1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion, attempting to remove as much
10 // code from the body of a loop as possible.  It does this by either hoisting
11 // code into the preheader block, or by sinking code to the exit blocks if it is
12 // safe.  This pass also promotes must-aliased memory locations in the loop to
13 // live in registers, thus hoisting and sinking "invariant" loads and stores.
14 //
15 // Hoisting operations out of loops is a canonicalization transform.  It
16 // enables and simplifies subsequent optimizations in the middle-end.
17 // Rematerialization of hoisted instructions to reduce register pressure is the
18 // responsibility of the back-end, which has more accurate information about
19 // register pressure and also handles other optimizations than LICM that
20 // increase live-ranges.
21 //
22 // This pass uses alias analysis for two purposes:
23 //
24 //  1. Moving loop invariant loads and calls out of loops.  If we can determine
25 //     that a load or call inside of a loop never aliases anything stored to,
26 //     we can hoist it or sink it like any other instruction.
27 //  2. Scalar Promotion of Memory - If there is a store instruction inside of
28 //     the loop, we try to move the store to happen AFTER the loop instead of
29 //     inside of the loop.  This can only happen if a few conditions are true:
30 //       A. The pointer stored through is loop invariant
31 //       B. There are no stores or loads in the loop which _may_ alias the
32 //          pointer.  There are no calls in the loop which mod/ref the pointer.
33 //     If these conditions are true, we can promote the loads and stores in the
34 //     loop of the pointer to use a temporary alloca'd variable.  We then use
35 //     the SSAUpdater to construct the appropriate SSA form for the value.
36 //
37 //===----------------------------------------------------------------------===//
38 
39 #include "llvm/Transforms/Scalar/LICM.h"
40 #include "llvm/ADT/SetOperations.h"
41 #include "llvm/ADT/Statistic.h"
42 #include "llvm/Analysis/AliasAnalysis.h"
43 #include "llvm/Analysis/AliasSetTracker.h"
44 #include "llvm/Analysis/BasicAliasAnalysis.h"
45 #include "llvm/Analysis/BlockFrequencyInfo.h"
46 #include "llvm/Analysis/CaptureTracking.h"
47 #include "llvm/Analysis/ConstantFolding.h"
48 #include "llvm/Analysis/GlobalsModRef.h"
49 #include "llvm/Analysis/GuardUtils.h"
50 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
51 #include "llvm/Analysis/Loads.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopIterator.h"
54 #include "llvm/Analysis/LoopPass.h"
55 #include "llvm/Analysis/MemoryBuiltins.h"
56 #include "llvm/Analysis/MemorySSA.h"
57 #include "llvm/Analysis/MemorySSAUpdater.h"
58 #include "llvm/Analysis/MustExecute.h"
59 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
62 #include "llvm/Analysis/TargetLibraryInfo.h"
63 #include "llvm/Analysis/ValueTracking.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/DataLayout.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/Instructions.h"
71 #include "llvm/IR/IntrinsicInst.h"
72 #include "llvm/IR/LLVMContext.h"
73 #include "llvm/IR/Metadata.h"
74 #include "llvm/IR/PatternMatch.h"
75 #include "llvm/IR/PredIteratorCache.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
83 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
84 #include "llvm/Transforms/Utils/Local.h"
85 #include "llvm/Transforms/Utils/LoopUtils.h"
86 #include "llvm/Transforms/Utils/SSAUpdater.h"
87 #include <algorithm>
88 #include <utility>
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "licm"
92 
93 STATISTIC(NumCreatedBlocks, "Number of blocks created");
94 STATISTIC(NumClonedBranches, "Number of branches cloned");
95 STATISTIC(NumSunk, "Number of instructions sunk out of loop");
96 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
97 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
98 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
99 STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
100 
101 /// Memory promotion is enabled by default.
102 static cl::opt<bool>
103     DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
104                      cl::desc("Disable memory promotion in LICM pass"));
105 
106 static cl::opt<bool> ControlFlowHoisting(
107     "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
108     cl::desc("Enable control flow (and PHI) hoisting in LICM"));
109 
110 static cl::opt<uint32_t> MaxNumUsesTraversed(
111     "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
112     cl::desc("Max num uses visited for identifying load "
113              "invariance in loop using invariant start (default = 8)"));
114 
115 // Experimental option to allow imprecision in LICM in pathological cases, in
116 // exchange for faster compile. This is to be removed if MemorySSA starts to
117 // address the same issue. This flag applies only when LICM uses MemorySSA
118 // instead on AliasSetTracker. LICM calls MemorySSAWalker's
119 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect
120 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
121 // which may not be precise, since optimizeUses is capped. The result is
122 // correct, but we may not get as "far up" as possible to get which access is
123 // clobbering the one queried.
124 cl::opt<unsigned> llvm::SetLicmMssaOptCap(
125     "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
126     cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
127              "for faster compile. Caps the MemorySSA clobbering calls."));
128 
129 // Experimentally, memory promotion carries less importance than sinking and
130 // hoisting. Limit when we do promotion when using MemorySSA, in order to save
131 // compile time.
132 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
133     "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
134     cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
135              "effect. When MSSA in LICM is enabled, then this is the maximum "
136              "number of accesses allowed to be present in a loop in order to "
137              "enable memory promotion."));
138 
139 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
140 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
141                                   const LoopSafetyInfo *SafetyInfo,
142                                   TargetTransformInfo *TTI, bool &FreeInLoop,
143                                   bool LoopNestMode);
144 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
145                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
146                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
147                   OptimizationRemarkEmitter *ORE);
148 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
149                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
150                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
151                  OptimizationRemarkEmitter *ORE);
152 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
153                                            const DominatorTree *DT,
154                                            const TargetLibraryInfo *TLI,
155                                            const Loop *CurLoop,
156                                            const LoopSafetyInfo *SafetyInfo,
157                                            OptimizationRemarkEmitter *ORE,
158                                            const Instruction *CtxI = nullptr);
159 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
160                                      AliasSetTracker *CurAST, Loop *CurLoop,
161                                      AAResults *AA);
162 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
163                                              Loop *CurLoop, Instruction &I,
164                                              SinkAndHoistLICMFlags &Flags);
165 static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
166                                               MemoryUse &MU);
167 static Instruction *cloneInstructionInExitBlock(
168     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
169     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
170 
171 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
172                              MemorySSAUpdater *MSSAU);
173 
174 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
175                                   ICFLoopSafetyInfo &SafetyInfo,
176                                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
177 
178 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
179                                 function_ref<void(Instruction *)> Fn);
180 static SmallVector<SmallSetVector<Value *, 8>, 0>
181 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L);
182 
183 namespace {
184 struct LoopInvariantCodeMotion {
185   bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
186                  BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
187                  TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
188                  OptimizationRemarkEmitter *ORE, bool LoopNestMode = false);
189 
190   LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
191                           unsigned LicmMssaNoAccForPromotionCap)
192       : LicmMssaOptCap(LicmMssaOptCap),
193         LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
194 
195 private:
196   unsigned LicmMssaOptCap;
197   unsigned LicmMssaNoAccForPromotionCap;
198 };
199 
200 struct LegacyLICMPass : public LoopPass {
201   static char ID; // Pass identification, replacement for typeid
202   LegacyLICMPass(
203       unsigned LicmMssaOptCap = SetLicmMssaOptCap,
204       unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
205       : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
206     initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
207   }
208 
209   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
210     if (skipLoop(L))
211       return false;
212 
213     LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
214                       << L->getHeader()->getNameOrAsOperand() << "\n");
215 
216     auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
217     MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
218     bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
219     BlockFrequencyInfo *BFI =
220         hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
221                        : nullptr;
222     // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
223     // pass. Function analyses need to be preserved across loop transformations
224     // but ORE cannot be preserved (see comment before the pass definition).
225     OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
226     return LICM.runOnLoop(
227         L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
228         &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
229         &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
230         &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
231             *L->getHeader()->getParent()),
232         &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
233             *L->getHeader()->getParent()),
234         SE ? &SE->getSE() : nullptr, MSSA, &ORE);
235   }
236 
237   /// This transformation requires natural loop information & requires that
238   /// loop preheaders be inserted into the CFG...
239   ///
240   void getAnalysisUsage(AnalysisUsage &AU) const override {
241     AU.addPreserved<DominatorTreeWrapperPass>();
242     AU.addPreserved<LoopInfoWrapperPass>();
243     AU.addRequired<TargetLibraryInfoWrapperPass>();
244     AU.addRequired<MemorySSAWrapperPass>();
245     AU.addPreserved<MemorySSAWrapperPass>();
246     AU.addRequired<TargetTransformInfoWrapperPass>();
247     getLoopAnalysisUsage(AU);
248     LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
249     AU.addPreserved<LazyBlockFrequencyInfoPass>();
250     AU.addPreserved<LazyBranchProbabilityInfoPass>();
251   }
252 
253 private:
254   LoopInvariantCodeMotion LICM;
255 };
256 } // namespace
257 
258 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
259                                 LoopStandardAnalysisResults &AR, LPMUpdater &) {
260   if (!AR.MSSA)
261     report_fatal_error("LICM requires MemorySSA (loop-mssa)");
262 
263   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
264   // pass.  Function analyses need to be preserved across loop transformations
265   // but ORE cannot be preserved (see comment before the pass definition).
266   OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
267 
268   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
269   if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
270                       &AR.SE, AR.MSSA, &ORE))
271     return PreservedAnalyses::all();
272 
273   auto PA = getLoopPassPreservedAnalyses();
274 
275   PA.preserve<DominatorTreeAnalysis>();
276   PA.preserve<LoopAnalysis>();
277   PA.preserve<MemorySSAAnalysis>();
278 
279   return PA;
280 }
281 
282 PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM,
283                                  LoopStandardAnalysisResults &AR,
284                                  LPMUpdater &) {
285   if (!AR.MSSA)
286     report_fatal_error("LNICM requires MemorySSA (loop-mssa)");
287 
288   // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
289   // pass.  Function analyses need to be preserved across loop transformations
290   // but ORE cannot be preserved (see comment before the pass definition).
291   OptimizationRemarkEmitter ORE(LN.getParent());
292 
293   LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
294 
295   Loop &OutermostLoop = LN.getOutermostLoop();
296   bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, AR.BFI,
297                                 &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true);
298 
299   if (!Changed)
300     return PreservedAnalyses::all();
301 
302   auto PA = getLoopPassPreservedAnalyses();
303 
304   PA.preserve<DominatorTreeAnalysis>();
305   PA.preserve<LoopAnalysis>();
306   PA.preserve<MemorySSAAnalysis>();
307 
308   return PA;
309 }
310 
311 char LegacyLICMPass::ID = 0;
312 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
313                       false, false)
314 INITIALIZE_PASS_DEPENDENCY(LoopPass)
315 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
316 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
317 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
318 INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
319 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
320                     false)
321 
322 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
323 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
324                            unsigned LicmMssaNoAccForPromotionCap) {
325   return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
326 }
327 
328 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
329                                                    MemorySSA *MSSA)
330     : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
331                             IsSink, L, MSSA) {}
332 
333 llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
334     unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
335     Loop *L, MemorySSA *MSSA)
336     : LicmMssaOptCap(LicmMssaOptCap),
337       LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
338       IsSink(IsSink) {
339   assert(((L != nullptr) == (MSSA != nullptr)) &&
340          "Unexpected values for SinkAndHoistLICMFlags");
341   if (!MSSA)
342     return;
343 
344   unsigned AccessCapCount = 0;
345   for (auto *BB : L->getBlocks())
346     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
347       for (const auto &MA : *Accesses) {
348         (void)MA;
349         ++AccessCapCount;
350         if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
351           NoOfMemAccTooLarge = true;
352           return;
353         }
354       }
355 }
356 
357 /// Hoist expressions out of the specified loop. Note, alias info for inner
358 /// loop is not preserved so it is not a good idea to run LICM multiple
359 /// times on one loop.
360 bool LoopInvariantCodeMotion::runOnLoop(
361     Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
362     BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
363     ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE,
364     bool LoopNestMode) {
365   bool Changed = false;
366 
367   assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
368 
369   // If this loop has metadata indicating that LICM is not to be performed then
370   // just exit.
371   if (hasDisableLICMTransformsHint(L)) {
372     return false;
373   }
374 
375   // Don't sink stores from loops with coroutine suspend instructions.
376   // LICM would sink instructions into the default destination of
377   // the coroutine switch. The default destination of the switch is to
378   // handle the case where the coroutine is suspended, by which point the
379   // coroutine frame may have been destroyed. No instruction can be sunk there.
380   // FIXME: This would unfortunately hurt the performance of coroutines, however
381   // there is currently no general solution for this. Similar issues could also
382   // potentially happen in other passes where instructions are being moved
383   // across that edge.
384   bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) {
385     return llvm::any_of(*BB, [](Instruction &I) {
386       IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
387       return II && II->getIntrinsicID() == Intrinsic::coro_suspend;
388     });
389   });
390 
391   MemorySSAUpdater MSSAU(MSSA);
392   SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
393                               /*IsSink=*/true, L, MSSA);
394 
395   // Get the preheader block to move instructions into...
396   BasicBlock *Preheader = L->getLoopPreheader();
397 
398   // Compute loop safety information.
399   ICFLoopSafetyInfo SafetyInfo;
400   SafetyInfo.computeLoopSafetyInfo(L);
401 
402   // We want to visit all of the instructions in this loop... that are not parts
403   // of our subloops (they have already had their invariants hoisted out of
404   // their loop, into this loop, so there is no need to process the BODIES of
405   // the subloops).
406   //
407   // Traverse the body of the loop in depth first order on the dominator tree so
408   // that we are guaranteed to see definitions before we see uses.  This allows
409   // us to sink instructions in one pass, without iteration.  After sinking
410   // instructions, we perform another pass to hoist them out of the loop.
411   if (L->hasDedicatedExits())
412     Changed |= LoopNestMode
413                    ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI,
414                                            DT, BFI, TLI, TTI, L, &MSSAU,
415                                            &SafetyInfo, Flags, ORE)
416                    : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI,
417                                 TLI, TTI, L, &MSSAU, &SafetyInfo, Flags, ORE);
418   Flags.setIsSink(false);
419   if (Preheader)
420     Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
421                            &MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode);
422 
423   // Now that all loop invariants have been removed from the loop, promote any
424   // memory references to scalars that we can.
425   // Don't sink stores from loops without dedicated block exits. Exits
426   // containing indirect branches are not transformed by loop simplify,
427   // make sure we catch that. An additional load may be generated in the
428   // preheader for SSA updater, so also avoid sinking when no preheader
429   // is available.
430   if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
431       !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) {
432     // Figure out the loop exits and their insertion points
433     SmallVector<BasicBlock *, 8> ExitBlocks;
434     L->getUniqueExitBlocks(ExitBlocks);
435 
436     // We can't insert into a catchswitch.
437     bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
438       return isa<CatchSwitchInst>(Exit->getTerminator());
439     });
440 
441     if (!HasCatchSwitch) {
442       SmallVector<Instruction *, 8> InsertPts;
443       SmallVector<MemoryAccess *, 8> MSSAInsertPts;
444       InsertPts.reserve(ExitBlocks.size());
445       MSSAInsertPts.reserve(ExitBlocks.size());
446       for (BasicBlock *ExitBlock : ExitBlocks) {
447         InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
448         MSSAInsertPts.push_back(nullptr);
449       }
450 
451       PredIteratorCache PIC;
452 
453       // Promoting one set of accesses may make the pointers for another set
454       // loop invariant, so run this in a loop (with the MaybePromotable set
455       // decreasing in size over time).
456       bool Promoted = false;
457       bool LocalPromoted;
458       do {
459         LocalPromoted = false;
460         for (const SmallSetVector<Value *, 8> &PointerMustAliases :
461              collectPromotionCandidates(MSSA, AA, L)) {
462           LocalPromoted |= promoteLoopAccessesToScalars(
463               PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC,
464               LI, DT, TLI, L, &MSSAU, &SafetyInfo, ORE);
465         }
466         Promoted |= LocalPromoted;
467       } while (LocalPromoted);
468 
469       // Once we have promoted values across the loop body we have to
470       // recursively reform LCSSA as any nested loop may now have values defined
471       // within the loop used in the outer loop.
472       // FIXME: This is really heavy handed. It would be a bit better to use an
473       // SSAUpdater strategy during promotion that was LCSSA aware and reformed
474       // it as it went.
475       if (Promoted)
476         formLCSSARecursively(*L, *DT, LI, SE);
477 
478       Changed |= Promoted;
479     }
480   }
481 
482   // Check that neither this loop nor its parent have had LCSSA broken. LICM is
483   // specifically moving instructions across the loop boundary and so it is
484   // especially in need of basic functional correctness checking here.
485   assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
486   assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
487          "Parent loop not left in LCSSA form after LICM!");
488 
489   if (VerifyMemorySSA)
490     MSSA->verifyMemorySSA();
491 
492   if (Changed && SE)
493     SE->forgetLoopDispositions(L);
494   return Changed;
495 }
496 
497 /// Walk the specified region of the CFG (defined by all blocks dominated by
498 /// the specified block, and that are in the current loop) in reverse depth
499 /// first order w.r.t the DominatorTree.  This allows us to visit uses before
500 /// definitions, allowing us to sink a loop body in one pass without iteration.
501 ///
502 bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
503                       DominatorTree *DT, BlockFrequencyInfo *BFI,
504                       TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
505                       Loop *CurLoop, MemorySSAUpdater *MSSAU,
506                       ICFLoopSafetyInfo *SafetyInfo,
507                       SinkAndHoistLICMFlags &Flags,
508                       OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) {
509 
510   // Verify inputs.
511   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
512          CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
513          "Unexpected input to sinkRegion.");
514 
515   // We want to visit children before parents. We will enque all the parents
516   // before their children in the worklist and process the worklist in reverse
517   // order.
518   SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
519 
520   bool Changed = false;
521   for (DomTreeNode *DTN : reverse(Worklist)) {
522     BasicBlock *BB = DTN->getBlock();
523     // Only need to process the contents of this block if it is not part of a
524     // subloop (which would already have been processed).
525     if (inSubLoop(BB, CurLoop, LI))
526       continue;
527 
528     for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
529       Instruction &I = *--II;
530 
531       // The instruction is not used in the loop if it is dead.  In this case,
532       // we just delete it instead of sinking it.
533       if (isInstructionTriviallyDead(&I, TLI)) {
534         LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
535         salvageKnowledge(&I);
536         salvageDebugInfo(I);
537         ++II;
538         eraseInstruction(I, *SafetyInfo, MSSAU);
539         Changed = true;
540         continue;
541       }
542 
543       // Check to see if we can sink this instruction to the exit blocks
544       // of the loop.  We can do this if the all users of the instruction are
545       // outside of the loop.  In this case, it doesn't even matter if the
546       // operands of the instruction are loop invariant.
547       //
548       bool FreeInLoop = false;
549       bool LoopNestMode = OutermostLoop != nullptr;
550       if (!I.mayHaveSideEffects() &&
551           isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop,
552                                 SafetyInfo, TTI, FreeInLoop, LoopNestMode) &&
553           canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/nullptr, MSSAU, true,
554                              &Flags, ORE)) {
555         if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
556           if (!FreeInLoop) {
557             ++II;
558             salvageDebugInfo(I);
559             eraseInstruction(I, *SafetyInfo, MSSAU);
560           }
561           Changed = true;
562         }
563       }
564     }
565   }
566   if (VerifyMemorySSA)
567     MSSAU->getMemorySSA()->verifyMemorySSA();
568   return Changed;
569 }
570 
571 bool llvm::sinkRegionForLoopNest(
572     DomTreeNode *N, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
573     BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
574     Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
575     SinkAndHoistLICMFlags &Flags, OptimizationRemarkEmitter *ORE) {
576 
577   bool Changed = false;
578   SmallPriorityWorklist<Loop *, 4> Worklist;
579   Worklist.insert(CurLoop);
580   appendLoopsToWorklist(*CurLoop, Worklist);
581   while (!Worklist.empty()) {
582     Loop *L = Worklist.pop_back_val();
583     Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI,
584                           TTI, L, MSSAU, SafetyInfo, Flags, ORE, CurLoop);
585   }
586   return Changed;
587 }
588 
589 namespace {
590 // This is a helper class for hoistRegion to make it able to hoist control flow
591 // in order to be able to hoist phis. The way this works is that we initially
592 // start hoisting to the loop preheader, and when we see a loop invariant branch
593 // we make note of this. When we then come to hoist an instruction that's
594 // conditional on such a branch we duplicate the branch and the relevant control
595 // flow, then hoist the instruction into the block corresponding to its original
596 // block in the duplicated control flow.
597 class ControlFlowHoister {
598 private:
599   // Information about the loop we are hoisting from
600   LoopInfo *LI;
601   DominatorTree *DT;
602   Loop *CurLoop;
603   MemorySSAUpdater *MSSAU;
604 
605   // A map of blocks in the loop to the block their instructions will be hoisted
606   // to.
607   DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
608 
609   // The branches that we can hoist, mapped to the block that marks a
610   // convergence point of their control flow.
611   DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
612 
613 public:
614   ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
615                      MemorySSAUpdater *MSSAU)
616       : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
617 
618   void registerPossiblyHoistableBranch(BranchInst *BI) {
619     // We can only hoist conditional branches with loop invariant operands.
620     if (!ControlFlowHoisting || !BI->isConditional() ||
621         !CurLoop->hasLoopInvariantOperands(BI))
622       return;
623 
624     // The branch destinations need to be in the loop, and we don't gain
625     // anything by duplicating conditional branches with duplicate successors,
626     // as it's essentially the same as an unconditional branch.
627     BasicBlock *TrueDest = BI->getSuccessor(0);
628     BasicBlock *FalseDest = BI->getSuccessor(1);
629     if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
630         TrueDest == FalseDest)
631       return;
632 
633     // We can hoist BI if one branch destination is the successor of the other,
634     // or both have common successor which we check by seeing if the
635     // intersection of their successors is non-empty.
636     // TODO: This could be expanded to allowing branches where both ends
637     // eventually converge to a single block.
638     SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
639     TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
640     FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
641     BasicBlock *CommonSucc = nullptr;
642     if (TrueDestSucc.count(FalseDest)) {
643       CommonSucc = FalseDest;
644     } else if (FalseDestSucc.count(TrueDest)) {
645       CommonSucc = TrueDest;
646     } else {
647       set_intersect(TrueDestSucc, FalseDestSucc);
648       // If there's one common successor use that.
649       if (TrueDestSucc.size() == 1)
650         CommonSucc = *TrueDestSucc.begin();
651       // If there's more than one pick whichever appears first in the block list
652       // (we can't use the value returned by TrueDestSucc.begin() as it's
653       // unpredicatable which element gets returned).
654       else if (!TrueDestSucc.empty()) {
655         Function *F = TrueDest->getParent();
656         auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
657         auto It = llvm::find_if(*F, IsSucc);
658         assert(It != F->end() && "Could not find successor in function");
659         CommonSucc = &*It;
660       }
661     }
662     // The common successor has to be dominated by the branch, as otherwise
663     // there will be some other path to the successor that will not be
664     // controlled by this branch so any phi we hoist would be controlled by the
665     // wrong condition. This also takes care of avoiding hoisting of loop back
666     // edges.
667     // TODO: In some cases this could be relaxed if the successor is dominated
668     // by another block that's been hoisted and we can guarantee that the
669     // control flow has been replicated exactly.
670     if (CommonSucc && DT->dominates(BI, CommonSucc))
671       HoistableBranches[BI] = CommonSucc;
672   }
673 
674   bool canHoistPHI(PHINode *PN) {
675     // The phi must have loop invariant operands.
676     if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
677       return false;
678     // We can hoist phis if the block they are in is the target of hoistable
679     // branches which cover all of the predecessors of the block.
680     SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
681     BasicBlock *BB = PN->getParent();
682     for (BasicBlock *PredBB : predecessors(BB))
683       PredecessorBlocks.insert(PredBB);
684     // If we have less predecessor blocks than predecessors then the phi will
685     // have more than one incoming value for the same block which we can't
686     // handle.
687     // TODO: This could be handled be erasing some of the duplicate incoming
688     // values.
689     if (PredecessorBlocks.size() != pred_size(BB))
690       return false;
691     for (auto &Pair : HoistableBranches) {
692       if (Pair.second == BB) {
693         // Which blocks are predecessors via this branch depends on if the
694         // branch is triangle-like or diamond-like.
695         if (Pair.first->getSuccessor(0) == BB) {
696           PredecessorBlocks.erase(Pair.first->getParent());
697           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
698         } else if (Pair.first->getSuccessor(1) == BB) {
699           PredecessorBlocks.erase(Pair.first->getParent());
700           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
701         } else {
702           PredecessorBlocks.erase(Pair.first->getSuccessor(0));
703           PredecessorBlocks.erase(Pair.first->getSuccessor(1));
704         }
705       }
706     }
707     // PredecessorBlocks will now be empty if for every predecessor of BB we
708     // found a hoistable branch source.
709     return PredecessorBlocks.empty();
710   }
711 
712   BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
713     if (!ControlFlowHoisting)
714       return CurLoop->getLoopPreheader();
715     // If BB has already been hoisted, return that
716     if (HoistDestinationMap.count(BB))
717       return HoistDestinationMap[BB];
718 
719     // Check if this block is conditional based on a pending branch
720     auto HasBBAsSuccessor =
721         [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
722           return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
723                                        Pair.first->getSuccessor(1) == BB);
724         };
725     auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
726 
727     // If not involved in a pending branch, hoist to preheader
728     BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
729     if (It == HoistableBranches.end()) {
730       LLVM_DEBUG(dbgs() << "LICM using "
731                         << InitialPreheader->getNameOrAsOperand()
732                         << " as hoist destination for "
733                         << BB->getNameOrAsOperand() << "\n");
734       HoistDestinationMap[BB] = InitialPreheader;
735       return InitialPreheader;
736     }
737     BranchInst *BI = It->first;
738     assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
739                HoistableBranches.end() &&
740            "BB is expected to be the target of at most one branch");
741 
742     LLVMContext &C = BB->getContext();
743     BasicBlock *TrueDest = BI->getSuccessor(0);
744     BasicBlock *FalseDest = BI->getSuccessor(1);
745     BasicBlock *CommonSucc = HoistableBranches[BI];
746     BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
747 
748     // Create hoisted versions of blocks that currently don't have them
749     auto CreateHoistedBlock = [&](BasicBlock *Orig) {
750       if (HoistDestinationMap.count(Orig))
751         return HoistDestinationMap[Orig];
752       BasicBlock *New =
753           BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
754       HoistDestinationMap[Orig] = New;
755       DT->addNewBlock(New, HoistTarget);
756       if (CurLoop->getParentLoop())
757         CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
758       ++NumCreatedBlocks;
759       LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
760                         << " as hoist destination for " << Orig->getName()
761                         << "\n");
762       return New;
763     };
764     BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
765     BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
766     BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
767 
768     // Link up these blocks with branches.
769     if (!HoistCommonSucc->getTerminator()) {
770       // The new common successor we've generated will branch to whatever that
771       // hoist target branched to.
772       BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
773       assert(TargetSucc && "Expected hoist target to have a single successor");
774       HoistCommonSucc->moveBefore(TargetSucc);
775       BranchInst::Create(TargetSucc, HoistCommonSucc);
776     }
777     if (!HoistTrueDest->getTerminator()) {
778       HoistTrueDest->moveBefore(HoistCommonSucc);
779       BranchInst::Create(HoistCommonSucc, HoistTrueDest);
780     }
781     if (!HoistFalseDest->getTerminator()) {
782       HoistFalseDest->moveBefore(HoistCommonSucc);
783       BranchInst::Create(HoistCommonSucc, HoistFalseDest);
784     }
785 
786     // If BI is being cloned to what was originally the preheader then
787     // HoistCommonSucc will now be the new preheader.
788     if (HoistTarget == InitialPreheader) {
789       // Phis in the loop header now need to use the new preheader.
790       InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
791       MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
792           HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
793       // The new preheader dominates the loop header.
794       DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
795       DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
796       DT->changeImmediateDominator(HeaderNode, PreheaderNode);
797       // The preheader hoist destination is now the new preheader, with the
798       // exception of the hoist destination of this branch.
799       for (auto &Pair : HoistDestinationMap)
800         if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
801           Pair.second = HoistCommonSucc;
802     }
803 
804     // Now finally clone BI.
805     ReplaceInstWithInst(
806         HoistTarget->getTerminator(),
807         BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
808     ++NumClonedBranches;
809 
810     assert(CurLoop->getLoopPreheader() &&
811            "Hoisting blocks should not have destroyed preheader");
812     return HoistDestinationMap[BB];
813   }
814 };
815 } // namespace
816 
817 /// Walk the specified region of the CFG (defined by all blocks dominated by
818 /// the specified block, and that are in the current loop) in depth first
819 /// order w.r.t the DominatorTree.  This allows us to visit definitions before
820 /// uses, allowing us to hoist a loop body in one pass without iteration.
821 ///
822 bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
823                        DominatorTree *DT, BlockFrequencyInfo *BFI,
824                        TargetLibraryInfo *TLI, Loop *CurLoop,
825                        MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
826                        ICFLoopSafetyInfo *SafetyInfo,
827                        SinkAndHoistLICMFlags &Flags,
828                        OptimizationRemarkEmitter *ORE, bool LoopNestMode) {
829   // Verify inputs.
830   assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
831          CurLoop != nullptr && MSSAU != nullptr && SafetyInfo != nullptr &&
832          "Unexpected input to hoistRegion.");
833 
834   ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
835 
836   // Keep track of instructions that have been hoisted, as they may need to be
837   // re-hoisted if they end up not dominating all of their uses.
838   SmallVector<Instruction *, 16> HoistedInstructions;
839 
840   // For PHI hoisting to work we need to hoist blocks before their successors.
841   // We can do this by iterating through the blocks in the loop in reverse
842   // post-order.
843   LoopBlocksRPO Worklist(CurLoop);
844   Worklist.perform(LI);
845   bool Changed = false;
846   for (BasicBlock *BB : Worklist) {
847     // Only need to process the contents of this block if it is not part of a
848     // subloop (which would already have been processed).
849     if (!LoopNestMode && inSubLoop(BB, CurLoop, LI))
850       continue;
851 
852     for (Instruction &I : llvm::make_early_inc_range(*BB)) {
853       // Try constant folding this instruction.  If all the operands are
854       // constants, it is technically hoistable, but it would be better to
855       // just fold it.
856       if (Constant *C = ConstantFoldInstruction(
857               &I, I.getModule()->getDataLayout(), TLI)) {
858         LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
859                           << '\n');
860         // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
861         I.replaceAllUsesWith(C);
862         if (isInstructionTriviallyDead(&I, TLI))
863           eraseInstruction(I, *SafetyInfo, MSSAU);
864         Changed = true;
865         continue;
866       }
867 
868       // Try hoisting the instruction out to the preheader.  We can only do
869       // this if all of the operands of the instruction are loop invariant and
870       // if it is safe to hoist the instruction. We also check block frequency
871       // to make sure instruction only gets hoisted into colder blocks.
872       // TODO: It may be safe to hoist if we are hoisting to a conditional block
873       // and we have accurately duplicated the control flow from the loop header
874       // to that block.
875       if (CurLoop->hasLoopInvariantOperands(&I) &&
876           canSinkOrHoistInst(I, AA, DT, CurLoop, /*CurAST*/ nullptr, MSSAU,
877                              true, &Flags, ORE) &&
878           isSafeToExecuteUnconditionally(
879               I, DT, TLI, CurLoop, SafetyInfo, ORE,
880               CurLoop->getLoopPreheader()->getTerminator())) {
881         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
882               MSSAU, SE, ORE);
883         HoistedInstructions.push_back(&I);
884         Changed = true;
885         continue;
886       }
887 
888       // Attempt to remove floating point division out of the loop by
889       // converting it to a reciprocal multiplication.
890       if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
891           CurLoop->isLoopInvariant(I.getOperand(1))) {
892         auto Divisor = I.getOperand(1);
893         auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
894         auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
895         ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
896         SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
897         ReciprocalDivisor->insertBefore(&I);
898 
899         auto Product =
900             BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
901         Product->setFastMathFlags(I.getFastMathFlags());
902         SafetyInfo->insertInstructionTo(Product, I.getParent());
903         Product->insertAfter(&I);
904         I.replaceAllUsesWith(Product);
905         eraseInstruction(I, *SafetyInfo, MSSAU);
906 
907         hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
908               SafetyInfo, MSSAU, SE, ORE);
909         HoistedInstructions.push_back(ReciprocalDivisor);
910         Changed = true;
911         continue;
912       }
913 
914       auto IsInvariantStart = [&](Instruction &I) {
915         using namespace PatternMatch;
916         return I.use_empty() &&
917                match(&I, m_Intrinsic<Intrinsic::invariant_start>());
918       };
919       auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
920         return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
921                SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
922       };
923       if ((IsInvariantStart(I) || isGuard(&I)) &&
924           CurLoop->hasLoopInvariantOperands(&I) &&
925           MustExecuteWithoutWritesBefore(I)) {
926         hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
927               MSSAU, SE, ORE);
928         HoistedInstructions.push_back(&I);
929         Changed = true;
930         continue;
931       }
932 
933       if (PHINode *PN = dyn_cast<PHINode>(&I)) {
934         if (CFH.canHoistPHI(PN)) {
935           // Redirect incoming blocks first to ensure that we create hoisted
936           // versions of those blocks before we hoist the phi.
937           for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
938             PN->setIncomingBlock(
939                 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
940           hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
941                 MSSAU, SE, ORE);
942           assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
943           Changed = true;
944           continue;
945         }
946       }
947 
948       // Remember possibly hoistable branches so we can actually hoist them
949       // later if needed.
950       if (BranchInst *BI = dyn_cast<BranchInst>(&I))
951         CFH.registerPossiblyHoistableBranch(BI);
952     }
953   }
954 
955   // If we hoisted instructions to a conditional block they may not dominate
956   // their uses that weren't hoisted (such as phis where some operands are not
957   // loop invariant). If so make them unconditional by moving them to their
958   // immediate dominator. We iterate through the instructions in reverse order
959   // which ensures that when we rehoist an instruction we rehoist its operands,
960   // and also keep track of where in the block we are rehoisting to to make sure
961   // that we rehoist instructions before the instructions that use them.
962   Instruction *HoistPoint = nullptr;
963   if (ControlFlowHoisting) {
964     for (Instruction *I : reverse(HoistedInstructions)) {
965       if (!llvm::all_of(I->uses(),
966                         [&](Use &U) { return DT->dominates(I, U); })) {
967         BasicBlock *Dominator =
968             DT->getNode(I->getParent())->getIDom()->getBlock();
969         if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
970           if (HoistPoint)
971             assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
972                    "New hoist point expected to dominate old hoist point");
973           HoistPoint = Dominator->getTerminator();
974         }
975         LLVM_DEBUG(dbgs() << "LICM rehoisting to "
976                           << HoistPoint->getParent()->getNameOrAsOperand()
977                           << ": " << *I << "\n");
978         moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
979         HoistPoint = I;
980         Changed = true;
981       }
982     }
983   }
984   if (VerifyMemorySSA)
985     MSSAU->getMemorySSA()->verifyMemorySSA();
986 
987     // Now that we've finished hoisting make sure that LI and DT are still
988     // valid.
989 #ifdef EXPENSIVE_CHECKS
990   if (Changed) {
991     assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
992            "Dominator tree verification failed");
993     LI->verify(*DT);
994   }
995 #endif
996 
997   return Changed;
998 }
999 
1000 // Return true if LI is invariant within scope of the loop. LI is invariant if
1001 // CurLoop is dominated by an invariant.start representing the same memory
1002 // location and size as the memory location LI loads from, and also the
1003 // invariant.start has no uses.
1004 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
1005                                   Loop *CurLoop) {
1006   Value *Addr = LI->getOperand(0);
1007   const DataLayout &DL = LI->getModule()->getDataLayout();
1008   const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
1009 
1010   // It is not currently possible for clang to generate an invariant.start
1011   // intrinsic with scalable vector types because we don't support thread local
1012   // sizeless types and we don't permit sizeless types in structs or classes.
1013   // Furthermore, even if support is added for this in future the intrinsic
1014   // itself is defined to have a size of -1 for variable sized objects. This
1015   // makes it impossible to verify if the intrinsic envelops our region of
1016   // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
1017   // types would have a -1 parameter, but the former is clearly double the size
1018   // of the latter.
1019   if (LocSizeInBits.isScalable())
1020     return false;
1021 
1022   // if the type is i8 addrspace(x)*, we know this is the type of
1023   // llvm.invariant.start operand
1024   auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
1025                                      LI->getPointerAddressSpace());
1026   unsigned BitcastsVisited = 0;
1027   // Look through bitcasts until we reach the i8* type (this is invariant.start
1028   // operand type).
1029   while (Addr->getType() != PtrInt8Ty) {
1030     auto *BC = dyn_cast<BitCastInst>(Addr);
1031     // Avoid traversing high number of bitcast uses.
1032     if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
1033       return false;
1034     Addr = BC->getOperand(0);
1035   }
1036   // If we've ended up at a global/constant, bail. We shouldn't be looking at
1037   // uselists for non-local Values in a loop pass.
1038   if (isa<Constant>(Addr))
1039     return false;
1040 
1041   unsigned UsesVisited = 0;
1042   // Traverse all uses of the load operand value, to see if invariant.start is
1043   // one of the uses, and whether it dominates the load instruction.
1044   for (auto *U : Addr->users()) {
1045     // Avoid traversing for Load operand with high number of users.
1046     if (++UsesVisited > MaxNumUsesTraversed)
1047       return false;
1048     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
1049     // If there are escaping uses of invariant.start instruction, the load maybe
1050     // non-invariant.
1051     if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
1052         !II->use_empty())
1053       continue;
1054     ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
1055     // The intrinsic supports having a -1 argument for variable sized objects
1056     // so we should check for that here.
1057     if (InvariantSize->isNegative())
1058       continue;
1059     uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
1060     // Confirm the invariant.start location size contains the load operand size
1061     // in bits. Also, the invariant.start should dominate the load, and we
1062     // should not hoist the load out of a loop that contains this dominating
1063     // invariant.start.
1064     if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
1065         DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
1066       return true;
1067   }
1068 
1069   return false;
1070 }
1071 
1072 namespace {
1073 /// Return true if-and-only-if we know how to (mechanically) both hoist and
1074 /// sink a given instruction out of a loop.  Does not address legality
1075 /// concerns such as aliasing or speculation safety.
1076 bool isHoistableAndSinkableInst(Instruction &I) {
1077   // Only these instructions are hoistable/sinkable.
1078   return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
1079           isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
1080           isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
1081           isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
1082           isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
1083           isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
1084           isa<InsertValueInst>(I) || isa<FreezeInst>(I));
1085 }
1086 /// Return true if all of the alias sets within this AST are known not to
1087 /// contain a Mod, or if MSSA knows there are no MemoryDefs in the loop.
1088 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
1089                 const Loop *L) {
1090   if (CurAST) {
1091     for (AliasSet &AS : *CurAST) {
1092       if (!AS.isForwardingAliasSet() && AS.isMod()) {
1093         return false;
1094       }
1095     }
1096     return true;
1097   } else { /*MSSAU*/
1098     for (auto *BB : L->getBlocks())
1099       if (MSSAU->getMemorySSA()->getBlockDefs(BB))
1100         return false;
1101     return true;
1102   }
1103 }
1104 
1105 /// Return true if I is the only Instruction with a MemoryAccess in L.
1106 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
1107                         const MemorySSAUpdater *MSSAU) {
1108   for (auto *BB : L->getBlocks())
1109     if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
1110       int NotAPhi = 0;
1111       for (const auto &Acc : *Accs) {
1112         if (isa<MemoryPhi>(&Acc))
1113           continue;
1114         const auto *MUD = cast<MemoryUseOrDef>(&Acc);
1115         if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
1116           return false;
1117       }
1118     }
1119   return true;
1120 }
1121 }
1122 
1123 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
1124                               Loop *CurLoop, AliasSetTracker *CurAST,
1125                               MemorySSAUpdater *MSSAU,
1126                               bool TargetExecutesOncePerLoop,
1127                               SinkAndHoistLICMFlags *Flags,
1128                               OptimizationRemarkEmitter *ORE) {
1129   assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
1130          "Either AliasSetTracker or MemorySSA should be initialized.");
1131 
1132   // If we don't understand the instruction, bail early.
1133   if (!isHoistableAndSinkableInst(I))
1134     return false;
1135 
1136   MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
1137   if (MSSA)
1138     assert(Flags != nullptr && "Flags cannot be null.");
1139 
1140   // Loads have extra constraints we have to verify before we can hoist them.
1141   if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
1142     if (!LI->isUnordered())
1143       return false; // Don't sink/hoist volatile or ordered atomic loads!
1144 
1145     // Loads from constant memory are always safe to move, even if they end up
1146     // in the same alias set as something that ends up being modified.
1147     if (AA->pointsToConstantMemory(LI->getOperand(0)))
1148       return true;
1149     if (LI->hasMetadata(LLVMContext::MD_invariant_load))
1150       return true;
1151 
1152     if (LI->isAtomic() && !TargetExecutesOncePerLoop)
1153       return false; // Don't risk duplicating unordered loads
1154 
1155     // This checks for an invariant.start dominating the load.
1156     if (isLoadInvariantInLoop(LI, DT, CurLoop))
1157       return true;
1158 
1159     bool Invalidated;
1160     if (CurAST)
1161       Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
1162                                              CurLoop, AA);
1163     else
1164       Invalidated = pointerInvalidatedByLoopWithMSSA(
1165           MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
1166     // Check loop-invariant address because this may also be a sinkable load
1167     // whose address is not necessarily loop-invariant.
1168     if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1169       ORE->emit([&]() {
1170         return OptimizationRemarkMissed(
1171                    DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
1172                << "failed to move load with loop-invariant address "
1173                   "because the loop may invalidate its value";
1174       });
1175 
1176     return !Invalidated;
1177   } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
1178     // Don't sink or hoist dbg info; it's legal, but not useful.
1179     if (isa<DbgInfoIntrinsic>(I))
1180       return false;
1181 
1182     // Don't sink calls which can throw.
1183     if (CI->mayThrow())
1184       return false;
1185 
1186     // Convergent attribute has been used on operations that involve
1187     // inter-thread communication which results are implicitly affected by the
1188     // enclosing control flows. It is not safe to hoist or sink such operations
1189     // across control flow.
1190     if (CI->isConvergent())
1191       return false;
1192 
1193     using namespace PatternMatch;
1194     if (match(CI, m_Intrinsic<Intrinsic::assume>()))
1195       // Assumes don't actually alias anything or throw
1196       return true;
1197 
1198     if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
1199       // Widenable conditions don't actually alias anything or throw
1200       return true;
1201 
1202     // Handle simple cases by querying alias analysis.
1203     FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
1204     if (Behavior == FMRB_DoesNotAccessMemory)
1205       return true;
1206     if (AAResults::onlyReadsMemory(Behavior)) {
1207       // A readonly argmemonly function only reads from memory pointed to by
1208       // it's arguments with arbitrary offsets.  If we can prove there are no
1209       // writes to this memory in the loop, we can hoist or sink.
1210       if (AAResults::onlyAccessesArgPointees(Behavior)) {
1211         // TODO: expand to writeable arguments
1212         for (Value *Op : CI->args())
1213           if (Op->getType()->isPointerTy()) {
1214             bool Invalidated;
1215             if (CurAST)
1216               Invalidated = pointerInvalidatedByLoop(
1217                   MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
1218             else
1219               Invalidated = pointerInvalidatedByLoopWithMSSA(
1220                   MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
1221                   *Flags);
1222             if (Invalidated)
1223               return false;
1224           }
1225         return true;
1226       }
1227 
1228       // If this call only reads from memory and there are no writes to memory
1229       // in the loop, we can hoist or sink the call as appropriate.
1230       if (isReadOnly(CurAST, MSSAU, CurLoop))
1231         return true;
1232     }
1233 
1234     // FIXME: This should use mod/ref information to see if we can hoist or
1235     // sink the call.
1236 
1237     return false;
1238   } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
1239     // Fences alias (most) everything to provide ordering.  For the moment,
1240     // just give up if there are any other memory operations in the loop.
1241     if (CurAST) {
1242       auto Begin = CurAST->begin();
1243       assert(Begin != CurAST->end() && "must contain FI");
1244       if (std::next(Begin) != CurAST->end())
1245         // constant memory for instance, TODO: handle better
1246         return false;
1247       auto *UniqueI = Begin->getUniqueInstruction();
1248       if (!UniqueI)
1249         // other memory op, give up
1250         return false;
1251       (void)FI; // suppress unused variable warning
1252       assert(UniqueI == FI && "AS must contain FI");
1253       return true;
1254     } else // MSSAU
1255       return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
1256   } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
1257     if (!SI->isUnordered())
1258       return false; // Don't sink/hoist volatile or ordered atomic store!
1259 
1260     // We can only hoist a store that we can prove writes a value which is not
1261     // read or overwritten within the loop.  For those cases, we fallback to
1262     // load store promotion instead.  TODO: We can extend this to cases where
1263     // there is exactly one write to the location and that write dominates an
1264     // arbitrary number of reads in the loop.
1265     if (CurAST) {
1266       auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
1267 
1268       if (AS.isRef() || !AS.isMustAlias())
1269         // Quick exit test, handled by the full path below as well.
1270         return false;
1271       auto *UniqueI = AS.getUniqueInstruction();
1272       if (!UniqueI)
1273         // other memory op, give up
1274         return false;
1275       assert(UniqueI == SI && "AS must contain SI");
1276       return true;
1277     } else { // MSSAU
1278       if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
1279         return true;
1280       // If there are more accesses than the Promotion cap or no "quota" to
1281       // check clobber, then give up as we're not walking a list that long.
1282       if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
1283         return false;
1284       // If there are interfering Uses (i.e. their defining access is in the
1285       // loop), or ordered loads (stored as Defs!), don't move this store.
1286       // Could do better here, but this is conservatively correct.
1287       // TODO: Cache set of Uses on the first walk in runOnLoop, update when
1288       // moving accesses. Can also extend to dominating uses.
1289       auto *SIMD = MSSA->getMemoryAccess(SI);
1290       for (auto *BB : CurLoop->getBlocks())
1291         if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
1292           for (const auto &MA : *Accesses)
1293             if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
1294               auto *MD = MU->getDefiningAccess();
1295               if (!MSSA->isLiveOnEntryDef(MD) &&
1296                   CurLoop->contains(MD->getBlock()))
1297                 return false;
1298               // Disable hoisting past potentially interfering loads. Optimized
1299               // Uses may point to an access outside the loop, as getClobbering
1300               // checks the previous iteration when walking the backedge.
1301               // FIXME: More precise: no Uses that alias SI.
1302               if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
1303                 return false;
1304             } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
1305               if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
1306                 (void)LI; // Silence warning.
1307                 assert(!LI->isUnordered() && "Expected unordered load");
1308                 return false;
1309               }
1310               // Any call, while it may not be clobbering SI, it may be a use.
1311               if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
1312                 // Check if the call may read from the memory location written
1313                 // to by SI. Check CI's attributes and arguments; the number of
1314                 // such checks performed is limited above by NoOfMemAccTooLarge.
1315                 ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
1316                 if (isModOrRefSet(MRI))
1317                   return false;
1318               }
1319             }
1320         }
1321       auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
1322       Flags->incrementClobberingCalls();
1323       // If there are no clobbering Defs in the loop, store is safe to hoist.
1324       return MSSA->isLiveOnEntryDef(Source) ||
1325              !CurLoop->contains(Source->getBlock());
1326     }
1327   }
1328 
1329   assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
1330 
1331   // We've established mechanical ability and aliasing, it's up to the caller
1332   // to check fault safety
1333   return true;
1334 }
1335 
1336 /// Returns true if a PHINode is a trivially replaceable with an
1337 /// Instruction.
1338 /// This is true when all incoming values are that instruction.
1339 /// This pattern occurs most often with LCSSA PHI nodes.
1340 ///
1341 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
1342   for (const Value *IncValue : PN.incoming_values())
1343     if (IncValue != &I)
1344       return false;
1345 
1346   return true;
1347 }
1348 
1349 /// Return true if the instruction is free in the loop.
1350 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
1351                          const TargetTransformInfo *TTI) {
1352 
1353   if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1354     if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
1355         TargetTransformInfo::TCC_Free)
1356       return false;
1357     // For a GEP, we cannot simply use getUserCost because currently it
1358     // optimistically assume that a GEP will fold into addressing mode
1359     // regardless of its users.
1360     const BasicBlock *BB = GEP->getParent();
1361     for (const User *U : GEP->users()) {
1362       const Instruction *UI = cast<Instruction>(U);
1363       if (CurLoop->contains(UI) &&
1364           (BB != UI->getParent() ||
1365            (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
1366         return false;
1367     }
1368     return true;
1369   } else
1370     return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
1371            TargetTransformInfo::TCC_Free;
1372 }
1373 
1374 /// Return true if the only users of this instruction are outside of
1375 /// the loop. If this is true, we can sink the instruction to the exit
1376 /// blocks of the loop.
1377 ///
1378 /// We also return true if the instruction could be folded away in lowering.
1379 /// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
1380 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
1381                                   const LoopSafetyInfo *SafetyInfo,
1382                                   TargetTransformInfo *TTI, bool &FreeInLoop,
1383                                   bool LoopNestMode) {
1384   const auto &BlockColors = SafetyInfo->getBlockColors();
1385   bool IsFree = isFreeInLoop(I, CurLoop, TTI);
1386   for (const User *U : I.users()) {
1387     const Instruction *UI = cast<Instruction>(U);
1388     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1389       const BasicBlock *BB = PN->getParent();
1390       // We cannot sink uses in catchswitches.
1391       if (isa<CatchSwitchInst>(BB->getTerminator()))
1392         return false;
1393 
1394       // We need to sink a callsite to a unique funclet.  Avoid sinking if the
1395       // phi use is too muddled.
1396       if (isa<CallInst>(I))
1397         if (!BlockColors.empty() &&
1398             BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
1399           return false;
1400 
1401       if (LoopNestMode) {
1402         while (isa<PHINode>(UI) && UI->hasOneUser() &&
1403                UI->getNumOperands() == 1) {
1404           if (!CurLoop->contains(UI))
1405             break;
1406           UI = cast<Instruction>(UI->user_back());
1407         }
1408       }
1409     }
1410 
1411     if (CurLoop->contains(UI)) {
1412       if (IsFree) {
1413         FreeInLoop = true;
1414         continue;
1415       }
1416       return false;
1417     }
1418   }
1419   return true;
1420 }
1421 
1422 static Instruction *cloneInstructionInExitBlock(
1423     Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
1424     const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
1425   Instruction *New;
1426   if (auto *CI = dyn_cast<CallInst>(&I)) {
1427     const auto &BlockColors = SafetyInfo->getBlockColors();
1428 
1429     // Sinking call-sites need to be handled differently from other
1430     // instructions.  The cloned call-site needs a funclet bundle operand
1431     // appropriate for its location in the CFG.
1432     SmallVector<OperandBundleDef, 1> OpBundles;
1433     for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
1434          BundleIdx != BundleEnd; ++BundleIdx) {
1435       OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
1436       if (Bundle.getTagID() == LLVMContext::OB_funclet)
1437         continue;
1438 
1439       OpBundles.emplace_back(Bundle);
1440     }
1441 
1442     if (!BlockColors.empty()) {
1443       const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
1444       assert(CV.size() == 1 && "non-unique color for exit block!");
1445       BasicBlock *BBColor = CV.front();
1446       Instruction *EHPad = BBColor->getFirstNonPHI();
1447       if (EHPad->isEHPad())
1448         OpBundles.emplace_back("funclet", EHPad);
1449     }
1450 
1451     New = CallInst::Create(CI, OpBundles);
1452   } else {
1453     New = I.clone();
1454   }
1455 
1456   ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
1457   if (!I.getName().empty())
1458     New->setName(I.getName() + ".le");
1459 
1460   if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
1461     // Create a new MemoryAccess and let MemorySSA set its defining access.
1462     MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
1463         New, nullptr, New->getParent(), MemorySSA::Beginning);
1464     if (NewMemAcc) {
1465       if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
1466         MSSAU->insertDef(MemDef, /*RenameUses=*/true);
1467       else {
1468         auto *MemUse = cast<MemoryUse>(NewMemAcc);
1469         MSSAU->insertUse(MemUse, /*RenameUses=*/true);
1470       }
1471     }
1472   }
1473 
1474   // Build LCSSA PHI nodes for any in-loop operands (if legal).  Note that
1475   // this is particularly cheap because we can rip off the PHI node that we're
1476   // replacing for the number and blocks of the predecessors.
1477   // OPT: If this shows up in a profile, we can instead finish sinking all
1478   // invariant instructions, and then walk their operands to re-establish
1479   // LCSSA. That will eliminate creating PHI nodes just to nuke them when
1480   // sinking bottom-up.
1481   for (Use &Op : New->operands())
1482     if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) {
1483       auto *OInst = cast<Instruction>(Op.get());
1484       PHINode *OpPN =
1485         PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
1486                         OInst->getName() + ".lcssa", &ExitBlock.front());
1487       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
1488         OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
1489       Op = OpPN;
1490     }
1491   return New;
1492 }
1493 
1494 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
1495                              MemorySSAUpdater *MSSAU) {
1496   if (MSSAU)
1497     MSSAU->removeMemoryAccess(&I);
1498   SafetyInfo.removeInstruction(&I);
1499   I.eraseFromParent();
1500 }
1501 
1502 static void moveInstructionBefore(Instruction &I, Instruction &Dest,
1503                                   ICFLoopSafetyInfo &SafetyInfo,
1504                                   MemorySSAUpdater *MSSAU,
1505                                   ScalarEvolution *SE) {
1506   SafetyInfo.removeInstruction(&I);
1507   SafetyInfo.insertInstructionTo(&I, Dest.getParent());
1508   I.moveBefore(&Dest);
1509   if (MSSAU)
1510     if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
1511             MSSAU->getMemorySSA()->getMemoryAccess(&I)))
1512       MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
1513                          MemorySSA::BeforeTerminator);
1514   if (SE)
1515     SE->forgetValue(&I);
1516 }
1517 
1518 static Instruction *sinkThroughTriviallyReplaceablePHI(
1519     PHINode *TPN, Instruction *I, LoopInfo *LI,
1520     SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
1521     const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
1522     MemorySSAUpdater *MSSAU) {
1523   assert(isTriviallyReplaceablePHI(*TPN, *I) &&
1524          "Expect only trivially replaceable PHI");
1525   BasicBlock *ExitBlock = TPN->getParent();
1526   Instruction *New;
1527   auto It = SunkCopies.find(ExitBlock);
1528   if (It != SunkCopies.end())
1529     New = It->second;
1530   else
1531     New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
1532         *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
1533   return New;
1534 }
1535 
1536 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
1537   BasicBlock *BB = PN->getParent();
1538   if (!BB->canSplitPredecessors())
1539     return false;
1540   // It's not impossible to split EHPad blocks, but if BlockColors already exist
1541   // it require updating BlockColors for all offspring blocks accordingly. By
1542   // skipping such corner case, we can make updating BlockColors after splitting
1543   // predecessor fairly simple.
1544   if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
1545     return false;
1546   for (BasicBlock *BBPred : predecessors(BB)) {
1547     if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
1548         isa<CallBrInst>(BBPred->getTerminator()))
1549       return false;
1550   }
1551   return true;
1552 }
1553 
1554 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
1555                                         LoopInfo *LI, const Loop *CurLoop,
1556                                         LoopSafetyInfo *SafetyInfo,
1557                                         MemorySSAUpdater *MSSAU) {
1558 #ifndef NDEBUG
1559   SmallVector<BasicBlock *, 32> ExitBlocks;
1560   CurLoop->getUniqueExitBlocks(ExitBlocks);
1561   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1562                                              ExitBlocks.end());
1563 #endif
1564   BasicBlock *ExitBB = PN->getParent();
1565   assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
1566 
1567   // Split predecessors of the loop exit to make instructions in the loop are
1568   // exposed to exit blocks through trivially replaceable PHIs while keeping the
1569   // loop in the canonical form where each predecessor of each exit block should
1570   // be contained within the loop. For example, this will convert the loop below
1571   // from
1572   //
1573   // LB1:
1574   //   %v1 =
1575   //   br %LE, %LB2
1576   // LB2:
1577   //   %v2 =
1578   //   br %LE, %LB1
1579   // LE:
1580   //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
1581   //
1582   // to
1583   //
1584   // LB1:
1585   //   %v1 =
1586   //   br %LE.split, %LB2
1587   // LB2:
1588   //   %v2 =
1589   //   br %LE.split2, %LB1
1590   // LE.split:
1591   //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
1592   //   br %LE
1593   // LE.split2:
1594   //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
1595   //   br %LE
1596   // LE:
1597   //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
1598   //
1599   const auto &BlockColors = SafetyInfo->getBlockColors();
1600   SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
1601   while (!PredBBs.empty()) {
1602     BasicBlock *PredBB = *PredBBs.begin();
1603     assert(CurLoop->contains(PredBB) &&
1604            "Expect all predecessors are in the loop");
1605     if (PN->getBasicBlockIndex(PredBB) >= 0) {
1606       BasicBlock *NewPred = SplitBlockPredecessors(
1607           ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
1608       // Since we do not allow splitting EH-block with BlockColors in
1609       // canSplitPredecessors(), we can simply assign predecessor's color to
1610       // the new block.
1611       if (!BlockColors.empty())
1612         // Grab a reference to the ColorVector to be inserted before getting the
1613         // reference to the vector we are copying because inserting the new
1614         // element in BlockColors might cause the map to be reallocated.
1615         SafetyInfo->copyColors(NewPred, PredBB);
1616     }
1617     PredBBs.remove(PredBB);
1618   }
1619 }
1620 
1621 /// When an instruction is found to only be used outside of the loop, this
1622 /// function moves it to the exit blocks and patches up SSA form as needed.
1623 /// This method is guaranteed to remove the original instruction from its
1624 /// position, and may either delete it or move it to outside of the loop.
1625 ///
1626 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
1627                  BlockFrequencyInfo *BFI, const Loop *CurLoop,
1628                  ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
1629                  OptimizationRemarkEmitter *ORE) {
1630   bool Changed = false;
1631   LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
1632 
1633   // Iterate over users to be ready for actual sinking. Replace users via
1634   // unreachable blocks with undef and make all user PHIs trivially replaceable.
1635   SmallPtrSet<Instruction *, 8> VisitedUsers;
1636   for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
1637     auto *User = cast<Instruction>(*UI);
1638     Use &U = UI.getUse();
1639     ++UI;
1640 
1641     if (VisitedUsers.count(User) || CurLoop->contains(User))
1642       continue;
1643 
1644     if (!DT->isReachableFromEntry(User->getParent())) {
1645       U = UndefValue::get(I.getType());
1646       Changed = true;
1647       continue;
1648     }
1649 
1650     // The user must be a PHI node.
1651     PHINode *PN = cast<PHINode>(User);
1652 
1653     // Surprisingly, instructions can be used outside of loops without any
1654     // exits.  This can only happen in PHI nodes if the incoming block is
1655     // unreachable.
1656     BasicBlock *BB = PN->getIncomingBlock(U);
1657     if (!DT->isReachableFromEntry(BB)) {
1658       U = UndefValue::get(I.getType());
1659       Changed = true;
1660       continue;
1661     }
1662 
1663     VisitedUsers.insert(PN);
1664     if (isTriviallyReplaceablePHI(*PN, I))
1665       continue;
1666 
1667     if (!canSplitPredecessors(PN, SafetyInfo))
1668       return Changed;
1669 
1670     // Split predecessors of the PHI so that we can make users trivially
1671     // replaceable.
1672     splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
1673 
1674     // Should rebuild the iterators, as they may be invalidated by
1675     // splitPredecessorsOfLoopExit().
1676     UI = I.user_begin();
1677     UE = I.user_end();
1678   }
1679 
1680   if (VisitedUsers.empty())
1681     return Changed;
1682 
1683   ORE->emit([&]() {
1684     return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
1685            << "sinking " << ore::NV("Inst", &I);
1686   });
1687   if (isa<LoadInst>(I))
1688     ++NumMovedLoads;
1689   else if (isa<CallInst>(I))
1690     ++NumMovedCalls;
1691   ++NumSunk;
1692 
1693 #ifndef NDEBUG
1694   SmallVector<BasicBlock *, 32> ExitBlocks;
1695   CurLoop->getUniqueExitBlocks(ExitBlocks);
1696   SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
1697                                              ExitBlocks.end());
1698 #endif
1699 
1700   // Clones of this instruction. Don't create more than one per exit block!
1701   SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
1702 
1703   // If this instruction is only used outside of the loop, then all users are
1704   // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
1705   // the instruction.
1706   // First check if I is worth sinking for all uses. Sink only when it is worth
1707   // across all uses.
1708   SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
1709   for (auto *UI : Users) {
1710     auto *User = cast<Instruction>(UI);
1711 
1712     if (CurLoop->contains(User))
1713       continue;
1714 
1715     PHINode *PN = cast<PHINode>(User);
1716     assert(ExitBlockSet.count(PN->getParent()) &&
1717            "The LCSSA PHI is not in an exit block!");
1718 
1719     // The PHI must be trivially replaceable.
1720     Instruction *New = sinkThroughTriviallyReplaceablePHI(
1721         PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
1722     PN->replaceAllUsesWith(New);
1723     eraseInstruction(*PN, *SafetyInfo, nullptr);
1724     Changed = true;
1725   }
1726   return Changed;
1727 }
1728 
1729 /// When an instruction is found to only use loop invariant operands that
1730 /// is safe to hoist, this instruction is called to do the dirty work.
1731 ///
1732 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
1733                   BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
1734                   MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
1735                   OptimizationRemarkEmitter *ORE) {
1736   LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
1737                     << I << "\n");
1738   ORE->emit([&]() {
1739     return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
1740                                                          << ore::NV("Inst", &I);
1741   });
1742 
1743   // Metadata can be dependent on conditions we are hoisting above.
1744   // Conservatively strip all metadata on the instruction unless we were
1745   // guaranteed to execute I if we entered the loop, in which case the metadata
1746   // is valid in the loop preheader.
1747   // Similarly, If I is a call and it is not guaranteed to execute in the loop,
1748   // then moving to the preheader means we should strip attributes on the call
1749   // that can cause UB since we may be hoisting above conditions that allowed
1750   // inferring those attributes. They may not be valid at the preheader.
1751   if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) &&
1752       // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
1753       // time in isGuaranteedToExecute if we don't actually have anything to
1754       // drop.  It is a compile time optimization, not required for correctness.
1755       !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
1756     I.dropUndefImplyingAttrsAndUnknownMetadata();
1757 
1758   if (isa<PHINode>(I))
1759     // Move the new node to the end of the phi list in the destination block.
1760     moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
1761   else
1762     // Move the new node to the destination block, before its terminator.
1763     moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
1764 
1765   I.updateLocationAfterHoist();
1766 
1767   if (isa<LoadInst>(I))
1768     ++NumMovedLoads;
1769   else if (isa<CallInst>(I))
1770     ++NumMovedCalls;
1771   ++NumHoisted;
1772 }
1773 
1774 /// Only sink or hoist an instruction if it is not a trapping instruction,
1775 /// or if the instruction is known not to trap when moved to the preheader.
1776 /// or if it is a trapping instruction and is guaranteed to execute.
1777 static bool isSafeToExecuteUnconditionally(Instruction &Inst,
1778                                            const DominatorTree *DT,
1779                                            const TargetLibraryInfo *TLI,
1780                                            const Loop *CurLoop,
1781                                            const LoopSafetyInfo *SafetyInfo,
1782                                            OptimizationRemarkEmitter *ORE,
1783                                            const Instruction *CtxI) {
1784   if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT, TLI))
1785     return true;
1786 
1787   bool GuaranteedToExecute =
1788       SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
1789 
1790   if (!GuaranteedToExecute) {
1791     auto *LI = dyn_cast<LoadInst>(&Inst);
1792     if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
1793       ORE->emit([&]() {
1794         return OptimizationRemarkMissed(
1795                    DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
1796                << "failed to hoist load with loop-invariant address "
1797                   "because load is conditionally executed";
1798       });
1799   }
1800 
1801   return GuaranteedToExecute;
1802 }
1803 
1804 namespace {
1805 class LoopPromoter : public LoadAndStorePromoter {
1806   Value *SomePtr; // Designated pointer to store to.
1807   const SmallSetVector<Value *, 8> &PointerMustAliases;
1808   SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
1809   SmallVectorImpl<Instruction *> &LoopInsertPts;
1810   SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
1811   PredIteratorCache &PredCache;
1812   MemorySSAUpdater *MSSAU;
1813   LoopInfo &LI;
1814   DebugLoc DL;
1815   Align Alignment;
1816   bool UnorderedAtomic;
1817   AAMDNodes AATags;
1818   ICFLoopSafetyInfo &SafetyInfo;
1819   bool CanInsertStoresInExitBlocks;
1820 
1821   // We're about to add a use of V in a loop exit block.  Insert an LCSSA phi
1822   // (if legal) if doing so would add an out-of-loop use to an instruction
1823   // defined in-loop.
1824   Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
1825     if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB))
1826       return V;
1827 
1828     Instruction *I = cast<Instruction>(V);
1829     // We need to create an LCSSA PHI node for the incoming value and
1830     // store that.
1831     PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
1832                                   I->getName() + ".lcssa", &BB->front());
1833     for (BasicBlock *Pred : PredCache.get(BB))
1834       PN->addIncoming(I, Pred);
1835     return PN;
1836   }
1837 
1838 public:
1839   LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
1840                const SmallSetVector<Value *, 8> &PMA,
1841                SmallVectorImpl<BasicBlock *> &LEB,
1842                SmallVectorImpl<Instruction *> &LIP,
1843                SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
1844                MemorySSAUpdater *MSSAU, LoopInfo &li, DebugLoc dl,
1845                Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags,
1846                ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks)
1847       : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
1848         LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
1849         PredCache(PIC), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
1850         Alignment(Alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
1851         SafetyInfo(SafetyInfo),
1852         CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks) {}
1853 
1854   bool isInstInList(Instruction *I,
1855                     const SmallVectorImpl<Instruction *> &) const override {
1856     Value *Ptr;
1857     if (LoadInst *LI = dyn_cast<LoadInst>(I))
1858       Ptr = LI->getOperand(0);
1859     else
1860       Ptr = cast<StoreInst>(I)->getPointerOperand();
1861     return PointerMustAliases.count(Ptr);
1862   }
1863 
1864   void insertStoresInLoopExitBlocks() {
1865     // Insert stores after in the loop exit blocks.  Each exit block gets a
1866     // store of the live-out values that feed them.  Since we've already told
1867     // the SSA updater about the defs in the loop and the preheader
1868     // definition, it is all set and we can start using it.
1869     for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
1870       BasicBlock *ExitBlock = LoopExitBlocks[i];
1871       Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
1872       LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
1873       Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
1874       Instruction *InsertPos = LoopInsertPts[i];
1875       StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
1876       if (UnorderedAtomic)
1877         NewSI->setOrdering(AtomicOrdering::Unordered);
1878       NewSI->setAlignment(Alignment);
1879       NewSI->setDebugLoc(DL);
1880       if (AATags)
1881         NewSI->setAAMetadata(AATags);
1882 
1883       MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
1884       MemoryAccess *NewMemAcc;
1885       if (!MSSAInsertPoint) {
1886         NewMemAcc = MSSAU->createMemoryAccessInBB(
1887             NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
1888       } else {
1889         NewMemAcc =
1890             MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
1891       }
1892       MSSAInsertPts[i] = NewMemAcc;
1893       MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
1894       // FIXME: true for safety, false may still be correct.
1895     }
1896   }
1897 
1898   void doExtraRewritesBeforeFinalDeletion() override {
1899     if (CanInsertStoresInExitBlocks)
1900       insertStoresInLoopExitBlocks();
1901   }
1902 
1903   void instructionDeleted(Instruction *I) const override {
1904     SafetyInfo.removeInstruction(I);
1905     MSSAU->removeMemoryAccess(I);
1906   }
1907 
1908   bool shouldDelete(Instruction *I) const override {
1909     if (isa<StoreInst>(I))
1910       return CanInsertStoresInExitBlocks;
1911     return true;
1912   }
1913 };
1914 
1915 bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L,
1916                                  DominatorTree *DT) {
1917   // We can perform the captured-before check against any instruction in the
1918   // loop header, as the loop header is reachable from any instruction inside
1919   // the loop.
1920   // TODO: ReturnCaptures=true shouldn't be necessary here.
1921   return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true,
1922                                      /* StoreCaptures */ true,
1923                                      L->getHeader()->getTerminator(), DT);
1924 }
1925 
1926 /// Return true iff we can prove that a caller of this function can not inspect
1927 /// the contents of the provided object in a well defined program.
1928 bool isKnownNonEscaping(Value *Object, const Loop *L,
1929                         const TargetLibraryInfo *TLI, DominatorTree *DT) {
1930   if (isa<AllocaInst>(Object))
1931     // Since the alloca goes out of scope, we know the caller can't retain a
1932     // reference to it and be well defined.  Thus, we don't need to check for
1933     // capture.
1934     return true;
1935 
1936   // For all other objects we need to know that the caller can't possibly
1937   // have gotten a reference to the object.  There are two components of
1938   // that:
1939   //   1) Object can't be escaped by this function.  This is what
1940   //      PointerMayBeCaptured checks.
1941   //   2) Object can't have been captured at definition site.  For this, we
1942   //      need to know the return value is noalias.  At the moment, we use a
1943   //      weaker condition and handle only AllocLikeFunctions (which are
1944   //      known to be noalias).  TODO
1945   return isAllocLikeFn(Object, TLI) &&
1946          isNotCapturedBeforeOrInLoop(Object, L, DT);
1947 }
1948 
1949 } // namespace
1950 
1951 /// Try to promote memory values to scalars by sinking stores out of the
1952 /// loop and moving loads to before the loop.  We do this by looping over
1953 /// the stores in the loop, looking for stores to Must pointers which are
1954 /// loop invariant.
1955 ///
1956 bool llvm::promoteLoopAccessesToScalars(
1957     const SmallSetVector<Value *, 8> &PointerMustAliases,
1958     SmallVectorImpl<BasicBlock *> &ExitBlocks,
1959     SmallVectorImpl<Instruction *> &InsertPts,
1960     SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
1961     LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
1962     Loop *CurLoop, MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
1963     OptimizationRemarkEmitter *ORE) {
1964   // Verify inputs.
1965   assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
1966          SafetyInfo != nullptr &&
1967          "Unexpected Input to promoteLoopAccessesToScalars");
1968 
1969   Value *SomePtr = *PointerMustAliases.begin();
1970   BasicBlock *Preheader = CurLoop->getLoopPreheader();
1971 
1972   // It is not safe to promote a load/store from the loop if the load/store is
1973   // conditional.  For example, turning:
1974   //
1975   //    for () { if (c) *P += 1; }
1976   //
1977   // into:
1978   //
1979   //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
1980   //
1981   // is not safe, because *P may only be valid to access if 'c' is true.
1982   //
1983   // The safety property divides into two parts:
1984   // p1) The memory may not be dereferenceable on entry to the loop.  In this
1985   //    case, we can't insert the required load in the preheader.
1986   // p2) The memory model does not allow us to insert a store along any dynamic
1987   //    path which did not originally have one.
1988   //
1989   // If at least one store is guaranteed to execute, both properties are
1990   // satisfied, and promotion is legal.
1991   //
1992   // This, however, is not a necessary condition. Even if no store/load is
1993   // guaranteed to execute, we can still establish these properties.
1994   // We can establish (p1) by proving that hoisting the load into the preheader
1995   // is safe (i.e. proving dereferenceability on all paths through the loop). We
1996   // can use any access within the alias set to prove dereferenceability,
1997   // since they're all must alias.
1998   //
1999   // There are two ways establish (p2):
2000   // a) Prove the location is thread-local. In this case the memory model
2001   // requirement does not apply, and stores are safe to insert.
2002   // b) Prove a store dominates every exit block. In this case, if an exit
2003   // blocks is reached, the original dynamic path would have taken us through
2004   // the store, so inserting a store into the exit block is safe. Note that this
2005   // is different from the store being guaranteed to execute. For instance,
2006   // if an exception is thrown on the first iteration of the loop, the original
2007   // store is never executed, but the exit blocks are not executed either.
2008 
2009   bool DereferenceableInPH = false;
2010   bool SafeToInsertStore = false;
2011   bool FoundLoadToPromote = false;
2012 
2013   SmallVector<Instruction *, 64> LoopUses;
2014 
2015   // We start with an alignment of one and try to find instructions that allow
2016   // us to prove better alignment.
2017   Align Alignment;
2018   // Keep track of which types of access we see
2019   bool SawUnorderedAtomic = false;
2020   bool SawNotAtomic = false;
2021   AAMDNodes AATags;
2022 
2023   const DataLayout &MDL = Preheader->getModule()->getDataLayout();
2024 
2025   bool IsKnownThreadLocalObject = false;
2026   if (SafetyInfo->anyBlockMayThrow()) {
2027     // If a loop can throw, we have to insert a store along each unwind edge.
2028     // That said, we can't actually make the unwind edge explicit. Therefore,
2029     // we have to prove that the store is dead along the unwind edge.  We do
2030     // this by proving that the caller can't have a reference to the object
2031     // after return and thus can't possibly load from the object.
2032     Value *Object = getUnderlyingObject(SomePtr);
2033     if (!isKnownNonEscaping(Object, CurLoop, TLI, DT))
2034       return false;
2035     // Subtlety: Alloca's aren't visible to callers, but *are* potentially
2036     // visible to other threads if captured and used during their lifetimes.
2037     IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
2038   }
2039 
2040   // Check that all accesses to pointers in the aliass set use the same type.
2041   // We cannot (yet) promote a memory location that is loaded and stored in
2042   // different sizes.  While we are at it, collect alignment and AA info.
2043   Type *AccessTy = nullptr;
2044   for (Value *ASIV : PointerMustAliases) {
2045     for (User *U : ASIV->users()) {
2046       // Ignore instructions that are outside the loop.
2047       Instruction *UI = dyn_cast<Instruction>(U);
2048       if (!UI || !CurLoop->contains(UI))
2049         continue;
2050 
2051       // If there is an non-load/store instruction in the loop, we can't promote
2052       // it.
2053       if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
2054         if (!Load->isUnordered())
2055           return false;
2056 
2057         SawUnorderedAtomic |= Load->isAtomic();
2058         SawNotAtomic |= !Load->isAtomic();
2059         FoundLoadToPromote = true;
2060 
2061         Align InstAlignment = Load->getAlign();
2062 
2063         // Note that proving a load safe to speculate requires proving
2064         // sufficient alignment at the target location.  Proving it guaranteed
2065         // to execute does as well.  Thus we can increase our guaranteed
2066         // alignment as well.
2067         if (!DereferenceableInPH || (InstAlignment > Alignment))
2068           if (isSafeToExecuteUnconditionally(*Load, DT, TLI, CurLoop,
2069                                              SafetyInfo, ORE,
2070                                              Preheader->getTerminator())) {
2071             DereferenceableInPH = true;
2072             Alignment = std::max(Alignment, InstAlignment);
2073           }
2074       } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
2075         // Stores *of* the pointer are not interesting, only stores *to* the
2076         // pointer.
2077         if (UI->getOperand(1) != ASIV)
2078           continue;
2079         if (!Store->isUnordered())
2080           return false;
2081 
2082         SawUnorderedAtomic |= Store->isAtomic();
2083         SawNotAtomic |= !Store->isAtomic();
2084 
2085         // If the store is guaranteed to execute, both properties are satisfied.
2086         // We may want to check if a store is guaranteed to execute even if we
2087         // already know that promotion is safe, since it may have higher
2088         // alignment than any other guaranteed stores, in which case we can
2089         // raise the alignment on the promoted store.
2090         Align InstAlignment = Store->getAlign();
2091 
2092         if (!DereferenceableInPH || !SafeToInsertStore ||
2093             (InstAlignment > Alignment)) {
2094           if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
2095             DereferenceableInPH = true;
2096             SafeToInsertStore = true;
2097             Alignment = std::max(Alignment, InstAlignment);
2098           }
2099         }
2100 
2101         // If a store dominates all exit blocks, it is safe to sink.
2102         // As explained above, if an exit block was executed, a dominating
2103         // store must have been executed at least once, so we are not
2104         // introducing stores on paths that did not have them.
2105         // Note that this only looks at explicit exit blocks. If we ever
2106         // start sinking stores into unwind edges (see above), this will break.
2107         if (!SafeToInsertStore)
2108           SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
2109             return DT->dominates(Store->getParent(), Exit);
2110           });
2111 
2112         // If the store is not guaranteed to execute, we may still get
2113         // deref info through it.
2114         if (!DereferenceableInPH) {
2115           DereferenceableInPH = isDereferenceableAndAlignedPointer(
2116               Store->getPointerOperand(), Store->getValueOperand()->getType(),
2117               Store->getAlign(), MDL, Preheader->getTerminator(), DT, TLI);
2118         }
2119       } else
2120         return false; // Not a load or store.
2121 
2122       if (!AccessTy)
2123         AccessTy = getLoadStoreType(UI);
2124       else if (AccessTy != getLoadStoreType(UI))
2125         return false;
2126 
2127       // Merge the AA tags.
2128       if (LoopUses.empty()) {
2129         // On the first load/store, just take its AA tags.
2130         AATags = UI->getAAMetadata();
2131       } else if (AATags) {
2132         AATags = AATags.merge(UI->getAAMetadata());
2133       }
2134 
2135       LoopUses.push_back(UI);
2136     }
2137   }
2138 
2139   // If we found both an unordered atomic instruction and a non-atomic memory
2140   // access, bail.  We can't blindly promote non-atomic to atomic since we
2141   // might not be able to lower the result.  We can't downgrade since that
2142   // would violate memory model.  Also, align 0 is an error for atomics.
2143   if (SawUnorderedAtomic && SawNotAtomic)
2144     return false;
2145 
2146   // If we're inserting an atomic load in the preheader, we must be able to
2147   // lower it.  We're only guaranteed to be able to lower naturally aligned
2148   // atomics.
2149   if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy))
2150     return false;
2151 
2152   // If we couldn't prove we can hoist the load, bail.
2153   if (!DereferenceableInPH)
2154     return false;
2155 
2156   // We know we can hoist the load, but don't have a guaranteed store.
2157   // Check whether the location is thread-local. If it is, then we can insert
2158   // stores along paths which originally didn't have them without violating the
2159   // memory model.
2160   if (!SafeToInsertStore) {
2161     if (IsKnownThreadLocalObject)
2162       SafeToInsertStore = true;
2163     else {
2164       Value *Object = getUnderlyingObject(SomePtr);
2165       SafeToInsertStore =
2166           (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
2167           isNotCapturedBeforeOrInLoop(Object, CurLoop, DT);
2168     }
2169   }
2170 
2171   // If we've still failed to prove we can sink the store, hoist the load
2172   // only, if possible.
2173   if (!SafeToInsertStore && !FoundLoadToPromote)
2174     // If we cannot hoist the load either, give up.
2175     return false;
2176 
2177   // Lets do the promotion!
2178   if (SafeToInsertStore)
2179     LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr
2180                       << '\n');
2181   else
2182     LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr
2183                       << '\n');
2184 
2185   ORE->emit([&]() {
2186     return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
2187                               LoopUses[0])
2188            << "Moving accesses to memory location out of the loop";
2189   });
2190   ++NumPromoted;
2191 
2192   // Look at all the loop uses, and try to merge their locations.
2193   std::vector<const DILocation *> LoopUsesLocs;
2194   for (auto U : LoopUses)
2195     LoopUsesLocs.push_back(U->getDebugLoc().get());
2196   auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
2197 
2198   // We use the SSAUpdater interface to insert phi nodes as required.
2199   SmallVector<PHINode *, 16> NewPHIs;
2200   SSAUpdater SSA(&NewPHIs);
2201   LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
2202                         InsertPts, MSSAInsertPts, PIC, MSSAU, *LI, DL,
2203                         Alignment, SawUnorderedAtomic, AATags, *SafetyInfo,
2204                         SafeToInsertStore);
2205 
2206   // Set up the preheader to have a definition of the value.  It is the live-out
2207   // value from the preheader that uses in the loop will use.
2208   LoadInst *PreheaderLoad = new LoadInst(
2209       AccessTy, SomePtr, SomePtr->getName() + ".promoted",
2210       Preheader->getTerminator());
2211   if (SawUnorderedAtomic)
2212     PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
2213   PreheaderLoad->setAlignment(Alignment);
2214   PreheaderLoad->setDebugLoc(DebugLoc());
2215   if (AATags)
2216     PreheaderLoad->setAAMetadata(AATags);
2217   SSA.AddAvailableValue(Preheader, PreheaderLoad);
2218 
2219   MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
2220       PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
2221   MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
2222   MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
2223 
2224   if (VerifyMemorySSA)
2225     MSSAU->getMemorySSA()->verifyMemorySSA();
2226   // Rewrite all the loads in the loop and remember all the definitions from
2227   // stores in the loop.
2228   Promoter.run(LoopUses);
2229 
2230   if (VerifyMemorySSA)
2231     MSSAU->getMemorySSA()->verifyMemorySSA();
2232   // If the SSAUpdater didn't use the load in the preheader, just zap it now.
2233   if (PreheaderLoad->use_empty())
2234     eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU);
2235 
2236   return true;
2237 }
2238 
2239 static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L,
2240                                 function_ref<void(Instruction *)> Fn) {
2241   for (const BasicBlock *BB : L->blocks())
2242     if (const auto *Accesses = MSSA->getBlockAccesses(BB))
2243       for (const auto &Access : *Accesses)
2244         if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access))
2245           Fn(MUD->getMemoryInst());
2246 }
2247 
2248 static SmallVector<SmallSetVector<Value *, 8>, 0>
2249 collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) {
2250   AliasSetTracker AST(*AA);
2251 
2252   auto IsPotentiallyPromotable = [L](const Instruction *I) {
2253     if (const auto *SI = dyn_cast<StoreInst>(I))
2254       return L->isLoopInvariant(SI->getPointerOperand());
2255     if (const auto *LI = dyn_cast<LoadInst>(I))
2256       return L->isLoopInvariant(LI->getPointerOperand());
2257     return false;
2258   };
2259 
2260   // Populate AST with potentially promotable accesses and remove them from
2261   // MaybePromotable, so they will not be checked again on the next iteration.
2262   SmallPtrSet<Value *, 16> AttemptingPromotion;
2263   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2264     if (IsPotentiallyPromotable(I)) {
2265       AttemptingPromotion.insert(I);
2266       AST.add(I);
2267     }
2268   });
2269 
2270   // We're only interested in must-alias sets that contain a mod.
2271   SmallVector<const AliasSet *, 8> Sets;
2272   for (AliasSet &AS : AST)
2273     if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias())
2274       Sets.push_back(&AS);
2275 
2276   if (Sets.empty())
2277     return {}; // Nothing to promote...
2278 
2279   // Discard any sets for which there is an aliasing non-promotable access.
2280   foreachMemoryAccess(MSSA, L, [&](Instruction *I) {
2281     if (AttemptingPromotion.contains(I))
2282       return;
2283 
2284     llvm::erase_if(Sets, [&](const AliasSet *AS) {
2285       return AS->aliasesUnknownInst(I, *AA);
2286     });
2287   });
2288 
2289   SmallVector<SmallSetVector<Value *, 8>, 0> Result;
2290   for (const AliasSet *Set : Sets) {
2291     SmallSetVector<Value *, 8> PointerMustAliases;
2292     for (const auto &ASI : *Set)
2293       PointerMustAliases.insert(ASI.getValue());
2294     Result.push_back(std::move(PointerMustAliases));
2295   }
2296 
2297   return Result;
2298 }
2299 
2300 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
2301                                      AliasSetTracker *CurAST, Loop *CurLoop,
2302                                      AAResults *AA) {
2303   return CurAST->getAliasSetFor(MemLoc).isMod();
2304 }
2305 
2306 bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
2307                                       Loop *CurLoop, Instruction &I,
2308                                       SinkAndHoistLICMFlags &Flags) {
2309   // For hoisting, use the walker to determine safety
2310   if (!Flags.getIsSink()) {
2311     MemoryAccess *Source;
2312     // See declaration of SetLicmMssaOptCap for usage details.
2313     if (Flags.tooManyClobberingCalls())
2314       Source = MU->getDefiningAccess();
2315     else {
2316       Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
2317       Flags.incrementClobberingCalls();
2318     }
2319     return !MSSA->isLiveOnEntryDef(Source) &&
2320            CurLoop->contains(Source->getBlock());
2321   }
2322 
2323   // For sinking, we'd need to check all Defs below this use. The getClobbering
2324   // call will look on the backedge of the loop, but will check aliasing with
2325   // the instructions on the previous iteration.
2326   // For example:
2327   // for (i ... )
2328   //   load a[i] ( Use (LoE)
2329   //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
2330   //   i++;
2331   // The load sees no clobbering inside the loop, as the backedge alias check
2332   // does phi translation, and will check aliasing against store a[i-1].
2333   // However sinking the load outside the loop, below the store is incorrect.
2334 
2335   // For now, only sink if there are no Defs in the loop, and the existing ones
2336   // precede the use and are in the same block.
2337   // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
2338   // needs PostDominatorTreeAnalysis.
2339   // FIXME: More precise: no Defs that alias this Use.
2340   if (Flags.tooManyMemoryAccesses())
2341     return true;
2342   for (auto *BB : CurLoop->getBlocks())
2343     if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
2344       return true;
2345   // When sinking, the source block may not be part of the loop so check it.
2346   if (!CurLoop->contains(&I))
2347     return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
2348 
2349   return false;
2350 }
2351 
2352 bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
2353                                        MemoryUse &MU) {
2354   if (const auto *Accesses = MSSA.getBlockDefs(&BB))
2355     for (const auto &MA : *Accesses)
2356       if (const auto *MD = dyn_cast<MemoryDef>(&MA))
2357         if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
2358           return true;
2359   return false;
2360 }
2361 
2362 /// Little predicate that returns true if the specified basic block is in
2363 /// a subloop of the current one, not the current one itself.
2364 ///
2365 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
2366   assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
2367   return LI->getLoopFor(BB) != CurLoop;
2368 }
2369