1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs various transformations related to eliminating memcpy 11 // calls, or transforming sets of stores into memset's. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include <list> 34 using namespace llvm; 35 36 #define DEBUG_TYPE "memcpyopt" 37 38 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 39 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 40 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 41 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 42 43 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, 44 bool &VariableIdxFound, 45 const DataLayout &DL) { 46 // Skip over the first indices. 47 gep_type_iterator GTI = gep_type_begin(GEP); 48 for (unsigned i = 1; i != Idx; ++i, ++GTI) 49 /*skip along*/; 50 51 // Compute the offset implied by the rest of the indices. 52 int64_t Offset = 0; 53 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 54 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 55 if (!OpC) 56 return VariableIdxFound = true; 57 if (OpC->isZero()) continue; // No offset. 58 59 // Handle struct indices, which add their field offset to the pointer. 60 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 61 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 62 continue; 63 } 64 65 // Otherwise, we have a sequential type like an array or vector. Multiply 66 // the index by the ElementSize. 67 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 68 Offset += Size*OpC->getSExtValue(); 69 } 70 71 return Offset; 72 } 73 74 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a 75 /// constant offset, and return that constant offset. For example, Ptr1 might 76 /// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8. 77 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, 78 const DataLayout &DL) { 79 Ptr1 = Ptr1->stripPointerCasts(); 80 Ptr2 = Ptr2->stripPointerCasts(); 81 82 // Handle the trivial case first. 83 if (Ptr1 == Ptr2) { 84 Offset = 0; 85 return true; 86 } 87 88 GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 89 GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 90 91 bool VariableIdxFound = false; 92 93 // If one pointer is a GEP and the other isn't, then see if the GEP is a 94 // constant offset from the base, as in "P" and "gep P, 1". 95 if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { 96 Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL); 97 return !VariableIdxFound; 98 } 99 100 if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { 101 Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL); 102 return !VariableIdxFound; 103 } 104 105 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 106 // base. After that base, they may have some number of common (and 107 // potentially variable) indices. After that they handle some constant 108 // offset, which determines their offset from each other. At this point, we 109 // handle no other case. 110 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 111 return false; 112 113 // Skip any common indices and track the GEP types. 114 unsigned Idx = 1; 115 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 116 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 117 break; 118 119 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL); 120 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL); 121 if (VariableIdxFound) return false; 122 123 Offset = Offset2-Offset1; 124 return true; 125 } 126 127 128 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value. 129 /// This allows us to analyze stores like: 130 /// store 0 -> P+1 131 /// store 0 -> P+0 132 /// store 0 -> P+3 133 /// store 0 -> P+2 134 /// which sometimes happens with stores to arrays of structs etc. When we see 135 /// the first store, we make a range [1, 2). The second store extends the range 136 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 137 /// two ranges into [0, 3) which is memset'able. 138 namespace { 139 struct MemsetRange { 140 // Start/End - A semi range that describes the span that this range covers. 141 // The range is closed at the start and open at the end: [Start, End). 142 int64_t Start, End; 143 144 /// StartPtr - The getelementptr instruction that points to the start of the 145 /// range. 146 Value *StartPtr; 147 148 /// Alignment - The known alignment of the first store. 149 unsigned Alignment; 150 151 /// TheStores - The actual stores that make up this range. 152 SmallVector<Instruction*, 16> TheStores; 153 154 bool isProfitableToUseMemset(const DataLayout &DL) const; 155 }; 156 } // end anon namespace 157 158 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 159 // If we found more than 4 stores to merge or 16 bytes, use memset. 160 if (TheStores.size() >= 4 || End-Start >= 16) return true; 161 162 // If there is nothing to merge, don't do anything. 163 if (TheStores.size() < 2) return false; 164 165 // If any of the stores are a memset, then it is always good to extend the 166 // memset. 167 for (unsigned i = 0, e = TheStores.size(); i != e; ++i) 168 if (!isa<StoreInst>(TheStores[i])) 169 return true; 170 171 // Assume that the code generator is capable of merging pairs of stores 172 // together if it wants to. 173 if (TheStores.size() == 2) return false; 174 175 // If we have fewer than 8 stores, it can still be worthwhile to do this. 176 // For example, merging 4 i8 stores into an i32 store is useful almost always. 177 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 178 // memset will be split into 2 32-bit stores anyway) and doing so can 179 // pessimize the llvm optimizer. 180 // 181 // Since we don't have perfect knowledge here, make some assumptions: assume 182 // the maximum GPR width is the same size as the largest legal integer 183 // size. If so, check to see whether we will end up actually reducing the 184 // number of stores used. 185 unsigned Bytes = unsigned(End-Start); 186 unsigned MaxIntSize = DL.getLargestLegalIntTypeSize(); 187 if (MaxIntSize == 0) 188 MaxIntSize = 1; 189 unsigned NumPointerStores = Bytes / MaxIntSize; 190 191 // Assume the remaining bytes if any are done a byte at a time. 192 unsigned NumByteStores = Bytes - NumPointerStores * MaxIntSize; 193 194 // If we will reduce the # stores (according to this heuristic), do the 195 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 196 // etc. 197 return TheStores.size() > NumPointerStores+NumByteStores; 198 } 199 200 201 namespace { 202 class MemsetRanges { 203 /// Ranges - A sorted list of the memset ranges. We use std::list here 204 /// because each element is relatively large and expensive to copy. 205 std::list<MemsetRange> Ranges; 206 typedef std::list<MemsetRange>::iterator range_iterator; 207 const DataLayout &DL; 208 public: 209 MemsetRanges(const DataLayout &DL) : DL(DL) {} 210 211 typedef std::list<MemsetRange>::const_iterator const_iterator; 212 const_iterator begin() const { return Ranges.begin(); } 213 const_iterator end() const { return Ranges.end(); } 214 bool empty() const { return Ranges.empty(); } 215 216 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 217 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 218 addStore(OffsetFromFirst, SI); 219 else 220 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 221 } 222 223 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 224 int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 225 226 addRange(OffsetFromFirst, StoreSize, 227 SI->getPointerOperand(), SI->getAlignment(), SI); 228 } 229 230 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 231 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 232 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); 233 } 234 235 void addRange(int64_t Start, int64_t Size, Value *Ptr, 236 unsigned Alignment, Instruction *Inst); 237 238 }; 239 240 } // end anon namespace 241 242 243 /// addRange - Add a new store to the MemsetRanges data structure. This adds a 244 /// new range for the specified store at the specified offset, merging into 245 /// existing ranges as appropriate. 246 /// 247 /// Do a linear search of the ranges to see if this can be joined and/or to 248 /// find the insertion point in the list. We keep the ranges sorted for 249 /// simplicity here. This is a linear search of a linked list, which is ugly, 250 /// however the number of ranges is limited, so this won't get crazy slow. 251 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 252 unsigned Alignment, Instruction *Inst) { 253 int64_t End = Start+Size; 254 range_iterator I = Ranges.begin(), E = Ranges.end(); 255 256 while (I != E && Start > I->End) 257 ++I; 258 259 // We now know that I == E, in which case we didn't find anything to merge 260 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 261 // to insert a new range. Handle this now. 262 if (I == E || End < I->Start) { 263 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 264 R.Start = Start; 265 R.End = End; 266 R.StartPtr = Ptr; 267 R.Alignment = Alignment; 268 R.TheStores.push_back(Inst); 269 return; 270 } 271 272 // This store overlaps with I, add it. 273 I->TheStores.push_back(Inst); 274 275 // At this point, we may have an interval that completely contains our store. 276 // If so, just add it to the interval and return. 277 if (I->Start <= Start && I->End >= End) 278 return; 279 280 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 281 // but is not entirely contained within the range. 282 283 // See if the range extends the start of the range. In this case, it couldn't 284 // possibly cause it to join the prior range, because otherwise we would have 285 // stopped on *it*. 286 if (Start < I->Start) { 287 I->Start = Start; 288 I->StartPtr = Ptr; 289 I->Alignment = Alignment; 290 } 291 292 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 293 // is in or right at the end of I), and that End >= I->Start. Extend I out to 294 // End. 295 if (End > I->End) { 296 I->End = End; 297 range_iterator NextI = I; 298 while (++NextI != E && End >= NextI->Start) { 299 // Merge the range in. 300 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 301 if (NextI->End > I->End) 302 I->End = NextI->End; 303 Ranges.erase(NextI); 304 NextI = I; 305 } 306 } 307 } 308 309 //===----------------------------------------------------------------------===// 310 // MemCpyOpt Pass 311 //===----------------------------------------------------------------------===// 312 313 namespace { 314 class MemCpyOpt : public FunctionPass { 315 MemoryDependenceAnalysis *MD; 316 TargetLibraryInfo *TLI; 317 public: 318 static char ID; // Pass identification, replacement for typeid 319 MemCpyOpt() : FunctionPass(ID) { 320 initializeMemCpyOptPass(*PassRegistry::getPassRegistry()); 321 MD = nullptr; 322 TLI = nullptr; 323 } 324 325 bool runOnFunction(Function &F) override; 326 327 private: 328 // This transformation requires dominator postdominator info 329 void getAnalysisUsage(AnalysisUsage &AU) const override { 330 AU.setPreservesCFG(); 331 AU.addRequired<AssumptionCacheTracker>(); 332 AU.addRequired<DominatorTreeWrapperPass>(); 333 AU.addRequired<MemoryDependenceAnalysis>(); 334 AU.addRequired<AliasAnalysis>(); 335 AU.addRequired<TargetLibraryInfoWrapperPass>(); 336 AU.addPreserved<AliasAnalysis>(); 337 AU.addPreserved<MemoryDependenceAnalysis>(); 338 } 339 340 // Helper functions 341 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI); 342 bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI); 343 bool processMemCpy(MemCpyInst *M); 344 bool processMemMove(MemMoveInst *M); 345 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc, 346 uint64_t cpyLen, unsigned cpyAlign, CallInst *C); 347 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep); 348 bool processMemSetMemCpyDependence(MemCpyInst *M, MemSetInst *MDep); 349 bool performMemCpyToMemSetOptzn(MemCpyInst *M, MemSetInst *MDep); 350 bool processByValArgument(CallSite CS, unsigned ArgNo); 351 Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr, 352 Value *ByteVal); 353 354 bool iterateOnFunction(Function &F); 355 }; 356 357 char MemCpyOpt::ID = 0; 358 } 359 360 // createMemCpyOptPass - The public interface to this file... 361 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); } 362 363 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 364 false, false) 365 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 366 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 367 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 368 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 369 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 370 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization", 371 false, false) 372 373 /// tryMergingIntoMemset - When scanning forward over instructions, we look for 374 /// some other patterns to fold away. In particular, this looks for stores to 375 /// neighboring locations of memory. If it sees enough consecutive ones, it 376 /// attempts to merge them together into a memcpy/memset. 377 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst, 378 Value *StartPtr, Value *ByteVal) { 379 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 380 381 // Okay, so we now have a single store that can be splatable. Scan to find 382 // all subsequent stores of the same value to offset from the same pointer. 383 // Join these together into ranges, so we can decide whether contiguous blocks 384 // are stored. 385 MemsetRanges Ranges(DL); 386 387 BasicBlock::iterator BI = StartInst; 388 for (++BI; !isa<TerminatorInst>(BI); ++BI) { 389 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 390 // If the instruction is readnone, ignore it, otherwise bail out. We 391 // don't even allow readonly here because we don't want something like: 392 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 393 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 394 break; 395 continue; 396 } 397 398 if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { 399 // If this is a store, see if we can merge it in. 400 if (!NextStore->isSimple()) break; 401 402 // Check to see if this stored value is of the same byte-splattable value. 403 if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) 404 break; 405 406 // Check to see if this store is to a constant offset from the start ptr. 407 int64_t Offset; 408 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, 409 DL)) 410 break; 411 412 Ranges.addStore(Offset, NextStore); 413 } else { 414 MemSetInst *MSI = cast<MemSetInst>(BI); 415 416 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 417 !isa<ConstantInt>(MSI->getLength())) 418 break; 419 420 // Check to see if this store is to a constant offset from the start ptr. 421 int64_t Offset; 422 if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL)) 423 break; 424 425 Ranges.addMemSet(Offset, MSI); 426 } 427 } 428 429 // If we have no ranges, then we just had a single store with nothing that 430 // could be merged in. This is a very common case of course. 431 if (Ranges.empty()) 432 return nullptr; 433 434 // If we had at least one store that could be merged in, add the starting 435 // store as well. We try to avoid this unless there is at least something 436 // interesting as a small compile-time optimization. 437 Ranges.addInst(0, StartInst); 438 439 // If we create any memsets, we put it right before the first instruction that 440 // isn't part of the memset block. This ensure that the memset is dominated 441 // by any addressing instruction needed by the start of the block. 442 IRBuilder<> Builder(BI); 443 444 // Now that we have full information about ranges, loop over the ranges and 445 // emit memset's for anything big enough to be worthwhile. 446 Instruction *AMemSet = nullptr; 447 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end(); 448 I != E; ++I) { 449 const MemsetRange &Range = *I; 450 451 if (Range.TheStores.size() == 1) continue; 452 453 // If it is profitable to lower this range to memset, do so now. 454 if (!Range.isProfitableToUseMemset(DL)) 455 continue; 456 457 // Otherwise, we do want to transform this! Create a new memset. 458 // Get the starting pointer of the block. 459 StartPtr = Range.StartPtr; 460 461 // Determine alignment 462 unsigned Alignment = Range.Alignment; 463 if (Alignment == 0) { 464 Type *EltType = 465 cast<PointerType>(StartPtr->getType())->getElementType(); 466 Alignment = DL.getABITypeAlignment(EltType); 467 } 468 469 AMemSet = 470 Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); 471 472 DEBUG(dbgs() << "Replace stores:\n"; 473 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i) 474 dbgs() << *Range.TheStores[i] << '\n'; 475 dbgs() << "With: " << *AMemSet << '\n'); 476 477 if (!Range.TheStores.empty()) 478 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 479 480 // Zap all the stores. 481 for (SmallVectorImpl<Instruction *>::const_iterator 482 SI = Range.TheStores.begin(), 483 SE = Range.TheStores.end(); SI != SE; ++SI) { 484 MD->removeInstruction(*SI); 485 (*SI)->eraseFromParent(); 486 } 487 ++NumMemSetInfer; 488 } 489 490 return AMemSet; 491 } 492 493 494 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 495 if (!SI->isSimple()) return false; 496 const DataLayout &DL = SI->getModule()->getDataLayout(); 497 498 // Detect cases where we're performing call slot forwarding, but 499 // happen to be using a load-store pair to implement it, rather than 500 // a memcpy. 501 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { 502 if (LI->isSimple() && LI->hasOneUse() && 503 LI->getParent() == SI->getParent()) { 504 MemDepResult ldep = MD->getDependency(LI); 505 CallInst *C = nullptr; 506 if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) 507 C = dyn_cast<CallInst>(ldep.getInst()); 508 509 if (C) { 510 // Check that nothing touches the dest of the "copy" between 511 // the call and the store. 512 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 513 MemoryLocation StoreLoc = MemoryLocation::get(SI); 514 for (BasicBlock::iterator I = --BasicBlock::iterator(SI), 515 E = C; I != E; --I) { 516 if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) { 517 C = nullptr; 518 break; 519 } 520 } 521 } 522 523 if (C) { 524 unsigned storeAlign = SI->getAlignment(); 525 if (!storeAlign) 526 storeAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); 527 unsigned loadAlign = LI->getAlignment(); 528 if (!loadAlign) 529 loadAlign = DL.getABITypeAlignment(LI->getType()); 530 531 bool changed = performCallSlotOptzn( 532 LI, SI->getPointerOperand()->stripPointerCasts(), 533 LI->getPointerOperand()->stripPointerCasts(), 534 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 535 std::min(storeAlign, loadAlign), C); 536 if (changed) { 537 MD->removeInstruction(SI); 538 SI->eraseFromParent(); 539 MD->removeInstruction(LI); 540 LI->eraseFromParent(); 541 ++NumMemCpyInstr; 542 return true; 543 } 544 } 545 } 546 } 547 548 // There are two cases that are interesting for this code to handle: memcpy 549 // and memset. Right now we only handle memset. 550 551 // Ensure that the value being stored is something that can be memset'able a 552 // byte at a time like "0" or "-1" or any width, as well as things like 553 // 0xA0A0A0A0 and 0.0. 554 if (Value *ByteVal = isBytewiseValue(SI->getOperand(0))) 555 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 556 ByteVal)) { 557 BBI = I; // Don't invalidate iterator. 558 return true; 559 } 560 561 return false; 562 } 563 564 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 565 // See if there is another memset or store neighboring this memset which 566 // allows us to widen out the memset to do a single larger store. 567 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 568 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 569 MSI->getValue())) { 570 BBI = I; // Don't invalidate iterator. 571 return true; 572 } 573 return false; 574 } 575 576 577 /// performCallSlotOptzn - takes a memcpy and a call that it depends on, 578 /// and checks for the possibility of a call slot optimization by having 579 /// the call write its result directly into the destination of the memcpy. 580 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy, 581 Value *cpyDest, Value *cpySrc, 582 uint64_t cpyLen, unsigned cpyAlign, 583 CallInst *C) { 584 // The general transformation to keep in mind is 585 // 586 // call @func(..., src, ...) 587 // memcpy(dest, src, ...) 588 // 589 // -> 590 // 591 // memcpy(dest, src, ...) 592 // call @func(..., dest, ...) 593 // 594 // Since moving the memcpy is technically awkward, we additionally check that 595 // src only holds uninitialized values at the moment of the call, meaning that 596 // the memcpy can be discarded rather than moved. 597 598 // Deliberately get the source and destination with bitcasts stripped away, 599 // because we'll need to do type comparisons based on the underlying type. 600 CallSite CS(C); 601 602 // Require that src be an alloca. This simplifies the reasoning considerably. 603 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 604 if (!srcAlloca) 605 return false; 606 607 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 608 if (!srcArraySize) 609 return false; 610 611 const DataLayout &DL = cpy->getModule()->getDataLayout(); 612 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 613 srcArraySize->getZExtValue(); 614 615 if (cpyLen < srcSize) 616 return false; 617 618 // Check that accessing the first srcSize bytes of dest will not cause a 619 // trap. Otherwise the transform is invalid since it might cause a trap 620 // to occur earlier than it otherwise would. 621 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { 622 // The destination is an alloca. Check it is larger than srcSize. 623 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); 624 if (!destArraySize) 625 return false; 626 627 uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * 628 destArraySize->getZExtValue(); 629 630 if (destSize < srcSize) 631 return false; 632 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { 633 if (A->getDereferenceableBytes() < srcSize) { 634 // If the destination is an sret parameter then only accesses that are 635 // outside of the returned struct type can trap. 636 if (!A->hasStructRetAttr()) 637 return false; 638 639 Type *StructTy = cast<PointerType>(A->getType())->getElementType(); 640 if (!StructTy->isSized()) { 641 // The call may never return and hence the copy-instruction may never 642 // be executed, and therefore it's not safe to say "the destination 643 // has at least <cpyLen> bytes, as implied by the copy-instruction", 644 return false; 645 } 646 647 uint64_t destSize = DL.getTypeAllocSize(StructTy); 648 if (destSize < srcSize) 649 return false; 650 } 651 } else { 652 return false; 653 } 654 655 // Check that dest points to memory that is at least as aligned as src. 656 unsigned srcAlign = srcAlloca->getAlignment(); 657 if (!srcAlign) 658 srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); 659 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 660 // If dest is not aligned enough and we can't increase its alignment then 661 // bail out. 662 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 663 return false; 664 665 // Check that src is not accessed except via the call and the memcpy. This 666 // guarantees that it holds only undefined values when passed in (so the final 667 // memcpy can be dropped), that it is not read or written between the call and 668 // the memcpy, and that writing beyond the end of it is undefined. 669 SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), 670 srcAlloca->user_end()); 671 while (!srcUseList.empty()) { 672 User *U = srcUseList.pop_back_val(); 673 674 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 675 for (User *UU : U->users()) 676 srcUseList.push_back(UU); 677 continue; 678 } 679 if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { 680 if (!G->hasAllZeroIndices()) 681 return false; 682 683 for (User *UU : U->users()) 684 srcUseList.push_back(UU); 685 continue; 686 } 687 if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) 688 if (IT->getIntrinsicID() == Intrinsic::lifetime_start || 689 IT->getIntrinsicID() == Intrinsic::lifetime_end) 690 continue; 691 692 if (U != C && U != cpy) 693 return false; 694 } 695 696 // Check that src isn't captured by the called function since the 697 // transformation can cause aliasing issues in that case. 698 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 699 if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) 700 return false; 701 702 // Since we're changing the parameter to the callsite, we need to make sure 703 // that what would be the new parameter dominates the callsite. 704 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 705 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) 706 if (!DT.dominates(cpyDestInst, C)) 707 return false; 708 709 // In addition to knowing that the call does not access src in some 710 // unexpected manner, for example via a global, which we deduce from 711 // the use analysis, we also need to know that it does not sneakily 712 // access dest. We rely on AA to figure this out for us. 713 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 714 AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize); 715 // If necessary, perform additional analysis. 716 if (MR != AliasAnalysis::NoModRef) 717 MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); 718 if (MR != AliasAnalysis::NoModRef) 719 return false; 720 721 // All the checks have passed, so do the transformation. 722 bool changedArgument = false; 723 for (unsigned i = 0; i < CS.arg_size(); ++i) 724 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { 725 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 726 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 727 cpyDest->getName(), C); 728 changedArgument = true; 729 if (CS.getArgument(i)->getType() == Dest->getType()) 730 CS.setArgument(i, Dest); 731 else 732 CS.setArgument(i, CastInst::CreatePointerCast(Dest, 733 CS.getArgument(i)->getType(), Dest->getName(), C)); 734 } 735 736 if (!changedArgument) 737 return false; 738 739 // If the destination wasn't sufficiently aligned then increase its alignment. 740 if (!isDestSufficientlyAligned) { 741 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 742 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 743 } 744 745 // Drop any cached information about the call, because we may have changed 746 // its dependence information by changing its parameter. 747 MD->removeInstruction(C); 748 749 // Update AA metadata 750 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 751 // handled here, but combineMetadata doesn't support them yet 752 unsigned KnownIDs[] = { 753 LLVMContext::MD_tbaa, 754 LLVMContext::MD_alias_scope, 755 LLVMContext::MD_noalias, 756 }; 757 combineMetadata(C, cpy, KnownIDs); 758 759 // Remove the memcpy. 760 MD->removeInstruction(cpy); 761 ++NumMemCpyInstr; 762 763 return true; 764 } 765 766 /// processMemCpyMemCpyDependence - We've found that the (upward scanning) 767 /// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to 768 /// copy from MDep's input if we can. 769 /// 770 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep) { 771 // We can only transforms memcpy's where the dest of one is the source of the 772 // other. 773 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 774 return false; 775 776 // If dep instruction is reading from our current input, then it is a noop 777 // transfer and substituting the input won't change this instruction. Just 778 // ignore the input and let someone else zap MDep. This handles cases like: 779 // memcpy(a <- a) 780 // memcpy(b <- a) 781 if (M->getSource() == MDep->getSource()) 782 return false; 783 784 // Second, the length of the memcpy's must be the same, or the preceding one 785 // must be larger than the following one. 786 ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 787 ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); 788 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 789 return false; 790 791 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 792 793 // Verify that the copied-from memory doesn't change in between the two 794 // transfers. For example, in: 795 // memcpy(a <- b) 796 // *b = 42; 797 // memcpy(c <- a) 798 // It would be invalid to transform the second memcpy into memcpy(c <- b). 799 // 800 // TODO: If the code between M and MDep is transparent to the destination "c", 801 // then we could still perform the xform by moving M up to the first memcpy. 802 // 803 // NOTE: This is conservative, it will stop on any read from the source loc, 804 // not just the defining memcpy. 805 MemDepResult SourceDep = MD->getPointerDependencyFrom( 806 MemoryLocation::getForSource(MDep), false, M, M->getParent()); 807 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 808 return false; 809 810 // If the dest of the second might alias the source of the first, then the 811 // source and dest might overlap. We still want to eliminate the intermediate 812 // value, but we have to generate a memmove instead of memcpy. 813 bool UseMemMove = false; 814 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 815 MemoryLocation::getForSource(MDep))) 816 UseMemMove = true; 817 818 // If all checks passed, then we can transform M. 819 820 // Make sure to use the lesser of the alignment of the source and the dest 821 // since we're changing where we're reading from, but don't want to increase 822 // the alignment past what can be read from or written to. 823 // TODO: Is this worth it if we're creating a less aligned memcpy? For 824 // example we could be moving from movaps -> movq on x86. 825 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); 826 827 IRBuilder<> Builder(M); 828 if (UseMemMove) 829 Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), 830 Align, M->isVolatile()); 831 else 832 Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), 833 Align, M->isVolatile()); 834 835 // Remove the instruction we're replacing. 836 MD->removeInstruction(M); 837 M->eraseFromParent(); 838 ++NumMemCpyInstr; 839 return true; 840 } 841 842 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 843 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 844 /// weren't copied over by \p MemCpy. 845 /// 846 /// In other words, transform: 847 /// \code 848 /// memset(dst, c, dst_size); 849 /// memcpy(dst, src, src_size); 850 /// \endcode 851 /// into: 852 /// \code 853 /// memcpy(dst, src, src_size); 854 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 855 /// \endcode 856 bool MemCpyOpt::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 857 MemSetInst *MemSet) { 858 // We can only transform memset/memcpy with the same destination. 859 if (MemSet->getDest() != MemCpy->getDest()) 860 return false; 861 862 // Check that there are no other dependencies on the memset destination. 863 MemDepResult DstDepInfo = MD->getPointerDependencyFrom( 864 MemoryLocation::getForDest(MemSet), false, MemCpy, MemCpy->getParent()); 865 if (DstDepInfo.getInst() != MemSet) 866 return false; 867 868 // Use the same i8* dest as the memcpy, killing the memset dest if different. 869 Value *Dest = MemCpy->getRawDest(); 870 Value *DestSize = MemSet->getLength(); 871 Value *SrcSize = MemCpy->getLength(); 872 873 // By default, create an unaligned memset. 874 unsigned Align = 1; 875 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 876 // of the sum. 877 const unsigned DestAlign = 878 std::max(MemSet->getAlignment(), MemCpy->getAlignment()); 879 if (DestAlign > 1) 880 if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 881 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 882 883 IRBuilder<> Builder(MemCpy); 884 885 // If the sizes have different types, zext the smaller one. 886 if (DestSize->getType() != SrcSize->getType()) { 887 if (DestSize->getType()->getIntegerBitWidth() > 888 SrcSize->getType()->getIntegerBitWidth()) 889 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 890 else 891 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 892 } 893 894 Value *MemsetLen = 895 Builder.CreateSelect(Builder.CreateICmpULE(DestSize, SrcSize), 896 ConstantInt::getNullValue(DestSize->getType()), 897 Builder.CreateSub(DestSize, SrcSize)); 898 Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1), 899 MemsetLen, Align); 900 901 MD->removeInstruction(MemSet); 902 MemSet->eraseFromParent(); 903 return true; 904 } 905 906 /// Transform memcpy to memset when its source was just memset. 907 /// In other words, turn: 908 /// \code 909 /// memset(dst1, c, dst1_size); 910 /// memcpy(dst2, dst1, dst2_size); 911 /// \endcode 912 /// into: 913 /// \code 914 /// memset(dst1, c, dst1_size); 915 /// memset(dst2, c, dst2_size); 916 /// \endcode 917 /// When dst2_size <= dst1_size. 918 /// 919 /// The \p MemCpy must have a Constant length. 920 bool MemCpyOpt::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 921 MemSetInst *MemSet) { 922 // This only makes sense on memcpy(..., memset(...), ...). 923 if (MemSet->getRawDest() != MemCpy->getRawSource()) 924 return false; 925 926 ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); 927 ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); 928 // Make sure the memcpy doesn't read any more than what the memset wrote. 929 // Don't worry about sizes larger than i64. 930 if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue()) 931 return false; 932 933 IRBuilder<> Builder(MemCpy); 934 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 935 CopySize, MemCpy->getAlignment()); 936 return true; 937 } 938 939 /// processMemCpy - perform simplification of memcpy's. If we have memcpy A 940 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 941 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 942 /// circumstances). This allows later passes to remove the first memcpy 943 /// altogether. 944 bool MemCpyOpt::processMemCpy(MemCpyInst *M) { 945 // We can only optimize non-volatile memcpy's. 946 if (M->isVolatile()) return false; 947 948 // If the source and destination of the memcpy are the same, then zap it. 949 if (M->getSource() == M->getDest()) { 950 MD->removeInstruction(M); 951 M->eraseFromParent(); 952 return false; 953 } 954 955 // If copying from a constant, try to turn the memcpy into a memset. 956 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) 957 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 958 if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { 959 IRBuilder<> Builder(M); 960 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 961 M->getAlignment(), false); 962 MD->removeInstruction(M); 963 M->eraseFromParent(); 964 ++NumCpyToSet; 965 return true; 966 } 967 968 MemDepResult DepInfo = MD->getDependency(M); 969 970 // Try to turn a partially redundant memset + memcpy into 971 // memcpy + smaller memset. We don't need the memcpy size for this. 972 if (DepInfo.isClobber()) 973 if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) 974 if (processMemSetMemCpyDependence(M, MDep)) 975 return true; 976 977 // The optimizations after this point require the memcpy size. 978 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); 979 if (!CopySize) return false; 980 981 // There are four possible optimizations we can do for memcpy: 982 // a) memcpy-memcpy xform which exposes redundance for DSE. 983 // b) call-memcpy xform for return slot optimization. 984 // c) memcpy from freshly alloca'd space or space that has just started its 985 // lifetime copies undefined data, and we can therefore eliminate the 986 // memcpy in favor of the data that was already at the destination. 987 // d) memcpy from a just-memset'd source can be turned into memset. 988 if (DepInfo.isClobber()) { 989 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { 990 if (performCallSlotOptzn(M, M->getDest(), M->getSource(), 991 CopySize->getZExtValue(), M->getAlignment(), 992 C)) { 993 MD->removeInstruction(M); 994 M->eraseFromParent(); 995 return true; 996 } 997 } 998 } 999 1000 MemoryLocation SrcLoc = MemoryLocation::getForSource(M); 1001 MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true, 1002 M, M->getParent()); 1003 1004 if (SrcDepInfo.isClobber()) { 1005 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) 1006 return processMemCpyMemCpyDependence(M, MDep); 1007 } else if (SrcDepInfo.isDef()) { 1008 Instruction *I = SrcDepInfo.getInst(); 1009 bool hasUndefContents = false; 1010 1011 if (isa<AllocaInst>(I)) { 1012 hasUndefContents = true; 1013 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1014 if (II->getIntrinsicID() == Intrinsic::lifetime_start) 1015 if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) 1016 if (LTSize->getZExtValue() >= CopySize->getZExtValue()) 1017 hasUndefContents = true; 1018 } 1019 1020 if (hasUndefContents) { 1021 MD->removeInstruction(M); 1022 M->eraseFromParent(); 1023 ++NumMemCpyInstr; 1024 return true; 1025 } 1026 } 1027 1028 if (SrcDepInfo.isClobber()) 1029 if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) 1030 if (performMemCpyToMemSetOptzn(M, MDep)) { 1031 MD->removeInstruction(M); 1032 M->eraseFromParent(); 1033 ++NumCpyToSet; 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst 1041 /// are guaranteed not to alias. 1042 bool MemCpyOpt::processMemMove(MemMoveInst *M) { 1043 AliasAnalysis &AA = getAnalysis<AliasAnalysis>(); 1044 1045 if (!TLI->has(LibFunc::memmove)) 1046 return false; 1047 1048 // See if the pointers alias. 1049 if (!AA.isNoAlias(MemoryLocation::getForDest(M), 1050 MemoryLocation::getForSource(M))) 1051 return false; 1052 1053 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n"); 1054 1055 // If not, then we know we can transform this. 1056 Module *Mod = M->getParent()->getParent()->getParent(); 1057 Type *ArgTys[3] = { M->getRawDest()->getType(), 1058 M->getRawSource()->getType(), 1059 M->getLength()->getType() }; 1060 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy, 1061 ArgTys)); 1062 1063 // MemDep may have over conservative information about this instruction, just 1064 // conservatively flush it from the cache. 1065 MD->removeInstruction(M); 1066 1067 ++NumMoveToCpy; 1068 return true; 1069 } 1070 1071 /// processByValArgument - This is called on every byval argument in call sites. 1072 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) { 1073 const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); 1074 // Find out what feeds this byval argument. 1075 Value *ByValArg = CS.getArgument(ArgNo); 1076 Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); 1077 uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); 1078 MemDepResult DepInfo = MD->getPointerDependencyFrom( 1079 MemoryLocation(ByValArg, ByValSize), true, CS.getInstruction(), 1080 CS.getInstruction()->getParent()); 1081 if (!DepInfo.isClobber()) 1082 return false; 1083 1084 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1085 // a memcpy, see if we can byval from the source of the memcpy instead of the 1086 // result. 1087 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); 1088 if (!MDep || MDep->isVolatile() || 1089 ByValArg->stripPointerCasts() != MDep->getDest()) 1090 return false; 1091 1092 // The length of the memcpy must be larger or equal to the size of the byval. 1093 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1094 if (!C1 || C1->getValue().getZExtValue() < ByValSize) 1095 return false; 1096 1097 // Get the alignment of the byval. If the call doesn't specify the alignment, 1098 // then it is some target specific value that we can't know. 1099 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1); 1100 if (ByValAlign == 0) return false; 1101 1102 // If it is greater than the memcpy, then we check to see if we can force the 1103 // source of the memcpy to the alignment we need. If we fail, we bail out. 1104 AssumptionCache &AC = 1105 getAnalysis<AssumptionCacheTracker>().getAssumptionCache( 1106 *CS->getParent()->getParent()); 1107 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1108 if (MDep->getAlignment() < ByValAlign && 1109 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, 1110 CS.getInstruction(), &AC, &DT) < ByValAlign) 1111 return false; 1112 1113 // Verify that the copied-from memory doesn't change in between the memcpy and 1114 // the byval call. 1115 // memcpy(a <- b) 1116 // *b = 42; 1117 // foo(*a) 1118 // It would be invalid to transform the second memcpy into foo(*b). 1119 // 1120 // NOTE: This is conservative, it will stop on any read from the source loc, 1121 // not just the defining memcpy. 1122 MemDepResult SourceDep = 1123 MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, 1124 CS.getInstruction(), MDep->getParent()); 1125 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) 1126 return false; 1127 1128 Value *TmpCast = MDep->getSource(); 1129 if (MDep->getSource()->getType() != ByValArg->getType()) 1130 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1131 "tmpcast", CS.getInstruction()); 1132 1133 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n" 1134 << " " << *MDep << "\n" 1135 << " " << *CS.getInstruction() << "\n"); 1136 1137 // Otherwise we're good! Update the byval argument. 1138 CS.setArgument(ArgNo, TmpCast); 1139 ++NumMemCpyInstr; 1140 return true; 1141 } 1142 1143 /// iterateOnFunction - Executes one iteration of MemCpyOpt. 1144 bool MemCpyOpt::iterateOnFunction(Function &F) { 1145 bool MadeChange = false; 1146 1147 // Walk all instruction in the function. 1148 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) { 1149 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) { 1150 // Avoid invalidating the iterator. 1151 Instruction *I = BI++; 1152 1153 bool RepeatInstruction = false; 1154 1155 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 1156 MadeChange |= processStore(SI, BI); 1157 else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) 1158 RepeatInstruction = processMemSet(M, BI); 1159 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) 1160 RepeatInstruction = processMemCpy(M); 1161 else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) 1162 RepeatInstruction = processMemMove(M); 1163 else if (auto CS = CallSite(I)) { 1164 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) 1165 if (CS.isByValArgument(i)) 1166 MadeChange |= processByValArgument(CS, i); 1167 } 1168 1169 // Reprocess the instruction if desired. 1170 if (RepeatInstruction) { 1171 if (BI != BB->begin()) --BI; 1172 MadeChange = true; 1173 } 1174 } 1175 } 1176 1177 return MadeChange; 1178 } 1179 1180 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a 1181 // function. 1182 // 1183 bool MemCpyOpt::runOnFunction(Function &F) { 1184 if (skipOptnoneFunction(F)) 1185 return false; 1186 1187 bool MadeChange = false; 1188 MD = &getAnalysis<MemoryDependenceAnalysis>(); 1189 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 1190 1191 // If we don't have at least memset and memcpy, there is little point of doing 1192 // anything here. These are required by a freestanding implementation, so if 1193 // even they are disabled, there is no point in trying hard. 1194 if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy)) 1195 return false; 1196 1197 while (1) { 1198 if (!iterateOnFunction(F)) 1199 break; 1200 MadeChange = true; 1201 } 1202 1203 MD = nullptr; 1204 return MadeChange; 1205 } 1206