1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible. It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe. This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // Hoisting operations out of loops is a canonicalization transform. It
16 // enables and simplifies subsequent optimizations in the middle-end.
17 // Rematerialization of hoisted instructions to reduce register pressure is the
18 // responsibility of the back-end, which has more accurate information about
19 // register pressure and also handles other optimizations than LICM that
20 // increase live-ranges.
21 //
22 // This pass uses alias analysis for two purposes:
23 //
24 // 1. Moving loop invariant loads and calls out of loops. If we can determine
25 // that a load or call inside of a loop never aliases anything stored to,
26 // we can hoist it or sink it like any other instruction.
27 // 2. Scalar Promotion of Memory - If there is a store instruction inside of
28 // the loop, we try to move the store to happen AFTER the loop instead of
29 // inside of the loop. This can only happen if a few conditions are true:
30 // A. The pointer stored through is loop invariant
31 // B. There are no stores or loads in the loop which _may_ alias the
32 // pointer. There are no calls in the loop which mod/ref the pointer.
33 // If these conditions are true, we can promote the loads and stores in the
34 // loop of the pointer to use a temporary alloca'd variable. We then use
35 // the SSAUpdater to construct the appropriate SSA form for the value.
36 //
37 //===----------------------------------------------------------------------===//
38
39 #include "llvm/Transforms/Scalar/LICM.h"
40 #include "llvm/ADT/PriorityWorklist.h"
41 #include "llvm/ADT/SetOperations.h"
42 #include "llvm/ADT/Statistic.h"
43 #include "llvm/Analysis/AliasAnalysis.h"
44 #include "llvm/Analysis/AliasSetTracker.h"
45 #include "llvm/Analysis/CaptureTracking.h"
46 #include "llvm/Analysis/ConstantFolding.h"
47 #include "llvm/Analysis/GuardUtils.h"
48 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
49 #include "llvm/Analysis/Loads.h"
50 #include "llvm/Analysis/LoopInfo.h"
51 #include "llvm/Analysis/LoopIterator.h"
52 #include "llvm/Analysis/LoopNestAnalysis.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Analysis/MemorySSA.h"
55 #include "llvm/Analysis/MemorySSAUpdater.h"
56 #include "llvm/Analysis/MustExecute.h"
57 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
58 #include "llvm/Analysis/ScalarEvolution.h"
59 #include "llvm/Analysis/TargetLibraryInfo.h"
60 #include "llvm/Analysis/TargetTransformInfo.h"
61 #include "llvm/Analysis/ValueTracking.h"
62 #include "llvm/IR/CFG.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfoMetadata.h"
66 #include "llvm/IR/DerivedTypes.h"
67 #include "llvm/IR/Dominators.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/LLVMContext.h"
71 #include "llvm/IR/Metadata.h"
72 #include "llvm/IR/PatternMatch.h"
73 #include "llvm/IR/PredIteratorCache.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Utils/LoopUtils.h"
83 #include "llvm/Transforms/Utils/SSAUpdater.h"
84 #include <algorithm>
85 #include <utility>
86 using namespace llvm;
87
88 namespace llvm {
89 class BlockFrequencyInfo;
90 class LPMUpdater;
91 } // namespace llvm
92
93 #define DEBUG_TYPE "licm"
94
95 STATISTIC(NumCreatedBlocks, "Number of blocks created");
96 STATISTIC(NumClonedBranches, "Number of branches cloned");
97 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
98 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
99 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
100 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
101 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
102
103 /// Memory promotion is enabled by default.
104 static cl::opt<bool>
105 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
106 cl::desc("Disable memory promotion in LICM pass"));
107
108 static cl::opt<bool> ControlFlowHoisting(
109 "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
110 cl::desc("Enable control flow (and PHI) hoisting in LICM"));
111
112 static cl::opt<uint32_t> MaxNumUsesTraversed(
113 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
114 cl::desc("Max num uses visited for identifying load "
115 "invariance in loop using invariant start (default = 8)"));
116
117 // Experimental option to allow imprecision in LICM in pathological cases, in
118 // exchange for faster compile. This is to be removed if MemorySSA starts to
119 // address the same issue. LICM calls MemorySSAWalker's
120 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
121 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
122 // which may not be precise, since optimizeUses is capped. The result is
123 // correct, but we may not get as "far up" as possible to get which access is
124 // clobbering the one queried.
125 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
126 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
127 cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
128 "for faster compile. Caps the MemorySSA clobbering calls."));
129
130 // Experimentally, memory promotion carries less importance than sinking and
131 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
132 // compile time.
133 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
134 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
135 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
136 "effect. When MSSA in LICM is enabled, then this is the maximum "
137 "number of accesses allowed to be present in a loop in order to "
138 "enable memory promotion."));
139
140 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
141 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
142 const LoopSafetyInfo *SafetyInfo,
143 TargetTransformInfo *TTI, bool &FreeInLoop,
144 bool LoopNestMode);
145 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
146 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
147 MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
148 OptimizationRemarkEmitter *ORE);
149 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
150 BlockFrequencyInfo *BFI, const Loop *CurLoop,
151 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU,
152 OptimizationRemarkEmitter *ORE);
153 static bool isSafeToExecuteUnconditionally(
154 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
155 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
156 OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
157 bool AllowSpeculation);
158 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
159 Loop *CurLoop, Instruction &I,
160 SinkAndHoistLICMFlags &Flags);
161 static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA,
162 MemoryUse &MU);
163 static Instruction *cloneInstructionInExitBlock(
164 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
165 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU);
166
167 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
168 MemorySSAUpdater &MSSAU);
169
170 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
171 ICFLoopSafetyInfo &SafetyInfo,
172 MemorySSAUpdater &MSSAU, ScalarEvolution *SE);
173
174 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
175 function_ref<void(Instruction *)> Fn);
176 static SmallVector<SmallSetVector<Value *, 8>, 0>
177 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
178
179 namespace {
180 struct LoopInvariantCodeMotion {
181 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
182 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
183 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
184 OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
185
LoopInvariantCodeMotion__anonf51ac7480111::LoopInvariantCodeMotion186 LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
187 unsigned LicmMssaNoAccForPromotionCap,
188 bool LicmAllowSpeculation)
189 : LicmMssaOptCap(LicmMssaOptCap),
190 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
191 LicmAllowSpeculation(LicmAllowSpeculation) {}
192
193 private:
194 unsigned LicmMssaOptCap;
195 unsigned LicmMssaNoAccForPromotionCap;
196 bool LicmAllowSpeculation;
197 };
198
199 struct LegacyLICMPass : public LoopPass {
200 static char ID; // Pass identification, replacement for typeid
LegacyLICMPass__anonf51ac7480111::LegacyLICMPass201 LegacyLICMPass(
202 unsigned LicmMssaOptCap = SetLicmMssaOptCap,
203 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
204 bool LicmAllowSpeculation = true)
205 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
206 LicmAllowSpeculation) {
207 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
208 }
209
runOnLoop__anonf51ac7480111::LegacyLICMPass210 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
211 if (skipLoop(L))
212 return false;
213
214 LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
215 << L->getHeader()->getNameOrAsOperand() << "\n");
216
217 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
218 MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
219 bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
220 BlockFrequencyInfo *BFI =
221 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
222 : nullptr;
223 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
224 // pass. Function analyses need to be preserved across loop transformations
225 // but ORE cannot be preserved (see comment before the pass definition).
226 OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
227 return LICM.runOnLoop(
228 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
229 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
230 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
231 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
232 *L->getHeader()->getParent()),
233 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
234 *L->getHeader()->getParent()),
235 SE ? &SE->getSE() : nullptr, MSSA, &ORE);
236 }
237
238 /// This transformation requires natural loop information & requires that
239 /// loop preheaders be inserted into the CFG...
240 ///
getAnalysisUsage__anonf51ac7480111::LegacyLICMPass241 void getAnalysisUsage(AnalysisUsage &AU) const override {
242 AU.addPreserved<DominatorTreeWrapperPass>();
243 AU.addPreserved<LoopInfoWrapperPass>();
244 AU.addRequired<TargetLibraryInfoWrapperPass>();
245 AU.addRequired<MemorySSAWrapperPass>();
246 AU.addPreserved<MemorySSAWrapperPass>();
247 AU.addRequired<TargetTransformInfoWrapperPass>();
248 getLoopAnalysisUsage(AU);
249 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
250 AU.addPreserved<LazyBlockFrequencyInfoPass>();
251 AU.addPreserved<LazyBranchProbabilityInfoPass>();
252 }
253
254 private:
255 LoopInvariantCodeMotion LICM;
256 };
257 } // namespace
258
run(Loop & L,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)259 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
260 LoopStandardAnalysisResults &AR, LPMUpdater &) {
261 if (!AR.MSSA)
262 report_fatal_error("LICM requires MemorySSA (loop-mssa)");
263
264 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
265 // pass. Function analyses need to be preserved across loop transformations
266 // but ORE cannot be preserved (see comment before the pass definition).
267 OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
268
269 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
270 Opts.AllowSpeculation);
271 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
272 &AR.SE, AR.MSSA, &ORE))
273 return PreservedAnalyses::all();
274
275 auto PA = getLoopPassPreservedAnalyses();
276
277 PA.preserve<DominatorTreeAnalysis>();
278 PA.preserve<LoopAnalysis>();
279 PA.preserve<MemorySSAAnalysis>();
280
281 return PA;
282 }
283
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)284 void LICMPass::printPipeline(
285 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
286 static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline(
287 OS, MapClassName2PassName);
288
289 OS << "<";
290 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
291 OS << ">";
292 }
293
run(LoopNest & LN,LoopAnalysisManager & AM,LoopStandardAnalysisResults & AR,LPMUpdater &)294 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
295 LoopStandardAnalysisResults &AR,
296 LPMUpdater &) {
297 if (!AR.MSSA)
298 report_fatal_error("LNICM requires MemorySSA (loop-mssa)");
299
300 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
301 // pass. Function analyses need to be preserved across loop transformations
302 // but ORE cannot be preserved (see comment before the pass definition).
303 OptimizationRemarkEmitter ORE(LN.getParent());
304
305 LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap,
306 Opts.AllowSpeculation);
307
308 Loop &OutermostLoop = LN.getOutermostLoop();
309 bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
310 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
311
312 if (!Changed)
313 return PreservedAnalyses::all();
314
315 auto PA = getLoopPassPreservedAnalyses();
316
317 PA.preserve<DominatorTreeAnalysis>();
318 PA.preserve<LoopAnalysis>();
319 PA.preserve<MemorySSAAnalysis>();
320
321 return PA;
322 }
323
printPipeline(raw_ostream & OS,function_ref<StringRef (StringRef)> MapClassName2PassName)324 void LNICMPass::printPipeline(
325 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
326 static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline(
327 OS, MapClassName2PassName);
328
329 OS << "<";
330 OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation";
331 OS << ">";
332 }
333
334 char LegacyLICMPass::ID = 0;
335 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
336 false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)337 INITIALIZE_PASS_DEPENDENCY(LoopPass)
338 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
339 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
340 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
341 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
342 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
343 false)
344
345 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
createLICMPass(unsigned LicmMssaOptCap,unsigned LicmMssaNoAccForPromotionCap,bool LicmAllowSpeculation)346 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
347 unsigned LicmMssaNoAccForPromotionCap,
348 bool LicmAllowSpeculation) {
349 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
350 LicmAllowSpeculation);
351 }
352
SinkAndHoistLICMFlags(bool IsSink,Loop * L,MemorySSA * MSSA)353 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
354 MemorySSA *MSSA)
355 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
356 IsSink, L, MSSA) {}
357
SinkAndHoistLICMFlags(unsigned LicmMssaOptCap,unsigned LicmMssaNoAccForPromotionCap,bool IsSink,Loop * L,MemorySSA * MSSA)358 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
359 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
360 Loop *L, MemorySSA *MSSA)
361 : LicmMssaOptCap(LicmMssaOptCap),
362 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
363 IsSink(IsSink) {
364 assert(((L != nullptr) == (MSSA != nullptr)) &&
365 "Unexpected values for SinkAndHoistLICMFlags");
366 if (!MSSA)
367 return;
368
369 unsigned AccessCapCount = 0;
370 for (auto *BB : L->getBlocks())
371 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
372 for (const auto &MA : *Accesses) {
373 (void)MA;
374 ++AccessCapCount;
375 if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
376 NoOfMemAccTooLarge = true;
377 return;
378 }
379 }
380 }
381
382 /// Hoist expressions out of the specified loop. Note, alias info for inner
383 /// loop is not preserved so it is not a good idea to run LICM multiple
384 /// times on one loop.
runOnLoop(Loop * L,AAResults * AA,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,ScalarEvolution * SE,MemorySSA * MSSA,OptimizationRemarkEmitter * ORE,bool LoopNestMode)385 bool LoopInvariantCodeMotion::runOnLoop(
386 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
387 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
388 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
389 bool LoopNestMode) {
390 bool Changed = false;
391
392 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
393 MSSA->ensureOptimizedUses();
394
395 // If this loop has metadata indicating that LICM is not to be performed then
396 // just exit.
397 if (hasDisableLICMTransformsHint(L)) {
398 return false;
399 }
400
401 // Don't sink stores from loops with coroutine suspend instructions.
402 // LICM would sink instructions into the default destination of
403 // the coroutine switch. The default destination of the switch is to
404 // handle the case where the coroutine is suspended, by which point the
405 // coroutine frame may have been destroyed. No instruction can be sunk there.
406 // FIXME: This would unfortunately hurt the performance of coroutines, however
407 // there is currently no general solution for this. Similar issues could also
408 // potentially happen in other passes where instructions are being moved
409 // across that edge.
410 bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
411 return llvm::any_of(*BB, [](Instruction &I) {
412 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
413 return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
414 });
415 });
416
417 MemorySSAUpdater MSSAU(MSSA);
418 SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
419 /*IsSink=*/true, L, MSSA);
420
421 // Get the preheader block to move instructions into...
422 BasicBlock *Preheader = L->getLoopPreheader();
423
424 // Compute loop safety information.
425 ICFLoopSafetyInfo SafetyInfo;
426 SafetyInfo.computeLoopSafetyInfo(L);
427
428 // We want to visit all of the instructions in this loop... that are not parts
429 // of our subloops (they have already had their invariants hoisted out of
430 // their loop, into this loop, so there is no need to process the BODIES of
431 // the subloops).
432 //
433 // Traverse the body of the loop in depth first order on the dominator tree so
434 // that we are guaranteed to see definitions before we see uses. This allows
435 // us to sink instructions in one pass, without iteration. After sinking
436 // instructions, we perform another pass to hoist them out of the loop.
437 if (L->hasDedicatedExits())
438 Changed |= LoopNestMode
439 ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
440 DT, BFI, TLI, TTI, L, MSSAU,
441 &SafetyInfo, Flags, ORE)
442 : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
443 TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE);
444 Flags.setIsSink(false);
445 if (Preheader)
446 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
447 MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
448 LicmAllowSpeculation);
449
450 // Now that all loop invariants have been removed from the loop, promote any
451 // memory references to scalars that we can.
452 // Don't sink stores from loops without dedicated block exits. Exits
453 // containing indirect branches are not transformed by loop simplify,
454 // make sure we catch that. An additional load may be generated in the
455 // preheader for SSA updater, so also avoid sinking when no preheader
456 // is available.
457 if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
458 !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
459 // Figure out the loop exits and their insertion points
460 SmallVector<BasicBlock *, 8> ExitBlocks;
461 L->getUniqueExitBlocks(ExitBlocks);
462
463 // We can't insert into a catchswitch.
464 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
465 return isa<CatchSwitchInst>(Exit->getTerminator());
466 });
467
468 if (!HasCatchSwitch) {
469 SmallVector<Instruction *, 8> InsertPts;
470 SmallVector<MemoryAccess *, 8> MSSAInsertPts;
471 InsertPts.reserve(ExitBlocks.size());
472 MSSAInsertPts.reserve(ExitBlocks.size());
473 for (BasicBlock *ExitBlock : ExitBlocks) {
474 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
475 MSSAInsertPts.push_back(nullptr);
476 }
477
478 PredIteratorCache PIC;
479
480 // Promoting one set of accesses may make the pointers for another set
481 // loop invariant, so run this in a loop.
482 bool Promoted = false;
483 bool LocalPromoted;
484 do {
485 LocalPromoted = false;
486 for (const SmallSetVector<Value *, 8> &PointerMustAliases :
487 collectPromotionCandidates(MSSA, AA, L)) {
488 LocalPromoted |= promoteLoopAccessesToScalars(
489 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
490 DT, TLI, L, MSSAU, &SafetyInfo, ORE, LicmAllowSpeculation);
491 }
492 Promoted |= LocalPromoted;
493 } while (LocalPromoted);
494
495 // Once we have promoted values across the loop body we have to
496 // recursively reform LCSSA as any nested loop may now have values defined
497 // within the loop used in the outer loop.
498 // FIXME: This is really heavy handed. It would be a bit better to use an
499 // SSAUpdater strategy during promotion that was LCSSA aware and reformed
500 // it as it went.
501 if (Promoted)
502 formLCSSARecursively(*L, *DT, LI, SE);
503
504 Changed |= Promoted;
505 }
506 }
507
508 // Check that neither this loop nor its parent have had LCSSA broken. LICM is
509 // specifically moving instructions across the loop boundary and so it is
510 // especially in need of basic functional correctness checking here.
511 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
512 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
513 "Parent loop not left in LCSSA form after LICM!");
514
515 if (VerifyMemorySSA)
516 MSSA->verifyMemorySSA();
517
518 if (Changed && SE)
519 SE->forgetLoopDispositions(L);
520 return Changed;
521 }
522
523 /// Walk the specified region of the CFG (defined by all blocks dominated by
524 /// the specified block, and that are in the current loop) in reverse depth
525 /// first order w.r.t the DominatorTree. This allows us to visit uses before
526 /// definitions, allowing us to sink a loop body in one pass without iteration.
527 ///
sinkRegion(DomTreeNode * N,AAResults * AA,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,Loop * CurLoop,MemorySSAUpdater & MSSAU,ICFLoopSafetyInfo * SafetyInfo,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE,Loop * OutermostLoop)528 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
529 DominatorTree *DT, BlockFrequencyInfo *BFI,
530 TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
531 Loop *CurLoop, MemorySSAUpdater &MSSAU,
532 ICFLoopSafetyInfo *SafetyInfo,
533 SinkAndHoistLICMFlags &Flags,
534 OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
535
536 // Verify inputs.
537 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
538 CurLoop != nullptr && SafetyInfo != nullptr &&
539 "Unexpected input to sinkRegion.");
540
541 // We want to visit children before parents. We will enqueue all the parents
542 // before their children in the worklist and process the worklist in reverse
543 // order.
544 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
545
546 bool Changed = false;
547 for (DomTreeNode *DTN : reverse(Worklist)) {
548 BasicBlock *BB = DTN->getBlock();
549 // Only need to process the contents of this block if it is not part of a
550 // subloop (which would already have been processed).
551 if (inSubLoop(BB, CurLoop, LI))
552 continue;
553
554 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
555 Instruction &I = *--II;
556
557 // The instruction is not used in the loop if it is dead. In this case,
558 // we just delete it instead of sinking it.
559 if (isInstructionTriviallyDead(&I, TLI)) {
560 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
561 salvageKnowledge(&I);
562 salvageDebugInfo(I);
563 ++II;
564 eraseInstruction(I, *SafetyInfo, MSSAU);
565 Changed = true;
566 continue;
567 }
568
569 // Check to see if we can sink this instruction to the exit blocks
570 // of the loop. We can do this if the all users of the instruction are
571 // outside of the loop. In this case, it doesn't even matter if the
572 // operands of the instruction are loop invariant.
573 //
574 bool FreeInLoop = false;
575 bool LoopNestMode = OutermostLoop != nullptr;
576 if (!I.mayHaveSideEffects() &&
577 isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
578 SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
579 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) {
580 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
581 if (!FreeInLoop) {
582 ++II;
583 salvageDebugInfo(I);
584 eraseInstruction(I, *SafetyInfo, MSSAU);
585 }
586 Changed = true;
587 }
588 }
589 }
590 }
591 if (VerifyMemorySSA)
592 MSSAU.getMemorySSA()->verifyMemorySSA();
593 return Changed;
594 }
595
sinkRegionForLoopNest(DomTreeNode * N,AAResults * AA,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,TargetLibraryInfo * TLI,TargetTransformInfo * TTI,Loop * CurLoop,MemorySSAUpdater & MSSAU,ICFLoopSafetyInfo * SafetyInfo,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE)596 bool llvm::sinkRegionForLoopNest(
597 DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
598 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
599 Loop *CurLoop, MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
600 SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {
601
602 bool Changed = false;
603 SmallPriorityWorklist<Loop *, 4> Worklist;
604 Worklist.insert(CurLoop);
605 appendLoopsToWorklist(*CurLoop, Worklist);
606 while (!Worklist.empty()) {
607 Loop *L = Worklist.pop_back_val();
608 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
609 TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
610 }
611 return Changed;
612 }
613
614 namespace {
615 // This is a helper class for hoistRegion to make it able to hoist control flow
616 // in order to be able to hoist phis. The way this works is that we initially
617 // start hoisting to the loop preheader, and when we see a loop invariant branch
618 // we make note of this. When we then come to hoist an instruction that's
619 // conditional on such a branch we duplicate the branch and the relevant control
620 // flow, then hoist the instruction into the block corresponding to its original
621 // block in the duplicated control flow.
622 class ControlFlowHoister {
623 private:
624 // Information about the loop we are hoisting from
625 LoopInfo *LI;
626 DominatorTree *DT;
627 Loop *CurLoop;
628 MemorySSAUpdater &MSSAU;
629
630 // A map of blocks in the loop to the block their instructions will be hoisted
631 // to.
632 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
633
634 // The branches that we can hoist, mapped to the block that marks a
635 // convergence point of their control flow.
636 DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
637
638 public:
ControlFlowHoister(LoopInfo * LI,DominatorTree * DT,Loop * CurLoop,MemorySSAUpdater & MSSAU)639 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
640 MemorySSAUpdater &MSSAU)
641 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
642
registerPossiblyHoistableBranch(BranchInst * BI)643 void registerPossiblyHoistableBranch(BranchInst *BI) {
644 // We can only hoist conditional branches with loop invariant operands.
645 if (!ControlFlowHoisting || !BI->isConditional() ||
646 !CurLoop->hasLoopInvariantOperands(BI))
647 return;
648
649 // The branch destinations need to be in the loop, and we don't gain
650 // anything by duplicating conditional branches with duplicate successors,
651 // as it's essentially the same as an unconditional branch.
652 BasicBlock *TrueDest = BI->getSuccessor(0);
653 BasicBlock *FalseDest = BI->getSuccessor(1);
654 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
655 TrueDest == FalseDest)
656 return;
657
658 // We can hoist BI if one branch destination is the successor of the other,
659 // or both have common successor which we check by seeing if the
660 // intersection of their successors is non-empty.
661 // TODO: This could be expanded to allowing branches where both ends
662 // eventually converge to a single block.
663 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
664 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
665 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
666 BasicBlock *CommonSucc = nullptr;
667 if (TrueDestSucc.count(FalseDest)) {
668 CommonSucc = FalseDest;
669 } else if (FalseDestSucc.count(TrueDest)) {
670 CommonSucc = TrueDest;
671 } else {
672 set_intersect(TrueDestSucc, FalseDestSucc);
673 // If there's one common successor use that.
674 if (TrueDestSucc.size() == 1)
675 CommonSucc = *TrueDestSucc.begin();
676 // If there's more than one pick whichever appears first in the block list
677 // (we can't use the value returned by TrueDestSucc.begin() as it's
678 // unpredicatable which element gets returned).
679 else if (!TrueDestSucc.empty()) {
680 Function *F = TrueDest->getParent();
681 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
682 auto It = llvm::find_if(*F, IsSucc);
683 assert(It != F->end() && "Could not find successor in function");
684 CommonSucc = &*It;
685 }
686 }
687 // The common successor has to be dominated by the branch, as otherwise
688 // there will be some other path to the successor that will not be
689 // controlled by this branch so any phi we hoist would be controlled by the
690 // wrong condition. This also takes care of avoiding hoisting of loop back
691 // edges.
692 // TODO: In some cases this could be relaxed if the successor is dominated
693 // by another block that's been hoisted and we can guarantee that the
694 // control flow has been replicated exactly.
695 if (CommonSucc && DT->dominates(BI, CommonSucc))
696 HoistableBranches[BI] = CommonSucc;
697 }
698
canHoistPHI(PHINode * PN)699 bool canHoistPHI(PHINode *PN) {
700 // The phi must have loop invariant operands.
701 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
702 return false;
703 // We can hoist phis if the block they are in is the target of hoistable
704 // branches which cover all of the predecessors of the block.
705 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
706 BasicBlock *BB = PN->getParent();
707 for (BasicBlock *PredBB : predecessors(BB))
708 PredecessorBlocks.insert(PredBB);
709 // If we have less predecessor blocks than predecessors then the phi will
710 // have more than one incoming value for the same block which we can't
711 // handle.
712 // TODO: This could be handled be erasing some of the duplicate incoming
713 // values.
714 if (PredecessorBlocks.size() != pred_size(BB))
715 return false;
716 for (auto &Pair : HoistableBranches) {
717 if (Pair.second == BB) {
718 // Which blocks are predecessors via this branch depends on if the
719 // branch is triangle-like or diamond-like.
720 if (Pair.first->getSuccessor(0) == BB) {
721 PredecessorBlocks.erase(Pair.first->getParent());
722 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
723 } else if (Pair.first->getSuccessor(1) == BB) {
724 PredecessorBlocks.erase(Pair.first->getParent());
725 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
726 } else {
727 PredecessorBlocks.erase(Pair.first->getSuccessor(0));
728 PredecessorBlocks.erase(Pair.first->getSuccessor(1));
729 }
730 }
731 }
732 // PredecessorBlocks will now be empty if for every predecessor of BB we
733 // found a hoistable branch source.
734 return PredecessorBlocks.empty();
735 }
736
getOrCreateHoistedBlock(BasicBlock * BB)737 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
738 if (!ControlFlowHoisting)
739 return CurLoop->getLoopPreheader();
740 // If BB has already been hoisted, return that
741 if (HoistDestinationMap.count(BB))
742 return HoistDestinationMap[BB];
743
744 // Check if this block is conditional based on a pending branch
745 auto HasBBAsSuccessor =
746 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
747 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
748 Pair.first->getSuccessor(1) == BB);
749 };
750 auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
751
752 // If not involved in a pending branch, hoist to preheader
753 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
754 if (It == HoistableBranches.end()) {
755 LLVM_DEBUG(dbgs() << "LICM using "
756 << InitialPreheader->getNameOrAsOperand()
757 << " as hoist destination for "
758 << BB->getNameOrAsOperand() << "\n");
759 HoistDestinationMap[BB] = InitialPreheader;
760 return InitialPreheader;
761 }
762 BranchInst *BI = It->first;
763 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
764 HoistableBranches.end() &&
765 "BB is expected to be the target of at most one branch");
766
767 LLVMContext &C = BB->getContext();
768 BasicBlock *TrueDest = BI->getSuccessor(0);
769 BasicBlock *FalseDest = BI->getSuccessor(1);
770 BasicBlock *CommonSucc = HoistableBranches[BI];
771 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
772
773 // Create hoisted versions of blocks that currently don't have them
774 auto CreateHoistedBlock = [&](BasicBlock *Orig) {
775 if (HoistDestinationMap.count(Orig))
776 return HoistDestinationMap[Orig];
777 BasicBlock *New =
778 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
779 HoistDestinationMap[Orig] = New;
780 DT->addNewBlock(New, HoistTarget);
781 if (CurLoop->getParentLoop())
782 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
783 ++NumCreatedBlocks;
784 LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
785 << " as hoist destination for " << Orig->getName()
786 << "\n");
787 return New;
788 };
789 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
790 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
791 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
792
793 // Link up these blocks with branches.
794 if (!HoistCommonSucc->getTerminator()) {
795 // The new common successor we've generated will branch to whatever that
796 // hoist target branched to.
797 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
798 assert(TargetSucc && "Expected hoist target to have a single successor");
799 HoistCommonSucc->moveBefore(TargetSucc);
800 BranchInst::Create(TargetSucc, HoistCommonSucc);
801 }
802 if (!HoistTrueDest->getTerminator()) {
803 HoistTrueDest->moveBefore(HoistCommonSucc);
804 BranchInst::Create(HoistCommonSucc, HoistTrueDest);
805 }
806 if (!HoistFalseDest->getTerminator()) {
807 HoistFalseDest->moveBefore(HoistCommonSucc);
808 BranchInst::Create(HoistCommonSucc, HoistFalseDest);
809 }
810
811 // If BI is being cloned to what was originally the preheader then
812 // HoistCommonSucc will now be the new preheader.
813 if (HoistTarget == InitialPreheader) {
814 // Phis in the loop header now need to use the new preheader.
815 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
816 MSSAU.wireOldPredecessorsToNewImmediatePredecessor(
817 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
818 // The new preheader dominates the loop header.
819 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
820 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
821 DT->changeImmediateDominator(HeaderNode, PreheaderNode);
822 // The preheader hoist destination is now the new preheader, with the
823 // exception of the hoist destination of this branch.
824 for (auto &Pair : HoistDestinationMap)
825 if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
826 Pair.second = HoistCommonSucc;
827 }
828
829 // Now finally clone BI.
830 ReplaceInstWithInst(
831 HoistTarget->getTerminator(),
832 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
833 ++NumClonedBranches;
834
835 assert(CurLoop->getLoopPreheader() &&
836 "Hoisting blocks should not have destroyed preheader");
837 return HoistDestinationMap[BB];
838 }
839 };
840 } // namespace
841
842 /// Walk the specified region of the CFG (defined by all blocks dominated by
843 /// the specified block, and that are in the current loop) in depth first
844 /// order w.r.t the DominatorTree. This allows us to visit definitions before
845 /// uses, allowing us to hoist a loop body in one pass without iteration.
846 ///
hoistRegion(DomTreeNode * N,AAResults * AA,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,TargetLibraryInfo * TLI,Loop * CurLoop,MemorySSAUpdater & MSSAU,ScalarEvolution * SE,ICFLoopSafetyInfo * SafetyInfo,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE,bool LoopNestMode,bool AllowSpeculation)847 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
848 DominatorTree *DT, BlockFrequencyInfo *BFI,
849 TargetLibraryInfo *TLI, Loop *CurLoop,
850 MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
851 ICFLoopSafetyInfo *SafetyInfo,
852 SinkAndHoistLICMFlags &Flags,
853 OptimizationRemarkEmitter *ORE, bool LoopNestMode,
854 bool AllowSpeculation) {
855 // Verify inputs.
856 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
857 CurLoop != nullptr && SafetyInfo != nullptr &&
858 "Unexpected input to hoistRegion.");
859
860 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
861
862 // Keep track of instructions that have been hoisted, as they may need to be
863 // re-hoisted if they end up not dominating all of their uses.
864 SmallVector<Instruction *, 16> HoistedInstructions;
865
866 // For PHI hoisting to work we need to hoist blocks before their successors.
867 // We can do this by iterating through the blocks in the loop in reverse
868 // post-order.
869 LoopBlocksRPO Worklist(CurLoop);
870 Worklist.perform(LI);
871 bool Changed = false;
872 for (BasicBlock *BB : Worklist) {
873 // Only need to process the contents of this block if it is not part of a
874 // subloop (which would already have been processed).
875 if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
876 continue;
877
878 for (Instruction &I : llvm::make_early_inc_range(*BB)) {
879 // Try constant folding this instruction. If all the operands are
880 // constants, it is technically hoistable, but it would be better to
881 // just fold it.
882 if (Constant *C = ConstantFoldInstruction(
883 &I, I.getModule()->getDataLayout(), TLI)) {
884 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
885 << '\n');
886 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
887 I.replaceAllUsesWith(C);
888 if (isInstructionTriviallyDead(&I, TLI))
889 eraseInstruction(I, *SafetyInfo, MSSAU);
890 Changed = true;
891 continue;
892 }
893
894 // Try hoisting the instruction out to the preheader. We can only do
895 // this if all of the operands of the instruction are loop invariant and
896 // if it is safe to hoist the instruction. We also check block frequency
897 // to make sure instruction only gets hoisted into colder blocks.
898 // TODO: It may be safe to hoist if we are hoisting to a conditional block
899 // and we have accurately duplicated the control flow from the loop header
900 // to that block.
901 if (CurLoop->hasLoopInvariantOperands(&I) &&
902 canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) &&
903 isSafeToExecuteUnconditionally(
904 I, DT, TLI, CurLoop, SafetyInfo, ORE,
905 CurLoop->getLoopPreheader()->getTerminator(), AllowSpeculation)) {
906 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
907 MSSAU, SE, ORE);
908 HoistedInstructions.push_back(&I);
909 Changed = true;
910 continue;
911 }
912
913 // Attempt to remove floating point division out of the loop by
914 // converting it to a reciprocal multiplication.
915 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
916 CurLoop->isLoopInvariant(I.getOperand(1))) {
917 auto Divisor = I.getOperand(1);
918 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
919 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
920 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
921 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
922 ReciprocalDivisor->insertBefore(&I);
923
924 auto Product =
925 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
926 Product->setFastMathFlags(I.getFastMathFlags());
927 SafetyInfo->insertInstructionTo(Product, I.getParent());
928 Product->insertAfter(&I);
929 I.replaceAllUsesWith(Product);
930 eraseInstruction(I, *SafetyInfo, MSSAU);
931
932 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
933 SafetyInfo, MSSAU, SE, ORE);
934 HoistedInstructions.push_back(ReciprocalDivisor);
935 Changed = true;
936 continue;
937 }
938
939 auto IsInvariantStart = [&](Instruction &I) {
940 using namespace PatternMatch;
941 return I.use_empty() &&
942 match(&I, m_Intrinsic<Intrinsic::invariant_start>());
943 };
944 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
945 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
946 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
947 };
948 if ((IsInvariantStart(I) || isGuard(&I)) &&
949 CurLoop->hasLoopInvariantOperands(&I) &&
950 MustExecuteWithoutWritesBefore(I)) {
951 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
952 MSSAU, SE, ORE);
953 HoistedInstructions.push_back(&I);
954 Changed = true;
955 continue;
956 }
957
958 if (PHINode *PN = dyn_cast<PHINode>(&I)) {
959 if (CFH.canHoistPHI(PN)) {
960 // Redirect incoming blocks first to ensure that we create hoisted
961 // versions of those blocks before we hoist the phi.
962 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
963 PN->setIncomingBlock(
964 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
965 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
966 MSSAU, SE, ORE);
967 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
968 Changed = true;
969 continue;
970 }
971 }
972
973 // Remember possibly hoistable branches so we can actually hoist them
974 // later if needed.
975 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
976 CFH.registerPossiblyHoistableBranch(BI);
977 }
978 }
979
980 // If we hoisted instructions to a conditional block they may not dominate
981 // their uses that weren't hoisted (such as phis where some operands are not
982 // loop invariant). If so make them unconditional by moving them to their
983 // immediate dominator. We iterate through the instructions in reverse order
984 // which ensures that when we rehoist an instruction we rehoist its operands,
985 // and also keep track of where in the block we are rehoisting to to make sure
986 // that we rehoist instructions before the instructions that use them.
987 Instruction *HoistPoint = nullptr;
988 if (ControlFlowHoisting) {
989 for (Instruction *I : reverse(HoistedInstructions)) {
990 if (!llvm::all_of(I->uses(),
991 [&](Use &U) { return DT->dominates(I, U); })) {
992 BasicBlock *Dominator =
993 DT->getNode(I->getParent())->getIDom()->getBlock();
994 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
995 if (HoistPoint)
996 assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
997 "New hoist point expected to dominate old hoist point");
998 HoistPoint = Dominator->getTerminator();
999 }
1000 LLVM_DEBUG(dbgs() << "LICM rehoisting to "
1001 << HoistPoint->getParent()->getNameOrAsOperand()
1002 << ": " << *I << "\n");
1003 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
1004 HoistPoint = I;
1005 Changed = true;
1006 }
1007 }
1008 }
1009 if (VerifyMemorySSA)
1010 MSSAU.getMemorySSA()->verifyMemorySSA();
1011
1012 // Now that we've finished hoisting make sure that LI and DT are still
1013 // valid.
1014 #ifdef EXPENSIVE_CHECKS
1015 if (Changed) {
1016 assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
1017 "Dominator tree verification failed");
1018 LI->verify(*DT);
1019 }
1020 #endif
1021
1022 return Changed;
1023 }
1024
1025 // Return true if LI is invariant within scope of the loop. LI is invariant if
1026 // CurLoop is dominated by an invariant.start representing the same memory
1027 // location and size as the memory location LI loads from, and also the
1028 // invariant.start has no uses.
isLoadInvariantInLoop(LoadInst * LI,DominatorTree * DT,Loop * CurLoop)1029 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1030 Loop *CurLoop) {
1031 Value *Addr = LI->getOperand(0);
1032 const DataLayout &DL = LI->getModule()->getDataLayout();
1033 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1034
1035 // It is not currently possible for clang to generate an invariant.start
1036 // intrinsic with scalable vector types because we don't support thread local
1037 // sizeless types and we don't permit sizeless types in structs or classes.
1038 // Furthermore, even if support is added for this in future the intrinsic
1039 // itself is defined to have a size of -1 for variable sized objects. This
1040 // makes it impossible to verify if the intrinsic envelops our region of
1041 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1042 // types would have a -1 parameter, but the former is clearly double the size
1043 // of the latter.
1044 if (LocSizeInBits.isScalable())
1045 return false;
1046
1047 // if the type is i8 addrspace(x)*, we know this is the type of
1048 // llvm.invariant.start operand
1049 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1050 LI->getPointerAddressSpace());
1051 unsigned BitcastsVisited = 0;
1052 // Look through bitcasts until we reach the i8* type (this is invariant.start
1053 // operand type).
1054 while (Addr->getType() != PtrInt8Ty) {
1055 auto *BC = dyn_cast<BitCastInst>(Addr);
1056 // Avoid traversing high number of bitcast uses.
1057 if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1058 return false;
1059 Addr = BC->getOperand(0);
1060 }
1061 // If we've ended up at a global/constant, bail. We shouldn't be looking at
1062 // uselists for non-local Values in a loop pass.
1063 if (isa<Constant>(Addr))
1064 return false;
1065
1066 unsigned UsesVisited = 0;
1067 // Traverse all uses of the load operand value, to see if invariant.start is
1068 // one of the uses, and whether it dominates the load instruction.
1069 for (auto *U : Addr->users()) {
1070 // Avoid traversing for Load operand with high number of users.
1071 if (++UsesVisited > MaxNumUsesTraversed)
1072 return false;
1073 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1074 // If there are escaping uses of invariant.start instruction, the load maybe
1075 // non-invariant.
1076 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1077 !II->use_empty())
1078 continue;
1079 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1080 // The intrinsic supports having a -1 argument for variable sized objects
1081 // so we should check for that here.
1082 if (InvariantSize->isNegative())
1083 continue;
1084 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1085 // Confirm the invariant.start location size contains the load operand size
1086 // in bits. Also, the invariant.start should dominate the load, and we
1087 // should not hoist the load out of a loop that contains this dominating
1088 // invariant.start.
1089 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1090 DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1091 return true;
1092 }
1093
1094 return false;
1095 }
1096
1097 namespace {
1098 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1099 /// sink a given instruction out of a loop. Does not address legality
1100 /// concerns such as aliasing or speculation safety.
isHoistableAndSinkableInst(Instruction & I)1101 bool isHoistableAndSinkableInst(Instruction &I) {
1102 // Only these instructions are hoistable/sinkable.
1103 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1104 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1105 isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1106 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1107 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1108 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1109 isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1110 }
1111 /// Return true if MSSA knows there are no MemoryDefs in the loop.
isReadOnly(const MemorySSAUpdater & MSSAU,const Loop * L)1112 bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) {
1113 for (auto *BB : L->getBlocks())
1114 if (MSSAU.getMemorySSA()->getBlockDefs(BB))
1115 return false;
1116 return true;
1117 }
1118
1119 /// Return true if I is the only Instruction with a MemoryAccess in L.
isOnlyMemoryAccess(const Instruction * I,const Loop * L,const MemorySSAUpdater & MSSAU)1120 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1121 const MemorySSAUpdater &MSSAU) {
1122 for (auto *BB : L->getBlocks())
1123 if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) {
1124 int NotAPhi = 0;
1125 for (const auto &Acc : *Accs) {
1126 if (isa<MemoryPhi>(&Acc))
1127 continue;
1128 const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1129 if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1130 return false;
1131 }
1132 }
1133 return true;
1134 }
1135 }
1136
canSinkOrHoistInst(Instruction & I,AAResults * AA,DominatorTree * DT,Loop * CurLoop,MemorySSAUpdater & MSSAU,bool TargetExecutesOncePerLoop,SinkAndHoistLICMFlags & Flags,OptimizationRemarkEmitter * ORE)1137 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1138 Loop *CurLoop, MemorySSAUpdater &MSSAU,
1139 bool TargetExecutesOncePerLoop,
1140 SinkAndHoistLICMFlags &Flags,
1141 OptimizationRemarkEmitter *ORE) {
1142 // If we don't understand the instruction, bail early.
1143 if (!isHoistableAndSinkableInst(I))
1144 return false;
1145
1146 MemorySSA *MSSA = MSSAU.getMemorySSA();
1147 // Loads have extra constraints we have to verify before we can hoist them.
1148 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1149 if (!LI->isUnordered())
1150 return false; // Don't sink/hoist volatile or ordered atomic loads!
1151
1152 // Loads from constant memory are always safe to move, even if they end up
1153 // in the same alias set as something that ends up being modified.
1154 if (AA->pointsToConstantMemory(LI->getOperand(0)))
1155 return true;
1156 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1157 return true;
1158
1159 if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1160 return false; // Don't risk duplicating unordered loads
1161
1162 // This checks for an invariant.start dominating the load.
1163 if (isLoadInvariantInLoop(LI, DT, CurLoop))
1164 return true;
1165
1166 bool Invalidated = pointerInvalidatedByLoop(
1167 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, Flags);
1168 // Check loop-invariant address because this may also be a sinkable load
1169 // whose address is not necessarily loop-invariant.
1170 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1171 ORE->emit([&]() {
1172 return OptimizationRemarkMissed(
1173 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1174 << "failed to move load with loop-invariant address "
1175 "because the loop may invalidate its value";
1176 });
1177
1178 return !Invalidated;
1179 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1180 // Don't sink or hoist dbg info; it's legal, but not useful.
1181 if (isa<DbgInfoIntrinsic>(I))
1182 return false;
1183
1184 // Don't sink calls which can throw.
1185 if (CI->mayThrow())
1186 return false;
1187
1188 // Convergent attribute has been used on operations that involve
1189 // inter-thread communication which results are implicitly affected by the
1190 // enclosing control flows. It is not safe to hoist or sink such operations
1191 // across control flow.
1192 if (CI->isConvergent())
1193 return false;
1194
1195 using namespace PatternMatch;
1196 if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1197 // Assumes don't actually alias anything or throw
1198 return true;
1199
1200 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1201 // Widenable conditions don't actually alias anything or throw
1202 return true;
1203
1204 // Handle simple cases by querying alias analysis.
1205 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1206 if (Behavior == FMRB_DoesNotAccessMemory)
1207 return true;
1208 if (AAResults::onlyReadsMemory(Behavior)) {
1209 // A readonly argmemonly function only reads from memory pointed to by
1210 // it's arguments with arbitrary offsets. If we can prove there are no
1211 // writes to this memory in the loop, we can hoist or sink.
1212 if (AAResults::onlyAccessesArgPointees(Behavior)) {
1213 // TODO: expand to writeable arguments
1214 for (Value *Op : CI->args())
1215 if (Op->getType()->isPointerTy() &&
1216 pointerInvalidatedByLoop(
1217 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1218 Flags))
1219 return false;
1220 return true;
1221 }
1222
1223 // If this call only reads from memory and there are no writes to memory
1224 // in the loop, we can hoist or sink the call as appropriate.
1225 if (isReadOnly(MSSAU, CurLoop))
1226 return true;
1227 }
1228
1229 // FIXME: This should use mod/ref information to see if we can hoist or
1230 // sink the call.
1231
1232 return false;
1233 } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1234 // Fences alias (most) everything to provide ordering. For the moment,
1235 // just give up if there are any other memory operations in the loop.
1236 return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1237 } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1238 if (!SI->isUnordered())
1239 return false; // Don't sink/hoist volatile or ordered atomic store!
1240
1241 // We can only hoist a store that we can prove writes a value which is not
1242 // read or overwritten within the loop. For those cases, we fallback to
1243 // load store promotion instead. TODO: We can extend this to cases where
1244 // there is exactly one write to the location and that write dominates an
1245 // arbitrary number of reads in the loop.
1246 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1247 return true;
1248 // If there are more accesses than the Promotion cap or no "quota" to
1249 // check clobber, then give up as we're not walking a list that long.
1250 if (Flags.tooManyMemoryAccesses() || Flags.tooManyClobberingCalls())
1251 return false;
1252 // If there are interfering Uses (i.e. their defining access is in the
1253 // loop), or ordered loads (stored as Defs!), don't move this store.
1254 // Could do better here, but this is conservatively correct.
1255 // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1256 // moving accesses. Can also extend to dominating uses.
1257 auto *SIMD = MSSA->getMemoryAccess(SI);
1258 for (auto *BB : CurLoop->getBlocks())
1259 if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1260 for (const auto &MA : *Accesses)
1261 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1262 auto *MD = MU->getDefiningAccess();
1263 if (!MSSA->isLiveOnEntryDef(MD) &&
1264 CurLoop->contains(MD->getBlock()))
1265 return false;
1266 // Disable hoisting past potentially interfering loads. Optimized
1267 // Uses may point to an access outside the loop, as getClobbering
1268 // checks the previous iteration when walking the backedge.
1269 // FIXME: More precise: no Uses that alias SI.
1270 if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU))
1271 return false;
1272 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1273 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1274 (void)LI; // Silence warning.
1275 assert(!LI->isUnordered() && "Expected unordered load");
1276 return false;
1277 }
1278 // Any call, while it may not be clobbering SI, it may be a use.
1279 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1280 // Check if the call may read from the memory location written
1281 // to by SI. Check CI's attributes and arguments; the number of
1282 // such checks performed is limited above by NoOfMemAccTooLarge.
1283 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1284 if (isModOrRefSet(MRI))
1285 return false;
1286 }
1287 }
1288 }
1289 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1290 Flags.incrementClobberingCalls();
1291 // If there are no clobbering Defs in the loop, store is safe to hoist.
1292 return MSSA->isLiveOnEntryDef(Source) ||
1293 !CurLoop->contains(Source->getBlock());
1294 }
1295
1296 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1297
1298 // We've established mechanical ability and aliasing, it's up to the caller
1299 // to check fault safety
1300 return true;
1301 }
1302
1303 /// Returns true if a PHINode is a trivially replaceable with an
1304 /// Instruction.
1305 /// This is true when all incoming values are that instruction.
1306 /// This pattern occurs most often with LCSSA PHI nodes.
1307 ///
isTriviallyReplaceablePHI(const PHINode & PN,const Instruction & I)1308 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1309 for (const Value *IncValue : PN.incoming_values())
1310 if (IncValue != &I)
1311 return false;
1312
1313 return true;
1314 }
1315
1316 /// Return true if the instruction is free in the loop.
isFreeInLoop(const Instruction & I,const Loop * CurLoop,const TargetTransformInfo * TTI)1317 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1318 const TargetTransformInfo *TTI) {
1319
1320 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1321 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1322 TargetTransformInfo::TCC_Free)
1323 return false;
1324 // For a GEP, we cannot simply use getUserCost because currently it
1325 // optimistically assumes that a GEP will fold into addressing mode
1326 // regardless of its users.
1327 const BasicBlock *BB = GEP->getParent();
1328 for (const User *U : GEP->users()) {
1329 const Instruction *UI = cast<Instruction>(U);
1330 if (CurLoop->contains(UI) &&
1331 (BB != UI->getParent() ||
1332 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1333 return false;
1334 }
1335 return true;
1336 } else
1337 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1338 TargetTransformInfo::TCC_Free;
1339 }
1340
1341 /// Return true if the only users of this instruction are outside of
1342 /// the loop. If this is true, we can sink the instruction to the exit
1343 /// blocks of the loop.
1344 ///
1345 /// We also return true if the instruction could be folded away in lowering.
1346 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
isNotUsedOrFreeInLoop(const Instruction & I,const Loop * CurLoop,const LoopSafetyInfo * SafetyInfo,TargetTransformInfo * TTI,bool & FreeInLoop,bool LoopNestMode)1347 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1348 const LoopSafetyInfo *SafetyInfo,
1349 TargetTransformInfo *TTI, bool &FreeInLoop,
1350 bool LoopNestMode) {
1351 const auto &BlockColors = SafetyInfo->getBlockColors();
1352 bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1353 for (const User *U : I.users()) {
1354 const Instruction *UI = cast<Instruction>(U);
1355 if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1356 const BasicBlock *BB = PN->getParent();
1357 // We cannot sink uses in catchswitches.
1358 if (isa<CatchSwitchInst>(BB->getTerminator()))
1359 return false;
1360
1361 // We need to sink a callsite to a unique funclet. Avoid sinking if the
1362 // phi use is too muddled.
1363 if (isa<CallInst>(I))
1364 if (!BlockColors.empty() &&
1365 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1366 return false;
1367
1368 if (LoopNestMode) {
1369 while (isa<PHINode>(UI) && UI->hasOneUser() &&
1370 UI->getNumOperands() == 1) {
1371 if (!CurLoop->contains(UI))
1372 break;
1373 UI = cast<Instruction>(UI->user_back());
1374 }
1375 }
1376 }
1377
1378 if (CurLoop->contains(UI)) {
1379 if (IsFree) {
1380 FreeInLoop = true;
1381 continue;
1382 }
1383 return false;
1384 }
1385 }
1386 return true;
1387 }
1388
cloneInstructionInExitBlock(Instruction & I,BasicBlock & ExitBlock,PHINode & PN,const LoopInfo * LI,const LoopSafetyInfo * SafetyInfo,MemorySSAUpdater & MSSAU)1389 static Instruction *cloneInstructionInExitBlock(
1390 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1391 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) {
1392 Instruction *New;
1393 if (auto *CI = dyn_cast<CallInst>(&I)) {
1394 const auto &BlockColors = SafetyInfo->getBlockColors();
1395
1396 // Sinking call-sites need to be handled differently from other
1397 // instructions. The cloned call-site needs a funclet bundle operand
1398 // appropriate for its location in the CFG.
1399 SmallVector<OperandBundleDef, 1> OpBundles;
1400 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1401 BundleIdx != BundleEnd; ++BundleIdx) {
1402 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1403 if (Bundle.getTagID() == LLVMContext::OB_funclet)
1404 continue;
1405
1406 OpBundles.emplace_back(Bundle);
1407 }
1408
1409 if (!BlockColors.empty()) {
1410 const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1411 assert(CV.size() == 1 && "non-unique color for exit block!");
1412 BasicBlock *BBColor = CV.front();
1413 Instruction *EHPad = BBColor->getFirstNonPHI();
1414 if (EHPad->isEHPad())
1415 OpBundles.emplace_back("funclet", EHPad);
1416 }
1417
1418 New = CallInst::Create(CI, OpBundles);
1419 } else {
1420 New = I.clone();
1421 }
1422
1423 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1424 if (!I.getName().empty())
1425 New->setName(I.getName() + ".le");
1426
1427 if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) {
1428 // Create a new MemoryAccess and let MemorySSA set its defining access.
1429 MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB(
1430 New, nullptr, New->getParent(), MemorySSA::Beginning);
1431 if (NewMemAcc) {
1432 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1433 MSSAU.insertDef(MemDef, /*RenameUses=*/true);
1434 else {
1435 auto *MemUse = cast<MemoryUse>(NewMemAcc);
1436 MSSAU.insertUse(MemUse, /*RenameUses=*/true);
1437 }
1438 }
1439 }
1440
1441 // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that
1442 // this is particularly cheap because we can rip off the PHI node that we're
1443 // replacing for the number and blocks of the predecessors.
1444 // OPT: If this shows up in a profile, we can instead finish sinking all
1445 // invariant instructions, and then walk their operands to re-establish
1446 // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1447 // sinking bottom-up.
1448 for (Use &Op : New->operands())
1449 if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1450 auto *OInst = cast<Instruction>(Op.get());
1451 PHINode *OpPN =
1452 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1453 OInst->getName() + ".lcssa", &ExitBlock.front());
1454 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1455 OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1456 Op = OpPN;
1457 }
1458 return New;
1459 }
1460
eraseInstruction(Instruction & I,ICFLoopSafetyInfo & SafetyInfo,MemorySSAUpdater & MSSAU)1461 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1462 MemorySSAUpdater &MSSAU) {
1463 MSSAU.removeMemoryAccess(&I);
1464 SafetyInfo.removeInstruction(&I);
1465 I.eraseFromParent();
1466 }
1467
moveInstructionBefore(Instruction & I,Instruction & Dest,ICFLoopSafetyInfo & SafetyInfo,MemorySSAUpdater & MSSAU,ScalarEvolution * SE)1468 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1469 ICFLoopSafetyInfo &SafetyInfo,
1470 MemorySSAUpdater &MSSAU,
1471 ScalarEvolution *SE) {
1472 SafetyInfo.removeInstruction(&I);
1473 SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1474 I.moveBefore(&Dest);
1475 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1476 MSSAU.getMemorySSA()->getMemoryAccess(&I)))
1477 MSSAU.moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::BeforeTerminator);
1478 if (SE)
1479 SE->forgetValue(&I);
1480 }
1481
sinkThroughTriviallyReplaceablePHI(PHINode * TPN,Instruction * I,LoopInfo * LI,SmallDenseMap<BasicBlock *,Instruction *,32> & SunkCopies,const LoopSafetyInfo * SafetyInfo,const Loop * CurLoop,MemorySSAUpdater & MSSAU)1482 static Instruction *sinkThroughTriviallyReplaceablePHI(
1483 PHINode *TPN, Instruction *I, LoopInfo *LI,
1484 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1485 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1486 MemorySSAUpdater &MSSAU) {
1487 assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1488 "Expect only trivially replaceable PHI");
1489 BasicBlock *ExitBlock = TPN->getParent();
1490 Instruction *New;
1491 auto It = SunkCopies.find(ExitBlock);
1492 if (It != SunkCopies.end())
1493 New = It->second;
1494 else
1495 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1496 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1497 return New;
1498 }
1499
canSplitPredecessors(PHINode * PN,LoopSafetyInfo * SafetyInfo)1500 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1501 BasicBlock *BB = PN->getParent();
1502 if (!BB->canSplitPredecessors())
1503 return false;
1504 // It's not impossible to split EHPad blocks, but if BlockColors already exist
1505 // it require updating BlockColors for all offspring blocks accordingly. By
1506 // skipping such corner case, we can make updating BlockColors after splitting
1507 // predecessor fairly simple.
1508 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1509 return false;
1510 for (BasicBlock *BBPred : predecessors(BB)) {
1511 if (isa<IndirectBrInst>(BBPred->getTerminator()))
1512 return false;
1513 }
1514 return true;
1515 }
1516
splitPredecessorsOfLoopExit(PHINode * PN,DominatorTree * DT,LoopInfo * LI,const Loop * CurLoop,LoopSafetyInfo * SafetyInfo,MemorySSAUpdater * MSSAU)1517 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1518 LoopInfo *LI, const Loop *CurLoop,
1519 LoopSafetyInfo *SafetyInfo,
1520 MemorySSAUpdater *MSSAU) {
1521 #ifndef NDEBUG
1522 SmallVector<BasicBlock *, 32> ExitBlocks;
1523 CurLoop->getUniqueExitBlocks(ExitBlocks);
1524 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1525 ExitBlocks.end());
1526 #endif
1527 BasicBlock *ExitBB = PN->getParent();
1528 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1529
1530 // Split predecessors of the loop exit to make instructions in the loop are
1531 // exposed to exit blocks through trivially replaceable PHIs while keeping the
1532 // loop in the canonical form where each predecessor of each exit block should
1533 // be contained within the loop. For example, this will convert the loop below
1534 // from
1535 //
1536 // LB1:
1537 // %v1 =
1538 // br %LE, %LB2
1539 // LB2:
1540 // %v2 =
1541 // br %LE, %LB1
1542 // LE:
1543 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1544 //
1545 // to
1546 //
1547 // LB1:
1548 // %v1 =
1549 // br %LE.split, %LB2
1550 // LB2:
1551 // %v2 =
1552 // br %LE.split2, %LB1
1553 // LE.split:
1554 // %p1 = phi [%v1, %LB1] <-- trivially replaceable
1555 // br %LE
1556 // LE.split2:
1557 // %p2 = phi [%v2, %LB2] <-- trivially replaceable
1558 // br %LE
1559 // LE:
1560 // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1561 //
1562 const auto &BlockColors = SafetyInfo->getBlockColors();
1563 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1564 while (!PredBBs.empty()) {
1565 BasicBlock *PredBB = *PredBBs.begin();
1566 assert(CurLoop->contains(PredBB) &&
1567 "Expect all predecessors are in the loop");
1568 if (PN->getBasicBlockIndex(PredBB) >= 0) {
1569 BasicBlock *NewPred = SplitBlockPredecessors(
1570 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1571 // Since we do not allow splitting EH-block with BlockColors in
1572 // canSplitPredecessors(), we can simply assign predecessor's color to
1573 // the new block.
1574 if (!BlockColors.empty())
1575 // Grab a reference to the ColorVector to be inserted before getting the
1576 // reference to the vector we are copying because inserting the new
1577 // element in BlockColors might cause the map to be reallocated.
1578 SafetyInfo->copyColors(NewPred, PredBB);
1579 }
1580 PredBBs.remove(PredBB);
1581 }
1582 }
1583
1584 /// When an instruction is found to only be used outside of the loop, this
1585 /// function moves it to the exit blocks and patches up SSA form as needed.
1586 /// This method is guaranteed to remove the original instruction from its
1587 /// position, and may either delete it or move it to outside of the loop.
1588 ///
sink(Instruction & I,LoopInfo * LI,DominatorTree * DT,BlockFrequencyInfo * BFI,const Loop * CurLoop,ICFLoopSafetyInfo * SafetyInfo,MemorySSAUpdater & MSSAU,OptimizationRemarkEmitter * ORE)1589 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1590 BlockFrequencyInfo *BFI, const Loop *CurLoop,
1591 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU,
1592 OptimizationRemarkEmitter *ORE) {
1593 bool Changed = false;
1594 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1595
1596 // Iterate over users to be ready for actual sinking. Replace users via
1597 // unreachable blocks with undef and make all user PHIs trivially replaceable.
1598 SmallPtrSet<Instruction *, 8> VisitedUsers;
1599 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1600 auto *User = cast<Instruction>(*UI);
1601 Use &U = UI.getUse();
1602 ++UI;
1603
1604 if (VisitedUsers.count(User) || CurLoop->contains(User))
1605 continue;
1606
1607 if (!DT->isReachableFromEntry(User->getParent())) {
1608 U = PoisonValue::get(I.getType());
1609 Changed = true;
1610 continue;
1611 }
1612
1613 // The user must be a PHI node.
1614 PHINode *PN = cast<PHINode>(User);
1615
1616 // Surprisingly, instructions can be used outside of loops without any
1617 // exits. This can only happen in PHI nodes if the incoming block is
1618 // unreachable.
1619 BasicBlock *BB = PN->getIncomingBlock(U);
1620 if (!DT->isReachableFromEntry(BB)) {
1621 U = PoisonValue::get(I.getType());
1622 Changed = true;
1623 continue;
1624 }
1625
1626 VisitedUsers.insert(PN);
1627 if (isTriviallyReplaceablePHI(*PN, I))
1628 continue;
1629
1630 if (!canSplitPredecessors(PN, SafetyInfo))
1631 return Changed;
1632
1633 // Split predecessors of the PHI so that we can make users trivially
1634 // replaceable.
1635 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU);
1636
1637 // Should rebuild the iterators, as they may be invalidated by
1638 // splitPredecessorsOfLoopExit().
1639 UI = I.user_begin();
1640 UE = I.user_end();
1641 }
1642
1643 if (VisitedUsers.empty())
1644 return Changed;
1645
1646 ORE->emit([&]() {
1647 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1648 << "sinking " << ore::NV("Inst", &I);
1649 });
1650 if (isa<LoadInst>(I))
1651 ++NumMovedLoads;
1652 else if (isa<CallInst>(I))
1653 ++NumMovedCalls;
1654 ++NumSunk;
1655
1656 #ifndef NDEBUG
1657 SmallVector<BasicBlock *, 32> ExitBlocks;
1658 CurLoop->getUniqueExitBlocks(ExitBlocks);
1659 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1660 ExitBlocks.end());
1661 #endif
1662
1663 // Clones of this instruction. Don't create more than one per exit block!
1664 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1665
1666 // If this instruction is only used outside of the loop, then all users are
1667 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1668 // the instruction.
1669 // First check if I is worth sinking for all uses. Sink only when it is worth
1670 // across all uses.
1671 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1672 for (auto *UI : Users) {
1673 auto *User = cast<Instruction>(UI);
1674
1675 if (CurLoop->contains(User))
1676 continue;
1677
1678 PHINode *PN = cast<PHINode>(User);
1679 assert(ExitBlockSet.count(PN->getParent()) &&
1680 "The LCSSA PHI is not in an exit block!");
1681
1682 // The PHI must be trivially replaceable.
1683 Instruction *New = sinkThroughTriviallyReplaceablePHI(
1684 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1685 PN->replaceAllUsesWith(New);
1686 eraseInstruction(*PN, *SafetyInfo, MSSAU);
1687 Changed = true;
1688 }
1689 return Changed;
1690 }
1691
1692 /// When an instruction is found to only use loop invariant operands that
1693 /// is safe to hoist, this instruction is called to do the dirty work.
1694 ///
hoist(Instruction & I,const DominatorTree * DT,const Loop * CurLoop,BasicBlock * Dest,ICFLoopSafetyInfo * SafetyInfo,MemorySSAUpdater & MSSAU,ScalarEvolution * SE,OptimizationRemarkEmitter * ORE)1695 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1696 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1697 MemorySSAUpdater &MSSAU, ScalarEvolution *SE,
1698 OptimizationRemarkEmitter *ORE) {
1699 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1700 << I << "\n");
1701 ORE->emit([&]() {
1702 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1703 << ore::NV("Inst", &I);
1704 });
1705
1706 // Metadata can be dependent on conditions we are hoisting above.
1707 // Conservatively strip all metadata on the instruction unless we were
1708 // guaranteed to execute I if we entered the loop, in which case the metadata
1709 // is valid in the loop preheader.
1710 // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1711 // then moving to the preheader means we should strip attributes on the call
1712 // that can cause UB since we may be hoisting above conditions that allowed
1713 // inferring those attributes. They may not be valid at the preheader.
1714 if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1715 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1716 // time in isGuaranteedToExecute if we don't actually have anything to
1717 // drop. It is a compile time optimization, not required for correctness.
1718 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1719 I.dropUndefImplyingAttrsAndUnknownMetadata();
1720
1721 if (isa<PHINode>(I))
1722 // Move the new node to the end of the phi list in the destination block.
1723 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1724 else
1725 // Move the new node to the destination block, before its terminator.
1726 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1727
1728 I.updateLocationAfterHoist();
1729
1730 if (isa<LoadInst>(I))
1731 ++NumMovedLoads;
1732 else if (isa<CallInst>(I))
1733 ++NumMovedCalls;
1734 ++NumHoisted;
1735 }
1736
1737 /// Only sink or hoist an instruction if it is not a trapping instruction,
1738 /// or if the instruction is known not to trap when moved to the preheader.
1739 /// or if it is a trapping instruction and is guaranteed to execute.
isSafeToExecuteUnconditionally(Instruction & Inst,const DominatorTree * DT,const TargetLibraryInfo * TLI,const Loop * CurLoop,const LoopSafetyInfo * SafetyInfo,OptimizationRemarkEmitter * ORE,const Instruction * CtxI,bool AllowSpeculation)1740 static bool isSafeToExecuteUnconditionally(
1741 Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
1742 const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
1743 OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
1744 bool AllowSpeculation) {
1745 if (AllowSpeculation && isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1746 return true;
1747
1748 bool GuaranteedToExecute =
1749 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1750
1751 if (!GuaranteedToExecute) {
1752 auto *LI = dyn_cast<LoadInst>(&Inst);
1753 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1754 ORE->emit([&]() {
1755 return OptimizationRemarkMissed(
1756 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1757 << "failed to hoist load with loop-invariant address "
1758 "because load is conditionally executed";
1759 });
1760 }
1761
1762 return GuaranteedToExecute;
1763 }
1764
1765 namespace {
1766 class LoopPromoter : public LoadAndStorePromoter {
1767 Value *SomePtr; // Designated pointer to store to.
1768 const SmallSetVector<Value *, 8> &PointerMustAliases;
1769 SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1770 SmallVectorImpl<Instruction *> &LoopInsertPts;
1771 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1772 PredIteratorCache &PredCache;
1773 MemorySSAUpdater &MSSAU;
1774 LoopInfo &LI;
1775 DebugLoc DL;
1776 Align Alignment;
1777 bool UnorderedAtomic;
1778 AAMDNodes AATags;
1779 ICFLoopSafetyInfo &SafetyInfo;
1780 bool CanInsertStoresInExitBlocks;
1781
1782 // We're about to add a use of V in a loop exit block. Insert an LCSSA phi
1783 // (if legal) if doing so would add an out-of-loop use to an instruction
1784 // defined in-loop.
maybeInsertLCSSAPHI(Value * V,BasicBlock * BB) const1785 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1786 if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1787 return V;
1788
1789 Instruction *I = cast<Instruction>(V);
1790 // We need to create an LCSSA PHI node for the incoming value and
1791 // store that.
1792 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1793 I->getName() + ".lcssa", &BB->front());
1794 for (BasicBlock *Pred : PredCache.get(BB))
1795 PN->addIncoming(I, Pred);
1796 return PN;
1797 }
1798
1799 public:
LoopPromoter(Value * SP,ArrayRef<const Instruction * > Insts,SSAUpdater & S,const SmallSetVector<Value *,8> & PMA,SmallVectorImpl<BasicBlock * > & LEB,SmallVectorImpl<Instruction * > & LIP,SmallVectorImpl<MemoryAccess * > & MSSAIP,PredIteratorCache & PIC,MemorySSAUpdater & MSSAU,LoopInfo & li,DebugLoc dl,Align Alignment,bool UnorderedAtomic,const AAMDNodes & AATags,ICFLoopSafetyInfo & SafetyInfo,bool CanInsertStoresInExitBlocks)1800 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1801 const SmallSetVector<Value *, 8> &PMA,
1802 SmallVectorImpl<BasicBlock *> &LEB,
1803 SmallVectorImpl<Instruction *> &LIP,
1804 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1805 MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl,
1806 Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1807 ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
1808 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1809 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1810 PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1811 Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1812 SafetyInfo(SafetyInfo),
1813 CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks) {}
1814
isInstInList(Instruction * I,const SmallVectorImpl<Instruction * > &) const1815 bool isInstInList(Instruction *I,
1816 const SmallVectorImpl<Instruction *> &) const override {
1817 Value *Ptr;
1818 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1819 Ptr = LI->getOperand(0);
1820 else
1821 Ptr = cast<StoreInst>(I)->getPointerOperand();
1822 return PointerMustAliases.count(Ptr);
1823 }
1824
insertStoresInLoopExitBlocks()1825 void insertStoresInLoopExitBlocks() {
1826 // Insert stores after in the loop exit blocks. Each exit block gets a
1827 // store of the live-out values that feed them. Since we've already told
1828 // the SSA updater about the defs in the loop and the preheader
1829 // definition, it is all set and we can start using it.
1830 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1831 BasicBlock *ExitBlock = LoopExitBlocks[i];
1832 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1833 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1834 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1835 Instruction *InsertPos = LoopInsertPts[i];
1836 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1837 if (UnorderedAtomic)
1838 NewSI->setOrdering(AtomicOrdering::Unordered);
1839 NewSI->setAlignment(Alignment);
1840 NewSI->setDebugLoc(DL);
1841 if (AATags)
1842 NewSI->setAAMetadata(AATags);
1843
1844 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1845 MemoryAccess *NewMemAcc;
1846 if (!MSSAInsertPoint) {
1847 NewMemAcc = MSSAU.createMemoryAccessInBB(
1848 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1849 } else {
1850 NewMemAcc =
1851 MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1852 }
1853 MSSAInsertPts[i] = NewMemAcc;
1854 MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true);
1855 // FIXME: true for safety, false may still be correct.
1856 }
1857 }
1858
doExtraRewritesBeforeFinalDeletion()1859 void doExtraRewritesBeforeFinalDeletion() override {
1860 if (CanInsertStoresInExitBlocks)
1861 insertStoresInLoopExitBlocks();
1862 }
1863
instructionDeleted(Instruction * I) const1864 void instructionDeleted(Instruction *I) const override {
1865 SafetyInfo.removeInstruction(I);
1866 MSSAU.removeMemoryAccess(I);
1867 }
1868
shouldDelete(Instruction * I) const1869 bool shouldDelete(Instruction *I) const override {
1870 if (isa<StoreInst>(I))
1871 return CanInsertStoresInExitBlocks;
1872 return true;
1873 }
1874 };
1875
isNotCapturedBeforeOrInLoop(const Value * V,const Loop * L,DominatorTree * DT)1876 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1877 DominatorTree *DT) {
1878 // We can perform the captured-before check against any instruction in the
1879 // loop header, as the loop header is reachable from any instruction inside
1880 // the loop.
1881 // TODO: ReturnCaptures=true shouldn't be necessary here.
1882 return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1883 /* StoreCaptures */ true,
1884 L->getHeader()->getTerminator(), DT);
1885 }
1886
1887 /// Return true if we can prove that a caller cannot inspect the object if an
1888 /// unwind occurs inside the loop.
isNotVisibleOnUnwindInLoop(const Value * Object,const Loop * L,DominatorTree * DT)1889 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
1890 DominatorTree *DT) {
1891 bool RequiresNoCaptureBeforeUnwind;
1892 if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
1893 return false;
1894
1895 return !RequiresNoCaptureBeforeUnwind ||
1896 isNotCapturedBeforeOrInLoop(Object, L, DT);
1897 }
1898
1899 } // namespace
1900
1901 /// Try to promote memory values to scalars by sinking stores out of the
1902 /// loop and moving loads to before the loop. We do this by looping over
1903 /// the stores in the loop, looking for stores to Must pointers which are
1904 /// loop invariant.
1905 ///
promoteLoopAccessesToScalars(const SmallSetVector<Value *,8> & PointerMustAliases,SmallVectorImpl<BasicBlock * > & ExitBlocks,SmallVectorImpl<Instruction * > & InsertPts,SmallVectorImpl<MemoryAccess * > & MSSAInsertPts,PredIteratorCache & PIC,LoopInfo * LI,DominatorTree * DT,const TargetLibraryInfo * TLI,Loop * CurLoop,MemorySSAUpdater & MSSAU,ICFLoopSafetyInfo * SafetyInfo,OptimizationRemarkEmitter * ORE,bool AllowSpeculation)1906 bool llvm::promoteLoopAccessesToScalars(
1907 const SmallSetVector<Value *, 8> &PointerMustAliases,
1908 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1909 SmallVectorImpl<Instruction *> &InsertPts,
1910 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1911 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1912 Loop *CurLoop, MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1913 OptimizationRemarkEmitter *ORE, bool AllowSpeculation) {
1914 // Verify inputs.
1915 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1916 SafetyInfo != nullptr &&
1917 "Unexpected Input to promoteLoopAccessesToScalars");
1918
1919 Value *SomePtr = *PointerMustAliases.begin();
1920 BasicBlock *Preheader = CurLoop->getLoopPreheader();
1921
1922 // It is not safe to promote a load/store from the loop if the load/store is
1923 // conditional. For example, turning:
1924 //
1925 // for () { if (c) *P += 1; }
1926 //
1927 // into:
1928 //
1929 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
1930 //
1931 // is not safe, because *P may only be valid to access if 'c' is true.
1932 //
1933 // The safety property divides into two parts:
1934 // p1) The memory may not be dereferenceable on entry to the loop. In this
1935 // case, we can't insert the required load in the preheader.
1936 // p2) The memory model does not allow us to insert a store along any dynamic
1937 // path which did not originally have one.
1938 //
1939 // If at least one store is guaranteed to execute, both properties are
1940 // satisfied, and promotion is legal.
1941 //
1942 // This, however, is not a necessary condition. Even if no store/load is
1943 // guaranteed to execute, we can still establish these properties.
1944 // We can establish (p1) by proving that hoisting the load into the preheader
1945 // is safe (i.e. proving dereferenceability on all paths through the loop). We
1946 // can use any access within the alias set to prove dereferenceability,
1947 // since they're all must alias.
1948 //
1949 // There are two ways establish (p2):
1950 // a) Prove the location is thread-local. In this case the memory model
1951 // requirement does not apply, and stores are safe to insert.
1952 // b) Prove a store dominates every exit block. In this case, if an exit
1953 // blocks is reached, the original dynamic path would have taken us through
1954 // the store, so inserting a store into the exit block is safe. Note that this
1955 // is different from the store being guaranteed to execute. For instance,
1956 // if an exception is thrown on the first iteration of the loop, the original
1957 // store is never executed, but the exit blocks are not executed either.
1958
1959 bool DereferenceableInPH = false;
1960 bool SafeToInsertStore = false;
1961 bool StoreIsGuanteedToExecute = false;
1962 bool FoundLoadToPromote = false;
1963
1964 SmallVector<Instruction *, 64> LoopUses;
1965
1966 // We start with an alignment of one and try to find instructions that allow
1967 // us to prove better alignment.
1968 Align Alignment;
1969 // Keep track of which types of access we see
1970 bool SawUnorderedAtomic = false;
1971 bool SawNotAtomic = false;
1972 AAMDNodes AATags;
1973
1974 const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1975
1976 bool IsKnownThreadLocalObject = false;
1977 if (SafetyInfo->anyBlockMayThrow()) {
1978 // If a loop can throw, we have to insert a store along each unwind edge.
1979 // That said, we can't actually make the unwind edge explicit. Therefore,
1980 // we have to prove that the store is dead along the unwind edge. We do
1981 // this by proving that the caller can't have a reference to the object
1982 // after return and thus can't possibly load from the object.
1983 Value *Object = getUnderlyingObject(SomePtr);
1984 if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
1985 return false;
1986 // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1987 // visible to other threads if captured and used during their lifetimes.
1988 IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1989 }
1990
1991 // Check that all accesses to pointers in the aliass set use the same type.
1992 // We cannot (yet) promote a memory location that is loaded and stored in
1993 // different sizes. While we are at it, collect alignment and AA info.
1994 Type *AccessTy = nullptr;
1995 for (Value *ASIV : PointerMustAliases) {
1996 for (Use &U : ASIV->uses()) {
1997 // Ignore instructions that are outside the loop.
1998 Instruction *UI = dyn_cast<Instruction>(U.getUser());
1999 if (!UI || !CurLoop->contains(UI))
2000 continue;
2001
2002 // If there is an non-load/store instruction in the loop, we can't promote
2003 // it.
2004 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2005 if (!Load->isUnordered())
2006 return false;
2007
2008 SawUnorderedAtomic |= Load->isAtomic();
2009 SawNotAtomic |= !Load->isAtomic();
2010 FoundLoadToPromote = true;
2011
2012 Align InstAlignment = Load->getAlign();
2013
2014 // Note that proving a load safe to speculate requires proving
2015 // sufficient alignment at the target location. Proving it guaranteed
2016 // to execute does as well. Thus we can increase our guaranteed
2017 // alignment as well.
2018 if (!DereferenceableInPH || (InstAlignment > Alignment))
2019 if (isSafeToExecuteUnconditionally(
2020 *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2021 Preheader->getTerminator(), AllowSpeculation)) {
2022 DereferenceableInPH = true;
2023 Alignment = std::max(Alignment, InstAlignment);
2024 }
2025 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2026 // Stores *of* the pointer are not interesting, only stores *to* the
2027 // pointer.
2028 if (U.getOperandNo() != StoreInst::getPointerOperandIndex())
2029 continue;
2030 if (!Store->isUnordered())
2031 return false;
2032
2033 SawUnorderedAtomic |= Store->isAtomic();
2034 SawNotAtomic |= !Store->isAtomic();
2035
2036 // If the store is guaranteed to execute, both properties are satisfied.
2037 // We may want to check if a store is guaranteed to execute even if we
2038 // already know that promotion is safe, since it may have higher
2039 // alignment than any other guaranteed stores, in which case we can
2040 // raise the alignment on the promoted store.
2041 Align InstAlignment = Store->getAlign();
2042 bool GuaranteedToExecute =
2043 SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop);
2044 StoreIsGuanteedToExecute |= GuaranteedToExecute;
2045 if (!DereferenceableInPH || !SafeToInsertStore ||
2046 (InstAlignment > Alignment)) {
2047 if (GuaranteedToExecute) {
2048 DereferenceableInPH = true;
2049 SafeToInsertStore = true;
2050 Alignment = std::max(Alignment, InstAlignment);
2051 }
2052 }
2053
2054 // If a store dominates all exit blocks, it is safe to sink.
2055 // As explained above, if an exit block was executed, a dominating
2056 // store must have been executed at least once, so we are not
2057 // introducing stores on paths that did not have them.
2058 // Note that this only looks at explicit exit blocks. If we ever
2059 // start sinking stores into unwind edges (see above), this will break.
2060 if (!SafeToInsertStore)
2061 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2062 return DT->dominates(Store->getParent(), Exit);
2063 });
2064
2065 // If the store is not guaranteed to execute, we may still get
2066 // deref info through it.
2067 if (!DereferenceableInPH) {
2068 DereferenceableInPH = isDereferenceableAndAlignedPointer(
2069 Store->getPointerOperand(), Store->getValueOperand()->getType(),
2070 Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2071 }
2072 } else
2073 return false; // Not a load or store.
2074
2075 if (!AccessTy)
2076 AccessTy = getLoadStoreType(UI);
2077 else if (AccessTy != getLoadStoreType(UI))
2078 return false;
2079
2080 // Merge the AA tags.
2081 if (LoopUses.empty()) {
2082 // On the first load/store, just take its AA tags.
2083 AATags = UI->getAAMetadata();
2084 } else if (AATags) {
2085 AATags = AATags.merge(UI->getAAMetadata());
2086 }
2087
2088 LoopUses.push_back(UI);
2089 }
2090 }
2091
2092 // If we found both an unordered atomic instruction and a non-atomic memory
2093 // access, bail. We can't blindly promote non-atomic to atomic since we
2094 // might not be able to lower the result. We can't downgrade since that
2095 // would violate memory model. Also, align 0 is an error for atomics.
2096 if (SawUnorderedAtomic && SawNotAtomic)
2097 return false;
2098
2099 // If we're inserting an atomic load in the preheader, we must be able to
2100 // lower it. We're only guaranteed to be able to lower naturally aligned
2101 // atomics.
2102 if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
2103 return false;
2104
2105 // If we couldn't prove we can hoist the load, bail.
2106 if (!DereferenceableInPH)
2107 return false;
2108
2109 // We know we can hoist the load, but don't have a guaranteed store.
2110 // Check whether the location is thread-local. If it is, then we can insert
2111 // stores along paths which originally didn't have them without violating the
2112 // memory model.
2113 if (!SafeToInsertStore) {
2114 if (IsKnownThreadLocalObject)
2115 SafeToInsertStore = true;
2116 else {
2117 Value *Object = getUnderlyingObject(SomePtr);
2118 SafeToInsertStore =
2119 (isNoAliasCall(Object) || isa<AllocaInst>(Object)) &&
2120 isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2121 }
2122 }
2123
2124 // If we've still failed to prove we can sink the store, hoist the load
2125 // only, if possible.
2126 if (!SafeToInsertStore && !FoundLoadToPromote)
2127 // If we cannot hoist the load either, give up.
2128 return false;
2129
2130 // Lets do the promotion!
2131 if (SafeToInsertStore)
2132 LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
2133 << '\n');
2134 else
2135 LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
2136 << '\n');
2137
2138 ORE->emit([&]() {
2139 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2140 LoopUses[0])
2141 << "Moving accesses to memory location out of the loop";
2142 });
2143 ++NumPromoted;
2144
2145 // Look at all the loop uses, and try to merge their locations.
2146 std::vector<const DILocation *> LoopUsesLocs;
2147 for (auto U : LoopUses)
2148 LoopUsesLocs.push_back(U->getDebugLoc().get());
2149 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2150
2151 // We use the SSAUpdater interface to insert phi nodes as required.
2152 SmallVector<PHINode *, 16> NewPHIs;
2153 SSAUpdater SSA(&NewPHIs);
2154 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2155 InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
2156 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo,
2157 SafeToInsertStore);
2158
2159 // Set up the preheader to have a definition of the value. It is the live-out
2160 // value from the preheader that uses in the loop will use.
2161 LoadInst *PreheaderLoad = nullptr;
2162 if (FoundLoadToPromote || !StoreIsGuanteedToExecute) {
2163 PreheaderLoad =
2164 new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted",
2165 Preheader->getTerminator());
2166 if (SawUnorderedAtomic)
2167 PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2168 PreheaderLoad->setAlignment(Alignment);
2169 PreheaderLoad->setDebugLoc(DebugLoc());
2170 if (AATags)
2171 PreheaderLoad->setAAMetadata(AATags);
2172
2173 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB(
2174 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2175 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2176 MSSAU.insertUse(NewMemUse, /*RenameUses=*/true);
2177 SSA.AddAvailableValue(Preheader, PreheaderLoad);
2178 } else {
2179 SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy));
2180 }
2181
2182 if (VerifyMemorySSA)
2183 MSSAU.getMemorySSA()->verifyMemorySSA();
2184 // Rewrite all the loads in the loop and remember all the definitions from
2185 // stores in the loop.
2186 Promoter.run(LoopUses);
2187
2188 if (VerifyMemorySSA)
2189 MSSAU.getMemorySSA()->verifyMemorySSA();
2190 // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2191 if (PreheaderLoad && PreheaderLoad->use_empty())
2192 eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2193
2194 return true;
2195 }
2196
foreachMemoryAccess(MemorySSA * MSSA,Loop * L,function_ref<void (Instruction *)> Fn)2197 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2198 function_ref<void(Instruction *)> Fn) {
2199 for (const BasicBlock *BB : L->blocks())
2200 if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2201 for (const auto &Access : *Accesses)
2202 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2203 Fn(MUD->getMemoryInst());
2204 }
2205
2206 static SmallVector<SmallSetVector<Value *, 8>, 0>
collectPromotionCandidates(MemorySSA * MSSA,AliasAnalysis * AA,Loop * L)2207 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2208 AliasSetTracker AST(*AA);
2209
2210 auto IsPotentiallyPromotable = [L](const Instruction *I) {
2211 if (const auto *SI = dyn_cast<StoreInst>(I))
2212 return L->isLoopInvariant(SI->getPointerOperand());
2213 if (const auto *LI = dyn_cast<LoadInst>(I))
2214 return L->isLoopInvariant(LI->getPointerOperand());
2215 return false;
2216 };
2217
2218 // Populate AST with potentially promotable accesses.
2219 SmallPtrSet<Value *, 16> AttemptingPromotion;
2220 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2221 if (IsPotentiallyPromotable(I)) {
2222 AttemptingPromotion.insert(I);
2223 AST.add(I);
2224 }
2225 });
2226
2227 // We're only interested in must-alias sets that contain a mod.
2228 SmallVector<const AliasSet *, 8> Sets;
2229 for (AliasSet &AS : AST)
2230 if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2231 Sets.push_back(&AS);
2232
2233 if (Sets.empty())
2234 return {}; // Nothing to promote...
2235
2236 // Discard any sets for which there is an aliasing non-promotable access.
2237 foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2238 if (AttemptingPromotion.contains(I))
2239 return;
2240
2241 llvm::erase_if(Sets, [&](const AliasSet *AS) {
2242 return AS->aliasesUnknownInst(I, *AA);
2243 });
2244 });
2245
2246 SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2247 for (const AliasSet *Set : Sets) {
2248 SmallSetVector<Value *, 8> PointerMustAliases;
2249 for (const auto &ASI : *Set)
2250 PointerMustAliases.insert(ASI.getValue());
2251 Result.push_back(std::move(PointerMustAliases));
2252 }
2253
2254 return Result;
2255 }
2256
pointerInvalidatedByLoop(MemorySSA * MSSA,MemoryUse * MU,Loop * CurLoop,Instruction & I,SinkAndHoistLICMFlags & Flags)2257 static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU,
2258 Loop *CurLoop, Instruction &I,
2259 SinkAndHoistLICMFlags &Flags) {
2260 // For hoisting, use the walker to determine safety
2261 if (!Flags.getIsSink()) {
2262 MemoryAccess *Source;
2263 // See declaration of SetLicmMssaOptCap for usage details.
2264 if (Flags.tooManyClobberingCalls())
2265 Source = MU->getDefiningAccess();
2266 else {
2267 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2268 Flags.incrementClobberingCalls();
2269 }
2270 return !MSSA->isLiveOnEntryDef(Source) &&
2271 CurLoop->contains(Source->getBlock());
2272 }
2273
2274 // For sinking, we'd need to check all Defs below this use. The getClobbering
2275 // call will look on the backedge of the loop, but will check aliasing with
2276 // the instructions on the previous iteration.
2277 // For example:
2278 // for (i ... )
2279 // load a[i] ( Use (LoE)
2280 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2281 // i++;
2282 // The load sees no clobbering inside the loop, as the backedge alias check
2283 // does phi translation, and will check aliasing against store a[i-1].
2284 // However sinking the load outside the loop, below the store is incorrect.
2285
2286 // For now, only sink if there are no Defs in the loop, and the existing ones
2287 // precede the use and are in the same block.
2288 // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2289 // needs PostDominatorTreeAnalysis.
2290 // FIXME: More precise: no Defs that alias this Use.
2291 if (Flags.tooManyMemoryAccesses())
2292 return true;
2293 for (auto *BB : CurLoop->getBlocks())
2294 if (pointerInvalidatedByBlock(*BB, *MSSA, *MU))
2295 return true;
2296 // When sinking, the source block may not be part of the loop so check it.
2297 if (!CurLoop->contains(&I))
2298 return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU);
2299
2300 return false;
2301 }
2302
pointerInvalidatedByBlock(BasicBlock & BB,MemorySSA & MSSA,MemoryUse & MU)2303 bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) {
2304 if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2305 for (const auto &MA : *Accesses)
2306 if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2307 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2308 return true;
2309 return false;
2310 }
2311
2312 /// Little predicate that returns true if the specified basic block is in
2313 /// a subloop of the current one, not the current one itself.
2314 ///
inSubLoop(BasicBlock * BB,Loop * CurLoop,LoopInfo * LI)2315 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2316 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2317 return LI->getLoopFor(BB) != CurLoop;
2318 }
2319