1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // This pass uses alias analysis for two purposes:
16 //
17 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
18 //     that a load or call inside of a loop never aliases anything stored to,
19 //     we can hoist it or sink it like any other instruction.
20 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
21 //     the loop, we try to move the store to happen AFTER the loop instead of
22 //     inside of the loop.  This can only happen if a few conditions are true:
23 //       A. The pointer stored through is loop invariant
24 //       B. There are no stores or loads in the loop which _may_ alias the
25 //          pointer.  There are no calls in the loop which mod/ref the pointer.
26 //     If these conditions are true, we can promote the loads and stores in the
27 //     loop of the pointer to use a temporary alloca'd variable.  We then use
28 //     the SSAUpdater to construct the appropriate SSA form for the value.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/Scalar/LICM.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/CaptureTracking.h"
39 #include "llvm/Analysis/ConstantFolding.h"
40 #include "llvm/Analysis/GlobalsModRef.h"
41 #include "llvm/Analysis/GuardUtils.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopIterator.h"
45 #include "llvm/Analysis/LoopPass.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
50 #include "llvm/Analysis/ScalarEvolution.h"
51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/PredIteratorCache.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include <algorithm>
76 #include <utility>
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "licm"
80 
81 STATISTIC(NumCreatedBlocks, "Number of blocks created");
82 STATISTIC(NumClonedBranches, "Number of branches cloned");
83 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
84 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
85 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
86 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
87 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
88 
89 /// Memory promotion is enabled by default.
90 static cl::opt<bool>
91     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
92                      cl::desc("Disable memory promotion in LICM pass"));
93 
94 static cl::opt<bool> ControlFlowHoisting(
95     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
96     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
97 
98 static cl::opt<uint32_t> MaxNumUsesTraversed(
99     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
100     cl::desc("Max num uses visited for identifying load "
101              "invariance in loop using invariant start (default = 8)"));
102 
103 // Default value of zero implies we use the regular alias set tracker mechanism
104 // instead of the cross product using AA to identify aliasing of the memory
105 // location we are interested in.
106 static cl::opt<int>
107 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
108                cl::desc("How many instruction to cross product using AA"));
109 
110 // Experimental option to allow imprecision in LICM in pathological cases, in
111 // exchange for faster compile. This is to be removed if MemorySSA starts to
112 // address the same issue. This flag applies only when LICM uses MemorySSA
113 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
114 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
115 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
116 // which may not be precise, since optimizeUses is capped. The result is
117 // correct, but we may not get as "far up" as possible to get which access is
118 // clobbering the one queried.
119 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
120     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
121     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
122              "for faster compile. Caps the MemorySSA clobbering calls."));
123 
124 // Experimentally, memory promotion carries less importance than sinking and
125 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
126 // compile time.
127 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
128     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
129     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
130              "effect. When MSSA in LICM is enabled, then this is the maximum "
131              "number of accesses allowed to be present in a loop in order to "
132              "enable memory promotion."));
133 
134 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
135 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
136                                   const LoopSafetyInfo *SafetyInfo,
137                                   TargetTransformInfo *TTI, bool &FreeInLoop);
138 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
139                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
140                   MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
141 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
142                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
143                  MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
144 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
145                                            const DominatorTree *DT,
146                                            const Loop *CurLoop,
147                                            const LoopSafetyInfo *SafetyInfo,
148                                            OptimizationRemarkEmitter *ORE,
149                                            const Instruction *CtxI = nullptr);
150 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
151                                      AliasSetTracker *CurAST, Loop *CurLoop,
152                                      AliasAnalysis *AA);
153 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
154                                              Loop *CurLoop,
155                                              SinkAndHoistLICMFlags &Flags);
156 static Instruction *CloneInstructionInExitBlock(
157     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
158     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
159 
160 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
161                              AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
162 
163 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
164                                   ICFLoopSafetyInfo &SafetyInfo,
165                                   MemorySSAUpdater *MSSAU);
166 
167 namespace {
168 struct LoopInvariantCodeMotion {
169   using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
170   bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
171                  TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
172                  ScalarEvolution *SE, MemorySSA *MSSA,
173                  OptimizationRemarkEmitter *ORE, bool DeleteAST);
174 
175   ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
176   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
177                           unsigned LicmMssaNoAccForPromotionCap)
178       : LicmMssaOptCap(LicmMssaOptCap),
179         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
180 
181 private:
182   ASTrackerMapTy LoopToAliasSetMap;
183   unsigned LicmMssaOptCap;
184   unsigned LicmMssaNoAccForPromotionCap;
185 
186   std::unique_ptr<AliasSetTracker>
187   collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
188   std::unique_ptr<AliasSetTracker>
189   collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
190                                   MemorySSAUpdater *MSSAU);
191 };
192 
193 struct LegacyLICMPass : public LoopPass {
194   static char ID; // Pass identification, replacement for typeid
195   LegacyLICMPass(
196       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
197       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
198       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
199     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
200   }
201 
202   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
203     if (skipLoop(L)) {
204       // If we have run LICM on a previous loop but now we are skipping
205       // (because we've hit the opt-bisect limit), we need to clear the
206       // loop alias information.
207       LICM.getLoopToAliasSetMap().clear();
208       return false;
209     }
210 
211     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
212     MemorySSA *MSSA = EnableMSSALoopDependency
213                           ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
214                           : nullptr;
215     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
216     // pass.  Function analyses need to be preserved across loop transformations
217     // but ORE cannot be preserved (see comment before the pass definition).
218     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
219     return LICM.runOnLoop(L,
220                           &getAnalysis<AAResultsWrapperPass>().getAAResults(),
221                           &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
222                           &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
223                           &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
224                           &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
225                               *L->getHeader()->getParent()),
226                           SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
227   }
228 
229   /// This transformation requires natural loop information & requires that
230   /// loop preheaders be inserted into the CFG...
231   ///
232   void getAnalysisUsage(AnalysisUsage &AU) const override {
233     AU.addPreserved<DominatorTreeWrapperPass>();
234     AU.addPreserved<LoopInfoWrapperPass>();
235     AU.addRequired<TargetLibraryInfoWrapperPass>();
236     if (EnableMSSALoopDependency) {
237       AU.addRequired<MemorySSAWrapperPass>();
238       AU.addPreserved<MemorySSAWrapperPass>();
239     }
240     AU.addRequired<TargetTransformInfoWrapperPass>();
241     getLoopAnalysisUsage(AU);
242   }
243 
244   using llvm::Pass::doFinalization;
245 
246   bool doFinalization() override {
247     auto &AliasSetMap = LICM.getLoopToAliasSetMap();
248     // All loops in the AliasSetMap should be cleaned up already. The only case
249     // where we fail to do so is if an outer loop gets deleted before LICM
250     // visits it.
251     assert(all_of(AliasSetMap,
252                   [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {
253                     return !KV.first->getParentLoop();
254                   }) &&
255            "Didn't free loop alias sets");
256     AliasSetMap.clear();
257     return false;
258   }
259 
260 private:
261   LoopInvariantCodeMotion LICM;
262 
263   /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
264   void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
265                                Loop *L) override;
266 
267   /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
268   /// set.
269   void deleteAnalysisValue(Value *V, Loop *L) override;
270 
271   /// Simple Analysis hook. Delete loop L from alias set map.
272   void deleteAnalysisLoop(Loop *L) override;
273 };
274 } // namespace
275 
276 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
277                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
278   const auto &FAM =
279       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
280   Function *F = L.getHeader()->getParent();
281 
282   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
283   // FIXME: This should probably be optional rather than required.
284   if (!ORE)
285     report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
286                        "cached at a higher level");
287 
288   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
289   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
290                       AR.MSSA, ORE, true))
291     return PreservedAnalyses::all();
292 
293   auto PA = getLoopPassPreservedAnalyses();
294 
295   PA.preserve<DominatorTreeAnalysis>();
296   PA.preserve<LoopAnalysis>();
297 
298   return PA;
299 }
300 
301 char LegacyLICMPass::ID = 0;
302 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
303                       false, false)
304 INITIALIZE_PASS_DEPENDENCY(LoopPass)
305 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
306 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
307 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
308 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
309                     false)
310 
311 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
312 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
313                            unsigned LicmMssaNoAccForPromotionCap) {
314   return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
315 }
316 
317 /// Hoist expressions out of the specified loop. Note, alias info for inner
318 /// loop is not preserved so it is not a good idea to run LICM multiple
319 /// times on one loop.
320 /// We should delete AST for inner loops in the new pass manager to avoid
321 /// memory leak.
322 ///
323 bool LoopInvariantCodeMotion::runOnLoop(
324     Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
325     TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
326     MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
327   bool Changed = false;
328 
329   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
330 
331   std::unique_ptr<AliasSetTracker> CurAST;
332   std::unique_ptr<MemorySSAUpdater> MSSAU;
333   bool NoOfMemAccTooLarge = false;
334   unsigned LicmMssaOptCounter = 0;
335 
336   if (!MSSA) {
337     LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
338     CurAST = collectAliasInfoForLoop(L, LI, AA);
339   } else {
340     LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
341     MSSAU = make_unique<MemorySSAUpdater>(MSSA);
342 
343     unsigned AccessCapCount = 0;
344     for (auto *BB : L->getBlocks()) {
345       if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
346         for (const auto &MA : *Accesses) {
347           (void)MA;
348           AccessCapCount++;
349           if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
350             NoOfMemAccTooLarge = true;
351             break;
352           }
353         }
354       }
355       if (NoOfMemAccTooLarge)
356         break;
357     }
358   }
359 
360   // Get the preheader block to move instructions into...
361   BasicBlock *Preheader = L->getLoopPreheader();
362 
363   // Compute loop safety information.
364   ICFLoopSafetyInfo SafetyInfo(DT);
365   SafetyInfo.computeLoopSafetyInfo(L);
366 
367   // We want to visit all of the instructions in this loop... that are not parts
368   // of our subloops (they have already had their invariants hoisted out of
369   // their loop, into this loop, so there is no need to process the BODIES of
370   // the subloops).
371   //
372   // Traverse the body of the loop in depth first order on the dominator tree so
373   // that we are guaranteed to see definitions before we see uses.  This allows
374   // us to sink instructions in one pass, without iteration.  After sinking
375   // instructions, we perform another pass to hoist them out of the loop.
376   SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
377                                  LicmMssaOptCap, LicmMssaNoAccForPromotionCap};
378   if (L->hasDedicatedExits())
379     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
380                           CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
381   if (Preheader)
382     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
383                            CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
384 
385   // Now that all loop invariants have been removed from the loop, promote any
386   // memory references to scalars that we can.
387   // Don't sink stores from loops without dedicated block exits. Exits
388   // containing indirect branches are not transformed by loop simplify,
389   // make sure we catch that. An additional load may be generated in the
390   // preheader for SSA updater, so also avoid sinking when no preheader
391   // is available.
392   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
393       !NoOfMemAccTooLarge) {
394     // Figure out the loop exits and their insertion points
395     SmallVector<BasicBlock *, 8> ExitBlocks;
396     L->getUniqueExitBlocks(ExitBlocks);
397 
398     // We can't insert into a catchswitch.
399     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
400       return isa<CatchSwitchInst>(Exit->getTerminator());
401     });
402 
403     if (!HasCatchSwitch) {
404       SmallVector<Instruction *, 8> InsertPts;
405       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
406       InsertPts.reserve(ExitBlocks.size());
407       if (MSSAU)
408         MSSAInsertPts.reserve(ExitBlocks.size());
409       for (BasicBlock *ExitBlock : ExitBlocks) {
410         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
411         if (MSSAU)
412           MSSAInsertPts.push_back(nullptr);
413       }
414 
415       PredIteratorCache PIC;
416 
417       bool Promoted = false;
418 
419       // Build an AST using MSSA.
420       if (!CurAST.get())
421         CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
422 
423       // Loop over all of the alias sets in the tracker object.
424       for (AliasSet &AS : *CurAST) {
425         // We can promote this alias set if it has a store, if it is a "Must"
426         // alias set, if the pointer is loop invariant, and if we are not
427         // eliminating any volatile loads or stores.
428         if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
429             !L->isLoopInvariant(AS.begin()->getValue()))
430           continue;
431 
432         assert(
433             !AS.empty() &&
434             "Must alias set should have at least one pointer element in it!");
435 
436         SmallSetVector<Value *, 8> PointerMustAliases;
437         for (const auto &ASI : AS)
438           PointerMustAliases.insert(ASI.getValue());
439 
440         Promoted |= promoteLoopAccessesToScalars(
441             PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
442             DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
443       }
444 
445       // Once we have promoted values across the loop body we have to
446       // recursively reform LCSSA as any nested loop may now have values defined
447       // within the loop used in the outer loop.
448       // FIXME: This is really heavy handed. It would be a bit better to use an
449       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
450       // it as it went.
451       if (Promoted)
452         formLCSSARecursively(*L, *DT, LI, SE);
453 
454       Changed |= Promoted;
455     }
456   }
457 
458   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
459   // specifically moving instructions across the loop boundary and so it is
460   // especially in need of sanity checking here.
461   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
462   assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
463          "Parent loop not left in LCSSA form after LICM!");
464 
465   // If this loop is nested inside of another one, save the alias information
466   // for when we process the outer loop.
467   if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
468     LoopToAliasSetMap[L] = std::move(CurAST);
469 
470   if (MSSAU.get() && VerifyMemorySSA)
471     MSSAU->getMemorySSA()->verifyMemorySSA();
472 
473   if (Changed && SE)
474     SE->forgetLoopDispositions(L);
475   return Changed;
476 }
477 
478 /// Walk the specified region of the CFG (defined by all blocks dominated by
479 /// the specified block, and that are in the current loop) in reverse depth
480 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
481 /// definitions, allowing us to sink a loop body in one pass without iteration.
482 ///
483 bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
484                       DominatorTree *DT, TargetLibraryInfo *TLI,
485                       TargetTransformInfo *TTI, Loop *CurLoop,
486                       AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
487                       ICFLoopSafetyInfo *SafetyInfo,
488                       SinkAndHoistLICMFlags &Flags,
489                       OptimizationRemarkEmitter *ORE) {
490 
491   // Verify inputs.
492   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
493          CurLoop != nullptr && SafetyInfo != nullptr &&
494          "Unexpected input to sinkRegion.");
495   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
496          "Either AliasSetTracker or MemorySSA should be initialized.");
497 
498   // We want to visit children before parents. We will enque all the parents
499   // before their children in the worklist and process the worklist in reverse
500   // order.
501   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
502 
503   bool Changed = false;
504   for (DomTreeNode *DTN : reverse(Worklist)) {
505     BasicBlock *BB = DTN->getBlock();
506     // Only need to process the contents of this block if it is not part of a
507     // subloop (which would already have been processed).
508     if (inSubLoop(BB, CurLoop, LI))
509       continue;
510 
511     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
512       Instruction &I = *--II;
513 
514       // If the instruction is dead, we would try to sink it because it isn't
515       // used in the loop, instead, just delete it.
516       if (isInstructionTriviallyDead(&I, TLI)) {
517         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
518         salvageDebugInfo(I);
519         ++II;
520         eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
521         Changed = true;
522         continue;
523       }
524 
525       // Check to see if we can sink this instruction to the exit blocks
526       // of the loop.  We can do this if the all users of the instruction are
527       // outside of the loop.  In this case, it doesn't even matter if the
528       // operands of the instruction are loop invariant.
529       //
530       bool FreeInLoop = false;
531       if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
532           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
533                              ORE) &&
534           !I.mayHaveSideEffects()) {
535         if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
536           if (!FreeInLoop) {
537             ++II;
538             eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
539           }
540           Changed = true;
541         }
542       }
543     }
544   }
545   if (MSSAU && VerifyMemorySSA)
546     MSSAU->getMemorySSA()->verifyMemorySSA();
547   return Changed;
548 }
549 
550 namespace {
551 // This is a helper class for hoistRegion to make it able to hoist control flow
552 // in order to be able to hoist phis. The way this works is that we initially
553 // start hoisting to the loop preheader, and when we see a loop invariant branch
554 // we make note of this. When we then come to hoist an instruction that's
555 // conditional on such a branch we duplicate the branch and the relevant control
556 // flow, then hoist the instruction into the block corresponding to its original
557 // block in the duplicated control flow.
558 class ControlFlowHoister {
559 private:
560   // Information about the loop we are hoisting from
561   LoopInfo *LI;
562   DominatorTree *DT;
563   Loop *CurLoop;
564   MemorySSAUpdater *MSSAU;
565 
566   // A map of blocks in the loop to the block their instructions will be hoisted
567   // to.
568   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
569 
570   // The branches that we can hoist, mapped to the block that marks a
571   // convergence point of their control flow.
572   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
573 
574 public:
575   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
576                      MemorySSAUpdater *MSSAU)
577       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
578 
579   void registerPossiblyHoistableBranch(BranchInst *BI) {
580     // We can only hoist conditional branches with loop invariant operands.
581     if (!ControlFlowHoisting || !BI->isConditional() ||
582         !CurLoop->hasLoopInvariantOperands(BI))
583       return;
584 
585     // The branch destinations need to be in the loop, and we don't gain
586     // anything by duplicating conditional branches with duplicate successors,
587     // as it's essentially the same as an unconditional branch.
588     BasicBlock *TrueDest = BI->getSuccessor(0);
589     BasicBlock *FalseDest = BI->getSuccessor(1);
590     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
591         TrueDest == FalseDest)
592       return;
593 
594     // We can hoist BI if one branch destination is the successor of the other,
595     // or both have common successor which we check by seeing if the
596     // intersection of their successors is non-empty.
597     // TODO: This could be expanded to allowing branches where both ends
598     // eventually converge to a single block.
599     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
600     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
601     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
602     BasicBlock *CommonSucc = nullptr;
603     if (TrueDestSucc.count(FalseDest)) {
604       CommonSucc = FalseDest;
605     } else if (FalseDestSucc.count(TrueDest)) {
606       CommonSucc = TrueDest;
607     } else {
608       set_intersect(TrueDestSucc, FalseDestSucc);
609       // If there's one common successor use that.
610       if (TrueDestSucc.size() == 1)
611         CommonSucc = *TrueDestSucc.begin();
612       // If there's more than one pick whichever appears first in the block list
613       // (we can't use the value returned by TrueDestSucc.begin() as it's
614       // unpredicatable which element gets returned).
615       else if (!TrueDestSucc.empty()) {
616         Function *F = TrueDest->getParent();
617         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
618         auto It = std::find_if(F->begin(), F->end(), IsSucc);
619         assert(It != F->end() && "Could not find successor in function");
620         CommonSucc = &*It;
621       }
622     }
623     // The common successor has to be dominated by the branch, as otherwise
624     // there will be some other path to the successor that will not be
625     // controlled by this branch so any phi we hoist would be controlled by the
626     // wrong condition. This also takes care of avoiding hoisting of loop back
627     // edges.
628     // TODO: In some cases this could be relaxed if the successor is dominated
629     // by another block that's been hoisted and we can guarantee that the
630     // control flow has been replicated exactly.
631     if (CommonSucc && DT->dominates(BI, CommonSucc))
632       HoistableBranches[BI] = CommonSucc;
633   }
634 
635   bool canHoistPHI(PHINode *PN) {
636     // The phi must have loop invariant operands.
637     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
638       return false;
639     // We can hoist phis if the block they are in is the target of hoistable
640     // branches which cover all of the predecessors of the block.
641     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
642     BasicBlock *BB = PN->getParent();
643     for (BasicBlock *PredBB : predecessors(BB))
644       PredecessorBlocks.insert(PredBB);
645     // If we have less predecessor blocks than predecessors then the phi will
646     // have more than one incoming value for the same block which we can't
647     // handle.
648     // TODO: This could be handled be erasing some of the duplicate incoming
649     // values.
650     if (PredecessorBlocks.size() != pred_size(BB))
651       return false;
652     for (auto &Pair : HoistableBranches) {
653       if (Pair.second == BB) {
654         // Which blocks are predecessors via this branch depends on if the
655         // branch is triangle-like or diamond-like.
656         if (Pair.first->getSuccessor(0) == BB) {
657           PredecessorBlocks.erase(Pair.first->getParent());
658           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
659         } else if (Pair.first->getSuccessor(1) == BB) {
660           PredecessorBlocks.erase(Pair.first->getParent());
661           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
662         } else {
663           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
664           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
665         }
666       }
667     }
668     // PredecessorBlocks will now be empty if for every predecessor of BB we
669     // found a hoistable branch source.
670     return PredecessorBlocks.empty();
671   }
672 
673   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
674     if (!ControlFlowHoisting)
675       return CurLoop->getLoopPreheader();
676     // If BB has already been hoisted, return that
677     if (HoistDestinationMap.count(BB))
678       return HoistDestinationMap[BB];
679 
680     // Check if this block is conditional based on a pending branch
681     auto HasBBAsSuccessor =
682         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
683           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
684                                        Pair.first->getSuccessor(1) == BB);
685         };
686     auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
687                            HasBBAsSuccessor);
688 
689     // If not involved in a pending branch, hoist to preheader
690     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
691     if (It == HoistableBranches.end()) {
692       LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
693                         << " as hoist destination for " << BB->getName()
694                         << "\n");
695       HoistDestinationMap[BB] = InitialPreheader;
696       return InitialPreheader;
697     }
698     BranchInst *BI = It->first;
699     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
700                HoistableBranches.end() &&
701            "BB is expected to be the target of at most one branch");
702 
703     LLVMContext &C = BB->getContext();
704     BasicBlock *TrueDest = BI->getSuccessor(0);
705     BasicBlock *FalseDest = BI->getSuccessor(1);
706     BasicBlock *CommonSucc = HoistableBranches[BI];
707     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
708 
709     // Create hoisted versions of blocks that currently don't have them
710     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
711       if (HoistDestinationMap.count(Orig))
712         return HoistDestinationMap[Orig];
713       BasicBlock *New =
714           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
715       HoistDestinationMap[Orig] = New;
716       DT->addNewBlock(New, HoistTarget);
717       if (CurLoop->getParentLoop())
718         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
719       ++NumCreatedBlocks;
720       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
721                         << " as hoist destination for " << Orig->getName()
722                         << "\n");
723       return New;
724     };
725     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
726     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
727     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
728 
729     // Link up these blocks with branches.
730     if (!HoistCommonSucc->getTerminator()) {
731       // The new common successor we've generated will branch to whatever that
732       // hoist target branched to.
733       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
734       assert(TargetSucc && "Expected hoist target to have a single successor");
735       HoistCommonSucc->moveBefore(TargetSucc);
736       BranchInst::Create(TargetSucc, HoistCommonSucc);
737     }
738     if (!HoistTrueDest->getTerminator()) {
739       HoistTrueDest->moveBefore(HoistCommonSucc);
740       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
741     }
742     if (!HoistFalseDest->getTerminator()) {
743       HoistFalseDest->moveBefore(HoistCommonSucc);
744       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
745     }
746 
747     // If BI is being cloned to what was originally the preheader then
748     // HoistCommonSucc will now be the new preheader.
749     if (HoistTarget == InitialPreheader) {
750       // Phis in the loop header now need to use the new preheader.
751       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
752       if (MSSAU)
753         MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
754             HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
755       // The new preheader dominates the loop header.
756       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
757       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
758       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
759       // The preheader hoist destination is now the new preheader, with the
760       // exception of the hoist destination of this branch.
761       for (auto &Pair : HoistDestinationMap)
762         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
763           Pair.second = HoistCommonSucc;
764     }
765 
766     // Now finally clone BI.
767     ReplaceInstWithInst(
768         HoistTarget->getTerminator(),
769         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
770     ++NumClonedBranches;
771 
772     assert(CurLoop->getLoopPreheader() &&
773            "Hoisting blocks should not have destroyed preheader");
774     return HoistDestinationMap[BB];
775   }
776 };
777 } // namespace
778 
779 /// Walk the specified region of the CFG (defined by all blocks dominated by
780 /// the specified block, and that are in the current loop) in depth first
781 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
782 /// uses, allowing us to hoist a loop body in one pass without iteration.
783 ///
784 bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
785                        DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
786                        AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
787                        ICFLoopSafetyInfo *SafetyInfo,
788                        SinkAndHoistLICMFlags &Flags,
789                        OptimizationRemarkEmitter *ORE) {
790   // Verify inputs.
791   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
792          CurLoop != nullptr && SafetyInfo != nullptr &&
793          "Unexpected input to hoistRegion.");
794   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
795          "Either AliasSetTracker or MemorySSA should be initialized.");
796 
797   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
798 
799   // Keep track of instructions that have been hoisted, as they may need to be
800   // re-hoisted if they end up not dominating all of their uses.
801   SmallVector<Instruction *, 16> HoistedInstructions;
802 
803   // For PHI hoisting to work we need to hoist blocks before their successors.
804   // We can do this by iterating through the blocks in the loop in reverse
805   // post-order.
806   LoopBlocksRPO Worklist(CurLoop);
807   Worklist.perform(LI);
808   bool Changed = false;
809   for (BasicBlock *BB : Worklist) {
810     // Only need to process the contents of this block if it is not part of a
811     // subloop (which would already have been processed).
812     if (inSubLoop(BB, CurLoop, LI))
813       continue;
814 
815     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
816       Instruction &I = *II++;
817       // Try constant folding this instruction.  If all the operands are
818       // constants, it is technically hoistable, but it would be better to
819       // just fold it.
820       if (Constant *C = ConstantFoldInstruction(
821               &I, I.getModule()->getDataLayout(), TLI)) {
822         LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
823                           << '\n');
824         if (CurAST)
825           CurAST->copyValue(&I, C);
826         // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
827         I.replaceAllUsesWith(C);
828         if (isInstructionTriviallyDead(&I, TLI))
829           eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
830         Changed = true;
831         continue;
832       }
833 
834       // Try hoisting the instruction out to the preheader.  We can only do
835       // this if all of the operands of the instruction are loop invariant and
836       // if it is safe to hoist the instruction.
837       // TODO: It may be safe to hoist if we are hoisting to a conditional block
838       // and we have accurately duplicated the control flow from the loop header
839       // to that block.
840       if (CurLoop->hasLoopInvariantOperands(&I) &&
841           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
842                              ORE) &&
843           isSafeToExecuteUnconditionally(
844               I, DT, CurLoop, SafetyInfo, ORE,
845               CurLoop->getLoopPreheader()->getTerminator())) {
846         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
847               MSSAU, ORE);
848         HoistedInstructions.push_back(&I);
849         Changed = true;
850         continue;
851       }
852 
853       // Attempt to remove floating point division out of the loop by
854       // converting it to a reciprocal multiplication.
855       if (I.getOpcode() == Instruction::FDiv &&
856           CurLoop->isLoopInvariant(I.getOperand(1)) &&
857           I.hasAllowReciprocal()) {
858         auto Divisor = I.getOperand(1);
859         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
860         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
861         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
862         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
863         ReciprocalDivisor->insertBefore(&I);
864 
865         auto Product =
866             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
867         Product->setFastMathFlags(I.getFastMathFlags());
868         SafetyInfo->insertInstructionTo(Product, I.getParent());
869         Product->insertAfter(&I);
870         I.replaceAllUsesWith(Product);
871         eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
872 
873         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
874               SafetyInfo, MSSAU, ORE);
875         HoistedInstructions.push_back(ReciprocalDivisor);
876         Changed = true;
877         continue;
878       }
879 
880       auto IsInvariantStart = [&](Instruction &I) {
881         using namespace PatternMatch;
882         return I.use_empty() &&
883                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
884       };
885       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
886         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
887                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
888       };
889       if ((IsInvariantStart(I) || isGuard(&I)) &&
890           CurLoop->hasLoopInvariantOperands(&I) &&
891           MustExecuteWithoutWritesBefore(I)) {
892         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
893               MSSAU, ORE);
894         HoistedInstructions.push_back(&I);
895         Changed = true;
896         continue;
897       }
898 
899       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
900         if (CFH.canHoistPHI(PN)) {
901           // Redirect incoming blocks first to ensure that we create hoisted
902           // versions of those blocks before we hoist the phi.
903           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
904             PN->setIncomingBlock(
905                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
906           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
907                 MSSAU, ORE);
908           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
909           Changed = true;
910           continue;
911         }
912       }
913 
914       // Remember possibly hoistable branches so we can actually hoist them
915       // later if needed.
916       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
917         CFH.registerPossiblyHoistableBranch(BI);
918     }
919   }
920 
921   // If we hoisted instructions to a conditional block they may not dominate
922   // their uses that weren't hoisted (such as phis where some operands are not
923   // loop invariant). If so make them unconditional by moving them to their
924   // immediate dominator. We iterate through the instructions in reverse order
925   // which ensures that when we rehoist an instruction we rehoist its operands,
926   // and also keep track of where in the block we are rehoisting to to make sure
927   // that we rehoist instructions before the instructions that use them.
928   Instruction *HoistPoint = nullptr;
929   if (ControlFlowHoisting) {
930     for (Instruction *I : reverse(HoistedInstructions)) {
931       if (!llvm::all_of(I->uses(),
932                         [&](Use &U) { return DT->dominates(I, U); })) {
933         BasicBlock *Dominator =
934             DT->getNode(I->getParent())->getIDom()->getBlock();
935         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
936           if (HoistPoint)
937             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
938                    "New hoist point expected to dominate old hoist point");
939           HoistPoint = Dominator->getTerminator();
940         }
941         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
942                           << HoistPoint->getParent()->getName()
943                           << ": " << *I << "\n");
944         moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU);
945         HoistPoint = I;
946         Changed = true;
947       }
948     }
949   }
950   if (MSSAU && VerifyMemorySSA)
951     MSSAU->getMemorySSA()->verifyMemorySSA();
952 
953     // Now that we've finished hoisting make sure that LI and DT are still
954     // valid.
955 #ifndef NDEBUG
956   if (Changed) {
957     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
958            "Dominator tree verification failed");
959     LI->verify(*DT);
960   }
961 #endif
962 
963   return Changed;
964 }
965 
966 // Return true if LI is invariant within scope of the loop. LI is invariant if
967 // CurLoop is dominated by an invariant.start representing the same memory
968 // location and size as the memory location LI loads from, and also the
969 // invariant.start has no uses.
970 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
971                                   Loop *CurLoop) {
972   Value *Addr = LI->getOperand(0);
973   const DataLayout &DL = LI->getModule()->getDataLayout();
974   const uint32_t LocSizeInBits = DL.getTypeSizeInBits(
975       cast<PointerType>(Addr->getType())->getElementType());
976 
977   // if the type is i8 addrspace(x)*, we know this is the type of
978   // llvm.invariant.start operand
979   auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
980                                      LI->getPointerAddressSpace());
981   unsigned BitcastsVisited = 0;
982   // Look through bitcasts until we reach the i8* type (this is invariant.start
983   // operand type).
984   while (Addr->getType() != PtrInt8Ty) {
985     auto *BC = dyn_cast<BitCastInst>(Addr);
986     // Avoid traversing high number of bitcast uses.
987     if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
988       return false;
989     Addr = BC->getOperand(0);
990   }
991 
992   unsigned UsesVisited = 0;
993   // Traverse all uses of the load operand value, to see if invariant.start is
994   // one of the uses, and whether it dominates the load instruction.
995   for (auto *U : Addr->users()) {
996     // Avoid traversing for Load operand with high number of users.
997     if (++UsesVisited > MaxNumUsesTraversed)
998       return false;
999     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1000     // If there are escaping uses of invariant.start instruction, the load maybe
1001     // non-invariant.
1002     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1003         !II->use_empty())
1004       continue;
1005     unsigned InvariantSizeInBits =
1006         cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
1007     // Confirm the invariant.start location size contains the load operand size
1008     // in bits. Also, the invariant.start should dominate the load, and we
1009     // should not hoist the load out of a loop that contains this dominating
1010     // invariant.start.
1011     if (LocSizeInBits <= InvariantSizeInBits &&
1012         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1013       return true;
1014   }
1015 
1016   return false;
1017 }
1018 
1019 namespace {
1020 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1021 /// sink a given instruction out of a loop.  Does not address legality
1022 /// concerns such as aliasing or speculation safety.
1023 bool isHoistableAndSinkableInst(Instruction &I) {
1024   // Only these instructions are hoistable/sinkable.
1025   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1026           isa<FenceInst>(I) || isa<BinaryOperator>(I) || isa<CastInst>(I) ||
1027           isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1028           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1029           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1030           isa<InsertValueInst>(I));
1031 }
1032 /// Return true if all of the alias sets within this AST are known not to
1033 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1034 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1035                 const Loop *L) {
1036   if (CurAST) {
1037     for (AliasSet &AS : *CurAST) {
1038       if (!AS.isForwardingAliasSet() && AS.isMod()) {
1039         return false;
1040       }
1041     }
1042     return true;
1043   } else { /*MSSAU*/
1044     for (auto *BB : L->getBlocks())
1045       if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1046         return false;
1047     return true;
1048   }
1049 }
1050 
1051 /// Return true if I is the only Instruction with a MemoryAccess in L.
1052 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1053                         const MemorySSAUpdater *MSSAU) {
1054   for (auto *BB : L->getBlocks())
1055     if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1056       int NotAPhi = 0;
1057       for (const auto &Acc : *Accs) {
1058         if (isa<MemoryPhi>(&Acc))
1059           continue;
1060         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1061         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1062           return false;
1063       }
1064     }
1065   return true;
1066 }
1067 }
1068 
1069 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1070                               Loop *CurLoop, AliasSetTracker *CurAST,
1071                               MemorySSAUpdater *MSSAU,
1072                               bool TargetExecutesOncePerLoop,
1073                               SinkAndHoistLICMFlags *Flags,
1074                               OptimizationRemarkEmitter *ORE) {
1075   // If we don't understand the instruction, bail early.
1076   if (!isHoistableAndSinkableInst(I))
1077     return false;
1078 
1079   MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1080   if (MSSA)
1081     assert(Flags != nullptr && "Flags cannot be null.");
1082 
1083   // Loads have extra constraints we have to verify before we can hoist them.
1084   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1085     if (!LI->isUnordered())
1086       return false; // Don't sink/hoist volatile or ordered atomic loads!
1087 
1088     // Loads from constant memory are always safe to move, even if they end up
1089     // in the same alias set as something that ends up being modified.
1090     if (AA->pointsToConstantMemory(LI->getOperand(0)))
1091       return true;
1092     if (LI->getMetadata(LLVMContext::MD_invariant_load))
1093       return true;
1094 
1095     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1096       return false; // Don't risk duplicating unordered loads
1097 
1098     // This checks for an invariant.start dominating the load.
1099     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1100       return true;
1101 
1102     bool Invalidated;
1103     if (CurAST)
1104       Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1105                                              CurLoop, AA);
1106     else
1107       Invalidated = pointerInvalidatedByLoopWithMSSA(
1108           MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1109     // Check loop-invariant address because this may also be a sinkable load
1110     // whose address is not necessarily loop-invariant.
1111     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1112       ORE->emit([&]() {
1113         return OptimizationRemarkMissed(
1114                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1115                << "failed to move load with loop-invariant address "
1116                   "because the loop may invalidate its value";
1117       });
1118 
1119     return !Invalidated;
1120   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1121     // Don't sink or hoist dbg info; it's legal, but not useful.
1122     if (isa<DbgInfoIntrinsic>(I))
1123       return false;
1124 
1125     // Don't sink calls which can throw.
1126     if (CI->mayThrow())
1127       return false;
1128 
1129     using namespace PatternMatch;
1130     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1131       // Assumes don't actually alias anything or throw
1132       return true;
1133 
1134     // Handle simple cases by querying alias analysis.
1135     FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1136     if (Behavior == FMRB_DoesNotAccessMemory)
1137       return true;
1138     if (AliasAnalysis::onlyReadsMemory(Behavior)) {
1139       // A readonly argmemonly function only reads from memory pointed to by
1140       // it's arguments with arbitrary offsets.  If we can prove there are no
1141       // writes to this memory in the loop, we can hoist or sink.
1142       if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
1143         // TODO: expand to writeable arguments
1144         for (Value *Op : CI->arg_operands())
1145           if (Op->getType()->isPointerTy()) {
1146             bool Invalidated;
1147             if (CurAST)
1148               Invalidated = pointerInvalidatedByLoop(
1149                   MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1150                   CurAST, CurLoop, AA);
1151             else
1152               Invalidated = pointerInvalidatedByLoopWithMSSA(
1153                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1154                   *Flags);
1155             if (Invalidated)
1156               return false;
1157           }
1158         return true;
1159       }
1160 
1161       // If this call only reads from memory and there are no writes to memory
1162       // in the loop, we can hoist or sink the call as appropriate.
1163       if (isReadOnly(CurAST, MSSAU, CurLoop))
1164         return true;
1165     }
1166 
1167     // FIXME: This should use mod/ref information to see if we can hoist or
1168     // sink the call.
1169 
1170     return false;
1171   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1172     // Fences alias (most) everything to provide ordering.  For the moment,
1173     // just give up if there are any other memory operations in the loop.
1174     if (CurAST) {
1175       auto Begin = CurAST->begin();
1176       assert(Begin != CurAST->end() && "must contain FI");
1177       if (std::next(Begin) != CurAST->end())
1178         // constant memory for instance, TODO: handle better
1179         return false;
1180       auto *UniqueI = Begin->getUniqueInstruction();
1181       if (!UniqueI)
1182         // other memory op, give up
1183         return false;
1184       (void)FI; // suppress unused variable warning
1185       assert(UniqueI == FI && "AS must contain FI");
1186       return true;
1187     } else // MSSAU
1188       return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1189   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1190     if (!SI->isUnordered())
1191       return false; // Don't sink/hoist volatile or ordered atomic store!
1192 
1193     // We can only hoist a store that we can prove writes a value which is not
1194     // read or overwritten within the loop.  For those cases, we fallback to
1195     // load store promotion instead.  TODO: We can extend this to cases where
1196     // there is exactly one write to the location and that write dominates an
1197     // arbitrary number of reads in the loop.
1198     if (CurAST) {
1199       auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1200 
1201       if (AS.isRef() || !AS.isMustAlias())
1202         // Quick exit test, handled by the full path below as well.
1203         return false;
1204       auto *UniqueI = AS.getUniqueInstruction();
1205       if (!UniqueI)
1206         // other memory op, give up
1207         return false;
1208       assert(UniqueI == SI && "AS must contain SI");
1209       return true;
1210     } else { // MSSAU
1211       if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1212         return true;
1213       // If there are more accesses than the Promotion cap, give up, we're not
1214       // walking a list that long.
1215       if (Flags->NoOfMemAccTooLarge)
1216         return false;
1217       // Check store only if there's still "quota" to check clobber.
1218       if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1219         return false;
1220       // If there are interfering Uses (i.e. their defining access is in the
1221       // loop), or ordered loads (stored as Defs!), don't move this store.
1222       // Could do better here, but this is conservatively correct.
1223       // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1224       // moving accesses. Can also extend to dominating uses.
1225       for (auto *BB : CurLoop->getBlocks())
1226         if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1227           for (const auto &MA : *Accesses)
1228             if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1229               auto *MD = MU->getDefiningAccess();
1230               if (!MSSA->isLiveOnEntryDef(MD) &&
1231                   CurLoop->contains(MD->getBlock()))
1232                 return false;
1233             } else if (const auto *MD = dyn_cast<MemoryDef>(&MA))
1234               if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1235                 (void)LI; // Silence warning.
1236                 assert(!LI->isUnordered() && "Expected unordered load");
1237                 return false;
1238               }
1239         }
1240 
1241       auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1242       Flags->LicmMssaOptCounter++;
1243       // If there are no clobbering Defs in the loop, store is safe to hoist.
1244       return MSSA->isLiveOnEntryDef(Source) ||
1245              !CurLoop->contains(Source->getBlock());
1246     }
1247   }
1248 
1249   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1250 
1251   // We've established mechanical ability and aliasing, it's up to the caller
1252   // to check fault safety
1253   return true;
1254 }
1255 
1256 /// Returns true if a PHINode is a trivially replaceable with an
1257 /// Instruction.
1258 /// This is true when all incoming values are that instruction.
1259 /// This pattern occurs most often with LCSSA PHI nodes.
1260 ///
1261 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1262   for (const Value *IncValue : PN.incoming_values())
1263     if (IncValue != &I)
1264       return false;
1265 
1266   return true;
1267 }
1268 
1269 /// Return true if the instruction is free in the loop.
1270 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1271                          const TargetTransformInfo *TTI) {
1272 
1273   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1274     if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
1275       return false;
1276     // For a GEP, we cannot simply use getUserCost because currently it
1277     // optimistically assume that a GEP will fold into addressing mode
1278     // regardless of its users.
1279     const BasicBlock *BB = GEP->getParent();
1280     for (const User *U : GEP->users()) {
1281       const Instruction *UI = cast<Instruction>(U);
1282       if (CurLoop->contains(UI) &&
1283           (BB != UI->getParent() ||
1284            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1285         return false;
1286     }
1287     return true;
1288   } else
1289     return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
1290 }
1291 
1292 /// Return true if the only users of this instruction are outside of
1293 /// the loop. If this is true, we can sink the instruction to the exit
1294 /// blocks of the loop.
1295 ///
1296 /// We also return true if the instruction could be folded away in lowering.
1297 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1298 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1299                                   const LoopSafetyInfo *SafetyInfo,
1300                                   TargetTransformInfo *TTI, bool &FreeInLoop) {
1301   const auto &BlockColors = SafetyInfo->getBlockColors();
1302   bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1303   for (const User *U : I.users()) {
1304     const Instruction *UI = cast<Instruction>(U);
1305     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1306       const BasicBlock *BB = PN->getParent();
1307       // We cannot sink uses in catchswitches.
1308       if (isa<CatchSwitchInst>(BB->getTerminator()))
1309         return false;
1310 
1311       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1312       // phi use is too muddled.
1313       if (isa<CallInst>(I))
1314         if (!BlockColors.empty() &&
1315             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1316           return false;
1317     }
1318 
1319     if (CurLoop->contains(UI)) {
1320       if (IsFree) {
1321         FreeInLoop = true;
1322         continue;
1323       }
1324       return false;
1325     }
1326   }
1327   return true;
1328 }
1329 
1330 static Instruction *CloneInstructionInExitBlock(
1331     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1332     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1333   Instruction *New;
1334   if (auto *CI = dyn_cast<CallInst>(&I)) {
1335     const auto &BlockColors = SafetyInfo->getBlockColors();
1336 
1337     // Sinking call-sites need to be handled differently from other
1338     // instructions.  The cloned call-site needs a funclet bundle operand
1339     // appropriate for its location in the CFG.
1340     SmallVector<OperandBundleDef, 1> OpBundles;
1341     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1342          BundleIdx != BundleEnd; ++BundleIdx) {
1343       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1344       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1345         continue;
1346 
1347       OpBundles.emplace_back(Bundle);
1348     }
1349 
1350     if (!BlockColors.empty()) {
1351       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1352       assert(CV.size() == 1 && "non-unique color for exit block!");
1353       BasicBlock *BBColor = CV.front();
1354       Instruction *EHPad = BBColor->getFirstNonPHI();
1355       if (EHPad->isEHPad())
1356         OpBundles.emplace_back("funclet", EHPad);
1357     }
1358 
1359     New = CallInst::Create(CI, OpBundles);
1360   } else {
1361     New = I.clone();
1362   }
1363 
1364   ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1365   if (!I.getName().empty())
1366     New->setName(I.getName() + ".le");
1367 
1368   MemoryAccess *OldMemAcc;
1369   if (MSSAU && (OldMemAcc = MSSAU->getMemorySSA()->getMemoryAccess(&I))) {
1370     // Create a new MemoryAccess and let MemorySSA set its defining access.
1371     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1372         New, nullptr, New->getParent(), MemorySSA::Beginning);
1373     if (NewMemAcc) {
1374       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1375         MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1376       else {
1377         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1378         MSSAU->insertUse(MemUse);
1379       }
1380     }
1381   }
1382 
1383   // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1384   // particularly cheap because we can rip off the PHI node that we're
1385   // replacing for the number and blocks of the predecessors.
1386   // OPT: If this shows up in a profile, we can instead finish sinking all
1387   // invariant instructions, and then walk their operands to re-establish
1388   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1389   // sinking bottom-up.
1390   for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1391        ++OI)
1392     if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1393       if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1394         if (!OLoop->contains(&PN)) {
1395           PHINode *OpPN =
1396               PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1397                               OInst->getName() + ".lcssa", &ExitBlock.front());
1398           for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1399             OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1400           *OI = OpPN;
1401         }
1402   return New;
1403 }
1404 
1405 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1406                              AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1407   if (AST)
1408     AST->deleteValue(&I);
1409   if (MSSAU)
1410     MSSAU->removeMemoryAccess(&I);
1411   SafetyInfo.removeInstruction(&I);
1412   I.eraseFromParent();
1413 }
1414 
1415 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1416                                   ICFLoopSafetyInfo &SafetyInfo,
1417                                   MemorySSAUpdater *MSSAU) {
1418   SafetyInfo.removeInstruction(&I);
1419   SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1420   I.moveBefore(&Dest);
1421   if (MSSAU)
1422     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1423             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1424       MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End);
1425 }
1426 
1427 static Instruction *sinkThroughTriviallyReplaceablePHI(
1428     PHINode *TPN, Instruction *I, LoopInfo *LI,
1429     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1430     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1431     MemorySSAUpdater *MSSAU) {
1432   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1433          "Expect only trivially replaceable PHI");
1434   BasicBlock *ExitBlock = TPN->getParent();
1435   Instruction *New;
1436   auto It = SunkCopies.find(ExitBlock);
1437   if (It != SunkCopies.end())
1438     New = It->second;
1439   else
1440     New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
1441         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1442   return New;
1443 }
1444 
1445 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1446   BasicBlock *BB = PN->getParent();
1447   if (!BB->canSplitPredecessors())
1448     return false;
1449   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1450   // it require updating BlockColors for all offspring blocks accordingly. By
1451   // skipping such corner case, we can make updating BlockColors after splitting
1452   // predecessor fairly simple.
1453   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1454     return false;
1455   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1456     BasicBlock *BBPred = *PI;
1457     if (isa<IndirectBrInst>(BBPred->getTerminator()))
1458       return false;
1459   }
1460   return true;
1461 }
1462 
1463 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1464                                         LoopInfo *LI, const Loop *CurLoop,
1465                                         LoopSafetyInfo *SafetyInfo,
1466                                         MemorySSAUpdater *MSSAU) {
1467 #ifndef NDEBUG
1468   SmallVector<BasicBlock *, 32> ExitBlocks;
1469   CurLoop->getUniqueExitBlocks(ExitBlocks);
1470   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1471                                              ExitBlocks.end());
1472 #endif
1473   BasicBlock *ExitBB = PN->getParent();
1474   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1475 
1476   // Split predecessors of the loop exit to make instructions in the loop are
1477   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1478   // loop in the canonical form where each predecessor of each exit block should
1479   // be contained within the loop. For example, this will convert the loop below
1480   // from
1481   //
1482   // LB1:
1483   //   %v1 =
1484   //   br %LE, %LB2
1485   // LB2:
1486   //   %v2 =
1487   //   br %LE, %LB1
1488   // LE:
1489   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1490   //
1491   // to
1492   //
1493   // LB1:
1494   //   %v1 =
1495   //   br %LE.split, %LB2
1496   // LB2:
1497   //   %v2 =
1498   //   br %LE.split2, %LB1
1499   // LE.split:
1500   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1501   //   br %LE
1502   // LE.split2:
1503   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1504   //   br %LE
1505   // LE:
1506   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1507   //
1508   const auto &BlockColors = SafetyInfo->getBlockColors();
1509   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1510   while (!PredBBs.empty()) {
1511     BasicBlock *PredBB = *PredBBs.begin();
1512     assert(CurLoop->contains(PredBB) &&
1513            "Expect all predecessors are in the loop");
1514     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1515       BasicBlock *NewPred = SplitBlockPredecessors(
1516           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1517       // Since we do not allow splitting EH-block with BlockColors in
1518       // canSplitPredecessors(), we can simply assign predecessor's color to
1519       // the new block.
1520       if (!BlockColors.empty())
1521         // Grab a reference to the ColorVector to be inserted before getting the
1522         // reference to the vector we are copying because inserting the new
1523         // element in BlockColors might cause the map to be reallocated.
1524         SafetyInfo->copyColors(NewPred, PredBB);
1525     }
1526     PredBBs.remove(PredBB);
1527   }
1528 }
1529 
1530 /// When an instruction is found to only be used outside of the loop, this
1531 /// function moves it to the exit blocks and patches up SSA form as needed.
1532 /// This method is guaranteed to remove the original instruction from its
1533 /// position, and may either delete it or move it to outside of the loop.
1534 ///
1535 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1536                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1537                  MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1538   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1539   ORE->emit([&]() {
1540     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1541            << "sinking " << ore::NV("Inst", &I);
1542   });
1543   bool Changed = false;
1544   if (isa<LoadInst>(I))
1545     ++NumMovedLoads;
1546   else if (isa<CallInst>(I))
1547     ++NumMovedCalls;
1548   ++NumSunk;
1549 
1550   // Iterate over users to be ready for actual sinking. Replace users via
1551   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1552   SmallPtrSet<Instruction *, 8> VisitedUsers;
1553   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1554     auto *User = cast<Instruction>(*UI);
1555     Use &U = UI.getUse();
1556     ++UI;
1557 
1558     if (VisitedUsers.count(User) || CurLoop->contains(User))
1559       continue;
1560 
1561     if (!DT->isReachableFromEntry(User->getParent())) {
1562       U = UndefValue::get(I.getType());
1563       Changed = true;
1564       continue;
1565     }
1566 
1567     // The user must be a PHI node.
1568     PHINode *PN = cast<PHINode>(User);
1569 
1570     // Surprisingly, instructions can be used outside of loops without any
1571     // exits.  This can only happen in PHI nodes if the incoming block is
1572     // unreachable.
1573     BasicBlock *BB = PN->getIncomingBlock(U);
1574     if (!DT->isReachableFromEntry(BB)) {
1575       U = UndefValue::get(I.getType());
1576       Changed = true;
1577       continue;
1578     }
1579 
1580     VisitedUsers.insert(PN);
1581     if (isTriviallyReplaceablePHI(*PN, I))
1582       continue;
1583 
1584     if (!canSplitPredecessors(PN, SafetyInfo))
1585       return Changed;
1586 
1587     // Split predecessors of the PHI so that we can make users trivially
1588     // replaceable.
1589     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1590 
1591     // Should rebuild the iterators, as they may be invalidated by
1592     // splitPredecessorsOfLoopExit().
1593     UI = I.user_begin();
1594     UE = I.user_end();
1595   }
1596 
1597   if (VisitedUsers.empty())
1598     return Changed;
1599 
1600 #ifndef NDEBUG
1601   SmallVector<BasicBlock *, 32> ExitBlocks;
1602   CurLoop->getUniqueExitBlocks(ExitBlocks);
1603   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1604                                              ExitBlocks.end());
1605 #endif
1606 
1607   // Clones of this instruction. Don't create more than one per exit block!
1608   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1609 
1610   // If this instruction is only used outside of the loop, then all users are
1611   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1612   // the instruction.
1613   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1614   for (auto *UI : Users) {
1615     auto *User = cast<Instruction>(UI);
1616 
1617     if (CurLoop->contains(User))
1618       continue;
1619 
1620     PHINode *PN = cast<PHINode>(User);
1621     assert(ExitBlockSet.count(PN->getParent()) &&
1622            "The LCSSA PHI is not in an exit block!");
1623     // The PHI must be trivially replaceable.
1624     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1625         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1626     PN->replaceAllUsesWith(New);
1627     eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1628     Changed = true;
1629   }
1630   return Changed;
1631 }
1632 
1633 /// When an instruction is found to only use loop invariant operands that
1634 /// is safe to hoist, this instruction is called to do the dirty work.
1635 ///
1636 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1637                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1638                   MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1639   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
1640                     << "\n");
1641   ORE->emit([&]() {
1642     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1643                                                          << ore::NV("Inst", &I);
1644   });
1645 
1646   // Metadata can be dependent on conditions we are hoisting above.
1647   // Conservatively strip all metadata on the instruction unless we were
1648   // guaranteed to execute I if we entered the loop, in which case the metadata
1649   // is valid in the loop preheader.
1650   if (I.hasMetadataOtherThanDebugLoc() &&
1651       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1652       // time in isGuaranteedToExecute if we don't actually have anything to
1653       // drop.  It is a compile time optimization, not required for correctness.
1654       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1655     I.dropUnknownNonDebugMetadata();
1656 
1657   if (isa<PHINode>(I))
1658     // Move the new node to the end of the phi list in the destination block.
1659     moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU);
1660   else
1661     // Move the new node to the destination block, before its terminator.
1662     moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU);
1663 
1664   // Apply line 0 debug locations when we are moving instructions to different
1665   // basic blocks because we want to avoid jumpy line tables.
1666   if (const DebugLoc &DL = I.getDebugLoc())
1667     I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1668 
1669   if (isa<LoadInst>(I))
1670     ++NumMovedLoads;
1671   else if (isa<CallInst>(I))
1672     ++NumMovedCalls;
1673   ++NumHoisted;
1674 }
1675 
1676 /// Only sink or hoist an instruction if it is not a trapping instruction,
1677 /// or if the instruction is known not to trap when moved to the preheader.
1678 /// or if it is a trapping instruction and is guaranteed to execute.
1679 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1680                                            const DominatorTree *DT,
1681                                            const Loop *CurLoop,
1682                                            const LoopSafetyInfo *SafetyInfo,
1683                                            OptimizationRemarkEmitter *ORE,
1684                                            const Instruction *CtxI) {
1685   if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1686     return true;
1687 
1688   bool GuaranteedToExecute =
1689       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1690 
1691   if (!GuaranteedToExecute) {
1692     auto *LI = dyn_cast<LoadInst>(&Inst);
1693     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1694       ORE->emit([&]() {
1695         return OptimizationRemarkMissed(
1696                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1697                << "failed to hoist load with loop-invariant address "
1698                   "because load is conditionally executed";
1699       });
1700   }
1701 
1702   return GuaranteedToExecute;
1703 }
1704 
1705 namespace {
1706 class LoopPromoter : public LoadAndStorePromoter {
1707   Value *SomePtr; // Designated pointer to store to.
1708   const SmallSetVector<Value *, 8> &PointerMustAliases;
1709   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1710   SmallVectorImpl<Instruction *> &LoopInsertPts;
1711   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1712   PredIteratorCache &PredCache;
1713   AliasSetTracker &AST;
1714   MemorySSAUpdater *MSSAU;
1715   LoopInfo &LI;
1716   DebugLoc DL;
1717   int Alignment;
1718   bool UnorderedAtomic;
1719   AAMDNodes AATags;
1720   ICFLoopSafetyInfo &SafetyInfo;
1721 
1722   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1723     if (Instruction *I = dyn_cast<Instruction>(V))
1724       if (Loop *L = LI.getLoopFor(I->getParent()))
1725         if (!L->contains(BB)) {
1726           // We need to create an LCSSA PHI node for the incoming value and
1727           // store that.
1728           PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1729                                         I->getName() + ".lcssa", &BB->front());
1730           for (BasicBlock *Pred : PredCache.get(BB))
1731             PN->addIncoming(I, Pred);
1732           return PN;
1733         }
1734     return V;
1735   }
1736 
1737 public:
1738   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1739                const SmallSetVector<Value *, 8> &PMA,
1740                SmallVectorImpl<BasicBlock *> &LEB,
1741                SmallVectorImpl<Instruction *> &LIP,
1742                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1743                AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1744                DebugLoc dl, int alignment, bool UnorderedAtomic,
1745                const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1746       : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1747         LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1748         PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1749         Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1750         SafetyInfo(SafetyInfo) {}
1751 
1752   bool isInstInList(Instruction *I,
1753                     const SmallVectorImpl<Instruction *> &) const override {
1754     Value *Ptr;
1755     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1756       Ptr = LI->getOperand(0);
1757     else
1758       Ptr = cast<StoreInst>(I)->getPointerOperand();
1759     return PointerMustAliases.count(Ptr);
1760   }
1761 
1762   void doExtraRewritesBeforeFinalDeletion() override {
1763     // Insert stores after in the loop exit blocks.  Each exit block gets a
1764     // store of the live-out values that feed them.  Since we've already told
1765     // the SSA updater about the defs in the loop and the preheader
1766     // definition, it is all set and we can start using it.
1767     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1768       BasicBlock *ExitBlock = LoopExitBlocks[i];
1769       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1770       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1771       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1772       Instruction *InsertPos = LoopInsertPts[i];
1773       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1774       if (UnorderedAtomic)
1775         NewSI->setOrdering(AtomicOrdering::Unordered);
1776       NewSI->setAlignment(Alignment);
1777       NewSI->setDebugLoc(DL);
1778       if (AATags)
1779         NewSI->setAAMetadata(AATags);
1780 
1781       if (MSSAU) {
1782         MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1783         MemoryAccess *NewMemAcc;
1784         if (!MSSAInsertPoint) {
1785           NewMemAcc = MSSAU->createMemoryAccessInBB(
1786               NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1787         } else {
1788           NewMemAcc =
1789               MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1790         }
1791         MSSAInsertPts[i] = NewMemAcc;
1792         MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1793         // FIXME: true for safety, false may still be correct.
1794       }
1795     }
1796   }
1797 
1798   void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1799     // Update alias analysis.
1800     AST.copyValue(LI, V);
1801   }
1802   void instructionDeleted(Instruction *I) const override {
1803     SafetyInfo.removeInstruction(I);
1804     AST.deleteValue(I);
1805     if (MSSAU)
1806       MSSAU->removeMemoryAccess(I);
1807   }
1808 };
1809 
1810 
1811 /// Return true iff we can prove that a caller of this function can not inspect
1812 /// the contents of the provided object in a well defined program.
1813 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1814   if (isa<AllocaInst>(Object))
1815     // Since the alloca goes out of scope, we know the caller can't retain a
1816     // reference to it and be well defined.  Thus, we don't need to check for
1817     // capture.
1818     return true;
1819 
1820   // For all other objects we need to know that the caller can't possibly
1821   // have gotten a reference to the object.  There are two components of
1822   // that:
1823   //   1) Object can't be escaped by this function.  This is what
1824   //      PointerMayBeCaptured checks.
1825   //   2) Object can't have been captured at definition site.  For this, we
1826   //      need to know the return value is noalias.  At the moment, we use a
1827   //      weaker condition and handle only AllocLikeFunctions (which are
1828   //      known to be noalias).  TODO
1829   return isAllocLikeFn(Object, TLI) &&
1830     !PointerMayBeCaptured(Object, true, true);
1831 }
1832 
1833 } // namespace
1834 
1835 /// Try to promote memory values to scalars by sinking stores out of the
1836 /// loop and moving loads to before the loop.  We do this by looping over
1837 /// the stores in the loop, looking for stores to Must pointers which are
1838 /// loop invariant.
1839 ///
1840 bool llvm::promoteLoopAccessesToScalars(
1841     const SmallSetVector<Value *, 8> &PointerMustAliases,
1842     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1843     SmallVectorImpl<Instruction *> &InsertPts,
1844     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1845     LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1846     Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1847     ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1848   // Verify inputs.
1849   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1850          CurAST != nullptr && SafetyInfo != nullptr &&
1851          "Unexpected Input to promoteLoopAccessesToScalars");
1852 
1853   Value *SomePtr = *PointerMustAliases.begin();
1854   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1855 
1856   // It is not safe to promote a load/store from the loop if the load/store is
1857   // conditional.  For example, turning:
1858   //
1859   //    for () { if (c) *P += 1; }
1860   //
1861   // into:
1862   //
1863   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
1864   //
1865   // is not safe, because *P may only be valid to access if 'c' is true.
1866   //
1867   // The safety property divides into two parts:
1868   // p1) The memory may not be dereferenceable on entry to the loop.  In this
1869   //    case, we can't insert the required load in the preheader.
1870   // p2) The memory model does not allow us to insert a store along any dynamic
1871   //    path which did not originally have one.
1872   //
1873   // If at least one store is guaranteed to execute, both properties are
1874   // satisfied, and promotion is legal.
1875   //
1876   // This, however, is not a necessary condition. Even if no store/load is
1877   // guaranteed to execute, we can still establish these properties.
1878   // We can establish (p1) by proving that hoisting the load into the preheader
1879   // is safe (i.e. proving dereferenceability on all paths through the loop). We
1880   // can use any access within the alias set to prove dereferenceability,
1881   // since they're all must alias.
1882   //
1883   // There are two ways establish (p2):
1884   // a) Prove the location is thread-local. In this case the memory model
1885   // requirement does not apply, and stores are safe to insert.
1886   // b) Prove a store dominates every exit block. In this case, if an exit
1887   // blocks is reached, the original dynamic path would have taken us through
1888   // the store, so inserting a store into the exit block is safe. Note that this
1889   // is different from the store being guaranteed to execute. For instance,
1890   // if an exception is thrown on the first iteration of the loop, the original
1891   // store is never executed, but the exit blocks are not executed either.
1892 
1893   bool DereferenceableInPH = false;
1894   bool SafeToInsertStore = false;
1895 
1896   SmallVector<Instruction *, 64> LoopUses;
1897 
1898   // We start with an alignment of one and try to find instructions that allow
1899   // us to prove better alignment.
1900   unsigned Alignment = 1;
1901   // Keep track of which types of access we see
1902   bool SawUnorderedAtomic = false;
1903   bool SawNotAtomic = false;
1904   AAMDNodes AATags;
1905 
1906   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1907 
1908   bool IsKnownThreadLocalObject = false;
1909   if (SafetyInfo->anyBlockMayThrow()) {
1910     // If a loop can throw, we have to insert a store along each unwind edge.
1911     // That said, we can't actually make the unwind edge explicit. Therefore,
1912     // we have to prove that the store is dead along the unwind edge.  We do
1913     // this by proving that the caller can't have a reference to the object
1914     // after return and thus can't possibly load from the object.
1915     Value *Object = GetUnderlyingObject(SomePtr, MDL);
1916     if (!isKnownNonEscaping(Object, TLI))
1917       return false;
1918     // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1919     // visible to other threads if captured and used during their lifetimes.
1920     IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1921   }
1922 
1923   // Check that all of the pointers in the alias set have the same type.  We
1924   // cannot (yet) promote a memory location that is loaded and stored in
1925   // different sizes.  While we are at it, collect alignment and AA info.
1926   for (Value *ASIV : PointerMustAliases) {
1927     // Check that all of the pointers in the alias set have the same type.  We
1928     // cannot (yet) promote a memory location that is loaded and stored in
1929     // different sizes.
1930     if (SomePtr->getType() != ASIV->getType())
1931       return false;
1932 
1933     for (User *U : ASIV->users()) {
1934       // Ignore instructions that are outside the loop.
1935       Instruction *UI = dyn_cast<Instruction>(U);
1936       if (!UI || !CurLoop->contains(UI))
1937         continue;
1938 
1939       // If there is an non-load/store instruction in the loop, we can't promote
1940       // it.
1941       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
1942         if (!Load->isUnordered())
1943           return false;
1944 
1945         SawUnorderedAtomic |= Load->isAtomic();
1946         SawNotAtomic |= !Load->isAtomic();
1947 
1948         unsigned InstAlignment = Load->getAlignment();
1949         if (!InstAlignment)
1950           InstAlignment =
1951               MDL.getABITypeAlignment(Load->getType());
1952 
1953         // Note that proving a load safe to speculate requires proving
1954         // sufficient alignment at the target location.  Proving it guaranteed
1955         // to execute does as well.  Thus we can increase our guaranteed
1956         // alignment as well.
1957         if (!DereferenceableInPH || (InstAlignment > Alignment))
1958           if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
1959                                              ORE, Preheader->getTerminator())) {
1960             DereferenceableInPH = true;
1961             Alignment = std::max(Alignment, InstAlignment);
1962           }
1963       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
1964         // Stores *of* the pointer are not interesting, only stores *to* the
1965         // pointer.
1966         if (UI->getOperand(1) != ASIV)
1967           continue;
1968         if (!Store->isUnordered())
1969           return false;
1970 
1971         SawUnorderedAtomic |= Store->isAtomic();
1972         SawNotAtomic |= !Store->isAtomic();
1973 
1974         // If the store is guaranteed to execute, both properties are satisfied.
1975         // We may want to check if a store is guaranteed to execute even if we
1976         // already know that promotion is safe, since it may have higher
1977         // alignment than any other guaranteed stores, in which case we can
1978         // raise the alignment on the promoted store.
1979         unsigned InstAlignment = Store->getAlignment();
1980         if (!InstAlignment)
1981           InstAlignment =
1982               MDL.getABITypeAlignment(Store->getValueOperand()->getType());
1983 
1984         if (!DereferenceableInPH || !SafeToInsertStore ||
1985             (InstAlignment > Alignment)) {
1986           if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
1987             DereferenceableInPH = true;
1988             SafeToInsertStore = true;
1989             Alignment = std::max(Alignment, InstAlignment);
1990           }
1991         }
1992 
1993         // If a store dominates all exit blocks, it is safe to sink.
1994         // As explained above, if an exit block was executed, a dominating
1995         // store must have been executed at least once, so we are not
1996         // introducing stores on paths that did not have them.
1997         // Note that this only looks at explicit exit blocks. If we ever
1998         // start sinking stores into unwind edges (see above), this will break.
1999         if (!SafeToInsertStore)
2000           SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2001             return DT->dominates(Store->getParent(), Exit);
2002           });
2003 
2004         // If the store is not guaranteed to execute, we may still get
2005         // deref info through it.
2006         if (!DereferenceableInPH) {
2007           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2008               Store->getPointerOperand(), Store->getAlignment(), MDL,
2009               Preheader->getTerminator(), DT);
2010         }
2011       } else
2012         return false; // Not a load or store.
2013 
2014       // Merge the AA tags.
2015       if (LoopUses.empty()) {
2016         // On the first load/store, just take its AA tags.
2017         UI->getAAMetadata(AATags);
2018       } else if (AATags) {
2019         UI->getAAMetadata(AATags, /* Merge = */ true);
2020       }
2021 
2022       LoopUses.push_back(UI);
2023     }
2024   }
2025 
2026   // If we found both an unordered atomic instruction and a non-atomic memory
2027   // access, bail.  We can't blindly promote non-atomic to atomic since we
2028   // might not be able to lower the result.  We can't downgrade since that
2029   // would violate memory model.  Also, align 0 is an error for atomics.
2030   if (SawUnorderedAtomic && SawNotAtomic)
2031     return false;
2032 
2033   // If we're inserting an atomic load in the preheader, we must be able to
2034   // lower it.  We're only guaranteed to be able to lower naturally aligned
2035   // atomics.
2036   auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2037   if (SawUnorderedAtomic &&
2038       Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2039     return false;
2040 
2041   // If we couldn't prove we can hoist the load, bail.
2042   if (!DereferenceableInPH)
2043     return false;
2044 
2045   // We know we can hoist the load, but don't have a guaranteed store.
2046   // Check whether the location is thread-local. If it is, then we can insert
2047   // stores along paths which originally didn't have them without violating the
2048   // memory model.
2049   if (!SafeToInsertStore) {
2050     if (IsKnownThreadLocalObject)
2051       SafeToInsertStore = true;
2052     else {
2053       Value *Object = GetUnderlyingObject(SomePtr, MDL);
2054       SafeToInsertStore =
2055           (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2056           !PointerMayBeCaptured(Object, true, true);
2057     }
2058   }
2059 
2060   // If we've still failed to prove we can sink the store, give up.
2061   if (!SafeToInsertStore)
2062     return false;
2063 
2064   // Otherwise, this is safe to promote, lets do it!
2065   LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
2066                     << '\n');
2067   ORE->emit([&]() {
2068     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2069                               LoopUses[0])
2070            << "Moving accesses to memory location out of the loop";
2071   });
2072   ++NumPromoted;
2073 
2074   // Grab a debug location for the inserted loads/stores; given that the
2075   // inserted loads/stores have little relation to the original loads/stores,
2076   // this code just arbitrarily picks a location from one, since any debug
2077   // location is better than none.
2078   DebugLoc DL = LoopUses[0]->getDebugLoc();
2079 
2080   // We use the SSAUpdater interface to insert phi nodes as required.
2081   SmallVector<PHINode *, 16> NewPHIs;
2082   SSAUpdater SSA(&NewPHIs);
2083   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2084                         InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2085                         Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
2086 
2087   // Set up the preheader to have a definition of the value.  It is the live-out
2088   // value from the preheader that uses in the loop will use.
2089   LoadInst *PreheaderLoad = new LoadInst(
2090       SomePtr->getType()->getPointerElementType(), SomePtr,
2091       SomePtr->getName() + ".promoted", Preheader->getTerminator());
2092   if (SawUnorderedAtomic)
2093     PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2094   PreheaderLoad->setAlignment(Alignment);
2095   PreheaderLoad->setDebugLoc(DL);
2096   if (AATags)
2097     PreheaderLoad->setAAMetadata(AATags);
2098   SSA.AddAvailableValue(Preheader, PreheaderLoad);
2099 
2100   MemoryAccess *PreheaderLoadMemoryAccess;
2101   if (MSSAU) {
2102     PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2103         PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2104     MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2105     MSSAU->insertUse(NewMemUse);
2106   }
2107 
2108   // Rewrite all the loads in the loop and remember all the definitions from
2109   // stores in the loop.
2110   Promoter.run(LoopUses);
2111 
2112   if (MSSAU && VerifyMemorySSA)
2113     MSSAU->getMemorySSA()->verifyMemorySSA();
2114   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2115   if (PreheaderLoad->use_empty())
2116     eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2117 
2118   return true;
2119 }
2120 
2121 /// Returns an owning pointer to an alias set which incorporates aliasing info
2122 /// from L and all subloops of L.
2123 /// FIXME: In new pass manager, there is no helper function to handle loop
2124 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
2125 /// from scratch for every loop. Hook up with the helper functions when
2126 /// available in the new pass manager to avoid redundant computation.
2127 std::unique_ptr<AliasSetTracker>
2128 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2129                                                  AliasAnalysis *AA) {
2130   std::unique_ptr<AliasSetTracker> CurAST;
2131   SmallVector<Loop *, 4> RecomputeLoops;
2132   for (Loop *InnerL : L->getSubLoops()) {
2133     auto MapI = LoopToAliasSetMap.find(InnerL);
2134     // If the AST for this inner loop is missing it may have been merged into
2135     // some other loop's AST and then that loop unrolled, and so we need to
2136     // recompute it.
2137     if (MapI == LoopToAliasSetMap.end()) {
2138       RecomputeLoops.push_back(InnerL);
2139       continue;
2140     }
2141     std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
2142 
2143     if (CurAST) {
2144       // What if InnerLoop was modified by other passes ?
2145       // Once we've incorporated the inner loop's AST into ours, we don't need
2146       // the subloop's anymore.
2147       CurAST->add(*InnerAST);
2148     } else {
2149       CurAST = std::move(InnerAST);
2150     }
2151     LoopToAliasSetMap.erase(MapI);
2152   }
2153   if (!CurAST)
2154     CurAST = make_unique<AliasSetTracker>(*AA);
2155 
2156   // Add everything from the sub loops that are no longer directly available.
2157   for (Loop *InnerL : RecomputeLoops)
2158     for (BasicBlock *BB : InnerL->blocks())
2159       CurAST->add(*BB);
2160 
2161   // And merge in this loop (without anything from inner loops).
2162   for (BasicBlock *BB : L->blocks())
2163     if (LI->getLoopFor(BB) == L)
2164       CurAST->add(*BB);
2165 
2166   return CurAST;
2167 }
2168 
2169 std::unique_ptr<AliasSetTracker>
2170 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2171     Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
2172   auto *MSSA = MSSAU->getMemorySSA();
2173   auto CurAST = make_unique<AliasSetTracker>(*AA, MSSA, L);
2174   CurAST->addAllInstructionsInLoopUsingMSSA();
2175   return CurAST;
2176 }
2177 
2178 /// Simple analysis hook. Clone alias set info.
2179 ///
2180 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
2181                                              Loop *L) {
2182   auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2183   if (ASTIt == LICM.getLoopToAliasSetMap().end())
2184     return;
2185 
2186   ASTIt->second->copyValue(From, To);
2187 }
2188 
2189 /// Simple Analysis hook. Delete value V from alias set
2190 ///
2191 void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
2192   auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2193   if (ASTIt == LICM.getLoopToAliasSetMap().end())
2194     return;
2195 
2196   ASTIt->second->deleteValue(V);
2197 }
2198 
2199 /// Simple Analysis hook. Delete value L from alias set map.
2200 ///
2201 void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
2202   if (!LICM.getLoopToAliasSetMap().count(L))
2203     return;
2204 
2205   LICM.getLoopToAliasSetMap().erase(L);
2206 }
2207 
2208 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2209                                      AliasSetTracker *CurAST, Loop *CurLoop,
2210                                      AliasAnalysis *AA) {
2211   // First check to see if any of the basic blocks in CurLoop invalidate *V.
2212   bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2213 
2214   if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2215     return isInvalidatedAccordingToAST;
2216 
2217   // Check with a diagnostic analysis if we can refine the information above.
2218   // This is to identify the limitations of using the AST.
2219   // The alias set mechanism used by LICM has a major weakness in that it
2220   // combines all things which may alias into a single set *before* asking
2221   // modref questions. As a result, a single readonly call within a loop will
2222   // collapse all loads and stores into a single alias set and report
2223   // invalidation if the loop contains any store. For example, readonly calls
2224   // with deopt states have this form and create a general alias set with all
2225   // loads and stores.  In order to get any LICM in loops containing possible
2226   // deopt states we need a more precise invalidation of checking the mod ref
2227   // info of each instruction within the loop and LI. This has a complexity of
2228   // O(N^2), so currently, it is used only as a diagnostic tool since the
2229   // default value of LICMN2Threshold is zero.
2230 
2231   // Don't look at nested loops.
2232   if (CurLoop->begin() != CurLoop->end())
2233     return true;
2234 
2235   int N = 0;
2236   for (BasicBlock *BB : CurLoop->getBlocks())
2237     for (Instruction &I : *BB) {
2238       if (N >= LICMN2Theshold) {
2239         LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
2240                           << *(MemLoc.Ptr) << "\n");
2241         return true;
2242       }
2243       N++;
2244       auto Res = AA->getModRefInfo(&I, MemLoc);
2245       if (isModSet(Res)) {
2246         LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
2247                           << *(MemLoc.Ptr) << "\n");
2248         return true;
2249       }
2250     }
2251   LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
2252   return false;
2253 }
2254 
2255 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2256                                              Loop *CurLoop,
2257                                              SinkAndHoistLICMFlags &Flags) {
2258   MemoryAccess *Source;
2259   // See declaration of SetLicmMssaOptCap for usage details.
2260   if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2261     Source = MU->getDefiningAccess();
2262   else {
2263     Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2264     Flags.LicmMssaOptCounter++;
2265   }
2266   return !MSSA->isLiveOnEntryDef(Source) &&
2267          CurLoop->contains(Source->getBlock());
2268 }
2269 
2270 /// Little predicate that returns true if the specified basic block is in
2271 /// a subloop of the current one, not the current one itself.
2272 ///
2273 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2274   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2275   return LI->getLoopFor(BB) != CurLoop;
2276 }
2277