1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // Hoisting operations out of loops is a canonicalization transform. It 16 // enables and simplifies subsequent optimizations in the middle-end. 17 // Rematerialization of hoisted instructions to reduce register pressure is the 18 // responsibility of the back-end, which has more accurate information about 19 // register pressure and also handles other optimizations than LICM that 20 // increase live-ranges. 21 // 22 // This pass uses alias analysis for two purposes: 23 // 24 // 1. Moving loop invariant loads and calls out of loops. If we can determine 25 // that a load or call inside of a loop never aliases anything stored to, 26 // we can hoist it or sink it like any other instruction. 27 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 28 // the loop, we try to move the store to happen AFTER the loop instead of 29 // inside of the loop. This can only happen if a few conditions are true: 30 // A. The pointer stored through is loop invariant 31 // B. There are no stores or loads in the loop which _may_ alias the 32 // pointer. There are no calls in the loop which mod/ref the pointer. 33 // If these conditions are true, we can promote the loads and stores in the 34 // loop of the pointer to use a temporary alloca'd variable. We then use 35 // the SSAUpdater to construct the appropriate SSA form for the value. 36 // 37 //===----------------------------------------------------------------------===// 38 39 #include "llvm/Transforms/Scalar/LICM.h" 40 #include "llvm/ADT/SetOperations.h" 41 #include "llvm/ADT/Statistic.h" 42 #include "llvm/Analysis/AliasAnalysis.h" 43 #include "llvm/Analysis/AliasSetTracker.h" 44 #include "llvm/Analysis/BasicAliasAnalysis.h" 45 #include "llvm/Analysis/BlockFrequencyInfo.h" 46 #include "llvm/Analysis/CaptureTracking.h" 47 #include "llvm/Analysis/ConstantFolding.h" 48 #include "llvm/Analysis/GlobalsModRef.h" 49 #include "llvm/Analysis/GuardUtils.h" 50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h" 51 #include "llvm/Analysis/Loads.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopIterator.h" 54 #include "llvm/Analysis/LoopPass.h" 55 #include "llvm/Analysis/MemoryBuiltins.h" 56 #include "llvm/Analysis/MemorySSA.h" 57 #include "llvm/Analysis/MemorySSAUpdater.h" 58 #include "llvm/Analysis/MustExecute.h" 59 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 62 #include "llvm/Analysis/TargetLibraryInfo.h" 63 #include "llvm/Analysis/ValueTracking.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/DataLayout.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/Dominators.h" 70 #include "llvm/IR/Instructions.h" 71 #include "llvm/IR/IntrinsicInst.h" 72 #include "llvm/IR/LLVMContext.h" 73 #include "llvm/IR/Metadata.h" 74 #include "llvm/IR/PatternMatch.h" 75 #include "llvm/IR/PredIteratorCache.h" 76 #include "llvm/InitializePasses.h" 77 #include "llvm/Support/CommandLine.h" 78 #include "llvm/Support/Debug.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Scalar/LoopPassManager.h" 82 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h" 83 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 84 #include "llvm/Transforms/Utils/Local.h" 85 #include "llvm/Transforms/Utils/LoopUtils.h" 86 #include "llvm/Transforms/Utils/SSAUpdater.h" 87 #include <algorithm> 88 #include <utility> 89 using namespace llvm; 90 91 #define DEBUG_TYPE "licm" 92 93 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 94 STATISTIC(NumClonedBranches, "Number of branches cloned"); 95 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 96 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 97 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 98 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 99 STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); 100 101 /// Memory promotion is enabled by default. 102 static cl::opt<bool> 103 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 104 cl::desc("Disable memory promotion in LICM pass")); 105 106 static cl::opt<bool> ControlFlowHoisting( 107 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 108 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 109 110 static cl::opt<unsigned> HoistSinkColdnessThreshold( 111 "licm-coldness-threshold", cl::Hidden, cl::init(4), 112 cl::desc("Relative coldness Threshold of hoisting/sinking destination " 113 "block for LICM to be considered beneficial")); 114 115 static cl::opt<uint32_t> MaxNumUsesTraversed( 116 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 117 cl::desc("Max num uses visited for identifying load " 118 "invariance in loop using invariant start (default = 8)")); 119 120 // Default value of zero implies we use the regular alias set tracker mechanism 121 // instead of the cross product using AA to identify aliasing of the memory 122 // location we are interested in. 123 static cl::opt<int> 124 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0), 125 cl::desc("How many instruction to cross product using AA")); 126 127 // Experimental option to allow imprecision in LICM in pathological cases, in 128 // exchange for faster compile. This is to be removed if MemorySSA starts to 129 // address the same issue. This flag applies only when LICM uses MemorySSA 130 // instead on AliasSetTracker. LICM calls MemorySSAWalker's 131 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 132 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 133 // which may not be precise, since optimizeUses is capped. The result is 134 // correct, but we may not get as "far up" as possible to get which access is 135 // clobbering the one queried. 136 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 137 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 138 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 139 "for faster compile. Caps the MemorySSA clobbering calls.")); 140 141 // Experimentally, memory promotion carries less importance than sinking and 142 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 143 // compile time. 144 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 145 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 146 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 147 "effect. When MSSA in LICM is enabled, then this is the maximum " 148 "number of accesses allowed to be present in a loop in order to " 149 "enable memory promotion.")); 150 151 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 152 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 153 const LoopSafetyInfo *SafetyInfo, 154 TargetTransformInfo *TTI, bool &FreeInLoop); 155 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 156 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 157 MemorySSAUpdater *MSSAU, ScalarEvolution *SE, 158 OptimizationRemarkEmitter *ORE); 159 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 160 BlockFrequencyInfo *BFI, const Loop *CurLoop, 161 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU, 162 OptimizationRemarkEmitter *ORE); 163 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 164 const DominatorTree *DT, 165 const Loop *CurLoop, 166 const LoopSafetyInfo *SafetyInfo, 167 OptimizationRemarkEmitter *ORE, 168 const Instruction *CtxI = nullptr); 169 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 170 AliasSetTracker *CurAST, Loop *CurLoop, 171 AAResults *AA); 172 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 173 Loop *CurLoop, Instruction &I, 174 SinkAndHoistLICMFlags &Flags); 175 static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA, 176 MemoryUse &MU); 177 static Instruction *cloneInstructionInExitBlock( 178 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 179 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU); 180 181 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 182 AliasSetTracker *AST, MemorySSAUpdater *MSSAU); 183 184 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 185 ICFLoopSafetyInfo &SafetyInfo, 186 MemorySSAUpdater *MSSAU, ScalarEvolution *SE); 187 188 namespace { 189 struct LoopInvariantCodeMotion { 190 bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 191 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, 192 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, 193 OptimizationRemarkEmitter *ORE); 194 195 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 196 unsigned LicmMssaNoAccForPromotionCap) 197 : LicmMssaOptCap(LicmMssaOptCap), 198 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {} 199 200 private: 201 unsigned LicmMssaOptCap; 202 unsigned LicmMssaNoAccForPromotionCap; 203 204 std::unique_ptr<AliasSetTracker> 205 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA); 206 std::unique_ptr<AliasSetTracker> 207 collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA, 208 MemorySSAUpdater *MSSAU); 209 }; 210 211 struct LegacyLICMPass : public LoopPass { 212 static char ID; // Pass identification, replacement for typeid 213 LegacyLICMPass( 214 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 215 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap) 216 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) { 217 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 218 } 219 220 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 221 if (skipLoop(L)) 222 return false; 223 224 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 225 MemorySSA *MSSA = EnableMSSALoopDependency 226 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA()) 227 : nullptr; 228 bool hasProfileData = L->getHeader()->getParent()->hasProfileData(); 229 BlockFrequencyInfo *BFI = 230 hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() 231 : nullptr; 232 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 233 // pass. Function analyses need to be preserved across loop transformations 234 // but ORE cannot be preserved (see comment before the pass definition). 235 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 236 return LICM.runOnLoop( 237 L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), 238 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 239 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI, 240 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI( 241 *L->getHeader()->getParent()), 242 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 243 *L->getHeader()->getParent()), 244 SE ? &SE->getSE() : nullptr, MSSA, &ORE); 245 } 246 247 /// This transformation requires natural loop information & requires that 248 /// loop preheaders be inserted into the CFG... 249 /// 250 void getAnalysisUsage(AnalysisUsage &AU) const override { 251 AU.addPreserved<DominatorTreeWrapperPass>(); 252 AU.addPreserved<LoopInfoWrapperPass>(); 253 AU.addRequired<TargetLibraryInfoWrapperPass>(); 254 if (EnableMSSALoopDependency) { 255 AU.addRequired<MemorySSAWrapperPass>(); 256 AU.addPreserved<MemorySSAWrapperPass>(); 257 } 258 AU.addRequired<TargetTransformInfoWrapperPass>(); 259 getLoopAnalysisUsage(AU); 260 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); 261 AU.addPreserved<LazyBlockFrequencyInfoPass>(); 262 AU.addPreserved<LazyBranchProbabilityInfoPass>(); 263 } 264 265 private: 266 LoopInvariantCodeMotion LICM; 267 }; 268 } // namespace 269 270 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 271 LoopStandardAnalysisResults &AR, LPMUpdater &) { 272 // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis 273 // pass. Function analyses need to be preserved across loop transformations 274 // but ORE cannot be preserved (see comment before the pass definition). 275 OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); 276 277 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 278 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI, 279 &AR.SE, AR.MSSA, &ORE)) 280 return PreservedAnalyses::all(); 281 282 auto PA = getLoopPassPreservedAnalyses(); 283 284 PA.preserve<DominatorTreeAnalysis>(); 285 PA.preserve<LoopAnalysis>(); 286 if (AR.MSSA) 287 PA.preserve<MemorySSAAnalysis>(); 288 289 return PA; 290 } 291 292 char LegacyLICMPass::ID = 0; 293 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 294 false, false) 295 INITIALIZE_PASS_DEPENDENCY(LoopPass) 296 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 297 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 298 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 299 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) 300 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 301 false) 302 303 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 304 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, 305 unsigned LicmMssaNoAccForPromotionCap) { 306 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 307 } 308 309 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L, 310 MemorySSA *MSSA) 311 : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, 312 IsSink, L, MSSA) {} 313 314 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( 315 unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, 316 Loop *L, MemorySSA *MSSA) 317 : LicmMssaOptCap(LicmMssaOptCap), 318 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), 319 IsSink(IsSink) { 320 assert(((L != nullptr) == (MSSA != nullptr)) && 321 "Unexpected values for SinkAndHoistLICMFlags"); 322 if (!MSSA) 323 return; 324 325 unsigned AccessCapCount = 0; 326 for (auto *BB : L->getBlocks()) 327 if (const auto *Accesses = MSSA->getBlockAccesses(BB)) 328 for (const auto &MA : *Accesses) { 329 (void)MA; 330 ++AccessCapCount; 331 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 332 NoOfMemAccTooLarge = true; 333 return; 334 } 335 } 336 } 337 338 /// Hoist expressions out of the specified loop. Note, alias info for inner 339 /// loop is not preserved so it is not a good idea to run LICM multiple 340 /// times on one loop. 341 bool LoopInvariantCodeMotion::runOnLoop( 342 Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, 343 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 344 ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) { 345 bool Changed = false; 346 347 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 348 349 // If this loop has metadata indicating that LICM is not to be performed then 350 // just exit. 351 if (hasDisableLICMTransformsHint(L)) { 352 return false; 353 } 354 355 std::unique_ptr<AliasSetTracker> CurAST; 356 std::unique_ptr<MemorySSAUpdater> MSSAU; 357 std::unique_ptr<SinkAndHoistLICMFlags> Flags; 358 359 if (!MSSA) { 360 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n"); 361 CurAST = collectAliasInfoForLoop(L, LI, AA); 362 Flags = std::make_unique<SinkAndHoistLICMFlags>( 363 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true); 364 } else { 365 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n"); 366 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 367 Flags = std::make_unique<SinkAndHoistLICMFlags>( 368 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA); 369 } 370 371 // Get the preheader block to move instructions into... 372 BasicBlock *Preheader = L->getLoopPreheader(); 373 374 // Compute loop safety information. 375 ICFLoopSafetyInfo SafetyInfo; 376 SafetyInfo.computeLoopSafetyInfo(L); 377 378 // We want to visit all of the instructions in this loop... that are not parts 379 // of our subloops (they have already had their invariants hoisted out of 380 // their loop, into this loop, so there is no need to process the BODIES of 381 // the subloops). 382 // 383 // Traverse the body of the loop in depth first order on the dominator tree so 384 // that we are guaranteed to see definitions before we see uses. This allows 385 // us to sink instructions in one pass, without iteration. After sinking 386 // instructions, we perform another pass to hoist them out of the loop. 387 if (L->hasDedicatedExits()) 388 Changed |= 389 sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L, 390 CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE); 391 Flags->setIsSink(false); 392 if (Preheader) 393 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L, 394 CurAST.get(), MSSAU.get(), SE, &SafetyInfo, 395 *Flags.get(), ORE); 396 397 // Now that all loop invariants have been removed from the loop, promote any 398 // memory references to scalars that we can. 399 // Don't sink stores from loops without dedicated block exits. Exits 400 // containing indirect branches are not transformed by loop simplify, 401 // make sure we catch that. An additional load may be generated in the 402 // preheader for SSA updater, so also avoid sinking when no preheader 403 // is available. 404 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 405 !Flags->tooManyMemoryAccesses()) { 406 // Figure out the loop exits and their insertion points 407 SmallVector<BasicBlock *, 8> ExitBlocks; 408 L->getUniqueExitBlocks(ExitBlocks); 409 410 // We can't insert into a catchswitch. 411 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 412 return isa<CatchSwitchInst>(Exit->getTerminator()); 413 }); 414 415 if (!HasCatchSwitch) { 416 SmallVector<Instruction *, 8> InsertPts; 417 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 418 InsertPts.reserve(ExitBlocks.size()); 419 if (MSSAU) 420 MSSAInsertPts.reserve(ExitBlocks.size()); 421 for (BasicBlock *ExitBlock : ExitBlocks) { 422 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 423 if (MSSAU) 424 MSSAInsertPts.push_back(nullptr); 425 } 426 427 PredIteratorCache PIC; 428 429 bool Promoted = false; 430 431 // Build an AST using MSSA. 432 if (!CurAST.get()) 433 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get()); 434 435 // Loop over all of the alias sets in the tracker object. 436 for (AliasSet &AS : *CurAST) { 437 // We can promote this alias set if it has a store, if it is a "Must" 438 // alias set, if the pointer is loop invariant, and if we are not 439 // eliminating any volatile loads or stores. 440 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || 441 !L->isLoopInvariant(AS.begin()->getValue())) 442 continue; 443 444 assert( 445 !AS.empty() && 446 "Must alias set should have at least one pointer element in it!"); 447 448 SmallSetVector<Value *, 8> PointerMustAliases; 449 for (const auto &ASI : AS) 450 PointerMustAliases.insert(ASI.getValue()); 451 452 Promoted |= promoteLoopAccessesToScalars( 453 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 454 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE); 455 } 456 457 // Once we have promoted values across the loop body we have to 458 // recursively reform LCSSA as any nested loop may now have values defined 459 // within the loop used in the outer loop. 460 // FIXME: This is really heavy handed. It would be a bit better to use an 461 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 462 // it as it went. 463 if (Promoted) 464 formLCSSARecursively(*L, *DT, LI, SE); 465 466 Changed |= Promoted; 467 } 468 } 469 470 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 471 // specifically moving instructions across the loop boundary and so it is 472 // especially in need of sanity checking here. 473 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 474 assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && 475 "Parent loop not left in LCSSA form after LICM!"); 476 477 if (MSSAU.get() && VerifyMemorySSA) 478 MSSAU->getMemorySSA()->verifyMemorySSA(); 479 480 if (Changed && SE) 481 SE->forgetLoopDispositions(L); 482 return Changed; 483 } 484 485 /// Walk the specified region of the CFG (defined by all blocks dominated by 486 /// the specified block, and that are in the current loop) in reverse depth 487 /// first order w.r.t the DominatorTree. This allows us to visit uses before 488 /// definitions, allowing us to sink a loop body in one pass without iteration. 489 /// 490 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 491 DominatorTree *DT, BlockFrequencyInfo *BFI, 492 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 493 Loop *CurLoop, AliasSetTracker *CurAST, 494 MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo, 495 SinkAndHoistLICMFlags &Flags, 496 OptimizationRemarkEmitter *ORE) { 497 498 // Verify inputs. 499 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 500 CurLoop != nullptr && SafetyInfo != nullptr && 501 "Unexpected input to sinkRegion."); 502 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 503 "Either AliasSetTracker or MemorySSA should be initialized."); 504 505 // We want to visit children before parents. We will enque all the parents 506 // before their children in the worklist and process the worklist in reverse 507 // order. 508 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 509 510 bool Changed = false; 511 for (DomTreeNode *DTN : reverse(Worklist)) { 512 BasicBlock *BB = DTN->getBlock(); 513 // Only need to process the contents of this block if it is not part of a 514 // subloop (which would already have been processed). 515 if (inSubLoop(BB, CurLoop, LI)) 516 continue; 517 518 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 519 Instruction &I = *--II; 520 521 // If the instruction is dead, we would try to sink it because it isn't 522 // used in the loop, instead, just delete it. 523 if (isInstructionTriviallyDead(&I, TLI)) { 524 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 525 salvageKnowledge(&I); 526 salvageDebugInfo(I); 527 ++II; 528 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 529 Changed = true; 530 continue; 531 } 532 533 // Check to see if we can sink this instruction to the exit blocks 534 // of the loop. We can do this if the all users of the instruction are 535 // outside of the loop. In this case, it doesn't even matter if the 536 // operands of the instruction are loop invariant. 537 // 538 bool FreeInLoop = false; 539 if (!I.mayHaveSideEffects() && 540 isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && 541 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 542 ORE)) { 543 if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) { 544 if (!FreeInLoop) { 545 ++II; 546 salvageDebugInfo(I); 547 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 548 } 549 Changed = true; 550 } 551 } 552 } 553 } 554 if (MSSAU && VerifyMemorySSA) 555 MSSAU->getMemorySSA()->verifyMemorySSA(); 556 return Changed; 557 } 558 559 namespace { 560 // This is a helper class for hoistRegion to make it able to hoist control flow 561 // in order to be able to hoist phis. The way this works is that we initially 562 // start hoisting to the loop preheader, and when we see a loop invariant branch 563 // we make note of this. When we then come to hoist an instruction that's 564 // conditional on such a branch we duplicate the branch and the relevant control 565 // flow, then hoist the instruction into the block corresponding to its original 566 // block in the duplicated control flow. 567 class ControlFlowHoister { 568 private: 569 // Information about the loop we are hoisting from 570 LoopInfo *LI; 571 DominatorTree *DT; 572 Loop *CurLoop; 573 MemorySSAUpdater *MSSAU; 574 575 // A map of blocks in the loop to the block their instructions will be hoisted 576 // to. 577 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 578 579 // The branches that we can hoist, mapped to the block that marks a 580 // convergence point of their control flow. 581 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 582 583 public: 584 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 585 MemorySSAUpdater *MSSAU) 586 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 587 588 void registerPossiblyHoistableBranch(BranchInst *BI) { 589 // We can only hoist conditional branches with loop invariant operands. 590 if (!ControlFlowHoisting || !BI->isConditional() || 591 !CurLoop->hasLoopInvariantOperands(BI)) 592 return; 593 594 // The branch destinations need to be in the loop, and we don't gain 595 // anything by duplicating conditional branches with duplicate successors, 596 // as it's essentially the same as an unconditional branch. 597 BasicBlock *TrueDest = BI->getSuccessor(0); 598 BasicBlock *FalseDest = BI->getSuccessor(1); 599 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 600 TrueDest == FalseDest) 601 return; 602 603 // We can hoist BI if one branch destination is the successor of the other, 604 // or both have common successor which we check by seeing if the 605 // intersection of their successors is non-empty. 606 // TODO: This could be expanded to allowing branches where both ends 607 // eventually converge to a single block. 608 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 609 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 610 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 611 BasicBlock *CommonSucc = nullptr; 612 if (TrueDestSucc.count(FalseDest)) { 613 CommonSucc = FalseDest; 614 } else if (FalseDestSucc.count(TrueDest)) { 615 CommonSucc = TrueDest; 616 } else { 617 set_intersect(TrueDestSucc, FalseDestSucc); 618 // If there's one common successor use that. 619 if (TrueDestSucc.size() == 1) 620 CommonSucc = *TrueDestSucc.begin(); 621 // If there's more than one pick whichever appears first in the block list 622 // (we can't use the value returned by TrueDestSucc.begin() as it's 623 // unpredicatable which element gets returned). 624 else if (!TrueDestSucc.empty()) { 625 Function *F = TrueDest->getParent(); 626 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 627 auto It = std::find_if(F->begin(), F->end(), IsSucc); 628 assert(It != F->end() && "Could not find successor in function"); 629 CommonSucc = &*It; 630 } 631 } 632 // The common successor has to be dominated by the branch, as otherwise 633 // there will be some other path to the successor that will not be 634 // controlled by this branch so any phi we hoist would be controlled by the 635 // wrong condition. This also takes care of avoiding hoisting of loop back 636 // edges. 637 // TODO: In some cases this could be relaxed if the successor is dominated 638 // by another block that's been hoisted and we can guarantee that the 639 // control flow has been replicated exactly. 640 if (CommonSucc && DT->dominates(BI, CommonSucc)) 641 HoistableBranches[BI] = CommonSucc; 642 } 643 644 bool canHoistPHI(PHINode *PN) { 645 // The phi must have loop invariant operands. 646 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 647 return false; 648 // We can hoist phis if the block they are in is the target of hoistable 649 // branches which cover all of the predecessors of the block. 650 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 651 BasicBlock *BB = PN->getParent(); 652 for (BasicBlock *PredBB : predecessors(BB)) 653 PredecessorBlocks.insert(PredBB); 654 // If we have less predecessor blocks than predecessors then the phi will 655 // have more than one incoming value for the same block which we can't 656 // handle. 657 // TODO: This could be handled be erasing some of the duplicate incoming 658 // values. 659 if (PredecessorBlocks.size() != pred_size(BB)) 660 return false; 661 for (auto &Pair : HoistableBranches) { 662 if (Pair.second == BB) { 663 // Which blocks are predecessors via this branch depends on if the 664 // branch is triangle-like or diamond-like. 665 if (Pair.first->getSuccessor(0) == BB) { 666 PredecessorBlocks.erase(Pair.first->getParent()); 667 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 668 } else if (Pair.first->getSuccessor(1) == BB) { 669 PredecessorBlocks.erase(Pair.first->getParent()); 670 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 671 } else { 672 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 673 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 674 } 675 } 676 } 677 // PredecessorBlocks will now be empty if for every predecessor of BB we 678 // found a hoistable branch source. 679 return PredecessorBlocks.empty(); 680 } 681 682 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 683 if (!ControlFlowHoisting) 684 return CurLoop->getLoopPreheader(); 685 // If BB has already been hoisted, return that 686 if (HoistDestinationMap.count(BB)) 687 return HoistDestinationMap[BB]; 688 689 // Check if this block is conditional based on a pending branch 690 auto HasBBAsSuccessor = 691 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 692 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 693 Pair.first->getSuccessor(1) == BB); 694 }; 695 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(), 696 HasBBAsSuccessor); 697 698 // If not involved in a pending branch, hoist to preheader 699 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 700 if (It == HoistableBranches.end()) { 701 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName() 702 << " as hoist destination for " << BB->getName() 703 << "\n"); 704 HoistDestinationMap[BB] = InitialPreheader; 705 return InitialPreheader; 706 } 707 BranchInst *BI = It->first; 708 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 709 HoistableBranches.end() && 710 "BB is expected to be the target of at most one branch"); 711 712 LLVMContext &C = BB->getContext(); 713 BasicBlock *TrueDest = BI->getSuccessor(0); 714 BasicBlock *FalseDest = BI->getSuccessor(1); 715 BasicBlock *CommonSucc = HoistableBranches[BI]; 716 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 717 718 // Create hoisted versions of blocks that currently don't have them 719 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 720 if (HoistDestinationMap.count(Orig)) 721 return HoistDestinationMap[Orig]; 722 BasicBlock *New = 723 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 724 HoistDestinationMap[Orig] = New; 725 DT->addNewBlock(New, HoistTarget); 726 if (CurLoop->getParentLoop()) 727 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 728 ++NumCreatedBlocks; 729 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 730 << " as hoist destination for " << Orig->getName() 731 << "\n"); 732 return New; 733 }; 734 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 735 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 736 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 737 738 // Link up these blocks with branches. 739 if (!HoistCommonSucc->getTerminator()) { 740 // The new common successor we've generated will branch to whatever that 741 // hoist target branched to. 742 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 743 assert(TargetSucc && "Expected hoist target to have a single successor"); 744 HoistCommonSucc->moveBefore(TargetSucc); 745 BranchInst::Create(TargetSucc, HoistCommonSucc); 746 } 747 if (!HoistTrueDest->getTerminator()) { 748 HoistTrueDest->moveBefore(HoistCommonSucc); 749 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 750 } 751 if (!HoistFalseDest->getTerminator()) { 752 HoistFalseDest->moveBefore(HoistCommonSucc); 753 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 754 } 755 756 // If BI is being cloned to what was originally the preheader then 757 // HoistCommonSucc will now be the new preheader. 758 if (HoistTarget == InitialPreheader) { 759 // Phis in the loop header now need to use the new preheader. 760 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 761 if (MSSAU) 762 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 763 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 764 // The new preheader dominates the loop header. 765 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 766 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 767 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 768 // The preheader hoist destination is now the new preheader, with the 769 // exception of the hoist destination of this branch. 770 for (auto &Pair : HoistDestinationMap) 771 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 772 Pair.second = HoistCommonSucc; 773 } 774 775 // Now finally clone BI. 776 ReplaceInstWithInst( 777 HoistTarget->getTerminator(), 778 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 779 ++NumClonedBranches; 780 781 assert(CurLoop->getLoopPreheader() && 782 "Hoisting blocks should not have destroyed preheader"); 783 return HoistDestinationMap[BB]; 784 } 785 }; 786 } // namespace 787 788 // Hoisting/sinking instruction out of a loop isn't always beneficial. It's only 789 // only worthwhile if the destination block is actually colder than current 790 // block. 791 static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock, 792 OptimizationRemarkEmitter *ORE, 793 BlockFrequencyInfo *BFI) { 794 // Check block frequency only when runtime profile is available 795 // to avoid pathological cases. With static profile, lean towards 796 // hosting because it helps canonicalize the loop for vectorizer. 797 if (!DstBlock->getParent()->hasProfileData()) 798 return true; 799 800 if (!HoistSinkColdnessThreshold || !BFI) 801 return true; 802 803 BasicBlock *SrcBlock = I.getParent(); 804 if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold > 805 BFI->getBlockFreq(SrcBlock).getFrequency()) { 806 ORE->emit([&]() { 807 return OptimizationRemarkMissed(DEBUG_TYPE, "SinkHoistInst", &I) 808 << "failed to sink or hoist instruction because containing block " 809 "has lower frequency than destination block"; 810 }); 811 return false; 812 } 813 814 return true; 815 } 816 817 /// Walk the specified region of the CFG (defined by all blocks dominated by 818 /// the specified block, and that are in the current loop) in depth first 819 /// order w.r.t the DominatorTree. This allows us to visit definitions before 820 /// uses, allowing us to hoist a loop body in one pass without iteration. 821 /// 822 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, 823 DominatorTree *DT, BlockFrequencyInfo *BFI, 824 TargetLibraryInfo *TLI, Loop *CurLoop, 825 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 826 ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo, 827 SinkAndHoistLICMFlags &Flags, 828 OptimizationRemarkEmitter *ORE) { 829 // Verify inputs. 830 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 831 CurLoop != nullptr && SafetyInfo != nullptr && 832 "Unexpected input to hoistRegion."); 833 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 834 "Either AliasSetTracker or MemorySSA should be initialized."); 835 836 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 837 838 // Keep track of instructions that have been hoisted, as they may need to be 839 // re-hoisted if they end up not dominating all of their uses. 840 SmallVector<Instruction *, 16> HoistedInstructions; 841 842 // For PHI hoisting to work we need to hoist blocks before their successors. 843 // We can do this by iterating through the blocks in the loop in reverse 844 // post-order. 845 LoopBlocksRPO Worklist(CurLoop); 846 Worklist.perform(LI); 847 bool Changed = false; 848 for (BasicBlock *BB : Worklist) { 849 // Only need to process the contents of this block if it is not part of a 850 // subloop (which would already have been processed). 851 if (inSubLoop(BB, CurLoop, LI)) 852 continue; 853 854 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { 855 Instruction &I = *II++; 856 // Try constant folding this instruction. If all the operands are 857 // constants, it is technically hoistable, but it would be better to 858 // just fold it. 859 if (Constant *C = ConstantFoldInstruction( 860 &I, I.getModule()->getDataLayout(), TLI)) { 861 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C 862 << '\n'); 863 if (CurAST) 864 CurAST->copyValue(&I, C); 865 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). 866 I.replaceAllUsesWith(C); 867 if (isInstructionTriviallyDead(&I, TLI)) 868 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 869 Changed = true; 870 continue; 871 } 872 873 // Try hoisting the instruction out to the preheader. We can only do 874 // this if all of the operands of the instruction are loop invariant and 875 // if it is safe to hoist the instruction. We also check block frequency 876 // to make sure instruction only gets hoisted into colder blocks. 877 // TODO: It may be safe to hoist if we are hoisting to a conditional block 878 // and we have accurately duplicated the control flow from the loop header 879 // to that block. 880 if (CurLoop->hasLoopInvariantOperands(&I) && 881 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 882 ORE) && 883 worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) && 884 isSafeToExecuteUnconditionally( 885 I, DT, CurLoop, SafetyInfo, ORE, 886 CurLoop->getLoopPreheader()->getTerminator())) { 887 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 888 MSSAU, SE, ORE); 889 HoistedInstructions.push_back(&I); 890 Changed = true; 891 continue; 892 } 893 894 // Attempt to remove floating point division out of the loop by 895 // converting it to a reciprocal multiplication. 896 if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && 897 CurLoop->isLoopInvariant(I.getOperand(1))) { 898 auto Divisor = I.getOperand(1); 899 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 900 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 901 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 902 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 903 ReciprocalDivisor->insertBefore(&I); 904 905 auto Product = 906 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 907 Product->setFastMathFlags(I.getFastMathFlags()); 908 SafetyInfo->insertInstructionTo(Product, I.getParent()); 909 Product->insertAfter(&I); 910 I.replaceAllUsesWith(Product); 911 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 912 913 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 914 SafetyInfo, MSSAU, SE, ORE); 915 HoistedInstructions.push_back(ReciprocalDivisor); 916 Changed = true; 917 continue; 918 } 919 920 auto IsInvariantStart = [&](Instruction &I) { 921 using namespace PatternMatch; 922 return I.use_empty() && 923 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 924 }; 925 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 926 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 927 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 928 }; 929 if ((IsInvariantStart(I) || isGuard(&I)) && 930 CurLoop->hasLoopInvariantOperands(&I) && 931 MustExecuteWithoutWritesBefore(I)) { 932 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 933 MSSAU, SE, ORE); 934 HoistedInstructions.push_back(&I); 935 Changed = true; 936 continue; 937 } 938 939 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 940 if (CFH.canHoistPHI(PN)) { 941 // Redirect incoming blocks first to ensure that we create hoisted 942 // versions of those blocks before we hoist the phi. 943 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 944 PN->setIncomingBlock( 945 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 946 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 947 MSSAU, SE, ORE); 948 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 949 Changed = true; 950 continue; 951 } 952 } 953 954 // Remember possibly hoistable branches so we can actually hoist them 955 // later if needed. 956 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 957 CFH.registerPossiblyHoistableBranch(BI); 958 } 959 } 960 961 // If we hoisted instructions to a conditional block they may not dominate 962 // their uses that weren't hoisted (such as phis where some operands are not 963 // loop invariant). If so make them unconditional by moving them to their 964 // immediate dominator. We iterate through the instructions in reverse order 965 // which ensures that when we rehoist an instruction we rehoist its operands, 966 // and also keep track of where in the block we are rehoisting to to make sure 967 // that we rehoist instructions before the instructions that use them. 968 Instruction *HoistPoint = nullptr; 969 if (ControlFlowHoisting) { 970 for (Instruction *I : reverse(HoistedInstructions)) { 971 if (!llvm::all_of(I->uses(), 972 [&](Use &U) { return DT->dominates(I, U); })) { 973 BasicBlock *Dominator = 974 DT->getNode(I->getParent())->getIDom()->getBlock(); 975 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 976 if (HoistPoint) 977 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 978 "New hoist point expected to dominate old hoist point"); 979 HoistPoint = Dominator->getTerminator(); 980 } 981 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 982 << HoistPoint->getParent()->getName() 983 << ": " << *I << "\n"); 984 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); 985 HoistPoint = I; 986 Changed = true; 987 } 988 } 989 } 990 if (MSSAU && VerifyMemorySSA) 991 MSSAU->getMemorySSA()->verifyMemorySSA(); 992 993 // Now that we've finished hoisting make sure that LI and DT are still 994 // valid. 995 #ifdef EXPENSIVE_CHECKS 996 if (Changed) { 997 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 998 "Dominator tree verification failed"); 999 LI->verify(*DT); 1000 } 1001 #endif 1002 1003 return Changed; 1004 } 1005 1006 // Return true if LI is invariant within scope of the loop. LI is invariant if 1007 // CurLoop is dominated by an invariant.start representing the same memory 1008 // location and size as the memory location LI loads from, and also the 1009 // invariant.start has no uses. 1010 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 1011 Loop *CurLoop) { 1012 Value *Addr = LI->getOperand(0); 1013 const DataLayout &DL = LI->getModule()->getDataLayout(); 1014 const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); 1015 1016 // It is not currently possible for clang to generate an invariant.start 1017 // intrinsic with scalable vector types because we don't support thread local 1018 // sizeless types and we don't permit sizeless types in structs or classes. 1019 // Furthermore, even if support is added for this in future the intrinsic 1020 // itself is defined to have a size of -1 for variable sized objects. This 1021 // makes it impossible to verify if the intrinsic envelops our region of 1022 // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> 1023 // types would have a -1 parameter, but the former is clearly double the size 1024 // of the latter. 1025 if (LocSizeInBits.isScalable()) 1026 return false; 1027 1028 // if the type is i8 addrspace(x)*, we know this is the type of 1029 // llvm.invariant.start operand 1030 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), 1031 LI->getPointerAddressSpace()); 1032 unsigned BitcastsVisited = 0; 1033 // Look through bitcasts until we reach the i8* type (this is invariant.start 1034 // operand type). 1035 while (Addr->getType() != PtrInt8Ty) { 1036 auto *BC = dyn_cast<BitCastInst>(Addr); 1037 // Avoid traversing high number of bitcast uses. 1038 if (++BitcastsVisited > MaxNumUsesTraversed || !BC) 1039 return false; 1040 Addr = BC->getOperand(0); 1041 } 1042 1043 unsigned UsesVisited = 0; 1044 // Traverse all uses of the load operand value, to see if invariant.start is 1045 // one of the uses, and whether it dominates the load instruction. 1046 for (auto *U : Addr->users()) { 1047 // Avoid traversing for Load operand with high number of users. 1048 if (++UsesVisited > MaxNumUsesTraversed) 1049 return false; 1050 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1051 // If there are escaping uses of invariant.start instruction, the load maybe 1052 // non-invariant. 1053 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1054 !II->use_empty()) 1055 continue; 1056 ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); 1057 // The intrinsic supports having a -1 argument for variable sized objects 1058 // so we should check for that here. 1059 if (InvariantSize->isNegative()) 1060 continue; 1061 uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; 1062 // Confirm the invariant.start location size contains the load operand size 1063 // in bits. Also, the invariant.start should dominate the load, and we 1064 // should not hoist the load out of a loop that contains this dominating 1065 // invariant.start. 1066 if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits && 1067 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1068 return true; 1069 } 1070 1071 return false; 1072 } 1073 1074 namespace { 1075 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1076 /// sink a given instruction out of a loop. Does not address legality 1077 /// concerns such as aliasing or speculation safety. 1078 bool isHoistableAndSinkableInst(Instruction &I) { 1079 // Only these instructions are hoistable/sinkable. 1080 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1081 isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || 1082 isa<BinaryOperator>(I) || isa<SelectInst>(I) || 1083 isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1084 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1085 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1086 isa<InsertValueInst>(I) || isa<FreezeInst>(I)); 1087 } 1088 /// Return true if all of the alias sets within this AST are known not to 1089 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop. 1090 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU, 1091 const Loop *L) { 1092 if (CurAST) { 1093 for (AliasSet &AS : *CurAST) { 1094 if (!AS.isForwardingAliasSet() && AS.isMod()) { 1095 return false; 1096 } 1097 } 1098 return true; 1099 } else { /*MSSAU*/ 1100 for (auto *BB : L->getBlocks()) 1101 if (MSSAU->getMemorySSA()->getBlockDefs(BB)) 1102 return false; 1103 return true; 1104 } 1105 } 1106 1107 /// Return true if I is the only Instruction with a MemoryAccess in L. 1108 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1109 const MemorySSAUpdater *MSSAU) { 1110 for (auto *BB : L->getBlocks()) 1111 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) { 1112 int NotAPhi = 0; 1113 for (const auto &Acc : *Accs) { 1114 if (isa<MemoryPhi>(&Acc)) 1115 continue; 1116 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1117 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1118 return false; 1119 } 1120 } 1121 return true; 1122 } 1123 } 1124 1125 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1126 Loop *CurLoop, AliasSetTracker *CurAST, 1127 MemorySSAUpdater *MSSAU, 1128 bool TargetExecutesOncePerLoop, 1129 SinkAndHoistLICMFlags *Flags, 1130 OptimizationRemarkEmitter *ORE) { 1131 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 1132 "Either AliasSetTracker or MemorySSA should be initialized."); 1133 1134 // If we don't understand the instruction, bail early. 1135 if (!isHoistableAndSinkableInst(I)) 1136 return false; 1137 1138 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr; 1139 if (MSSA) 1140 assert(Flags != nullptr && "Flags cannot be null."); 1141 1142 // Loads have extra constraints we have to verify before we can hoist them. 1143 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1144 if (!LI->isUnordered()) 1145 return false; // Don't sink/hoist volatile or ordered atomic loads! 1146 1147 // Loads from constant memory are always safe to move, even if they end up 1148 // in the same alias set as something that ends up being modified. 1149 if (AA->pointsToConstantMemory(LI->getOperand(0))) 1150 return true; 1151 if (LI->hasMetadata(LLVMContext::MD_invariant_load)) 1152 return true; 1153 1154 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1155 return false; // Don't risk duplicating unordered loads 1156 1157 // This checks for an invariant.start dominating the load. 1158 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1159 return true; 1160 1161 bool Invalidated; 1162 if (CurAST) 1163 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, 1164 CurLoop, AA); 1165 else 1166 Invalidated = pointerInvalidatedByLoopWithMSSA( 1167 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags); 1168 // Check loop-invariant address because this may also be a sinkable load 1169 // whose address is not necessarily loop-invariant. 1170 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1171 ORE->emit([&]() { 1172 return OptimizationRemarkMissed( 1173 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1174 << "failed to move load with loop-invariant address " 1175 "because the loop may invalidate its value"; 1176 }); 1177 1178 return !Invalidated; 1179 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1180 // Don't sink or hoist dbg info; it's legal, but not useful. 1181 if (isa<DbgInfoIntrinsic>(I)) 1182 return false; 1183 1184 // Don't sink calls which can throw. 1185 if (CI->mayThrow()) 1186 return false; 1187 1188 // Convergent attribute has been used on operations that involve 1189 // inter-thread communication which results are implicitly affected by the 1190 // enclosing control flows. It is not safe to hoist or sink such operations 1191 // across control flow. 1192 if (CI->isConvergent()) 1193 return false; 1194 1195 using namespace PatternMatch; 1196 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1197 // Assumes don't actually alias anything or throw 1198 return true; 1199 1200 if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>())) 1201 // Widenable conditions don't actually alias anything or throw 1202 return true; 1203 1204 // Handle simple cases by querying alias analysis. 1205 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); 1206 if (Behavior == FMRB_DoesNotAccessMemory) 1207 return true; 1208 if (AAResults::onlyReadsMemory(Behavior)) { 1209 // A readonly argmemonly function only reads from memory pointed to by 1210 // it's arguments with arbitrary offsets. If we can prove there are no 1211 // writes to this memory in the loop, we can hoist or sink. 1212 if (AAResults::onlyAccessesArgPointees(Behavior)) { 1213 // TODO: expand to writeable arguments 1214 for (Value *Op : CI->arg_operands()) 1215 if (Op->getType()->isPointerTy()) { 1216 bool Invalidated; 1217 if (CurAST) 1218 Invalidated = pointerInvalidatedByLoop( 1219 MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA); 1220 else 1221 Invalidated = pointerInvalidatedByLoopWithMSSA( 1222 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, 1223 *Flags); 1224 if (Invalidated) 1225 return false; 1226 } 1227 return true; 1228 } 1229 1230 // If this call only reads from memory and there are no writes to memory 1231 // in the loop, we can hoist or sink the call as appropriate. 1232 if (isReadOnly(CurAST, MSSAU, CurLoop)) 1233 return true; 1234 } 1235 1236 // FIXME: This should use mod/ref information to see if we can hoist or 1237 // sink the call. 1238 1239 return false; 1240 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1241 // Fences alias (most) everything to provide ordering. For the moment, 1242 // just give up if there are any other memory operations in the loop. 1243 if (CurAST) { 1244 auto Begin = CurAST->begin(); 1245 assert(Begin != CurAST->end() && "must contain FI"); 1246 if (std::next(Begin) != CurAST->end()) 1247 // constant memory for instance, TODO: handle better 1248 return false; 1249 auto *UniqueI = Begin->getUniqueInstruction(); 1250 if (!UniqueI) 1251 // other memory op, give up 1252 return false; 1253 (void)FI; // suppress unused variable warning 1254 assert(UniqueI == FI && "AS must contain FI"); 1255 return true; 1256 } else // MSSAU 1257 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1258 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1259 if (!SI->isUnordered()) 1260 return false; // Don't sink/hoist volatile or ordered atomic store! 1261 1262 // We can only hoist a store that we can prove writes a value which is not 1263 // read or overwritten within the loop. For those cases, we fallback to 1264 // load store promotion instead. TODO: We can extend this to cases where 1265 // there is exactly one write to the location and that write dominates an 1266 // arbitrary number of reads in the loop. 1267 if (CurAST) { 1268 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); 1269 1270 if (AS.isRef() || !AS.isMustAlias()) 1271 // Quick exit test, handled by the full path below as well. 1272 return false; 1273 auto *UniqueI = AS.getUniqueInstruction(); 1274 if (!UniqueI) 1275 // other memory op, give up 1276 return false; 1277 assert(UniqueI == SI && "AS must contain SI"); 1278 return true; 1279 } else { // MSSAU 1280 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1281 return true; 1282 // If there are more accesses than the Promotion cap or no "quota" to 1283 // check clobber, then give up as we're not walking a list that long. 1284 if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls()) 1285 return false; 1286 // If there are interfering Uses (i.e. their defining access is in the 1287 // loop), or ordered loads (stored as Defs!), don't move this store. 1288 // Could do better here, but this is conservatively correct. 1289 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1290 // moving accesses. Can also extend to dominating uses. 1291 auto *SIMD = MSSA->getMemoryAccess(SI); 1292 for (auto *BB : CurLoop->getBlocks()) 1293 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1294 for (const auto &MA : *Accesses) 1295 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1296 auto *MD = MU->getDefiningAccess(); 1297 if (!MSSA->isLiveOnEntryDef(MD) && 1298 CurLoop->contains(MD->getBlock())) 1299 return false; 1300 // Disable hoisting past potentially interfering loads. Optimized 1301 // Uses may point to an access outside the loop, as getClobbering 1302 // checks the previous iteration when walking the backedge. 1303 // FIXME: More precise: no Uses that alias SI. 1304 if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU)) 1305 return false; 1306 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { 1307 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1308 (void)LI; // Silence warning. 1309 assert(!LI->isUnordered() && "Expected unordered load"); 1310 return false; 1311 } 1312 // Any call, while it may not be clobbering SI, it may be a use. 1313 if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { 1314 // Check if the call may read from the memory locattion written 1315 // to by SI. Check CI's attributes and arguments; the number of 1316 // such checks performed is limited above by NoOfMemAccTooLarge. 1317 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI)); 1318 if (isModOrRefSet(MRI)) 1319 return false; 1320 } 1321 } 1322 } 1323 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); 1324 Flags->incrementClobberingCalls(); 1325 // If there are no clobbering Defs in the loop, store is safe to hoist. 1326 return MSSA->isLiveOnEntryDef(Source) || 1327 !CurLoop->contains(Source->getBlock()); 1328 } 1329 } 1330 1331 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1332 1333 // We've established mechanical ability and aliasing, it's up to the caller 1334 // to check fault safety 1335 return true; 1336 } 1337 1338 /// Returns true if a PHINode is a trivially replaceable with an 1339 /// Instruction. 1340 /// This is true when all incoming values are that instruction. 1341 /// This pattern occurs most often with LCSSA PHI nodes. 1342 /// 1343 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1344 for (const Value *IncValue : PN.incoming_values()) 1345 if (IncValue != &I) 1346 return false; 1347 1348 return true; 1349 } 1350 1351 /// Return true if the instruction is free in the loop. 1352 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, 1353 const TargetTransformInfo *TTI) { 1354 1355 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1356 if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) != 1357 TargetTransformInfo::TCC_Free) 1358 return false; 1359 // For a GEP, we cannot simply use getUserCost because currently it 1360 // optimistically assume that a GEP will fold into addressing mode 1361 // regardless of its users. 1362 const BasicBlock *BB = GEP->getParent(); 1363 for (const User *U : GEP->users()) { 1364 const Instruction *UI = cast<Instruction>(U); 1365 if (CurLoop->contains(UI) && 1366 (BB != UI->getParent() || 1367 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1368 return false; 1369 } 1370 return true; 1371 } else 1372 return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) == 1373 TargetTransformInfo::TCC_Free; 1374 } 1375 1376 /// Return true if the only users of this instruction are outside of 1377 /// the loop. If this is true, we can sink the instruction to the exit 1378 /// blocks of the loop. 1379 /// 1380 /// We also return true if the instruction could be folded away in lowering. 1381 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1382 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 1383 const LoopSafetyInfo *SafetyInfo, 1384 TargetTransformInfo *TTI, bool &FreeInLoop) { 1385 const auto &BlockColors = SafetyInfo->getBlockColors(); 1386 bool IsFree = isFreeInLoop(I, CurLoop, TTI); 1387 for (const User *U : I.users()) { 1388 const Instruction *UI = cast<Instruction>(U); 1389 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1390 const BasicBlock *BB = PN->getParent(); 1391 // We cannot sink uses in catchswitches. 1392 if (isa<CatchSwitchInst>(BB->getTerminator())) 1393 return false; 1394 1395 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1396 // phi use is too muddled. 1397 if (isa<CallInst>(I)) 1398 if (!BlockColors.empty() && 1399 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1400 return false; 1401 } 1402 1403 if (CurLoop->contains(UI)) { 1404 if (IsFree) { 1405 FreeInLoop = true; 1406 continue; 1407 } 1408 return false; 1409 } 1410 } 1411 return true; 1412 } 1413 1414 static Instruction *cloneInstructionInExitBlock( 1415 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1416 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { 1417 Instruction *New; 1418 if (auto *CI = dyn_cast<CallInst>(&I)) { 1419 const auto &BlockColors = SafetyInfo->getBlockColors(); 1420 1421 // Sinking call-sites need to be handled differently from other 1422 // instructions. The cloned call-site needs a funclet bundle operand 1423 // appropriate for its location in the CFG. 1424 SmallVector<OperandBundleDef, 1> OpBundles; 1425 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1426 BundleIdx != BundleEnd; ++BundleIdx) { 1427 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1428 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1429 continue; 1430 1431 OpBundles.emplace_back(Bundle); 1432 } 1433 1434 if (!BlockColors.empty()) { 1435 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1436 assert(CV.size() == 1 && "non-unique color for exit block!"); 1437 BasicBlock *BBColor = CV.front(); 1438 Instruction *EHPad = BBColor->getFirstNonPHI(); 1439 if (EHPad->isEHPad()) 1440 OpBundles.emplace_back("funclet", EHPad); 1441 } 1442 1443 New = CallInst::Create(CI, OpBundles); 1444 } else { 1445 New = I.clone(); 1446 } 1447 1448 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); 1449 if (!I.getName().empty()) 1450 New->setName(I.getName() + ".le"); 1451 1452 if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) { 1453 // Create a new MemoryAccess and let MemorySSA set its defining access. 1454 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1455 New, nullptr, New->getParent(), MemorySSA::Beginning); 1456 if (NewMemAcc) { 1457 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1458 MSSAU->insertDef(MemDef, /*RenameUses=*/true); 1459 else { 1460 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1461 MSSAU->insertUse(MemUse, /*RenameUses=*/true); 1462 } 1463 } 1464 } 1465 1466 // Build LCSSA PHI nodes for any in-loop operands. Note that this is 1467 // particularly cheap because we can rip off the PHI node that we're 1468 // replacing for the number and blocks of the predecessors. 1469 // OPT: If this shows up in a profile, we can instead finish sinking all 1470 // invariant instructions, and then walk their operands to re-establish 1471 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1472 // sinking bottom-up. 1473 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE; 1474 ++OI) 1475 if (Instruction *OInst = dyn_cast<Instruction>(*OI)) 1476 if (Loop *OLoop = LI->getLoopFor(OInst->getParent())) 1477 if (!OLoop->contains(&PN)) { 1478 PHINode *OpPN = 1479 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1480 OInst->getName() + ".lcssa", &ExitBlock.front()); 1481 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1482 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1483 *OI = OpPN; 1484 } 1485 return New; 1486 } 1487 1488 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1489 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) { 1490 if (AST) 1491 AST->deleteValue(&I); 1492 if (MSSAU) 1493 MSSAU->removeMemoryAccess(&I); 1494 SafetyInfo.removeInstruction(&I); 1495 I.eraseFromParent(); 1496 } 1497 1498 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 1499 ICFLoopSafetyInfo &SafetyInfo, 1500 MemorySSAUpdater *MSSAU, 1501 ScalarEvolution *SE) { 1502 SafetyInfo.removeInstruction(&I); 1503 SafetyInfo.insertInstructionTo(&I, Dest.getParent()); 1504 I.moveBefore(&Dest); 1505 if (MSSAU) 1506 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1507 MSSAU->getMemorySSA()->getMemoryAccess(&I))) 1508 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), 1509 MemorySSA::BeforeTerminator); 1510 if (SE) 1511 SE->forgetValue(&I); 1512 } 1513 1514 static Instruction *sinkThroughTriviallyReplaceablePHI( 1515 PHINode *TPN, Instruction *I, LoopInfo *LI, 1516 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1517 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1518 MemorySSAUpdater *MSSAU) { 1519 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1520 "Expect only trivially replaceable PHI"); 1521 BasicBlock *ExitBlock = TPN->getParent(); 1522 Instruction *New; 1523 auto It = SunkCopies.find(ExitBlock); 1524 if (It != SunkCopies.end()) 1525 New = It->second; 1526 else 1527 New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( 1528 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1529 return New; 1530 } 1531 1532 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1533 BasicBlock *BB = PN->getParent(); 1534 if (!BB->canSplitPredecessors()) 1535 return false; 1536 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1537 // it require updating BlockColors for all offspring blocks accordingly. By 1538 // skipping such corner case, we can make updating BlockColors after splitting 1539 // predecessor fairly simple. 1540 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1541 return false; 1542 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1543 BasicBlock *BBPred = *PI; 1544 if (isa<IndirectBrInst>(BBPred->getTerminator()) || 1545 isa<CallBrInst>(BBPred->getTerminator())) 1546 return false; 1547 } 1548 return true; 1549 } 1550 1551 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1552 LoopInfo *LI, const Loop *CurLoop, 1553 LoopSafetyInfo *SafetyInfo, 1554 MemorySSAUpdater *MSSAU) { 1555 #ifndef NDEBUG 1556 SmallVector<BasicBlock *, 32> ExitBlocks; 1557 CurLoop->getUniqueExitBlocks(ExitBlocks); 1558 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1559 ExitBlocks.end()); 1560 #endif 1561 BasicBlock *ExitBB = PN->getParent(); 1562 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1563 1564 // Split predecessors of the loop exit to make instructions in the loop are 1565 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1566 // loop in the canonical form where each predecessor of each exit block should 1567 // be contained within the loop. For example, this will convert the loop below 1568 // from 1569 // 1570 // LB1: 1571 // %v1 = 1572 // br %LE, %LB2 1573 // LB2: 1574 // %v2 = 1575 // br %LE, %LB1 1576 // LE: 1577 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1578 // 1579 // to 1580 // 1581 // LB1: 1582 // %v1 = 1583 // br %LE.split, %LB2 1584 // LB2: 1585 // %v2 = 1586 // br %LE.split2, %LB1 1587 // LE.split: 1588 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1589 // br %LE 1590 // LE.split2: 1591 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1592 // br %LE 1593 // LE: 1594 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1595 // 1596 const auto &BlockColors = SafetyInfo->getBlockColors(); 1597 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1598 while (!PredBBs.empty()) { 1599 BasicBlock *PredBB = *PredBBs.begin(); 1600 assert(CurLoop->contains(PredBB) && 1601 "Expect all predecessors are in the loop"); 1602 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1603 BasicBlock *NewPred = SplitBlockPredecessors( 1604 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1605 // Since we do not allow splitting EH-block with BlockColors in 1606 // canSplitPredecessors(), we can simply assign predecessor's color to 1607 // the new block. 1608 if (!BlockColors.empty()) 1609 // Grab a reference to the ColorVector to be inserted before getting the 1610 // reference to the vector we are copying because inserting the new 1611 // element in BlockColors might cause the map to be reallocated. 1612 SafetyInfo->copyColors(NewPred, PredBB); 1613 } 1614 PredBBs.remove(PredBB); 1615 } 1616 } 1617 1618 /// When an instruction is found to only be used outside of the loop, this 1619 /// function moves it to the exit blocks and patches up SSA form as needed. 1620 /// This method is guaranteed to remove the original instruction from its 1621 /// position, and may either delete it or move it to outside of the loop. 1622 /// 1623 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1624 BlockFrequencyInfo *BFI, const Loop *CurLoop, 1625 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU, 1626 OptimizationRemarkEmitter *ORE) { 1627 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1628 ORE->emit([&]() { 1629 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1630 << "sinking " << ore::NV("Inst", &I); 1631 }); 1632 bool Changed = false; 1633 if (isa<LoadInst>(I)) 1634 ++NumMovedLoads; 1635 else if (isa<CallInst>(I)) 1636 ++NumMovedCalls; 1637 ++NumSunk; 1638 1639 // Iterate over users to be ready for actual sinking. Replace users via 1640 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1641 SmallPtrSet<Instruction *, 8> VisitedUsers; 1642 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1643 auto *User = cast<Instruction>(*UI); 1644 Use &U = UI.getUse(); 1645 ++UI; 1646 1647 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1648 continue; 1649 1650 if (!DT->isReachableFromEntry(User->getParent())) { 1651 U = UndefValue::get(I.getType()); 1652 Changed = true; 1653 continue; 1654 } 1655 1656 // The user must be a PHI node. 1657 PHINode *PN = cast<PHINode>(User); 1658 1659 // Surprisingly, instructions can be used outside of loops without any 1660 // exits. This can only happen in PHI nodes if the incoming block is 1661 // unreachable. 1662 BasicBlock *BB = PN->getIncomingBlock(U); 1663 if (!DT->isReachableFromEntry(BB)) { 1664 U = UndefValue::get(I.getType()); 1665 Changed = true; 1666 continue; 1667 } 1668 1669 VisitedUsers.insert(PN); 1670 if (isTriviallyReplaceablePHI(*PN, I)) 1671 continue; 1672 1673 if (!canSplitPredecessors(PN, SafetyInfo)) 1674 return Changed; 1675 1676 // Split predecessors of the PHI so that we can make users trivially 1677 // replaceable. 1678 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU); 1679 1680 // Should rebuild the iterators, as they may be invalidated by 1681 // splitPredecessorsOfLoopExit(). 1682 UI = I.user_begin(); 1683 UE = I.user_end(); 1684 } 1685 1686 if (VisitedUsers.empty()) 1687 return Changed; 1688 1689 #ifndef NDEBUG 1690 SmallVector<BasicBlock *, 32> ExitBlocks; 1691 CurLoop->getUniqueExitBlocks(ExitBlocks); 1692 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1693 ExitBlocks.end()); 1694 #endif 1695 1696 // Clones of this instruction. Don't create more than one per exit block! 1697 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1698 1699 // If this instruction is only used outside of the loop, then all users are 1700 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1701 // the instruction. 1702 // First check if I is worth sinking for all uses. Sink only when it is worth 1703 // across all uses. 1704 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1705 SmallVector<PHINode *, 8> ExitPNs; 1706 for (auto *UI : Users) { 1707 auto *User = cast<Instruction>(UI); 1708 1709 if (CurLoop->contains(User)) 1710 continue; 1711 1712 PHINode *PN = cast<PHINode>(User); 1713 assert(ExitBlockSet.count(PN->getParent()) && 1714 "The LCSSA PHI is not in an exit block!"); 1715 if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) { 1716 return Changed; 1717 } 1718 1719 ExitPNs.push_back(PN); 1720 } 1721 1722 for (auto *PN : ExitPNs) { 1723 1724 // The PHI must be trivially replaceable. 1725 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1726 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1727 PN->replaceAllUsesWith(New); 1728 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr); 1729 Changed = true; 1730 } 1731 return Changed; 1732 } 1733 1734 /// When an instruction is found to only use loop invariant operands that 1735 /// is safe to hoist, this instruction is called to do the dirty work. 1736 /// 1737 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1738 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1739 MemorySSAUpdater *MSSAU, ScalarEvolution *SE, 1740 OptimizationRemarkEmitter *ORE) { 1741 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I 1742 << "\n"); 1743 ORE->emit([&]() { 1744 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1745 << ore::NV("Inst", &I); 1746 }); 1747 1748 // Metadata can be dependent on conditions we are hoisting above. 1749 // Conservatively strip all metadata on the instruction unless we were 1750 // guaranteed to execute I if we entered the loop, in which case the metadata 1751 // is valid in the loop preheader. 1752 if (I.hasMetadataOtherThanDebugLoc() && 1753 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1754 // time in isGuaranteedToExecute if we don't actually have anything to 1755 // drop. It is a compile time optimization, not required for correctness. 1756 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1757 I.dropUnknownNonDebugMetadata(); 1758 1759 if (isa<PHINode>(I)) 1760 // Move the new node to the end of the phi list in the destination block. 1761 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); 1762 else 1763 // Move the new node to the destination block, before its terminator. 1764 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); 1765 1766 I.updateLocationAfterHoist(); 1767 1768 if (isa<LoadInst>(I)) 1769 ++NumMovedLoads; 1770 else if (isa<CallInst>(I)) 1771 ++NumMovedCalls; 1772 ++NumHoisted; 1773 } 1774 1775 /// Only sink or hoist an instruction if it is not a trapping instruction, 1776 /// or if the instruction is known not to trap when moved to the preheader. 1777 /// or if it is a trapping instruction and is guaranteed to execute. 1778 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 1779 const DominatorTree *DT, 1780 const Loop *CurLoop, 1781 const LoopSafetyInfo *SafetyInfo, 1782 OptimizationRemarkEmitter *ORE, 1783 const Instruction *CtxI) { 1784 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT)) 1785 return true; 1786 1787 bool GuaranteedToExecute = 1788 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1789 1790 if (!GuaranteedToExecute) { 1791 auto *LI = dyn_cast<LoadInst>(&Inst); 1792 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1793 ORE->emit([&]() { 1794 return OptimizationRemarkMissed( 1795 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1796 << "failed to hoist load with loop-invariant address " 1797 "because load is conditionally executed"; 1798 }); 1799 } 1800 1801 return GuaranteedToExecute; 1802 } 1803 1804 namespace { 1805 class LoopPromoter : public LoadAndStorePromoter { 1806 Value *SomePtr; // Designated pointer to store to. 1807 const SmallSetVector<Value *, 8> &PointerMustAliases; 1808 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1809 SmallVectorImpl<Instruction *> &LoopInsertPts; 1810 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1811 PredIteratorCache &PredCache; 1812 AliasSetTracker *AST; 1813 MemorySSAUpdater *MSSAU; 1814 LoopInfo &LI; 1815 DebugLoc DL; 1816 int Alignment; 1817 bool UnorderedAtomic; 1818 AAMDNodes AATags; 1819 ICFLoopSafetyInfo &SafetyInfo; 1820 1821 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1822 if (Instruction *I = dyn_cast<Instruction>(V)) 1823 if (Loop *L = LI.getLoopFor(I->getParent())) 1824 if (!L->contains(BB)) { 1825 // We need to create an LCSSA PHI node for the incoming value and 1826 // store that. 1827 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1828 I->getName() + ".lcssa", &BB->front()); 1829 for (BasicBlock *Pred : PredCache.get(BB)) 1830 PN->addIncoming(I, Pred); 1831 return PN; 1832 } 1833 return V; 1834 } 1835 1836 public: 1837 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1838 const SmallSetVector<Value *, 8> &PMA, 1839 SmallVectorImpl<BasicBlock *> &LEB, 1840 SmallVectorImpl<Instruction *> &LIP, 1841 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1842 AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li, 1843 DebugLoc dl, int alignment, bool UnorderedAtomic, 1844 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo) 1845 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), 1846 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), 1847 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)), 1848 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1849 SafetyInfo(SafetyInfo) {} 1850 1851 bool isInstInList(Instruction *I, 1852 const SmallVectorImpl<Instruction *> &) const override { 1853 Value *Ptr; 1854 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1855 Ptr = LI->getOperand(0); 1856 else 1857 Ptr = cast<StoreInst>(I)->getPointerOperand(); 1858 return PointerMustAliases.count(Ptr); 1859 } 1860 1861 void doExtraRewritesBeforeFinalDeletion() override { 1862 // Insert stores after in the loop exit blocks. Each exit block gets a 1863 // store of the live-out values that feed them. Since we've already told 1864 // the SSA updater about the defs in the loop and the preheader 1865 // definition, it is all set and we can start using it. 1866 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1867 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1868 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1869 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1870 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1871 Instruction *InsertPos = LoopInsertPts[i]; 1872 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1873 if (UnorderedAtomic) 1874 NewSI->setOrdering(AtomicOrdering::Unordered); 1875 NewSI->setAlignment(Align(Alignment)); 1876 NewSI->setDebugLoc(DL); 1877 if (AATags) 1878 NewSI->setAAMetadata(AATags); 1879 1880 if (MSSAU) { 1881 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1882 MemoryAccess *NewMemAcc; 1883 if (!MSSAInsertPoint) { 1884 NewMemAcc = MSSAU->createMemoryAccessInBB( 1885 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1886 } else { 1887 NewMemAcc = 1888 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1889 } 1890 MSSAInsertPts[i] = NewMemAcc; 1891 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1892 // FIXME: true for safety, false may still be correct. 1893 } 1894 } 1895 } 1896 1897 void replaceLoadWithValue(LoadInst *LI, Value *V) const override { 1898 // Update alias analysis. 1899 if (AST) 1900 AST->copyValue(LI, V); 1901 } 1902 void instructionDeleted(Instruction *I) const override { 1903 SafetyInfo.removeInstruction(I); 1904 if (AST) 1905 AST->deleteValue(I); 1906 if (MSSAU) 1907 MSSAU->removeMemoryAccess(I); 1908 } 1909 }; 1910 1911 1912 /// Return true iff we can prove that a caller of this function can not inspect 1913 /// the contents of the provided object in a well defined program. 1914 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) { 1915 if (isa<AllocaInst>(Object)) 1916 // Since the alloca goes out of scope, we know the caller can't retain a 1917 // reference to it and be well defined. Thus, we don't need to check for 1918 // capture. 1919 return true; 1920 1921 // For all other objects we need to know that the caller can't possibly 1922 // have gotten a reference to the object. There are two components of 1923 // that: 1924 // 1) Object can't be escaped by this function. This is what 1925 // PointerMayBeCaptured checks. 1926 // 2) Object can't have been captured at definition site. For this, we 1927 // need to know the return value is noalias. At the moment, we use a 1928 // weaker condition and handle only AllocLikeFunctions (which are 1929 // known to be noalias). TODO 1930 return isAllocLikeFn(Object, TLI) && 1931 !PointerMayBeCaptured(Object, true, true); 1932 } 1933 1934 } // namespace 1935 1936 /// Try to promote memory values to scalars by sinking stores out of the 1937 /// loop and moving loads to before the loop. We do this by looping over 1938 /// the stores in the loop, looking for stores to Must pointers which are 1939 /// loop invariant. 1940 /// 1941 bool llvm::promoteLoopAccessesToScalars( 1942 const SmallSetVector<Value *, 8> &PointerMustAliases, 1943 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1944 SmallVectorImpl<Instruction *> &InsertPts, 1945 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1946 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 1947 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 1948 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { 1949 // Verify inputs. 1950 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1951 SafetyInfo != nullptr && 1952 "Unexpected Input to promoteLoopAccessesToScalars"); 1953 1954 Value *SomePtr = *PointerMustAliases.begin(); 1955 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1956 1957 // It is not safe to promote a load/store from the loop if the load/store is 1958 // conditional. For example, turning: 1959 // 1960 // for () { if (c) *P += 1; } 1961 // 1962 // into: 1963 // 1964 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 1965 // 1966 // is not safe, because *P may only be valid to access if 'c' is true. 1967 // 1968 // The safety property divides into two parts: 1969 // p1) The memory may not be dereferenceable on entry to the loop. In this 1970 // case, we can't insert the required load in the preheader. 1971 // p2) The memory model does not allow us to insert a store along any dynamic 1972 // path which did not originally have one. 1973 // 1974 // If at least one store is guaranteed to execute, both properties are 1975 // satisfied, and promotion is legal. 1976 // 1977 // This, however, is not a necessary condition. Even if no store/load is 1978 // guaranteed to execute, we can still establish these properties. 1979 // We can establish (p1) by proving that hoisting the load into the preheader 1980 // is safe (i.e. proving dereferenceability on all paths through the loop). We 1981 // can use any access within the alias set to prove dereferenceability, 1982 // since they're all must alias. 1983 // 1984 // There are two ways establish (p2): 1985 // a) Prove the location is thread-local. In this case the memory model 1986 // requirement does not apply, and stores are safe to insert. 1987 // b) Prove a store dominates every exit block. In this case, if an exit 1988 // blocks is reached, the original dynamic path would have taken us through 1989 // the store, so inserting a store into the exit block is safe. Note that this 1990 // is different from the store being guaranteed to execute. For instance, 1991 // if an exception is thrown on the first iteration of the loop, the original 1992 // store is never executed, but the exit blocks are not executed either. 1993 1994 bool DereferenceableInPH = false; 1995 bool SafeToInsertStore = false; 1996 1997 SmallVector<Instruction *, 64> LoopUses; 1998 1999 // We start with an alignment of one and try to find instructions that allow 2000 // us to prove better alignment. 2001 Align Alignment; 2002 // Keep track of which types of access we see 2003 bool SawUnorderedAtomic = false; 2004 bool SawNotAtomic = false; 2005 AAMDNodes AATags; 2006 2007 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 2008 2009 bool IsKnownThreadLocalObject = false; 2010 if (SafetyInfo->anyBlockMayThrow()) { 2011 // If a loop can throw, we have to insert a store along each unwind edge. 2012 // That said, we can't actually make the unwind edge explicit. Therefore, 2013 // we have to prove that the store is dead along the unwind edge. We do 2014 // this by proving that the caller can't have a reference to the object 2015 // after return and thus can't possibly load from the object. 2016 Value *Object = getUnderlyingObject(SomePtr); 2017 if (!isKnownNonEscaping(Object, TLI)) 2018 return false; 2019 // Subtlety: Alloca's aren't visible to callers, but *are* potentially 2020 // visible to other threads if captured and used during their lifetimes. 2021 IsKnownThreadLocalObject = !isa<AllocaInst>(Object); 2022 } 2023 2024 // Check that all of the pointers in the alias set have the same type. We 2025 // cannot (yet) promote a memory location that is loaded and stored in 2026 // different sizes. While we are at it, collect alignment and AA info. 2027 for (Value *ASIV : PointerMustAliases) { 2028 // Check that all of the pointers in the alias set have the same type. We 2029 // cannot (yet) promote a memory location that is loaded and stored in 2030 // different sizes. 2031 if (SomePtr->getType() != ASIV->getType()) 2032 return false; 2033 2034 for (User *U : ASIV->users()) { 2035 // Ignore instructions that are outside the loop. 2036 Instruction *UI = dyn_cast<Instruction>(U); 2037 if (!UI || !CurLoop->contains(UI)) 2038 continue; 2039 2040 // If there is an non-load/store instruction in the loop, we can't promote 2041 // it. 2042 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 2043 if (!Load->isUnordered()) 2044 return false; 2045 2046 SawUnorderedAtomic |= Load->isAtomic(); 2047 SawNotAtomic |= !Load->isAtomic(); 2048 2049 Align InstAlignment = Load->getAlign(); 2050 2051 // Note that proving a load safe to speculate requires proving 2052 // sufficient alignment at the target location. Proving it guaranteed 2053 // to execute does as well. Thus we can increase our guaranteed 2054 // alignment as well. 2055 if (!DereferenceableInPH || (InstAlignment > Alignment)) 2056 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo, 2057 ORE, Preheader->getTerminator())) { 2058 DereferenceableInPH = true; 2059 Alignment = std::max(Alignment, InstAlignment); 2060 } 2061 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 2062 // Stores *of* the pointer are not interesting, only stores *to* the 2063 // pointer. 2064 if (UI->getOperand(1) != ASIV) 2065 continue; 2066 if (!Store->isUnordered()) 2067 return false; 2068 2069 SawUnorderedAtomic |= Store->isAtomic(); 2070 SawNotAtomic |= !Store->isAtomic(); 2071 2072 // If the store is guaranteed to execute, both properties are satisfied. 2073 // We may want to check if a store is guaranteed to execute even if we 2074 // already know that promotion is safe, since it may have higher 2075 // alignment than any other guaranteed stores, in which case we can 2076 // raise the alignment on the promoted store. 2077 Align InstAlignment = Store->getAlign(); 2078 2079 if (!DereferenceableInPH || !SafeToInsertStore || 2080 (InstAlignment > Alignment)) { 2081 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { 2082 DereferenceableInPH = true; 2083 SafeToInsertStore = true; 2084 Alignment = std::max(Alignment, InstAlignment); 2085 } 2086 } 2087 2088 // If a store dominates all exit blocks, it is safe to sink. 2089 // As explained above, if an exit block was executed, a dominating 2090 // store must have been executed at least once, so we are not 2091 // introducing stores on paths that did not have them. 2092 // Note that this only looks at explicit exit blocks. If we ever 2093 // start sinking stores into unwind edges (see above), this will break. 2094 if (!SafeToInsertStore) 2095 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2096 return DT->dominates(Store->getParent(), Exit); 2097 }); 2098 2099 // If the store is not guaranteed to execute, we may still get 2100 // deref info through it. 2101 if (!DereferenceableInPH) { 2102 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2103 Store->getPointerOperand(), Store->getValueOperand()->getType(), 2104 Store->getAlign(), MDL, Preheader->getTerminator(), DT); 2105 } 2106 } else 2107 return false; // Not a load or store. 2108 2109 // Merge the AA tags. 2110 if (LoopUses.empty()) { 2111 // On the first load/store, just take its AA tags. 2112 UI->getAAMetadata(AATags); 2113 } else if (AATags) { 2114 UI->getAAMetadata(AATags, /* Merge = */ true); 2115 } 2116 2117 LoopUses.push_back(UI); 2118 } 2119 } 2120 2121 // If we found both an unordered atomic instruction and a non-atomic memory 2122 // access, bail. We can't blindly promote non-atomic to atomic since we 2123 // might not be able to lower the result. We can't downgrade since that 2124 // would violate memory model. Also, align 0 is an error for atomics. 2125 if (SawUnorderedAtomic && SawNotAtomic) 2126 return false; 2127 2128 // If we're inserting an atomic load in the preheader, we must be able to 2129 // lower it. We're only guaranteed to be able to lower naturally aligned 2130 // atomics. 2131 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType(); 2132 if (SawUnorderedAtomic && 2133 Alignment < MDL.getTypeStoreSize(SomePtrElemType)) 2134 return false; 2135 2136 // If we couldn't prove we can hoist the load, bail. 2137 if (!DereferenceableInPH) 2138 return false; 2139 2140 // We know we can hoist the load, but don't have a guaranteed store. 2141 // Check whether the location is thread-local. If it is, then we can insert 2142 // stores along paths which originally didn't have them without violating the 2143 // memory model. 2144 if (!SafeToInsertStore) { 2145 if (IsKnownThreadLocalObject) 2146 SafeToInsertStore = true; 2147 else { 2148 Value *Object = getUnderlyingObject(SomePtr); 2149 SafeToInsertStore = 2150 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && 2151 !PointerMayBeCaptured(Object, true, true); 2152 } 2153 } 2154 2155 // If we've still failed to prove we can sink the store, give up. 2156 if (!SafeToInsertStore) 2157 return false; 2158 2159 // Otherwise, this is safe to promote, lets do it! 2160 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr 2161 << '\n'); 2162 ORE->emit([&]() { 2163 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2164 LoopUses[0]) 2165 << "Moving accesses to memory location out of the loop"; 2166 }); 2167 ++NumPromoted; 2168 2169 // Look at all the loop uses, and try to merge their locations. 2170 std::vector<const DILocation *> LoopUsesLocs; 2171 for (auto U : LoopUses) 2172 LoopUsesLocs.push_back(U->getDebugLoc().get()); 2173 auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); 2174 2175 // We use the SSAUpdater interface to insert phi nodes as required. 2176 SmallVector<PHINode *, 16> NewPHIs; 2177 SSAUpdater SSA(&NewPHIs); 2178 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, 2179 InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL, 2180 Alignment.value(), SawUnorderedAtomic, AATags, 2181 *SafetyInfo); 2182 2183 // Set up the preheader to have a definition of the value. It is the live-out 2184 // value from the preheader that uses in the loop will use. 2185 LoadInst *PreheaderLoad = new LoadInst( 2186 SomePtr->getType()->getPointerElementType(), SomePtr, 2187 SomePtr->getName() + ".promoted", Preheader->getTerminator()); 2188 if (SawUnorderedAtomic) 2189 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2190 PreheaderLoad->setAlignment(Alignment); 2191 PreheaderLoad->setDebugLoc(DebugLoc()); 2192 if (AATags) 2193 PreheaderLoad->setAAMetadata(AATags); 2194 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2195 2196 if (MSSAU) { 2197 MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB( 2198 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2199 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2200 MSSAU->insertUse(NewMemUse, /*RenameUses=*/true); 2201 } 2202 2203 if (MSSAU && VerifyMemorySSA) 2204 MSSAU->getMemorySSA()->verifyMemorySSA(); 2205 // Rewrite all the loads in the loop and remember all the definitions from 2206 // stores in the loop. 2207 Promoter.run(LoopUses); 2208 2209 if (MSSAU && VerifyMemorySSA) 2210 MSSAU->getMemorySSA()->verifyMemorySSA(); 2211 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2212 if (PreheaderLoad->use_empty()) 2213 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU); 2214 2215 return true; 2216 } 2217 2218 /// Returns an owning pointer to an alias set which incorporates aliasing info 2219 /// from L and all subloops of L. 2220 std::unique_ptr<AliasSetTracker> 2221 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, 2222 AAResults *AA) { 2223 auto CurAST = std::make_unique<AliasSetTracker>(*AA); 2224 2225 // Add everything from all the sub loops. 2226 for (Loop *InnerL : L->getSubLoops()) 2227 for (BasicBlock *BB : InnerL->blocks()) 2228 CurAST->add(*BB); 2229 2230 // And merge in this loop (without anything from inner loops). 2231 for (BasicBlock *BB : L->blocks()) 2232 if (LI->getLoopFor(BB) == L) 2233 CurAST->add(*BB); 2234 2235 return CurAST; 2236 } 2237 2238 std::unique_ptr<AliasSetTracker> 2239 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA( 2240 Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) { 2241 auto *MSSA = MSSAU->getMemorySSA(); 2242 auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L); 2243 CurAST->addAllInstructionsInLoopUsingMSSA(); 2244 return CurAST; 2245 } 2246 2247 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 2248 AliasSetTracker *CurAST, Loop *CurLoop, 2249 AAResults *AA) { 2250 // First check to see if any of the basic blocks in CurLoop invalidate *V. 2251 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod(); 2252 2253 if (!isInvalidatedAccordingToAST || !LICMN2Theshold) 2254 return isInvalidatedAccordingToAST; 2255 2256 // Check with a diagnostic analysis if we can refine the information above. 2257 // This is to identify the limitations of using the AST. 2258 // The alias set mechanism used by LICM has a major weakness in that it 2259 // combines all things which may alias into a single set *before* asking 2260 // modref questions. As a result, a single readonly call within a loop will 2261 // collapse all loads and stores into a single alias set and report 2262 // invalidation if the loop contains any store. For example, readonly calls 2263 // with deopt states have this form and create a general alias set with all 2264 // loads and stores. In order to get any LICM in loops containing possible 2265 // deopt states we need a more precise invalidation of checking the mod ref 2266 // info of each instruction within the loop and LI. This has a complexity of 2267 // O(N^2), so currently, it is used only as a diagnostic tool since the 2268 // default value of LICMN2Threshold is zero. 2269 2270 // Don't look at nested loops. 2271 if (CurLoop->begin() != CurLoop->end()) 2272 return true; 2273 2274 int N = 0; 2275 for (BasicBlock *BB : CurLoop->getBlocks()) 2276 for (Instruction &I : *BB) { 2277 if (N >= LICMN2Theshold) { 2278 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for " 2279 << *(MemLoc.Ptr) << "\n"); 2280 return true; 2281 } 2282 N++; 2283 auto Res = AA->getModRefInfo(&I, MemLoc); 2284 if (isModSet(Res)) { 2285 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for " 2286 << *(MemLoc.Ptr) << "\n"); 2287 return true; 2288 } 2289 } 2290 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n"); 2291 return false; 2292 } 2293 2294 bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 2295 Loop *CurLoop, Instruction &I, 2296 SinkAndHoistLICMFlags &Flags) { 2297 // For hoisting, use the walker to determine safety 2298 if (!Flags.getIsSink()) { 2299 MemoryAccess *Source; 2300 // See declaration of SetLicmMssaOptCap for usage details. 2301 if (Flags.tooManyClobberingCalls()) 2302 Source = MU->getDefiningAccess(); 2303 else { 2304 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); 2305 Flags.incrementClobberingCalls(); 2306 } 2307 return !MSSA->isLiveOnEntryDef(Source) && 2308 CurLoop->contains(Source->getBlock()); 2309 } 2310 2311 // For sinking, we'd need to check all Defs below this use. The getClobbering 2312 // call will look on the backedge of the loop, but will check aliasing with 2313 // the instructions on the previous iteration. 2314 // For example: 2315 // for (i ... ) 2316 // load a[i] ( Use (LoE) 2317 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2318 // i++; 2319 // The load sees no clobbering inside the loop, as the backedge alias check 2320 // does phi translation, and will check aliasing against store a[i-1]. 2321 // However sinking the load outside the loop, below the store is incorrect. 2322 2323 // For now, only sink if there are no Defs in the loop, and the existing ones 2324 // precede the use and are in the same block. 2325 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2326 // needs PostDominatorTreeAnalysis. 2327 // FIXME: More precise: no Defs that alias this Use. 2328 if (Flags.tooManyMemoryAccesses()) 2329 return true; 2330 for (auto *BB : CurLoop->getBlocks()) 2331 if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU)) 2332 return true; 2333 // When sinking, the source block may not be part of the loop so check it. 2334 if (!CurLoop->contains(&I)) 2335 return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU); 2336 2337 return false; 2338 } 2339 2340 bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA, 2341 MemoryUse &MU) { 2342 if (const auto *Accesses = MSSA.getBlockDefs(&BB)) 2343 for (const auto &MA : *Accesses) 2344 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2345 if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) 2346 return true; 2347 return false; 2348 } 2349 2350 /// Little predicate that returns true if the specified basic block is in 2351 /// a subloop of the current one, not the current one itself. 2352 /// 2353 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2354 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2355 return LI->getLoopFor(BB) != CurLoop; 2356 } 2357