1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // Hoisting operations out of loops is a canonicalization transform.  It
16 // enables and simplifies subsequent optimizations in the middle-end.
17 // Rematerialization of hoisted instructions to reduce register pressure is the
18 // responsibility of the back-end, which has more accurate information about
19 // register pressure and also handles other optimizations than LICM that
20 // increase live-ranges.
21 //
22 // This pass uses alias analysis for two purposes:
23 //
24 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
25 //     that a load or call inside of a loop never aliases anything stored to,
26 //     we can hoist it or sink it like any other instruction.
27 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
28 //     the loop, we try to move the store to happen AFTER the loop instead of
29 //     inside of the loop.  This can only happen if a few conditions are true:
30 //       A. The pointer stored through is loop invariant
31 //       B. There are no stores or loads in the loop which _may_ alias the
32 //          pointer.  There are no calls in the loop which mod/ref the pointer.
33 //     If these conditions are true, we can promote the loads and stores in the
34 //     loop of the pointer to use a temporary alloca'd variable.  We then use
35 //     the SSAUpdater to construct the appropriate SSA form for the value.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LICM.h"
40 #include "llvm/ADT/SetOperations.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AliasSetTracker.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CaptureTracking.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/GuardUtils.h"
50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51 #include "llvm/Analysis/Loads.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopIterator.h"
54 #include "llvm/Analysis/LoopPass.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/MustExecute.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62 #include "llvm/Analysis/TargetLibraryInfo.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/Analysis/ValueTracking.h"
65 #include "llvm/IR/CFG.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DebugInfoMetadata.h"
69 #include "llvm/IR/DerivedTypes.h"
70 #include "llvm/IR/Dominators.h"
71 #include "llvm/IR/Instructions.h"
72 #include "llvm/IR/IntrinsicInst.h"
73 #include "llvm/IR/LLVMContext.h"
74 #include "llvm/IR/Metadata.h"
75 #include "llvm/IR/PatternMatch.h"
76 #include "llvm/IR/PredIteratorCache.h"
77 #include "llvm/InitializePasses.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Transforms/Scalar.h"
82 #include "llvm/Transforms/Scalar/LoopPassManager.h"
83 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
84 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
85 #include "llvm/Transforms/Utils/Local.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Utils/SSAUpdater.h"
88 #include <algorithm>
89 #include <utility>
90 using namespace llvm;
91 
92 #define DEBUG_TYPE "licm"
93 
94 STATISTIC(NumCreatedBlocks, "Number of blocks created");
95 STATISTIC(NumClonedBranches, "Number of branches cloned");
96 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
97 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
98 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
99 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
100 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
101 
102 /// Memory promotion is enabled by default.
103 static cl::opt<bool>
104     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
105                      cl::desc("Disable memory promotion in LICM pass"));
106 
107 static cl::opt<bool> ControlFlowHoisting(
108     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
109     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
110 
111 static cl::opt<uint32_t> MaxNumUsesTraversed(
112     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
113     cl::desc("Max num uses visited for identifying load "
114              "invariance in loop using invariant start (default = 8)"));
115 
116 // Experimental option to allow imprecision in LICM in pathological cases, in
117 // exchange for faster compile. This is to be removed if MemorySSA starts to
118 // address the same issue. This flag applies only when LICM uses MemorySSA
119 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
120 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
121 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
122 // which may not be precise, since optimizeUses is capped. The result is
123 // correct, but we may not get as "far up" as possible to get which access is
124 // clobbering the one queried.
125 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
126     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
127     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
128              "for faster compile. Caps the MemorySSA clobbering calls."));
129 
130 // Experimentally, memory promotion carries less importance than sinking and
131 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
132 // compile time.
133 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
134     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
135     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
136              "effect. When MSSA in LICM is enabled, then this is the maximum "
137              "number of accesses allowed to be present in a loop in order to "
138              "enable memory promotion."));
139 
140 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
141 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
142                                   const LoopSafetyInfo *SafetyInfo,
143                                   TargetTransformInfo *TTI, bool &FreeInLoop,
144                                   bool LoopNestMode);
145 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
146                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
147                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
148                   OptimizationRemarkEmitter *ORE);
149 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
150                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
151                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
152                  OptimizationRemarkEmitter *ORE);
153 static bool isSafeToExecuteUnconditionally(
154     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
155     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
156     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
157     bool AllowSpeculation);
158 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
159                                      AliasSetTracker *CurAST, Loop *CurLoop,
160                                      AAResults *AA);
161 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
162                                              Loop *CurLoop, Instruction &I,
163                                              SinkAndHoistLICMFlags &Flags);
164 static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
165                                               MemoryUse &MU);
166 static Instruction *cloneInstructionInExitBlock(
167     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
168     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
169 
170 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
171                              MemorySSAUpdater *MSSAU);
172 
173 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
174                                   ICFLoopSafetyInfo &SafetyInfo,
175                                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
176 
177 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
178                                 function_ref<void(Instruction *)> Fn);
179 static SmallVector<SmallSetVector<Value *, 8>, 0>
180 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
181 
182 namespace {
183 struct LoopInvariantCodeMotion {
184   bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
185                  BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
186                  TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
187                  OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
188 
189   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
190                           unsigned LicmMssaNoAccForPromotionCap,
191                           bool LicmAllowSpeculation)
192       : LicmMssaOptCap(LicmMssaOptCap),
193         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
194         LicmAllowSpeculation(LicmAllowSpeculation) {}
195 
196 private:
197   unsigned LicmMssaOptCap;
198   unsigned LicmMssaNoAccForPromotionCap;
199   bool LicmAllowSpeculation;
200 };
201 
202 struct LegacyLICMPass : public LoopPass {
203   static char ID; // Pass identification, replacement for typeid
204   LegacyLICMPass(
205       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
206       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap,
207       bool LicmAllowSpeculation = true)
208       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
209                            LicmAllowSpeculation) {
210     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
211   }
212 
213   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
214     if (skipLoop(L))
215       return false;
216 
217     LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
218                       << L->getHeader()->getNameOrAsOperand() << "\n");
219 
220     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
221     MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
222     bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
223     BlockFrequencyInfo *BFI =
224         hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
225                        : nullptr;
226     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
227     // pass. Function analyses need to be preserved across loop transformations
228     // but ORE cannot be preserved (see comment before the pass definition).
229     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
230     return LICM.runOnLoop(
231         L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
232         &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
233         &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
234         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
235             *L->getHeader()->getParent()),
236         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
237             *L->getHeader()->getParent()),
238         SE ? &SE->getSE() : nullptr, MSSA, &ORE);
239   }
240 
241   /// This transformation requires natural loop information & requires that
242   /// loop preheaders be inserted into the CFG...
243   ///
244   void getAnalysisUsage(AnalysisUsage &AU) const override {
245     AU.addPreserved<DominatorTreeWrapperPass>();
246     AU.addPreserved<LoopInfoWrapperPass>();
247     AU.addRequired<TargetLibraryInfoWrapperPass>();
248     AU.addRequired<MemorySSAWrapperPass>();
249     AU.addPreserved<MemorySSAWrapperPass>();
250     AU.addRequired<TargetTransformInfoWrapperPass>();
251     getLoopAnalysisUsage(AU);
252     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
253     AU.addPreserved<LazyBlockFrequencyInfoPass>();
254     AU.addPreserved<LazyBranchProbabilityInfoPass>();
255   }
256 
257 private:
258   LoopInvariantCodeMotion LICM;
259 };
260 } // namespace
261 
262 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
263                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
264   if (!AR.MSSA)
265     report_fatal_error("LICM requires MemorySSA (loop-mssa)");
266 
267   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
268   // pass.  Function analyses need to be preserved across loop transformations
269   // but ORE cannot be preserved (see comment before the pass definition).
270   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
271 
272   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
273                                LicmAllowSpeculation);
274   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
275                       &AR.SE, AR.MSSA, &ORE))
276     return PreservedAnalyses::all();
277 
278   auto PA = getLoopPassPreservedAnalyses();
279 
280   PA.preserve<DominatorTreeAnalysis>();
281   PA.preserve<LoopAnalysis>();
282   PA.preserve<MemorySSAAnalysis>();
283 
284   return PA;
285 }
286 
287 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
288                                  LoopStandardAnalysisResults &AR,
289                                  LPMUpdater &) {
290   if (!AR.MSSA)
291     report_fatal_error("LNICM requires MemorySSA (loop-mssa)");
292 
293   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
294   // pass.  Function analyses need to be preserved across loop transformations
295   // but ORE cannot be preserved (see comment before the pass definition).
296   OptimizationRemarkEmitter ORE(LN.getParent());
297 
298   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
299                                LicmAllowSpeculation);
300 
301   Loop &OutermostLoop = LN.getOutermostLoop();
302   bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
303                                 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
304 
305   if (!Changed)
306     return PreservedAnalyses::all();
307 
308   auto PA = getLoopPassPreservedAnalyses();
309 
310   PA.preserve<DominatorTreeAnalysis>();
311   PA.preserve<LoopAnalysis>();
312   PA.preserve<MemorySSAAnalysis>();
313 
314   return PA;
315 }
316 
317 char LegacyLICMPass::ID = 0;
318 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
319                       false, false)
320 INITIALIZE_PASS_DEPENDENCY(LoopPass)
321 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
322 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
323 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
324 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
325 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
326                     false)
327 
328 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
329 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
330                            unsigned LicmMssaNoAccForPromotionCap,
331                            bool LicmAllowSpeculation) {
332   return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
333                             LicmAllowSpeculation);
334 }
335 
336 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
337                                                    MemorySSA *MSSA)
338     : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
339                             IsSink, L, MSSA) {}
340 
341 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
342     unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
343     Loop *L, MemorySSA *MSSA)
344     : LicmMssaOptCap(LicmMssaOptCap),
345       LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
346       IsSink(IsSink) {
347   assert(((L != nullptr) == (MSSA != nullptr)) &&
348          "Unexpected values for SinkAndHoistLICMFlags");
349   if (!MSSA)
350     return;
351 
352   unsigned AccessCapCount = 0;
353   for (auto *BB : L->getBlocks())
354     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
355       for (const auto &MA : *Accesses) {
356         (void)MA;
357         ++AccessCapCount;
358         if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
359           NoOfMemAccTooLarge = true;
360           return;
361         }
362       }
363 }
364 
365 /// Hoist expressions out of the specified loop. Note, alias info for inner
366 /// loop is not preserved so it is not a good idea to run LICM multiple
367 /// times on one loop.
368 bool LoopInvariantCodeMotion::runOnLoop(
369     Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
370     BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
371     ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
372     bool LoopNestMode) {
373   bool Changed = false;
374 
375   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
376 
377   // If this loop has metadata indicating that LICM is not to be performed then
378   // just exit.
379   if (hasDisableLICMTransformsHint(L)) {
380     return false;
381   }
382 
383   // Don't sink stores from loops with coroutine suspend instructions.
384   // LICM would sink instructions into the default destination of
385   // the coroutine switch. The default destination of the switch is to
386   // handle the case where the coroutine is suspended, by which point the
387   // coroutine frame may have been destroyed. No instruction can be sunk there.
388   // FIXME: This would unfortunately hurt the performance of coroutines, however
389   // there is currently no general solution for this. Similar issues could also
390   // potentially happen in other passes where instructions are being moved
391   // across that edge.
392   bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
393     return llvm::any_of(*BB, [](Instruction &I) {
394       IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
395       return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
396     });
397   });
398 
399   MemorySSAUpdater MSSAU(MSSA);
400   SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
401                               /*IsSink=*/true, L, MSSA);
402 
403   // Get the preheader block to move instructions into...
404   BasicBlock *Preheader = L->getLoopPreheader();
405 
406   // Compute loop safety information.
407   ICFLoopSafetyInfo SafetyInfo;
408   SafetyInfo.computeLoopSafetyInfo(L);
409 
410   // We want to visit all of the instructions in this loop... that are not parts
411   // of our subloops (they have already had their invariants hoisted out of
412   // their loop, into this loop, so there is no need to process the BODIES of
413   // the subloops).
414   //
415   // Traverse the body of the loop in depth first order on the dominator tree so
416   // that we are guaranteed to see definitions before we see uses.  This allows
417   // us to sink instructions in one pass, without iteration.  After sinking
418   // instructions, we perform another pass to hoist them out of the loop.
419   if (L->hasDedicatedExits())
420     Changed |= LoopNestMode
421                    ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
422                                            DT, BFI, TLI, TTI, L, &MSSAU,
423                                            &SafetyInfo, Flags, ORE)
424                    : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
425                                 TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE);
426   Flags.setIsSink(false);
427   if (Preheader)
428     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
429                            &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode,
430                            LicmAllowSpeculation);
431 
432   // Now that all loop invariants have been removed from the loop, promote any
433   // memory references to scalars that we can.
434   // Don't sink stores from loops without dedicated block exits. Exits
435   // containing indirect branches are not transformed by loop simplify,
436   // make sure we catch that. An additional load may be generated in the
437   // preheader for SSA updater, so also avoid sinking when no preheader
438   // is available.
439   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
440       !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
441     // Figure out the loop exits and their insertion points
442     SmallVector<BasicBlock *, 8> ExitBlocks;
443     L->getUniqueExitBlocks(ExitBlocks);
444 
445     // We can't insert into a catchswitch.
446     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
447       return isa<CatchSwitchInst>(Exit->getTerminator());
448     });
449 
450     if (!HasCatchSwitch) {
451       SmallVector<Instruction *, 8> InsertPts;
452       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
453       InsertPts.reserve(ExitBlocks.size());
454       MSSAInsertPts.reserve(ExitBlocks.size());
455       for (BasicBlock *ExitBlock : ExitBlocks) {
456         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
457         MSSAInsertPts.push_back(nullptr);
458       }
459 
460       PredIteratorCache PIC;
461 
462       // Promoting one set of accesses may make the pointers for another set
463       // loop invariant, so run this in a loop (with the MaybePromotable set
464       // decreasing in size over time).
465       bool Promoted = false;
466       bool LocalPromoted;
467       do {
468         LocalPromoted = false;
469         for (const SmallSetVector<Value *, 8> &PointerMustAliases :
470              collectPromotionCandidates(MSSA, AA, L)) {
471           LocalPromoted |= promoteLoopAccessesToScalars(
472               PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
473               DT, TLI, L, &MSSAU, &SafetyInfo, ORE, LicmAllowSpeculation);
474         }
475         Promoted |= LocalPromoted;
476       } while (LocalPromoted);
477 
478       // Once we have promoted values across the loop body we have to
479       // recursively reform LCSSA as any nested loop may now have values defined
480       // within the loop used in the outer loop.
481       // FIXME: This is really heavy handed. It would be a bit better to use an
482       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
483       // it as it went.
484       if (Promoted)
485         formLCSSARecursively(*L, *DT, LI, SE);
486 
487       Changed |= Promoted;
488     }
489   }
490 
491   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
492   // specifically moving instructions across the loop boundary and so it is
493   // especially in need of basic functional correctness checking here.
494   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
495   assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
496          "Parent loop not left in LCSSA form after LICM!");
497 
498   if (VerifyMemorySSA)
499     MSSA->verifyMemorySSA();
500 
501   if (Changed && SE)
502     SE->forgetLoopDispositions(L);
503   return Changed;
504 }
505 
506 /// Walk the specified region of the CFG (defined by all blocks dominated by
507 /// the specified block, and that are in the current loop) in reverse depth
508 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
509 /// definitions, allowing us to sink a loop body in one pass without iteration.
510 ///
511 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
512                       DominatorTree *DT, BlockFrequencyInfo *BFI,
513                       TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
514                       Loop *CurLoop, MemorySSAUpdater *MSSAU,
515                       ICFLoopSafetyInfo *SafetyInfo,
516                       SinkAndHoistLICMFlags &Flags,
517                       OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
518 
519   // Verify inputs.
520   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
521          CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
522          "Unexpected input to sinkRegion.");
523 
524   // We want to visit children before parents. We will enque all the parents
525   // before their children in the worklist and process the worklist in reverse
526   // order.
527   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
528 
529   bool Changed = false;
530   for (DomTreeNode *DTN : reverse(Worklist)) {
531     BasicBlock *BB = DTN->getBlock();
532     // Only need to process the contents of this block if it is not part of a
533     // subloop (which would already have been processed).
534     if (inSubLoop(BB, CurLoop, LI))
535       continue;
536 
537     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
538       Instruction &I = *--II;
539 
540       // The instruction is not used in the loop if it is dead.  In this case,
541       // we just delete it instead of sinking it.
542       if (isInstructionTriviallyDead(&I, TLI)) {
543         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
544         salvageKnowledge(&I);
545         salvageDebugInfo(I);
546         ++II;
547         eraseInstruction(I, *SafetyInfo, MSSAU);
548         Changed = true;
549         continue;
550       }
551 
552       // Check to see if we can sink this instruction to the exit blocks
553       // of the loop.  We can do this if the all users of the instruction are
554       // outside of the loop.  In this case, it doesn't even matter if the
555       // operands of the instruction are loop invariant.
556       //
557       bool FreeInLoop = false;
558       bool LoopNestMode = OutermostLoop != nullptr;
559       if (!I.mayHaveSideEffects() &&
560           isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
561                                 SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
562           canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true,
563                              &Flags, ORE)) {
564         if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
565           if (!FreeInLoop) {
566             ++II;
567             salvageDebugInfo(I);
568             eraseInstruction(I, *SafetyInfo, MSSAU);
569           }
570           Changed = true;
571         }
572       }
573     }
574   }
575   if (VerifyMemorySSA)
576     MSSAU->getMemorySSA()->verifyMemorySSA();
577   return Changed;
578 }
579 
580 bool llvm::sinkRegionForLoopNest(
581     DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
582     BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
583     Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
584     SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {
585 
586   bool Changed = false;
587   SmallPriorityWorklist<Loop *, 4> Worklist;
588   Worklist.insert(CurLoop);
589   appendLoopsToWorklist(*CurLoop, Worklist);
590   while (!Worklist.empty()) {
591     Loop *L = Worklist.pop_back_val();
592     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
593                           TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
594   }
595   return Changed;
596 }
597 
598 namespace {
599 // This is a helper class for hoistRegion to make it able to hoist control flow
600 // in order to be able to hoist phis. The way this works is that we initially
601 // start hoisting to the loop preheader, and when we see a loop invariant branch
602 // we make note of this. When we then come to hoist an instruction that's
603 // conditional on such a branch we duplicate the branch and the relevant control
604 // flow, then hoist the instruction into the block corresponding to its original
605 // block in the duplicated control flow.
606 class ControlFlowHoister {
607 private:
608   // Information about the loop we are hoisting from
609   LoopInfo *LI;
610   DominatorTree *DT;
611   Loop *CurLoop;
612   MemorySSAUpdater *MSSAU;
613 
614   // A map of blocks in the loop to the block their instructions will be hoisted
615   // to.
616   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
617 
618   // The branches that we can hoist, mapped to the block that marks a
619   // convergence point of their control flow.
620   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
621 
622 public:
623   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
624                      MemorySSAUpdater *MSSAU)
625       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
626 
627   void registerPossiblyHoistableBranch(BranchInst *BI) {
628     // We can only hoist conditional branches with loop invariant operands.
629     if (!ControlFlowHoisting || !BI->isConditional() ||
630         !CurLoop->hasLoopInvariantOperands(BI))
631       return;
632 
633     // The branch destinations need to be in the loop, and we don't gain
634     // anything by duplicating conditional branches with duplicate successors,
635     // as it's essentially the same as an unconditional branch.
636     BasicBlock *TrueDest = BI->getSuccessor(0);
637     BasicBlock *FalseDest = BI->getSuccessor(1);
638     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
639         TrueDest == FalseDest)
640       return;
641 
642     // We can hoist BI if one branch destination is the successor of the other,
643     // or both have common successor which we check by seeing if the
644     // intersection of their successors is non-empty.
645     // TODO: This could be expanded to allowing branches where both ends
646     // eventually converge to a single block.
647     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
648     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
649     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
650     BasicBlock *CommonSucc = nullptr;
651     if (TrueDestSucc.count(FalseDest)) {
652       CommonSucc = FalseDest;
653     } else if (FalseDestSucc.count(TrueDest)) {
654       CommonSucc = TrueDest;
655     } else {
656       set_intersect(TrueDestSucc, FalseDestSucc);
657       // If there's one common successor use that.
658       if (TrueDestSucc.size() == 1)
659         CommonSucc = *TrueDestSucc.begin();
660       // If there's more than one pick whichever appears first in the block list
661       // (we can't use the value returned by TrueDestSucc.begin() as it's
662       // unpredicatable which element gets returned).
663       else if (!TrueDestSucc.empty()) {
664         Function *F = TrueDest->getParent();
665         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
666         auto It = llvm::find_if(*F, IsSucc);
667         assert(It != F->end() && "Could not find successor in function");
668         CommonSucc = &*It;
669       }
670     }
671     // The common successor has to be dominated by the branch, as otherwise
672     // there will be some other path to the successor that will not be
673     // controlled by this branch so any phi we hoist would be controlled by the
674     // wrong condition. This also takes care of avoiding hoisting of loop back
675     // edges.
676     // TODO: In some cases this could be relaxed if the successor is dominated
677     // by another block that's been hoisted and we can guarantee that the
678     // control flow has been replicated exactly.
679     if (CommonSucc && DT->dominates(BI, CommonSucc))
680       HoistableBranches[BI] = CommonSucc;
681   }
682 
683   bool canHoistPHI(PHINode *PN) {
684     // The phi must have loop invariant operands.
685     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
686       return false;
687     // We can hoist phis if the block they are in is the target of hoistable
688     // branches which cover all of the predecessors of the block.
689     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
690     BasicBlock *BB = PN->getParent();
691     for (BasicBlock *PredBB : predecessors(BB))
692       PredecessorBlocks.insert(PredBB);
693     // If we have less predecessor blocks than predecessors then the phi will
694     // have more than one incoming value for the same block which we can't
695     // handle.
696     // TODO: This could be handled be erasing some of the duplicate incoming
697     // values.
698     if (PredecessorBlocks.size() != pred_size(BB))
699       return false;
700     for (auto &Pair : HoistableBranches) {
701       if (Pair.second == BB) {
702         // Which blocks are predecessors via this branch depends on if the
703         // branch is triangle-like or diamond-like.
704         if (Pair.first->getSuccessor(0) == BB) {
705           PredecessorBlocks.erase(Pair.first->getParent());
706           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
707         } else if (Pair.first->getSuccessor(1) == BB) {
708           PredecessorBlocks.erase(Pair.first->getParent());
709           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
710         } else {
711           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
712           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
713         }
714       }
715     }
716     // PredecessorBlocks will now be empty if for every predecessor of BB we
717     // found a hoistable branch source.
718     return PredecessorBlocks.empty();
719   }
720 
721   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
722     if (!ControlFlowHoisting)
723       return CurLoop->getLoopPreheader();
724     // If BB has already been hoisted, return that
725     if (HoistDestinationMap.count(BB))
726       return HoistDestinationMap[BB];
727 
728     // Check if this block is conditional based on a pending branch
729     auto HasBBAsSuccessor =
730         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
731           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
732                                        Pair.first->getSuccessor(1) == BB);
733         };
734     auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
735 
736     // If not involved in a pending branch, hoist to preheader
737     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
738     if (It == HoistableBranches.end()) {
739       LLVM_DEBUG(dbgs() << "LICM using "
740                         << InitialPreheader->getNameOrAsOperand()
741                         << " as hoist destination for "
742                         << BB->getNameOrAsOperand() << "\n");
743       HoistDestinationMap[BB] = InitialPreheader;
744       return InitialPreheader;
745     }
746     BranchInst *BI = It->first;
747     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
748                HoistableBranches.end() &&
749            "BB is expected to be the target of at most one branch");
750 
751     LLVMContext &C = BB->getContext();
752     BasicBlock *TrueDest = BI->getSuccessor(0);
753     BasicBlock *FalseDest = BI->getSuccessor(1);
754     BasicBlock *CommonSucc = HoistableBranches[BI];
755     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
756 
757     // Create hoisted versions of blocks that currently don't have them
758     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
759       if (HoistDestinationMap.count(Orig))
760         return HoistDestinationMap[Orig];
761       BasicBlock *New =
762           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
763       HoistDestinationMap[Orig] = New;
764       DT->addNewBlock(New, HoistTarget);
765       if (CurLoop->getParentLoop())
766         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
767       ++NumCreatedBlocks;
768       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
769                         << " as hoist destination for " << Orig->getName()
770                         << "\n");
771       return New;
772     };
773     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
774     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
775     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
776 
777     // Link up these blocks with branches.
778     if (!HoistCommonSucc->getTerminator()) {
779       // The new common successor we've generated will branch to whatever that
780       // hoist target branched to.
781       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
782       assert(TargetSucc && "Expected hoist target to have a single successor");
783       HoistCommonSucc->moveBefore(TargetSucc);
784       BranchInst::Create(TargetSucc, HoistCommonSucc);
785     }
786     if (!HoistTrueDest->getTerminator()) {
787       HoistTrueDest->moveBefore(HoistCommonSucc);
788       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
789     }
790     if (!HoistFalseDest->getTerminator()) {
791       HoistFalseDest->moveBefore(HoistCommonSucc);
792       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
793     }
794 
795     // If BI is being cloned to what was originally the preheader then
796     // HoistCommonSucc will now be the new preheader.
797     if (HoistTarget == InitialPreheader) {
798       // Phis in the loop header now need to use the new preheader.
799       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
800       MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
801           HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
802       // The new preheader dominates the loop header.
803       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
804       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
805       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
806       // The preheader hoist destination is now the new preheader, with the
807       // exception of the hoist destination of this branch.
808       for (auto &Pair : HoistDestinationMap)
809         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
810           Pair.second = HoistCommonSucc;
811     }
812 
813     // Now finally clone BI.
814     ReplaceInstWithInst(
815         HoistTarget->getTerminator(),
816         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
817     ++NumClonedBranches;
818 
819     assert(CurLoop->getLoopPreheader() &&
820            "Hoisting blocks should not have destroyed preheader");
821     return HoistDestinationMap[BB];
822   }
823 };
824 } // namespace
825 
826 /// Walk the specified region of the CFG (defined by all blocks dominated by
827 /// the specified block, and that are in the current loop) in depth first
828 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
829 /// uses, allowing us to hoist a loop body in one pass without iteration.
830 ///
831 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
832                        DominatorTree *DT, BlockFrequencyInfo *BFI,
833                        TargetLibraryInfo *TLI, Loop *CurLoop,
834                        MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
835                        ICFLoopSafetyInfo *SafetyInfo,
836                        SinkAndHoistLICMFlags &Flags,
837                        OptimizationRemarkEmitter *ORE, bool LoopNestMode,
838                        bool AllowSpeculation) {
839   // Verify inputs.
840   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
841          CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
842          "Unexpected input to hoistRegion.");
843 
844   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
845 
846   // Keep track of instructions that have been hoisted, as they may need to be
847   // re-hoisted if they end up not dominating all of their uses.
848   SmallVector<Instruction *, 16> HoistedInstructions;
849 
850   // For PHI hoisting to work we need to hoist blocks before their successors.
851   // We can do this by iterating through the blocks in the loop in reverse
852   // post-order.
853   LoopBlocksRPO Worklist(CurLoop);
854   Worklist.perform(LI);
855   bool Changed = false;
856   for (BasicBlock *BB : Worklist) {
857     // Only need to process the contents of this block if it is not part of a
858     // subloop (which would already have been processed).
859     if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
860       continue;
861 
862     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
863       // Try constant folding this instruction.  If all the operands are
864       // constants, it is technically hoistable, but it would be better to
865       // just fold it.
866       if (Constant *C = ConstantFoldInstruction(
867               &I, I.getModule()->getDataLayout(), TLI)) {
868         LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
869                           << '\n');
870         // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
871         I.replaceAllUsesWith(C);
872         if (isInstructionTriviallyDead(&I, TLI))
873           eraseInstruction(I, *SafetyInfo, MSSAU);
874         Changed = true;
875         continue;
876       }
877 
878       // Try hoisting the instruction out to the preheader.  We can only do
879       // this if all of the operands of the instruction are loop invariant and
880       // if it is safe to hoist the instruction. We also check block frequency
881       // to make sure instruction only gets hoisted into colder blocks.
882       // TODO: It may be safe to hoist if we are hoisting to a conditional block
883       // and we have accurately duplicated the control flow from the loop header
884       // to that block.
885       if (CurLoop->hasLoopInvariantOperands(&I) &&
886           canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU,
887                              true, &Flags, ORE) &&
888           isSafeToExecuteUnconditionally(
889               I, DT, TLI, CurLoop, SafetyInfo, ORE,
890               CurLoop->getLoopPreheader()->getTerminator(), AllowSpeculation)) {
891         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
892               MSSAU, SE, ORE);
893         HoistedInstructions.push_back(&I);
894         Changed = true;
895         continue;
896       }
897 
898       // Attempt to remove floating point division out of the loop by
899       // converting it to a reciprocal multiplication.
900       if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
901           CurLoop->isLoopInvariant(I.getOperand(1))) {
902         auto Divisor = I.getOperand(1);
903         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
904         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
905         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
906         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
907         ReciprocalDivisor->insertBefore(&I);
908 
909         auto Product =
910             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
911         Product->setFastMathFlags(I.getFastMathFlags());
912         SafetyInfo->insertInstructionTo(Product, I.getParent());
913         Product->insertAfter(&I);
914         I.replaceAllUsesWith(Product);
915         eraseInstruction(I, *SafetyInfo, MSSAU);
916 
917         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
918               SafetyInfo, MSSAU, SE, ORE);
919         HoistedInstructions.push_back(ReciprocalDivisor);
920         Changed = true;
921         continue;
922       }
923 
924       auto IsInvariantStart = [&](Instruction &I) {
925         using namespace PatternMatch;
926         return I.use_empty() &&
927                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
928       };
929       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
930         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
931                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
932       };
933       if ((IsInvariantStart(I) || isGuard(&I)) &&
934           CurLoop->hasLoopInvariantOperands(&I) &&
935           MustExecuteWithoutWritesBefore(I)) {
936         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
937               MSSAU, SE, ORE);
938         HoistedInstructions.push_back(&I);
939         Changed = true;
940         continue;
941       }
942 
943       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
944         if (CFH.canHoistPHI(PN)) {
945           // Redirect incoming blocks first to ensure that we create hoisted
946           // versions of those blocks before we hoist the phi.
947           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
948             PN->setIncomingBlock(
949                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
950           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
951                 MSSAU, SE, ORE);
952           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
953           Changed = true;
954           continue;
955         }
956       }
957 
958       // Remember possibly hoistable branches so we can actually hoist them
959       // later if needed.
960       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
961         CFH.registerPossiblyHoistableBranch(BI);
962     }
963   }
964 
965   // If we hoisted instructions to a conditional block they may not dominate
966   // their uses that weren't hoisted (such as phis where some operands are not
967   // loop invariant). If so make them unconditional by moving them to their
968   // immediate dominator. We iterate through the instructions in reverse order
969   // which ensures that when we rehoist an instruction we rehoist its operands,
970   // and also keep track of where in the block we are rehoisting to to make sure
971   // that we rehoist instructions before the instructions that use them.
972   Instruction *HoistPoint = nullptr;
973   if (ControlFlowHoisting) {
974     for (Instruction *I : reverse(HoistedInstructions)) {
975       if (!llvm::all_of(I->uses(),
976                         [&](Use &U) { return DT->dominates(I, U); })) {
977         BasicBlock *Dominator =
978             DT->getNode(I->getParent())->getIDom()->getBlock();
979         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
980           if (HoistPoint)
981             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
982                    "New hoist point expected to dominate old hoist point");
983           HoistPoint = Dominator->getTerminator();
984         }
985         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
986                           << HoistPoint->getParent()->getNameOrAsOperand()
987                           << ": " << *I << "\n");
988         moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
989         HoistPoint = I;
990         Changed = true;
991       }
992     }
993   }
994   if (VerifyMemorySSA)
995     MSSAU->getMemorySSA()->verifyMemorySSA();
996 
997     // Now that we've finished hoisting make sure that LI and DT are still
998     // valid.
999 #ifdef EXPENSIVE_CHECKS
1000   if (Changed) {
1001     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
1002            "Dominator tree verification failed");
1003     LI->verify(*DT);
1004   }
1005 #endif
1006 
1007   return Changed;
1008 }
1009 
1010 // Return true if LI is invariant within scope of the loop. LI is invariant if
1011 // CurLoop is dominated by an invariant.start representing the same memory
1012 // location and size as the memory location LI loads from, and also the
1013 // invariant.start has no uses.
1014 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1015                                   Loop *CurLoop) {
1016   Value *Addr = LI->getOperand(0);
1017   const DataLayout &DL = LI->getModule()->getDataLayout();
1018   const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1019 
1020   // It is not currently possible for clang to generate an invariant.start
1021   // intrinsic with scalable vector types because we don't support thread local
1022   // sizeless types and we don't permit sizeless types in structs or classes.
1023   // Furthermore, even if support is added for this in future the intrinsic
1024   // itself is defined to have a size of -1 for variable sized objects. This
1025   // makes it impossible to verify if the intrinsic envelops our region of
1026   // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1027   // types would have a -1 parameter, but the former is clearly double the size
1028   // of the latter.
1029   if (LocSizeInBits.isScalable())
1030     return false;
1031 
1032   // if the type is i8 addrspace(x)*, we know this is the type of
1033   // llvm.invariant.start operand
1034   auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1035                                      LI->getPointerAddressSpace());
1036   unsigned BitcastsVisited = 0;
1037   // Look through bitcasts until we reach the i8* type (this is invariant.start
1038   // operand type).
1039   while (Addr->getType() != PtrInt8Ty) {
1040     auto *BC = dyn_cast<BitCastInst>(Addr);
1041     // Avoid traversing high number of bitcast uses.
1042     if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1043       return false;
1044     Addr = BC->getOperand(0);
1045   }
1046   // If we've ended up at a global/constant, bail. We shouldn't be looking at
1047   // uselists for non-local Values in a loop pass.
1048   if (isa<Constant>(Addr))
1049     return false;
1050 
1051   unsigned UsesVisited = 0;
1052   // Traverse all uses of the load operand value, to see if invariant.start is
1053   // one of the uses, and whether it dominates the load instruction.
1054   for (auto *U : Addr->users()) {
1055     // Avoid traversing for Load operand with high number of users.
1056     if (++UsesVisited > MaxNumUsesTraversed)
1057       return false;
1058     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1059     // If there are escaping uses of invariant.start instruction, the load maybe
1060     // non-invariant.
1061     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1062         !II->use_empty())
1063       continue;
1064     ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1065     // The intrinsic supports having a -1 argument for variable sized objects
1066     // so we should check for that here.
1067     if (InvariantSize->isNegative())
1068       continue;
1069     uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1070     // Confirm the invariant.start location size contains the load operand size
1071     // in bits. Also, the invariant.start should dominate the load, and we
1072     // should not hoist the load out of a loop that contains this dominating
1073     // invariant.start.
1074     if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1075         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1076       return true;
1077   }
1078 
1079   return false;
1080 }
1081 
1082 namespace {
1083 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1084 /// sink a given instruction out of a loop.  Does not address legality
1085 /// concerns such as aliasing or speculation safety.
1086 bool isHoistableAndSinkableInst(Instruction &I) {
1087   // Only these instructions are hoistable/sinkable.
1088   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1089           isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1090           isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1091           isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1092           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1093           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1094           isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1095 }
1096 /// Return true if all of the alias sets within this AST are known not to
1097 /// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
1098 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1099                 const Loop *L) {
1100   if (CurAST) {
1101     for (AliasSet &AS : *CurAST) {
1102       if (!AS.isForwardingAliasSet() && AS.isMod()) {
1103         return false;
1104       }
1105     }
1106     return true;
1107   } else { /*MSSAU*/
1108     for (auto *BB : L->getBlocks())
1109       if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1110         return false;
1111     return true;
1112   }
1113 }
1114 
1115 /// Return true if I is the only Instruction with a MemoryAccess in L.
1116 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1117                         const MemorySSAUpdater *MSSAU) {
1118   for (auto *BB : L->getBlocks())
1119     if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1120       int NotAPhi = 0;
1121       for (const auto &Acc : *Accs) {
1122         if (isa<MemoryPhi>(&Acc))
1123           continue;
1124         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1125         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1126           return false;
1127       }
1128     }
1129   return true;
1130 }
1131 }
1132 
1133 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1134                               Loop *CurLoop, AliasSetTracker *CurAST,
1135                               MemorySSAUpdater *MSSAU,
1136                               bool TargetExecutesOncePerLoop,
1137                               SinkAndHoistLICMFlags *Flags,
1138                               OptimizationRemarkEmitter *ORE) {
1139   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
1140          "Either AliasSetTracker or MemorySSA should be initialized.");
1141 
1142   // If we don't understand the instruction, bail early.
1143   if (!isHoistableAndSinkableInst(I))
1144     return false;
1145 
1146   MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1147   if (MSSA)
1148     assert(Flags != nullptr && "Flags cannot be null.");
1149 
1150   // Loads have extra constraints we have to verify before we can hoist them.
1151   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1152     if (!LI->isUnordered())
1153       return false; // Don't sink/hoist volatile or ordered atomic loads!
1154 
1155     // Loads from constant memory are always safe to move, even if they end up
1156     // in the same alias set as something that ends up being modified.
1157     if (AA->pointsToConstantMemory(LI->getOperand(0)))
1158       return true;
1159     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1160       return true;
1161 
1162     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1163       return false; // Don't risk duplicating unordered loads
1164 
1165     // This checks for an invariant.start dominating the load.
1166     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1167       return true;
1168 
1169     bool Invalidated;
1170     if (CurAST)
1171       Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1172                                              CurLoop, AA);
1173     else
1174       Invalidated = pointerInvalidatedByLoopWithMSSA(
1175           MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
1176     // Check loop-invariant address because this may also be a sinkable load
1177     // whose address is not necessarily loop-invariant.
1178     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1179       ORE->emit([&]() {
1180         return OptimizationRemarkMissed(
1181                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1182                << "failed to move load with loop-invariant address "
1183                   "because the loop may invalidate its value";
1184       });
1185 
1186     return !Invalidated;
1187   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1188     // Don't sink or hoist dbg info; it's legal, but not useful.
1189     if (isa<DbgInfoIntrinsic>(I))
1190       return false;
1191 
1192     // Don't sink calls which can throw.
1193     if (CI->mayThrow())
1194       return false;
1195 
1196     // Convergent attribute has been used on operations that involve
1197     // inter-thread communication which results are implicitly affected by the
1198     // enclosing control flows. It is not safe to hoist or sink such operations
1199     // across control flow.
1200     if (CI->isConvergent())
1201       return false;
1202 
1203     using namespace PatternMatch;
1204     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1205       // Assumes don't actually alias anything or throw
1206       return true;
1207 
1208     if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1209       // Widenable conditions don't actually alias anything or throw
1210       return true;
1211 
1212     // Handle simple cases by querying alias analysis.
1213     FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1214     if (Behavior == FMRB_DoesNotAccessMemory)
1215       return true;
1216     if (AAResults::onlyReadsMemory(Behavior)) {
1217       // A readonly argmemonly function only reads from memory pointed to by
1218       // it's arguments with arbitrary offsets.  If we can prove there are no
1219       // writes to this memory in the loop, we can hoist or sink.
1220       if (AAResults::onlyAccessesArgPointees(Behavior)) {
1221         // TODO: expand to writeable arguments
1222         for (Value *Op : CI->args())
1223           if (Op->getType()->isPointerTy()) {
1224             bool Invalidated;
1225             if (CurAST)
1226               Invalidated = pointerInvalidatedByLoop(
1227                   MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1228             else
1229               Invalidated = pointerInvalidatedByLoopWithMSSA(
1230                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1231                   *Flags);
1232             if (Invalidated)
1233               return false;
1234           }
1235         return true;
1236       }
1237 
1238       // If this call only reads from memory and there are no writes to memory
1239       // in the loop, we can hoist or sink the call as appropriate.
1240       if (isReadOnly(CurAST, MSSAU, CurLoop))
1241         return true;
1242     }
1243 
1244     // FIXME: This should use mod/ref information to see if we can hoist or
1245     // sink the call.
1246 
1247     return false;
1248   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1249     // Fences alias (most) everything to provide ordering.  For the moment,
1250     // just give up if there are any other memory operations in the loop.
1251     if (CurAST) {
1252       auto Begin = CurAST->begin();
1253       assert(Begin != CurAST->end() && "must contain FI");
1254       if (std::next(Begin) != CurAST->end())
1255         // constant memory for instance, TODO: handle better
1256         return false;
1257       auto *UniqueI = Begin->getUniqueInstruction();
1258       if (!UniqueI)
1259         // other memory op, give up
1260         return false;
1261       (void)FI; // suppress unused variable warning
1262       assert(UniqueI == FI && "AS must contain FI");
1263       return true;
1264     } else // MSSAU
1265       return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1266   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1267     if (!SI->isUnordered())
1268       return false; // Don't sink/hoist volatile or ordered atomic store!
1269 
1270     // We can only hoist a store that we can prove writes a value which is not
1271     // read or overwritten within the loop.  For those cases, we fallback to
1272     // load store promotion instead.  TODO: We can extend this to cases where
1273     // there is exactly one write to the location and that write dominates an
1274     // arbitrary number of reads in the loop.
1275     if (CurAST) {
1276       auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1277 
1278       if (AS.isRef() || !AS.isMustAlias())
1279         // Quick exit test, handled by the full path below as well.
1280         return false;
1281       auto *UniqueI = AS.getUniqueInstruction();
1282       if (!UniqueI)
1283         // other memory op, give up
1284         return false;
1285       assert(UniqueI == SI && "AS must contain SI");
1286       return true;
1287     } else { // MSSAU
1288       if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1289         return true;
1290       // If there are more accesses than the Promotion cap or no "quota" to
1291       // check clobber, then give up as we're not walking a list that long.
1292       if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1293         return false;
1294       // If there are interfering Uses (i.e. their defining access is in the
1295       // loop), or ordered loads (stored as Defs!), don't move this store.
1296       // Could do better here, but this is conservatively correct.
1297       // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1298       // moving accesses. Can also extend to dominating uses.
1299       auto *SIMD = MSSA->getMemoryAccess(SI);
1300       for (auto *BB : CurLoop->getBlocks())
1301         if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1302           for (const auto &MA : *Accesses)
1303             if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1304               auto *MD = MU->getDefiningAccess();
1305               if (!MSSA->isLiveOnEntryDef(MD) &&
1306                   CurLoop->contains(MD->getBlock()))
1307                 return false;
1308               // Disable hoisting past potentially interfering loads. Optimized
1309               // Uses may point to an access outside the loop, as getClobbering
1310               // checks the previous iteration when walking the backedge.
1311               // FIXME: More precise: no Uses that alias SI.
1312               if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1313                 return false;
1314             } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1315               if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1316                 (void)LI; // Silence warning.
1317                 assert(!LI->isUnordered() && "Expected unordered load");
1318                 return false;
1319               }
1320               // Any call, while it may not be clobbering SI, it may be a use.
1321               if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1322                 // Check if the call may read from the memory location written
1323                 // to by SI. Check CI's attributes and arguments; the number of
1324                 // such checks performed is limited above by NoOfMemAccTooLarge.
1325                 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1326                 if (isModOrRefSet(MRI))
1327                   return false;
1328               }
1329             }
1330         }
1331       auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1332       Flags->incrementClobberingCalls();
1333       // If there are no clobbering Defs in the loop, store is safe to hoist.
1334       return MSSA->isLiveOnEntryDef(Source) ||
1335              !CurLoop->contains(Source->getBlock());
1336     }
1337   }
1338 
1339   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1340 
1341   // We've established mechanical ability and aliasing, it's up to the caller
1342   // to check fault safety
1343   return true;
1344 }
1345 
1346 /// Returns true if a PHINode is a trivially replaceable with an
1347 /// Instruction.
1348 /// This is true when all incoming values are that instruction.
1349 /// This pattern occurs most often with LCSSA PHI nodes.
1350 ///
1351 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1352   for (const Value *IncValue : PN.incoming_values())
1353     if (IncValue != &I)
1354       return false;
1355 
1356   return true;
1357 }
1358 
1359 /// Return true if the instruction is free in the loop.
1360 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1361                          const TargetTransformInfo *TTI) {
1362 
1363   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1364     if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1365         TargetTransformInfo::TCC_Free)
1366       return false;
1367     // For a GEP, we cannot simply use getUserCost because currently it
1368     // optimistically assumes that a GEP will fold into addressing mode
1369     // regardless of its users.
1370     const BasicBlock *BB = GEP->getParent();
1371     for (const User *U : GEP->users()) {
1372       const Instruction *UI = cast<Instruction>(U);
1373       if (CurLoop->contains(UI) &&
1374           (BB != UI->getParent() ||
1375            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1376         return false;
1377     }
1378     return true;
1379   } else
1380     return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1381            TargetTransformInfo::TCC_Free;
1382 }
1383 
1384 /// Return true if the only users of this instruction are outside of
1385 /// the loop. If this is true, we can sink the instruction to the exit
1386 /// blocks of the loop.
1387 ///
1388 /// We also return true if the instruction could be folded away in lowering.
1389 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1390 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1391                                   const LoopSafetyInfo *SafetyInfo,
1392                                   TargetTransformInfo *TTI, bool &FreeInLoop,
1393                                   bool LoopNestMode) {
1394   const auto &BlockColors = SafetyInfo->getBlockColors();
1395   bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1396   for (const User *U : I.users()) {
1397     const Instruction *UI = cast<Instruction>(U);
1398     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1399       const BasicBlock *BB = PN->getParent();
1400       // We cannot sink uses in catchswitches.
1401       if (isa<CatchSwitchInst>(BB->getTerminator()))
1402         return false;
1403 
1404       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1405       // phi use is too muddled.
1406       if (isa<CallInst>(I))
1407         if (!BlockColors.empty() &&
1408             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1409           return false;
1410 
1411       if (LoopNestMode) {
1412         while (isa<PHINode>(UI) && UI->hasOneUser() &&
1413                UI->getNumOperands() == 1) {
1414           if (!CurLoop->contains(UI))
1415             break;
1416           UI = cast<Instruction>(UI->user_back());
1417         }
1418       }
1419     }
1420 
1421     if (CurLoop->contains(UI)) {
1422       if (IsFree) {
1423         FreeInLoop = true;
1424         continue;
1425       }
1426       return false;
1427     }
1428   }
1429   return true;
1430 }
1431 
1432 static Instruction *cloneInstructionInExitBlock(
1433     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1434     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1435   Instruction *New;
1436   if (auto *CI = dyn_cast<CallInst>(&I)) {
1437     const auto &BlockColors = SafetyInfo->getBlockColors();
1438 
1439     // Sinking call-sites need to be handled differently from other
1440     // instructions.  The cloned call-site needs a funclet bundle operand
1441     // appropriate for its location in the CFG.
1442     SmallVector<OperandBundleDef, 1> OpBundles;
1443     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1444          BundleIdx != BundleEnd; ++BundleIdx) {
1445       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1446       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1447         continue;
1448 
1449       OpBundles.emplace_back(Bundle);
1450     }
1451 
1452     if (!BlockColors.empty()) {
1453       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1454       assert(CV.size() == 1 && "non-unique color for exit block!");
1455       BasicBlock *BBColor = CV.front();
1456       Instruction *EHPad = BBColor->getFirstNonPHI();
1457       if (EHPad->isEHPad())
1458         OpBundles.emplace_back("funclet", EHPad);
1459     }
1460 
1461     New = CallInst::Create(CI, OpBundles);
1462   } else {
1463     New = I.clone();
1464   }
1465 
1466   ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1467   if (!I.getName().empty())
1468     New->setName(I.getName() + ".le");
1469 
1470   if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1471     // Create a new MemoryAccess and let MemorySSA set its defining access.
1472     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1473         New, nullptr, New->getParent(), MemorySSA::Beginning);
1474     if (NewMemAcc) {
1475       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1476         MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1477       else {
1478         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1479         MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1480       }
1481     }
1482   }
1483 
1484   // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that
1485   // this is particularly cheap because we can rip off the PHI node that we're
1486   // replacing for the number and blocks of the predecessors.
1487   // OPT: If this shows up in a profile, we can instead finish sinking all
1488   // invariant instructions, and then walk their operands to re-establish
1489   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1490   // sinking bottom-up.
1491   for (Use &Op : New->operands())
1492     if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1493       auto *OInst = cast<Instruction>(Op.get());
1494       PHINode *OpPN =
1495         PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1496                         OInst->getName() + ".lcssa", &ExitBlock.front());
1497       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1498         OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1499       Op = OpPN;
1500     }
1501   return New;
1502 }
1503 
1504 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1505                              MemorySSAUpdater *MSSAU) {
1506   if (MSSAU)
1507     MSSAU->removeMemoryAccess(&I);
1508   SafetyInfo.removeInstruction(&I);
1509   I.eraseFromParent();
1510 }
1511 
1512 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1513                                   ICFLoopSafetyInfo &SafetyInfo,
1514                                   MemorySSAUpdater *MSSAU,
1515                                   ScalarEvolution *SE) {
1516   SafetyInfo.removeInstruction(&I);
1517   SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1518   I.moveBefore(&Dest);
1519   if (MSSAU)
1520     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1521             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1522       MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1523                          MemorySSA::BeforeTerminator);
1524   if (SE)
1525     SE->forgetValue(&I);
1526 }
1527 
1528 static Instruction *sinkThroughTriviallyReplaceablePHI(
1529     PHINode *TPN, Instruction *I, LoopInfo *LI,
1530     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1531     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1532     MemorySSAUpdater *MSSAU) {
1533   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1534          "Expect only trivially replaceable PHI");
1535   BasicBlock *ExitBlock = TPN->getParent();
1536   Instruction *New;
1537   auto It = SunkCopies.find(ExitBlock);
1538   if (It != SunkCopies.end())
1539     New = It->second;
1540   else
1541     New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1542         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1543   return New;
1544 }
1545 
1546 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1547   BasicBlock *BB = PN->getParent();
1548   if (!BB->canSplitPredecessors())
1549     return false;
1550   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1551   // it require updating BlockColors for all offspring blocks accordingly. By
1552   // skipping such corner case, we can make updating BlockColors after splitting
1553   // predecessor fairly simple.
1554   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1555     return false;
1556   for (BasicBlock *BBPred : predecessors(BB)) {
1557     if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1558         isa<CallBrInst>(BBPred->getTerminator()))
1559       return false;
1560   }
1561   return true;
1562 }
1563 
1564 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1565                                         LoopInfo *LI, const Loop *CurLoop,
1566                                         LoopSafetyInfo *SafetyInfo,
1567                                         MemorySSAUpdater *MSSAU) {
1568 #ifndef NDEBUG
1569   SmallVector<BasicBlock *, 32> ExitBlocks;
1570   CurLoop->getUniqueExitBlocks(ExitBlocks);
1571   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1572                                              ExitBlocks.end());
1573 #endif
1574   BasicBlock *ExitBB = PN->getParent();
1575   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1576 
1577   // Split predecessors of the loop exit to make instructions in the loop are
1578   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1579   // loop in the canonical form where each predecessor of each exit block should
1580   // be contained within the loop. For example, this will convert the loop below
1581   // from
1582   //
1583   // LB1:
1584   //   %v1 =
1585   //   br %LE, %LB2
1586   // LB2:
1587   //   %v2 =
1588   //   br %LE, %LB1
1589   // LE:
1590   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1591   //
1592   // to
1593   //
1594   // LB1:
1595   //   %v1 =
1596   //   br %LE.split, %LB2
1597   // LB2:
1598   //   %v2 =
1599   //   br %LE.split2, %LB1
1600   // LE.split:
1601   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1602   //   br %LE
1603   // LE.split2:
1604   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1605   //   br %LE
1606   // LE:
1607   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1608   //
1609   const auto &BlockColors = SafetyInfo->getBlockColors();
1610   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1611   while (!PredBBs.empty()) {
1612     BasicBlock *PredBB = *PredBBs.begin();
1613     assert(CurLoop->contains(PredBB) &&
1614            "Expect all predecessors are in the loop");
1615     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1616       BasicBlock *NewPred = SplitBlockPredecessors(
1617           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1618       // Since we do not allow splitting EH-block with BlockColors in
1619       // canSplitPredecessors(), we can simply assign predecessor's color to
1620       // the new block.
1621       if (!BlockColors.empty())
1622         // Grab a reference to the ColorVector to be inserted before getting the
1623         // reference to the vector we are copying because inserting the new
1624         // element in BlockColors might cause the map to be reallocated.
1625         SafetyInfo->copyColors(NewPred, PredBB);
1626     }
1627     PredBBs.remove(PredBB);
1628   }
1629 }
1630 
1631 /// When an instruction is found to only be used outside of the loop, this
1632 /// function moves it to the exit blocks and patches up SSA form as needed.
1633 /// This method is guaranteed to remove the original instruction from its
1634 /// position, and may either delete it or move it to outside of the loop.
1635 ///
1636 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1637                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
1638                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1639                  OptimizationRemarkEmitter *ORE) {
1640   bool Changed = false;
1641   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1642 
1643   // Iterate over users to be ready for actual sinking. Replace users via
1644   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1645   SmallPtrSet<Instruction *, 8> VisitedUsers;
1646   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1647     auto *User = cast<Instruction>(*UI);
1648     Use &U = UI.getUse();
1649     ++UI;
1650 
1651     if (VisitedUsers.count(User) || CurLoop->contains(User))
1652       continue;
1653 
1654     if (!DT->isReachableFromEntry(User->getParent())) {
1655       U = UndefValue::get(I.getType());
1656       Changed = true;
1657       continue;
1658     }
1659 
1660     // The user must be a PHI node.
1661     PHINode *PN = cast<PHINode>(User);
1662 
1663     // Surprisingly, instructions can be used outside of loops without any
1664     // exits.  This can only happen in PHI nodes if the incoming block is
1665     // unreachable.
1666     BasicBlock *BB = PN->getIncomingBlock(U);
1667     if (!DT->isReachableFromEntry(BB)) {
1668       U = UndefValue::get(I.getType());
1669       Changed = true;
1670       continue;
1671     }
1672 
1673     VisitedUsers.insert(PN);
1674     if (isTriviallyReplaceablePHI(*PN, I))
1675       continue;
1676 
1677     if (!canSplitPredecessors(PN, SafetyInfo))
1678       return Changed;
1679 
1680     // Split predecessors of the PHI so that we can make users trivially
1681     // replaceable.
1682     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1683 
1684     // Should rebuild the iterators, as they may be invalidated by
1685     // splitPredecessorsOfLoopExit().
1686     UI = I.user_begin();
1687     UE = I.user_end();
1688   }
1689 
1690   if (VisitedUsers.empty())
1691     return Changed;
1692 
1693   ORE->emit([&]() {
1694     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1695            << "sinking " << ore::NV("Inst", &I);
1696   });
1697   if (isa<LoadInst>(I))
1698     ++NumMovedLoads;
1699   else if (isa<CallInst>(I))
1700     ++NumMovedCalls;
1701   ++NumSunk;
1702 
1703 #ifndef NDEBUG
1704   SmallVector<BasicBlock *, 32> ExitBlocks;
1705   CurLoop->getUniqueExitBlocks(ExitBlocks);
1706   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1707                                              ExitBlocks.end());
1708 #endif
1709 
1710   // Clones of this instruction. Don't create more than one per exit block!
1711   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1712 
1713   // If this instruction is only used outside of the loop, then all users are
1714   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1715   // the instruction.
1716   // First check if I is worth sinking for all uses. Sink only when it is worth
1717   // across all uses.
1718   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1719   for (auto *UI : Users) {
1720     auto *User = cast<Instruction>(UI);
1721 
1722     if (CurLoop->contains(User))
1723       continue;
1724 
1725     PHINode *PN = cast<PHINode>(User);
1726     assert(ExitBlockSet.count(PN->getParent()) &&
1727            "The LCSSA PHI is not in an exit block!");
1728 
1729     // The PHI must be trivially replaceable.
1730     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1731         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1732     PN->replaceAllUsesWith(New);
1733     eraseInstruction(*PN, *SafetyInfo, nullptr);
1734     Changed = true;
1735   }
1736   return Changed;
1737 }
1738 
1739 /// When an instruction is found to only use loop invariant operands that
1740 /// is safe to hoist, this instruction is called to do the dirty work.
1741 ///
1742 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1743                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1744                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1745                   OptimizationRemarkEmitter *ORE) {
1746   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1747                     << I << "\n");
1748   ORE->emit([&]() {
1749     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1750                                                          << ore::NV("Inst", &I);
1751   });
1752 
1753   // Metadata can be dependent on conditions we are hoisting above.
1754   // Conservatively strip all metadata on the instruction unless we were
1755   // guaranteed to execute I if we entered the loop, in which case the metadata
1756   // is valid in the loop preheader.
1757   // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1758   // then moving to the preheader means we should strip attributes on the call
1759   // that can cause UB since we may be hoisting above conditions that allowed
1760   // inferring those attributes. They may not be valid at the preheader.
1761   if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1762       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1763       // time in isGuaranteedToExecute if we don't actually have anything to
1764       // drop.  It is a compile time optimization, not required for correctness.
1765       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1766     I.dropUndefImplyingAttrsAndUnknownMetadata();
1767 
1768   if (isa<PHINode>(I))
1769     // Move the new node to the end of the phi list in the destination block.
1770     moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1771   else
1772     // Move the new node to the destination block, before its terminator.
1773     moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1774 
1775   I.updateLocationAfterHoist();
1776 
1777   if (isa<LoadInst>(I))
1778     ++NumMovedLoads;
1779   else if (isa<CallInst>(I))
1780     ++NumMovedCalls;
1781   ++NumHoisted;
1782 }
1783 
1784 /// Only sink or hoist an instruction if it is not a trapping instruction,
1785 /// or if the instruction is known not to trap when moved to the preheader.
1786 /// or if it is a trapping instruction and is guaranteed to execute.
1787 static bool isSafeToExecuteUnconditionally(
1788     Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI,
1789     const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo,
1790     OptimizationRemarkEmitter *ORE, const Instruction *CtxI,
1791     bool AllowSpeculation) {
1792   if (AllowSpeculation && isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1793     return true;
1794 
1795   bool GuaranteedToExecute =
1796       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1797 
1798   if (!GuaranteedToExecute) {
1799     auto *LI = dyn_cast<LoadInst>(&Inst);
1800     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1801       ORE->emit([&]() {
1802         return OptimizationRemarkMissed(
1803                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1804                << "failed to hoist load with loop-invariant address "
1805                   "because load is conditionally executed";
1806       });
1807   }
1808 
1809   return GuaranteedToExecute;
1810 }
1811 
1812 namespace {
1813 class LoopPromoter : public LoadAndStorePromoter {
1814   Value *SomePtr; // Designated pointer to store to.
1815   const SmallSetVector<Value *, 8> &PointerMustAliases;
1816   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1817   SmallVectorImpl<Instruction *> &LoopInsertPts;
1818   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1819   PredIteratorCache &PredCache;
1820   MemorySSAUpdater *MSSAU;
1821   LoopInfo &LI;
1822   DebugLoc DL;
1823   Align Alignment;
1824   bool UnorderedAtomic;
1825   AAMDNodes AATags;
1826   ICFLoopSafetyInfo &SafetyInfo;
1827   bool CanInsertStoresInExitBlocks;
1828 
1829   // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi
1830   // (if legal) if doing so would add an out-of-loop use to an instruction
1831   // defined in-loop.
1832   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1833     if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1834       return V;
1835 
1836     Instruction *I = cast<Instruction>(V);
1837     // We need to create an LCSSA PHI node for the incoming value and
1838     // store that.
1839     PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1840                                   I->getName() + ".lcssa", &BB->front());
1841     for (BasicBlock *Pred : PredCache.get(BB))
1842       PN->addIncoming(I, Pred);
1843     return PN;
1844   }
1845 
1846 public:
1847   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1848                const SmallSetVector<Value *, 8> &PMA,
1849                SmallVectorImpl<BasicBlock *> &LEB,
1850                SmallVectorImpl<Instruction *> &LIP,
1851                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1852                MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl,
1853                Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1854                ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
1855       : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1856         LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1857         PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1858         Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1859         SafetyInfo(SafetyInfo),
1860         CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks) {}
1861 
1862   bool isInstInList(Instruction *I,
1863                     const SmallVectorImpl<Instruction *> &) const override {
1864     Value *Ptr;
1865     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1866       Ptr = LI->getOperand(0);
1867     else
1868       Ptr = cast<StoreInst>(I)->getPointerOperand();
1869     return PointerMustAliases.count(Ptr);
1870   }
1871 
1872   void insertStoresInLoopExitBlocks() {
1873     // Insert stores after in the loop exit blocks.  Each exit block gets a
1874     // store of the live-out values that feed them.  Since we've already told
1875     // the SSA updater about the defs in the loop and the preheader
1876     // definition, it is all set and we can start using it.
1877     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1878       BasicBlock *ExitBlock = LoopExitBlocks[i];
1879       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1880       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1881       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1882       Instruction *InsertPos = LoopInsertPts[i];
1883       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1884       if (UnorderedAtomic)
1885         NewSI->setOrdering(AtomicOrdering::Unordered);
1886       NewSI->setAlignment(Alignment);
1887       NewSI->setDebugLoc(DL);
1888       if (AATags)
1889         NewSI->setAAMetadata(AATags);
1890 
1891       MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1892       MemoryAccess *NewMemAcc;
1893       if (!MSSAInsertPoint) {
1894         NewMemAcc = MSSAU->createMemoryAccessInBB(
1895             NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1896       } else {
1897         NewMemAcc =
1898             MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1899       }
1900       MSSAInsertPts[i] = NewMemAcc;
1901       MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1902       // FIXME: true for safety, false may still be correct.
1903     }
1904   }
1905 
1906   void doExtraRewritesBeforeFinalDeletion() override {
1907     if (CanInsertStoresInExitBlocks)
1908       insertStoresInLoopExitBlocks();
1909   }
1910 
1911   void instructionDeleted(Instruction *I) const override {
1912     SafetyInfo.removeInstruction(I);
1913     MSSAU->removeMemoryAccess(I);
1914   }
1915 
1916   bool shouldDelete(Instruction *I) const override {
1917     if (isa<StoreInst>(I))
1918       return CanInsertStoresInExitBlocks;
1919     return true;
1920   }
1921 };
1922 
1923 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1924                                  DominatorTree *DT) {
1925   // We can perform the captured-before check against any instruction in the
1926   // loop header, as the loop header is reachable from any instruction inside
1927   // the loop.
1928   // TODO: ReturnCaptures=true shouldn't be necessary here.
1929   return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1930                                      /* StoreCaptures */ true,
1931                                      L->getHeader()->getTerminator(), DT);
1932 }
1933 
1934 /// Return true if we can prove that a caller cannot inspect the object if an
1935 /// unwind occurs inside the loop.
1936 bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L,
1937                                 DominatorTree *DT) {
1938   bool RequiresNoCaptureBeforeUnwind;
1939   if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind))
1940     return false;
1941 
1942   return !RequiresNoCaptureBeforeUnwind ||
1943          isNotCapturedBeforeOrInLoop(Object, L, DT);
1944 }
1945 
1946 } // namespace
1947 
1948 /// Try to promote memory values to scalars by sinking stores out of the
1949 /// loop and moving loads to before the loop.  We do this by looping over
1950 /// the stores in the loop, looking for stores to Must pointers which are
1951 /// loop invariant.
1952 ///
1953 bool llvm::promoteLoopAccessesToScalars(
1954     const SmallSetVector<Value *, 8> &PointerMustAliases,
1955     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1956     SmallVectorImpl<Instruction *> &InsertPts,
1957     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1958     LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1959     Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1960     OptimizationRemarkEmitter *ORE, bool AllowSpeculation) {
1961   // Verify inputs.
1962   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1963          SafetyInfo != nullptr &&
1964          "Unexpected Input to promoteLoopAccessesToScalars");
1965 
1966   Value *SomePtr = *PointerMustAliases.begin();
1967   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1968 
1969   // It is not safe to promote a load/store from the loop if the load/store is
1970   // conditional.  For example, turning:
1971   //
1972   //    for () { if (c) *P += 1; }
1973   //
1974   // into:
1975   //
1976   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
1977   //
1978   // is not safe, because *P may only be valid to access if 'c' is true.
1979   //
1980   // The safety property divides into two parts:
1981   // p1) The memory may not be dereferenceable on entry to the loop.  In this
1982   //    case, we can't insert the required load in the preheader.
1983   // p2) The memory model does not allow us to insert a store along any dynamic
1984   //    path which did not originally have one.
1985   //
1986   // If at least one store is guaranteed to execute, both properties are
1987   // satisfied, and promotion is legal.
1988   //
1989   // This, however, is not a necessary condition. Even if no store/load is
1990   // guaranteed to execute, we can still establish these properties.
1991   // We can establish (p1) by proving that hoisting the load into the preheader
1992   // is safe (i.e. proving dereferenceability on all paths through the loop). We
1993   // can use any access within the alias set to prove dereferenceability,
1994   // since they're all must alias.
1995   //
1996   // There are two ways establish (p2):
1997   // a) Prove the location is thread-local. In this case the memory model
1998   // requirement does not apply, and stores are safe to insert.
1999   // b) Prove a store dominates every exit block. In this case, if an exit
2000   // blocks is reached, the original dynamic path would have taken us through
2001   // the store, so inserting a store into the exit block is safe. Note that this
2002   // is different from the store being guaranteed to execute. For instance,
2003   // if an exception is thrown on the first iteration of the loop, the original
2004   // store is never executed, but the exit blocks are not executed either.
2005 
2006   bool DereferenceableInPH = false;
2007   bool SafeToInsertStore = false;
2008   bool FoundLoadToPromote = false;
2009 
2010   SmallVector<Instruction *, 64> LoopUses;
2011 
2012   // We start with an alignment of one and try to find instructions that allow
2013   // us to prove better alignment.
2014   Align Alignment;
2015   // Keep track of which types of access we see
2016   bool SawUnorderedAtomic = false;
2017   bool SawNotAtomic = false;
2018   AAMDNodes AATags;
2019 
2020   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2021 
2022   bool IsKnownThreadLocalObject = false;
2023   if (SafetyInfo->anyBlockMayThrow()) {
2024     // If a loop can throw, we have to insert a store along each unwind edge.
2025     // That said, we can't actually make the unwind edge explicit. Therefore,
2026     // we have to prove that the store is dead along the unwind edge.  We do
2027     // this by proving that the caller can't have a reference to the object
2028     // after return and thus can't possibly load from the object.
2029     Value *Object = getUnderlyingObject(SomePtr);
2030     if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT))
2031       return false;
2032     // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2033     // visible to other threads if captured and used during their lifetimes.
2034     IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2035   }
2036 
2037   // Check that all accesses to pointers in the aliass set use the same type.
2038   // We cannot (yet) promote a memory location that is loaded and stored in
2039   // different sizes.  While we are at it, collect alignment and AA info.
2040   Type *AccessTy = nullptr;
2041   for (Value *ASIV : PointerMustAliases) {
2042     for (User *U : ASIV->users()) {
2043       // Ignore instructions that are outside the loop.
2044       Instruction *UI = dyn_cast<Instruction>(U);
2045       if (!UI || !CurLoop->contains(UI))
2046         continue;
2047 
2048       // If there is an non-load/store instruction in the loop, we can't promote
2049       // it.
2050       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2051         if (!Load->isUnordered())
2052           return false;
2053 
2054         SawUnorderedAtomic |= Load->isAtomic();
2055         SawNotAtomic |= !Load->isAtomic();
2056         FoundLoadToPromote = true;
2057 
2058         Align InstAlignment = Load->getAlign();
2059 
2060         // Note that proving a load safe to speculate requires proving
2061         // sufficient alignment at the target location.  Proving it guaranteed
2062         // to execute does as well.  Thus we can increase our guaranteed
2063         // alignment as well.
2064         if (!DereferenceableInPH || (InstAlignment > Alignment))
2065           if (isSafeToExecuteUnconditionally(
2066                   *Load, DT, TLI, CurLoop, SafetyInfo, ORE,
2067                   Preheader->getTerminator(), AllowSpeculation)) {
2068             DereferenceableInPH = true;
2069             Alignment = std::max(Alignment, InstAlignment);
2070           }
2071       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2072         // Stores *of* the pointer are not interesting, only stores *to* the
2073         // pointer.
2074         if (UI->getOperand(1) != ASIV)
2075           continue;
2076         if (!Store->isUnordered())
2077           return false;
2078 
2079         SawUnorderedAtomic |= Store->isAtomic();
2080         SawNotAtomic |= !Store->isAtomic();
2081 
2082         // If the store is guaranteed to execute, both properties are satisfied.
2083         // We may want to check if a store is guaranteed to execute even if we
2084         // already know that promotion is safe, since it may have higher
2085         // alignment than any other guaranteed stores, in which case we can
2086         // raise the alignment on the promoted store.
2087         Align InstAlignment = Store->getAlign();
2088 
2089         if (!DereferenceableInPH || !SafeToInsertStore ||
2090             (InstAlignment > Alignment)) {
2091           if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2092             DereferenceableInPH = true;
2093             SafeToInsertStore = true;
2094             Alignment = std::max(Alignment, InstAlignment);
2095           }
2096         }
2097 
2098         // If a store dominates all exit blocks, it is safe to sink.
2099         // As explained above, if an exit block was executed, a dominating
2100         // store must have been executed at least once, so we are not
2101         // introducing stores on paths that did not have them.
2102         // Note that this only looks at explicit exit blocks. If we ever
2103         // start sinking stores into unwind edges (see above), this will break.
2104         if (!SafeToInsertStore)
2105           SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2106             return DT->dominates(Store->getParent(), Exit);
2107           });
2108 
2109         // If the store is not guaranteed to execute, we may still get
2110         // deref info through it.
2111         if (!DereferenceableInPH) {
2112           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2113               Store->getPointerOperand(), Store->getValueOperand()->getType(),
2114               Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2115         }
2116       } else
2117         return false; // Not a load or store.
2118 
2119       if (!AccessTy)
2120         AccessTy = getLoadStoreType(UI);
2121       else if (AccessTy != getLoadStoreType(UI))
2122         return false;
2123 
2124       // Merge the AA tags.
2125       if (LoopUses.empty()) {
2126         // On the first load/store, just take its AA tags.
2127         AATags = UI->getAAMetadata();
2128       } else if (AATags) {
2129         AATags = AATags.merge(UI->getAAMetadata());
2130       }
2131 
2132       LoopUses.push_back(UI);
2133     }
2134   }
2135 
2136   // If we found both an unordered atomic instruction and a non-atomic memory
2137   // access, bail.  We can't blindly promote non-atomic to atomic since we
2138   // might not be able to lower the result.  We can't downgrade since that
2139   // would violate memory model.  Also, align 0 is an error for atomics.
2140   if (SawUnorderedAtomic && SawNotAtomic)
2141     return false;
2142 
2143   // If we're inserting an atomic load in the preheader, we must be able to
2144   // lower it.  We're only guaranteed to be able to lower naturally aligned
2145   // atomics.
2146   if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
2147     return false;
2148 
2149   // If we couldn't prove we can hoist the load, bail.
2150   if (!DereferenceableInPH)
2151     return false;
2152 
2153   // We know we can hoist the load, but don't have a guaranteed store.
2154   // Check whether the location is thread-local. If it is, then we can insert
2155   // stores along paths which originally didn't have them without violating the
2156   // memory model.
2157   if (!SafeToInsertStore) {
2158     if (IsKnownThreadLocalObject)
2159       SafeToInsertStore = true;
2160     else {
2161       Value *Object = getUnderlyingObject(SomePtr);
2162       SafeToInsertStore =
2163           (isNoAliasCall(Object) || isa<AllocaInst>(Object)) &&
2164           isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2165     }
2166   }
2167 
2168   // If we've still failed to prove we can sink the store, hoist the load
2169   // only, if possible.
2170   if (!SafeToInsertStore && !FoundLoadToPromote)
2171     // If we cannot hoist the load either, give up.
2172     return false;
2173 
2174   // Lets do the promotion!
2175   if (SafeToInsertStore)
2176     LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
2177                       << '\n');
2178   else
2179     LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
2180                       << '\n');
2181 
2182   ORE->emit([&]() {
2183     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2184                               LoopUses[0])
2185            << "Moving accesses to memory location out of the loop";
2186   });
2187   ++NumPromoted;
2188 
2189   // Look at all the loop uses, and try to merge their locations.
2190   std::vector<const DILocation *> LoopUsesLocs;
2191   for (auto U : LoopUses)
2192     LoopUsesLocs.push_back(U->getDebugLoc().get());
2193   auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2194 
2195   // We use the SSAUpdater interface to insert phi nodes as required.
2196   SmallVector<PHINode *, 16> NewPHIs;
2197   SSAUpdater SSA(&NewPHIs);
2198   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2199                         InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
2200                         Alignment, SawUnorderedAtomic, AATags, *SafetyInfo,
2201                         SafeToInsertStore);
2202 
2203   // Set up the preheader to have a definition of the value.  It is the live-out
2204   // value from the preheader that uses in the loop will use.
2205   LoadInst *PreheaderLoad = new LoadInst(
2206       AccessTy, SomePtr, SomePtr->getName() + ".promoted",
2207       Preheader->getTerminator());
2208   if (SawUnorderedAtomic)
2209     PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2210   PreheaderLoad->setAlignment(Alignment);
2211   PreheaderLoad->setDebugLoc(DebugLoc());
2212   if (AATags)
2213     PreheaderLoad->setAAMetadata(AATags);
2214   SSA.AddAvailableValue(Preheader, PreheaderLoad);
2215 
2216   MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2217       PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2218   MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2219   MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2220 
2221   if (VerifyMemorySSA)
2222     MSSAU->getMemorySSA()->verifyMemorySSA();
2223   // Rewrite all the loads in the loop and remember all the definitions from
2224   // stores in the loop.
2225   Promoter.run(LoopUses);
2226 
2227   if (VerifyMemorySSA)
2228     MSSAU->getMemorySSA()->verifyMemorySSA();
2229   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2230   if (PreheaderLoad->use_empty())
2231     eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2232 
2233   return true;
2234 }
2235 
2236 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2237                                 function_ref<void(Instruction *)> Fn) {
2238   for (const BasicBlock *BB : L->blocks())
2239     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2240       for (const auto &Access : *Accesses)
2241         if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2242           Fn(MUD->getMemoryInst());
2243 }
2244 
2245 static SmallVector<SmallSetVector<Value *, 8>, 0>
2246 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2247   AliasSetTracker AST(*AA);
2248 
2249   auto IsPotentiallyPromotable = [L](const Instruction *I) {
2250     if (const auto *SI = dyn_cast<StoreInst>(I))
2251       return L->isLoopInvariant(SI->getPointerOperand());
2252     if (const auto *LI = dyn_cast<LoadInst>(I))
2253       return L->isLoopInvariant(LI->getPointerOperand());
2254     return false;
2255   };
2256 
2257   // Populate AST with potentially promotable accesses and remove them from
2258   // MaybePromotable, so they will not be checked again on the next iteration.
2259   SmallPtrSet<Value *, 16> AttemptingPromotion;
2260   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2261     if (IsPotentiallyPromotable(I)) {
2262       AttemptingPromotion.insert(I);
2263       AST.add(I);
2264     }
2265   });
2266 
2267   // We're only interested in must-alias sets that contain a mod.
2268   SmallVector<const AliasSet *, 8> Sets;
2269   for (AliasSet &AS : AST)
2270     if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2271       Sets.push_back(&AS);
2272 
2273   if (Sets.empty())
2274     return {}; // Nothing to promote...
2275 
2276   // Discard any sets for which there is an aliasing non-promotable access.
2277   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2278     if (AttemptingPromotion.contains(I))
2279       return;
2280 
2281     llvm::erase_if(Sets, [&](const AliasSet *AS) {
2282       return AS->aliasesUnknownInst(I, *AA);
2283     });
2284   });
2285 
2286   SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2287   for (const AliasSet *Set : Sets) {
2288     SmallSetVector<Value *, 8> PointerMustAliases;
2289     for (const auto &ASI : *Set)
2290       PointerMustAliases.insert(ASI.getValue());
2291     Result.push_back(std::move(PointerMustAliases));
2292   }
2293 
2294   return Result;
2295 }
2296 
2297 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2298                                      AliasSetTracker *CurAST, Loop *CurLoop,
2299                                      AAResults *AA) {
2300   return CurAST->getAliasSetFor(MemLoc).isMod();
2301 }
2302 
2303 bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2304                                       Loop *CurLoop, Instruction &I,
2305                                       SinkAndHoistLICMFlags &Flags) {
2306   // For hoisting, use the walker to determine safety
2307   if (!Flags.getIsSink()) {
2308     MemoryAccess *Source;
2309     // See declaration of SetLicmMssaOptCap for usage details.
2310     if (Flags.tooManyClobberingCalls())
2311       Source = MU->getDefiningAccess();
2312     else {
2313       Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2314       Flags.incrementClobberingCalls();
2315     }
2316     return !MSSA->isLiveOnEntryDef(Source) &&
2317            CurLoop->contains(Source->getBlock());
2318   }
2319 
2320   // For sinking, we'd need to check all Defs below this use. The getClobbering
2321   // call will look on the backedge of the loop, but will check aliasing with
2322   // the instructions on the previous iteration.
2323   // For example:
2324   // for (i ... )
2325   //   load a[i] ( Use (LoE)
2326   //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2327   //   i++;
2328   // The load sees no clobbering inside the loop, as the backedge alias check
2329   // does phi translation, and will check aliasing against store a[i-1].
2330   // However sinking the load outside the loop, below the store is incorrect.
2331 
2332   // For now, only sink if there are no Defs in the loop, and the existing ones
2333   // precede the use and are in the same block.
2334   // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2335   // needs PostDominatorTreeAnalysis.
2336   // FIXME: More precise: no Defs that alias this Use.
2337   if (Flags.tooManyMemoryAccesses())
2338     return true;
2339   for (auto *BB : CurLoop->getBlocks())
2340     if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2341       return true;
2342   // When sinking, the source block may not be part of the loop so check it.
2343   if (!CurLoop->contains(&I))
2344     return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2345 
2346   return false;
2347 }
2348 
2349 bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2350                                        MemoryUse &MU) {
2351   if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2352     for (const auto &MA : *Accesses)
2353       if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2354         if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2355           return true;
2356   return false;
2357 }
2358 
2359 /// Little predicate that returns true if the specified basic block is in
2360 /// a subloop of the current one, not the current one itself.
2361 ///
2362 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2363   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2364   return LI->getLoopFor(BB) != CurLoop;
2365 }
2366