1 //===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass flattens pairs nested loops into a single loop.
10 //
11 // The intention is to optimise loop nests like this, which together access an
12 // array linearly:
13 //
14 // for (int i = 0; i < N; ++i)
15 // for (int j = 0; j < M; ++j)
16 // f(A[i*M+j]);
17 //
18 // into one loop:
19 //
20 // for (int i = 0; i < (N*M); ++i)
21 // f(A[i]);
22 //
23 // It can also flatten loops where the induction variables are not used in the
24 // loop. This is only worth doing if the induction variables are only used in an
25 // expression like i*M+j. If they had any other uses, we would have to insert a
26 // div/mod to reconstruct the original values, so this wouldn't be profitable.
27 //
28 // We also need to prove that N*M will not overflow. The preferred solution is
29 // to widen the IV, which avoids overflow checks, so that is tried first. If
30 // the IV cannot be widened, then we try to determine that this new tripcount
31 // expression won't overflow.
32 //
33 // Q: Does LoopFlatten use SCEV?
34 // Short answer: Yes and no.
35 //
36 // Long answer:
37 // For this transformation to be valid, we require all uses of the induction
38 // variables to be linear expressions of the form i*M+j. The different Loop
39 // APIs are used to get some loop components like the induction variable,
40 // compare statement, etc. In addition, we do some pattern matching to find the
41 // linear expressions and other loop components like the loop increment. The
42 // latter are examples of expressions that do use the induction variable, but
43 // are safe to ignore when we check all uses to be of the form i*M+j. We keep
44 // track of all of this in bookkeeping struct FlattenInfo.
45 // We assume the loops to be canonical, i.e. starting at 0 and increment with
46 // 1. This makes RHS of the compare the loop tripcount (with the right
47 // predicate). We use SCEV to then sanity check that this tripcount matches
48 // with the tripcount as computed by SCEV.
49 //
50 //===----------------------------------------------------------------------===//
51
52 #include "llvm/Transforms/Scalar/LoopFlatten.h"
53
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/AssumptionCache.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/LoopNestAnalysis.h"
58 #include "llvm/Analysis/MemorySSAUpdater.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/InitializePasses.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/raw_ostream.h"
72 #include "llvm/Transforms/Scalar.h"
73 #include "llvm/Transforms/Scalar/LoopPassManager.h"
74 #include "llvm/Transforms/Utils/Local.h"
75 #include "llvm/Transforms/Utils/LoopUtils.h"
76 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
77 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
78
79 using namespace llvm;
80 using namespace llvm::PatternMatch;
81
82 #define DEBUG_TYPE "loop-flatten"
83
84 STATISTIC(NumFlattened, "Number of loops flattened");
85
86 static cl::opt<unsigned> RepeatedInstructionThreshold(
87 "loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
88 cl::desc("Limit on the cost of instructions that can be repeated due to "
89 "loop flattening"));
90
91 static cl::opt<bool>
92 AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
93 cl::init(false),
94 cl::desc("Assume that the product of the two iteration "
95 "trip counts will never overflow"));
96
97 static cl::opt<bool>
98 WidenIV("loop-flatten-widen-iv", cl::Hidden, cl::init(true),
99 cl::desc("Widen the loop induction variables, if possible, so "
100 "overflow checks won't reject flattening"));
101
102 // We require all uses of both induction variables to match this pattern:
103 //
104 // (OuterPHI * InnerTripCount) + InnerPHI
105 //
106 // I.e., it needs to be a linear expression of the induction variables and the
107 // inner loop trip count. We keep track of all different expressions on which
108 // checks will be performed in this bookkeeping struct.
109 //
110 struct FlattenInfo {
111 Loop *OuterLoop = nullptr; // The loop pair to be flattened.
112 Loop *InnerLoop = nullptr;
113
114 PHINode *InnerInductionPHI = nullptr; // These PHINodes correspond to loop
115 PHINode *OuterInductionPHI = nullptr; // induction variables, which are
116 // expected to start at zero and
117 // increment by one on each loop.
118
119 Value *InnerTripCount = nullptr; // The product of these two tripcounts
120 Value *OuterTripCount = nullptr; // will be the new flattened loop
121 // tripcount. Also used to recognise a
122 // linear expression that will be replaced.
123
124 SmallPtrSet<Value *, 4> LinearIVUses; // Contains the linear expressions
125 // of the form i*M+j that will be
126 // replaced.
127
128 BinaryOperator *InnerIncrement = nullptr; // Uses of induction variables in
129 BinaryOperator *OuterIncrement = nullptr; // loop control statements that
130 BranchInst *InnerBranch = nullptr; // are safe to ignore.
131
132 BranchInst *OuterBranch = nullptr; // The instruction that needs to be
133 // updated with new tripcount.
134
135 SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
136
137 bool Widened = false; // Whether this holds the flatten info before or after
138 // widening.
139
140 PHINode *NarrowInnerInductionPHI = nullptr; // Holds the old/narrow induction
141 PHINode *NarrowOuterInductionPHI = nullptr; // phis, i.e. the Phis before IV
142 // has been apllied. Used to skip
143 // checks on phi nodes.
144
FlattenInfoFlattenInfo145 FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL){};
146
isNarrowInductionPhiFlattenInfo147 bool isNarrowInductionPhi(PHINode *Phi) {
148 // This can't be the narrow phi if we haven't widened the IV first.
149 if (!Widened)
150 return false;
151 return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
152 }
isInnerLoopIncrementFlattenInfo153 bool isInnerLoopIncrement(User *U) {
154 return InnerIncrement == U;
155 }
isOuterLoopIncrementFlattenInfo156 bool isOuterLoopIncrement(User *U) {
157 return OuterIncrement == U;
158 }
isInnerLoopTestFlattenInfo159 bool isInnerLoopTest(User *U) {
160 return InnerBranch->getCondition() == U;
161 }
162
checkOuterInductionPhiUsersFlattenInfo163 bool checkOuterInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
164 for (User *U : OuterInductionPHI->users()) {
165 if (isOuterLoopIncrement(U))
166 continue;
167
168 auto IsValidOuterPHIUses = [&] (User *U) -> bool {
169 LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
170 if (!ValidOuterPHIUses.count(U)) {
171 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
172 return false;
173 }
174 LLVM_DEBUG(dbgs() << "Use is optimisable\n");
175 return true;
176 };
177
178 if (auto *V = dyn_cast<TruncInst>(U)) {
179 for (auto *K : V->users()) {
180 if (!IsValidOuterPHIUses(K))
181 return false;
182 }
183 continue;
184 }
185
186 if (!IsValidOuterPHIUses(U))
187 return false;
188 }
189 return true;
190 }
191
matchLinearIVUserFlattenInfo192 bool matchLinearIVUser(User *U, Value *InnerTripCount,
193 SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
194 LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
195 Value *MatchedMul = nullptr;
196 Value *MatchedItCount = nullptr;
197
198 bool IsAdd = match(U, m_c_Add(m_Specific(InnerInductionPHI),
199 m_Value(MatchedMul))) &&
200 match(MatchedMul, m_c_Mul(m_Specific(OuterInductionPHI),
201 m_Value(MatchedItCount)));
202
203 // Matches the same pattern as above, except it also looks for truncs
204 // on the phi, which can be the result of widening the induction variables.
205 bool IsAddTrunc =
206 match(U, m_c_Add(m_Trunc(m_Specific(InnerInductionPHI)),
207 m_Value(MatchedMul))) &&
208 match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(OuterInductionPHI)),
209 m_Value(MatchedItCount)));
210
211 if (!MatchedItCount)
212 return false;
213
214 // Look through extends if the IV has been widened. Don't look through
215 // extends if we already looked through a trunc.
216 if (Widened && IsAdd &&
217 (isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
218 assert(MatchedItCount->getType() == InnerInductionPHI->getType() &&
219 "Unexpected type mismatch in types after widening");
220 MatchedItCount = isa<SExtInst>(MatchedItCount)
221 ? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
222 : dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
223 }
224
225 if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
226 LLVM_DEBUG(dbgs() << "Use is optimisable\n");
227 ValidOuterPHIUses.insert(MatchedMul);
228 LinearIVUses.insert(U);
229 return true;
230 }
231
232 LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
233 return false;
234 }
235
checkInnerInductionPhiUsersFlattenInfo236 bool checkInnerInductionPhiUsers(SmallPtrSet<Value *, 4> &ValidOuterPHIUses) {
237 Value *SExtInnerTripCount = InnerTripCount;
238 if (Widened &&
239 (isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
240 SExtInnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
241
242 for (User *U : InnerInductionPHI->users()) {
243 if (isInnerLoopIncrement(U))
244 continue;
245
246 // After widening the IVs, a trunc instruction might have been introduced,
247 // so look through truncs.
248 if (isa<TruncInst>(U)) {
249 if (!U->hasOneUse())
250 return false;
251 U = *U->user_begin();
252 }
253
254 // If the use is in the compare (which is also the condition of the inner
255 // branch) then the compare has been altered by another transformation e.g
256 // icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
257 // a constant. Ignore this use as the compare gets removed later anyway.
258 if (isInnerLoopTest(U))
259 continue;
260
261 if (!matchLinearIVUser(U, SExtInnerTripCount, ValidOuterPHIUses))
262 return false;
263 }
264 return true;
265 }
266 };
267
268 static bool
setLoopComponents(Value * & TC,Value * & TripCount,BinaryOperator * & Increment,SmallPtrSetImpl<Instruction * > & IterationInstructions)269 setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
270 SmallPtrSetImpl<Instruction *> &IterationInstructions) {
271 TripCount = TC;
272 IterationInstructions.insert(Increment);
273 LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
274 LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
275 LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
276 return true;
277 }
278
279 // Given the RHS of the loop latch compare instruction, verify with SCEV
280 // that this is indeed the loop tripcount.
281 // TODO: This used to be a straightforward check but has grown to be quite
282 // complicated now. It is therefore worth revisiting what the additional
283 // benefits are of this (compared to relying on canonical loops and pattern
284 // matching).
verifyTripCount(Value * RHS,Loop * L,SmallPtrSetImpl<Instruction * > & IterationInstructions,PHINode * & InductionPHI,Value * & TripCount,BinaryOperator * & Increment,BranchInst * & BackBranch,ScalarEvolution * SE,bool IsWidened)285 static bool verifyTripCount(Value *RHS, Loop *L,
286 SmallPtrSetImpl<Instruction *> &IterationInstructions,
287 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
288 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
289 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
290 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
291 LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
292 return false;
293 }
294
295 // The Extend=false flag is used for getTripCountFromExitCount as we want
296 // to verify and match it with the pattern matched tripcount. Please note
297 // that overflow checks are performed in checkOverflow, but are first tried
298 // to avoid by widening the IV.
299 const SCEV *SCEVTripCount =
300 SE->getTripCountFromExitCount(BackedgeTakenCount, /*Extend=*/false);
301
302 const SCEV *SCEVRHS = SE->getSCEV(RHS);
303 if (SCEVRHS == SCEVTripCount)
304 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
305 ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
306 if (ConstantRHS) {
307 const SCEV *BackedgeTCExt = nullptr;
308 if (IsWidened) {
309 const SCEV *SCEVTripCountExt;
310 // Find the extended backedge taken count and extended trip count using
311 // SCEV. One of these should now match the RHS of the compare.
312 BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
313 SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt, false);
314 if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
315 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
316 return false;
317 }
318 }
319 // If the RHS of the compare is equal to the backedge taken count we need
320 // to add one to get the trip count.
321 if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
322 ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
323 Value *NewRHS = ConstantInt::get(
324 ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
325 return setLoopComponents(NewRHS, TripCount, Increment,
326 IterationInstructions);
327 }
328 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
329 }
330 // If the RHS isn't a constant then check that the reason it doesn't match
331 // the SCEV trip count is because the RHS is a ZExt or SExt instruction
332 // (and take the trip count to be the RHS).
333 if (!IsWidened) {
334 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
335 return false;
336 }
337 auto *TripCountInst = dyn_cast<Instruction>(RHS);
338 if (!TripCountInst) {
339 LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
340 return false;
341 }
342 if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
343 SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
344 LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
345 return false;
346 }
347 return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
348 }
349
350 // Finds the induction variable, increment and trip count for a simple loop that
351 // we can flatten.
findLoopComponents(Loop * L,SmallPtrSetImpl<Instruction * > & IterationInstructions,PHINode * & InductionPHI,Value * & TripCount,BinaryOperator * & Increment,BranchInst * & BackBranch,ScalarEvolution * SE,bool IsWidened)352 static bool findLoopComponents(
353 Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
354 PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
355 BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
356 LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
357
358 if (!L->isLoopSimplifyForm()) {
359 LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
360 return false;
361 }
362
363 // Currently, to simplify the implementation, the Loop induction variable must
364 // start at zero and increment with a step size of one.
365 if (!L->isCanonical(*SE)) {
366 LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
367 return false;
368 }
369
370 // There must be exactly one exiting block, and it must be the same at the
371 // latch.
372 BasicBlock *Latch = L->getLoopLatch();
373 if (L->getExitingBlock() != Latch) {
374 LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
375 return false;
376 }
377
378 // Find the induction PHI. If there is no induction PHI, we can't do the
379 // transformation. TODO: could other variables trigger this? Do we have to
380 // search for the best one?
381 InductionPHI = L->getInductionVariable(*SE);
382 if (!InductionPHI) {
383 LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
384 return false;
385 }
386 LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
387
388 bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
389 auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
390 if (ContinueOnTrue)
391 return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
392 else
393 return Pred == CmpInst::ICMP_EQ;
394 };
395
396 // Find Compare and make sure it is valid. getLatchCmpInst checks that the
397 // back branch of the latch is conditional.
398 ICmpInst *Compare = L->getLatchCmpInst();
399 if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
400 Compare->hasNUsesOrMore(2)) {
401 LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
402 return false;
403 }
404 BackBranch = cast<BranchInst>(Latch->getTerminator());
405 IterationInstructions.insert(BackBranch);
406 LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
407 IterationInstructions.insert(Compare);
408 LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
409
410 // Find increment and trip count.
411 // There are exactly 2 incoming values to the induction phi; one from the
412 // pre-header and one from the latch. The incoming latch value is the
413 // increment variable.
414 Increment =
415 cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
416 if (Increment->hasNUsesOrMore(3)) {
417 LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
418 return false;
419 }
420 // The trip count is the RHS of the compare. If this doesn't match the trip
421 // count computed by SCEV then this is because the trip count variable
422 // has been widened so the types don't match, or because it is a constant and
423 // another transformation has changed the compare (e.g. icmp ult %inc,
424 // tripcount -> icmp ult %j, tripcount-1), or both.
425 Value *RHS = Compare->getOperand(1);
426
427 return verifyTripCount(RHS, L, IterationInstructions, InductionPHI, TripCount,
428 Increment, BackBranch, SE, IsWidened);
429 }
430
checkPHIs(FlattenInfo & FI,const TargetTransformInfo * TTI)431 static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
432 // All PHIs in the inner and outer headers must either be:
433 // - The induction PHI, which we are going to rewrite as one induction in
434 // the new loop. This is already checked by findLoopComponents.
435 // - An outer header PHI with all incoming values from outside the loop.
436 // LoopSimplify guarantees we have a pre-header, so we don't need to
437 // worry about that here.
438 // - Pairs of PHIs in the inner and outer headers, which implement a
439 // loop-carried dependency that will still be valid in the new loop. To
440 // be valid, this variable must be modified only in the inner loop.
441
442 // The set of PHI nodes in the outer loop header that we know will still be
443 // valid after the transformation. These will not need to be modified (with
444 // the exception of the induction variable), but we do need to check that
445 // there are no unsafe PHI nodes.
446 SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
447 SafeOuterPHIs.insert(FI.OuterInductionPHI);
448
449 // Check that all PHI nodes in the inner loop header match one of the valid
450 // patterns.
451 for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
452 // The induction PHIs break these rules, and that's OK because we treat
453 // them specially when doing the transformation.
454 if (&InnerPHI == FI.InnerInductionPHI)
455 continue;
456 if (FI.isNarrowInductionPhi(&InnerPHI))
457 continue;
458
459 // Each inner loop PHI node must have two incoming values/blocks - one
460 // from the pre-header, and one from the latch.
461 assert(InnerPHI.getNumIncomingValues() == 2);
462 Value *PreHeaderValue =
463 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
464 Value *LatchValue =
465 InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
466
467 // The incoming value from the outer loop must be the PHI node in the
468 // outer loop header, with no modifications made in the top of the outer
469 // loop.
470 PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
471 if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
472 LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
473 return false;
474 }
475
476 // The other incoming value must come from the inner loop, without any
477 // modifications in the tail end of the outer loop. We are in LCSSA form,
478 // so this will actually be a PHI in the inner loop's exit block, which
479 // only uses values from inside the inner loop.
480 PHINode *LCSSAPHI = dyn_cast<PHINode>(
481 OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
482 if (!LCSSAPHI) {
483 LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
484 return false;
485 }
486
487 // The value used by the LCSSA PHI must be the same one that the inner
488 // loop's PHI uses.
489 if (LCSSAPHI->hasConstantValue() != LatchValue) {
490 LLVM_DEBUG(
491 dbgs() << "LCSSA PHI incoming value does not match latch value\n");
492 return false;
493 }
494
495 LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
496 LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump());
497 LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump());
498 SafeOuterPHIs.insert(OuterPHI);
499 FI.InnerPHIsToTransform.insert(&InnerPHI);
500 }
501
502 for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
503 if (FI.isNarrowInductionPhi(&OuterPHI))
504 continue;
505 if (!SafeOuterPHIs.count(&OuterPHI)) {
506 LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
507 return false;
508 }
509 }
510
511 LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
512 return true;
513 }
514
515 static bool
checkOuterLoopInsts(FlattenInfo & FI,SmallPtrSetImpl<Instruction * > & IterationInstructions,const TargetTransformInfo * TTI)516 checkOuterLoopInsts(FlattenInfo &FI,
517 SmallPtrSetImpl<Instruction *> &IterationInstructions,
518 const TargetTransformInfo *TTI) {
519 // Check for instructions in the outer but not inner loop. If any of these
520 // have side-effects then this transformation is not legal, and if there is
521 // a significant amount of code here which can't be optimised out that it's
522 // not profitable (as these instructions would get executed for each
523 // iteration of the inner loop).
524 InstructionCost RepeatedInstrCost = 0;
525 for (auto *B : FI.OuterLoop->getBlocks()) {
526 if (FI.InnerLoop->contains(B))
527 continue;
528
529 for (auto &I : *B) {
530 if (!isa<PHINode>(&I) && !I.isTerminator() &&
531 !isSafeToSpeculativelyExecute(&I)) {
532 LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
533 "side effects: ";
534 I.dump());
535 return false;
536 }
537 // The execution count of the outer loop's iteration instructions
538 // (increment, compare and branch) will be increased, but the
539 // equivalent instructions will be removed from the inner loop, so
540 // they make a net difference of zero.
541 if (IterationInstructions.count(&I))
542 continue;
543 // The uncoditional branch to the inner loop's header will turn into
544 // a fall-through, so adds no cost.
545 BranchInst *Br = dyn_cast<BranchInst>(&I);
546 if (Br && Br->isUnconditional() &&
547 Br->getSuccessor(0) == FI.InnerLoop->getHeader())
548 continue;
549 // Multiplies of the outer iteration variable and inner iteration
550 // count will be optimised out.
551 if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
552 m_Specific(FI.InnerTripCount))))
553 continue;
554 InstructionCost Cost =
555 TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
556 LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
557 RepeatedInstrCost += Cost;
558 }
559 }
560
561 LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
562 << RepeatedInstrCost << "\n");
563 // Bail out if flattening the loops would cause instructions in the outer
564 // loop but not in the inner loop to be executed extra times.
565 if (RepeatedInstrCost > RepeatedInstructionThreshold) {
566 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
567 return false;
568 }
569
570 LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
571 return true;
572 }
573
574
575
576 // We require all uses of both induction variables to match this pattern:
577 //
578 // (OuterPHI * InnerTripCount) + InnerPHI
579 //
580 // Any uses of the induction variables not matching that pattern would
581 // require a div/mod to reconstruct in the flattened loop, so the
582 // transformation wouldn't be profitable.
checkIVUsers(FlattenInfo & FI)583 static bool checkIVUsers(FlattenInfo &FI) {
584 // Check that all uses of the inner loop's induction variable match the
585 // expected pattern, recording the uses of the outer IV.
586 SmallPtrSet<Value *, 4> ValidOuterPHIUses;
587 if (!FI.checkInnerInductionPhiUsers(ValidOuterPHIUses))
588 return false;
589
590 // Check that there are no uses of the outer IV other than the ones found
591 // as part of the pattern above.
592 if (!FI.checkOuterInductionPhiUsers(ValidOuterPHIUses))
593 return false;
594
595 LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
596 dbgs() << "Found " << FI.LinearIVUses.size()
597 << " value(s) that can be replaced:\n";
598 for (Value *V : FI.LinearIVUses) {
599 dbgs() << " ";
600 V->dump();
601 });
602 return true;
603 }
604
605 // Return an OverflowResult dependant on if overflow of the multiplication of
606 // InnerTripCount and OuterTripCount can be assumed not to happen.
checkOverflow(FlattenInfo & FI,DominatorTree * DT,AssumptionCache * AC)607 static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
608 AssumptionCache *AC) {
609 Function *F = FI.OuterLoop->getHeader()->getParent();
610 const DataLayout &DL = F->getParent()->getDataLayout();
611
612 // For debugging/testing.
613 if (AssumeNoOverflow)
614 return OverflowResult::NeverOverflows;
615
616 // Check if the multiply could not overflow due to known ranges of the
617 // input values.
618 OverflowResult OR = computeOverflowForUnsignedMul(
619 FI.InnerTripCount, FI.OuterTripCount, DL, AC,
620 FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
621 if (OR != OverflowResult::MayOverflow)
622 return OR;
623
624 for (Value *V : FI.LinearIVUses) {
625 for (Value *U : V->users()) {
626 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
627 for (Value *GEPUser : U->users()) {
628 auto *GEPUserInst = cast<Instruction>(GEPUser);
629 if (!isa<LoadInst>(GEPUserInst) &&
630 !(isa<StoreInst>(GEPUserInst) &&
631 GEP == GEPUserInst->getOperand(1)))
632 continue;
633 if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
634 FI.InnerLoop))
635 continue;
636 // The IV is used as the operand of a GEP which dominates the loop
637 // latch, and the IV is at least as wide as the address space of the
638 // GEP. In this case, the GEP would wrap around the address space
639 // before the IV increment wraps, which would be UB.
640 if (GEP->isInBounds() &&
641 V->getType()->getIntegerBitWidth() >=
642 DL.getPointerTypeSizeInBits(GEP->getType())) {
643 LLVM_DEBUG(
644 dbgs() << "use of linear IV would be UB if overflow occurred: ";
645 GEP->dump());
646 return OverflowResult::NeverOverflows;
647 }
648 }
649 }
650 }
651 }
652
653 return OverflowResult::MayOverflow;
654 }
655
CanFlattenLoopPair(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI)656 static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
657 ScalarEvolution *SE, AssumptionCache *AC,
658 const TargetTransformInfo *TTI) {
659 SmallPtrSet<Instruction *, 8> IterationInstructions;
660 if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
661 FI.InnerInductionPHI, FI.InnerTripCount,
662 FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
663 return false;
664 if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
665 FI.OuterInductionPHI, FI.OuterTripCount,
666 FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
667 return false;
668
669 // Both of the loop trip count values must be invariant in the outer loop
670 // (non-instructions are all inherently invariant).
671 if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
672 LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
673 return false;
674 }
675 if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
676 LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
677 return false;
678 }
679
680 if (!checkPHIs(FI, TTI))
681 return false;
682
683 // FIXME: it should be possible to handle different types correctly.
684 if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
685 return false;
686
687 if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
688 return false;
689
690 // Find the values in the loop that can be replaced with the linearized
691 // induction variable, and check that there are no other uses of the inner
692 // or outer induction variable. If there were, we could still do this
693 // transformation, but we'd have to insert a div/mod to calculate the
694 // original IVs, so it wouldn't be profitable.
695 if (!checkIVUsers(FI))
696 return false;
697
698 LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
699 return true;
700 }
701
DoFlattenLoopPair(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI,LPMUpdater * U,MemorySSAUpdater * MSSAU)702 static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
703 ScalarEvolution *SE, AssumptionCache *AC,
704 const TargetTransformInfo *TTI, LPMUpdater *U,
705 MemorySSAUpdater *MSSAU) {
706 Function *F = FI.OuterLoop->getHeader()->getParent();
707 LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
708 {
709 using namespace ore;
710 OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
711 FI.InnerLoop->getHeader());
712 OptimizationRemarkEmitter ORE(F);
713 Remark << "Flattened into outer loop";
714 ORE.emit(Remark);
715 }
716
717 Value *NewTripCount = BinaryOperator::CreateMul(
718 FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
719 FI.OuterLoop->getLoopPreheader()->getTerminator());
720 LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
721 NewTripCount->dump());
722
723 // Fix up PHI nodes that take values from the inner loop back-edge, which
724 // we are about to remove.
725 FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
726
727 // The old Phi will be optimised away later, but for now we can't leave
728 // leave it in an invalid state, so are updating them too.
729 for (PHINode *PHI : FI.InnerPHIsToTransform)
730 PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
731
732 // Modify the trip count of the outer loop to be the product of the two
733 // trip counts.
734 cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
735
736 // Replace the inner loop backedge with an unconditional branch to the exit.
737 BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
738 BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
739 InnerExitingBlock->getTerminator()->eraseFromParent();
740 BranchInst::Create(InnerExitBlock, InnerExitingBlock);
741
742 // Update the DomTree and MemorySSA.
743 DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
744 if (MSSAU)
745 MSSAU->removeEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
746
747 // Replace all uses of the polynomial calculated from the two induction
748 // variables with the one new one.
749 IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
750 for (Value *V : FI.LinearIVUses) {
751 Value *OuterValue = FI.OuterInductionPHI;
752 if (FI.Widened)
753 OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
754 "flatten.trunciv");
755
756 LLVM_DEBUG(dbgs() << "Replacing: "; V->dump(); dbgs() << "with: ";
757 OuterValue->dump());
758 V->replaceAllUsesWith(OuterValue);
759 }
760
761 // Tell LoopInfo, SCEV and the pass manager that the inner loop has been
762 // deleted, and any information that have about the outer loop invalidated.
763 SE->forgetLoop(FI.OuterLoop);
764 SE->forgetLoop(FI.InnerLoop);
765 if (U)
766 U->markLoopAsDeleted(*FI.InnerLoop, FI.InnerLoop->getName());
767 LI->erase(FI.InnerLoop);
768
769 // Increment statistic value.
770 NumFlattened++;
771
772 return true;
773 }
774
CanWidenIV(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI)775 static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
776 ScalarEvolution *SE, AssumptionCache *AC,
777 const TargetTransformInfo *TTI) {
778 if (!WidenIV) {
779 LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
780 return false;
781 }
782
783 LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
784 Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
785 auto &DL = M->getDataLayout();
786 auto *InnerType = FI.InnerInductionPHI->getType();
787 auto *OuterType = FI.OuterInductionPHI->getType();
788 unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
789 auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
790
791 // If both induction types are less than the maximum legal integer width,
792 // promote both to the widest type available so we know calculating
793 // (OuterTripCount * InnerTripCount) as the new trip count is safe.
794 if (InnerType != OuterType ||
795 InnerType->getScalarSizeInBits() >= MaxLegalSize ||
796 MaxLegalType->getScalarSizeInBits() <
797 InnerType->getScalarSizeInBits() * 2) {
798 LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
799 return false;
800 }
801
802 SCEVExpander Rewriter(*SE, DL, "loopflatten");
803 SmallVector<WeakTrackingVH, 4> DeadInsts;
804 unsigned ElimExt = 0;
805 unsigned Widened = 0;
806
807 auto CreateWideIV = [&](WideIVInfo WideIV, bool &Deleted) -> bool {
808 PHINode *WidePhi =
809 createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts, ElimExt, Widened,
810 true /* HasGuards */, true /* UsePostIncrementRanges */);
811 if (!WidePhi)
812 return false;
813 LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
814 LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
815 Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
816 return true;
817 };
818
819 bool Deleted;
820 if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false}, Deleted))
821 return false;
822 // Add the narrow phi to list, so that it will be adjusted later when the
823 // the transformation is performed.
824 if (!Deleted)
825 FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
826
827 if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false}, Deleted))
828 return false;
829
830 assert(Widened && "Widened IV expected");
831 FI.Widened = true;
832
833 // Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
834 FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
835 FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
836
837 // After widening, rediscover all the loop components.
838 return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
839 }
840
FlattenLoopPair(FlattenInfo & FI,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,const TargetTransformInfo * TTI,LPMUpdater * U,MemorySSAUpdater * MSSAU)841 static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
842 ScalarEvolution *SE, AssumptionCache *AC,
843 const TargetTransformInfo *TTI, LPMUpdater *U,
844 MemorySSAUpdater *MSSAU) {
845 LLVM_DEBUG(
846 dbgs() << "Loop flattening running on outer loop "
847 << FI.OuterLoop->getHeader()->getName() << " and inner loop "
848 << FI.InnerLoop->getHeader()->getName() << " in "
849 << FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
850
851 if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
852 return false;
853
854 // Check if we can widen the induction variables to avoid overflow checks.
855 bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
856
857 // It can happen that after widening of the IV, flattening may not be
858 // possible/happening, e.g. when it is deemed unprofitable. So bail here if
859 // that is the case.
860 // TODO: IV widening without performing the actual flattening transformation
861 // is not ideal. While this codegen change should not matter much, it is an
862 // unnecessary change which is better to avoid. It's unlikely this happens
863 // often, because if it's unprofitibale after widening, it should be
864 // unprofitabe before widening as checked in the first round of checks. But
865 // 'RepeatedInstructionThreshold' is set to only 2, which can probably be
866 // relaxed. Because this is making a code change (the IV widening, but not
867 // the flattening), we return true here.
868 if (FI.Widened && !CanFlatten)
869 return true;
870
871 // If we have widened and can perform the transformation, do that here.
872 if (CanFlatten)
873 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
874
875 // Otherwise, if we haven't widened the IV, check if the new iteration
876 // variable might overflow. In this case, we need to version the loop, and
877 // select the original version at runtime if the iteration space is too
878 // large.
879 // TODO: We currently don't version the loop.
880 OverflowResult OR = checkOverflow(FI, DT, AC);
881 if (OR == OverflowResult::AlwaysOverflowsHigh ||
882 OR == OverflowResult::AlwaysOverflowsLow) {
883 LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
884 return false;
885 } else if (OR == OverflowResult::MayOverflow) {
886 LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
887 return false;
888 }
889
890 LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
891 return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
892 }
893
Flatten(LoopNest & LN,DominatorTree * DT,LoopInfo * LI,ScalarEvolution * SE,AssumptionCache * AC,TargetTransformInfo * TTI,LPMUpdater * U,MemorySSAUpdater * MSSAU)894 bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
895 AssumptionCache *AC, TargetTransformInfo *TTI, LPMUpdater *U,
896 MemorySSAUpdater *MSSAU) {
897 bool Changed = false;
898 for (Loop *InnerLoop : LN.getLoops()) {
899 auto *OuterLoop = InnerLoop->getParentLoop();
900 if (!OuterLoop)
901 continue;
902 FlattenInfo FI(OuterLoop, InnerLoop);
903 Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI, U, MSSAU);
904 }
905 return Changed;
906 }
907
run(LoopNest & LN,LoopAnalysisManager & LAM,LoopStandardAnalysisResults & AR,LPMUpdater & U)908 PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
909 LoopStandardAnalysisResults &AR,
910 LPMUpdater &U) {
911
912 bool Changed = false;
913
914 Optional<MemorySSAUpdater> MSSAU;
915 if (AR.MSSA) {
916 MSSAU = MemorySSAUpdater(AR.MSSA);
917 if (VerifyMemorySSA)
918 AR.MSSA->verifyMemorySSA();
919 }
920
921 // The loop flattening pass requires loops to be
922 // in simplified form, and also needs LCSSA. Running
923 // this pass will simplify all loops that contain inner loops,
924 // regardless of whether anything ends up being flattened.
925 Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI, &U,
926 MSSAU ? MSSAU.getPointer() : nullptr);
927
928 if (!Changed)
929 return PreservedAnalyses::all();
930
931 if (AR.MSSA && VerifyMemorySSA)
932 AR.MSSA->verifyMemorySSA();
933
934 auto PA = getLoopPassPreservedAnalyses();
935 if (AR.MSSA)
936 PA.preserve<MemorySSAAnalysis>();
937 return PA;
938 }
939
940 namespace {
941 class LoopFlattenLegacyPass : public FunctionPass {
942 public:
943 static char ID; // Pass ID, replacement for typeid
LoopFlattenLegacyPass()944 LoopFlattenLegacyPass() : FunctionPass(ID) {
945 initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
946 }
947
948 // Possibly flatten loop L into its child.
949 bool runOnFunction(Function &F) override;
950
getAnalysisUsage(AnalysisUsage & AU) const951 void getAnalysisUsage(AnalysisUsage &AU) const override {
952 getLoopAnalysisUsage(AU);
953 AU.addRequired<TargetTransformInfoWrapperPass>();
954 AU.addPreserved<TargetTransformInfoWrapperPass>();
955 AU.addRequired<AssumptionCacheTracker>();
956 AU.addPreserved<AssumptionCacheTracker>();
957 AU.addPreserved<MemorySSAWrapperPass>();
958 }
959 };
960 } // namespace
961
962 char LoopFlattenLegacyPass::ID = 0;
963 INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
964 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)965 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
966 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
967 INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
968 false, false)
969
970 FunctionPass *llvm::createLoopFlattenPass() {
971 return new LoopFlattenLegacyPass();
972 }
973
runOnFunction(Function & F)974 bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
975 ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
976 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
977 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
978 DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
979 auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
980 auto *TTI = &TTIP.getTTI(F);
981 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
982 auto *MSSA = getAnalysisIfAvailable<MemorySSAWrapperPass>();
983
984 Optional<MemorySSAUpdater> MSSAU;
985 if (MSSA)
986 MSSAU = MemorySSAUpdater(&MSSA->getMSSA());
987
988 bool Changed = false;
989 for (Loop *L : *LI) {
990 auto LN = LoopNest::getLoopNest(*L, *SE);
991 Changed |= Flatten(*LN, DT, LI, SE, AC, TTI, nullptr,
992 MSSAU ? MSSAU.getPointer() : nullptr);
993 }
994 return Changed;
995 }
996