1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs various transformations related to eliminating memcpy
11 // calls, or transforming sets of stores into memset's.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/GlobalsModRef.h"
25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
26 #include "llvm/Analysis/MemoryLocation.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <utility>
63 
64 using namespace llvm;
65 
66 #define DEBUG_TYPE "memcpyopt"
67 
68 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
69 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
70 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
71 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
72 
73 static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx,
74                                   bool &VariableIdxFound,
75                                   const DataLayout &DL) {
76   // Skip over the first indices.
77   gep_type_iterator GTI = gep_type_begin(GEP);
78   for (unsigned i = 1; i != Idx; ++i, ++GTI)
79     /*skip along*/;
80 
81   // Compute the offset implied by the rest of the indices.
82   int64_t Offset = 0;
83   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
84     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
85     if (!OpC)
86       return VariableIdxFound = true;
87     if (OpC->isZero()) continue;  // No offset.
88 
89     // Handle struct indices, which add their field offset to the pointer.
90     if (StructType *STy = GTI.getStructTypeOrNull()) {
91       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
92       continue;
93     }
94 
95     // Otherwise, we have a sequential type like an array or vector.  Multiply
96     // the index by the ElementSize.
97     uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
98     Offset += Size*OpC->getSExtValue();
99   }
100 
101   return Offset;
102 }
103 
104 /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and
105 /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2
106 /// might be &A[40]. In this case offset would be -8.
107 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
108                             const DataLayout &DL) {
109   Ptr1 = Ptr1->stripPointerCasts();
110   Ptr2 = Ptr2->stripPointerCasts();
111 
112   // Handle the trivial case first.
113   if (Ptr1 == Ptr2) {
114     Offset = 0;
115     return true;
116   }
117 
118   GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
119   GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
120 
121   bool VariableIdxFound = false;
122 
123   // If one pointer is a GEP and the other isn't, then see if the GEP is a
124   // constant offset from the base, as in "P" and "gep P, 1".
125   if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
126     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL);
127     return !VariableIdxFound;
128   }
129 
130   if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
131     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL);
132     return !VariableIdxFound;
133   }
134 
135   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
136   // base.  After that base, they may have some number of common (and
137   // potentially variable) indices.  After that they handle some constant
138   // offset, which determines their offset from each other.  At this point, we
139   // handle no other case.
140   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
141     return false;
142 
143   // Skip any common indices and track the GEP types.
144   unsigned Idx = 1;
145   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
146     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
147       break;
148 
149   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL);
150   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL);
151   if (VariableIdxFound) return false;
152 
153   Offset = Offset2-Offset1;
154   return true;
155 }
156 
157 namespace {
158 
159 /// Represents a range of memset'd bytes with the ByteVal value.
160 /// This allows us to analyze stores like:
161 ///   store 0 -> P+1
162 ///   store 0 -> P+0
163 ///   store 0 -> P+3
164 ///   store 0 -> P+2
165 /// which sometimes happens with stores to arrays of structs etc.  When we see
166 /// the first store, we make a range [1, 2).  The second store extends the range
167 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
168 /// two ranges into [0, 3) which is memset'able.
169 struct MemsetRange {
170   // Start/End - A semi range that describes the span that this range covers.
171   // The range is closed at the start and open at the end: [Start, End).
172   int64_t Start, End;
173 
174   /// StartPtr - The getelementptr instruction that points to the start of the
175   /// range.
176   Value *StartPtr;
177 
178   /// Alignment - The known alignment of the first store.
179   unsigned Alignment;
180 
181   /// TheStores - The actual stores that make up this range.
182   SmallVector<Instruction*, 16> TheStores;
183 
184   bool isProfitableToUseMemset(const DataLayout &DL) const;
185 };
186 
187 } // end anonymous namespace
188 
189 bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
190   // If we found more than 4 stores to merge or 16 bytes, use memset.
191   if (TheStores.size() >= 4 || End-Start >= 16) return true;
192 
193   // If there is nothing to merge, don't do anything.
194   if (TheStores.size() < 2) return false;
195 
196   // If any of the stores are a memset, then it is always good to extend the
197   // memset.
198   for (Instruction *SI : TheStores)
199     if (!isa<StoreInst>(SI))
200       return true;
201 
202   // Assume that the code generator is capable of merging pairs of stores
203   // together if it wants to.
204   if (TheStores.size() == 2) return false;
205 
206   // If we have fewer than 8 stores, it can still be worthwhile to do this.
207   // For example, merging 4 i8 stores into an i32 store is useful almost always.
208   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
209   // memset will be split into 2 32-bit stores anyway) and doing so can
210   // pessimize the llvm optimizer.
211   //
212   // Since we don't have perfect knowledge here, make some assumptions: assume
213   // the maximum GPR width is the same size as the largest legal integer
214   // size. If so, check to see whether we will end up actually reducing the
215   // number of stores used.
216   unsigned Bytes = unsigned(End-Start);
217   unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
218   if (MaxIntSize == 0)
219     MaxIntSize = 1;
220   unsigned NumPointerStores = Bytes / MaxIntSize;
221 
222   // Assume the remaining bytes if any are done a byte at a time.
223   unsigned NumByteStores = Bytes % MaxIntSize;
224 
225   // If we will reduce the # stores (according to this heuristic), do the
226   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
227   // etc.
228   return TheStores.size() > NumPointerStores+NumByteStores;
229 }
230 
231 namespace {
232 
233 class MemsetRanges {
234   using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
235 
236   /// A sorted list of the memset ranges.
237   SmallVector<MemsetRange, 8> Ranges;
238 
239   const DataLayout &DL;
240 
241 public:
242   MemsetRanges(const DataLayout &DL) : DL(DL) {}
243 
244   using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
245 
246   const_iterator begin() const { return Ranges.begin(); }
247   const_iterator end() const { return Ranges.end(); }
248   bool empty() const { return Ranges.empty(); }
249 
250   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
251     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
252       addStore(OffsetFromFirst, SI);
253     else
254       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
255   }
256 
257   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
258     int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
259 
260     addRange(OffsetFromFirst, StoreSize,
261              SI->getPointerOperand(), SI->getAlignment(), SI);
262   }
263 
264   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
265     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
266     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
267   }
268 
269   void addRange(int64_t Start, int64_t Size, Value *Ptr,
270                 unsigned Alignment, Instruction *Inst);
271 };
272 
273 } // end anonymous namespace
274 
275 /// Add a new store to the MemsetRanges data structure.  This adds a
276 /// new range for the specified store at the specified offset, merging into
277 /// existing ranges as appropriate.
278 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
279                             unsigned Alignment, Instruction *Inst) {
280   int64_t End = Start+Size;
281 
282   range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start,
283     [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; });
284 
285   // We now know that I == E, in which case we didn't find anything to merge
286   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
287   // to insert a new range.  Handle this now.
288   if (I == Ranges.end() || End < I->Start) {
289     MemsetRange &R = *Ranges.insert(I, MemsetRange());
290     R.Start        = Start;
291     R.End          = End;
292     R.StartPtr     = Ptr;
293     R.Alignment    = Alignment;
294     R.TheStores.push_back(Inst);
295     return;
296   }
297 
298   // This store overlaps with I, add it.
299   I->TheStores.push_back(Inst);
300 
301   // At this point, we may have an interval that completely contains our store.
302   // If so, just add it to the interval and return.
303   if (I->Start <= Start && I->End >= End)
304     return;
305 
306   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
307   // but is not entirely contained within the range.
308 
309   // See if the range extends the start of the range.  In this case, it couldn't
310   // possibly cause it to join the prior range, because otherwise we would have
311   // stopped on *it*.
312   if (Start < I->Start) {
313     I->Start = Start;
314     I->StartPtr = Ptr;
315     I->Alignment = Alignment;
316   }
317 
318   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
319   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
320   // End.
321   if (End > I->End) {
322     I->End = End;
323     range_iterator NextI = I;
324     while (++NextI != Ranges.end() && End >= NextI->Start) {
325       // Merge the range in.
326       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
327       if (NextI->End > I->End)
328         I->End = NextI->End;
329       Ranges.erase(NextI);
330       NextI = I;
331     }
332   }
333 }
334 
335 //===----------------------------------------------------------------------===//
336 //                         MemCpyOptLegacyPass Pass
337 //===----------------------------------------------------------------------===//
338 
339 namespace {
340 
341 class MemCpyOptLegacyPass : public FunctionPass {
342   MemCpyOptPass Impl;
343 
344 public:
345   static char ID; // Pass identification, replacement for typeid
346 
347   MemCpyOptLegacyPass() : FunctionPass(ID) {
348     initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
349   }
350 
351   bool runOnFunction(Function &F) override;
352 
353 private:
354   // This transformation requires dominator postdominator info
355   void getAnalysisUsage(AnalysisUsage &AU) const override {
356     AU.setPreservesCFG();
357     AU.addRequired<AssumptionCacheTracker>();
358     AU.addRequired<DominatorTreeWrapperPass>();
359     AU.addRequired<MemoryDependenceWrapperPass>();
360     AU.addRequired<AAResultsWrapperPass>();
361     AU.addRequired<TargetLibraryInfoWrapperPass>();
362     AU.addPreserved<GlobalsAAWrapperPass>();
363     AU.addPreserved<MemoryDependenceWrapperPass>();
364   }
365 };
366 
367 } // end anonymous namespace
368 
369 char MemCpyOptLegacyPass::ID = 0;
370 
371 /// The public interface to this file...
372 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
373 
374 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
375                       false, false)
376 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
377 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
378 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
379 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
380 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
381 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
382 INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
383                     false, false)
384 
385 /// When scanning forward over instructions, we look for some other patterns to
386 /// fold away. In particular, this looks for stores to neighboring locations of
387 /// memory. If it sees enough consecutive ones, it attempts to merge them
388 /// together into a memcpy/memset.
389 Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
390                                                  Value *StartPtr,
391                                                  Value *ByteVal) {
392   const DataLayout &DL = StartInst->getModule()->getDataLayout();
393 
394   // Okay, so we now have a single store that can be splatable.  Scan to find
395   // all subsequent stores of the same value to offset from the same pointer.
396   // Join these together into ranges, so we can decide whether contiguous blocks
397   // are stored.
398   MemsetRanges Ranges(DL);
399 
400   BasicBlock::iterator BI(StartInst);
401   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
402     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
403       // If the instruction is readnone, ignore it, otherwise bail out.  We
404       // don't even allow readonly here because we don't want something like:
405       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
406       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
407         break;
408       continue;
409     }
410 
411     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
412       // If this is a store, see if we can merge it in.
413       if (!NextStore->isSimple()) break;
414 
415       // Check to see if this stored value is of the same byte-splattable value.
416       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
417         break;
418 
419       // Check to see if this store is to a constant offset from the start ptr.
420       int64_t Offset;
421       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset,
422                            DL))
423         break;
424 
425       Ranges.addStore(Offset, NextStore);
426     } else {
427       MemSetInst *MSI = cast<MemSetInst>(BI);
428 
429       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
430           !isa<ConstantInt>(MSI->getLength()))
431         break;
432 
433       // Check to see if this store is to a constant offset from the start ptr.
434       int64_t Offset;
435       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL))
436         break;
437 
438       Ranges.addMemSet(Offset, MSI);
439     }
440   }
441 
442   // If we have no ranges, then we just had a single store with nothing that
443   // could be merged in.  This is a very common case of course.
444   if (Ranges.empty())
445     return nullptr;
446 
447   // If we had at least one store that could be merged in, add the starting
448   // store as well.  We try to avoid this unless there is at least something
449   // interesting as a small compile-time optimization.
450   Ranges.addInst(0, StartInst);
451 
452   // If we create any memsets, we put it right before the first instruction that
453   // isn't part of the memset block.  This ensure that the memset is dominated
454   // by any addressing instruction needed by the start of the block.
455   IRBuilder<> Builder(&*BI);
456 
457   // Now that we have full information about ranges, loop over the ranges and
458   // emit memset's for anything big enough to be worthwhile.
459   Instruction *AMemSet = nullptr;
460   for (const MemsetRange &Range : Ranges) {
461     if (Range.TheStores.size() == 1) continue;
462 
463     // If it is profitable to lower this range to memset, do so now.
464     if (!Range.isProfitableToUseMemset(DL))
465       continue;
466 
467     // Otherwise, we do want to transform this!  Create a new memset.
468     // Get the starting pointer of the block.
469     StartPtr = Range.StartPtr;
470 
471     // Determine alignment
472     unsigned Alignment = Range.Alignment;
473     if (Alignment == 0) {
474       Type *EltType =
475         cast<PointerType>(StartPtr->getType())->getElementType();
476       Alignment = DL.getABITypeAlignment(EltType);
477     }
478 
479     AMemSet =
480       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
481 
482     DEBUG(dbgs() << "Replace stores:\n";
483           for (Instruction *SI : Range.TheStores)
484             dbgs() << *SI << '\n';
485           dbgs() << "With: " << *AMemSet << '\n');
486 
487     if (!Range.TheStores.empty())
488       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
489 
490     // Zap all the stores.
491     for (Instruction *SI : Range.TheStores) {
492       MD->removeInstruction(SI);
493       SI->eraseFromParent();
494     }
495     ++NumMemSetInfer;
496   }
497 
498   return AMemSet;
499 }
500 
501 static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
502                                      const LoadInst *LI) {
503   unsigned StoreAlign = SI->getAlignment();
504   if (!StoreAlign)
505     StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType());
506   unsigned LoadAlign = LI->getAlignment();
507   if (!LoadAlign)
508     LoadAlign = DL.getABITypeAlignment(LI->getType());
509 
510   return std::min(StoreAlign, LoadAlign);
511 }
512 
513 // This method try to lift a store instruction before position P.
514 // It will lift the store and its argument + that anything that
515 // may alias with these.
516 // The method returns true if it was successful.
517 static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
518                    const LoadInst *LI) {
519   // If the store alias this position, early bail out.
520   MemoryLocation StoreLoc = MemoryLocation::get(SI);
521   if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
522     return false;
523 
524   // Keep track of the arguments of all instruction we plan to lift
525   // so we can make sure to lift them as well if apropriate.
526   DenseSet<Instruction*> Args;
527   if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
528     if (Ptr->getParent() == SI->getParent())
529       Args.insert(Ptr);
530 
531   // Instruction to lift before P.
532   SmallVector<Instruction*, 8> ToLift;
533 
534   // Memory locations of lifted instructions.
535   SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
536 
537   // Lifted callsites.
538   SmallVector<ImmutableCallSite, 8> CallSites;
539 
540   const MemoryLocation LoadLoc = MemoryLocation::get(LI);
541 
542   for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
543     auto *C = &*I;
544 
545     bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
546 
547     bool NeedLift = false;
548     if (Args.erase(C))
549       NeedLift = true;
550     else if (MayAlias) {
551       NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
552         return isModOrRefSet(AA.getModRefInfo(C, ML));
553       });
554 
555       if (!NeedLift)
556         NeedLift =
557             llvm::any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) {
558               return isModOrRefSet(AA.getModRefInfo(C, CS));
559             });
560     }
561 
562     if (!NeedLift)
563       continue;
564 
565     if (MayAlias) {
566       // Since LI is implicitly moved downwards past the lifted instructions,
567       // none of them may modify its source.
568       if (isModSet(AA.getModRefInfo(C, LoadLoc)))
569         return false;
570       else if (auto CS = ImmutableCallSite(C)) {
571         // If we can't lift this before P, it's game over.
572         if (isModOrRefSet(AA.getModRefInfo(P, CS)))
573           return false;
574 
575         CallSites.push_back(CS);
576       } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
577         // If we can't lift this before P, it's game over.
578         auto ML = MemoryLocation::get(C);
579         if (isModOrRefSet(AA.getModRefInfo(P, ML)))
580           return false;
581 
582         MemLocs.push_back(ML);
583       } else
584         // We don't know how to lift this instruction.
585         return false;
586     }
587 
588     ToLift.push_back(C);
589     for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
590       if (auto *A = dyn_cast<Instruction>(C->getOperand(k)))
591         if (A->getParent() == SI->getParent())
592           Args.insert(A);
593   }
594 
595   // We made it, we need to lift
596   for (auto *I : llvm::reverse(ToLift)) {
597     DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
598     I->moveBefore(P);
599   }
600 
601   return true;
602 }
603 
604 bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
605   if (!SI->isSimple()) return false;
606 
607   // Avoid merging nontemporal stores since the resulting
608   // memcpy/memset would not be able to preserve the nontemporal hint.
609   // In theory we could teach how to propagate the !nontemporal metadata to
610   // memset calls. However, that change would force the backend to
611   // conservatively expand !nontemporal memset calls back to sequences of
612   // store instructions (effectively undoing the merging).
613   if (SI->getMetadata(LLVMContext::MD_nontemporal))
614     return false;
615 
616   const DataLayout &DL = SI->getModule()->getDataLayout();
617 
618   // Load to store forwarding can be interpreted as memcpy.
619   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
620     if (LI->isSimple() && LI->hasOneUse() &&
621         LI->getParent() == SI->getParent()) {
622 
623       auto *T = LI->getType();
624       if (T->isAggregateType()) {
625         AliasAnalysis &AA = LookupAliasAnalysis();
626         MemoryLocation LoadLoc = MemoryLocation::get(LI);
627 
628         // We use alias analysis to check if an instruction may store to
629         // the memory we load from in between the load and the store. If
630         // such an instruction is found, we try to promote there instead
631         // of at the store position.
632         Instruction *P = SI;
633         for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
634           if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
635             P = &I;
636             break;
637           }
638         }
639 
640         // We found an instruction that may write to the loaded memory.
641         // We can try to promote at this position instead of the store
642         // position if nothing alias the store memory after this and the store
643         // destination is not in the range.
644         if (P && P != SI) {
645           if (!moveUp(AA, SI, P, LI))
646             P = nullptr;
647         }
648 
649         // If a valid insertion position is found, then we can promote
650         // the load/store pair to a memcpy.
651         if (P) {
652           // If we load from memory that may alias the memory we store to,
653           // memmove must be used to preserve semantic. If not, memcpy can
654           // be used.
655           bool UseMemMove = false;
656           if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
657             UseMemMove = true;
658 
659           unsigned Align = findCommonAlignment(DL, SI, LI);
660           uint64_t Size = DL.getTypeStoreSize(T);
661 
662           IRBuilder<> Builder(P);
663           Instruction *M;
664           if (UseMemMove)
665             M = Builder.CreateMemMove(SI->getPointerOperand(),
666                                       LI->getPointerOperand(), Size,
667                                       Align, SI->isVolatile());
668           else
669             M = Builder.CreateMemCpy(SI->getPointerOperand(),
670                                      LI->getPointerOperand(), Size,
671                                      Align, SI->isVolatile());
672 
673           DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI
674                        << " => " << *M << "\n");
675 
676           MD->removeInstruction(SI);
677           SI->eraseFromParent();
678           MD->removeInstruction(LI);
679           LI->eraseFromParent();
680           ++NumMemCpyInstr;
681 
682           // Make sure we do not invalidate the iterator.
683           BBI = M->getIterator();
684           return true;
685         }
686       }
687 
688       // Detect cases where we're performing call slot forwarding, but
689       // happen to be using a load-store pair to implement it, rather than
690       // a memcpy.
691       MemDepResult ldep = MD->getDependency(LI);
692       CallInst *C = nullptr;
693       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
694         C = dyn_cast<CallInst>(ldep.getInst());
695 
696       if (C) {
697         // Check that nothing touches the dest of the "copy" between
698         // the call and the store.
699         Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
700         bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
701         AliasAnalysis &AA = LookupAliasAnalysis();
702         MemoryLocation StoreLoc = MemoryLocation::get(SI);
703         for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
704              I != E; --I) {
705           if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
706             C = nullptr;
707             break;
708           }
709           // The store to dest may never happen if an exception can be thrown
710           // between the load and the store.
711           if (I->mayThrow() && !CpyDestIsLocal) {
712             C = nullptr;
713             break;
714           }
715         }
716       }
717 
718       if (C) {
719         bool changed = performCallSlotOptzn(
720             LI, SI->getPointerOperand()->stripPointerCasts(),
721             LI->getPointerOperand()->stripPointerCasts(),
722             DL.getTypeStoreSize(SI->getOperand(0)->getType()),
723             findCommonAlignment(DL, SI, LI), C);
724         if (changed) {
725           MD->removeInstruction(SI);
726           SI->eraseFromParent();
727           MD->removeInstruction(LI);
728           LI->eraseFromParent();
729           ++NumMemCpyInstr;
730           return true;
731         }
732       }
733     }
734   }
735 
736   // There are two cases that are interesting for this code to handle: memcpy
737   // and memset.  Right now we only handle memset.
738 
739   // Ensure that the value being stored is something that can be memset'able a
740   // byte at a time like "0" or "-1" or any width, as well as things like
741   // 0xA0A0A0A0 and 0.0.
742   auto *V = SI->getOperand(0);
743   if (Value *ByteVal = isBytewiseValue(V)) {
744     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
745                                               ByteVal)) {
746       BBI = I->getIterator(); // Don't invalidate iterator.
747       return true;
748     }
749 
750     // If we have an aggregate, we try to promote it to memset regardless
751     // of opportunity for merging as it can expose optimization opportunities
752     // in subsequent passes.
753     auto *T = V->getType();
754     if (T->isAggregateType()) {
755       uint64_t Size = DL.getTypeStoreSize(T);
756       unsigned Align = SI->getAlignment();
757       if (!Align)
758         Align = DL.getABITypeAlignment(T);
759       IRBuilder<> Builder(SI);
760       auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal,
761                                      Size, Align, SI->isVolatile());
762 
763       DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
764 
765       MD->removeInstruction(SI);
766       SI->eraseFromParent();
767       NumMemSetInfer++;
768 
769       // Make sure we do not invalidate the iterator.
770       BBI = M->getIterator();
771       return true;
772     }
773   }
774 
775   return false;
776 }
777 
778 bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
779   // See if there is another memset or store neighboring this memset which
780   // allows us to widen out the memset to do a single larger store.
781   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
782     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
783                                               MSI->getValue())) {
784       BBI = I->getIterator(); // Don't invalidate iterator.
785       return true;
786     }
787   return false;
788 }
789 
790 /// Takes a memcpy and a call that it depends on,
791 /// and checks for the possibility of a call slot optimization by having
792 /// the call write its result directly into the destination of the memcpy.
793 bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
794                                          Value *cpySrc, uint64_t cpyLen,
795                                          unsigned cpyAlign, CallInst *C) {
796   // The general transformation to keep in mind is
797   //
798   //   call @func(..., src, ...)
799   //   memcpy(dest, src, ...)
800   //
801   // ->
802   //
803   //   memcpy(dest, src, ...)
804   //   call @func(..., dest, ...)
805   //
806   // Since moving the memcpy is technically awkward, we additionally check that
807   // src only holds uninitialized values at the moment of the call, meaning that
808   // the memcpy can be discarded rather than moved.
809 
810   // Lifetime marks shouldn't be operated on.
811   if (Function *F = C->getCalledFunction())
812     if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
813       return false;
814 
815   // Deliberately get the source and destination with bitcasts stripped away,
816   // because we'll need to do type comparisons based on the underlying type.
817   CallSite CS(C);
818 
819   // Require that src be an alloca.  This simplifies the reasoning considerably.
820   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
821   if (!srcAlloca)
822     return false;
823 
824   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
825   if (!srcArraySize)
826     return false;
827 
828   const DataLayout &DL = cpy->getModule()->getDataLayout();
829   uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
830                      srcArraySize->getZExtValue();
831 
832   if (cpyLen < srcSize)
833     return false;
834 
835   // Check that accessing the first srcSize bytes of dest will not cause a
836   // trap.  Otherwise the transform is invalid since it might cause a trap
837   // to occur earlier than it otherwise would.
838   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
839     // The destination is an alloca.  Check it is larger than srcSize.
840     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
841     if (!destArraySize)
842       return false;
843 
844     uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
845                         destArraySize->getZExtValue();
846 
847     if (destSize < srcSize)
848       return false;
849   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
850     // The store to dest may never happen if the call can throw.
851     if (C->mayThrow())
852       return false;
853 
854     if (A->getDereferenceableBytes() < srcSize) {
855       // If the destination is an sret parameter then only accesses that are
856       // outside of the returned struct type can trap.
857       if (!A->hasStructRetAttr())
858         return false;
859 
860       Type *StructTy = cast<PointerType>(A->getType())->getElementType();
861       if (!StructTy->isSized()) {
862         // The call may never return and hence the copy-instruction may never
863         // be executed, and therefore it's not safe to say "the destination
864         // has at least <cpyLen> bytes, as implied by the copy-instruction",
865         return false;
866       }
867 
868       uint64_t destSize = DL.getTypeAllocSize(StructTy);
869       if (destSize < srcSize)
870         return false;
871     }
872   } else {
873     return false;
874   }
875 
876   // Check that dest points to memory that is at least as aligned as src.
877   unsigned srcAlign = srcAlloca->getAlignment();
878   if (!srcAlign)
879     srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
880   bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
881   // If dest is not aligned enough and we can't increase its alignment then
882   // bail out.
883   if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
884     return false;
885 
886   // Check that src is not accessed except via the call and the memcpy.  This
887   // guarantees that it holds only undefined values when passed in (so the final
888   // memcpy can be dropped), that it is not read or written between the call and
889   // the memcpy, and that writing beyond the end of it is undefined.
890   SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
891                                    srcAlloca->user_end());
892   while (!srcUseList.empty()) {
893     User *U = srcUseList.pop_back_val();
894 
895     if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
896       for (User *UU : U->users())
897         srcUseList.push_back(UU);
898       continue;
899     }
900     if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
901       if (!G->hasAllZeroIndices())
902         return false;
903 
904       for (User *UU : U->users())
905         srcUseList.push_back(UU);
906       continue;
907     }
908     if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
909       if (IT->getIntrinsicID() == Intrinsic::lifetime_start ||
910           IT->getIntrinsicID() == Intrinsic::lifetime_end)
911         continue;
912 
913     if (U != C && U != cpy)
914       return false;
915   }
916 
917   // Check that src isn't captured by the called function since the
918   // transformation can cause aliasing issues in that case.
919   for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
920     if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
921       return false;
922 
923   // Since we're changing the parameter to the callsite, we need to make sure
924   // that what would be the new parameter dominates the callsite.
925   DominatorTree &DT = LookupDomTree();
926   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
927     if (!DT.dominates(cpyDestInst, C))
928       return false;
929 
930   // In addition to knowing that the call does not access src in some
931   // unexpected manner, for example via a global, which we deduce from
932   // the use analysis, we also need to know that it does not sneakily
933   // access dest.  We rely on AA to figure this out for us.
934   AliasAnalysis &AA = LookupAliasAnalysis();
935   ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize);
936   // If necessary, perform additional analysis.
937   if (isModOrRefSet(MR))
938     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
939   if (isModOrRefSet(MR))
940     return false;
941 
942   // We can't create address space casts here because we don't know if they're
943   // safe for the target.
944   if (cpySrc->getType()->getPointerAddressSpace() !=
945       cpyDest->getType()->getPointerAddressSpace())
946     return false;
947   for (unsigned i = 0; i < CS.arg_size(); ++i)
948     if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
949         cpySrc->getType()->getPointerAddressSpace() !=
950         CS.getArgument(i)->getType()->getPointerAddressSpace())
951       return false;
952 
953   // All the checks have passed, so do the transformation.
954   bool changedArgument = false;
955   for (unsigned i = 0; i < CS.arg_size(); ++i)
956     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
957       Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
958         : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
959                                       cpyDest->getName(), C);
960       changedArgument = true;
961       if (CS.getArgument(i)->getType() == Dest->getType())
962         CS.setArgument(i, Dest);
963       else
964         CS.setArgument(i, CastInst::CreatePointerCast(Dest,
965                           CS.getArgument(i)->getType(), Dest->getName(), C));
966     }
967 
968   if (!changedArgument)
969     return false;
970 
971   // If the destination wasn't sufficiently aligned then increase its alignment.
972   if (!isDestSufficientlyAligned) {
973     assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
974     cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
975   }
976 
977   // Drop any cached information about the call, because we may have changed
978   // its dependence information by changing its parameter.
979   MD->removeInstruction(C);
980 
981   // Update AA metadata
982   // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
983   // handled here, but combineMetadata doesn't support them yet
984   unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
985                          LLVMContext::MD_noalias,
986                          LLVMContext::MD_invariant_group};
987   combineMetadata(C, cpy, KnownIDs);
988 
989   // Remove the memcpy.
990   MD->removeInstruction(cpy);
991   ++NumMemCpyInstr;
992 
993   return true;
994 }
995 
996 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
997 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
998 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
999                                                   MemCpyInst *MDep) {
1000   // We can only transforms memcpy's where the dest of one is the source of the
1001   // other.
1002   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
1003     return false;
1004 
1005   // If dep instruction is reading from our current input, then it is a noop
1006   // transfer and substituting the input won't change this instruction.  Just
1007   // ignore the input and let someone else zap MDep.  This handles cases like:
1008   //    memcpy(a <- a)
1009   //    memcpy(b <- a)
1010   if (M->getSource() == MDep->getSource())
1011     return false;
1012 
1013   // Second, the length of the memcpy's must be the same, or the preceding one
1014   // must be larger than the following one.
1015   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
1016   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
1017   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
1018     return false;
1019 
1020   AliasAnalysis &AA = LookupAliasAnalysis();
1021 
1022   // Verify that the copied-from memory doesn't change in between the two
1023   // transfers.  For example, in:
1024   //    memcpy(a <- b)
1025   //    *b = 42;
1026   //    memcpy(c <- a)
1027   // It would be invalid to transform the second memcpy into memcpy(c <- b).
1028   //
1029   // TODO: If the code between M and MDep is transparent to the destination "c",
1030   // then we could still perform the xform by moving M up to the first memcpy.
1031   //
1032   // NOTE: This is conservative, it will stop on any read from the source loc,
1033   // not just the defining memcpy.
1034   MemDepResult SourceDep =
1035       MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
1036                                    M->getIterator(), M->getParent());
1037   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1038     return false;
1039 
1040   // If the dest of the second might alias the source of the first, then the
1041   // source and dest might overlap.  We still want to eliminate the intermediate
1042   // value, but we have to generate a memmove instead of memcpy.
1043   bool UseMemMove = false;
1044   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1045                     MemoryLocation::getForSource(MDep)))
1046     UseMemMove = true;
1047 
1048   // If all checks passed, then we can transform M.
1049 
1050   // Make sure to use the lesser of the alignment of the source and the dest
1051   // since we're changing where we're reading from, but don't want to increase
1052   // the alignment past what can be read from or written to.
1053   // TODO: Is this worth it if we're creating a less aligned memcpy? For
1054   // example we could be moving from movaps -> movq on x86.
1055   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
1056 
1057   IRBuilder<> Builder(M);
1058   if (UseMemMove)
1059     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
1060                           Align, M->isVolatile());
1061   else
1062     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
1063                          Align, M->isVolatile());
1064 
1065   // Remove the instruction we're replacing.
1066   MD->removeInstruction(M);
1067   M->eraseFromParent();
1068   ++NumMemCpyInstr;
1069   return true;
1070 }
1071 
1072 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
1073 /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
1074 /// weren't copied over by \p MemCpy.
1075 ///
1076 /// In other words, transform:
1077 /// \code
1078 ///   memset(dst, c, dst_size);
1079 ///   memcpy(dst, src, src_size);
1080 /// \endcode
1081 /// into:
1082 /// \code
1083 ///   memcpy(dst, src, src_size);
1084 ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1085 /// \endcode
1086 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1087                                                   MemSetInst *MemSet) {
1088   // We can only transform memset/memcpy with the same destination.
1089   if (MemSet->getDest() != MemCpy->getDest())
1090     return false;
1091 
1092   // Check that there are no other dependencies on the memset destination.
1093   MemDepResult DstDepInfo =
1094       MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1095                                    MemCpy->getIterator(), MemCpy->getParent());
1096   if (DstDepInfo.getInst() != MemSet)
1097     return false;
1098 
1099   // Use the same i8* dest as the memcpy, killing the memset dest if different.
1100   Value *Dest = MemCpy->getRawDest();
1101   Value *DestSize = MemSet->getLength();
1102   Value *SrcSize = MemCpy->getLength();
1103 
1104   // By default, create an unaligned memset.
1105   unsigned Align = 1;
1106   // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1107   // of the sum.
1108   const unsigned DestAlign =
1109       std::max(MemSet->getAlignment(), MemCpy->getAlignment());
1110   if (DestAlign > 1)
1111     if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1112       Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1113 
1114   IRBuilder<> Builder(MemCpy);
1115 
1116   // If the sizes have different types, zext the smaller one.
1117   if (DestSize->getType() != SrcSize->getType()) {
1118     if (DestSize->getType()->getIntegerBitWidth() >
1119         SrcSize->getType()->getIntegerBitWidth())
1120       SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1121     else
1122       DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1123   }
1124 
1125   Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1126   Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1127   Value *MemsetLen = Builder.CreateSelect(
1128       Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1129   Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1),
1130                        MemsetLen, Align);
1131 
1132   MD->removeInstruction(MemSet);
1133   MemSet->eraseFromParent();
1134   return true;
1135 }
1136 
1137 /// Transform memcpy to memset when its source was just memset.
1138 /// In other words, turn:
1139 /// \code
1140 ///   memset(dst1, c, dst1_size);
1141 ///   memcpy(dst2, dst1, dst2_size);
1142 /// \endcode
1143 /// into:
1144 /// \code
1145 ///   memset(dst1, c, dst1_size);
1146 ///   memset(dst2, c, dst2_size);
1147 /// \endcode
1148 /// When dst2_size <= dst1_size.
1149 ///
1150 /// The \p MemCpy must have a Constant length.
1151 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1152                                                MemSetInst *MemSet) {
1153   AliasAnalysis &AA = LookupAliasAnalysis();
1154 
1155   // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1156   // memcpying from the same address. Otherwise it is hard to reason about.
1157   if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1158     return false;
1159 
1160   ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1161   ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1162   // Make sure the memcpy doesn't read any more than what the memset wrote.
1163   // Don't worry about sizes larger than i64.
1164   if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue())
1165     return false;
1166 
1167   IRBuilder<> Builder(MemCpy);
1168   Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
1169                        CopySize, MemCpy->getAlignment());
1170   return true;
1171 }
1172 
1173 /// Perform simplification of memcpy's.  If we have memcpy A
1174 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1175 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1176 /// circumstances). This allows later passes to remove the first memcpy
1177 /// altogether.
1178 bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1179   // We can only optimize non-volatile memcpy's.
1180   if (M->isVolatile()) return false;
1181 
1182   // If the source and destination of the memcpy are the same, then zap it.
1183   if (M->getSource() == M->getDest()) {
1184     MD->removeInstruction(M);
1185     M->eraseFromParent();
1186     return false;
1187   }
1188 
1189   // If copying from a constant, try to turn the memcpy into a memset.
1190   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1191     if (GV->isConstant() && GV->hasDefinitiveInitializer())
1192       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
1193         IRBuilder<> Builder(M);
1194         Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1195                              M->getAlignment(), false);
1196         MD->removeInstruction(M);
1197         M->eraseFromParent();
1198         ++NumCpyToSet;
1199         return true;
1200       }
1201 
1202   MemDepResult DepInfo = MD->getDependency(M);
1203 
1204   // Try to turn a partially redundant memset + memcpy into
1205   // memcpy + smaller memset.  We don't need the memcpy size for this.
1206   if (DepInfo.isClobber())
1207     if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1208       if (processMemSetMemCpyDependence(M, MDep))
1209         return true;
1210 
1211   // The optimizations after this point require the memcpy size.
1212   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1213   if (!CopySize) return false;
1214 
1215   // There are four possible optimizations we can do for memcpy:
1216   //   a) memcpy-memcpy xform which exposes redundance for DSE.
1217   //   b) call-memcpy xform for return slot optimization.
1218   //   c) memcpy from freshly alloca'd space or space that has just started its
1219   //      lifetime copies undefined data, and we can therefore eliminate the
1220   //      memcpy in favor of the data that was already at the destination.
1221   //   d) memcpy from a just-memset'd source can be turned into memset.
1222   if (DepInfo.isClobber()) {
1223     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1224       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1225                                CopySize->getZExtValue(), M->getAlignment(),
1226                                C)) {
1227         MD->removeInstruction(M);
1228         M->eraseFromParent();
1229         return true;
1230       }
1231     }
1232   }
1233 
1234   MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1235   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1236       SrcLoc, true, M->getIterator(), M->getParent());
1237 
1238   if (SrcDepInfo.isClobber()) {
1239     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1240       return processMemCpyMemCpyDependence(M, MDep);
1241   } else if (SrcDepInfo.isDef()) {
1242     Instruction *I = SrcDepInfo.getInst();
1243     bool hasUndefContents = false;
1244 
1245     if (isa<AllocaInst>(I)) {
1246       hasUndefContents = true;
1247     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1248       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1249         if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1250           if (LTSize->getZExtValue() >= CopySize->getZExtValue())
1251             hasUndefContents = true;
1252     }
1253 
1254     if (hasUndefContents) {
1255       MD->removeInstruction(M);
1256       M->eraseFromParent();
1257       ++NumMemCpyInstr;
1258       return true;
1259     }
1260   }
1261 
1262   if (SrcDepInfo.isClobber())
1263     if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1264       if (performMemCpyToMemSetOptzn(M, MDep)) {
1265         MD->removeInstruction(M);
1266         M->eraseFromParent();
1267         ++NumCpyToSet;
1268         return true;
1269       }
1270 
1271   return false;
1272 }
1273 
1274 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1275 /// not to alias.
1276 bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1277   AliasAnalysis &AA = LookupAliasAnalysis();
1278 
1279   if (!TLI->has(LibFunc_memmove))
1280     return false;
1281 
1282   // See if the pointers alias.
1283   if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1284                     MemoryLocation::getForSource(M)))
1285     return false;
1286 
1287   DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1288                << "\n");
1289 
1290   // If not, then we know we can transform this.
1291   Type *ArgTys[3] = { M->getRawDest()->getType(),
1292                       M->getRawSource()->getType(),
1293                       M->getLength()->getType() };
1294   M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1295                                                  Intrinsic::memcpy, ArgTys));
1296 
1297   // MemDep may have over conservative information about this instruction, just
1298   // conservatively flush it from the cache.
1299   MD->removeInstruction(M);
1300 
1301   ++NumMoveToCpy;
1302   return true;
1303 }
1304 
1305 /// This is called on every byval argument in call sites.
1306 bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1307   const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1308   // Find out what feeds this byval argument.
1309   Value *ByValArg = CS.getArgument(ArgNo);
1310   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1311   uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1312   MemDepResult DepInfo = MD->getPointerDependencyFrom(
1313       MemoryLocation(ByValArg, ByValSize), true,
1314       CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1315   if (!DepInfo.isClobber())
1316     return false;
1317 
1318   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1319   // a memcpy, see if we can byval from the source of the memcpy instead of the
1320   // result.
1321   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1322   if (!MDep || MDep->isVolatile() ||
1323       ByValArg->stripPointerCasts() != MDep->getDest())
1324     return false;
1325 
1326   // The length of the memcpy must be larger or equal to the size of the byval.
1327   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1328   if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1329     return false;
1330 
1331   // Get the alignment of the byval.  If the call doesn't specify the alignment,
1332   // then it is some target specific value that we can't know.
1333   unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1334   if (ByValAlign == 0) return false;
1335 
1336   // If it is greater than the memcpy, then we check to see if we can force the
1337   // source of the memcpy to the alignment we need.  If we fail, we bail out.
1338   AssumptionCache &AC = LookupAssumptionCache();
1339   DominatorTree &DT = LookupDomTree();
1340   if (MDep->getAlignment() < ByValAlign &&
1341       getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1342                                  CS.getInstruction(), &AC, &DT) < ByValAlign)
1343     return false;
1344 
1345   // The address space of the memcpy source must match the byval argument
1346   if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1347       ByValArg->getType()->getPointerAddressSpace())
1348     return false;
1349 
1350   // Verify that the copied-from memory doesn't change in between the memcpy and
1351   // the byval call.
1352   //    memcpy(a <- b)
1353   //    *b = 42;
1354   //    foo(*a)
1355   // It would be invalid to transform the second memcpy into foo(*b).
1356   //
1357   // NOTE: This is conservative, it will stop on any read from the source loc,
1358   // not just the defining memcpy.
1359   MemDepResult SourceDep = MD->getPointerDependencyFrom(
1360       MemoryLocation::getForSource(MDep), false,
1361       CS.getInstruction()->getIterator(), MDep->getParent());
1362   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1363     return false;
1364 
1365   Value *TmpCast = MDep->getSource();
1366   if (MDep->getSource()->getType() != ByValArg->getType())
1367     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1368                               "tmpcast", CS.getInstruction());
1369 
1370   DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1371                << "  " << *MDep << "\n"
1372                << "  " << *CS.getInstruction() << "\n");
1373 
1374   // Otherwise we're good!  Update the byval argument.
1375   CS.setArgument(ArgNo, TmpCast);
1376   ++NumMemCpyInstr;
1377   return true;
1378 }
1379 
1380 /// Executes one iteration of MemCpyOptPass.
1381 bool MemCpyOptPass::iterateOnFunction(Function &F) {
1382   bool MadeChange = false;
1383 
1384   // Walk all instruction in the function.
1385   for (BasicBlock &BB : F) {
1386     for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1387       // Avoid invalidating the iterator.
1388       Instruction *I = &*BI++;
1389 
1390       bool RepeatInstruction = false;
1391 
1392       if (StoreInst *SI = dyn_cast<StoreInst>(I))
1393         MadeChange |= processStore(SI, BI);
1394       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1395         RepeatInstruction = processMemSet(M, BI);
1396       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1397         RepeatInstruction = processMemCpy(M);
1398       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1399         RepeatInstruction = processMemMove(M);
1400       else if (auto CS = CallSite(I)) {
1401         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1402           if (CS.isByValArgument(i))
1403             MadeChange |= processByValArgument(CS, i);
1404       }
1405 
1406       // Reprocess the instruction if desired.
1407       if (RepeatInstruction) {
1408         if (BI != BB.begin())
1409           --BI;
1410         MadeChange = true;
1411       }
1412     }
1413   }
1414 
1415   return MadeChange;
1416 }
1417 
1418 PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1419   auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1420   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1421 
1422   auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1423     return AM.getResult<AAManager>(F);
1424   };
1425   auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1426     return AM.getResult<AssumptionAnalysis>(F);
1427   };
1428   auto LookupDomTree = [&]() -> DominatorTree & {
1429     return AM.getResult<DominatorTreeAnalysis>(F);
1430   };
1431 
1432   bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1433                             LookupAssumptionCache, LookupDomTree);
1434   if (!MadeChange)
1435     return PreservedAnalyses::all();
1436 
1437   PreservedAnalyses PA;
1438   PA.preserveSet<CFGAnalyses>();
1439   PA.preserve<GlobalsAA>();
1440   PA.preserve<MemoryDependenceAnalysis>();
1441   return PA;
1442 }
1443 
1444 bool MemCpyOptPass::runImpl(
1445     Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1446     std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1447     std::function<AssumptionCache &()> LookupAssumptionCache_,
1448     std::function<DominatorTree &()> LookupDomTree_) {
1449   bool MadeChange = false;
1450   MD = MD_;
1451   TLI = TLI_;
1452   LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1453   LookupAssumptionCache = std::move(LookupAssumptionCache_);
1454   LookupDomTree = std::move(LookupDomTree_);
1455 
1456   // If we don't have at least memset and memcpy, there is little point of doing
1457   // anything here.  These are required by a freestanding implementation, so if
1458   // even they are disabled, there is no point in trying hard.
1459   if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1460     return false;
1461 
1462   while (true) {
1463     if (!iterateOnFunction(F))
1464       break;
1465     MadeChange = true;
1466   }
1467 
1468   MD = nullptr;
1469   return MadeChange;
1470 }
1471 
1472 /// This is the main transformation entry point for a function.
1473 bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1474   if (skipFunction(F))
1475     return false;
1476 
1477   auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1478   auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1479 
1480   auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1481     return getAnalysis<AAResultsWrapperPass>().getAAResults();
1482   };
1483   auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1484     return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1485   };
1486   auto LookupDomTree = [this]() -> DominatorTree & {
1487     return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1488   };
1489 
1490   return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1491                       LookupDomTree);
1492 }
1493