1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs various transformations related to eliminating memcpy 10 // calls, or transforming sets of stores into memset's. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/ADT/iterator_range.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/GlobalsModRef.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/MemoryLocation.h" 27 #include "llvm/Analysis/MemorySSA.h" 28 #include "llvm/Analysis/MemorySSAUpdater.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/DerivedTypes.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/GlobalVariable.h" 38 #include "llvm/IR/IRBuilder.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instruction.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/Intrinsics.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/IR/Module.h" 46 #include "llvm/IR/PassManager.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/User.h" 49 #include "llvm/IR/Value.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/Pass.h" 52 #include "llvm/Support/Casting.h" 53 #include "llvm/Support/Debug.h" 54 #include "llvm/Support/MathExtras.h" 55 #include "llvm/Support/raw_ostream.h" 56 #include "llvm/Transforms/Scalar.h" 57 #include "llvm/Transforms/Utils/Local.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <cstdint> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "memcpyopt" 65 66 static cl::opt<bool> EnableMemCpyOptWithoutLibcalls( 67 "enable-memcpyopt-without-libcalls", cl::init(false), cl::Hidden, 68 cl::ZeroOrMore, 69 cl::desc("Enable memcpyopt even when libcalls are disabled")); 70 71 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); 72 STATISTIC(NumMemSetInfer, "Number of memsets inferred"); 73 STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy"); 74 STATISTIC(NumCpyToSet, "Number of memcpys converted to memset"); 75 STATISTIC(NumCallSlot, "Number of call slot optimizations performed"); 76 77 namespace { 78 79 /// Represents a range of memset'd bytes with the ByteVal value. 80 /// This allows us to analyze stores like: 81 /// store 0 -> P+1 82 /// store 0 -> P+0 83 /// store 0 -> P+3 84 /// store 0 -> P+2 85 /// which sometimes happens with stores to arrays of structs etc. When we see 86 /// the first store, we make a range [1, 2). The second store extends the range 87 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the 88 /// two ranges into [0, 3) which is memset'able. 89 struct MemsetRange { 90 // Start/End - A semi range that describes the span that this range covers. 91 // The range is closed at the start and open at the end: [Start, End). 92 int64_t Start, End; 93 94 /// StartPtr - The getelementptr instruction that points to the start of the 95 /// range. 96 Value *StartPtr; 97 98 /// Alignment - The known alignment of the first store. 99 unsigned Alignment; 100 101 /// TheStores - The actual stores that make up this range. 102 SmallVector<Instruction*, 16> TheStores; 103 104 bool isProfitableToUseMemset(const DataLayout &DL) const; 105 }; 106 107 } // end anonymous namespace 108 109 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { 110 // If we found more than 4 stores to merge or 16 bytes, use memset. 111 if (TheStores.size() >= 4 || End-Start >= 16) return true; 112 113 // If there is nothing to merge, don't do anything. 114 if (TheStores.size() < 2) return false; 115 116 // If any of the stores are a memset, then it is always good to extend the 117 // memset. 118 for (Instruction *SI : TheStores) 119 if (!isa<StoreInst>(SI)) 120 return true; 121 122 // Assume that the code generator is capable of merging pairs of stores 123 // together if it wants to. 124 if (TheStores.size() == 2) return false; 125 126 // If we have fewer than 8 stores, it can still be worthwhile to do this. 127 // For example, merging 4 i8 stores into an i32 store is useful almost always. 128 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the 129 // memset will be split into 2 32-bit stores anyway) and doing so can 130 // pessimize the llvm optimizer. 131 // 132 // Since we don't have perfect knowledge here, make some assumptions: assume 133 // the maximum GPR width is the same size as the largest legal integer 134 // size. If so, check to see whether we will end up actually reducing the 135 // number of stores used. 136 unsigned Bytes = unsigned(End-Start); 137 unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; 138 if (MaxIntSize == 0) 139 MaxIntSize = 1; 140 unsigned NumPointerStores = Bytes / MaxIntSize; 141 142 // Assume the remaining bytes if any are done a byte at a time. 143 unsigned NumByteStores = Bytes % MaxIntSize; 144 145 // If we will reduce the # stores (according to this heuristic), do the 146 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 147 // etc. 148 return TheStores.size() > NumPointerStores+NumByteStores; 149 } 150 151 namespace { 152 153 class MemsetRanges { 154 using range_iterator = SmallVectorImpl<MemsetRange>::iterator; 155 156 /// A sorted list of the memset ranges. 157 SmallVector<MemsetRange, 8> Ranges; 158 159 const DataLayout &DL; 160 161 public: 162 MemsetRanges(const DataLayout &DL) : DL(DL) {} 163 164 using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; 165 166 const_iterator begin() const { return Ranges.begin(); } 167 const_iterator end() const { return Ranges.end(); } 168 bool empty() const { return Ranges.empty(); } 169 170 void addInst(int64_t OffsetFromFirst, Instruction *Inst) { 171 if (auto *SI = dyn_cast<StoreInst>(Inst)) 172 addStore(OffsetFromFirst, SI); 173 else 174 addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); 175 } 176 177 void addStore(int64_t OffsetFromFirst, StoreInst *SI) { 178 TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); 179 assert(!StoreSize.isScalable() && "Can't track scalable-typed stores"); 180 addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(), 181 SI->getAlign().value(), SI); 182 } 183 184 void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { 185 int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); 186 addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI); 187 } 188 189 void addRange(int64_t Start, int64_t Size, Value *Ptr, 190 unsigned Alignment, Instruction *Inst); 191 }; 192 193 } // end anonymous namespace 194 195 /// Add a new store to the MemsetRanges data structure. This adds a 196 /// new range for the specified store at the specified offset, merging into 197 /// existing ranges as appropriate. 198 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, 199 unsigned Alignment, Instruction *Inst) { 200 int64_t End = Start+Size; 201 202 range_iterator I = partition_point( 203 Ranges, [=](const MemsetRange &O) { return O.End < Start; }); 204 205 // We now know that I == E, in which case we didn't find anything to merge 206 // with, or that Start <= I->End. If End < I->Start or I == E, then we need 207 // to insert a new range. Handle this now. 208 if (I == Ranges.end() || End < I->Start) { 209 MemsetRange &R = *Ranges.insert(I, MemsetRange()); 210 R.Start = Start; 211 R.End = End; 212 R.StartPtr = Ptr; 213 R.Alignment = Alignment; 214 R.TheStores.push_back(Inst); 215 return; 216 } 217 218 // This store overlaps with I, add it. 219 I->TheStores.push_back(Inst); 220 221 // At this point, we may have an interval that completely contains our store. 222 // If so, just add it to the interval and return. 223 if (I->Start <= Start && I->End >= End) 224 return; 225 226 // Now we know that Start <= I->End and End >= I->Start so the range overlaps 227 // but is not entirely contained within the range. 228 229 // See if the range extends the start of the range. In this case, it couldn't 230 // possibly cause it to join the prior range, because otherwise we would have 231 // stopped on *it*. 232 if (Start < I->Start) { 233 I->Start = Start; 234 I->StartPtr = Ptr; 235 I->Alignment = Alignment; 236 } 237 238 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint 239 // is in or right at the end of I), and that End >= I->Start. Extend I out to 240 // End. 241 if (End > I->End) { 242 I->End = End; 243 range_iterator NextI = I; 244 while (++NextI != Ranges.end() && End >= NextI->Start) { 245 // Merge the range in. 246 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); 247 if (NextI->End > I->End) 248 I->End = NextI->End; 249 Ranges.erase(NextI); 250 NextI = I; 251 } 252 } 253 } 254 255 //===----------------------------------------------------------------------===// 256 // MemCpyOptLegacyPass Pass 257 //===----------------------------------------------------------------------===// 258 259 namespace { 260 261 class MemCpyOptLegacyPass : public FunctionPass { 262 MemCpyOptPass Impl; 263 264 public: 265 static char ID; // Pass identification, replacement for typeid 266 267 MemCpyOptLegacyPass() : FunctionPass(ID) { 268 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); 269 } 270 271 bool runOnFunction(Function &F) override; 272 273 private: 274 // This transformation requires dominator postdominator info 275 void getAnalysisUsage(AnalysisUsage &AU) const override { 276 AU.setPreservesCFG(); 277 AU.addRequired<AssumptionCacheTracker>(); 278 AU.addRequired<DominatorTreeWrapperPass>(); 279 AU.addPreserved<DominatorTreeWrapperPass>(); 280 AU.addPreserved<GlobalsAAWrapperPass>(); 281 AU.addRequired<TargetLibraryInfoWrapperPass>(); 282 AU.addRequired<AAResultsWrapperPass>(); 283 AU.addPreserved<AAResultsWrapperPass>(); 284 AU.addRequired<MemorySSAWrapperPass>(); 285 AU.addPreserved<MemorySSAWrapperPass>(); 286 } 287 }; 288 289 } // end anonymous namespace 290 291 char MemCpyOptLegacyPass::ID = 0; 292 293 /// The public interface to this file... 294 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } 295 296 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 297 false, false) 298 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 299 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 300 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 301 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 302 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 303 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 304 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", 305 false, false) 306 307 // Check that V is either not accessible by the caller, or unwinding cannot 308 // occur between Start and End. 309 static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start, 310 Instruction *End) { 311 assert(Start->getParent() == End->getParent() && "Must be in same block"); 312 // Function can't unwind, so it also can't be visible through unwinding. 313 if (Start->getFunction()->doesNotThrow()) 314 return false; 315 316 // Object is not visible on unwind. 317 // TODO: Support RequiresNoCaptureBeforeUnwind case. 318 bool RequiresNoCaptureBeforeUnwind; 319 if (isNotVisibleOnUnwind(getUnderlyingObject(V), 320 RequiresNoCaptureBeforeUnwind) && 321 !RequiresNoCaptureBeforeUnwind) 322 return false; 323 324 // Check whether there are any unwinding instructions in the range. 325 return any_of(make_range(Start->getIterator(), End->getIterator()), 326 [](const Instruction &I) { return I.mayThrow(); }); 327 } 328 329 void MemCpyOptPass::eraseInstruction(Instruction *I) { 330 MSSAU->removeMemoryAccess(I); 331 I->eraseFromParent(); 332 } 333 334 // Check for mod or ref of Loc between Start and End, excluding both boundaries. 335 // Start and End must be in the same block 336 static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc, 337 const MemoryUseOrDef *Start, 338 const MemoryUseOrDef *End) { 339 assert(Start->getBlock() == End->getBlock() && "Only local supported"); 340 for (const MemoryAccess &MA : 341 make_range(++Start->getIterator(), End->getIterator())) { 342 if (isModOrRefSet(AA.getModRefInfo(cast<MemoryUseOrDef>(MA).getMemoryInst(), 343 Loc))) 344 return true; 345 } 346 return false; 347 } 348 349 // Check for mod of Loc between Start and End, excluding both boundaries. 350 // Start and End can be in different blocks. 351 static bool writtenBetween(MemorySSA *MSSA, AliasAnalysis &AA, 352 MemoryLocation Loc, const MemoryUseOrDef *Start, 353 const MemoryUseOrDef *End) { 354 if (isa<MemoryUse>(End)) { 355 // For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes. 356 // Manually check read accesses between Start and End, if they are in the 357 // same block, for clobbers. Otherwise assume Loc is clobbered. 358 return Start->getBlock() != End->getBlock() || 359 any_of( 360 make_range(std::next(Start->getIterator()), End->getIterator()), 361 [&AA, Loc](const MemoryAccess &Acc) { 362 if (isa<MemoryUse>(&Acc)) 363 return false; 364 Instruction *AccInst = 365 cast<MemoryUseOrDef>(&Acc)->getMemoryInst(); 366 return isModSet(AA.getModRefInfo(AccInst, Loc)); 367 }); 368 } 369 370 // TODO: Only walk until we hit Start. 371 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 372 End->getDefiningAccess(), Loc); 373 return !MSSA->dominates(Clobber, Start); 374 } 375 376 /// When scanning forward over instructions, we look for some other patterns to 377 /// fold away. In particular, this looks for stores to neighboring locations of 378 /// memory. If it sees enough consecutive ones, it attempts to merge them 379 /// together into a memcpy/memset. 380 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, 381 Value *StartPtr, 382 Value *ByteVal) { 383 const DataLayout &DL = StartInst->getModule()->getDataLayout(); 384 385 // We can't track scalable types 386 if (auto *SI = dyn_cast<StoreInst>(StartInst)) 387 if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable()) 388 return nullptr; 389 390 // Okay, so we now have a single store that can be splatable. Scan to find 391 // all subsequent stores of the same value to offset from the same pointer. 392 // Join these together into ranges, so we can decide whether contiguous blocks 393 // are stored. 394 MemsetRanges Ranges(DL); 395 396 BasicBlock::iterator BI(StartInst); 397 398 // Keeps track of the last memory use or def before the insertion point for 399 // the new memset. The new MemoryDef for the inserted memsets will be inserted 400 // after MemInsertPoint. It points to either LastMemDef or to the last user 401 // before the insertion point of the memset, if there are any such users. 402 MemoryUseOrDef *MemInsertPoint = nullptr; 403 // Keeps track of the last MemoryDef between StartInst and the insertion point 404 // for the new memset. This will become the defining access of the inserted 405 // memsets. 406 MemoryDef *LastMemDef = nullptr; 407 for (++BI; !BI->isTerminator(); ++BI) { 408 auto *CurrentAcc = cast_or_null<MemoryUseOrDef>( 409 MSSAU->getMemorySSA()->getMemoryAccess(&*BI)); 410 if (CurrentAcc) { 411 MemInsertPoint = CurrentAcc; 412 if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc)) 413 LastMemDef = CurrentDef; 414 } 415 416 // Calls that only access inaccessible memory do not block merging 417 // accessible stores. 418 if (auto *CB = dyn_cast<CallBase>(BI)) { 419 if (CB->onlyAccessesInaccessibleMemory()) 420 continue; 421 } 422 423 if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { 424 // If the instruction is readnone, ignore it, otherwise bail out. We 425 // don't even allow readonly here because we don't want something like: 426 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). 427 if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) 428 break; 429 continue; 430 } 431 432 if (auto *NextStore = dyn_cast<StoreInst>(BI)) { 433 // If this is a store, see if we can merge it in. 434 if (!NextStore->isSimple()) break; 435 436 Value *StoredVal = NextStore->getValueOperand(); 437 438 // Don't convert stores of non-integral pointer types to memsets (which 439 // stores integers). 440 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 441 break; 442 443 // We can't track ranges involving scalable types. 444 if (DL.getTypeStoreSize(StoredVal->getType()).isScalable()) 445 break; 446 447 // Check to see if this stored value is of the same byte-splattable value. 448 Value *StoredByte = isBytewiseValue(StoredVal, DL); 449 if (isa<UndefValue>(ByteVal) && StoredByte) 450 ByteVal = StoredByte; 451 if (ByteVal != StoredByte) 452 break; 453 454 // Check to see if this store is to a constant offset from the start ptr. 455 Optional<int64_t> Offset = 456 isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL); 457 if (!Offset) 458 break; 459 460 Ranges.addStore(*Offset, NextStore); 461 } else { 462 auto *MSI = cast<MemSetInst>(BI); 463 464 if (MSI->isVolatile() || ByteVal != MSI->getValue() || 465 !isa<ConstantInt>(MSI->getLength())) 466 break; 467 468 // Check to see if this store is to a constant offset from the start ptr. 469 Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL); 470 if (!Offset) 471 break; 472 473 Ranges.addMemSet(*Offset, MSI); 474 } 475 } 476 477 // If we have no ranges, then we just had a single store with nothing that 478 // could be merged in. This is a very common case of course. 479 if (Ranges.empty()) 480 return nullptr; 481 482 // If we had at least one store that could be merged in, add the starting 483 // store as well. We try to avoid this unless there is at least something 484 // interesting as a small compile-time optimization. 485 Ranges.addInst(0, StartInst); 486 487 // If we create any memsets, we put it right before the first instruction that 488 // isn't part of the memset block. This ensure that the memset is dominated 489 // by any addressing instruction needed by the start of the block. 490 IRBuilder<> Builder(&*BI); 491 492 // Now that we have full information about ranges, loop over the ranges and 493 // emit memset's for anything big enough to be worthwhile. 494 Instruction *AMemSet = nullptr; 495 for (const MemsetRange &Range : Ranges) { 496 if (Range.TheStores.size() == 1) continue; 497 498 // If it is profitable to lower this range to memset, do so now. 499 if (!Range.isProfitableToUseMemset(DL)) 500 continue; 501 502 // Otherwise, we do want to transform this! Create a new memset. 503 // Get the starting pointer of the block. 504 StartPtr = Range.StartPtr; 505 506 AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start, 507 MaybeAlign(Range.Alignment)); 508 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI 509 : Range.TheStores) dbgs() 510 << *SI << '\n'; 511 dbgs() << "With: " << *AMemSet << '\n'); 512 if (!Range.TheStores.empty()) 513 AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); 514 515 assert(LastMemDef && MemInsertPoint && 516 "Both LastMemDef and MemInsertPoint need to be set"); 517 auto *NewDef = 518 cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI 519 ? MSSAU->createMemoryAccessBefore( 520 AMemSet, LastMemDef, MemInsertPoint) 521 : MSSAU->createMemoryAccessAfter( 522 AMemSet, LastMemDef, MemInsertPoint)); 523 MSSAU->insertDef(NewDef, /*RenameUses=*/true); 524 LastMemDef = NewDef; 525 MemInsertPoint = NewDef; 526 527 // Zap all the stores. 528 for (Instruction *SI : Range.TheStores) 529 eraseInstruction(SI); 530 531 ++NumMemSetInfer; 532 } 533 534 return AMemSet; 535 } 536 537 // This method try to lift a store instruction before position P. 538 // It will lift the store and its argument + that anything that 539 // may alias with these. 540 // The method returns true if it was successful. 541 bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) { 542 // If the store alias this position, early bail out. 543 MemoryLocation StoreLoc = MemoryLocation::get(SI); 544 if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc))) 545 return false; 546 547 // Keep track of the arguments of all instruction we plan to lift 548 // so we can make sure to lift them as well if appropriate. 549 DenseSet<Instruction*> Args; 550 if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) 551 if (Ptr->getParent() == SI->getParent()) 552 Args.insert(Ptr); 553 554 // Instruction to lift before P. 555 SmallVector<Instruction *, 8> ToLift{SI}; 556 557 // Memory locations of lifted instructions. 558 SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; 559 560 // Lifted calls. 561 SmallVector<const CallBase *, 8> Calls; 562 563 const MemoryLocation LoadLoc = MemoryLocation::get(LI); 564 565 for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { 566 auto *C = &*I; 567 568 // Make sure hoisting does not perform a store that was not guaranteed to 569 // happen. 570 if (!isGuaranteedToTransferExecutionToSuccessor(C)) 571 return false; 572 573 bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None)); 574 575 bool NeedLift = false; 576 if (Args.erase(C)) 577 NeedLift = true; 578 else if (MayAlias) { 579 NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) { 580 return isModOrRefSet(AA->getModRefInfo(C, ML)); 581 }); 582 583 if (!NeedLift) 584 NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) { 585 return isModOrRefSet(AA->getModRefInfo(C, Call)); 586 }); 587 } 588 589 if (!NeedLift) 590 continue; 591 592 if (MayAlias) { 593 // Since LI is implicitly moved downwards past the lifted instructions, 594 // none of them may modify its source. 595 if (isModSet(AA->getModRefInfo(C, LoadLoc))) 596 return false; 597 else if (const auto *Call = dyn_cast<CallBase>(C)) { 598 // If we can't lift this before P, it's game over. 599 if (isModOrRefSet(AA->getModRefInfo(P, Call))) 600 return false; 601 602 Calls.push_back(Call); 603 } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { 604 // If we can't lift this before P, it's game over. 605 auto ML = MemoryLocation::get(C); 606 if (isModOrRefSet(AA->getModRefInfo(P, ML))) 607 return false; 608 609 MemLocs.push_back(ML); 610 } else 611 // We don't know how to lift this instruction. 612 return false; 613 } 614 615 ToLift.push_back(C); 616 for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) 617 if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) { 618 if (A->getParent() == SI->getParent()) { 619 // Cannot hoist user of P above P 620 if(A == P) return false; 621 Args.insert(A); 622 } 623 } 624 } 625 626 // Find MSSA insertion point. Normally P will always have a corresponding 627 // memory access before which we can insert. However, with non-standard AA 628 // pipelines, there may be a mismatch between AA and MSSA, in which case we 629 // will scan for a memory access before P. In either case, we know for sure 630 // that at least the load will have a memory access. 631 // TODO: Simplify this once P will be determined by MSSA, in which case the 632 // discrepancy can no longer occur. 633 MemoryUseOrDef *MemInsertPoint = nullptr; 634 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) { 635 MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator()); 636 } else { 637 const Instruction *ConstP = P; 638 for (const Instruction &I : make_range(++ConstP->getReverseIterator(), 639 ++LI->getReverseIterator())) { 640 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 641 MemInsertPoint = MA; 642 break; 643 } 644 } 645 } 646 647 // We made it, we need to lift. 648 for (auto *I : llvm::reverse(ToLift)) { 649 LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); 650 I->moveBefore(P); 651 assert(MemInsertPoint && "Must have found insert point"); 652 if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) { 653 MSSAU->moveAfter(MA, MemInsertPoint); 654 MemInsertPoint = MA; 655 } 656 } 657 658 return true; 659 } 660 661 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { 662 if (!SI->isSimple()) return false; 663 664 // Avoid merging nontemporal stores since the resulting 665 // memcpy/memset would not be able to preserve the nontemporal hint. 666 // In theory we could teach how to propagate the !nontemporal metadata to 667 // memset calls. However, that change would force the backend to 668 // conservatively expand !nontemporal memset calls back to sequences of 669 // store instructions (effectively undoing the merging). 670 if (SI->getMetadata(LLVMContext::MD_nontemporal)) 671 return false; 672 673 const DataLayout &DL = SI->getModule()->getDataLayout(); 674 675 Value *StoredVal = SI->getValueOperand(); 676 677 // Not all the transforms below are correct for non-integral pointers, bail 678 // until we've audited the individual pieces. 679 if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType())) 680 return false; 681 682 // Load to store forwarding can be interpreted as memcpy. 683 if (auto *LI = dyn_cast<LoadInst>(StoredVal)) { 684 if (LI->isSimple() && LI->hasOneUse() && 685 LI->getParent() == SI->getParent()) { 686 687 auto *T = LI->getType(); 688 // Don't introduce calls to memcpy/memmove intrinsics out of thin air if 689 // the corresponding libcalls are not available. 690 // TODO: We should really distinguish between libcall availability and 691 // our ability to introduce intrinsics. 692 if (T->isAggregateType() && 693 (EnableMemCpyOptWithoutLibcalls || 694 (TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) { 695 MemoryLocation LoadLoc = MemoryLocation::get(LI); 696 697 // We use alias analysis to check if an instruction may store to 698 // the memory we load from in between the load and the store. If 699 // such an instruction is found, we try to promote there instead 700 // of at the store position. 701 // TODO: Can use MSSA for this. 702 Instruction *P = SI; 703 for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { 704 if (isModSet(AA->getModRefInfo(&I, LoadLoc))) { 705 P = &I; 706 break; 707 } 708 } 709 710 // We found an instruction that may write to the loaded memory. 711 // We can try to promote at this position instead of the store 712 // position if nothing aliases the store memory after this and the store 713 // destination is not in the range. 714 if (P && P != SI) { 715 if (!moveUp(SI, P, LI)) 716 P = nullptr; 717 } 718 719 // If a valid insertion position is found, then we can promote 720 // the load/store pair to a memcpy. 721 if (P) { 722 // If we load from memory that may alias the memory we store to, 723 // memmove must be used to preserve semantic. If not, memcpy can 724 // be used. Also, if we load from constant memory, memcpy can be used 725 // as the constant memory won't be modified. 726 bool UseMemMove = false; 727 if (isModSet(AA->getModRefInfo(SI, LoadLoc))) 728 UseMemMove = true; 729 730 uint64_t Size = DL.getTypeStoreSize(T); 731 732 IRBuilder<> Builder(P); 733 Instruction *M; 734 if (UseMemMove) 735 M = Builder.CreateMemMove( 736 SI->getPointerOperand(), SI->getAlign(), 737 LI->getPointerOperand(), LI->getAlign(), Size); 738 else 739 M = Builder.CreateMemCpy( 740 SI->getPointerOperand(), SI->getAlign(), 741 LI->getPointerOperand(), LI->getAlign(), Size); 742 743 LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => " 744 << *M << "\n"); 745 746 auto *LastDef = 747 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI)); 748 auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef); 749 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 750 751 eraseInstruction(SI); 752 eraseInstruction(LI); 753 ++NumMemCpyInstr; 754 755 // Make sure we do not invalidate the iterator. 756 BBI = M->getIterator(); 757 return true; 758 } 759 } 760 761 // Detect cases where we're performing call slot forwarding, but 762 // happen to be using a load-store pair to implement it, rather than 763 // a memcpy. 764 auto GetCall = [&]() -> CallInst * { 765 // We defer this expensive clobber walk until the cheap checks 766 // have been done on the source inside performCallSlotOptzn. 767 if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>( 768 MSSA->getWalker()->getClobberingMemoryAccess(LI))) 769 return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst()); 770 return nullptr; 771 }; 772 773 bool changed = performCallSlotOptzn( 774 LI, SI, SI->getPointerOperand()->stripPointerCasts(), 775 LI->getPointerOperand()->stripPointerCasts(), 776 DL.getTypeStoreSize(SI->getOperand(0)->getType()), 777 commonAlignment(SI->getAlign(), LI->getAlign()), GetCall); 778 if (changed) { 779 eraseInstruction(SI); 780 eraseInstruction(LI); 781 ++NumMemCpyInstr; 782 return true; 783 } 784 } 785 } 786 787 // The following code creates memset intrinsics out of thin air. Don't do 788 // this if the corresponding libfunc is not available. 789 // TODO: We should really distinguish between libcall availability and 790 // our ability to introduce intrinsics. 791 if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls)) 792 return false; 793 794 // There are two cases that are interesting for this code to handle: memcpy 795 // and memset. Right now we only handle memset. 796 797 // Ensure that the value being stored is something that can be memset'able a 798 // byte at a time like "0" or "-1" or any width, as well as things like 799 // 0xA0A0A0A0 and 0.0. 800 auto *V = SI->getOperand(0); 801 if (Value *ByteVal = isBytewiseValue(V, DL)) { 802 if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), 803 ByteVal)) { 804 BBI = I->getIterator(); // Don't invalidate iterator. 805 return true; 806 } 807 808 // If we have an aggregate, we try to promote it to memset regardless 809 // of opportunity for merging as it can expose optimization opportunities 810 // in subsequent passes. 811 auto *T = V->getType(); 812 if (T->isAggregateType()) { 813 uint64_t Size = DL.getTypeStoreSize(T); 814 IRBuilder<> Builder(SI); 815 auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, 816 SI->getAlign()); 817 818 LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); 819 820 // The newly inserted memset is immediately overwritten by the original 821 // store, so we do not need to rename uses. 822 auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI)); 823 auto *NewAccess = MSSAU->createMemoryAccessBefore( 824 M, StoreDef->getDefiningAccess(), StoreDef); 825 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false); 826 827 eraseInstruction(SI); 828 NumMemSetInfer++; 829 830 // Make sure we do not invalidate the iterator. 831 BBI = M->getIterator(); 832 return true; 833 } 834 } 835 836 return false; 837 } 838 839 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { 840 // See if there is another memset or store neighboring this memset which 841 // allows us to widen out the memset to do a single larger store. 842 if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) 843 if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), 844 MSI->getValue())) { 845 BBI = I->getIterator(); // Don't invalidate iterator. 846 return true; 847 } 848 return false; 849 } 850 851 /// Takes a memcpy and a call that it depends on, 852 /// and checks for the possibility of a call slot optimization by having 853 /// the call write its result directly into the destination of the memcpy. 854 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad, 855 Instruction *cpyStore, Value *cpyDest, 856 Value *cpySrc, TypeSize cpySize, 857 Align cpyAlign, 858 std::function<CallInst *()> GetC) { 859 // The general transformation to keep in mind is 860 // 861 // call @func(..., src, ...) 862 // memcpy(dest, src, ...) 863 // 864 // -> 865 // 866 // memcpy(dest, src, ...) 867 // call @func(..., dest, ...) 868 // 869 // Since moving the memcpy is technically awkward, we additionally check that 870 // src only holds uninitialized values at the moment of the call, meaning that 871 // the memcpy can be discarded rather than moved. 872 873 // We can't optimize scalable types. 874 if (cpySize.isScalable()) 875 return false; 876 877 // Require that src be an alloca. This simplifies the reasoning considerably. 878 auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc); 879 if (!srcAlloca) 880 return false; 881 882 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); 883 if (!srcArraySize) 884 return false; 885 886 const DataLayout &DL = cpyLoad->getModule()->getDataLayout(); 887 uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * 888 srcArraySize->getZExtValue(); 889 890 if (cpySize < srcSize) 891 return false; 892 893 CallInst *C = GetC(); 894 if (!C) 895 return false; 896 897 // Lifetime marks shouldn't be operated on. 898 if (Function *F = C->getCalledFunction()) 899 if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) 900 return false; 901 902 903 if (C->getParent() != cpyStore->getParent()) { 904 LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n"); 905 return false; 906 } 907 908 MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ? 909 MemoryLocation::get(cpyStore) : 910 MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore)); 911 912 // Check that nothing touches the dest of the copy between 913 // the call and the store/memcpy. 914 if (accessedBetween(*AA, DestLoc, MSSA->getMemoryAccess(C), 915 MSSA->getMemoryAccess(cpyStore))) { 916 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n"); 917 return false; 918 } 919 920 // Check that accessing the first srcSize bytes of dest will not cause a 921 // trap. Otherwise the transform is invalid since it might cause a trap 922 // to occur earlier than it otherwise would. 923 if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize), 924 DL, C, DT)) { 925 LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n"); 926 return false; 927 } 928 929 930 // Make sure that nothing can observe cpyDest being written early. There are 931 // a number of cases to consider: 932 // 1. cpyDest cannot be accessed between C and cpyStore as a precondition of 933 // the transform. 934 // 2. C itself may not access cpyDest (prior to the transform). This is 935 // checked further below. 936 // 3. If cpyDest is accessible to the caller of this function (potentially 937 // captured and not based on an alloca), we need to ensure that we cannot 938 // unwind between C and cpyStore. This is checked here. 939 // 4. If cpyDest is potentially captured, there may be accesses to it from 940 // another thread. In this case, we need to check that cpyStore is 941 // guaranteed to be executed if C is. As it is a non-atomic access, it 942 // renders accesses from other threads undefined. 943 // TODO: This is currently not checked. 944 if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) { 945 LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding"); 946 return false; 947 } 948 949 // Check that dest points to memory that is at least as aligned as src. 950 Align srcAlign = srcAlloca->getAlign(); 951 bool isDestSufficientlyAligned = srcAlign <= cpyAlign; 952 // If dest is not aligned enough and we can't increase its alignment then 953 // bail out. 954 if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) 955 return false; 956 957 // Check that src is not accessed except via the call and the memcpy. This 958 // guarantees that it holds only undefined values when passed in (so the final 959 // memcpy can be dropped), that it is not read or written between the call and 960 // the memcpy, and that writing beyond the end of it is undefined. 961 SmallVector<User *, 8> srcUseList(srcAlloca->users()); 962 while (!srcUseList.empty()) { 963 User *U = srcUseList.pop_back_val(); 964 965 if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { 966 append_range(srcUseList, U->users()); 967 continue; 968 } 969 if (const auto *G = dyn_cast<GetElementPtrInst>(U)) { 970 if (!G->hasAllZeroIndices()) 971 return false; 972 973 append_range(srcUseList, U->users()); 974 continue; 975 } 976 if (const auto *IT = dyn_cast<IntrinsicInst>(U)) 977 if (IT->isLifetimeStartOrEnd()) 978 continue; 979 980 if (U != C && U != cpyLoad) 981 return false; 982 } 983 984 // Check whether src is captured by the called function, in which case there 985 // may be further indirect uses of src. 986 bool SrcIsCaptured = any_of(C->args(), [&](Use &U) { 987 return U->stripPointerCasts() == cpySrc && 988 !C->doesNotCapture(C->getArgOperandNo(&U)); 989 }); 990 991 // If src is captured, then check whether there are any potential uses of 992 // src through the captured pointer before the lifetime of src ends, either 993 // due to a lifetime.end or a return from the function. 994 if (SrcIsCaptured) { 995 // Check that dest is not captured before/at the call. We have already 996 // checked that src is not captured before it. If either had been captured, 997 // then the call might be comparing the argument against the captured dest 998 // or src pointer. 999 Value *DestObj = getUnderlyingObject(cpyDest); 1000 if (!isIdentifiedFunctionLocal(DestObj) || 1001 PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true, 1002 /* StoreCaptures */ true, C, DT, 1003 /* IncludeI */ true)) 1004 return false; 1005 1006 MemoryLocation SrcLoc = 1007 MemoryLocation(srcAlloca, LocationSize::precise(srcSize)); 1008 for (Instruction &I : 1009 make_range(++C->getIterator(), C->getParent()->end())) { 1010 // Lifetime of srcAlloca ends at lifetime.end. 1011 if (auto *II = dyn_cast<IntrinsicInst>(&I)) { 1012 if (II->getIntrinsicID() == Intrinsic::lifetime_end && 1013 II->getArgOperand(1)->stripPointerCasts() == srcAlloca && 1014 cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize)) 1015 break; 1016 } 1017 1018 // Lifetime of srcAlloca ends at return. 1019 if (isa<ReturnInst>(&I)) 1020 break; 1021 1022 // Ignore the direct read of src in the load. 1023 if (&I == cpyLoad) 1024 continue; 1025 1026 // Check whether this instruction may mod/ref src through the captured 1027 // pointer (we have already any direct mod/refs in the loop above). 1028 // Also bail if we hit a terminator, as we don't want to scan into other 1029 // blocks. 1030 if (isModOrRefSet(AA->getModRefInfo(&I, SrcLoc)) || I.isTerminator()) 1031 return false; 1032 } 1033 } 1034 1035 // Since we're changing the parameter to the callsite, we need to make sure 1036 // that what would be the new parameter dominates the callsite. 1037 if (!DT->dominates(cpyDest, C)) { 1038 // Support moving a constant index GEP before the call. 1039 auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest); 1040 if (GEP && GEP->hasAllConstantIndices() && 1041 DT->dominates(GEP->getPointerOperand(), C)) 1042 GEP->moveBefore(C); 1043 else 1044 return false; 1045 } 1046 1047 // In addition to knowing that the call does not access src in some 1048 // unexpected manner, for example via a global, which we deduce from 1049 // the use analysis, we also need to know that it does not sneakily 1050 // access dest. We rely on AA to figure this out for us. 1051 ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize)); 1052 // If necessary, perform additional analysis. 1053 if (isModOrRefSet(MR)) 1054 MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT); 1055 if (isModOrRefSet(MR)) 1056 return false; 1057 1058 // We can't create address space casts here because we don't know if they're 1059 // safe for the target. 1060 if (cpySrc->getType()->getPointerAddressSpace() != 1061 cpyDest->getType()->getPointerAddressSpace()) 1062 return false; 1063 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1064 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc && 1065 cpySrc->getType()->getPointerAddressSpace() != 1066 C->getArgOperand(ArgI)->getType()->getPointerAddressSpace()) 1067 return false; 1068 1069 // All the checks have passed, so do the transformation. 1070 bool changedArgument = false; 1071 for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI) 1072 if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) { 1073 Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest 1074 : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), 1075 cpyDest->getName(), C); 1076 changedArgument = true; 1077 if (C->getArgOperand(ArgI)->getType() == Dest->getType()) 1078 C->setArgOperand(ArgI, Dest); 1079 else 1080 C->setArgOperand(ArgI, CastInst::CreatePointerCast( 1081 Dest, C->getArgOperand(ArgI)->getType(), 1082 Dest->getName(), C)); 1083 } 1084 1085 if (!changedArgument) 1086 return false; 1087 1088 // If the destination wasn't sufficiently aligned then increase its alignment. 1089 if (!isDestSufficientlyAligned) { 1090 assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); 1091 cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); 1092 } 1093 1094 // Update AA metadata 1095 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be 1096 // handled here, but combineMetadata doesn't support them yet 1097 unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 1098 LLVMContext::MD_noalias, 1099 LLVMContext::MD_invariant_group, 1100 LLVMContext::MD_access_group}; 1101 combineMetadata(C, cpyLoad, KnownIDs, true); 1102 if (cpyLoad != cpyStore) 1103 combineMetadata(C, cpyStore, KnownIDs, true); 1104 1105 ++NumCallSlot; 1106 return true; 1107 } 1108 1109 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is 1110 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. 1111 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, 1112 MemCpyInst *MDep) { 1113 // We can only transforms memcpy's where the dest of one is the source of the 1114 // other. 1115 if (M->getSource() != MDep->getDest() || MDep->isVolatile()) 1116 return false; 1117 1118 // If dep instruction is reading from our current input, then it is a noop 1119 // transfer and substituting the input won't change this instruction. Just 1120 // ignore the input and let someone else zap MDep. This handles cases like: 1121 // memcpy(a <- a) 1122 // memcpy(b <- a) 1123 if (M->getSource() == MDep->getSource()) 1124 return false; 1125 1126 // Second, the length of the memcpy's must be the same, or the preceding one 1127 // must be larger than the following one. 1128 if (MDep->getLength() != M->getLength()) { 1129 auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); 1130 auto *MLen = dyn_cast<ConstantInt>(M->getLength()); 1131 if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) 1132 return false; 1133 } 1134 1135 // Verify that the copied-from memory doesn't change in between the two 1136 // transfers. For example, in: 1137 // memcpy(a <- b) 1138 // *b = 42; 1139 // memcpy(c <- a) 1140 // It would be invalid to transform the second memcpy into memcpy(c <- b). 1141 // 1142 // TODO: If the code between M and MDep is transparent to the destination "c", 1143 // then we could still perform the xform by moving M up to the first memcpy. 1144 // TODO: It would be sufficient to check the MDep source up to the memcpy 1145 // size of M, rather than MDep. 1146 if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep), 1147 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M))) 1148 return false; 1149 1150 // If the dest of the second might alias the source of the first, then the 1151 // source and dest might overlap. In addition, if the source of the first 1152 // points to constant memory, they won't overlap by definition. Otherwise, we 1153 // still want to eliminate the intermediate value, but we have to generate a 1154 // memmove instead of memcpy. 1155 bool UseMemMove = false; 1156 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep)))) 1157 UseMemMove = true; 1158 1159 // If all checks passed, then we can transform M. 1160 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n" 1161 << *MDep << '\n' << *M << '\n'); 1162 1163 // TODO: Is this worth it if we're creating a less aligned memcpy? For 1164 // example we could be moving from movaps -> movq on x86. 1165 IRBuilder<> Builder(M); 1166 Instruction *NewM; 1167 if (UseMemMove) 1168 NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(), 1169 MDep->getRawSource(), MDep->getSourceAlign(), 1170 M->getLength(), M->isVolatile()); 1171 else if (isa<MemCpyInlineInst>(M)) { 1172 // llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is 1173 // never allowed since that would allow the latter to be lowered as a call 1174 // to an external function. 1175 NewM = Builder.CreateMemCpyInline( 1176 M->getRawDest(), M->getDestAlign(), MDep->getRawSource(), 1177 MDep->getSourceAlign(), M->getLength(), M->isVolatile()); 1178 } else 1179 NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(), 1180 MDep->getRawSource(), MDep->getSourceAlign(), 1181 M->getLength(), M->isVolatile()); 1182 1183 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M))); 1184 auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1185 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1186 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1187 1188 // Remove the instruction we're replacing. 1189 eraseInstruction(M); 1190 ++NumMemCpyInstr; 1191 return true; 1192 } 1193 1194 /// We've found that the (upward scanning) memory dependence of \p MemCpy is 1195 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that 1196 /// weren't copied over by \p MemCpy. 1197 /// 1198 /// In other words, transform: 1199 /// \code 1200 /// memset(dst, c, dst_size); 1201 /// memcpy(dst, src, src_size); 1202 /// \endcode 1203 /// into: 1204 /// \code 1205 /// memcpy(dst, src, src_size); 1206 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); 1207 /// \endcode 1208 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, 1209 MemSetInst *MemSet) { 1210 // We can only transform memset/memcpy with the same destination. 1211 if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest())) 1212 return false; 1213 1214 // Check that src and dst of the memcpy aren't the same. While memcpy 1215 // operands cannot partially overlap, exact equality is allowed. 1216 if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy)))) 1217 return false; 1218 1219 // We know that dst up to src_size is not written. We now need to make sure 1220 // that dst up to dst_size is not accessed. (If we did not move the memset, 1221 // checking for reads would be sufficient.) 1222 if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet), 1223 MSSA->getMemoryAccess(MemSet), 1224 MSSA->getMemoryAccess(MemCpy))) 1225 return false; 1226 1227 // Use the same i8* dest as the memcpy, killing the memset dest if different. 1228 Value *Dest = MemCpy->getRawDest(); 1229 Value *DestSize = MemSet->getLength(); 1230 Value *SrcSize = MemCpy->getLength(); 1231 1232 if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy)) 1233 return false; 1234 1235 // If the sizes are the same, simply drop the memset instead of generating 1236 // a replacement with zero size. 1237 if (DestSize == SrcSize) { 1238 eraseInstruction(MemSet); 1239 return true; 1240 } 1241 1242 // By default, create an unaligned memset. 1243 unsigned Align = 1; 1244 // If Dest is aligned, and SrcSize is constant, use the minimum alignment 1245 // of the sum. 1246 const unsigned DestAlign = 1247 std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment()); 1248 if (DestAlign > 1) 1249 if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) 1250 Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); 1251 1252 IRBuilder<> Builder(MemCpy); 1253 1254 // If the sizes have different types, zext the smaller one. 1255 if (DestSize->getType() != SrcSize->getType()) { 1256 if (DestSize->getType()->getIntegerBitWidth() > 1257 SrcSize->getType()->getIntegerBitWidth()) 1258 SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); 1259 else 1260 DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); 1261 } 1262 1263 Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); 1264 Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); 1265 Value *MemsetLen = Builder.CreateSelect( 1266 Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); 1267 unsigned DestAS = Dest->getType()->getPointerAddressSpace(); 1268 Instruction *NewMemSet = Builder.CreateMemSet( 1269 Builder.CreateGEP(Builder.getInt8Ty(), 1270 Builder.CreatePointerCast(Dest, 1271 Builder.getInt8PtrTy(DestAS)), 1272 SrcSize), 1273 MemSet->getOperand(1), MemsetLen, MaybeAlign(Align)); 1274 1275 assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) && 1276 "MemCpy must be a MemoryDef"); 1277 // The new memset is inserted after the memcpy, but it is known that its 1278 // defining access is the memset about to be removed which immediately 1279 // precedes the memcpy. 1280 auto *LastDef = 1281 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1282 auto *NewAccess = MSSAU->createMemoryAccessBefore( 1283 NewMemSet, LastDef->getDefiningAccess(), LastDef); 1284 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1285 1286 eraseInstruction(MemSet); 1287 return true; 1288 } 1289 1290 /// Determine whether the instruction has undefined content for the given Size, 1291 /// either because it was freshly alloca'd or started its lifetime. 1292 static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V, 1293 MemoryDef *Def, Value *Size) { 1294 if (MSSA->isLiveOnEntryDef(Def)) 1295 return isa<AllocaInst>(getUnderlyingObject(V)); 1296 1297 if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) { 1298 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1299 auto *LTSize = cast<ConstantInt>(II->getArgOperand(0)); 1300 1301 if (auto *CSize = dyn_cast<ConstantInt>(Size)) { 1302 if (AA->isMustAlias(V, II->getArgOperand(1)) && 1303 LTSize->getZExtValue() >= CSize->getZExtValue()) 1304 return true; 1305 } 1306 1307 // If the lifetime.start covers a whole alloca (as it almost always 1308 // does) and we're querying a pointer based on that alloca, then we know 1309 // the memory is definitely undef, regardless of how exactly we alias. 1310 // The size also doesn't matter, as an out-of-bounds access would be UB. 1311 if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) { 1312 if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) { 1313 const DataLayout &DL = Alloca->getModule()->getDataLayout(); 1314 if (Optional<TypeSize> AllocaSize = 1315 Alloca->getAllocationSizeInBits(DL)) 1316 if (*AllocaSize == LTSize->getValue() * 8) 1317 return true; 1318 } 1319 } 1320 } 1321 } 1322 1323 return false; 1324 } 1325 1326 /// Transform memcpy to memset when its source was just memset. 1327 /// In other words, turn: 1328 /// \code 1329 /// memset(dst1, c, dst1_size); 1330 /// memcpy(dst2, dst1, dst2_size); 1331 /// \endcode 1332 /// into: 1333 /// \code 1334 /// memset(dst1, c, dst1_size); 1335 /// memset(dst2, c, dst2_size); 1336 /// \endcode 1337 /// When dst2_size <= dst1_size. 1338 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, 1339 MemSetInst *MemSet) { 1340 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and 1341 // memcpying from the same address. Otherwise it is hard to reason about. 1342 if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) 1343 return false; 1344 1345 Value *MemSetSize = MemSet->getLength(); 1346 Value *CopySize = MemCpy->getLength(); 1347 1348 if (MemSetSize != CopySize) { 1349 // Make sure the memcpy doesn't read any more than what the memset wrote. 1350 // Don't worry about sizes larger than i64. 1351 1352 // A known memset size is required. 1353 auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize); 1354 if (!CMemSetSize) 1355 return false; 1356 1357 // A known memcpy size is also required. 1358 auto *CCopySize = dyn_cast<ConstantInt>(CopySize); 1359 if (!CCopySize) 1360 return false; 1361 if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) { 1362 // If the memcpy is larger than the memset, but the memory was undef prior 1363 // to the memset, we can just ignore the tail. Technically we're only 1364 // interested in the bytes from MemSetSize..CopySize here, but as we can't 1365 // easily represent this location, we use the full 0..CopySize range. 1366 MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy); 1367 bool CanReduceSize = false; 1368 MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet); 1369 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1370 MemSetAccess->getDefiningAccess(), MemCpyLoc); 1371 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1372 if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize)) 1373 CanReduceSize = true; 1374 1375 if (!CanReduceSize) 1376 return false; 1377 CopySize = MemSetSize; 1378 } 1379 } 1380 1381 IRBuilder<> Builder(MemCpy); 1382 Instruction *NewM = 1383 Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), 1384 CopySize, MaybeAlign(MemCpy->getDestAlignment())); 1385 auto *LastDef = 1386 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)); 1387 auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1388 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1389 1390 return true; 1391 } 1392 1393 /// Perform simplification of memcpy's. If we have memcpy A 1394 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite 1395 /// B to be a memcpy from X to Z (or potentially a memmove, depending on 1396 /// circumstances). This allows later passes to remove the first memcpy 1397 /// altogether. 1398 bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) { 1399 // We can only optimize non-volatile memcpy's. 1400 if (M->isVolatile()) return false; 1401 1402 // If the source and destination of the memcpy are the same, then zap it. 1403 if (M->getSource() == M->getDest()) { 1404 ++BBI; 1405 eraseInstruction(M); 1406 return true; 1407 } 1408 1409 // If copying from a constant, try to turn the memcpy into a memset. 1410 if (auto *GV = dyn_cast<GlobalVariable>(M->getSource())) 1411 if (GV->isConstant() && GV->hasDefinitiveInitializer()) 1412 if (Value *ByteVal = isBytewiseValue(GV->getInitializer(), 1413 M->getModule()->getDataLayout())) { 1414 IRBuilder<> Builder(M); 1415 Instruction *NewM = 1416 Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), 1417 MaybeAlign(M->getDestAlignment()), false); 1418 auto *LastDef = 1419 cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)); 1420 auto *NewAccess = 1421 MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef); 1422 MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true); 1423 1424 eraseInstruction(M); 1425 ++NumCpyToSet; 1426 return true; 1427 } 1428 1429 MemoryUseOrDef *MA = MSSA->getMemoryAccess(M); 1430 // FIXME: Not using getClobberingMemoryAccess() here due to PR54682. 1431 MemoryAccess *AnyClobber = MA->getDefiningAccess(); 1432 MemoryLocation DestLoc = MemoryLocation::getForDest(M); 1433 const MemoryAccess *DestClobber = 1434 MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc); 1435 1436 // Try to turn a partially redundant memset + memcpy into 1437 // memcpy + smaller memset. We don't need the memcpy size for this. 1438 // The memcpy most post-dom the memset, so limit this to the same basic 1439 // block. A non-local generalization is likely not worthwhile. 1440 if (auto *MD = dyn_cast<MemoryDef>(DestClobber)) 1441 if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst())) 1442 if (DestClobber->getBlock() == M->getParent()) 1443 if (processMemSetMemCpyDependence(M, MDep)) 1444 return true; 1445 1446 MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess( 1447 AnyClobber, MemoryLocation::getForSource(M)); 1448 1449 // There are four possible optimizations we can do for memcpy: 1450 // a) memcpy-memcpy xform which exposes redundance for DSE. 1451 // b) call-memcpy xform for return slot optimization. 1452 // c) memcpy from freshly alloca'd space or space that has just started 1453 // its lifetime copies undefined data, and we can therefore eliminate 1454 // the memcpy in favor of the data that was already at the destination. 1455 // d) memcpy from a just-memset'd source can be turned into memset. 1456 if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) { 1457 if (Instruction *MI = MD->getMemoryInst()) { 1458 if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) { 1459 if (auto *C = dyn_cast<CallInst>(MI)) { 1460 // FIXME: Can we pass in either of dest/src alignment here instead 1461 // of conservatively taking the minimum? 1462 Align Alignment = std::min(M->getDestAlign().valueOrOne(), 1463 M->getSourceAlign().valueOrOne()); 1464 if (performCallSlotOptzn( 1465 M, M, M->getDest(), M->getSource(), 1466 TypeSize::getFixed(CopySize->getZExtValue()), Alignment, 1467 [C]() -> CallInst * { return C; })) { 1468 LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n" 1469 << " call: " << *C << "\n" 1470 << " memcpy: " << *M << "\n"); 1471 eraseInstruction(M); 1472 ++NumMemCpyInstr; 1473 return true; 1474 } 1475 } 1476 } 1477 if (auto *MDep = dyn_cast<MemCpyInst>(MI)) 1478 return processMemCpyMemCpyDependence(M, MDep); 1479 if (auto *MDep = dyn_cast<MemSetInst>(MI)) { 1480 if (performMemCpyToMemSetOptzn(M, MDep)) { 1481 LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n"); 1482 eraseInstruction(M); 1483 ++NumCpyToSet; 1484 return true; 1485 } 1486 } 1487 } 1488 1489 if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) { 1490 LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n"); 1491 eraseInstruction(M); 1492 ++NumMemCpyInstr; 1493 return true; 1494 } 1495 } 1496 1497 return false; 1498 } 1499 1500 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed 1501 /// not to alias. 1502 bool MemCpyOptPass::processMemMove(MemMoveInst *M) { 1503 // See if the source could be modified by this memmove potentially. 1504 if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M)))) 1505 return false; 1506 1507 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M 1508 << "\n"); 1509 1510 // If not, then we know we can transform this. 1511 Type *ArgTys[3] = { M->getRawDest()->getType(), 1512 M->getRawSource()->getType(), 1513 M->getLength()->getType() }; 1514 M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), 1515 Intrinsic::memcpy, ArgTys)); 1516 1517 // For MemorySSA nothing really changes (except that memcpy may imply stricter 1518 // aliasing guarantees). 1519 1520 ++NumMoveToCpy; 1521 return true; 1522 } 1523 1524 /// This is called on every byval argument in call sites. 1525 bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) { 1526 const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout(); 1527 // Find out what feeds this byval argument. 1528 Value *ByValArg = CB.getArgOperand(ArgNo); 1529 Type *ByValTy = CB.getParamByValType(ArgNo); 1530 TypeSize ByValSize = DL.getTypeAllocSize(ByValTy); 1531 MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize)); 1532 MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB); 1533 if (!CallAccess) 1534 return false; 1535 MemCpyInst *MDep = nullptr; 1536 MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess( 1537 CallAccess->getDefiningAccess(), Loc); 1538 if (auto *MD = dyn_cast<MemoryDef>(Clobber)) 1539 MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst()); 1540 1541 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by 1542 // a memcpy, see if we can byval from the source of the memcpy instead of the 1543 // result. 1544 if (!MDep || MDep->isVolatile() || 1545 ByValArg->stripPointerCasts() != MDep->getDest()) 1546 return false; 1547 1548 // The length of the memcpy must be larger or equal to the size of the byval. 1549 auto *C1 = dyn_cast<ConstantInt>(MDep->getLength()); 1550 if (!C1 || !TypeSize::isKnownGE( 1551 TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize)) 1552 return false; 1553 1554 // Get the alignment of the byval. If the call doesn't specify the alignment, 1555 // then it is some target specific value that we can't know. 1556 MaybeAlign ByValAlign = CB.getParamAlign(ArgNo); 1557 if (!ByValAlign) return false; 1558 1559 // If it is greater than the memcpy, then we check to see if we can force the 1560 // source of the memcpy to the alignment we need. If we fail, we bail out. 1561 MaybeAlign MemDepAlign = MDep->getSourceAlign(); 1562 if ((!MemDepAlign || *MemDepAlign < *ByValAlign) && 1563 getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC, 1564 DT) < *ByValAlign) 1565 return false; 1566 1567 // The address space of the memcpy source must match the byval argument 1568 if (MDep->getSource()->getType()->getPointerAddressSpace() != 1569 ByValArg->getType()->getPointerAddressSpace()) 1570 return false; 1571 1572 // Verify that the copied-from memory doesn't change in between the memcpy and 1573 // the byval call. 1574 // memcpy(a <- b) 1575 // *b = 42; 1576 // foo(*a) 1577 // It would be invalid to transform the second memcpy into foo(*b). 1578 if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep), 1579 MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB))) 1580 return false; 1581 1582 Value *TmpCast = MDep->getSource(); 1583 if (MDep->getSource()->getType() != ByValArg->getType()) { 1584 BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), 1585 "tmpcast", &CB); 1586 // Set the tmpcast's DebugLoc to MDep's 1587 TmpBitCast->setDebugLoc(MDep->getDebugLoc()); 1588 TmpCast = TmpBitCast; 1589 } 1590 1591 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" 1592 << " " << *MDep << "\n" 1593 << " " << CB << "\n"); 1594 1595 // Otherwise we're good! Update the byval argument. 1596 CB.setArgOperand(ArgNo, TmpCast); 1597 ++NumMemCpyInstr; 1598 return true; 1599 } 1600 1601 /// Executes one iteration of MemCpyOptPass. 1602 bool MemCpyOptPass::iterateOnFunction(Function &F) { 1603 bool MadeChange = false; 1604 1605 // Walk all instruction in the function. 1606 for (BasicBlock &BB : F) { 1607 // Skip unreachable blocks. For example processStore assumes that an 1608 // instruction in a BB can't be dominated by a later instruction in the 1609 // same BB (which is a scenario that can happen for an unreachable BB that 1610 // has itself as a predecessor). 1611 if (!DT->isReachableFromEntry(&BB)) 1612 continue; 1613 1614 for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { 1615 // Avoid invalidating the iterator. 1616 Instruction *I = &*BI++; 1617 1618 bool RepeatInstruction = false; 1619 1620 if (auto *SI = dyn_cast<StoreInst>(I)) 1621 MadeChange |= processStore(SI, BI); 1622 else if (auto *M = dyn_cast<MemSetInst>(I)) 1623 RepeatInstruction = processMemSet(M, BI); 1624 else if (auto *M = dyn_cast<MemCpyInst>(I)) 1625 RepeatInstruction = processMemCpy(M, BI); 1626 else if (auto *M = dyn_cast<MemMoveInst>(I)) 1627 RepeatInstruction = processMemMove(M); 1628 else if (auto *CB = dyn_cast<CallBase>(I)) { 1629 for (unsigned i = 0, e = CB->arg_size(); i != e; ++i) 1630 if (CB->isByValArgument(i)) 1631 MadeChange |= processByValArgument(*CB, i); 1632 } 1633 1634 // Reprocess the instruction if desired. 1635 if (RepeatInstruction) { 1636 if (BI != BB.begin()) 1637 --BI; 1638 MadeChange = true; 1639 } 1640 } 1641 } 1642 1643 return MadeChange; 1644 } 1645 1646 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { 1647 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 1648 auto *AA = &AM.getResult<AAManager>(F); 1649 auto *AC = &AM.getResult<AssumptionAnalysis>(F); 1650 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); 1651 auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F); 1652 1653 bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA()); 1654 if (!MadeChange) 1655 return PreservedAnalyses::all(); 1656 1657 PreservedAnalyses PA; 1658 PA.preserveSet<CFGAnalyses>(); 1659 PA.preserve<MemorySSAAnalysis>(); 1660 return PA; 1661 } 1662 1663 bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 1664 AliasAnalysis *AA_, AssumptionCache *AC_, 1665 DominatorTree *DT_, MemorySSA *MSSA_) { 1666 bool MadeChange = false; 1667 TLI = TLI_; 1668 AA = AA_; 1669 AC = AC_; 1670 DT = DT_; 1671 MSSA = MSSA_; 1672 MemorySSAUpdater MSSAU_(MSSA_); 1673 MSSAU = &MSSAU_; 1674 1675 while (true) { 1676 if (!iterateOnFunction(F)) 1677 break; 1678 MadeChange = true; 1679 } 1680 1681 if (VerifyMemorySSA) 1682 MSSA_->verifyMemorySSA(); 1683 1684 return MadeChange; 1685 } 1686 1687 /// This is the main transformation entry point for a function. 1688 bool MemCpyOptLegacyPass::runOnFunction(Function &F) { 1689 if (skipFunction(F)) 1690 return false; 1691 1692 auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1693 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1694 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1695 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1696 auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); 1697 1698 return Impl.runImpl(F, TLI, AA, AC, DT, MSSA); 1699 } 1700