1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/Loads.h" 25 #include "llvm/Analysis/MemoryLocation.h" 26 #include "llvm/Analysis/MemorySSA.h" 27 #include "llvm/Analysis/MemorySSAUpdater.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/IR/Argument.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GetElementPtrTypeIterator.h" 38 #include "llvm/IR/GlobalVariable.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Operator.h" 48 #include "llvm/IR/PassManager.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/IR/User.h" 51 #include "llvm/IR/Value.h" 52 #include "llvm/InitializePasses.h" 53 #include "llvm/Pass.h" 54 #include "llvm/Support/Casting.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Scalar.h" 59 #include "llvm/Transforms/Utils/Local.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <utility> 64 65 using namespace llvm; 66 67 #define DEBUG_TYPE "memcpyopt" 68 69 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( 70 "enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden, 71 cl::ZeroOrMore, 72 cl::desc("Enable memcpyopt even when libcalls are disabled")); 73 74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 75 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 76 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 77 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 78 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 79 80 namespace { 81 82 /// Represents a range of memset'd bytes with the ByteVal value. 83 /// This allows us to analyze stores like: 84 /// store 0 -> P+1 85 /// store 0 -> P+0 86 /// store 0 -> P+3 87 /// store 0 -> P+2 88 /// which sometimes happens with stores to arrays of structs etc. When we see 89 /// the first store, we make a range [1, 2). The second store extends the range 90 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 91 /// two ranges into [0, 3) which is memset'able. 92 struct MemsetRange { 93 // Start/End - A semi range that describes the span that this range covers. 94 // The range is closed at the start and open at the end: [Start, End). 95 int64_t Start, End; 96 97 /// StartPtr - The getelementptr instruction that points to the start of the 98 /// range. 99 Value *StartPtr; 100 101 /// Alignment - The known alignment of the first store. 102 unsigned Alignment; 103 104 /// TheStores - The actual stores that make up this range. 105 SmallVector<Instruction*, 16> TheStores; 106 107 bool isProfitableToUseMemset(const DataLayout &DL) const; 108 }; 109 110 } // end anonymous namespace 111 112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 113 // If we found more than 4 stores to merge or 16 bytes, use memset. 114 if (TheStores.size() >= 4 || End-Start >= 16) return true; 115 116 // If there is nothing to merge, don't do anything. 117 if (TheStores.size() < 2) return false; 118 119 // If any of the stores are a memset, then it is always good to extend the 120 // memset. 121 for (Instruction *SI : TheStores) 122 if (!isa<StoreInst>(SI)) 123 return true; 124 125 // Assume that the code generator is capable of merging pairs of stores 126 // together if it wants to. 127 if (TheStores.size() == 2) return false; 128 129 // If we have fewer than 8 stores, it can still be worthwhile to do this. 130 // For example, merging 4 i8 stores into an i32 store is useful almost always. 131 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 132 // memset will be split into 2 32-bit stores anyway) and doing so can 133 // pessimize the llvm optimizer. 134 // 135 // Since we don't have perfect knowledge here, make some assumptions: assume 136 // the maximum GPR width is the same size as the largest legal integer 137 // size. If so, check to see whether we will end up actually reducing the 138 // number of stores used. 139 unsigned Bytes = unsigned(End-Start); 140 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 141 if (MaxIntSize == 0) 142 MaxIntSize = 1; 143 unsigned NumPointerStores = Bytes / MaxIntSize; 144 145 // Assume the remaining bytes if any are done a byte at a time. 146 unsigned NumByteStores = Bytes % MaxIntSize; 147 148 // If we will reduce the # stores (according to this heuristic), do the 149 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 150 // etc. 151 return TheStores.size() > NumPointerStores+NumByteStores; 152 } 153 154 namespace { 155 156 class MemsetRanges { 157 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 158 159 /// A sorted list of the memset ranges. 160 SmallVector<MemsetRange, 8> Ranges; 161 162 const DataLayout &DL; 163 164 public: 165 MemsetRanges(const DataLayout &DL) : DL(DL) {} 166 167 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 168 169 const_iterator begin() const { return Ranges.begin(); } 170 const_iterator end() const { return Ranges.end(); } 171 bool empty() const { return Ranges.empty(); } 172 173 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 174 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 175 addStore(OffsetFromFirst, SI); 176 else 177 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 178 } 179 180 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 181 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 182 183 addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(), 184 SI->getAlign().value(), SI); 185 } 186 187 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 188 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 189 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 190 } 191 192 void addRange(int64_t Start, int64_t Size, Value *Ptr, 193 unsigned Alignment, Instruction *Inst); 194 }; 195 196 } // end anonymous namespace 197 198 /// Add a new store to the MemsetRanges data structure. This adds a 199 /// new range for the specified store at the specified offset, merging into 200 /// existing ranges as appropriate. 201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 202 unsigned Alignment, Instruction *Inst) { 203 int64_t End = Start+Size; 204 205 range_iterator I = partition_point( 206 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 207 208 // We now know that I == E, in which case we didn't find anything to merge 209 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 210 // to insert a new range. Handle this now. 211 if (I == Ranges.end() || End < I->Start) { 212 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 213 R.Start = Start; 214 R.End = End; 215 R.StartPtr = Ptr; 216 R.Alignment = Alignment; 217 R.TheStores.push_back(Inst); 218 return; 219 } 220 221 // This store overlaps with I, add it. 222 I->TheStores.push_back(Inst); 223 224 // At this point, we may have an interval that completely contains our store. 225 // If so, just add it to the interval and return. 226 if (I->Start <= Start && I->End >= End) 227 return; 228 229 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 230 // but is not entirely contained within the range. 231 232 // See if the range extends the start of the range. In this case, it couldn't 233 // possibly cause it to join the prior range, because otherwise we would have 234 // stopped on *it*. 235 if (Start < I->Start) { 236 I->Start = Start; 237 I->StartPtr = Ptr; 238 I->Alignment = Alignment; 239 } 240 241 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 242 // is in or right at the end of I), and that End >= I->Start. Extend I out to 243 // End. 244 if (End > I->End) { 245 I->End = End; 246 range_iterator NextI = I; 247 while (++NextI != Ranges.end() && End >= NextI->Start) { 248 // Merge the range in. 249 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 250 if (NextI->End > I->End) 251 I->End = NextI->End; 252 Ranges.erase(NextI); 253 NextI = I; 254 } 255 } 256 } 257 258 //===----------------------------------------------------------------------===// 259 // MemCpyOptLegacyPass Pass 260 //===----------------------------------------------------------------------===// 261 262 namespace { 263 264 class MemCpyOptLegacyPass : public FunctionPass { 265 MemCpyOptPass Impl; 266 267 public: 268 static char ID; // Pass identification, replacement for typeid 269 270 MemCpyOptLegacyPass() : FunctionPass(ID) { 271 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 272 } 273 274 bool runOnFunction(Function &F) override; 275 276 private: 277 // This transformation requires dominator postdominator info 278 void getAnalysisUsage(AnalysisUsage &AU) const override { 279 AU.setPreservesCFG(); 280 AU.addRequired<AssumptionCacheTracker>(); 281 AU.addRequired<DominatorTreeWrapperPass>(); 282 AU.addPreserved<DominatorTreeWrapperPass>(); 283 AU.addPreserved<GlobalsAAWrapperPass>(); 284 AU.addRequired<TargetLibraryInfoWrapperPass>(); 285 AU.addRequired<AAResultsWrapperPass>(); 286 AU.addPreserved<AAResultsWrapperPass>(); 287 AU.addRequired<MemorySSAWrapperPass>(); 288 AU.addPreserved<MemorySSAWrapperPass>(); 289 } 290 }; 291 292 } // end anonymous namespace 293 294 char MemCpyOptLegacyPass::ID = 0; 295 296 /// The public interface to this file... 297 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 298 299 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 300 false, false) 301 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 302 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 303 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 305 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 306 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 307 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 308 false, false) 309 310 // Check that V is either not accessible by the caller, or unwinding cannot 311 // occur between Start and End. 312 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 313 Instruction *End) { 314 assert(Start->getParent() == End->getParent() && "Must be in same block"); 315 if (!Start->getFunction()->doesNotThrow() && 316 !isa<AllocaInst>(getUnderlyingObject(V))) { 317 for (const Instruction &I : 318 make_range(Start->getIterator(), End->getIterator())) { 319 if (I.mayThrow()) 320 return true; 321 } 322 } 323 return false; 324 } 325 326 void MemCpyOptPass::eraseInstruction(Instruction *I) { 327 MSSAU->removeMemoryAccess(I); 328 I->eraseFromParent(); 329 } 330 331 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 332 // Start and End must be in the same block 333 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 334 const MemoryUseOrDef *Start, 335 const MemoryUseOrDef *End) { 336 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 337 for (const MemoryAccess &MA : 338 make_range(++Start->getIterator(), End->getIterator())) { 339 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 340 Loc))) 341 return true; 342 } 343 return false; 344 } 345 346 // Check for mod of Loc between Start and End, excluding both boundaries. 347 // Start and End can be in different blocks. 348 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc, 349 const MemoryUseOrDef *Start, 350 const MemoryUseOrDef *End) { 351 // TODO: Only walk until we hit Start. 352 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 353 End->getDefiningAccess(), Loc); 354 return !MSSA->dominates(Clobber, Start); 355 } 356 357 /// When scanning forward over instructions, we look for some other patterns to 358 /// fold away. In particular, this looks for stores to neighboring locations of 359 /// memory. If it sees enough consecutive ones, it attempts to merge them 360 /// together into a memcpy/memset. 361 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 362 Value *StartPtr, 363 Value *ByteVal) { 364 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 365 366 // Okay, so we now have a single store that can be splatable. Scan to find 367 // all subsequent stores of the same value to offset from the same pointer. 368 // Join these together into ranges, so we can decide whether contiguous blocks 369 // are stored. 370 MemsetRanges Ranges(DL); 371 372 BasicBlock::iterator BI(StartInst); 373 374 // Keeps track of the last memory use or def before the insertion point for 375 // the new memset. The new MemoryDef for the inserted memsets will be inserted 376 // after MemInsertPoint. It points to either LastMemDef or to the last user 377 // before the insertion point of the memset, if there are any such users. 378 MemoryUseOrDef *MemInsertPoint = nullptr; 379 // Keeps track of the last MemoryDef between StartInst and the insertion point 380 // for the new memset. This will become the defining access of the inserted 381 // memsets. 382 MemoryDef *LastMemDef = nullptr; 383 for (++BI; !BI->isTerminator(); ++BI) { 384 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 385 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 386 if (CurrentAcc) { 387 MemInsertPoint = CurrentAcc; 388 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 389 LastMemDef = CurrentDef; 390 } 391 392 // Calls that only access inaccessible memory do not block merging 393 // accessible stores. 394 if (auto *CB = dyn_cast<CallBase>(BI)) { 395 if (CB->onlyAccessesInaccessibleMemory()) 396 continue; 397 } 398 399 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 400 // If the instruction is readnone, ignore it, otherwise bail out. We 401 // don't even allow readonly here because we don't want something like: 402 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 403 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 404 break; 405 continue; 406 } 407 408 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 409 // If this is a store, see if we can merge it in. 410 if (!NextStore->isSimple()) break; 411 412 Value *StoredVal = NextStore->getValueOperand(); 413 414 // Don't convert stores of non-integral pointer types to memsets (which 415 // stores integers). 416 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 417 break; 418 419 // Check to see if this stored value is of the same byte-splattable value. 420 Value *StoredByte = isBytewiseValue(StoredVal, DL); 421 if (isa<UndefValue>(ByteVal) && StoredByte) 422 ByteVal = StoredByte; 423 if (ByteVal != StoredByte) 424 break; 425 426 // Check to see if this store is to a constant offset from the start ptr. 427 Optional<int64_t> Offset = 428 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 429 if (!Offset) 430 break; 431 432 Ranges.addStore(*Offset, NextStore); 433 } else { 434 MemSetInst *MSI = cast<MemSetInst>(BI); 435 436 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 437 !isa<ConstantInt>(MSI->getLength())) 438 break; 439 440 // Check to see if this store is to a constant offset from the start ptr. 441 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 442 if (!Offset) 443 break; 444 445 Ranges.addMemSet(*Offset, MSI); 446 } 447 } 448 449 // If we have no ranges, then we just had a single store with nothing that 450 // could be merged in. This is a very common case of course. 451 if (Ranges.empty()) 452 return nullptr; 453 454 // If we had at least one store that could be merged in, add the starting 455 // store as well. We try to avoid this unless there is at least something 456 // interesting as a small compile-time optimization. 457 Ranges.addInst(0, StartInst); 458 459 // If we create any memsets, we put it right before the first instruction that 460 // isn't part of the memset block. This ensure that the memset is dominated 461 // by any addressing instruction needed by the start of the block. 462 IRBuilder<> Builder(&*BI); 463 464 // Now that we have full information about ranges, loop over the ranges and 465 // emit memset's for anything big enough to be worthwhile. 466 Instruction *AMemSet = nullptr; 467 for (const MemsetRange &Range : Ranges) { 468 if (Range.TheStores.size() == 1) continue; 469 470 // If it is profitable to lower this range to memset, do so now. 471 if (!Range.isProfitableToUseMemset(DL)) 472 continue; 473 474 // Otherwise, we do want to transform this! Create a new memset. 475 // Get the starting pointer of the block. 476 StartPtr = Range.StartPtr; 477 478 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 479 MaybeAlign(Range.Alignment)); 480 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 481 : Range.TheStores) dbgs() 482 << *SI << '\n'; 483 dbgs() << "With: " << *AMemSet << '\n'); 484 if (!Range.TheStores.empty()) 485 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 486 487 assert(LastMemDef && MemInsertPoint && 488 "Both LastMemDef and MemInsertPoint need to be set"); 489 auto *NewDef = 490 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 491 ? MSSAU->createMemoryAccessBefore( 492 AMemSet, LastMemDef, MemInsertPoint) 493 : MSSAU->createMemoryAccessAfter( 494 AMemSet, LastMemDef, MemInsertPoint)); 495 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 496 LastMemDef = NewDef; 497 MemInsertPoint = NewDef; 498 499 // Zap all the stores. 500 for (Instruction *SI : Range.TheStores) 501 eraseInstruction(SI); 502 503 ++NumMemSetInfer; 504 } 505 506 return AMemSet; 507 } 508 509 // This method try to lift a store instruction before position P. 510 // It will lift the store and its argument + that anything that 511 // may alias with these. 512 // The method returns true if it was successful. 513 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 514 // If the store alias this position, early bail out. 515 MemoryLocation StoreLoc = MemoryLocation::get(SI); 516 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 517 return false; 518 519 // Keep track of the arguments of all instruction we plan to lift 520 // so we can make sure to lift them as well if appropriate. 521 DenseSet<Instruction*> Args; 522 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 523 if (Ptr->getParent() == SI->getParent()) 524 Args.insert(Ptr); 525 526 // Instruction to lift before P. 527 SmallVector<Instruction *, 8> ToLift{SI}; 528 529 // Memory locations of lifted instructions. 530 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 531 532 // Lifted calls. 533 SmallVector<const CallBase *, 8> Calls; 534 535 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 536 537 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 538 auto *C = &*I; 539 540 // Make sure hoisting does not perform a store that was not guaranteed to 541 // happen. 542 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 543 return false; 544 545 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 546 547 bool NeedLift = false; 548 if (Args.erase(C)) 549 NeedLift = true; 550 else if (MayAlias) { 551 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 552 return isModOrRefSet(AA->getModRefInfo(C, ML)); 553 }); 554 555 if (!NeedLift) 556 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 557 return isModOrRefSet(AA->getModRefInfo(C, Call)); 558 }); 559 } 560 561 if (!NeedLift) 562 continue; 563 564 if (MayAlias) { 565 // Since LI is implicitly moved downwards past the lifted instructions, 566 // none of them may modify its source. 567 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 568 return false; 569 else if (const auto *Call = dyn_cast<CallBase>(C)) { 570 // If we can't lift this before P, it's game over. 571 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 572 return false; 573 574 Calls.push_back(Call); 575 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 576 // If we can't lift this before P, it's game over. 577 auto ML = MemoryLocation::get(C); 578 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 579 return false; 580 581 MemLocs.push_back(ML); 582 } else 583 // We don't know how to lift this instruction. 584 return false; 585 } 586 587 ToLift.push_back(C); 588 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 589 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 590 if (A->getParent() == SI->getParent()) { 591 // Cannot hoist user of P above P 592 if(A == P) return false; 593 Args.insert(A); 594 } 595 } 596 } 597 598 // Find MSSA insertion point. Normally P will always have a corresponding 599 // memory access before which we can insert. However, with non-standard AA 600 // pipelines, there may be a mismatch between AA and MSSA, in which case we 601 // will scan for a memory access before P. In either case, we know for sure 602 // that at least the load will have a memory access. 603 // TODO: Simplify this once P will be determined by MSSA, in which case the 604 // discrepancy can no longer occur. 605 MemoryUseOrDef *MemInsertPoint = nullptr; 606 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 607 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 608 } else { 609 const Instruction *ConstP = P; 610 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 611 ++LI->getReverseIterator())) { 612 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 613 MemInsertPoint = MA; 614 break; 615 } 616 } 617 } 618 619 // We made it, we need to lift. 620 for (auto *I : llvm::reverse(ToLift)) { 621 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 622 I->moveBefore(P); 623 assert(MemInsertPoint && "Must have found insert point"); 624 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 625 MSSAU->moveAfter(MA, MemInsertPoint); 626 MemInsertPoint = MA; 627 } 628 } 629 630 return true; 631 } 632 633 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 634 if (!SI->isSimple()) return false; 635 636 // Avoid merging nontemporal stores since the resulting 637 // memcpy/memset would not be able to preserve the nontemporal hint. 638 // In theory we could teach how to propagate the !nontemporal metadata to 639 // memset calls. However, that change would force the backend to 640 // conservatively expand !nontemporal memset calls back to sequences of 641 // store instructions (effectively undoing the merging). 642 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 643 return false; 644 645 const DataLayout &DL = SI->getModule()->getDataLayout(); 646 647 Value *StoredVal = SI->getValueOperand(); 648 649 // Not all the transforms below are correct for non-integral pointers, bail 650 // until we've audited the individual pieces. 651 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 652 return false; 653 654 // Load to store forwarding can be interpreted as memcpy. 655 if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { 656 if (LI->isSimple() && LI->hasOneUse() && 657 LI->getParent() == SI->getParent()) { 658 659 auto *T = LI->getType(); 660 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if 661 // the corresponding libcalls are not available. 662 // TODO: We should really distinguish between libcall availability and 663 // our ability to introduce intrinsics. 664 if (T->isAggregateType() && 665 (EnableMemCpyOptWithoutLibcalls || 666 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { 667 MemoryLocation LoadLoc = MemoryLocation::get(LI); 668 669 // We use alias analysis to check if an instruction may store to 670 // the memory we load from in between the load and the store. If 671 // such an instruction is found, we try to promote there instead 672 // of at the store position. 673 // TODO: Can use MSSA for this. 674 Instruction *P = SI; 675 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 676 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 677 P = &I; 678 break; 679 } 680 } 681 682 // We found an instruction that may write to the loaded memory. 683 // We can try to promote at this position instead of the store 684 // position if nothing aliases the store memory after this and the store 685 // destination is not in the range. 686 if (P && P != SI) { 687 if (!moveUp(SI, P, LI)) 688 P = nullptr; 689 } 690 691 // If a valid insertion position is found, then we can promote 692 // the load/store pair to a memcpy. 693 if (P) { 694 // If we load from memory that may alias the memory we store to, 695 // memmove must be used to preserve semantic. If not, memcpy can 696 // be used. Also, if we load from constant memory, memcpy can be used 697 // as the constant memory won't be modified. 698 bool UseMemMove = false; 699 if (isModSet(AA->getModRefInfo(SI, LoadLoc))) 700 UseMemMove = true; 701 702 uint64_t Size = DL.getTypeStoreSize(T); 703 704 IRBuilder<> Builder(P); 705 Instruction *M; 706 if (UseMemMove) 707 M = Builder.CreateMemMove( 708 SI->getPointerOperand(), SI->getAlign(), 709 LI->getPointerOperand(), LI->getAlign(), Size); 710 else 711 M = Builder.CreateMemCpy( 712 SI->getPointerOperand(), SI->getAlign(), 713 LI->getPointerOperand(), LI->getAlign(), Size); 714 715 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 716 << *M << "\n"); 717 718 auto *LastDef = 719 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 720 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 721 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 722 723 eraseInstruction(SI); 724 eraseInstruction(LI); 725 ++NumMemCpyInstr; 726 727 // Make sure we do not invalidate the iterator. 728 BBI = M->getIterator(); 729 return true; 730 } 731 } 732 733 // Detect cases where we're performing call slot forwarding, but 734 // happen to be using a load-store pair to implement it, rather than 735 // a memcpy. 736 CallInst *C = nullptr; 737 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 738 MSSA->getWalker()->getClobberingMemoryAccess(LI))) { 739 // The load most post-dom the call. Limit to the same block for now. 740 // TODO: Support non-local call-slot optimization? 741 if (LoadClobber->getBlock() == SI->getParent()) 742 C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 743 } 744 745 if (C) { 746 // Check that nothing touches the dest of the "copy" between 747 // the call and the store. 748 MemoryLocation StoreLoc = MemoryLocation::get(SI); 749 if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C), 750 MSSA->getMemoryAccess(SI))) 751 C = nullptr; 752 } 753 754 if (C) { 755 bool changed = performCallSlotOptzn( 756 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 757 LI->getPointerOperand()->stripPointerCasts(), 758 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 759 commonAlignment(SI->getAlign(), LI->getAlign()), C); 760 if (changed) { 761 eraseInstruction(SI); 762 eraseInstruction(LI); 763 ++NumMemCpyInstr; 764 return true; 765 } 766 } 767 } 768 } 769 770 // The following code creates memset intrinsics out of thin air. Don't do 771 // this if the corresponding libfunc is not available. 772 // TODO: We should really distinguish between libcall availability and 773 // our ability to introduce intrinsics. 774 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) 775 return false; 776 777 // There are two cases that are interesting for this code to handle: memcpy 778 // and memset. Right now we only handle memset. 779 780 // Ensure that the value being stored is something that can be memset'able a 781 // byte at a time like "0" or "-1" or any width, as well as things like 782 // 0xA0A0A0A0 and 0.0. 783 auto *V = SI->getOperand(0); 784 if (Value *ByteVal = isBytewiseValue(V, DL)) { 785 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 786 ByteVal)) { 787 BBI = I->getIterator(); // Don't invalidate iterator. 788 return true; 789 } 790 791 // If we have an aggregate, we try to promote it to memset regardless 792 // of opportunity for merging as it can expose optimization opportunities 793 // in subsequent passes. 794 auto *T = V->getType(); 795 if (T->isAggregateType()) { 796 uint64_t Size = DL.getTypeStoreSize(T); 797 IRBuilder<> Builder(SI); 798 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 799 SI->getAlign()); 800 801 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 802 803 // The newly inserted memset is immediately overwritten by the original 804 // store, so we do not need to rename uses. 805 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); 806 auto *NewAccess = MSSAU->createMemoryAccessBefore( 807 M, StoreDef->getDefiningAccess(), StoreDef); 808 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); 809 810 eraseInstruction(SI); 811 NumMemSetInfer++; 812 813 // Make sure we do not invalidate the iterator. 814 BBI = M->getIterator(); 815 return true; 816 } 817 } 818 819 return false; 820 } 821 822 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 823 // See if there is another memset or store neighboring this memset which 824 // allows us to widen out the memset to do a single larger store. 825 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 826 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 827 MSI->getValue())) { 828 BBI = I->getIterator(); // Don't invalidate iterator. 829 return true; 830 } 831 return false; 832 } 833 834 /// Takes a memcpy and a call that it depends on, 835 /// and checks for the possibility of a call slot optimization by having 836 /// the call write its result directly into the destination of the memcpy. 837 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 838 Instruction *cpyStore, Value *cpyDest, 839 Value *cpySrc, uint64_t cpyLen, 840 Align cpyAlign, CallInst *C) { 841 // The general transformation to keep in mind is 842 // 843 // call @func(..., src, ...) 844 // memcpy(dest, src, ...) 845 // 846 // -> 847 // 848 // memcpy(dest, src, ...) 849 // call @func(..., dest, ...) 850 // 851 // Since moving the memcpy is technically awkward, we additionally check that 852 // src only holds uninitialized values at the moment of the call, meaning that 853 // the memcpy can be discarded rather than moved. 854 855 // Lifetime marks shouldn't be operated on. 856 if (Function *F = C->getCalledFunction()) 857 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 858 return false; 859 860 // Require that src be an alloca. This simplifies the reasoning considerably. 861 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 862 if (!srcAlloca) 863 return false; 864 865 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 866 if (!srcArraySize) 867 return false; 868 869 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 870 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 871 srcArraySize->getZExtValue(); 872 873 if (cpyLen < srcSize) 874 return false; 875 876 // Check that accessing the first srcSize bytes of dest will not cause a 877 // trap. Otherwise the transform is invalid since it might cause a trap 878 // to occur earlier than it otherwise would. 879 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen), 880 DL, C, DT)) 881 return false; 882 883 // Make sure that nothing can observe cpyDest being written early. There are 884 // a number of cases to consider: 885 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 886 // the transform. 887 // 2. C itself may not access cpyDest (prior to the transform). This is 888 // checked further below. 889 // 3. If cpyDest is accessible to the caller of this function (potentially 890 // captured and not based on an alloca), we need to ensure that we cannot 891 // unwind between C and cpyStore. This is checked here. 892 // 4. If cpyDest is potentially captured, there may be accesses to it from 893 // another thread. In this case, we need to check that cpyStore is 894 // guaranteed to be executed if C is. As it is a non-atomic access, it 895 // renders accesses from other threads undefined. 896 // TODO: This is currently not checked. 897 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) 898 return false; 899 900 // Check that dest points to memory that is at least as aligned as src. 901 Align srcAlign = srcAlloca->getAlign(); 902 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 903 // If dest is not aligned enough and we can't increase its alignment then 904 // bail out. 905 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 906 return false; 907 908 // Check that src is not accessed except via the call and the memcpy. This 909 // guarantees that it holds only undefined values when passed in (so the final 910 // memcpy can be dropped), that it is not read or written between the call and 911 // the memcpy, and that writing beyond the end of it is undefined. 912 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 913 while (!srcUseList.empty()) { 914 User *U = srcUseList.pop_back_val(); 915 916 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 917 append_range(srcUseList, U->users()); 918 continue; 919 } 920 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 921 if (!G->hasAllZeroIndices()) 922 return false; 923 924 append_range(srcUseList, U->users()); 925 continue; 926 } 927 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 928 if (IT->isLifetimeStartOrEnd()) 929 continue; 930 931 if (U != C && U != cpyLoad) 932 return false; 933 } 934 935 // Check that src isn't captured by the called function since the 936 // transformation can cause aliasing issues in that case. 937 for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI) 938 if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI)) 939 return false; 940 941 // Since we're changing the parameter to the callsite, we need to make sure 942 // that what would be the new parameter dominates the callsite. 943 if (!DT->dominates(cpyDest, C)) { 944 // Support moving a constant index GEP before the call. 945 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 946 if (GEP && GEP->hasAllConstantIndices() && 947 DT->dominates(GEP->getPointerOperand(), C)) 948 GEP->moveBefore(C); 949 else 950 return false; 951 } 952 953 // In addition to knowing that the call does not access src in some 954 // unexpected manner, for example via a global, which we deduce from 955 // the use analysis, we also need to know that it does not sneakily 956 // access dest. We rely on AA to figure this out for us. 957 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 958 // If necessary, perform additional analysis. 959 if (isModOrRefSet(MR)) 960 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 961 if (isModOrRefSet(MR)) 962 return false; 963 964 // We can't create address space casts here because we don't know if they're 965 // safe for the target. 966 if (cpySrc->getType()->getPointerAddressSpace() != 967 cpyDest->getType()->getPointerAddressSpace()) 968 return false; 969 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 970 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 971 cpySrc->getType()->getPointerAddressSpace() != 972 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 973 return false; 974 975 // All the checks have passed, so do the transformation. 976 bool changedArgument = false; 977 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 978 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 979 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 980 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 981 cpyDest->getName(), C); 982 changedArgument = true; 983 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 984 C->setArgOperand(ArgI, Dest); 985 else 986 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 987 Dest, C->getArgOperand(ArgI)->getType(), 988 Dest->getName(), C)); 989 } 990 991 if (!changedArgument) 992 return false; 993 994 // If the destination wasn't sufficiently aligned then increase its alignment. 995 if (!isDestSufficientlyAligned) { 996 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 997 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 998 } 999 1000 // Update AA metadata 1001 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1002 // handled here, but combineMetadata doesn't support them yet 1003 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1004 LLVMContext::MD_noalias, 1005 LLVMContext::MD_invariant_group, 1006 LLVMContext::MD_access_group}; 1007 combineMetadata(C, cpyLoad, KnownIDs, true); 1008 1009 ++NumCallSlot; 1010 return true; 1011 } 1012 1013 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1014 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1015 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1016 MemCpyInst *MDep) { 1017 // We can only transforms memcpy's where the dest of one is the source of the 1018 // other. 1019 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1020 return false; 1021 1022 // If dep instruction is reading from our current input, then it is a noop 1023 // transfer and substituting the input won't change this instruction. Just 1024 // ignore the input and let someone else zap MDep. This handles cases like: 1025 // memcpy(a <- a) 1026 // memcpy(b <- a) 1027 if (M->getSource() == MDep->getSource()) 1028 return false; 1029 1030 // Second, the length of the memcpy's must be the same, or the preceding one 1031 // must be larger than the following one. 1032 if (MDep->getLength() != M->getLength()) { 1033 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1034 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 1035 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1036 return false; 1037 } 1038 1039 // Verify that the copied-from memory doesn't change in between the two 1040 // transfers. For example, in: 1041 // memcpy(a <- b) 1042 // *b = 42; 1043 // memcpy(c <- a) 1044 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1045 // 1046 // TODO: If the code between M and MDep is transparent to the destination "c", 1047 // then we could still perform the xform by moving M up to the first memcpy. 1048 // TODO: It would be sufficient to check the MDep source up to the memcpy 1049 // size of M, rather than MDep. 1050 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1051 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1052 return false; 1053 1054 // If the dest of the second might alias the source of the first, then the 1055 // source and dest might overlap. In addition, if the source of the first 1056 // points to constant memory, they won't overlap by definition. Otherwise, we 1057 // still want to eliminate the intermediate value, but we have to generate a 1058 // memmove instead of memcpy. 1059 bool UseMemMove = false; 1060 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep)))) 1061 UseMemMove = true; 1062 1063 // If all checks passed, then we can transform M. 1064 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1065 << *MDep << '\n' << *M << '\n'); 1066 1067 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1068 // example we could be moving from movaps -> movq on x86. 1069 IRBuilder<> Builder(M); 1070 Instruction *NewM; 1071 if (UseMemMove) 1072 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1073 MDep->getRawSource(), MDep->getSourceAlign(), 1074 M->getLength(), M->isVolatile()); 1075 else if (isa<MemCpyInlineInst>(M)) { 1076 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1077 // never allowed since that would allow the latter to be lowered as a call 1078 // to an external function. 1079 NewM = Builder.CreateMemCpyInline( 1080 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1081 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1082 } else 1083 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1084 MDep->getRawSource(), MDep->getSourceAlign(), 1085 M->getLength(), M->isVolatile()); 1086 1087 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1088 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1089 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1090 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1091 1092 // Remove the instruction we're replacing. 1093 eraseInstruction(M); 1094 ++NumMemCpyInstr; 1095 return true; 1096 } 1097 1098 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1099 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1100 /// weren't copied over by \p MemCpy. 1101 /// 1102 /// In other words, transform: 1103 /// \code 1104 /// memset(dst, c, dst_size); 1105 /// memcpy(dst, src, src_size); 1106 /// \endcode 1107 /// into: 1108 /// \code 1109 /// memcpy(dst, src, src_size); 1110 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1111 /// \endcode 1112 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1113 MemSetInst *MemSet) { 1114 // We can only transform memset/memcpy with the same destination. 1115 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1116 return false; 1117 1118 // Check that src and dst of the memcpy aren't the same. While memcpy 1119 // operands cannot partially overlap, exact equality is allowed. 1120 if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) 1121 return false; 1122 1123 // We know that dst up to src_size is not written. We now need to make sure 1124 // that dst up to dst_size is not accessed. (If we did not move the memset, 1125 // checking for reads would be sufficient.) 1126 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1127 MSSA->getMemoryAccess(MemSet), 1128 MSSA->getMemoryAccess(MemCpy))) 1129 return false; 1130 1131 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1132 Value *Dest = MemCpy->getRawDest(); 1133 Value *DestSize = MemSet->getLength(); 1134 Value *SrcSize = MemCpy->getLength(); 1135 1136 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1137 return false; 1138 1139 // If the sizes are the same, simply drop the memset instead of generating 1140 // a replacement with zero size. 1141 if (DestSize == SrcSize) { 1142 eraseInstruction(MemSet); 1143 return true; 1144 } 1145 1146 // By default, create an unaligned memset. 1147 unsigned Align = 1; 1148 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1149 // of the sum. 1150 const unsigned DestAlign = 1151 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1152 if (DestAlign > 1) 1153 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1154 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1155 1156 IRBuilder<> Builder(MemCpy); 1157 1158 // If the sizes have different types, zext the smaller one. 1159 if (DestSize->getType() != SrcSize->getType()) { 1160 if (DestSize->getType()->getIntegerBitWidth() > 1161 SrcSize->getType()->getIntegerBitWidth()) 1162 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1163 else 1164 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1165 } 1166 1167 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1168 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1169 Value *MemsetLen = Builder.CreateSelect( 1170 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1171 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1172 Instruction *NewMemSet = Builder.CreateMemSet( 1173 Builder.CreateGEP(Builder.getInt8Ty(), 1174 Builder.CreatePointerCast(Dest, 1175 Builder.getInt8PtrTy(DestAS)), 1176 SrcSize), 1177 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1178 1179 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1180 "MemCpy must be a MemoryDef"); 1181 // The new memset is inserted after the memcpy, but it is known that its 1182 // defining access is the memset about to be removed which immediately 1183 // precedes the memcpy. 1184 auto *LastDef = 1185 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1186 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1187 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1188 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1189 1190 eraseInstruction(MemSet); 1191 return true; 1192 } 1193 1194 /// Determine whether the instruction has undefined content for the given Size, 1195 /// either because it was freshly alloca'd or started its lifetime. 1196 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1197 MemoryDef *Def, Value *Size) { 1198 if (MSSA->isLiveOnEntryDef(Def)) 1199 return isa<AllocaInst>(getUnderlyingObject(V)); 1200 1201 if (IntrinsicInst *II = 1202 dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1203 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1204 ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1205 1206 if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) { 1207 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1208 LTSize->getZExtValue() >= CSize->getZExtValue()) 1209 return true; 1210 } 1211 1212 // If the lifetime.start covers a whole alloca (as it almost always 1213 // does) and we're querying a pointer based on that alloca, then we know 1214 // the memory is definitely undef, regardless of how exactly we alias. 1215 // The size also doesn't matter, as an out-of-bounds access would be UB. 1216 AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V)); 1217 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1218 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1219 if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL)) 1220 if (*AllocaSize == LTSize->getValue() * 8) 1221 return true; 1222 } 1223 } 1224 } 1225 1226 return false; 1227 } 1228 1229 /// Transform memcpy to memset when its source was just memset. 1230 /// In other words, turn: 1231 /// \code 1232 /// memset(dst1, c, dst1_size); 1233 /// memcpy(dst2, dst1, dst2_size); 1234 /// \endcode 1235 /// into: 1236 /// \code 1237 /// memset(dst1, c, dst1_size); 1238 /// memset(dst2, c, dst2_size); 1239 /// \endcode 1240 /// When dst2_size <= dst1_size. 1241 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1242 MemSetInst *MemSet) { 1243 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1244 // memcpying from the same address. Otherwise it is hard to reason about. 1245 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1246 return false; 1247 1248 Value *MemSetSize = MemSet->getLength(); 1249 Value *CopySize = MemCpy->getLength(); 1250 1251 if (MemSetSize != CopySize) { 1252 // Make sure the memcpy doesn't read any more than what the memset wrote. 1253 // Don't worry about sizes larger than i64. 1254 1255 // A known memset size is required. 1256 ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1257 if (!CMemSetSize) 1258 return false; 1259 1260 // A known memcpy size is also required. 1261 ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize); 1262 if (!CCopySize) 1263 return false; 1264 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1265 // If the memcpy is larger than the memset, but the memory was undef prior 1266 // to the memset, we can just ignore the tail. Technically we're only 1267 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1268 // easily represent this location, we use the full 0..CopySize range. 1269 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1270 bool CanReduceSize = false; 1271 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1272 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1273 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1274 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1275 if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1276 CanReduceSize = true; 1277 1278 if (!CanReduceSize) 1279 return false; 1280 CopySize = MemSetSize; 1281 } 1282 } 1283 1284 IRBuilder<> Builder(MemCpy); 1285 Instruction *NewM = 1286 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1287 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1288 auto *LastDef = 1289 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1290 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1291 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1292 1293 return true; 1294 } 1295 1296 /// Perform simplification of memcpy's. If we have memcpy A 1297 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1298 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1299 /// circumstances). This allows later passes to remove the first memcpy 1300 /// altogether. 1301 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1302 // We can only optimize non-volatile memcpy's. 1303 if (M->isVolatile()) return false; 1304 1305 // If the source and destination of the memcpy are the same, then zap it. 1306 if (M->getSource() == M->getDest()) { 1307 ++BBI; 1308 eraseInstruction(M); 1309 return true; 1310 } 1311 1312 // If copying from a constant, try to turn the memcpy into a memset. 1313 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 1314 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1315 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1316 M->getModule()->getDataLayout())) { 1317 IRBuilder<> Builder(M); 1318 Instruction *NewM = 1319 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1320 MaybeAlign(M->getDestAlignment()), false); 1321 auto *LastDef = 1322 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1323 auto *NewAccess = 1324 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1325 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1326 1327 eraseInstruction(M); 1328 ++NumCpyToSet; 1329 return true; 1330 } 1331 1332 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1333 MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA); 1334 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1335 const MemoryAccess *DestClobber = 1336 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1337 1338 // Try to turn a partially redundant memset + memcpy into 1339 // memcpy + smaller memset. We don't need the memcpy size for this. 1340 // The memcpy most post-dom the memset, so limit this to the same basic 1341 // block. A non-local generalization is likely not worthwhile. 1342 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1343 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1344 if (DestClobber->getBlock() == M->getParent()) 1345 if (processMemSetMemCpyDependence(M, MDep)) 1346 return true; 1347 1348 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1349 AnyClobber, MemoryLocation::getForSource(M)); 1350 1351 // There are four possible optimizations we can do for memcpy: 1352 // a) memcpy-memcpy xform which exposes redundance for DSE. 1353 // b) call-memcpy xform for return slot optimization. 1354 // c) memcpy from freshly alloca'd space or space that has just started 1355 // its lifetime copies undefined data, and we can therefore eliminate 1356 // the memcpy in favor of the data that was already at the destination. 1357 // d) memcpy from a just-memset'd source can be turned into memset. 1358 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1359 if (Instruction *MI = MD->getMemoryInst()) { 1360 if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1361 if (auto *C = dyn_cast<CallInst>(MI)) { 1362 // The memcpy must post-dom the call. Limit to the same block for 1363 // now. Additionally, we need to ensure that there are no accesses 1364 // to dest between the call and the memcpy. Accesses to src will be 1365 // checked by performCallSlotOptzn(). 1366 // TODO: Support non-local call-slot optimization? 1367 if (C->getParent() == M->getParent() && 1368 !accessedBetween(*AA, DestLoc, MD, MA)) { 1369 // FIXME: Can we pass in either of dest/src alignment here instead 1370 // of conservatively taking the minimum? 1371 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1372 M->getSourceAlign().valueOrOne()); 1373 if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(), 1374 CopySize->getZExtValue(), Alignment, C)) { 1375 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1376 << " call: " << *C << "\n" 1377 << " memcpy: " << *M << "\n"); 1378 eraseInstruction(M); 1379 ++NumMemCpyInstr; 1380 return true; 1381 } 1382 } 1383 } 1384 } 1385 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1386 return processMemCpyMemCpyDependence(M, MDep); 1387 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1388 if (performMemCpyToMemSetOptzn(M, MDep)) { 1389 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1390 eraseInstruction(M); 1391 ++NumCpyToSet; 1392 return true; 1393 } 1394 } 1395 } 1396 1397 if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) { 1398 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1399 eraseInstruction(M); 1400 ++NumMemCpyInstr; 1401 return true; 1402 } 1403 } 1404 1405 return false; 1406 } 1407 1408 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1409 /// not to alias. 1410 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1411 // See if the source could be modified by this memmove potentially. 1412 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) 1413 return false; 1414 1415 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1416 << "\n"); 1417 1418 // If not, then we know we can transform this. 1419 Type *ArgTys[3] = { M->getRawDest()->getType(), 1420 M->getRawSource()->getType(), 1421 M->getLength()->getType() }; 1422 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1423 Intrinsic::memcpy, ArgTys)); 1424 1425 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1426 // aliasing guarantees). 1427 1428 ++NumMoveToCpy; 1429 return true; 1430 } 1431 1432 /// This is called on every byval argument in call sites. 1433 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1434 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1435 // Find out what feeds this byval argument. 1436 Value *ByValArg = CB.getArgOperand(ArgNo); 1437 Type *ByValTy = CB.getParamByValType(ArgNo); 1438 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1439 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1440 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1441 if (!CallAccess) 1442 return false; 1443 MemCpyInst *MDep = nullptr; 1444 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1445 CallAccess->getDefiningAccess(), Loc); 1446 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1447 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1448 1449 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1450 // a memcpy, see if we can byval from the source of the memcpy instead of the 1451 // result. 1452 if (!MDep || MDep->isVolatile() || 1453 ByValArg->stripPointerCasts() != MDep->getDest()) 1454 return false; 1455 1456 // The length of the memcpy must be larger or equal to the size of the byval. 1457 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1458 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1459 return false; 1460 1461 // Get the alignment of the byval. If the call doesn't specify the alignment, 1462 // then it is some target specific value that we can't know. 1463 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1464 if (!ByValAlign) return false; 1465 1466 // If it is greater than the memcpy, then we check to see if we can force the 1467 // source of the memcpy to the alignment we need. If we fail, we bail out. 1468 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1469 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1470 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1471 DT) < *ByValAlign) 1472 return false; 1473 1474 // The address space of the memcpy source must match the byval argument 1475 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1476 ByValArg->getType()->getPointerAddressSpace()) 1477 return false; 1478 1479 // Verify that the copied-from memory doesn't change in between the memcpy and 1480 // the byval call. 1481 // memcpy(a <- b) 1482 // *b = 42; 1483 // foo(*a) 1484 // It would be invalid to transform the second memcpy into foo(*b). 1485 if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep), 1486 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1487 return false; 1488 1489 Value *TmpCast = MDep->getSource(); 1490 if (MDep->getSource()->getType() != ByValArg->getType()) { 1491 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1492 "tmpcast", &CB); 1493 // Set the tmpcast's DebugLoc to MDep's 1494 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1495 TmpCast = TmpBitCast; 1496 } 1497 1498 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1499 << " " << *MDep << "\n" 1500 << " " << CB << "\n"); 1501 1502 // Otherwise we're good! Update the byval argument. 1503 CB.setArgOperand(ArgNo, TmpCast); 1504 ++NumMemCpyInstr; 1505 return true; 1506 } 1507 1508 /// Executes one iteration of MemCpyOptPass. 1509 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1510 bool MadeChange = false; 1511 1512 // Walk all instruction in the function. 1513 for (BasicBlock &BB : F) { 1514 // Skip unreachable blocks. For example processStore assumes that an 1515 // instruction in a BB can't be dominated by a later instruction in the 1516 // same BB (which is a scenario that can happen for an unreachable BB that 1517 // has itself as a predecessor). 1518 if (!DT->isReachableFromEntry(&BB)) 1519 continue; 1520 1521 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1522 // Avoid invalidating the iterator. 1523 Instruction *I = &*BI++; 1524 1525 bool RepeatInstruction = false; 1526 1527 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1528 MadeChange |= processStore(SI, BI); 1529 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1530 RepeatInstruction = processMemSet(M, BI); 1531 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1532 RepeatInstruction = processMemCpy(M, BI); 1533 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1534 RepeatInstruction = processMemMove(M); 1535 else if (auto *CB = dyn_cast<CallBase>(I)) { 1536 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1537 if (CB->isByValArgument(i)) 1538 MadeChange |= processByValArgument(*CB, i); 1539 } 1540 1541 // Reprocess the instruction if desired. 1542 if (RepeatInstruction) { 1543 if (BI != BB.begin()) 1544 --BI; 1545 MadeChange = true; 1546 } 1547 } 1548 } 1549 1550 return MadeChange; 1551 } 1552 1553 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1554 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1555 auto *AA = &AM.getResult<AAManager>(F); 1556 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1557 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1558 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); 1559 1560 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); 1561 if (!MadeChange) 1562 return PreservedAnalyses::all(); 1563 1564 PreservedAnalyses PA; 1565 PA.preserveSet<CFGAnalyses>(); 1566 PA.preserve<MemorySSAAnalysis>(); 1567 return PA; 1568 } 1569 1570 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 1571 AliasAnalysis *AA_, AssumptionCache *AC_, 1572 DominatorTree *DT_, MemorySSA *MSSA_) { 1573 bool MadeChange = false; 1574 TLI = TLI_; 1575 AA = AA_; 1576 AC = AC_; 1577 DT = DT_; 1578 MSSA = MSSA_; 1579 MemorySSAUpdater MSSAU_(MSSA_); 1580 MSSAU = &MSSAU_; 1581 1582 while (true) { 1583 if (!iterateOnFunction(F)) 1584 break; 1585 MadeChange = true; 1586 } 1587 1588 if (VerifyMemorySSA) 1589 MSSA_->verifyMemorySSA(); 1590 1591 return MadeChange; 1592 } 1593 1594 /// This is the main transformation entry point for a function. 1595 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1596 if (skipFunction(F)) 1597 return false; 1598 1599 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1600 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1601 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1602 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1603 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1604 1605 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); 1606 } 1607