1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/Loads.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/MemorySSA.h"
27 #include "llvm/Analysis/MemorySSAUpdater.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/Argument.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/InitializePasses.h"
53 #include "llvm/Pass.h"
54 #include "llvm/Support/Casting.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Scalar.h"
59 #include "llvm/Transforms/Utils/Local.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <utility>
64 
65 using namespace llvm;
66 
67 #define DEBUG_TYPE "memcpyopt"
68 
69 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
70     "enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden,
71     cl::ZeroOrMore,
72     cl::desc("Enable memcpyopt even when libcalls are disabled"));
73 
74 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
75 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
76 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
77 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
78 STATISTIC(NumCallSlot,    "Number of call slot optimizations performed");
79 
80 namespace {
81 
82 /// Represents a range of memset'd bytes with the ByteVal value.
83 /// This allows us to analyze stores like:
84 ///   store 0 -> P+1
85 ///   store 0 -> P+0
86 ///   store 0 -> P+3
87 ///   store 0 -> P+2
88 /// which sometimes happens with stores to arrays of structs etc.  When we see
89 /// the first store, we make a range [1, 2).  The second store extends the range
90 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
91 /// two ranges into [0, 3) which is memset'able.
92 struct MemsetRange {
93   // Start/End - A semi range that describes the span that this range covers.
94   // The range is closed at the start and open at the end: [Start, End).
95   int64_t Start, End;
96 
97   /// StartPtr - The getelementptr instruction that points to the start of the
98   /// range.
99   Value *StartPtr;
100 
101   /// Alignment - The known alignment of the first store.
102   unsigned Alignment;
103 
104   /// TheStores - The actual stores that make up this range.
105   SmallVector<Instruction*, 16> TheStores;
106 
107   bool isProfitableToUseMemset(const DataLayout &DL) const;
108 };
109 
110 } // end anonymous namespace
111 
112 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
113   // If we found more than 4 stores to merge or 16 bytes, use memset.
114   if (TheStores.size() >= 4 || End-Start >= 16) return true;
115 
116   // If there is nothing to merge, don't do anything.
117   if (TheStores.size() < 2) return false;
118 
119   // If any of the stores are a memset, then it is always good to extend the
120   // memset.
121   for (Instruction *SI : TheStores)
122     if (!isa<StoreInst>(SI))
123       return true;
124 
125   // Assume that the code generator is capable of merging pairs of stores
126   // together if it wants to.
127   if (TheStores.size() == 2) return false;
128 
129   // If we have fewer than 8 stores, it can still be worthwhile to do this.
130   // For example, merging 4 i8 stores into an i32 store is useful almost always.
131   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
132   // memset will be split into 2 32-bit stores anyway) and doing so can
133   // pessimize the llvm optimizer.
134   //
135   // Since we don't have perfect knowledge here, make some assumptions: assume
136   // the maximum GPR width is the same size as the largest legal integer
137   // size. If so, check to see whether we will end up actually reducing the
138   // number of stores used.
139   unsigned Bytes = unsigned(End-Start);
140   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
141   if (MaxIntSize == 0)
142     MaxIntSize = 1;
143   unsigned NumPointerStores = Bytes / MaxIntSize;
144 
145   // Assume the remaining bytes if any are done a byte at a time.
146   unsigned NumByteStores = Bytes % MaxIntSize;
147 
148   // If we will reduce the # stores (according to this heuristic), do the
149   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
150   // etc.
151   return TheStores.size() > NumPointerStores+NumByteStores;
152 }
153 
154 namespace {
155 
156 class MemsetRanges {
157   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
158 
159   /// A sorted list of the memset ranges.
160   SmallVector<MemsetRange, 8> Ranges;
161 
162   const DataLayout &DL;
163 
164 public:
165   MemsetRanges(const DataLayout &DL) : DL(DL) {}
166 
167   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
168 
169   const_iterator begin() const { return Ranges.begin(); }
170   const_iterator end() const { return Ranges.end(); }
171   bool empty() const { return Ranges.empty(); }
172 
173   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
174     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
175       addStore(OffsetFromFirst, SI);
176     else
177       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
178   }
179 
180   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
181     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
182 
183     addRange(OffsetFromFirst, StoreSize, SI->getPointerOperand(),
184              SI->getAlign().value(), SI);
185   }
186 
187   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
188     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
189     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
190   }
191 
192   void addRange(int64_t Start, int64_t Size, Value *Ptr,
193                 unsigned Alignment, Instruction *Inst);
194 };
195 
196 } // end anonymous namespace
197 
198 /// Add a new store to the MemsetRanges data structure.  This adds a
199 /// new range for the specified store at the specified offset, merging into
200 /// existing ranges as appropriate.
201 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
202                             unsigned Alignment, Instruction *Inst) {
203   int64_t End = Start+Size;
204 
205   range_iterator I = partition_point(
206       Ranges, [=](const MemsetRange &O) { return O.End < Start; });
207 
208   // We now know that I == E, in which case we didn't find anything to merge
209   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
210   // to insert a new range.  Handle this now.
211   if (I == Ranges.end() || End < I->Start) {
212     MemsetRange &R = *Ranges.insert(I, MemsetRange());
213     R.Start        = Start;
214     R.End          = End;
215     R.StartPtr     = Ptr;
216     R.Alignment    = Alignment;
217     R.TheStores.push_back(Inst);
218     return;
219   }
220 
221   // This store overlaps with I, add it.
222   I->TheStores.push_back(Inst);
223 
224   // At this point, we may have an interval that completely contains our store.
225   // If so, just add it to the interval and return.
226   if (I->Start <= Start && I->End >= End)
227     return;
228 
229   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
230   // but is not entirely contained within the range.
231 
232   // See if the range extends the start of the range.  In this case, it couldn't
233   // possibly cause it to join the prior range, because otherwise we would have
234   // stopped on *it*.
235   if (Start < I->Start) {
236     I->Start = Start;
237     I->StartPtr = Ptr;
238     I->Alignment = Alignment;
239   }
240 
241   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
242   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
243   // End.
244   if (End > I->End) {
245     I->End = End;
246     range_iterator NextI = I;
247     while (++NextI != Ranges.end() && End >= NextI->Start) {
248       // Merge the range in.
249       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
250       if (NextI->End > I->End)
251         I->End = NextI->End;
252       Ranges.erase(NextI);
253       NextI = I;
254     }
255   }
256 }
257 
258 //===----------------------------------------------------------------------===//
259 //                         MemCpyOptLegacyPass Pass
260 //===----------------------------------------------------------------------===//
261 
262 namespace {
263 
264 class MemCpyOptLegacyPass : public FunctionPass {
265   MemCpyOptPass Impl;
266 
267 public:
268   static char ID; // Pass identification, replacement for typeid
269 
270   MemCpyOptLegacyPass() : FunctionPass(ID) {
271     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
272   }
273 
274   bool runOnFunction(Function &F) override;
275 
276 private:
277   // This transformation requires dominator postdominator info
278   void getAnalysisUsage(AnalysisUsage &AU) const override {
279     AU.setPreservesCFG();
280     AU.addRequired<AssumptionCacheTracker>();
281     AU.addRequired<DominatorTreeWrapperPass>();
282     AU.addPreserved<DominatorTreeWrapperPass>();
283     AU.addPreserved<GlobalsAAWrapperPass>();
284     AU.addRequired<TargetLibraryInfoWrapperPass>();
285     AU.addRequired<AAResultsWrapperPass>();
286     AU.addPreserved<AAResultsWrapperPass>();
287     AU.addRequired<MemorySSAWrapperPass>();
288     AU.addPreserved<MemorySSAWrapperPass>();
289   }
290 };
291 
292 } // end anonymous namespace
293 
294 char MemCpyOptLegacyPass::ID = 0;
295 
296 /// The public interface to this file...
297 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
298 
299 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
300                       false, false)
301 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
302 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
303 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
304 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
305 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
306 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
307 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
308                     false, false)
309 
310 // Check that V is either not accessible by the caller, or unwinding cannot
311 // occur between Start and End.
312 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
313                                          Instruction *End) {
314   assert(Start->getParent() == End->getParent() && "Must be in same block");
315   if (!Start->getFunction()->doesNotThrow() &&
316       !isa<AllocaInst>(getUnderlyingObject(V))) {
317     for (const Instruction &I :
318          make_range(Start->getIterator(), End->getIterator())) {
319       if (I.mayThrow())
320         return true;
321     }
322   }
323   return false;
324 }
325 
326 void MemCpyOptPass::eraseInstruction(Instruction *I) {
327   MSSAU->removeMemoryAccess(I);
328   I->eraseFromParent();
329 }
330 
331 // Check for mod or ref of Loc between Start and End, excluding both boundaries.
332 // Start and End must be in the same block
333 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
334                             const MemoryUseOrDef *Start,
335                             const MemoryUseOrDef *End) {
336   assert(Start->getBlock() == End->getBlock() && "Only local supported");
337   for (const MemoryAccess &MA :
338        make_range(++Start->getIterator(), End->getIterator())) {
339     if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(),
340                                        Loc)))
341       return true;
342   }
343   return false;
344 }
345 
346 // Check for mod of Loc between Start and End, excluding both boundaries.
347 // Start and End can be in different blocks.
348 static bool writtenBetween(MemorySSA *MSSA, MemoryLocation Loc,
349                            const MemoryUseOrDef *Start,
350                            const MemoryUseOrDef *End) {
351   // TODO: Only walk until we hit Start.
352   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
353       End->getDefiningAccess(), Loc);
354   return !MSSA->dominates(Clobber, Start);
355 }
356 
357 /// When scanning forward over instructions, we look for some other patterns to
358 /// fold away. In particular, this looks for stores to neighboring locations of
359 /// memory. If it sees enough consecutive ones, it attempts to merge them
360 /// together into a memcpy/memset.
361 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
362                                                  Value *StartPtr,
363                                                  Value *ByteVal) {
364   const DataLayout &DL = StartInst->getModule()->getDataLayout();
365 
366   // Okay, so we now have a single store that can be splatable.  Scan to find
367   // all subsequent stores of the same value to offset from the same pointer.
368   // Join these together into ranges, so we can decide whether contiguous blocks
369   // are stored.
370   MemsetRanges Ranges(DL);
371 
372   BasicBlock::iterator BI(StartInst);
373 
374   // Keeps track of the last memory use or def before the insertion point for
375   // the new memset. The new MemoryDef for the inserted memsets will be inserted
376   // after MemInsertPoint. It points to either LastMemDef or to the last user
377   // before the insertion point of the memset, if there are any such users.
378   MemoryUseOrDef *MemInsertPoint = nullptr;
379   // Keeps track of the last MemoryDef between StartInst and the insertion point
380   // for the new memset. This will become the defining access of the inserted
381   // memsets.
382   MemoryDef *LastMemDef = nullptr;
383   for (++BI; !BI->isTerminator(); ++BI) {
384     auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
385         MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
386     if (CurrentAcc) {
387       MemInsertPoint = CurrentAcc;
388       if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
389         LastMemDef = CurrentDef;
390     }
391 
392     // Calls that only access inaccessible memory do not block merging
393     // accessible stores.
394     if (auto *CB = dyn_cast<CallBase>(BI)) {
395       if (CB->onlyAccessesInaccessibleMemory())
396         continue;
397     }
398 
399     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
400       // If the instruction is readnone, ignore it, otherwise bail out.  We
401       // don't even allow readonly here because we don't want something like:
402       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
403       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
404         break;
405       continue;
406     }
407 
408     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
409       // If this is a store, see if we can merge it in.
410       if (!NextStore->isSimple()) break;
411 
412       Value *StoredVal = NextStore->getValueOperand();
413 
414       // Don't convert stores of non-integral pointer types to memsets (which
415       // stores integers).
416       if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
417         break;
418 
419       // Check to see if this stored value is of the same byte-splattable value.
420       Value *StoredByte = isBytewiseValue(StoredVal, DL);
421       if (isa<UndefValue>(ByteVal) && StoredByte)
422         ByteVal = StoredByte;
423       if (ByteVal != StoredByte)
424         break;
425 
426       // Check to see if this store is to a constant offset from the start ptr.
427       Optional<int64_t> Offset =
428           isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
429       if (!Offset)
430         break;
431 
432       Ranges.addStore(*Offset, NextStore);
433     } else {
434       MemSetInst *MSI = cast<MemSetInst>(BI);
435 
436       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
437           !isa<ConstantInt>(MSI->getLength()))
438         break;
439 
440       // Check to see if this store is to a constant offset from the start ptr.
441       Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
442       if (!Offset)
443         break;
444 
445       Ranges.addMemSet(*Offset, MSI);
446     }
447   }
448 
449   // If we have no ranges, then we just had a single store with nothing that
450   // could be merged in.  This is a very common case of course.
451   if (Ranges.empty())
452     return nullptr;
453 
454   // If we had at least one store that could be merged in, add the starting
455   // store as well.  We try to avoid this unless there is at least something
456   // interesting as a small compile-time optimization.
457   Ranges.addInst(0, StartInst);
458 
459   // If we create any memsets, we put it right before the first instruction that
460   // isn't part of the memset block.  This ensure that the memset is dominated
461   // by any addressing instruction needed by the start of the block.
462   IRBuilder<> Builder(&*BI);
463 
464   // Now that we have full information about ranges, loop over the ranges and
465   // emit memset's for anything big enough to be worthwhile.
466   Instruction *AMemSet = nullptr;
467   for (const MemsetRange &Range : Ranges) {
468     if (Range.TheStores.size() == 1) continue;
469 
470     // If it is profitable to lower this range to memset, do so now.
471     if (!Range.isProfitableToUseMemset(DL))
472       continue;
473 
474     // Otherwise, we do want to transform this!  Create a new memset.
475     // Get the starting pointer of the block.
476     StartPtr = Range.StartPtr;
477 
478     AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
479                                    MaybeAlign(Range.Alignment));
480     LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
481                                                    : Range.TheStores) dbgs()
482                                               << *SI << '\n';
483                dbgs() << "With: " << *AMemSet << '\n');
484     if (!Range.TheStores.empty())
485       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
486 
487     assert(LastMemDef && MemInsertPoint &&
488            "Both LastMemDef and MemInsertPoint need to be set");
489     auto *NewDef =
490         cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
491                             ? MSSAU->createMemoryAccessBefore(
492                                   AMemSet, LastMemDef, MemInsertPoint)
493                             : MSSAU->createMemoryAccessAfter(
494                                   AMemSet, LastMemDef, MemInsertPoint));
495     MSSAU->insertDef(NewDef, /*RenameUses=*/true);
496     LastMemDef = NewDef;
497     MemInsertPoint = NewDef;
498 
499     // Zap all the stores.
500     for (Instruction *SI : Range.TheStores)
501       eraseInstruction(SI);
502 
503     ++NumMemSetInfer;
504   }
505 
506   return AMemSet;
507 }
508 
509 // This method try to lift a store instruction before position P.
510 // It will lift the store and its argument + that anything that
511 // may alias with these.
512 // The method returns true if it was successful.
513 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
514   // If the store alias this position, early bail out.
515   MemoryLocation StoreLoc = MemoryLocation::get(SI);
516   if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
517     return false;
518 
519   // Keep track of the arguments of all instruction we plan to lift
520   // so we can make sure to lift them as well if appropriate.
521   DenseSet<Instruction*> Args;
522   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
523     if (Ptr->getParent() == SI->getParent())
524       Args.insert(Ptr);
525 
526   // Instruction to lift before P.
527   SmallVector<Instruction *, 8> ToLift{SI};
528 
529   // Memory locations of lifted instructions.
530   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
531 
532   // Lifted calls.
533   SmallVector<const CallBase *, 8> Calls;
534 
535   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
536 
537   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
538     auto *C = &*I;
539 
540     // Make sure hoisting does not perform a store that was not guaranteed to
541     // happen.
542     if (!isGuaranteedToTransferExecutionToSuccessor(C))
543       return false;
544 
545     bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
546 
547     bool NeedLift = false;
548     if (Args.erase(C))
549       NeedLift = true;
550     else if (MayAlias) {
551       NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
552         return isModOrRefSet(AA->getModRefInfo(C, ML));
553       });
554 
555       if (!NeedLift)
556         NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
557           return isModOrRefSet(AA->getModRefInfo(C, Call));
558         });
559     }
560 
561     if (!NeedLift)
562       continue;
563 
564     if (MayAlias) {
565       // Since LI is implicitly moved downwards past the lifted instructions,
566       // none of them may modify its source.
567       if (isModSet(AA->getModRefInfo(C, LoadLoc)))
568         return false;
569       else if (const auto *Call = dyn_cast<CallBase>(C)) {
570         // If we can't lift this before P, it's game over.
571         if (isModOrRefSet(AA->getModRefInfo(P, Call)))
572           return false;
573 
574         Calls.push_back(Call);
575       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
576         // If we can't lift this before P, it's game over.
577         auto ML = MemoryLocation::get(C);
578         if (isModOrRefSet(AA->getModRefInfo(P, ML)))
579           return false;
580 
581         MemLocs.push_back(ML);
582       } else
583         // We don't know how to lift this instruction.
584         return false;
585     }
586 
587     ToLift.push_back(C);
588     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
589       if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
590         if (A->getParent() == SI->getParent()) {
591           // Cannot hoist user of P above P
592           if(A == P) return false;
593           Args.insert(A);
594         }
595       }
596   }
597 
598   // Find MSSA insertion point. Normally P will always have a corresponding
599   // memory access before which we can insert. However, with non-standard AA
600   // pipelines, there may be a mismatch between AA and MSSA, in which case we
601   // will scan for a memory access before P. In either case, we know for sure
602   // that at least the load will have a memory access.
603   // TODO: Simplify this once P will be determined by MSSA, in which case the
604   // discrepancy can no longer occur.
605   MemoryUseOrDef *MemInsertPoint = nullptr;
606   if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
607     MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
608   } else {
609     const Instruction *ConstP = P;
610     for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
611                                            ++LI->getReverseIterator())) {
612       if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
613         MemInsertPoint = MA;
614         break;
615       }
616     }
617   }
618 
619   // We made it, we need to lift.
620   for (auto *I : llvm::reverse(ToLift)) {
621     LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
622     I->moveBefore(P);
623     assert(MemInsertPoint && "Must have found insert point");
624     if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
625       MSSAU->moveAfter(MA, MemInsertPoint);
626       MemInsertPoint = MA;
627     }
628   }
629 
630   return true;
631 }
632 
633 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
634   if (!SI->isSimple()) return false;
635 
636   // Avoid merging nontemporal stores since the resulting
637   // memcpy/memset would not be able to preserve the nontemporal hint.
638   // In theory we could teach how to propagate the !nontemporal metadata to
639   // memset calls. However, that change would force the backend to
640   // conservatively expand !nontemporal memset calls back to sequences of
641   // store instructions (effectively undoing the merging).
642   if (SI->getMetadata(LLVMContext::MD_nontemporal))
643     return false;
644 
645   const DataLayout &DL = SI->getModule()->getDataLayout();
646 
647   Value *StoredVal = SI->getValueOperand();
648 
649   // Not all the transforms below are correct for non-integral pointers, bail
650   // until we've audited the individual pieces.
651   if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
652     return false;
653 
654   // Load to store forwarding can be interpreted as memcpy.
655   if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
656     if (LI->isSimple() && LI->hasOneUse() &&
657         LI->getParent() == SI->getParent()) {
658 
659       auto *T = LI->getType();
660       // Don't introduce calls to memcpy/memmove intrinsics out of thin air if
661       // the corresponding libcalls are not available.
662       // TODO: We should really distinguish between libcall availability and
663       // our ability to introduce intrinsics.
664       if (T->isAggregateType() &&
665           (EnableMemCpyOptWithoutLibcalls ||
666            (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
667         MemoryLocation LoadLoc = MemoryLocation::get(LI);
668 
669         // We use alias analysis to check if an instruction may store to
670         // the memory we load from in between the load and the store. If
671         // such an instruction is found, we try to promote there instead
672         // of at the store position.
673         // TODO: Can use MSSA for this.
674         Instruction *P = SI;
675         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
676           if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
677             P = &I;
678             break;
679           }
680         }
681 
682         // We found an instruction that may write to the loaded memory.
683         // We can try to promote at this position instead of the store
684         // position if nothing aliases the store memory after this and the store
685         // destination is not in the range.
686         if (P && P != SI) {
687           if (!moveUp(SI, P, LI))
688             P = nullptr;
689         }
690 
691         // If a valid insertion position is found, then we can promote
692         // the load/store pair to a memcpy.
693         if (P) {
694           // If we load from memory that may alias the memory we store to,
695           // memmove must be used to preserve semantic. If not, memcpy can
696           // be used. Also, if we load from constant memory, memcpy can be used
697           // as the constant memory won't be modified.
698           bool UseMemMove = false;
699           if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
700             UseMemMove = true;
701 
702           uint64_t Size = DL.getTypeStoreSize(T);
703 
704           IRBuilder<> Builder(P);
705           Instruction *M;
706           if (UseMemMove)
707             M = Builder.CreateMemMove(
708                 SI->getPointerOperand(), SI->getAlign(),
709                 LI->getPointerOperand(), LI->getAlign(), Size);
710           else
711             M = Builder.CreateMemCpy(
712                 SI->getPointerOperand(), SI->getAlign(),
713                 LI->getPointerOperand(), LI->getAlign(), Size);
714 
715           LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
716                             << *M << "\n");
717 
718           auto *LastDef =
719               cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
720           auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
721           MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
722 
723           eraseInstruction(SI);
724           eraseInstruction(LI);
725           ++NumMemCpyInstr;
726 
727           // Make sure we do not invalidate the iterator.
728           BBI = M->getIterator();
729           return true;
730         }
731       }
732 
733       // Detect cases where we're performing call slot forwarding, but
734       // happen to be using a load-store pair to implement it, rather than
735       // a memcpy.
736       CallInst *C = nullptr;
737       if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
738               MSSA->getWalker()->getClobberingMemoryAccess(LI))) {
739         // The load most post-dom the call. Limit to the same block for now.
740         // TODO: Support non-local call-slot optimization?
741         if (LoadClobber->getBlock() == SI->getParent())
742           C = dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
743       }
744 
745       if (C) {
746         // Check that nothing touches the dest of the "copy" between
747         // the call and the store.
748         MemoryLocation StoreLoc = MemoryLocation::get(SI);
749         if (accessedBetween(*AA, StoreLoc, MSSA->getMemoryAccess(C),
750                             MSSA->getMemoryAccess(SI)))
751           C = nullptr;
752       }
753 
754       if (C) {
755         bool changed = performCallSlotOptzn(
756             LI, SI, SI->getPointerOperand()->stripPointerCasts(),
757             LI->getPointerOperand()->stripPointerCasts(),
758             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
759             commonAlignment(SI->getAlign(), LI->getAlign()), C);
760         if (changed) {
761           eraseInstruction(SI);
762           eraseInstruction(LI);
763           ++NumMemCpyInstr;
764           return true;
765         }
766       }
767     }
768   }
769 
770   // The following code creates memset intrinsics out of thin air. Don't do
771   // this if the corresponding libfunc is not available.
772   // TODO: We should really distinguish between libcall availability and
773   // our ability to introduce intrinsics.
774   if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
775     return false;
776 
777   // There are two cases that are interesting for this code to handle: memcpy
778   // and memset.  Right now we only handle memset.
779 
780   // Ensure that the value being stored is something that can be memset'able a
781   // byte at a time like "0" or "-1" or any width, as well as things like
782   // 0xA0A0A0A0 and 0.0.
783   auto *V = SI->getOperand(0);
784   if (Value *ByteVal = isBytewiseValue(V, DL)) {
785     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
786                                               ByteVal)) {
787       BBI = I->getIterator(); // Don't invalidate iterator.
788       return true;
789     }
790 
791     // If we have an aggregate, we try to promote it to memset regardless
792     // of opportunity for merging as it can expose optimization opportunities
793     // in subsequent passes.
794     auto *T = V->getType();
795     if (T->isAggregateType()) {
796       uint64_t Size = DL.getTypeStoreSize(T);
797       IRBuilder<> Builder(SI);
798       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
799                                      SI->getAlign());
800 
801       LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
802 
803       // The newly inserted memset is immediately overwritten by the original
804       // store, so we do not need to rename uses.
805       auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
806       auto *NewAccess = MSSAU->createMemoryAccessBefore(
807           M, StoreDef->getDefiningAccess(), StoreDef);
808       MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
809 
810       eraseInstruction(SI);
811       NumMemSetInfer++;
812 
813       // Make sure we do not invalidate the iterator.
814       BBI = M->getIterator();
815       return true;
816     }
817   }
818 
819   return false;
820 }
821 
822 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
823   // See if there is another memset or store neighboring this memset which
824   // allows us to widen out the memset to do a single larger store.
825   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
826     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
827                                               MSI->getValue())) {
828       BBI = I->getIterator(); // Don't invalidate iterator.
829       return true;
830     }
831   return false;
832 }
833 
834 /// Takes a memcpy and a call that it depends on,
835 /// and checks for the possibility of a call slot optimization by having
836 /// the call write its result directly into the destination of the memcpy.
837 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
838                                          Instruction *cpyStore, Value *cpyDest,
839                                          Value *cpySrc, uint64_t cpyLen,
840                                          Align cpyAlign, CallInst *C) {
841   // The general transformation to keep in mind is
842   //
843   //   call @func(..., src, ...)
844   //   memcpy(dest, src, ...)
845   //
846   // ->
847   //
848   //   memcpy(dest, src, ...)
849   //   call @func(..., dest, ...)
850   //
851   // Since moving the memcpy is technically awkward, we additionally check that
852   // src only holds uninitialized values at the moment of the call, meaning that
853   // the memcpy can be discarded rather than moved.
854 
855   // Lifetime marks shouldn't be operated on.
856   if (Function *F = C->getCalledFunction())
857     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
858       return false;
859 
860   // Require that src be an alloca.  This simplifies the reasoning considerably.
861   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
862   if (!srcAlloca)
863     return false;
864 
865   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
866   if (!srcArraySize)
867     return false;
868 
869   const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
870   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
871                      srcArraySize->getZExtValue();
872 
873   if (cpyLen < srcSize)
874     return false;
875 
876   // Check that accessing the first srcSize bytes of dest will not cause a
877   // trap.  Otherwise the transform is invalid since it might cause a trap
878   // to occur earlier than it otherwise would.
879   if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpyLen),
880                                           DL, C, DT))
881     return false;
882 
883   // Make sure that nothing can observe cpyDest being written early. There are
884   // a number of cases to consider:
885   //  1. cpyDest cannot be accessed between C and cpyStore as a precondition of
886   //     the transform.
887   //  2. C itself may not access cpyDest (prior to the transform). This is
888   //     checked further below.
889   //  3. If cpyDest is accessible to the caller of this function (potentially
890   //     captured and not based on an alloca), we need to ensure that we cannot
891   //     unwind between C and cpyStore. This is checked here.
892   //  4. If cpyDest is potentially captured, there may be accesses to it from
893   //     another thread. In this case, we need to check that cpyStore is
894   //     guaranteed to be executed if C is. As it is a non-atomic access, it
895   //     renders accesses from other threads undefined.
896   //     TODO: This is currently not checked.
897   if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore))
898     return false;
899 
900   // Check that dest points to memory that is at least as aligned as src.
901   Align srcAlign = srcAlloca->getAlign();
902   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
903   // If dest is not aligned enough and we can't increase its alignment then
904   // bail out.
905   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
906     return false;
907 
908   // Check that src is not accessed except via the call and the memcpy.  This
909   // guarantees that it holds only undefined values when passed in (so the final
910   // memcpy can be dropped), that it is not read or written between the call and
911   // the memcpy, and that writing beyond the end of it is undefined.
912   SmallVector<User *, 8> srcUseList(srcAlloca->users());
913   while (!srcUseList.empty()) {
914     User *U = srcUseList.pop_back_val();
915 
916     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
917       append_range(srcUseList, U->users());
918       continue;
919     }
920     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
921       if (!G->hasAllZeroIndices())
922         return false;
923 
924       append_range(srcUseList, U->users());
925       continue;
926     }
927     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
928       if (IT->isLifetimeStartOrEnd())
929         continue;
930 
931     if (U != C && U != cpyLoad)
932       return false;
933   }
934 
935   // Check that src isn't captured by the called function since the
936   // transformation can cause aliasing issues in that case.
937   for (unsigned ArgI = 0, E = C->arg_size(); ArgI != E; ++ArgI)
938     if (C->getArgOperand(ArgI) == cpySrc && !C->doesNotCapture(ArgI))
939       return false;
940 
941   // Since we're changing the parameter to the callsite, we need to make sure
942   // that what would be the new parameter dominates the callsite.
943   if (!DT->dominates(cpyDest, C)) {
944     // Support moving a constant index GEP before the call.
945     auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
946     if (GEP && GEP->hasAllConstantIndices() &&
947         DT->dominates(GEP->getPointerOperand(), C))
948       GEP->moveBefore(C);
949     else
950       return false;
951   }
952 
953   // In addition to knowing that the call does not access src in some
954   // unexpected manner, for example via a global, which we deduce from
955   // the use analysis, we also need to know that it does not sneakily
956   // access dest.  We rely on AA to figure this out for us.
957   ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
958   // If necessary, perform additional analysis.
959   if (isModOrRefSet(MR))
960     MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
961   if (isModOrRefSet(MR))
962     return false;
963 
964   // We can't create address space casts here because we don't know if they're
965   // safe for the target.
966   if (cpySrc->getType()->getPointerAddressSpace() !=
967       cpyDest->getType()->getPointerAddressSpace())
968     return false;
969   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
970     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
971         cpySrc->getType()->getPointerAddressSpace() !=
972             C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
973       return false;
974 
975   // All the checks have passed, so do the transformation.
976   bool changedArgument = false;
977   for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
978     if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
979       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
980         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
981                                       cpyDest->getName(), C);
982       changedArgument = true;
983       if (C->getArgOperand(ArgI)->getType() == Dest->getType())
984         C->setArgOperand(ArgI, Dest);
985       else
986         C->setArgOperand(ArgI, CastInst::CreatePointerCast(
987                                    Dest, C->getArgOperand(ArgI)->getType(),
988                                    Dest->getName(), C));
989     }
990 
991   if (!changedArgument)
992     return false;
993 
994   // If the destination wasn't sufficiently aligned then increase its alignment.
995   if (!isDestSufficientlyAligned) {
996     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
997     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
998   }
999 
1000   // Update AA metadata
1001   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
1002   // handled here, but combineMetadata doesn't support them yet
1003   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
1004                          LLVMContext::MD_noalias,
1005                          LLVMContext::MD_invariant_group,
1006                          LLVMContext::MD_access_group};
1007   combineMetadata(C, cpyLoad, KnownIDs, true);
1008 
1009   ++NumCallSlot;
1010   return true;
1011 }
1012 
1013 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
1014 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
1015 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
1016                                                   MemCpyInst *MDep) {
1017   // We can only transforms memcpy's where the dest of one is the source of the
1018   // other.
1019   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1020     return false;
1021 
1022   // If dep instruction is reading from our current input, then it is a noop
1023   // transfer and substituting the input won't change this instruction.  Just
1024   // ignore the input and let someone else zap MDep.  This handles cases like:
1025   //    memcpy(a <- a)
1026   //    memcpy(b <- a)
1027   if (M->getSource() == MDep->getSource())
1028     return false;
1029 
1030   // Second, the length of the memcpy's must be the same, or the preceding one
1031   // must be larger than the following one.
1032   if (MDep->getLength() != M->getLength()) {
1033     ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1034     ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1035     if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1036       return false;
1037   }
1038 
1039   // Verify that the copied-from memory doesn't change in between the two
1040   // transfers.  For example, in:
1041   //    memcpy(a <- b)
1042   //    *b = 42;
1043   //    memcpy(c <- a)
1044   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1045   //
1046   // TODO: If the code between M and MDep is transparent to the destination "c",
1047   // then we could still perform the xform by moving M up to the first memcpy.
1048   // TODO: It would be sufficient to check the MDep source up to the memcpy
1049   // size of M, rather than MDep.
1050   if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1051                      MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
1052     return false;
1053 
1054   // If the dest of the second might alias the source of the first, then the
1055   // source and dest might overlap. In addition, if the source of the first
1056   // points to constant memory, they won't overlap by definition. Otherwise, we
1057   // still want to eliminate the intermediate value, but we have to generate a
1058   // memmove instead of memcpy.
1059   bool UseMemMove = false;
1060   if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep))))
1061     UseMemMove = true;
1062 
1063   // If all checks passed, then we can transform M.
1064   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
1065                     << *MDep << '\n' << *M << '\n');
1066 
1067   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1068   // example we could be moving from movaps -> movq on x86.
1069   IRBuilder<> Builder(M);
1070   Instruction *NewM;
1071   if (UseMemMove)
1072     NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
1073                                  MDep->getRawSource(), MDep->getSourceAlign(),
1074                                  M->getLength(), M->isVolatile());
1075   else if (isa<MemCpyInlineInst>(M)) {
1076     // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
1077     // never allowed since that would allow the latter to be lowered as a call
1078     // to an external function.
1079     NewM = Builder.CreateMemCpyInline(
1080         M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
1081         MDep->getSourceAlign(), M->getLength(), M->isVolatile());
1082   } else
1083     NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
1084                                 MDep->getRawSource(), MDep->getSourceAlign(),
1085                                 M->getLength(), M->isVolatile());
1086 
1087   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
1088   auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1089   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1090   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1091 
1092   // Remove the instruction we're replacing.
1093   eraseInstruction(M);
1094   ++NumMemCpyInstr;
1095   return true;
1096 }
1097 
1098 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1099 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1100 /// weren't copied over by \p MemCpy.
1101 ///
1102 /// In other words, transform:
1103 /// \code
1104 ///   memset(dst, c, dst_size);
1105 ///   memcpy(dst, src, src_size);
1106 /// \endcode
1107 /// into:
1108 /// \code
1109 ///   memcpy(dst, src, src_size);
1110 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1111 /// \endcode
1112 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1113                                                   MemSetInst *MemSet) {
1114   // We can only transform memset/memcpy with the same destination.
1115   if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
1116     return false;
1117 
1118   // Check that src and dst of the memcpy aren't the same. While memcpy
1119   // operands cannot partially overlap, exact equality is allowed.
1120   if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
1121     return false;
1122 
1123   // We know that dst up to src_size is not written. We now need to make sure
1124   // that dst up to dst_size is not accessed. (If we did not move the memset,
1125   // checking for reads would be sufficient.)
1126   if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
1127                       MSSA->getMemoryAccess(MemSet),
1128                       MSSA->getMemoryAccess(MemCpy)))
1129     return false;
1130 
1131   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1132   Value *Dest = MemCpy->getRawDest();
1133   Value *DestSize = MemSet->getLength();
1134   Value *SrcSize = MemCpy->getLength();
1135 
1136   if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
1137     return false;
1138 
1139   // If the sizes are the same, simply drop the memset instead of generating
1140   // a replacement with zero size.
1141   if (DestSize == SrcSize) {
1142     eraseInstruction(MemSet);
1143     return true;
1144   }
1145 
1146   // By default, create an unaligned memset.
1147   unsigned Align = 1;
1148   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1149   // of the sum.
1150   const unsigned DestAlign =
1151       std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1152   if (DestAlign > 1)
1153     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1154       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1155 
1156   IRBuilder<> Builder(MemCpy);
1157 
1158   // If the sizes have different types, zext the smaller one.
1159   if (DestSize->getType() != SrcSize->getType()) {
1160     if (DestSize->getType()->getIntegerBitWidth() >
1161         SrcSize->getType()->getIntegerBitWidth())
1162       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1163     else
1164       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1165   }
1166 
1167   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1168   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1169   Value *MemsetLen = Builder.CreateSelect(
1170       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1171   unsigned DestAS = Dest->getType()->getPointerAddressSpace();
1172   Instruction *NewMemSet = Builder.CreateMemSet(
1173       Builder.CreateGEP(Builder.getInt8Ty(),
1174                         Builder.CreatePointerCast(Dest,
1175                                                   Builder.getInt8PtrTy(DestAS)),
1176                         SrcSize),
1177       MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1178 
1179   assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
1180          "MemCpy must be a MemoryDef");
1181   // The new memset is inserted after the memcpy, but it is known that its
1182   // defining access is the memset about to be removed which immediately
1183   // precedes the memcpy.
1184   auto *LastDef =
1185       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1186   auto *NewAccess = MSSAU->createMemoryAccessBefore(
1187       NewMemSet, LastDef->getDefiningAccess(), LastDef);
1188   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1189 
1190   eraseInstruction(MemSet);
1191   return true;
1192 }
1193 
1194 /// Determine whether the instruction has undefined content for the given Size,
1195 /// either because it was freshly alloca'd or started its lifetime.
1196 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
1197                              MemoryDef *Def, Value *Size) {
1198   if (MSSA->isLiveOnEntryDef(Def))
1199     return isa<AllocaInst>(getUnderlyingObject(V));
1200 
1201   if (IntrinsicInst *II =
1202           dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
1203     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
1204       ConstantInt *LTSize = cast<ConstantInt>(II->getArgOperand(0));
1205 
1206       if (ConstantInt *CSize = dyn_cast<ConstantInt>(Size)) {
1207         if (AA->isMustAlias(V, II->getArgOperand(1)) &&
1208             LTSize->getZExtValue() >= CSize->getZExtValue())
1209           return true;
1210       }
1211 
1212       // If the lifetime.start covers a whole alloca (as it almost always
1213       // does) and we're querying a pointer based on that alloca, then we know
1214       // the memory is definitely undef, regardless of how exactly we alias.
1215       // The size also doesn't matter, as an out-of-bounds access would be UB.
1216       AllocaInst *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V));
1217       if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
1218         const DataLayout &DL = Alloca->getModule()->getDataLayout();
1219         if (Optional<TypeSize> AllocaSize = Alloca->getAllocationSizeInBits(DL))
1220           if (*AllocaSize == LTSize->getValue() * 8)
1221             return true;
1222       }
1223     }
1224   }
1225 
1226   return false;
1227 }
1228 
1229 /// Transform memcpy to memset when its source was just memset.
1230 /// In other words, turn:
1231 /// \code
1232 ///   memset(dst1, c, dst1_size);
1233 ///   memcpy(dst2, dst1, dst2_size);
1234 /// \endcode
1235 /// into:
1236 /// \code
1237 ///   memset(dst1, c, dst1_size);
1238 ///   memset(dst2, c, dst2_size);
1239 /// \endcode
1240 /// When dst2_size <= dst1_size.
1241 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1242                                                MemSetInst *MemSet) {
1243   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1244   // memcpying from the same address. Otherwise it is hard to reason about.
1245   if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1246     return false;
1247 
1248   Value *MemSetSize = MemSet->getLength();
1249   Value *CopySize = MemCpy->getLength();
1250 
1251   if (MemSetSize != CopySize) {
1252     // Make sure the memcpy doesn't read any more than what the memset wrote.
1253     // Don't worry about sizes larger than i64.
1254 
1255     // A known memset size is required.
1256     ConstantInt *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
1257     if (!CMemSetSize)
1258       return false;
1259 
1260     // A known memcpy size is also required.
1261     ConstantInt *CCopySize = dyn_cast<ConstantInt>(CopySize);
1262     if (!CCopySize)
1263       return false;
1264     if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
1265       // If the memcpy is larger than the memset, but the memory was undef prior
1266       // to the memset, we can just ignore the tail. Technically we're only
1267       // interested in the bytes from MemSetSize..CopySize here, but as we can't
1268       // easily represent this location, we use the full 0..CopySize range.
1269       MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1270       bool CanReduceSize = false;
1271       MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
1272       MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1273           MemSetAccess->getDefiningAccess(), MemCpyLoc);
1274       if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1275         if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize))
1276           CanReduceSize = true;
1277 
1278       if (!CanReduceSize)
1279         return false;
1280       CopySize = MemSetSize;
1281     }
1282   }
1283 
1284   IRBuilder<> Builder(MemCpy);
1285   Instruction *NewM =
1286       Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1287                            CopySize, MaybeAlign(MemCpy->getDestAlignment()));
1288   auto *LastDef =
1289       cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
1290   auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1291   MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1292 
1293   return true;
1294 }
1295 
1296 /// Perform simplification of memcpy's.  If we have memcpy A
1297 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1298 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1299 /// circumstances). This allows later passes to remove the first memcpy
1300 /// altogether.
1301 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
1302   // We can only optimize non-volatile memcpy's.
1303   if (M->isVolatile()) return false;
1304 
1305   // If the source and destination of the memcpy are the same, then zap it.
1306   if (M->getSource() == M->getDest()) {
1307     ++BBI;
1308     eraseInstruction(M);
1309     return true;
1310   }
1311 
1312   // If copying from a constant, try to turn the memcpy into a memset.
1313   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1314     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1315       if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1316                                            M->getModule()->getDataLayout())) {
1317         IRBuilder<> Builder(M);
1318         Instruction *NewM =
1319             Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1320                                  MaybeAlign(M->getDestAlignment()), false);
1321         auto *LastDef =
1322             cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
1323         auto *NewAccess =
1324             MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
1325         MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
1326 
1327         eraseInstruction(M);
1328         ++NumCpyToSet;
1329         return true;
1330       }
1331 
1332   MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
1333   MemoryAccess *AnyClobber = MSSA->getWalker()->getClobberingMemoryAccess(MA);
1334   MemoryLocation DestLoc = MemoryLocation::getForDest(M);
1335   const MemoryAccess *DestClobber =
1336       MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
1337 
1338   // Try to turn a partially redundant memset + memcpy into
1339   // memcpy + smaller memset.  We don't need the memcpy size for this.
1340   // The memcpy most post-dom the memset, so limit this to the same basic
1341   // block. A non-local generalization is likely not worthwhile.
1342   if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
1343     if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
1344       if (DestClobber->getBlock() == M->getParent())
1345         if (processMemSetMemCpyDependence(M, MDep))
1346           return true;
1347 
1348   MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
1349       AnyClobber, MemoryLocation::getForSource(M));
1350 
1351   // There are four possible optimizations we can do for memcpy:
1352   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1353   //   b) call-memcpy xform for return slot optimization.
1354   //   c) memcpy from freshly alloca'd space or space that has just started
1355   //      its lifetime copies undefined data, and we can therefore eliminate
1356   //      the memcpy in favor of the data that was already at the destination.
1357   //   d) memcpy from a just-memset'd source can be turned into memset.
1358   if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
1359     if (Instruction *MI = MD->getMemoryInst()) {
1360       if (ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
1361         if (auto *C = dyn_cast<CallInst>(MI)) {
1362           // The memcpy must post-dom the call. Limit to the same block for
1363           // now. Additionally, we need to ensure that there are no accesses
1364           // to dest between the call and the memcpy. Accesses to src will be
1365           // checked by performCallSlotOptzn().
1366           // TODO: Support non-local call-slot optimization?
1367           if (C->getParent() == M->getParent() &&
1368               !accessedBetween(*AA, DestLoc, MD, MA)) {
1369             // FIXME: Can we pass in either of dest/src alignment here instead
1370             // of conservatively taking the minimum?
1371             Align Alignment = std::min(M->getDestAlign().valueOrOne(),
1372                                        M->getSourceAlign().valueOrOne());
1373             if (performCallSlotOptzn(M, M, M->getDest(), M->getSource(),
1374                                      CopySize->getZExtValue(), Alignment, C)) {
1375               LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
1376                                 << "    call: " << *C << "\n"
1377                                 << "    memcpy: " << *M << "\n");
1378               eraseInstruction(M);
1379               ++NumMemCpyInstr;
1380               return true;
1381             }
1382           }
1383         }
1384       }
1385       if (auto *MDep = dyn_cast<MemCpyInst>(MI))
1386         return processMemCpyMemCpyDependence(M, MDep);
1387       if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
1388         if (performMemCpyToMemSetOptzn(M, MDep)) {
1389           LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
1390           eraseInstruction(M);
1391           ++NumCpyToSet;
1392           return true;
1393         }
1394       }
1395     }
1396 
1397     if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) {
1398       LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
1399       eraseInstruction(M);
1400       ++NumMemCpyInstr;
1401       return true;
1402     }
1403   }
1404 
1405   return false;
1406 }
1407 
1408 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1409 /// not to alias.
1410 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1411   // See if the source could be modified by this memmove potentially.
1412   if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
1413     return false;
1414 
1415   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1416                     << "\n");
1417 
1418   // If not, then we know we can transform this.
1419   Type *ArgTys[3] = { M->getRawDest()->getType(),
1420                       M->getRawSource()->getType(),
1421                       M->getLength()->getType() };
1422   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1423                                                  Intrinsic::memcpy, ArgTys));
1424 
1425   // For MemorySSA nothing really changes (except that memcpy may imply stricter
1426   // aliasing guarantees).
1427 
1428   ++NumMoveToCpy;
1429   return true;
1430 }
1431 
1432 /// This is called on every byval argument in call sites.
1433 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
1434   const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
1435   // Find out what feeds this byval argument.
1436   Value *ByValArg = CB.getArgOperand(ArgNo);
1437   Type *ByValTy = CB.getParamByValType(ArgNo);
1438   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1439   MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
1440   MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
1441   if (!CallAccess)
1442     return false;
1443   MemCpyInst *MDep = nullptr;
1444   MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
1445       CallAccess->getDefiningAccess(), Loc);
1446   if (auto *MD = dyn_cast<MemoryDef>(Clobber))
1447     MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
1448 
1449   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1450   // a memcpy, see if we can byval from the source of the memcpy instead of the
1451   // result.
1452   if (!MDep || MDep->isVolatile() ||
1453       ByValArg->stripPointerCasts() != MDep->getDest())
1454     return false;
1455 
1456   // The length of the memcpy must be larger or equal to the size of the byval.
1457   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1458   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1459     return false;
1460 
1461   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1462   // then it is some target specific value that we can't know.
1463   MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
1464   if (!ByValAlign) return false;
1465 
1466   // If it is greater than the memcpy, then we check to see if we can force the
1467   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1468   MaybeAlign MemDepAlign = MDep->getSourceAlign();
1469   if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
1470       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
1471                                  DT) < *ByValAlign)
1472     return false;
1473 
1474   // The address space of the memcpy source must match the byval argument
1475   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1476       ByValArg->getType()->getPointerAddressSpace())
1477     return false;
1478 
1479   // Verify that the copied-from memory doesn't change in between the memcpy and
1480   // the byval call.
1481   //    memcpy(a <- b)
1482   //    *b = 42;
1483   //    foo(*a)
1484   // It would be invalid to transform the second memcpy into foo(*b).
1485   if (writtenBetween(MSSA, MemoryLocation::getForSource(MDep),
1486                      MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
1487     return false;
1488 
1489   Value *TmpCast = MDep->getSource();
1490   if (MDep->getSource()->getType() != ByValArg->getType()) {
1491     BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1492                                               "tmpcast", &CB);
1493     // Set the tmpcast's DebugLoc to MDep's
1494     TmpBitCast->setDebugLoc(MDep->getDebugLoc());
1495     TmpCast = TmpBitCast;
1496   }
1497 
1498   LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1499                     << "  " << *MDep << "\n"
1500                     << "  " << CB << "\n");
1501 
1502   // Otherwise we're good!  Update the byval argument.
1503   CB.setArgOperand(ArgNo, TmpCast);
1504   ++NumMemCpyInstr;
1505   return true;
1506 }
1507 
1508 /// Executes one iteration of MemCpyOptPass.
1509 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1510   bool MadeChange = false;
1511 
1512   // Walk all instruction in the function.
1513   for (BasicBlock &BB : F) {
1514     // Skip unreachable blocks. For example processStore assumes that an
1515     // instruction in a BB can't be dominated by a later instruction in the
1516     // same BB (which is a scenario that can happen for an unreachable BB that
1517     // has itself as a predecessor).
1518     if (!DT->isReachableFromEntry(&BB))
1519       continue;
1520 
1521     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1522         // Avoid invalidating the iterator.
1523       Instruction *I = &*BI++;
1524 
1525       bool RepeatInstruction = false;
1526 
1527       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1528         MadeChange |= processStore(SI, BI);
1529       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1530         RepeatInstruction = processMemSet(M, BI);
1531       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1532         RepeatInstruction = processMemCpy(M, BI);
1533       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1534         RepeatInstruction = processMemMove(M);
1535       else if (auto *CB = dyn_cast<CallBase>(I)) {
1536         for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
1537           if (CB->isByValArgument(i))
1538             MadeChange |= processByValArgument(*CB, i);
1539       }
1540 
1541       // Reprocess the instruction if desired.
1542       if (RepeatInstruction) {
1543         if (BI != BB.begin())
1544           --BI;
1545         MadeChange = true;
1546       }
1547     }
1548   }
1549 
1550   return MadeChange;
1551 }
1552 
1553 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1554   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1555   auto *AA = &AM.getResult<AAManager>(F);
1556   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
1557   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
1558   auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
1559 
1560   bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA());
1561   if (!MadeChange)
1562     return PreservedAnalyses::all();
1563 
1564   PreservedAnalyses PA;
1565   PA.preserveSet<CFGAnalyses>();
1566   PA.preserve<MemorySSAAnalysis>();
1567   return PA;
1568 }
1569 
1570 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
1571                             AliasAnalysis *AA_, AssumptionCache *AC_,
1572                             DominatorTree *DT_, MemorySSA *MSSA_) {
1573   bool MadeChange = false;
1574   TLI = TLI_;
1575   AA = AA_;
1576   AC = AC_;
1577   DT = DT_;
1578   MSSA = MSSA_;
1579   MemorySSAUpdater MSSAU_(MSSA_);
1580   MSSAU = &MSSAU_;
1581 
1582   while (true) {
1583     if (!iterateOnFunction(F))
1584       break;
1585     MadeChange = true;
1586   }
1587 
1588   if (VerifyMemorySSA)
1589     MSSA_->verifyMemorySSA();
1590 
1591   return MadeChange;
1592 }
1593 
1594 /// This is the main transformation entry point for a function.
1595 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1596   if (skipFunction(F))
1597     return false;
1598 
1599   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1600   auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
1601   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1602   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1603   auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
1604 
1605   return Impl.runImpl(F, TLI, AA, AC, DT, MSSA);
1606 }
1607