1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // This pass uses alias analysis for two purposes:
16 //
17 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
18 //     that a load or call inside of a loop never aliases anything stored to,
19 //     we can hoist it or sink it like any other instruction.
20 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
21 //     the loop, we try to move the store to happen AFTER the loop instead of
22 //     inside of the loop.  This can only happen if a few conditions are true:
23 //       A. The pointer stored through is loop invariant
24 //       B. There are no stores or loads in the loop which _may_ alias the
25 //          pointer.  There are no calls in the loop which mod/ref the pointer.
26 //     If these conditions are true, we can promote the loads and stores in the
27 //     loop of the pointer to use a temporary alloca'd variable.  We then use
28 //     the SSAUpdater to construct the appropriate SSA form for the value.
29 //
30 //===----------------------------------------------------------------------===//
31 
32 #include "llvm/Transforms/Scalar/LICM.h"
33 #include "llvm/ADT/SetOperations.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/AliasSetTracker.h"
37 #include "llvm/Analysis/BasicAliasAnalysis.h"
38 #include "llvm/Analysis/CaptureTracking.h"
39 #include "llvm/Analysis/ConstantFolding.h"
40 #include "llvm/Analysis/GlobalsModRef.h"
41 #include "llvm/Analysis/GuardUtils.h"
42 #include "llvm/Analysis/Loads.h"
43 #include "llvm/Analysis/LoopInfo.h"
44 #include "llvm/Analysis/LoopIterator.h"
45 #include "llvm/Analysis/LoopPass.h"
46 #include "llvm/Analysis/MemoryBuiltins.h"
47 #include "llvm/Analysis/MemorySSA.h"
48 #include "llvm/Analysis/MemorySSAUpdater.h"
49 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
50 #include "llvm/Analysis/ScalarEvolution.h"
51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
52 #include "llvm/Analysis/TargetLibraryInfo.h"
53 #include "llvm/Analysis/ValueTracking.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/PredIteratorCache.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Scalar/LoopPassManager.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/LoopUtils.h"
74 #include "llvm/Transforms/Utils/SSAUpdater.h"
75 #include <algorithm>
76 #include <utility>
77 using namespace llvm;
78 
79 #define DEBUG_TYPE "licm"
80 
81 STATISTIC(NumCreatedBlocks, "Number of blocks created");
82 STATISTIC(NumClonedBranches, "Number of branches cloned");
83 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
84 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
85 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
86 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
87 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
88 
89 /// Memory promotion is enabled by default.
90 static cl::opt<bool>
91     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
92                      cl::desc("Disable memory promotion in LICM pass"));
93 
94 static cl::opt<bool> ControlFlowHoisting(
95     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
96     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
97 
98 static cl::opt<uint32_t> MaxNumUsesTraversed(
99     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
100     cl::desc("Max num uses visited for identifying load "
101              "invariance in loop using invariant start (default = 8)"));
102 
103 // Default value of zero implies we use the regular alias set tracker mechanism
104 // instead of the cross product using AA to identify aliasing of the memory
105 // location we are interested in.
106 static cl::opt<int>
107 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
108                cl::desc("How many instruction to cross product using AA"));
109 
110 // Experimental option to allow imprecision in LICM in pathological cases, in
111 // exchange for faster compile. This is to be removed if MemorySSA starts to
112 // address the same issue. This flag applies only when LICM uses MemorySSA
113 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
114 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
115 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
116 // which may not be precise, since optimizeUses is capped. The result is
117 // correct, but we may not get as "far up" as possible to get which access is
118 // clobbering the one queried.
119 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
120     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
121     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
122              "for faster compile. Caps the MemorySSA clobbering calls."));
123 
124 // Experimentally, memory promotion carries less importance than sinking and
125 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
126 // compile time.
127 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
128     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
129     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
130              "effect. When MSSA in LICM is enabled, then this is the maximum "
131              "number of accesses allowed to be present in a loop in order to "
132              "enable memory promotion."));
133 
134 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
135 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
136                                   const LoopSafetyInfo *SafetyInfo,
137                                   TargetTransformInfo *TTI, bool &FreeInLoop);
138 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
139                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
140                   MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
141 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
142                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
143                  MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
144 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
145                                            const DominatorTree *DT,
146                                            const Loop *CurLoop,
147                                            const LoopSafetyInfo *SafetyInfo,
148                                            OptimizationRemarkEmitter *ORE,
149                                            const Instruction *CtxI = nullptr);
150 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
151                                      AliasSetTracker *CurAST, Loop *CurLoop,
152                                      AliasAnalysis *AA);
153 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
154                                              Loop *CurLoop,
155                                              SinkAndHoistLICMFlags &Flags);
156 static Instruction *CloneInstructionInExitBlock(
157     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
158     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
159 
160 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
161                              AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
162 
163 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
164                                   ICFLoopSafetyInfo &SafetyInfo,
165                                   MemorySSAUpdater *MSSAU);
166 
167 namespace {
168 struct LoopInvariantCodeMotion {
169   using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
170   bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
171                  TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
172                  ScalarEvolution *SE, MemorySSA *MSSA,
173                  OptimizationRemarkEmitter *ORE, bool DeleteAST);
174 
175   ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
176   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
177                           unsigned LicmMssaNoAccForPromotionCap)
178       : LicmMssaOptCap(LicmMssaOptCap),
179         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
180 
181 private:
182   ASTrackerMapTy LoopToAliasSetMap;
183   unsigned LicmMssaOptCap;
184   unsigned LicmMssaNoAccForPromotionCap;
185 
186   std::unique_ptr<AliasSetTracker>
187   collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
188   std::unique_ptr<AliasSetTracker>
189   collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
190                                   MemorySSAUpdater *MSSAU);
191 };
192 
193 struct LegacyLICMPass : public LoopPass {
194   static char ID; // Pass identification, replacement for typeid
195   LegacyLICMPass(
196       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
197       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
198       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
199     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
200   }
201 
202   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
203     if (skipLoop(L)) {
204       // If we have run LICM on a previous loop but now we are skipping
205       // (because we've hit the opt-bisect limit), we need to clear the
206       // loop alias information.
207       LICM.getLoopToAliasSetMap().clear();
208       return false;
209     }
210 
211     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
212     MemorySSA *MSSA = EnableMSSALoopDependency
213                           ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
214                           : nullptr;
215     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
216     // pass.  Function analyses need to be preserved across loop transformations
217     // but ORE cannot be preserved (see comment before the pass definition).
218     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
219     return LICM.runOnLoop(L,
220                           &getAnalysis<AAResultsWrapperPass>().getAAResults(),
221                           &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
222                           &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
223                           &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
224                           &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
225                               *L->getHeader()->getParent()),
226                           SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
227   }
228 
229   /// This transformation requires natural loop information & requires that
230   /// loop preheaders be inserted into the CFG...
231   ///
232   void getAnalysisUsage(AnalysisUsage &AU) const override {
233     AU.addPreserved<DominatorTreeWrapperPass>();
234     AU.addPreserved<LoopInfoWrapperPass>();
235     AU.addRequired<TargetLibraryInfoWrapperPass>();
236     if (EnableMSSALoopDependency) {
237       AU.addRequired<MemorySSAWrapperPass>();
238       AU.addPreserved<MemorySSAWrapperPass>();
239     }
240     AU.addRequired<TargetTransformInfoWrapperPass>();
241     getLoopAnalysisUsage(AU);
242   }
243 
244   using llvm::Pass::doFinalization;
245 
246   bool doFinalization() override {
247     auto &AliasSetMap = LICM.getLoopToAliasSetMap();
248     // All loops in the AliasSetMap should be cleaned up already. The only case
249     // where we fail to do so is if an outer loop gets deleted before LICM
250     // visits it.
251     assert(all_of(AliasSetMap,
252                   [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {
253                     return !KV.first->getParentLoop();
254                   }) &&
255            "Didn't free loop alias sets");
256     AliasSetMap.clear();
257     return false;
258   }
259 
260 private:
261   LoopInvariantCodeMotion LICM;
262 
263   /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
264   void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
265                                Loop *L) override;
266 
267   /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
268   /// set.
269   void deleteAnalysisValue(Value *V, Loop *L) override;
270 
271   /// Simple Analysis hook. Delete loop L from alias set map.
272   void deleteAnalysisLoop(Loop *L) override;
273 };
274 } // namespace
275 
276 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
277                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
278   const auto &FAM =
279       AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
280   Function *F = L.getHeader()->getParent();
281 
282   auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
283   // FIXME: This should probably be optional rather than required.
284   if (!ORE)
285     report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
286                        "cached at a higher level");
287 
288   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
289   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
290                       AR.MSSA, ORE, true))
291     return PreservedAnalyses::all();
292 
293   auto PA = getLoopPassPreservedAnalyses();
294 
295   PA.preserve<DominatorTreeAnalysis>();
296   PA.preserve<LoopAnalysis>();
297   if (EnableMSSALoopDependency)
298     PA.preserve<MemorySSAAnalysis>();
299 
300   return PA;
301 }
302 
303 char LegacyLICMPass::ID = 0;
304 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
305                       false, false)
306 INITIALIZE_PASS_DEPENDENCY(LoopPass)
307 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
308 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
309 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
310 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
311                     false)
312 
313 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
314 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
315                            unsigned LicmMssaNoAccForPromotionCap) {
316   return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
317 }
318 
319 /// Hoist expressions out of the specified loop. Note, alias info for inner
320 /// loop is not preserved so it is not a good idea to run LICM multiple
321 /// times on one loop.
322 /// We should delete AST for inner loops in the new pass manager to avoid
323 /// memory leak.
324 ///
325 bool LoopInvariantCodeMotion::runOnLoop(
326     Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
327     TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
328     MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
329   bool Changed = false;
330 
331   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
332 
333   std::unique_ptr<AliasSetTracker> CurAST;
334   std::unique_ptr<MemorySSAUpdater> MSSAU;
335   bool NoOfMemAccTooLarge = false;
336   unsigned LicmMssaOptCounter = 0;
337 
338   if (!MSSA) {
339     LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
340     CurAST = collectAliasInfoForLoop(L, LI, AA);
341   } else {
342     LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
343     MSSAU = make_unique<MemorySSAUpdater>(MSSA);
344 
345     unsigned AccessCapCount = 0;
346     for (auto *BB : L->getBlocks()) {
347       if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
348         for (const auto &MA : *Accesses) {
349           (void)MA;
350           AccessCapCount++;
351           if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
352             NoOfMemAccTooLarge = true;
353             break;
354           }
355         }
356       }
357       if (NoOfMemAccTooLarge)
358         break;
359     }
360   }
361 
362   // Get the preheader block to move instructions into...
363   BasicBlock *Preheader = L->getLoopPreheader();
364 
365   // Compute loop safety information.
366   ICFLoopSafetyInfo SafetyInfo(DT);
367   SafetyInfo.computeLoopSafetyInfo(L);
368 
369   // We want to visit all of the instructions in this loop... that are not parts
370   // of our subloops (they have already had their invariants hoisted out of
371   // their loop, into this loop, so there is no need to process the BODIES of
372   // the subloops).
373   //
374   // Traverse the body of the loop in depth first order on the dominator tree so
375   // that we are guaranteed to see definitions before we see uses.  This allows
376   // us to sink instructions in one pass, without iteration.  After sinking
377   // instructions, we perform another pass to hoist them out of the loop.
378   SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
379                                  LicmMssaOptCap, LicmMssaNoAccForPromotionCap};
380   if (L->hasDedicatedExits())
381     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
382                           CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
383   if (Preheader)
384     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
385                            CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
386 
387   // Now that all loop invariants have been removed from the loop, promote any
388   // memory references to scalars that we can.
389   // Don't sink stores from loops without dedicated block exits. Exits
390   // containing indirect branches are not transformed by loop simplify,
391   // make sure we catch that. An additional load may be generated in the
392   // preheader for SSA updater, so also avoid sinking when no preheader
393   // is available.
394   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
395       !NoOfMemAccTooLarge) {
396     // Figure out the loop exits and their insertion points
397     SmallVector<BasicBlock *, 8> ExitBlocks;
398     L->getUniqueExitBlocks(ExitBlocks);
399 
400     // We can't insert into a catchswitch.
401     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
402       return isa<CatchSwitchInst>(Exit->getTerminator());
403     });
404 
405     if (!HasCatchSwitch) {
406       SmallVector<Instruction *, 8> InsertPts;
407       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
408       InsertPts.reserve(ExitBlocks.size());
409       if (MSSAU)
410         MSSAInsertPts.reserve(ExitBlocks.size());
411       for (BasicBlock *ExitBlock : ExitBlocks) {
412         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
413         if (MSSAU)
414           MSSAInsertPts.push_back(nullptr);
415       }
416 
417       PredIteratorCache PIC;
418 
419       bool Promoted = false;
420 
421       // Build an AST using MSSA.
422       if (!CurAST.get())
423         CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
424 
425       // Loop over all of the alias sets in the tracker object.
426       for (AliasSet &AS : *CurAST) {
427         // We can promote this alias set if it has a store, if it is a "Must"
428         // alias set, if the pointer is loop invariant, and if we are not
429         // eliminating any volatile loads or stores.
430         if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
431             !L->isLoopInvariant(AS.begin()->getValue()))
432           continue;
433 
434         assert(
435             !AS.empty() &&
436             "Must alias set should have at least one pointer element in it!");
437 
438         SmallSetVector<Value *, 8> PointerMustAliases;
439         for (const auto &ASI : AS)
440           PointerMustAliases.insert(ASI.getValue());
441 
442         Promoted |= promoteLoopAccessesToScalars(
443             PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
444             DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
445       }
446 
447       // Once we have promoted values across the loop body we have to
448       // recursively reform LCSSA as any nested loop may now have values defined
449       // within the loop used in the outer loop.
450       // FIXME: This is really heavy handed. It would be a bit better to use an
451       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
452       // it as it went.
453       if (Promoted)
454         formLCSSARecursively(*L, *DT, LI, SE);
455 
456       Changed |= Promoted;
457     }
458   }
459 
460   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
461   // specifically moving instructions across the loop boundary and so it is
462   // especially in need of sanity checking here.
463   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
464   assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
465          "Parent loop not left in LCSSA form after LICM!");
466 
467   // If this loop is nested inside of another one, save the alias information
468   // for when we process the outer loop.
469   if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
470     LoopToAliasSetMap[L] = std::move(CurAST);
471 
472   if (MSSAU.get() && VerifyMemorySSA)
473     MSSAU->getMemorySSA()->verifyMemorySSA();
474 
475   if (Changed && SE)
476     SE->forgetLoopDispositions(L);
477   return Changed;
478 }
479 
480 /// Walk the specified region of the CFG (defined by all blocks dominated by
481 /// the specified block, and that are in the current loop) in reverse depth
482 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
483 /// definitions, allowing us to sink a loop body in one pass without iteration.
484 ///
485 bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
486                       DominatorTree *DT, TargetLibraryInfo *TLI,
487                       TargetTransformInfo *TTI, Loop *CurLoop,
488                       AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
489                       ICFLoopSafetyInfo *SafetyInfo,
490                       SinkAndHoistLICMFlags &Flags,
491                       OptimizationRemarkEmitter *ORE) {
492 
493   // Verify inputs.
494   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
495          CurLoop != nullptr && SafetyInfo != nullptr &&
496          "Unexpected input to sinkRegion.");
497   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
498          "Either AliasSetTracker or MemorySSA should be initialized.");
499 
500   // We want to visit children before parents. We will enque all the parents
501   // before their children in the worklist and process the worklist in reverse
502   // order.
503   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
504 
505   bool Changed = false;
506   for (DomTreeNode *DTN : reverse(Worklist)) {
507     BasicBlock *BB = DTN->getBlock();
508     // Only need to process the contents of this block if it is not part of a
509     // subloop (which would already have been processed).
510     if (inSubLoop(BB, CurLoop, LI))
511       continue;
512 
513     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
514       Instruction &I = *--II;
515 
516       // If the instruction is dead, we would try to sink it because it isn't
517       // used in the loop, instead, just delete it.
518       if (isInstructionTriviallyDead(&I, TLI)) {
519         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
520         salvageDebugInfo(I);
521         ++II;
522         eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
523         Changed = true;
524         continue;
525       }
526 
527       // Check to see if we can sink this instruction to the exit blocks
528       // of the loop.  We can do this if the all users of the instruction are
529       // outside of the loop.  In this case, it doesn't even matter if the
530       // operands of the instruction are loop invariant.
531       //
532       bool FreeInLoop = false;
533       if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
534           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
535                              ORE) &&
536           !I.mayHaveSideEffects()) {
537         if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
538           if (!FreeInLoop) {
539             ++II;
540             eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
541           }
542           Changed = true;
543         }
544       }
545     }
546   }
547   if (MSSAU && VerifyMemorySSA)
548     MSSAU->getMemorySSA()->verifyMemorySSA();
549   return Changed;
550 }
551 
552 namespace {
553 // This is a helper class for hoistRegion to make it able to hoist control flow
554 // in order to be able to hoist phis. The way this works is that we initially
555 // start hoisting to the loop preheader, and when we see a loop invariant branch
556 // we make note of this. When we then come to hoist an instruction that's
557 // conditional on such a branch we duplicate the branch and the relevant control
558 // flow, then hoist the instruction into the block corresponding to its original
559 // block in the duplicated control flow.
560 class ControlFlowHoister {
561 private:
562   // Information about the loop we are hoisting from
563   LoopInfo *LI;
564   DominatorTree *DT;
565   Loop *CurLoop;
566   MemorySSAUpdater *MSSAU;
567 
568   // A map of blocks in the loop to the block their instructions will be hoisted
569   // to.
570   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
571 
572   // The branches that we can hoist, mapped to the block that marks a
573   // convergence point of their control flow.
574   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
575 
576 public:
577   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
578                      MemorySSAUpdater *MSSAU)
579       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
580 
581   void registerPossiblyHoistableBranch(BranchInst *BI) {
582     // We can only hoist conditional branches with loop invariant operands.
583     if (!ControlFlowHoisting || !BI->isConditional() ||
584         !CurLoop->hasLoopInvariantOperands(BI))
585       return;
586 
587     // The branch destinations need to be in the loop, and we don't gain
588     // anything by duplicating conditional branches with duplicate successors,
589     // as it's essentially the same as an unconditional branch.
590     BasicBlock *TrueDest = BI->getSuccessor(0);
591     BasicBlock *FalseDest = BI->getSuccessor(1);
592     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
593         TrueDest == FalseDest)
594       return;
595 
596     // We can hoist BI if one branch destination is the successor of the other,
597     // or both have common successor which we check by seeing if the
598     // intersection of their successors is non-empty.
599     // TODO: This could be expanded to allowing branches where both ends
600     // eventually converge to a single block.
601     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
602     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
603     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
604     BasicBlock *CommonSucc = nullptr;
605     if (TrueDestSucc.count(FalseDest)) {
606       CommonSucc = FalseDest;
607     } else if (FalseDestSucc.count(TrueDest)) {
608       CommonSucc = TrueDest;
609     } else {
610       set_intersect(TrueDestSucc, FalseDestSucc);
611       // If there's one common successor use that.
612       if (TrueDestSucc.size() == 1)
613         CommonSucc = *TrueDestSucc.begin();
614       // If there's more than one pick whichever appears first in the block list
615       // (we can't use the value returned by TrueDestSucc.begin() as it's
616       // unpredicatable which element gets returned).
617       else if (!TrueDestSucc.empty()) {
618         Function *F = TrueDest->getParent();
619         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
620         auto It = std::find_if(F->begin(), F->end(), IsSucc);
621         assert(It != F->end() && "Could not find successor in function");
622         CommonSucc = &*It;
623       }
624     }
625     // The common successor has to be dominated by the branch, as otherwise
626     // there will be some other path to the successor that will not be
627     // controlled by this branch so any phi we hoist would be controlled by the
628     // wrong condition. This also takes care of avoiding hoisting of loop back
629     // edges.
630     // TODO: In some cases this could be relaxed if the successor is dominated
631     // by another block that's been hoisted and we can guarantee that the
632     // control flow has been replicated exactly.
633     if (CommonSucc && DT->dominates(BI, CommonSucc))
634       HoistableBranches[BI] = CommonSucc;
635   }
636 
637   bool canHoistPHI(PHINode *PN) {
638     // The phi must have loop invariant operands.
639     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
640       return false;
641     // We can hoist phis if the block they are in is the target of hoistable
642     // branches which cover all of the predecessors of the block.
643     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
644     BasicBlock *BB = PN->getParent();
645     for (BasicBlock *PredBB : predecessors(BB))
646       PredecessorBlocks.insert(PredBB);
647     // If we have less predecessor blocks than predecessors then the phi will
648     // have more than one incoming value for the same block which we can't
649     // handle.
650     // TODO: This could be handled be erasing some of the duplicate incoming
651     // values.
652     if (PredecessorBlocks.size() != pred_size(BB))
653       return false;
654     for (auto &Pair : HoistableBranches) {
655       if (Pair.second == BB) {
656         // Which blocks are predecessors via this branch depends on if the
657         // branch is triangle-like or diamond-like.
658         if (Pair.first->getSuccessor(0) == BB) {
659           PredecessorBlocks.erase(Pair.first->getParent());
660           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
661         } else if (Pair.first->getSuccessor(1) == BB) {
662           PredecessorBlocks.erase(Pair.first->getParent());
663           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
664         } else {
665           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
666           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
667         }
668       }
669     }
670     // PredecessorBlocks will now be empty if for every predecessor of BB we
671     // found a hoistable branch source.
672     return PredecessorBlocks.empty();
673   }
674 
675   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
676     if (!ControlFlowHoisting)
677       return CurLoop->getLoopPreheader();
678     // If BB has already been hoisted, return that
679     if (HoistDestinationMap.count(BB))
680       return HoistDestinationMap[BB];
681 
682     // Check if this block is conditional based on a pending branch
683     auto HasBBAsSuccessor =
684         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
685           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
686                                        Pair.first->getSuccessor(1) == BB);
687         };
688     auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
689                            HasBBAsSuccessor);
690 
691     // If not involved in a pending branch, hoist to preheader
692     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
693     if (It == HoistableBranches.end()) {
694       LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
695                         << " as hoist destination for " << BB->getName()
696                         << "\n");
697       HoistDestinationMap[BB] = InitialPreheader;
698       return InitialPreheader;
699     }
700     BranchInst *BI = It->first;
701     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
702                HoistableBranches.end() &&
703            "BB is expected to be the target of at most one branch");
704 
705     LLVMContext &C = BB->getContext();
706     BasicBlock *TrueDest = BI->getSuccessor(0);
707     BasicBlock *FalseDest = BI->getSuccessor(1);
708     BasicBlock *CommonSucc = HoistableBranches[BI];
709     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
710 
711     // Create hoisted versions of blocks that currently don't have them
712     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
713       if (HoistDestinationMap.count(Orig))
714         return HoistDestinationMap[Orig];
715       BasicBlock *New =
716           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
717       HoistDestinationMap[Orig] = New;
718       DT->addNewBlock(New, HoistTarget);
719       if (CurLoop->getParentLoop())
720         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
721       ++NumCreatedBlocks;
722       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
723                         << " as hoist destination for " << Orig->getName()
724                         << "\n");
725       return New;
726     };
727     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
728     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
729     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
730 
731     // Link up these blocks with branches.
732     if (!HoistCommonSucc->getTerminator()) {
733       // The new common successor we've generated will branch to whatever that
734       // hoist target branched to.
735       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
736       assert(TargetSucc && "Expected hoist target to have a single successor");
737       HoistCommonSucc->moveBefore(TargetSucc);
738       BranchInst::Create(TargetSucc, HoistCommonSucc);
739     }
740     if (!HoistTrueDest->getTerminator()) {
741       HoistTrueDest->moveBefore(HoistCommonSucc);
742       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
743     }
744     if (!HoistFalseDest->getTerminator()) {
745       HoistFalseDest->moveBefore(HoistCommonSucc);
746       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
747     }
748 
749     // If BI is being cloned to what was originally the preheader then
750     // HoistCommonSucc will now be the new preheader.
751     if (HoistTarget == InitialPreheader) {
752       // Phis in the loop header now need to use the new preheader.
753       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
754       if (MSSAU)
755         MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
756             HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
757       // The new preheader dominates the loop header.
758       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
759       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
760       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
761       // The preheader hoist destination is now the new preheader, with the
762       // exception of the hoist destination of this branch.
763       for (auto &Pair : HoistDestinationMap)
764         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
765           Pair.second = HoistCommonSucc;
766     }
767 
768     // Now finally clone BI.
769     ReplaceInstWithInst(
770         HoistTarget->getTerminator(),
771         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
772     ++NumClonedBranches;
773 
774     assert(CurLoop->getLoopPreheader() &&
775            "Hoisting blocks should not have destroyed preheader");
776     return HoistDestinationMap[BB];
777   }
778 };
779 } // namespace
780 
781 /// Walk the specified region of the CFG (defined by all blocks dominated by
782 /// the specified block, and that are in the current loop) in depth first
783 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
784 /// uses, allowing us to hoist a loop body in one pass without iteration.
785 ///
786 bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
787                        DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
788                        AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
789                        ICFLoopSafetyInfo *SafetyInfo,
790                        SinkAndHoistLICMFlags &Flags,
791                        OptimizationRemarkEmitter *ORE) {
792   // Verify inputs.
793   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
794          CurLoop != nullptr && SafetyInfo != nullptr &&
795          "Unexpected input to hoistRegion.");
796   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
797          "Either AliasSetTracker or MemorySSA should be initialized.");
798 
799   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
800 
801   // Keep track of instructions that have been hoisted, as they may need to be
802   // re-hoisted if they end up not dominating all of their uses.
803   SmallVector<Instruction *, 16> HoistedInstructions;
804 
805   // For PHI hoisting to work we need to hoist blocks before their successors.
806   // We can do this by iterating through the blocks in the loop in reverse
807   // post-order.
808   LoopBlocksRPO Worklist(CurLoop);
809   Worklist.perform(LI);
810   bool Changed = false;
811   for (BasicBlock *BB : Worklist) {
812     // Only need to process the contents of this block if it is not part of a
813     // subloop (which would already have been processed).
814     if (inSubLoop(BB, CurLoop, LI))
815       continue;
816 
817     for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
818       Instruction &I = *II++;
819       // Try constant folding this instruction.  If all the operands are
820       // constants, it is technically hoistable, but it would be better to
821       // just fold it.
822       if (Constant *C = ConstantFoldInstruction(
823               &I, I.getModule()->getDataLayout(), TLI)) {
824         LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
825                           << '\n');
826         if (CurAST)
827           CurAST->copyValue(&I, C);
828         // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
829         I.replaceAllUsesWith(C);
830         if (isInstructionTriviallyDead(&I, TLI))
831           eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
832         Changed = true;
833         continue;
834       }
835 
836       // Try hoisting the instruction out to the preheader.  We can only do
837       // this if all of the operands of the instruction are loop invariant and
838       // if it is safe to hoist the instruction.
839       // TODO: It may be safe to hoist if we are hoisting to a conditional block
840       // and we have accurately duplicated the control flow from the loop header
841       // to that block.
842       if (CurLoop->hasLoopInvariantOperands(&I) &&
843           canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
844                              ORE) &&
845           isSafeToExecuteUnconditionally(
846               I, DT, CurLoop, SafetyInfo, ORE,
847               CurLoop->getLoopPreheader()->getTerminator())) {
848         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
849               MSSAU, ORE);
850         HoistedInstructions.push_back(&I);
851         Changed = true;
852         continue;
853       }
854 
855       // Attempt to remove floating point division out of the loop by
856       // converting it to a reciprocal multiplication.
857       if (I.getOpcode() == Instruction::FDiv &&
858           CurLoop->isLoopInvariant(I.getOperand(1)) &&
859           I.hasAllowReciprocal()) {
860         auto Divisor = I.getOperand(1);
861         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
862         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
863         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
864         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
865         ReciprocalDivisor->insertBefore(&I);
866 
867         auto Product =
868             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
869         Product->setFastMathFlags(I.getFastMathFlags());
870         SafetyInfo->insertInstructionTo(Product, I.getParent());
871         Product->insertAfter(&I);
872         I.replaceAllUsesWith(Product);
873         eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
874 
875         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
876               SafetyInfo, MSSAU, ORE);
877         HoistedInstructions.push_back(ReciprocalDivisor);
878         Changed = true;
879         continue;
880       }
881 
882       auto IsInvariantStart = [&](Instruction &I) {
883         using namespace PatternMatch;
884         return I.use_empty() &&
885                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
886       };
887       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
888         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
889                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
890       };
891       if ((IsInvariantStart(I) || isGuard(&I)) &&
892           CurLoop->hasLoopInvariantOperands(&I) &&
893           MustExecuteWithoutWritesBefore(I)) {
894         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
895               MSSAU, ORE);
896         HoistedInstructions.push_back(&I);
897         Changed = true;
898         continue;
899       }
900 
901       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
902         if (CFH.canHoistPHI(PN)) {
903           // Redirect incoming blocks first to ensure that we create hoisted
904           // versions of those blocks before we hoist the phi.
905           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
906             PN->setIncomingBlock(
907                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
908           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
909                 MSSAU, ORE);
910           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
911           Changed = true;
912           continue;
913         }
914       }
915 
916       // Remember possibly hoistable branches so we can actually hoist them
917       // later if needed.
918       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
919         CFH.registerPossiblyHoistableBranch(BI);
920     }
921   }
922 
923   // If we hoisted instructions to a conditional block they may not dominate
924   // their uses that weren't hoisted (such as phis where some operands are not
925   // loop invariant). If so make them unconditional by moving them to their
926   // immediate dominator. We iterate through the instructions in reverse order
927   // which ensures that when we rehoist an instruction we rehoist its operands,
928   // and also keep track of where in the block we are rehoisting to to make sure
929   // that we rehoist instructions before the instructions that use them.
930   Instruction *HoistPoint = nullptr;
931   if (ControlFlowHoisting) {
932     for (Instruction *I : reverse(HoistedInstructions)) {
933       if (!llvm::all_of(I->uses(),
934                         [&](Use &U) { return DT->dominates(I, U); })) {
935         BasicBlock *Dominator =
936             DT->getNode(I->getParent())->getIDom()->getBlock();
937         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
938           if (HoistPoint)
939             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
940                    "New hoist point expected to dominate old hoist point");
941           HoistPoint = Dominator->getTerminator();
942         }
943         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
944                           << HoistPoint->getParent()->getName()
945                           << ": " << *I << "\n");
946         moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU);
947         HoistPoint = I;
948         Changed = true;
949       }
950     }
951   }
952   if (MSSAU && VerifyMemorySSA)
953     MSSAU->getMemorySSA()->verifyMemorySSA();
954 
955     // Now that we've finished hoisting make sure that LI and DT are still
956     // valid.
957 #ifndef NDEBUG
958   if (Changed) {
959     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
960            "Dominator tree verification failed");
961     LI->verify(*DT);
962   }
963 #endif
964 
965   return Changed;
966 }
967 
968 // Return true if LI is invariant within scope of the loop. LI is invariant if
969 // CurLoop is dominated by an invariant.start representing the same memory
970 // location and size as the memory location LI loads from, and also the
971 // invariant.start has no uses.
972 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
973                                   Loop *CurLoop) {
974   Value *Addr = LI->getOperand(0);
975   const DataLayout &DL = LI->getModule()->getDataLayout();
976   const uint32_t LocSizeInBits = DL.getTypeSizeInBits(
977       cast<PointerType>(Addr->getType())->getElementType());
978 
979   // if the type is i8 addrspace(x)*, we know this is the type of
980   // llvm.invariant.start operand
981   auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
982                                      LI->getPointerAddressSpace());
983   unsigned BitcastsVisited = 0;
984   // Look through bitcasts until we reach the i8* type (this is invariant.start
985   // operand type).
986   while (Addr->getType() != PtrInt8Ty) {
987     auto *BC = dyn_cast<BitCastInst>(Addr);
988     // Avoid traversing high number of bitcast uses.
989     if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
990       return false;
991     Addr = BC->getOperand(0);
992   }
993 
994   unsigned UsesVisited = 0;
995   // Traverse all uses of the load operand value, to see if invariant.start is
996   // one of the uses, and whether it dominates the load instruction.
997   for (auto *U : Addr->users()) {
998     // Avoid traversing for Load operand with high number of users.
999     if (++UsesVisited > MaxNumUsesTraversed)
1000       return false;
1001     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1002     // If there are escaping uses of invariant.start instruction, the load maybe
1003     // non-invariant.
1004     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1005         !II->use_empty())
1006       continue;
1007     unsigned InvariantSizeInBits =
1008         cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
1009     // Confirm the invariant.start location size contains the load operand size
1010     // in bits. Also, the invariant.start should dominate the load, and we
1011     // should not hoist the load out of a loop that contains this dominating
1012     // invariant.start.
1013     if (LocSizeInBits <= InvariantSizeInBits &&
1014         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1015       return true;
1016   }
1017 
1018   return false;
1019 }
1020 
1021 namespace {
1022 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1023 /// sink a given instruction out of a loop.  Does not address legality
1024 /// concerns such as aliasing or speculation safety.
1025 bool isHoistableAndSinkableInst(Instruction &I) {
1026   // Only these instructions are hoistable/sinkable.
1027   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1028           isa<FenceInst>(I) || isa<BinaryOperator>(I) || isa<CastInst>(I) ||
1029           isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1030           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1031           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1032           isa<InsertValueInst>(I));
1033 }
1034 /// Return true if all of the alias sets within this AST are known not to
1035 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
1036 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1037                 const Loop *L) {
1038   if (CurAST) {
1039     for (AliasSet &AS : *CurAST) {
1040       if (!AS.isForwardingAliasSet() && AS.isMod()) {
1041         return false;
1042       }
1043     }
1044     return true;
1045   } else { /*MSSAU*/
1046     for (auto *BB : L->getBlocks())
1047       if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1048         return false;
1049     return true;
1050   }
1051 }
1052 
1053 /// Return true if I is the only Instruction with a MemoryAccess in L.
1054 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1055                         const MemorySSAUpdater *MSSAU) {
1056   for (auto *BB : L->getBlocks())
1057     if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1058       int NotAPhi = 0;
1059       for (const auto &Acc : *Accs) {
1060         if (isa<MemoryPhi>(&Acc))
1061           continue;
1062         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1063         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1064           return false;
1065       }
1066     }
1067   return true;
1068 }
1069 }
1070 
1071 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1072                               Loop *CurLoop, AliasSetTracker *CurAST,
1073                               MemorySSAUpdater *MSSAU,
1074                               bool TargetExecutesOncePerLoop,
1075                               SinkAndHoistLICMFlags *Flags,
1076                               OptimizationRemarkEmitter *ORE) {
1077   // If we don't understand the instruction, bail early.
1078   if (!isHoistableAndSinkableInst(I))
1079     return false;
1080 
1081   MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1082   if (MSSA)
1083     assert(Flags != nullptr && "Flags cannot be null.");
1084 
1085   // Loads have extra constraints we have to verify before we can hoist them.
1086   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1087     if (!LI->isUnordered())
1088       return false; // Don't sink/hoist volatile or ordered atomic loads!
1089 
1090     // Loads from constant memory are always safe to move, even if they end up
1091     // in the same alias set as something that ends up being modified.
1092     if (AA->pointsToConstantMemory(LI->getOperand(0)))
1093       return true;
1094     if (LI->getMetadata(LLVMContext::MD_invariant_load))
1095       return true;
1096 
1097     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1098       return false; // Don't risk duplicating unordered loads
1099 
1100     // This checks for an invariant.start dominating the load.
1101     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1102       return true;
1103 
1104     bool Invalidated;
1105     if (CurAST)
1106       Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1107                                              CurLoop, AA);
1108     else
1109       Invalidated = pointerInvalidatedByLoopWithMSSA(
1110           MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
1111     // Check loop-invariant address because this may also be a sinkable load
1112     // whose address is not necessarily loop-invariant.
1113     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1114       ORE->emit([&]() {
1115         return OptimizationRemarkMissed(
1116                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1117                << "failed to move load with loop-invariant address "
1118                   "because the loop may invalidate its value";
1119       });
1120 
1121     return !Invalidated;
1122   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1123     // Don't sink or hoist dbg info; it's legal, but not useful.
1124     if (isa<DbgInfoIntrinsic>(I))
1125       return false;
1126 
1127     // Don't sink calls which can throw.
1128     if (CI->mayThrow())
1129       return false;
1130 
1131     using namespace PatternMatch;
1132     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1133       // Assumes don't actually alias anything or throw
1134       return true;
1135 
1136     // Handle simple cases by querying alias analysis.
1137     FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1138     if (Behavior == FMRB_DoesNotAccessMemory)
1139       return true;
1140     if (AliasAnalysis::onlyReadsMemory(Behavior)) {
1141       // A readonly argmemonly function only reads from memory pointed to by
1142       // it's arguments with arbitrary offsets.  If we can prove there are no
1143       // writes to this memory in the loop, we can hoist or sink.
1144       if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
1145         // TODO: expand to writeable arguments
1146         for (Value *Op : CI->arg_operands())
1147           if (Op->getType()->isPointerTy()) {
1148             bool Invalidated;
1149             if (CurAST)
1150               Invalidated = pointerInvalidatedByLoop(
1151                   MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
1152                   CurAST, CurLoop, AA);
1153             else
1154               Invalidated = pointerInvalidatedByLoopWithMSSA(
1155                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
1156                   *Flags);
1157             if (Invalidated)
1158               return false;
1159           }
1160         return true;
1161       }
1162 
1163       // If this call only reads from memory and there are no writes to memory
1164       // in the loop, we can hoist or sink the call as appropriate.
1165       if (isReadOnly(CurAST, MSSAU, CurLoop))
1166         return true;
1167     }
1168 
1169     // FIXME: This should use mod/ref information to see if we can hoist or
1170     // sink the call.
1171 
1172     return false;
1173   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1174     // Fences alias (most) everything to provide ordering.  For the moment,
1175     // just give up if there are any other memory operations in the loop.
1176     if (CurAST) {
1177       auto Begin = CurAST->begin();
1178       assert(Begin != CurAST->end() && "must contain FI");
1179       if (std::next(Begin) != CurAST->end())
1180         // constant memory for instance, TODO: handle better
1181         return false;
1182       auto *UniqueI = Begin->getUniqueInstruction();
1183       if (!UniqueI)
1184         // other memory op, give up
1185         return false;
1186       (void)FI; // suppress unused variable warning
1187       assert(UniqueI == FI && "AS must contain FI");
1188       return true;
1189     } else // MSSAU
1190       return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1191   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1192     if (!SI->isUnordered())
1193       return false; // Don't sink/hoist volatile or ordered atomic store!
1194 
1195     // We can only hoist a store that we can prove writes a value which is not
1196     // read or overwritten within the loop.  For those cases, we fallback to
1197     // load store promotion instead.  TODO: We can extend this to cases where
1198     // there is exactly one write to the location and that write dominates an
1199     // arbitrary number of reads in the loop.
1200     if (CurAST) {
1201       auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1202 
1203       if (AS.isRef() || !AS.isMustAlias())
1204         // Quick exit test, handled by the full path below as well.
1205         return false;
1206       auto *UniqueI = AS.getUniqueInstruction();
1207       if (!UniqueI)
1208         // other memory op, give up
1209         return false;
1210       assert(UniqueI == SI && "AS must contain SI");
1211       return true;
1212     } else { // MSSAU
1213       if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1214         return true;
1215       // If there are more accesses than the Promotion cap, give up, we're not
1216       // walking a list that long.
1217       if (Flags->NoOfMemAccTooLarge)
1218         return false;
1219       // Check store only if there's still "quota" to check clobber.
1220       if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
1221         return false;
1222       // If there are interfering Uses (i.e. their defining access is in the
1223       // loop), or ordered loads (stored as Defs!), don't move this store.
1224       // Could do better here, but this is conservatively correct.
1225       // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1226       // moving accesses. Can also extend to dominating uses.
1227       for (auto *BB : CurLoop->getBlocks())
1228         if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1229           for (const auto &MA : *Accesses)
1230             if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1231               auto *MD = MU->getDefiningAccess();
1232               if (!MSSA->isLiveOnEntryDef(MD) &&
1233                   CurLoop->contains(MD->getBlock()))
1234                 return false;
1235             } else if (const auto *MD = dyn_cast<MemoryDef>(&MA))
1236               if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1237                 (void)LI; // Silence warning.
1238                 assert(!LI->isUnordered() && "Expected unordered load");
1239                 return false;
1240               }
1241         }
1242 
1243       auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1244       Flags->LicmMssaOptCounter++;
1245       // If there are no clobbering Defs in the loop, store is safe to hoist.
1246       return MSSA->isLiveOnEntryDef(Source) ||
1247              !CurLoop->contains(Source->getBlock());
1248     }
1249   }
1250 
1251   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1252 
1253   // We've established mechanical ability and aliasing, it's up to the caller
1254   // to check fault safety
1255   return true;
1256 }
1257 
1258 /// Returns true if a PHINode is a trivially replaceable with an
1259 /// Instruction.
1260 /// This is true when all incoming values are that instruction.
1261 /// This pattern occurs most often with LCSSA PHI nodes.
1262 ///
1263 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1264   for (const Value *IncValue : PN.incoming_values())
1265     if (IncValue != &I)
1266       return false;
1267 
1268   return true;
1269 }
1270 
1271 /// Return true if the instruction is free in the loop.
1272 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1273                          const TargetTransformInfo *TTI) {
1274 
1275   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1276     if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
1277       return false;
1278     // For a GEP, we cannot simply use getUserCost because currently it
1279     // optimistically assume that a GEP will fold into addressing mode
1280     // regardless of its users.
1281     const BasicBlock *BB = GEP->getParent();
1282     for (const User *U : GEP->users()) {
1283       const Instruction *UI = cast<Instruction>(U);
1284       if (CurLoop->contains(UI) &&
1285           (BB != UI->getParent() ||
1286            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1287         return false;
1288     }
1289     return true;
1290   } else
1291     return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
1292 }
1293 
1294 /// Return true if the only users of this instruction are outside of
1295 /// the loop. If this is true, we can sink the instruction to the exit
1296 /// blocks of the loop.
1297 ///
1298 /// We also return true if the instruction could be folded away in lowering.
1299 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1300 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1301                                   const LoopSafetyInfo *SafetyInfo,
1302                                   TargetTransformInfo *TTI, bool &FreeInLoop) {
1303   const auto &BlockColors = SafetyInfo->getBlockColors();
1304   bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1305   for (const User *U : I.users()) {
1306     const Instruction *UI = cast<Instruction>(U);
1307     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1308       const BasicBlock *BB = PN->getParent();
1309       // We cannot sink uses in catchswitches.
1310       if (isa<CatchSwitchInst>(BB->getTerminator()))
1311         return false;
1312 
1313       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1314       // phi use is too muddled.
1315       if (isa<CallInst>(I))
1316         if (!BlockColors.empty() &&
1317             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1318           return false;
1319     }
1320 
1321     if (CurLoop->contains(UI)) {
1322       if (IsFree) {
1323         FreeInLoop = true;
1324         continue;
1325       }
1326       return false;
1327     }
1328   }
1329   return true;
1330 }
1331 
1332 static Instruction *CloneInstructionInExitBlock(
1333     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1334     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1335   Instruction *New;
1336   if (auto *CI = dyn_cast<CallInst>(&I)) {
1337     const auto &BlockColors = SafetyInfo->getBlockColors();
1338 
1339     // Sinking call-sites need to be handled differently from other
1340     // instructions.  The cloned call-site needs a funclet bundle operand
1341     // appropriate for its location in the CFG.
1342     SmallVector<OperandBundleDef, 1> OpBundles;
1343     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1344          BundleIdx != BundleEnd; ++BundleIdx) {
1345       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1346       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1347         continue;
1348 
1349       OpBundles.emplace_back(Bundle);
1350     }
1351 
1352     if (!BlockColors.empty()) {
1353       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1354       assert(CV.size() == 1 && "non-unique color for exit block!");
1355       BasicBlock *BBColor = CV.front();
1356       Instruction *EHPad = BBColor->getFirstNonPHI();
1357       if (EHPad->isEHPad())
1358         OpBundles.emplace_back("funclet", EHPad);
1359     }
1360 
1361     New = CallInst::Create(CI, OpBundles);
1362   } else {
1363     New = I.clone();
1364   }
1365 
1366   ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1367   if (!I.getName().empty())
1368     New->setName(I.getName() + ".le");
1369 
1370   MemoryAccess *OldMemAcc;
1371   if (MSSAU && (OldMemAcc = MSSAU->getMemorySSA()->getMemoryAccess(&I))) {
1372     // Create a new MemoryAccess and let MemorySSA set its defining access.
1373     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1374         New, nullptr, New->getParent(), MemorySSA::Beginning);
1375     if (NewMemAcc) {
1376       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1377         MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1378       else {
1379         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1380         MSSAU->insertUse(MemUse);
1381       }
1382     }
1383   }
1384 
1385   // Build LCSSA PHI nodes for any in-loop operands. Note that this is
1386   // particularly cheap because we can rip off the PHI node that we're
1387   // replacing for the number and blocks of the predecessors.
1388   // OPT: If this shows up in a profile, we can instead finish sinking all
1389   // invariant instructions, and then walk their operands to re-establish
1390   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1391   // sinking bottom-up.
1392   for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
1393        ++OI)
1394     if (Instruction *OInst = dyn_cast<Instruction>(*OI))
1395       if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
1396         if (!OLoop->contains(&PN)) {
1397           PHINode *OpPN =
1398               PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1399                               OInst->getName() + ".lcssa", &ExitBlock.front());
1400           for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1401             OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1402           *OI = OpPN;
1403         }
1404   return New;
1405 }
1406 
1407 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1408                              AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
1409   if (AST)
1410     AST->deleteValue(&I);
1411   if (MSSAU)
1412     MSSAU->removeMemoryAccess(&I);
1413   SafetyInfo.removeInstruction(&I);
1414   I.eraseFromParent();
1415 }
1416 
1417 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1418                                   ICFLoopSafetyInfo &SafetyInfo,
1419                                   MemorySSAUpdater *MSSAU) {
1420   SafetyInfo.removeInstruction(&I);
1421   SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1422   I.moveBefore(&Dest);
1423   if (MSSAU)
1424     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1425             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1426       MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End);
1427 }
1428 
1429 static Instruction *sinkThroughTriviallyReplaceablePHI(
1430     PHINode *TPN, Instruction *I, LoopInfo *LI,
1431     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1432     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1433     MemorySSAUpdater *MSSAU) {
1434   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1435          "Expect only trivially replaceable PHI");
1436   BasicBlock *ExitBlock = TPN->getParent();
1437   Instruction *New;
1438   auto It = SunkCopies.find(ExitBlock);
1439   if (It != SunkCopies.end())
1440     New = It->second;
1441   else
1442     New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
1443         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1444   return New;
1445 }
1446 
1447 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1448   BasicBlock *BB = PN->getParent();
1449   if (!BB->canSplitPredecessors())
1450     return false;
1451   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1452   // it require updating BlockColors for all offspring blocks accordingly. By
1453   // skipping such corner case, we can make updating BlockColors after splitting
1454   // predecessor fairly simple.
1455   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1456     return false;
1457   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1458     BasicBlock *BBPred = *PI;
1459     if (isa<IndirectBrInst>(BBPred->getTerminator()))
1460       return false;
1461   }
1462   return true;
1463 }
1464 
1465 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1466                                         LoopInfo *LI, const Loop *CurLoop,
1467                                         LoopSafetyInfo *SafetyInfo,
1468                                         MemorySSAUpdater *MSSAU) {
1469 #ifndef NDEBUG
1470   SmallVector<BasicBlock *, 32> ExitBlocks;
1471   CurLoop->getUniqueExitBlocks(ExitBlocks);
1472   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1473                                              ExitBlocks.end());
1474 #endif
1475   BasicBlock *ExitBB = PN->getParent();
1476   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1477 
1478   // Split predecessors of the loop exit to make instructions in the loop are
1479   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1480   // loop in the canonical form where each predecessor of each exit block should
1481   // be contained within the loop. For example, this will convert the loop below
1482   // from
1483   //
1484   // LB1:
1485   //   %v1 =
1486   //   br %LE, %LB2
1487   // LB2:
1488   //   %v2 =
1489   //   br %LE, %LB1
1490   // LE:
1491   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1492   //
1493   // to
1494   //
1495   // LB1:
1496   //   %v1 =
1497   //   br %LE.split, %LB2
1498   // LB2:
1499   //   %v2 =
1500   //   br %LE.split2, %LB1
1501   // LE.split:
1502   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1503   //   br %LE
1504   // LE.split2:
1505   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1506   //   br %LE
1507   // LE:
1508   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1509   //
1510   const auto &BlockColors = SafetyInfo->getBlockColors();
1511   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1512   while (!PredBBs.empty()) {
1513     BasicBlock *PredBB = *PredBBs.begin();
1514     assert(CurLoop->contains(PredBB) &&
1515            "Expect all predecessors are in the loop");
1516     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1517       BasicBlock *NewPred = SplitBlockPredecessors(
1518           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1519       // Since we do not allow splitting EH-block with BlockColors in
1520       // canSplitPredecessors(), we can simply assign predecessor's color to
1521       // the new block.
1522       if (!BlockColors.empty())
1523         // Grab a reference to the ColorVector to be inserted before getting the
1524         // reference to the vector we are copying because inserting the new
1525         // element in BlockColors might cause the map to be reallocated.
1526         SafetyInfo->copyColors(NewPred, PredBB);
1527     }
1528     PredBBs.remove(PredBB);
1529   }
1530 }
1531 
1532 /// When an instruction is found to only be used outside of the loop, this
1533 /// function moves it to the exit blocks and patches up SSA form as needed.
1534 /// This method is guaranteed to remove the original instruction from its
1535 /// position, and may either delete it or move it to outside of the loop.
1536 ///
1537 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1538                  const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
1539                  MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1540   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1541   ORE->emit([&]() {
1542     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1543            << "sinking " << ore::NV("Inst", &I);
1544   });
1545   bool Changed = false;
1546   if (isa<LoadInst>(I))
1547     ++NumMovedLoads;
1548   else if (isa<CallInst>(I))
1549     ++NumMovedCalls;
1550   ++NumSunk;
1551 
1552   // Iterate over users to be ready for actual sinking. Replace users via
1553   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1554   SmallPtrSet<Instruction *, 8> VisitedUsers;
1555   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1556     auto *User = cast<Instruction>(*UI);
1557     Use &U = UI.getUse();
1558     ++UI;
1559 
1560     if (VisitedUsers.count(User) || CurLoop->contains(User))
1561       continue;
1562 
1563     if (!DT->isReachableFromEntry(User->getParent())) {
1564       U = UndefValue::get(I.getType());
1565       Changed = true;
1566       continue;
1567     }
1568 
1569     // The user must be a PHI node.
1570     PHINode *PN = cast<PHINode>(User);
1571 
1572     // Surprisingly, instructions can be used outside of loops without any
1573     // exits.  This can only happen in PHI nodes if the incoming block is
1574     // unreachable.
1575     BasicBlock *BB = PN->getIncomingBlock(U);
1576     if (!DT->isReachableFromEntry(BB)) {
1577       U = UndefValue::get(I.getType());
1578       Changed = true;
1579       continue;
1580     }
1581 
1582     VisitedUsers.insert(PN);
1583     if (isTriviallyReplaceablePHI(*PN, I))
1584       continue;
1585 
1586     if (!canSplitPredecessors(PN, SafetyInfo))
1587       return Changed;
1588 
1589     // Split predecessors of the PHI so that we can make users trivially
1590     // replaceable.
1591     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1592 
1593     // Should rebuild the iterators, as they may be invalidated by
1594     // splitPredecessorsOfLoopExit().
1595     UI = I.user_begin();
1596     UE = I.user_end();
1597   }
1598 
1599   if (VisitedUsers.empty())
1600     return Changed;
1601 
1602 #ifndef NDEBUG
1603   SmallVector<BasicBlock *, 32> ExitBlocks;
1604   CurLoop->getUniqueExitBlocks(ExitBlocks);
1605   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1606                                              ExitBlocks.end());
1607 #endif
1608 
1609   // Clones of this instruction. Don't create more than one per exit block!
1610   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1611 
1612   // If this instruction is only used outside of the loop, then all users are
1613   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1614   // the instruction.
1615   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1616   for (auto *UI : Users) {
1617     auto *User = cast<Instruction>(UI);
1618 
1619     if (CurLoop->contains(User))
1620       continue;
1621 
1622     PHINode *PN = cast<PHINode>(User);
1623     assert(ExitBlockSet.count(PN->getParent()) &&
1624            "The LCSSA PHI is not in an exit block!");
1625     // The PHI must be trivially replaceable.
1626     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1627         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1628     PN->replaceAllUsesWith(New);
1629     eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
1630     Changed = true;
1631   }
1632   return Changed;
1633 }
1634 
1635 /// When an instruction is found to only use loop invariant operands that
1636 /// is safe to hoist, this instruction is called to do the dirty work.
1637 ///
1638 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1639                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1640                   MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
1641   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
1642                     << "\n");
1643   ORE->emit([&]() {
1644     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1645                                                          << ore::NV("Inst", &I);
1646   });
1647 
1648   // Metadata can be dependent on conditions we are hoisting above.
1649   // Conservatively strip all metadata on the instruction unless we were
1650   // guaranteed to execute I if we entered the loop, in which case the metadata
1651   // is valid in the loop preheader.
1652   if (I.hasMetadataOtherThanDebugLoc() &&
1653       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1654       // time in isGuaranteedToExecute if we don't actually have anything to
1655       // drop.  It is a compile time optimization, not required for correctness.
1656       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1657     I.dropUnknownNonDebugMetadata();
1658 
1659   if (isa<PHINode>(I))
1660     // Move the new node to the end of the phi list in the destination block.
1661     moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU);
1662   else
1663     // Move the new node to the destination block, before its terminator.
1664     moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU);
1665 
1666   // Apply line 0 debug locations when we are moving instructions to different
1667   // basic blocks because we want to avoid jumpy line tables.
1668   if (const DebugLoc &DL = I.getDebugLoc())
1669     I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
1670 
1671   if (isa<LoadInst>(I))
1672     ++NumMovedLoads;
1673   else if (isa<CallInst>(I))
1674     ++NumMovedCalls;
1675   ++NumHoisted;
1676 }
1677 
1678 /// Only sink or hoist an instruction if it is not a trapping instruction,
1679 /// or if the instruction is known not to trap when moved to the preheader.
1680 /// or if it is a trapping instruction and is guaranteed to execute.
1681 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1682                                            const DominatorTree *DT,
1683                                            const Loop *CurLoop,
1684                                            const LoopSafetyInfo *SafetyInfo,
1685                                            OptimizationRemarkEmitter *ORE,
1686                                            const Instruction *CtxI) {
1687   if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
1688     return true;
1689 
1690   bool GuaranteedToExecute =
1691       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1692 
1693   if (!GuaranteedToExecute) {
1694     auto *LI = dyn_cast<LoadInst>(&Inst);
1695     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1696       ORE->emit([&]() {
1697         return OptimizationRemarkMissed(
1698                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1699                << "failed to hoist load with loop-invariant address "
1700                   "because load is conditionally executed";
1701       });
1702   }
1703 
1704   return GuaranteedToExecute;
1705 }
1706 
1707 namespace {
1708 class LoopPromoter : public LoadAndStorePromoter {
1709   Value *SomePtr; // Designated pointer to store to.
1710   const SmallSetVector<Value *, 8> &PointerMustAliases;
1711   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1712   SmallVectorImpl<Instruction *> &LoopInsertPts;
1713   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1714   PredIteratorCache &PredCache;
1715   AliasSetTracker &AST;
1716   MemorySSAUpdater *MSSAU;
1717   LoopInfo &LI;
1718   DebugLoc DL;
1719   int Alignment;
1720   bool UnorderedAtomic;
1721   AAMDNodes AATags;
1722   ICFLoopSafetyInfo &SafetyInfo;
1723 
1724   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1725     if (Instruction *I = dyn_cast<Instruction>(V))
1726       if (Loop *L = LI.getLoopFor(I->getParent()))
1727         if (!L->contains(BB)) {
1728           // We need to create an LCSSA PHI node for the incoming value and
1729           // store that.
1730           PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1731                                         I->getName() + ".lcssa", &BB->front());
1732           for (BasicBlock *Pred : PredCache.get(BB))
1733             PN->addIncoming(I, Pred);
1734           return PN;
1735         }
1736     return V;
1737   }
1738 
1739 public:
1740   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1741                const SmallSetVector<Value *, 8> &PMA,
1742                SmallVectorImpl<BasicBlock *> &LEB,
1743                SmallVectorImpl<Instruction *> &LIP,
1744                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1745                AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
1746                DebugLoc dl, int alignment, bool UnorderedAtomic,
1747                const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
1748       : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1749         LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1750         PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1751         Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1752         SafetyInfo(SafetyInfo) {}
1753 
1754   bool isInstInList(Instruction *I,
1755                     const SmallVectorImpl<Instruction *> &) const override {
1756     Value *Ptr;
1757     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1758       Ptr = LI->getOperand(0);
1759     else
1760       Ptr = cast<StoreInst>(I)->getPointerOperand();
1761     return PointerMustAliases.count(Ptr);
1762   }
1763 
1764   void doExtraRewritesBeforeFinalDeletion() override {
1765     // Insert stores after in the loop exit blocks.  Each exit block gets a
1766     // store of the live-out values that feed them.  Since we've already told
1767     // the SSA updater about the defs in the loop and the preheader
1768     // definition, it is all set and we can start using it.
1769     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1770       BasicBlock *ExitBlock = LoopExitBlocks[i];
1771       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1772       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1773       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1774       Instruction *InsertPos = LoopInsertPts[i];
1775       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1776       if (UnorderedAtomic)
1777         NewSI->setOrdering(AtomicOrdering::Unordered);
1778       NewSI->setAlignment(Alignment);
1779       NewSI->setDebugLoc(DL);
1780       if (AATags)
1781         NewSI->setAAMetadata(AATags);
1782 
1783       if (MSSAU) {
1784         MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1785         MemoryAccess *NewMemAcc;
1786         if (!MSSAInsertPoint) {
1787           NewMemAcc = MSSAU->createMemoryAccessInBB(
1788               NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1789         } else {
1790           NewMemAcc =
1791               MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1792         }
1793         MSSAInsertPts[i] = NewMemAcc;
1794         MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1795         // FIXME: true for safety, false may still be correct.
1796       }
1797     }
1798   }
1799 
1800   void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
1801     // Update alias analysis.
1802     AST.copyValue(LI, V);
1803   }
1804   void instructionDeleted(Instruction *I) const override {
1805     SafetyInfo.removeInstruction(I);
1806     AST.deleteValue(I);
1807     if (MSSAU)
1808       MSSAU->removeMemoryAccess(I);
1809   }
1810 };
1811 
1812 
1813 /// Return true iff we can prove that a caller of this function can not inspect
1814 /// the contents of the provided object in a well defined program.
1815 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
1816   if (isa<AllocaInst>(Object))
1817     // Since the alloca goes out of scope, we know the caller can't retain a
1818     // reference to it and be well defined.  Thus, we don't need to check for
1819     // capture.
1820     return true;
1821 
1822   // For all other objects we need to know that the caller can't possibly
1823   // have gotten a reference to the object.  There are two components of
1824   // that:
1825   //   1) Object can't be escaped by this function.  This is what
1826   //      PointerMayBeCaptured checks.
1827   //   2) Object can't have been captured at definition site.  For this, we
1828   //      need to know the return value is noalias.  At the moment, we use a
1829   //      weaker condition and handle only AllocLikeFunctions (which are
1830   //      known to be noalias).  TODO
1831   return isAllocLikeFn(Object, TLI) &&
1832     !PointerMayBeCaptured(Object, true, true);
1833 }
1834 
1835 } // namespace
1836 
1837 /// Try to promote memory values to scalars by sinking stores out of the
1838 /// loop and moving loads to before the loop.  We do this by looping over
1839 /// the stores in the loop, looking for stores to Must pointers which are
1840 /// loop invariant.
1841 ///
1842 bool llvm::promoteLoopAccessesToScalars(
1843     const SmallSetVector<Value *, 8> &PointerMustAliases,
1844     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1845     SmallVectorImpl<Instruction *> &InsertPts,
1846     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1847     LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1848     Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
1849     ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
1850   // Verify inputs.
1851   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1852          CurAST != nullptr && SafetyInfo != nullptr &&
1853          "Unexpected Input to promoteLoopAccessesToScalars");
1854 
1855   Value *SomePtr = *PointerMustAliases.begin();
1856   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1857 
1858   // It is not safe to promote a load/store from the loop if the load/store is
1859   // conditional.  For example, turning:
1860   //
1861   //    for () { if (c) *P += 1; }
1862   //
1863   // into:
1864   //
1865   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
1866   //
1867   // is not safe, because *P may only be valid to access if 'c' is true.
1868   //
1869   // The safety property divides into two parts:
1870   // p1) The memory may not be dereferenceable on entry to the loop.  In this
1871   //    case, we can't insert the required load in the preheader.
1872   // p2) The memory model does not allow us to insert a store along any dynamic
1873   //    path which did not originally have one.
1874   //
1875   // If at least one store is guaranteed to execute, both properties are
1876   // satisfied, and promotion is legal.
1877   //
1878   // This, however, is not a necessary condition. Even if no store/load is
1879   // guaranteed to execute, we can still establish these properties.
1880   // We can establish (p1) by proving that hoisting the load into the preheader
1881   // is safe (i.e. proving dereferenceability on all paths through the loop). We
1882   // can use any access within the alias set to prove dereferenceability,
1883   // since they're all must alias.
1884   //
1885   // There are two ways establish (p2):
1886   // a) Prove the location is thread-local. In this case the memory model
1887   // requirement does not apply, and stores are safe to insert.
1888   // b) Prove a store dominates every exit block. In this case, if an exit
1889   // blocks is reached, the original dynamic path would have taken us through
1890   // the store, so inserting a store into the exit block is safe. Note that this
1891   // is different from the store being guaranteed to execute. For instance,
1892   // if an exception is thrown on the first iteration of the loop, the original
1893   // store is never executed, but the exit blocks are not executed either.
1894 
1895   bool DereferenceableInPH = false;
1896   bool SafeToInsertStore = false;
1897 
1898   SmallVector<Instruction *, 64> LoopUses;
1899 
1900   // We start with an alignment of one and try to find instructions that allow
1901   // us to prove better alignment.
1902   unsigned Alignment = 1;
1903   // Keep track of which types of access we see
1904   bool SawUnorderedAtomic = false;
1905   bool SawNotAtomic = false;
1906   AAMDNodes AATags;
1907 
1908   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
1909 
1910   bool IsKnownThreadLocalObject = false;
1911   if (SafetyInfo->anyBlockMayThrow()) {
1912     // If a loop can throw, we have to insert a store along each unwind edge.
1913     // That said, we can't actually make the unwind edge explicit. Therefore,
1914     // we have to prove that the store is dead along the unwind edge.  We do
1915     // this by proving that the caller can't have a reference to the object
1916     // after return and thus can't possibly load from the object.
1917     Value *Object = GetUnderlyingObject(SomePtr, MDL);
1918     if (!isKnownNonEscaping(Object, TLI))
1919       return false;
1920     // Subtlety: Alloca's aren't visible to callers, but *are* potentially
1921     // visible to other threads if captured and used during their lifetimes.
1922     IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
1923   }
1924 
1925   // Check that all of the pointers in the alias set have the same type.  We
1926   // cannot (yet) promote a memory location that is loaded and stored in
1927   // different sizes.  While we are at it, collect alignment and AA info.
1928   for (Value *ASIV : PointerMustAliases) {
1929     // Check that all of the pointers in the alias set have the same type.  We
1930     // cannot (yet) promote a memory location that is loaded and stored in
1931     // different sizes.
1932     if (SomePtr->getType() != ASIV->getType())
1933       return false;
1934 
1935     for (User *U : ASIV->users()) {
1936       // Ignore instructions that are outside the loop.
1937       Instruction *UI = dyn_cast<Instruction>(U);
1938       if (!UI || !CurLoop->contains(UI))
1939         continue;
1940 
1941       // If there is an non-load/store instruction in the loop, we can't promote
1942       // it.
1943       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
1944         if (!Load->isUnordered())
1945           return false;
1946 
1947         SawUnorderedAtomic |= Load->isAtomic();
1948         SawNotAtomic |= !Load->isAtomic();
1949 
1950         unsigned InstAlignment = Load->getAlignment();
1951         if (!InstAlignment)
1952           InstAlignment =
1953               MDL.getABITypeAlignment(Load->getType());
1954 
1955         // Note that proving a load safe to speculate requires proving
1956         // sufficient alignment at the target location.  Proving it guaranteed
1957         // to execute does as well.  Thus we can increase our guaranteed
1958         // alignment as well.
1959         if (!DereferenceableInPH || (InstAlignment > Alignment))
1960           if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
1961                                              ORE, Preheader->getTerminator())) {
1962             DereferenceableInPH = true;
1963             Alignment = std::max(Alignment, InstAlignment);
1964           }
1965       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
1966         // Stores *of* the pointer are not interesting, only stores *to* the
1967         // pointer.
1968         if (UI->getOperand(1) != ASIV)
1969           continue;
1970         if (!Store->isUnordered())
1971           return false;
1972 
1973         SawUnorderedAtomic |= Store->isAtomic();
1974         SawNotAtomic |= !Store->isAtomic();
1975 
1976         // If the store is guaranteed to execute, both properties are satisfied.
1977         // We may want to check if a store is guaranteed to execute even if we
1978         // already know that promotion is safe, since it may have higher
1979         // alignment than any other guaranteed stores, in which case we can
1980         // raise the alignment on the promoted store.
1981         unsigned InstAlignment = Store->getAlignment();
1982         if (!InstAlignment)
1983           InstAlignment =
1984               MDL.getABITypeAlignment(Store->getValueOperand()->getType());
1985 
1986         if (!DereferenceableInPH || !SafeToInsertStore ||
1987             (InstAlignment > Alignment)) {
1988           if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
1989             DereferenceableInPH = true;
1990             SafeToInsertStore = true;
1991             Alignment = std::max(Alignment, InstAlignment);
1992           }
1993         }
1994 
1995         // If a store dominates all exit blocks, it is safe to sink.
1996         // As explained above, if an exit block was executed, a dominating
1997         // store must have been executed at least once, so we are not
1998         // introducing stores on paths that did not have them.
1999         // Note that this only looks at explicit exit blocks. If we ever
2000         // start sinking stores into unwind edges (see above), this will break.
2001         if (!SafeToInsertStore)
2002           SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2003             return DT->dominates(Store->getParent(), Exit);
2004           });
2005 
2006         // If the store is not guaranteed to execute, we may still get
2007         // deref info through it.
2008         if (!DereferenceableInPH) {
2009           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2010               Store->getPointerOperand(), Store->getAlignment(), MDL,
2011               Preheader->getTerminator(), DT);
2012         }
2013       } else
2014         return false; // Not a load or store.
2015 
2016       // Merge the AA tags.
2017       if (LoopUses.empty()) {
2018         // On the first load/store, just take its AA tags.
2019         UI->getAAMetadata(AATags);
2020       } else if (AATags) {
2021         UI->getAAMetadata(AATags, /* Merge = */ true);
2022       }
2023 
2024       LoopUses.push_back(UI);
2025     }
2026   }
2027 
2028   // If we found both an unordered atomic instruction and a non-atomic memory
2029   // access, bail.  We can't blindly promote non-atomic to atomic since we
2030   // might not be able to lower the result.  We can't downgrade since that
2031   // would violate memory model.  Also, align 0 is an error for atomics.
2032   if (SawUnorderedAtomic && SawNotAtomic)
2033     return false;
2034 
2035   // If we're inserting an atomic load in the preheader, we must be able to
2036   // lower it.  We're only guaranteed to be able to lower naturally aligned
2037   // atomics.
2038   auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
2039   if (SawUnorderedAtomic &&
2040       Alignment < MDL.getTypeStoreSize(SomePtrElemType))
2041     return false;
2042 
2043   // If we couldn't prove we can hoist the load, bail.
2044   if (!DereferenceableInPH)
2045     return false;
2046 
2047   // We know we can hoist the load, but don't have a guaranteed store.
2048   // Check whether the location is thread-local. If it is, then we can insert
2049   // stores along paths which originally didn't have them without violating the
2050   // memory model.
2051   if (!SafeToInsertStore) {
2052     if (IsKnownThreadLocalObject)
2053       SafeToInsertStore = true;
2054     else {
2055       Value *Object = GetUnderlyingObject(SomePtr, MDL);
2056       SafeToInsertStore =
2057           (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2058           !PointerMayBeCaptured(Object, true, true);
2059     }
2060   }
2061 
2062   // If we've still failed to prove we can sink the store, give up.
2063   if (!SafeToInsertStore)
2064     return false;
2065 
2066   // Otherwise, this is safe to promote, lets do it!
2067   LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
2068                     << '\n');
2069   ORE->emit([&]() {
2070     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2071                               LoopUses[0])
2072            << "Moving accesses to memory location out of the loop";
2073   });
2074   ++NumPromoted;
2075 
2076   // Grab a debug location for the inserted loads/stores; given that the
2077   // inserted loads/stores have little relation to the original loads/stores,
2078   // this code just arbitrarily picks a location from one, since any debug
2079   // location is better than none.
2080   DebugLoc DL = LoopUses[0]->getDebugLoc();
2081 
2082   // We use the SSAUpdater interface to insert phi nodes as required.
2083   SmallVector<PHINode *, 16> NewPHIs;
2084   SSAUpdater SSA(&NewPHIs);
2085   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2086                         InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
2087                         Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
2088 
2089   // Set up the preheader to have a definition of the value.  It is the live-out
2090   // value from the preheader that uses in the loop will use.
2091   LoadInst *PreheaderLoad = new LoadInst(
2092       SomePtr->getType()->getPointerElementType(), SomePtr,
2093       SomePtr->getName() + ".promoted", Preheader->getTerminator());
2094   if (SawUnorderedAtomic)
2095     PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2096   PreheaderLoad->setAlignment(Alignment);
2097   PreheaderLoad->setDebugLoc(DL);
2098   if (AATags)
2099     PreheaderLoad->setAAMetadata(AATags);
2100   SSA.AddAvailableValue(Preheader, PreheaderLoad);
2101 
2102   MemoryAccess *PreheaderLoadMemoryAccess;
2103   if (MSSAU) {
2104     PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2105         PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2106     MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2107     MSSAU->insertUse(NewMemUse);
2108   }
2109 
2110   // Rewrite all the loads in the loop and remember all the definitions from
2111   // stores in the loop.
2112   Promoter.run(LoopUses);
2113 
2114   if (MSSAU && VerifyMemorySSA)
2115     MSSAU->getMemorySSA()->verifyMemorySSA();
2116   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2117   if (PreheaderLoad->use_empty())
2118     eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
2119 
2120   return true;
2121 }
2122 
2123 /// Returns an owning pointer to an alias set which incorporates aliasing info
2124 /// from L and all subloops of L.
2125 /// FIXME: In new pass manager, there is no helper function to handle loop
2126 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
2127 /// from scratch for every loop. Hook up with the helper functions when
2128 /// available in the new pass manager to avoid redundant computation.
2129 std::unique_ptr<AliasSetTracker>
2130 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
2131                                                  AliasAnalysis *AA) {
2132   std::unique_ptr<AliasSetTracker> CurAST;
2133   SmallVector<Loop *, 4> RecomputeLoops;
2134   for (Loop *InnerL : L->getSubLoops()) {
2135     auto MapI = LoopToAliasSetMap.find(InnerL);
2136     // If the AST for this inner loop is missing it may have been merged into
2137     // some other loop's AST and then that loop unrolled, and so we need to
2138     // recompute it.
2139     if (MapI == LoopToAliasSetMap.end()) {
2140       RecomputeLoops.push_back(InnerL);
2141       continue;
2142     }
2143     std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
2144 
2145     if (CurAST) {
2146       // What if InnerLoop was modified by other passes ?
2147       // Once we've incorporated the inner loop's AST into ours, we don't need
2148       // the subloop's anymore.
2149       CurAST->add(*InnerAST);
2150     } else {
2151       CurAST = std::move(InnerAST);
2152     }
2153     LoopToAliasSetMap.erase(MapI);
2154   }
2155   if (!CurAST)
2156     CurAST = make_unique<AliasSetTracker>(*AA);
2157 
2158   // Add everything from the sub loops that are no longer directly available.
2159   for (Loop *InnerL : RecomputeLoops)
2160     for (BasicBlock *BB : InnerL->blocks())
2161       CurAST->add(*BB);
2162 
2163   // And merge in this loop (without anything from inner loops).
2164   for (BasicBlock *BB : L->blocks())
2165     if (LI->getLoopFor(BB) == L)
2166       CurAST->add(*BB);
2167 
2168   return CurAST;
2169 }
2170 
2171 std::unique_ptr<AliasSetTracker>
2172 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
2173     Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
2174   auto *MSSA = MSSAU->getMemorySSA();
2175   auto CurAST = make_unique<AliasSetTracker>(*AA, MSSA, L);
2176   CurAST->addAllInstructionsInLoopUsingMSSA();
2177   return CurAST;
2178 }
2179 
2180 /// Simple analysis hook. Clone alias set info.
2181 ///
2182 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
2183                                              Loop *L) {
2184   auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2185   if (ASTIt == LICM.getLoopToAliasSetMap().end())
2186     return;
2187 
2188   ASTIt->second->copyValue(From, To);
2189 }
2190 
2191 /// Simple Analysis hook. Delete value V from alias set
2192 ///
2193 void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
2194   auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
2195   if (ASTIt == LICM.getLoopToAliasSetMap().end())
2196     return;
2197 
2198   ASTIt->second->deleteValue(V);
2199 }
2200 
2201 /// Simple Analysis hook. Delete value L from alias set map.
2202 ///
2203 void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
2204   if (!LICM.getLoopToAliasSetMap().count(L))
2205     return;
2206 
2207   LICM.getLoopToAliasSetMap().erase(L);
2208 }
2209 
2210 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2211                                      AliasSetTracker *CurAST, Loop *CurLoop,
2212                                      AliasAnalysis *AA) {
2213   // First check to see if any of the basic blocks in CurLoop invalidate *V.
2214   bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
2215 
2216   if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
2217     return isInvalidatedAccordingToAST;
2218 
2219   // Check with a diagnostic analysis if we can refine the information above.
2220   // This is to identify the limitations of using the AST.
2221   // The alias set mechanism used by LICM has a major weakness in that it
2222   // combines all things which may alias into a single set *before* asking
2223   // modref questions. As a result, a single readonly call within a loop will
2224   // collapse all loads and stores into a single alias set and report
2225   // invalidation if the loop contains any store. For example, readonly calls
2226   // with deopt states have this form and create a general alias set with all
2227   // loads and stores.  In order to get any LICM in loops containing possible
2228   // deopt states we need a more precise invalidation of checking the mod ref
2229   // info of each instruction within the loop and LI. This has a complexity of
2230   // O(N^2), so currently, it is used only as a diagnostic tool since the
2231   // default value of LICMN2Threshold is zero.
2232 
2233   // Don't look at nested loops.
2234   if (CurLoop->begin() != CurLoop->end())
2235     return true;
2236 
2237   int N = 0;
2238   for (BasicBlock *BB : CurLoop->getBlocks())
2239     for (Instruction &I : *BB) {
2240       if (N >= LICMN2Theshold) {
2241         LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
2242                           << *(MemLoc.Ptr) << "\n");
2243         return true;
2244       }
2245       N++;
2246       auto Res = AA->getModRefInfo(&I, MemLoc);
2247       if (isModSet(Res)) {
2248         LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
2249                           << *(MemLoc.Ptr) << "\n");
2250         return true;
2251       }
2252     }
2253   LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
2254   return false;
2255 }
2256 
2257 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2258                                              Loop *CurLoop,
2259                                              SinkAndHoistLICMFlags &Flags) {
2260   MemoryAccess *Source;
2261   // See declaration of SetLicmMssaOptCap for usage details.
2262   if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
2263     Source = MU->getDefiningAccess();
2264   else {
2265     Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2266     Flags.LicmMssaOptCounter++;
2267   }
2268   return !MSSA->isLiveOnEntryDef(Source) &&
2269          CurLoop->contains(Source->getBlock());
2270 }
2271 
2272 /// Little predicate that returns true if the specified basic block is in
2273 /// a subloop of the current one, not the current one itself.
2274 ///
2275 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2276   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2277   return LI->getLoopFor(BB) != CurLoop;
2278 }
2279