting pointer of the block.
451     StartPtr = Range.StartPtr;
452 
453     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
454                                    MaybeAlign(Range.Alignment));
455     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
456                                                    : Range.TheStores) dbgs()
457                                               << *SI << '\n';
458                dbgs() << "With: " << *AMemSet << '\n');
459     if (!Range.TheStores.empty())
460       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
461 
462     if (MSSAU) {
463       assert(LastMemDef && MemInsertPoint &&
464              "Both LastMemDef and MemInsertPoint need to be set");
465       auto *NewDef =
466           cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
467                               ? MSSAU->createMemoryAccessBefore(
468                                     AMemSet, LastMemDef, MemInsertPoint)
469                               : MSSAU->createMemoryAccessAfter(
470                                     AMemSet, LastMemDef, MemInsertPoint));
471       MSSAU->insertDef(NewDef, /*RenameUses=*/true);
472       LastMemDef = NewDef;
473       MemInsertPoint = NewDef;
474     }
475 
476     // Zap all the stores.
477     for (Instruction *SI : Range.TheStores)
478       eraseInstruction(SI);
479 
480     ++NumMemSetInfer;
481   }
482 
483   return AMemSet;
484 }
485 
486 // This method try to lift a store instruction before position P.
487 // It will lift the store and its argument + that anything that
488 // may alias with these.
489 // The method returns true if it was successful.
490 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
491   // If the store alias this position, early bail out.
492   MemoryLocation StoreLoc = MemoryLocation::get(SI);
493   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
494     return false;
495 
496   // Keep track of the arguments of all instruction we plan to lift
497   // so we can make sure to lift them as well if appropriate.
498   DenseSet<Instruction*> Args;
499   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
500     if (Ptr->getParent() == SI->getParent())
501       Args.insert(Ptr);
502 
503   // Instruction to lift before P.
504   SmallVector<Instruction *, 8> ToLift{SI};
505 
506   // Memory locations of lifted instructions.
507   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
508 
509   // Lifted calls.
510   SmallVector<const CallBase *, 8> Calls;
511 
512   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
513 
514   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
515     auto *C = &*I;
516 
517     // Make sure hoisting does not perform a store that was not guaranteed to
518     // happen.
519     if (!isGuaranteedToTransferExecutionToSuccessor(C))
520       return false;
521 
522     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
523 
524     bool NeedLift = false;
525     if (Args.erase(C))
526       NeedLift = true;
527     else if (MayAlias) {
528       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
529         return isModOrRefSet(AA->getModRefInfo(C, ML));
530       });
531 
532       if (!NeedLift)
533         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
534           return isModOrRefSet(AA->getModRefInfo(C, Call));
535         });
536     }
537 
538     if (!NeedLift)
539       continue;
540 
541     if (MayAlias) {
542       // Since LI is implicitly moved downwards past the lifted instructions,
543       // none of them may modify its source.
544       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
545         return false;
546       else if (const auto *Call = dyn_cast<CallBase>(C)) {
547         // If we can't lift this before P, it's game over.
548         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
549           return false;
550 
551         Calls.push_back(Call);
552       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
553         // If we can't lift this before P, it's game over.
554         auto ML = MemoryLocation::get(C);
555         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
556           return false;
557 
558         MemLocs.push_back(ML);
559       } else
560         // We don't know how to lift this instruction.
561         return false;
562     }
563 
564     ToLift.push_back(C);
565     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
566       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
567         if (A->getParent() == SI->getParent()) {
568           // Cannot hoist user of P above P
569           if(A == P) return false;
570           Args.insert(A);
571         }
572       }
573   }
574 
575   // Find MSSA insertion point. Normally P will always have a corresponding
576   // memory access before which we can insert. However, with non-standard AA
577   // pipelines, there may be a mismatch between AA and MSSA, in which case we
578   // will scan for a memory access before P. In either case, we know for sure
579   // that at least the load will have a memory access.
580   // TODO: Simplify this once P will be determined by MSSA, in which case the
581   // discrepancy can no longer occur.
582   MemoryUseOrDef *MemInsertPoint = nullptr;
583   if (MSSAU) {
584     if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
585       MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
586     } else {
587       const Instruction *ConstP = P;
588       for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
589                                              ++LI->getReverseIterator())) {
590         if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
591           MemInsertPoint = MA;
592           break;
593         }
594       }
595     }
596   }
597 
598   // We made it, we need to lift.
599   for (auto *I : llvm::reverse(ToLift)) {
600     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
601     I->moveBefore(P);
602     if (MSSAU) {
603       assert(MemInsertPoint && "Must have found insert point");
604       if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
605         MSSAU->moveAfter(MA, MemInsertPoint);
606         MemInsertPoint = MA;
607       }
608     }
609   }
610 
611   return true;
612 }
613 
614 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
615   if (!SI->isSimple()) return false;
616 
617   // Avoid merging nontemporal stores since the resulting
618   // memcpy/memset would not be able to preserve the nontemporal hint.
619   // In theory we could teach how to propagate the !nontemporal metadata to
620   // memset calls. However, that change would force the backend to
621   // conservatively expand !nontemporal memset calls back to sequences of
622   // store instructions (effectively undoing the merging).
623   if (SI->getMetadata(LLVMContext::MD_nontemporal))
624     return false;
625 
626   const DataLayout &DL = SI->getModule()->getDataLayout();
627 
628   Value *StoredVal = SI->getValueOperand();
629 
630   // Not all the transforms below are correct for non-integral pointers, bail
631   // until we've audited the individual pieces.
632   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
633     return false;
634 
635   // Load to store forwarding can be interpreted as memcpy.
636   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
637     if (LI->isSimple() && LI->hasOneUse() &&
638         LI->getParent() == SI->getParent()) {
639 
640       auto *T = LI->getType();
641       if (T->isAggregateType()) {
642         MemoryLocation LoadLoc = MemoryLocation::get(LI);
643 
644         // We use alias analysis to check if an instruction may store to
645         // the memory we load from in between the load and the store. If
646         // such an instruction is found, we try to promote there instead
647         // of at the store position.
648         Instruction *P = SI;
649         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
650           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
651             P = &I;
652             break;
653           }
654         }
655 
656         // We found an instruction that may write to the loaded memory.
657         // We can try to promote at this position instead of the store
658         // position if nothing alias the store memory after this and the store
659         // destination is not in the range.
660         if (P && P != SI) {
661           if (!moveUp(SI, P, LI))
662             P = nullptr;
663         }
664 
665         // If a valid insertion position is found, then we can promote
666         // the load/store pair to a memcpy.
667         if (P) {
668           // If we load from memory that may alias the memory we store to,
669           // memmove must be used to preserve semantic. If not, memcpy can
670           // be used.
671           bool UseMemMove = false;
672           if (!AA->isNoAlias(MemoryLocation::get(SI), LoadLoc))
673             UseMemMove = true;
674 
675           uint64_t Size = DL.getTypeStoreSize(T);
676 
677           IRBuilder<> Builder(P);
678           Instruction *M;
679           if (UseMemMove)
680             M = Builder.CreateMemMove(
681                 SI->getPointerOperand(), SI->getAlign(),
682                 LI->getPointerOperand(), LI->getAlign(), Size);
683           else
684             M = Builder.CreateMemCpy(
685                 SI->getPointerOperand(), SI->getAlign(),
686                 LI->getPointerOperand(), LI->getAlign(), Size);
687 
688           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
689                             << *M << "\n");
690 
691           if (MSSAU) {
692             auto *LastDef =
693                 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
694             auto *NewAccess =
695                 MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
696             MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
697           }
698 
699           eraseInstruction(SI);
700           eraseInstruction(LI);
701           ++NumMemCpyInstr;
702 
703           // Make sure we do not invalidate the iterator.
704           BBI = M->getIterator();
705           return true;
706         }
707       }
708 
709       // Detect cases where we're performing call slot forwarding, but
710       // happen to be using a load-store pair to implement it, rather than
711       // a memcpy.
712       MemDepResult ldep = MD->getDependency(LI);
713       CallInst *C = nullptr;
714       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
715         C = dyn_cast<CallInst>(ldep.getInst());
716 
717       if (C) {
718         // Check that nothing touches the dest of the "copy" between
719         // the call and the store.
720         MemoryLocation StoreLoc = MemoryLocation::get(SI);
721         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
722              I != E; --I) {
723           if (isModOrRefSet(AA->getModRefInfo(&*I, StoreLoc))) {
724             C = nullptr;
725             break;
726           }
727         }
728       }
729 
730       if (C) {
731         bool changed = performCallSlotOptzn(
732             LI, SI, SI->getPointerOperand()->stripPointerCasts(),
733             LI->getPointerOperand()->stripPointerCasts(),
734             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
735             commonAlignment(SI->getAlign(), LI->getAlign()), C);
736         if (changed) {
737           eraseInstruction(SI);
738           eraseInstruction(LI);
739           ++NumMemCpyInstr;
740           return true;
741         }
742       }
743     }
744   }
745 
746   // There are two cases that are interesting for this code to handle: memcpy
747   // and memset.  Right now we only handle memset.
748 
749   // Ensure that the value being stored is something that can be memset'able a
750   // byte at a time like "0" or "-1" or any width, as well as things like
751   // 0xA0A0A0A0 and 0.0.
752   auto *V = SI->getOperand(0);
753   if (Value *ByteVal = isBytewiseValue(V, DL)) {
754     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
755                                               ByteVal)) {
756       BBI = I->getIterator(); // Don't invalidate iterator.
757       return true;
758     }
759 
760     // If we have an aggregate, we try to promote it to memset regardless
761     // of opportunity for merging as it can expose optimization opportunities
762     // in subsequent passes.
763     auto *T = V->getType();
764     if (T->isAggregateType()) {
765       uint64_t Size = DL.getTypeStoreSize(T);
766       IRBuilder<> Builder(SI);
767       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
768                                      SI->getAlign());
769 
770       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
771 
772       if (MSSAU) {
773         assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)));
774         auto *LastDef =
775             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
776         auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
777         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
778       }
779 
780       eraseInstruction(SI);
781       NumMemSetInfer++;
782 
783       // Make sure we do not invalidate the iterator.
784       BBI = M->getIterator();
785       return true;
786     }
787   }
788 
789   return false;
790 }
791 
792 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
793   // See if there is another memset or store neighboring this memset which
794   // allows us to widen out the memset to do a single larger store.
795   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
796     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
797                                               MSI->getValue())) {
798       BBI = I->getIterator(); // Don't invalidate iterator.
799       return true;
800     }
801   return false;
802 }
803 
804 /// Takes a memcpy and a call that it depends on,
805 /// and checks for the possibility of a call slot optimization by having
806 /// the call write its result directly into the destination of the memcpy.
807 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
808                                          Instruction *cpyStore, Value *cpyDest,
809                                          Value *cpySrc, uint64_t cpyLen,
810                                          Align cpyAlign, CallInst *C) {
811   // The general transformation to keep in mind is
812   //
813   //   call @func(..., src, ...)
814   //   memcpy(dest, src, ...)
815   //
816   // ->
817   //
818   //   memcpy(dest, src, ...)
819   //   call @func(..., dest, ...)
820   //
821   // Since moving the memcpy is technically awkward, we additionally check that
822   // src only holds uninitialized values at the moment of the call, meaning that
823   // the memcpy can be discarded rather than moved.
824 
825   // Lifetime marks shouldn't be operated on.
826   if (Function *F = C->getCalledFunction())
827     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
828       return false;
829 
830   // Require that src be an alloca.  This simplifies the reasoning considerably.
831   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
832   if (!srcAlloca)
833     return false;
834 
835   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
836   if (!srcArraySize)
837     return false;
838 
839   const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
840   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
841                      srcArraySize->getZExtValue();
842 
843   if (cpyLen < srcSize)
844     return false;
845 
846   // Check that accessing the first srcSize bytes of dest will not cause a
847   // trap.  Otherwise the transform is invalid since it might cause a trap
848   // to occur earlier than it otherwise would.
849   if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen),
850                                           DL, C, DT))
851     return false;
852 
853   // Make sure that nothing can observe cpyDest being written early. There are
854   // a number of cases to consider:
855   //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
856   //     the transform.
857   //  2. C itself may not access cpyDest (prior to the transform). This is
858   //     checked further below.
859   //  3. If cpyDest is accessible to the caller of this function (potentially
860   //     captured and not based on an alloca), we need to ensure that we cannot
861   //     unwind between C and cpyStore. This is checked here.
862   //  4. If cpyDest is potentially captured, there may be accesses to it from
863   //     another thread. In this case, we need to check that cpyStore is
864   //     guaranteed to be executed if C is. As it is a non-atomic access, it
865   //     renders accesses from other threads undefined.
866   //     TODO: This is currently not checked.
867   if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
868     return false;
869 
870   // Check that dest points to memory that is at least as aligned as src.
871   Align srcAlign = srcAlloca->getAlign();
872   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
873   // If dest is not aligned enough and we can't increase its alignment then
874   // bail out.
875   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
876     return false;
877 
878   // Check that src is not accessed except via the call and the memcpy.  This
879   // guarantees that it holds only undefined values when passed in (so the final
880   // memcpy can be dropped), that it is not read or written between the call and
881   // the memcpy, and that writing beyond the end of it is undefined.
882   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
883                                    srcAlloca->user_end());
884   while (!srcUseList.empty()) {
885     User *U = srcUseList.pop_back_val();
886 
887     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
888       for (User *UU : U->users())
889         srcUseList.push_back(UU);
890       continue;
891     }
892     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
893       if (!G->hasAllZeroIndices())
894         return false;
895 
896       for (User *UU : U->users())
897         srcUseList.push_back(UU);
898       continue;
899     }
900     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
901       if (IT->isLifetimeStartOrEnd())
902         continue;
903 
904     if (U != C && U != cpyLoad)
905       return false;
906   }
907 
908   // Check that src isn't captured by the called function since the
909   // transformation can cause aliasing issues in that case.
910   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
911     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
912       return false;
913 
914   // Since we're changing the parameter to the callsite, we need to make sure
915   // that what would be the new parameter dominates the callsite.
916   if (!DT->dominates(cpyDest, C)) {
917     // Support moving a constant index GEP before the call.
918     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
919     if (GEP && GEP->hasAllConstantIndices() &&
920         DT->dominates(GEP->getPointerOperand(), C))
921       GEP->moveBefore(C);
922     else
923       return false;
924   }
925 
926   // In addition to knowing that the call does not access src in some
927   // unexpected manner, for example via a global, which we deduce from
928   // the use analysis, we also need to know that it does not sneakily
929   // access dest.  We rely on AA to figure this out for us.
930   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
931   // If necessary, perform additional analysis.
932   if (isModOrRefSet(MR))
933     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
934   if (isModOrRefSet(MR))
935     return false;
936 
937   // We can't create address space casts here because we don't know if they're
938   // safe for the target.
939   if (cpySrc->getType()->getPointerAddressSpace() !=
940       cpyDest->getType()->getPointerAddressSpace())
941     return false;
942   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
943     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
944         cpySrc->getType()->getPointerAddressSpace() !=
945             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
946       return false;
947 
948   // All the checks have passed, so do the transformation.
949   bool changedArgument = false;
950   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
951     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
952       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
953         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
954                                       cpyDest->getName(), C);
955       changedArgument = true;
956       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
957         C->setArgOperand(ArgI, Dest);
958       else
959         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
960                                    Dest, C->getArgOperand(ArgI)->getType(),
961                                    Dest->getName(), C));
962     }
963 
964   if (!changedArgument)
965     return false;
966 
967   // If the destination wasn't sufficiently aligned then increase its alignment.
968   if (!isDestSufficientlyAligned) {
969     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
970     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
971   }
972 
973   // Drop any cached information about the call, because we may have changed
974   // its dependence information by changing its parameter.
975   MD->removeInstruction(C);
976 
977   // Update AA metadata
978   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
979   // handled here, but combineMetadata doesn't support them yet
980   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
981                          LLVMContext::MD_noalias,
982                          LLVMContext::MD_invariant_group,
983                          LLVMContext::MD_access_group};
984   combineMetadata(C, cpyLoad, KnownIDs, true);
985 
986   ++NumCallSlot;
987   return true;
988 }
989 
990 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
991 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
992 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
993                                                   MemCpyInst *MDep) {
994   // We can only transforms memcpy's where the dest of one is the source of the
995   // other.
996   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
997     return false;
998 
999   // If dep instruction is reading from our current input, then it is a noop
1000   // transfer and substituting the input won't change this instruction.  Just
1001   // ignore the input and let someone else zap MDep.  This handles cases like:
1002   //    memcpy(a <- a)
1003   //    memcpy(b <- a)
1004   if (M->getSource() == MDep->getSource())
1005     return false;
1006 
1007   // Second, the length of the memcpy's must be the same, or the preceding one
1008   // must be larger than the following one.
1009   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1010   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1011   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1012     return false;
1013 
1014   // Verify that the copied-from memory doesn't change in between the two
1015   // transfers.  For example, in:
1016   //    memcpy(a <- b)
1017   //    *b = 42;
1018   //    memcpy(c <- a)
1019   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1020   //
1021   // TODO: If the code between M and MDep is transparent to the destination "c",
1022   // then we could still perform the xform by moving M up to the first memcpy.
1023   //
1024   // NOTE: This is conservative, it will stop on any read from the source loc,
1025   // not just the defining memcpy.
1026   MemDepResult SourceDep =
1027       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1028                                    M->getIterator(), M->getParent());
1029   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1030     return false;
1031 
1032   // If the dest of the second might alias the source of the first, then the
1033   // source and dest might overlap.  We still want to eliminate the intermediate
1034   // value, but we have to generate a memmove instead of memcpy.
1035   bool UseMemMove = false;
1036   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1037                      MemoryLocation::getForSource(MDep)))
1038     UseMemMove = true;
1039 
1040   // If all checks passed, then we can transform M.
1041   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1042                     << *MDep << '\n' << *M << '\n');
1043 
1044   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1045   // example we could be moving from movaps -> movq on x86.
1046   IRBuilder<> Builder(M);
1047   Instruction *NewM;
1048   if (UseMemMove)
1049     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1050                                  MDep->getRawSource(), MDep->getSourceAlign(),
1051                                  M->getLength(), M->isVolatile());
1052   else
1053     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1054                                 MDep->getRawSource(), MDep->getSourceAlign(),
1055                                 M->getLength(), M->isVolatile());
1056 
1057   if (MSSAU) {
1058     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1059     auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1060     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1061     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1062   }
1063 
1064   // Remove the instruction we're replacing.
1065   eraseInstruction(M);
1066   ++NumMemCpyInstr;
1067   return true;
1068 }
1069 
1070 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1071 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1072 /// weren't copied over by \p MemCpy.
1073 ///
1074 /// In other words, transform:
1075 /// \code
1076 ///   memset(dst, c, dst_size);
1077 ///   memcpy(dst, src, src_size);
1078 /// \endcode
1079 /// into:
1080 /// \code
1081 ///   memcpy(dst, src, src_size);
1082 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1083 /// \endcode
1084 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1085                                                   MemSetInst *MemSet) {
1086   // We can only transform memset/memcpy with the same destination.
1087   if (MemSet->getDest() != MemCpy->getDest())
1088     return false;
1089 
1090   // Check that src and dst of the memcpy aren't the same. While memcpy
1091   // operands cannot partially overlap, exact equality is allowed.
1092   if (!AA->isNoAlias(MemoryLocation(MemCpy->getSource(),
1093                                     LocationSize::precise(1)),
1094                      MemoryLocation(MemCpy->getDest(),
1095                                     LocationSize::precise(1))))
1096     return false;
1097 
1098   // Check that there are no other dependencies on the memset destination.
1099   MemDepResult DstDepInfo =
1100       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1101                                    MemCpy->getIterator(), MemCpy->getParent());
1102   if (DstDepInfo.getInst() != MemSet)
1103     return false;
1104 
1105   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1106   Value *Dest = MemCpy->getRawDest();
1107   Value *DestSize = MemSet->getLength();
1108   Value *SrcSize = MemCpy->getLength();
1109 
1110   if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1111     return false;
1112 
1113   // By default, create an unaligned memset.
1114   unsigned Align = 1;
1115   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1116   // of the sum.
1117   const unsigned DestAlign =
1118       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1119   if (DestAlign > 1)
1120     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1121       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1122 
1123   IRBuilder<> Builder(MemCpy);
1124 
1125   // If the sizes have different types, zext the smaller one.
1126   if (DestSize->getType() != SrcSize->getType()) {
1127     if (DestSize->getType()->getIntegerBitWidth() >
1128         SrcSize->getType()->getIntegerBitWidth())
1129       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1130     else
1131       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1132   }
1133 
1134   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1135   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1136   Value *MemsetLen = Builder.CreateSelect(
1137       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1138   Instruction *NewMemSet = Builder.CreateMemSet(
1139       Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1140                         SrcSize),
1141       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1142 
1143   if (MSSAU) {
1144     assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1145            "MemCpy must be a MemoryDef");
1146     // The new memset is inserted after the memcpy, but it is known that its
1147     // defining access is the memset about to be removed which immediately
1148     // precedes the memcpy.
1149     auto *LastDef =
1150         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1151     auto *NewAccess = MSSAU->createMemoryAccessBefore(
1152         NewMemSet, LastDef->getDefiningAccess(), LastDef);
1153     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1154   }
1155 
1156   eraseInstruction(MemSet);
1157   return true;
1158 }
1159 
1160 /// Determine whether the instruction has undefined content for the given Size,
1161 /// either because it was freshly alloca'd or started its lifetime.
1162 static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1163   if (isa<AllocaInst>(I))
1164     return true;
1165 
1166   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1167     if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1168       if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1169         if (LTSize->getZExtValue() >= Size->getZExtValue())
1170           return true;
1171 
1172   return false;
1173 }
1174 
1175 /// Transform memcpy to memset when its source was just memset.
1176 /// In other words, turn:
1177 /// \code
1178 ///   memset(dst1, c, dst1_size);
1179 ///   memcpy(dst2, dst1, dst2_size);
1180 /// \endcode
1181 /// into:
1182 /// \code
1183 ///   memset(dst1, c, dst1_size);
1184 ///   memset(dst2, c, dst2_size);
1185 /// \endcode
1186 /// When dst2_size <= dst1_size.
1187 ///
1188 /// The \p MemCpy must have a Constant length.
1189 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1190                                                MemSetInst *MemSet) {
1191   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1192   // memcpying from the same address. Otherwise it is hard to reason about.
1193   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1194     return false;
1195 
1196   // A known memset size is required.
1197   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1198   if (!MemSetSize)
1199     return false;
1200 
1201   // Make sure the memcpy doesn't read any more than what the memset wrote.
1202   // Don't worry about sizes larger than i64.
1203   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1204   if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1205     // If the memcpy is larger than the memset, but the memory was undef prior
1206     // to the memset, we can just ignore the tail. Technically we're only
1207     // interested in the bytes from MemSetSize..CopySize here, but as we can't
1208     // easily represent this location, we use the full 0..CopySize range.
1209     MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1210     MemDepResult DepInfo = MD->getPointerDependencyFrom(
1211         MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1212     if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1213       CopySize = MemSetSize;
1214     else
1215       return false;
1216   }
1217 
1218   IRBuilder<> Builder(MemCpy);
1219   Instruction *NewM =
1220       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1221                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1222   if (MSSAU) {
1223     auto *LastDef =
1224         cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1225     auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1226     MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1227   }
1228 
1229   return true;
1230 }
1231 
1232 /// Perform simplification of memcpy's.  If we have memcpy A
1233 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1234 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1235 /// circumstances). This allows later passes to remove the first memcpy
1236 /// altogether.
1237 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1238   // We can only optimize non-volatile memcpy's.
1239   if (M->isVolatile()) return false;
1240 
1241   // If the source and destination of the memcpy are the same, then zap it.
1242   if (M->getSource() == M->getDest()) {
1243     ++BBI;
1244     eraseInstruction(M);
1245     return true;
1246   }
1247 
1248   // If copying from a constant, try to turn the memcpy into a memset.
1249   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1250     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1251       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1252                                            M->getModule()->getDataLayout())) {
1253         IRBuilder<> Builder(M);
1254         Instruction *NewM =
1255             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1256                                  MaybeAlign(M->getDestAlignment()), false);
1257         if (MSSAU) {
1258           auto *LastDef =
1259               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1260           auto *NewAccess =
1261               MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1262           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1263         }
1264 
1265         eraseInstruction(M);
1266         ++NumCpyToSet;
1267         return true;
1268       }
1269 
1270   MemDepResult DepInfo = MD->getDependency(M);
1271 
1272   // Try to turn a partially redundant memset + memcpy into
1273   // memcpy + smaller memset.  We don't need the memcpy size for this.
1274   if (DepInfo.isClobber())
1275     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1276       if (processMemSetMemCpyDependence(M, MDep))
1277         return true;
1278 
1279   // The optimizations after this point require the memcpy size.
1280   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1281   if (!CopySize) return false;
1282 
1283   // There are four possible optimizations we can do for memcpy:
1284   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1285   //   b) call-memcpy xform for return slot optimization.
1286   //   c) memcpy from freshly alloca'd space or space that has just started its
1287   //      lifetime copies undefined data, and we can therefore eliminate the
1288   //      memcpy in favor of the data that was already at the destination.
1289   //   d) memcpy from a just-memset'd source can be turned into memset.
1290   if (DepInfo.isClobber()) {
1291     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1292       // FIXME: Can we pass in either of dest/src alignment here instead
1293       // of conservatively taking the minimum?
1294       Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1295                                  M->getSourceAlign().valueOrOne());
1296       if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1297                                CopySize->getZExtValue(), Alignment, C)) {
1298         eraseInstruction(M);
1299         ++NumMemCpyInstr;
1300         return true;
1301       }
1302     }
1303   }
1304 
1305   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1306   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1307       SrcLoc, true, M->getIterator(), M->getParent());
1308 
1309   if (SrcDepInfo.isClobber()) {
1310     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1311       return processMemCpyMemCpyDependence(M, MDep);
1312   } else if (SrcDepInfo.isDef()) {
1313     if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1314       eraseInstruction(M);
1315       ++NumMemCpyInstr;
1316       return true;
1317     }
1318   }
1319 
1320   if (SrcDepInfo.isClobber())
1321     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1322       if (performMemCpyToMemSetOptzn(M, MDep)) {
1323         eraseInstruction(M);
1324         ++NumCpyToSet;
1325         return true;
1326       }
1327 
1328   return false;
1329 }
1330 
1331 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1332 /// not to alias.
1333 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1334   if (!TLI->has(LibFunc_memmove))
1335     return false;
1336 
1337   // See if the pointers alias.
1338   if (!AA->isNoAlias(MemoryLocation::getForDest(M),
1339                      MemoryLocation::getForSource(M)))
1340     return false;
1341 
1342   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1343                     << "\n");
1344 
1345   // If not, then we know we can transform this.
1346   Type *ArgTys[3] = { M->getRawDest()->getType(),
1347                       M->getRawSource()->getType(),
1348                       M->getLength()->getType() };
1349   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1350                                                  Intrinsic::memcpy, ArgTys));
1351 
1352   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1353   // aliasing guarantees).
1354 
1355   // MemDep may have over conservative information about this instruction, just
1356   // conservatively flush it from the cache.
1357   MD->removeInstruction(M);
1358 
1359   ++NumMoveToCpy;
1360   return true;
1361 }
1362 
1363 /// This is called on every byval argument in call sites.
1364 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1365   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1366   // Find out what feeds this byval argument.
1367   Value *ByValArg = CB.getArgOperand(ArgNo);
1368   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1369   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1370   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1371       MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1372       CB.getIterator(), CB.getParent());
1373   if (!DepInfo.isClobber())
1374     return false;
1375 
1376   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1377   // a memcpy, see if we can byval from the source of the memcpy instead of the
1378   // result.
1379   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1380   if (!MDep || MDep->isVolatile() ||
1381       ByValArg->stripPointerCasts() != MDep->getDest())
1382     return false;
1383 
1384   // The length of the memcpy must be larger or equal to the size of the byval.
1385   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1386   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1387     return false;
1388 
1389   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1390   // then it is some target specific value that we can't know.
1391   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1392   if (!ByValAlign) return false;
1393 
1394   // If it is greater than the memcpy, then we check to see if we can force the
1395   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1396   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1397   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1398       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1399                                  DT) < *ByValAlign)
1400     return false;
1401 
1402   // The address space of the memcpy source must match the byval argument
1403   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1404       ByValArg->getType()->getPointerAddressSpace())
1405     return false;
1406 
1407   // Verify that the copied-from memory doesn't change in between the memcpy and
1408   // the byval call.
1409   //    memcpy(a <- b)
1410   //    *b = 42;
1411   //    foo(*a)
1412   // It would be invalid to transform the second memcpy into foo(*b).
1413   //
1414   // NOTE: This is conservative, it will stop on any read from the source loc,
1415   // not just the defining memcpy.
1416   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1417       MemoryLocation::getForSource(MDep), false,
1418       CB.getIterator(), MDep->getParent());
1419   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1420     return false;
1421 
1422   Value *TmpCast = MDep->getSource();
1423   if (MDep->getSource()->getType() != ByValArg->getType()) {
1424     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1425                                               "tmpcast", &CB);
1426     // Set the tmpcast's DebugLoc to MDep's
1427     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1428     TmpCast = TmpBitCast;
1429   }
1430 
1431   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1432                     << "  " << *MDep << "\n"
1433                     << "  " << CB << "\n");
1434 
1435   // Otherwise we're good!  Update the byval argument.
1436   CB.setArgOperand(ArgNo, TmpCast);
1437   ++NumMemCpyInstr;
1438   return true;
1439 }
1440 
1441 /// Executes one iteration of MemCpyOptPass.
1442 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1443   bool MadeChange = false;
1444 
1445   // Walk all instruction in the function.
1446   for (BasicBlock &BB : F) {
1447     // Skip unreachable blocks. For example processStore assumes that an
1448     // instruction in a BB can't be dominated by a later instruction in the
1449     // same BB (which is a scenario that can happen for an unreachable BB that
1450     // has itself as a predecessor).
1451     if (!DT->isReachableFromEntry(&BB))
1452       continue;
1453 
1454     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1455         // Avoid invalidating the iterator.
1456       Instruction *I = &*BI++;
1457 
1458       bool RepeatInstruction = false;
1459 
1460       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1461         MadeChange |= processStore(SI, BI);
1462       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1463         RepeatInstruction = processMemSet(M, BI);
1464       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1465         RepeatInstruction = processMemCpy(M, BI);
1466       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1467         RepeatInstruction = processMemMove(M);
1468       else if (auto *CB = dyn_cast<CallBase>(I)) {
1469         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1470           if (CB->isByValArgument(i))
1471             MadeChange |= processByValArgument(*CB, i);
1472       }
1473 
1474       // Reprocess the instruction if desired.
1475       if (RepeatInstruction) {
1476         if (BI != BB.begin())
1477           --BI;
1478         MadeChange = true;
1479       }
1480     }
1481   }
1482 
1483   return MadeChange;
1484 }
1485 
1486 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1487   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1488   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1489   auto *AA = &AM.getResult<AAManager>(F);
1490   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1491   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1492   auto *MSSA = EnableMemorySSA ? &AM.getResult<MemorySSAAnalysis>(F)
1493                                : AM.getCachedResult<MemorySSAAnalysis>(F);
1494 
1495   bool MadeChange =
1496       runImpl(F, &MD, &TLI, AA, AC, DT, MSSA ? &MSSA->getMSSA() : nullptr);
1497   if (!MadeChange)
1498     return PreservedAnalyses::all();
1499 
1500   PreservedAnalyses PA;
1501   PA.preserveSet<CFGAnalyses>();
1502   PA.preserve<GlobalsAA>();
1503   PA.preserve<MemoryDependenceAnalysis>();
1504   if (MSSA)
1505     PA.preserve<MemorySSAAnalysis>();
1506   return PA;
1507 }
1508 
1509 bool MemCpyOptPass::runImpl(Function &F, MemoryDependenceResults *MD_,
1510                             TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
1511                             AssumptionCache *AC_, DominatorTree *DT_,
1512                             MemorySSA *MSSA_) {
1513   bool MadeChange = false;
1514   MD = MD_;
1515   TLI = TLI_;
1516   AA = AA_;
1517   AC = AC_;
1518   DT = DT_;
1519   MemorySSAUpdater MSSAU_(MSSA_);
1520   MSSAU = MSSA_ ? &MSSAU_ : nullptr;
1521   // If we don't have at least memset and memcpy, there is little point of doing
1522   // anything here.  These are required by a freestanding implementation, so if
1523   // even they are disabled, there is no point in trying hard.
1524   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1525     return false;
1526 
1527   while (true) {
1528     if (!iterateOnFunction(F))
1529       break;
1530     MadeChange = true;
1531   }
1532 
1533   if (MSSA_ && VerifyMemorySSA)
1534     MSSA_->verifyMemorySSA();
1535 
1536   MD = nullptr;
1537   return MadeChange;
1538 }
1539 
1540 /// This is the main transformation entry point for a function.
1541 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1542   if (skipFunction(F))
1543     return false;
1544 
1545   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1546   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1547   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1548   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1549   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1550   auto *MSSAWP = EnableMemorySSA
1551       ? &getAnalysis<MemorySSAWrapperPass>()
1552       : getAnalysisIfAvailable<MemorySSAWrapperPass>();
1553 
1554   return Impl.runImpl(F, MD, TLI, AA, AC, DT,
1555                       MSSAWP ? &MSSAWP->getMSSA() : nullptr);
1556 }
1557