1 //===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass performs loop invariant code motion, attempting to remove as much 10 // code from the body of a loop as possible. It does this by either hoisting 11 // code into the preheader block, or by sinking code to the exit blocks if it is 12 // safe. This pass also promotes must-aliased memory locations in the loop to 13 // live in registers, thus hoisting and sinking "invariant" loads and stores. 14 // 15 // This pass uses alias analysis for two purposes: 16 // 17 // 1. Moving loop invariant loads and calls out of loops. If we can determine 18 // that a load or call inside of a loop never aliases anything stored to, 19 // we can hoist it or sink it like any other instruction. 20 // 2. Scalar Promotion of Memory - If there is a store instruction inside of 21 // the loop, we try to move the store to happen AFTER the loop instead of 22 // inside of the loop. This can only happen if a few conditions are true: 23 // A. The pointer stored through is loop invariant 24 // B. There are no stores or loads in the loop which _may_ alias the 25 // pointer. There are no calls in the loop which mod/ref the pointer. 26 // If these conditions are true, we can promote the loads and stores in the 27 // loop of the pointer to use a temporary alloca'd variable. We then use 28 // the SSAUpdater to construct the appropriate SSA form for the value. 29 // 30 //===----------------------------------------------------------------------===// 31 32 #include "llvm/Transforms/Scalar/LICM.h" 33 #include "llvm/ADT/SetOperations.h" 34 #include "llvm/ADT/Statistic.h" 35 #include "llvm/Analysis/AliasAnalysis.h" 36 #include "llvm/Analysis/AliasSetTracker.h" 37 #include "llvm/Analysis/BasicAliasAnalysis.h" 38 #include "llvm/Analysis/CaptureTracking.h" 39 #include "llvm/Analysis/ConstantFolding.h" 40 #include "llvm/Analysis/GlobalsModRef.h" 41 #include "llvm/Analysis/GuardUtils.h" 42 #include "llvm/Analysis/Loads.h" 43 #include "llvm/Analysis/LoopInfo.h" 44 #include "llvm/Analysis/LoopIterator.h" 45 #include "llvm/Analysis/LoopPass.h" 46 #include "llvm/Analysis/MemoryBuiltins.h" 47 #include "llvm/Analysis/MemorySSA.h" 48 #include "llvm/Analysis/MemorySSAUpdater.h" 49 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 50 #include "llvm/Analysis/ScalarEvolution.h" 51 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 52 #include "llvm/Analysis/TargetLibraryInfo.h" 53 #include "llvm/Analysis/ValueTracking.h" 54 #include "llvm/IR/CFG.h" 55 #include "llvm/IR/Constants.h" 56 #include "llvm/IR/DataLayout.h" 57 #include "llvm/IR/DebugInfoMetadata.h" 58 #include "llvm/IR/DerivedTypes.h" 59 #include "llvm/IR/Dominators.h" 60 #include "llvm/IR/Instructions.h" 61 #include "llvm/IR/IntrinsicInst.h" 62 #include "llvm/IR/LLVMContext.h" 63 #include "llvm/IR/Metadata.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/PredIteratorCache.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/raw_ostream.h" 69 #include "llvm/Transforms/Scalar.h" 70 #include "llvm/Transforms/Scalar/LoopPassManager.h" 71 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 72 #include "llvm/Transforms/Utils/Local.h" 73 #include "llvm/Transforms/Utils/LoopUtils.h" 74 #include "llvm/Transforms/Utils/SSAUpdater.h" 75 #include <algorithm> 76 #include <utility> 77 using namespace llvm; 78 79 #define DEBUG_TYPE "licm" 80 81 STATISTIC(NumCreatedBlocks, "Number of blocks created"); 82 STATISTIC(NumClonedBranches, "Number of branches cloned"); 83 STATISTIC(NumSunk, "Number of instructions sunk out of loop"); 84 STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); 85 STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); 86 STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); 87 STATISTIC(NumPromoted, "Number of memory locations promoted to registers"); 88 89 /// Memory promotion is enabled by default. 90 static cl::opt<bool> 91 DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), 92 cl::desc("Disable memory promotion in LICM pass")); 93 94 static cl::opt<bool> ControlFlowHoisting( 95 "licm-control-flow-hoisting", cl::Hidden, cl::init(false), 96 cl::desc("Enable control flow (and PHI) hoisting in LICM")); 97 98 static cl::opt<uint32_t> MaxNumUsesTraversed( 99 "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), 100 cl::desc("Max num uses visited for identifying load " 101 "invariance in loop using invariant start (default = 8)")); 102 103 // Default value of zero implies we use the regular alias set tracker mechanism 104 // instead of the cross product using AA to identify aliasing of the memory 105 // location we are interested in. 106 static cl::opt<int> 107 LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0), 108 cl::desc("How many instruction to cross product using AA")); 109 110 // Experimental option to allow imprecision in LICM in pathological cases, in 111 // exchange for faster compile. This is to be removed if MemorySSA starts to 112 // address the same issue. This flag applies only when LICM uses MemorySSA 113 // instead on AliasSetTracker. LICM calls MemorySSAWalker's 114 // getClobberingMemoryAccess, up to the value of the Cap, getting perfect 115 // accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, 116 // which may not be precise, since optimizeUses is capped. The result is 117 // correct, but we may not get as "far up" as possible to get which access is 118 // clobbering the one queried. 119 cl::opt<unsigned> llvm::SetLicmMssaOptCap( 120 "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, 121 cl::desc("Enable imprecision in LICM in pathological cases, in exchange " 122 "for faster compile. Caps the MemorySSA clobbering calls.")); 123 124 // Experimentally, memory promotion carries less importance than sinking and 125 // hoisting. Limit when we do promotion when using MemorySSA, in order to save 126 // compile time. 127 cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( 128 "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, 129 cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " 130 "effect. When MSSA in LICM is enabled, then this is the maximum " 131 "number of accesses allowed to be present in a loop in order to " 132 "enable memory promotion.")); 133 134 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); 135 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 136 const LoopSafetyInfo *SafetyInfo, 137 TargetTransformInfo *TTI, bool &FreeInLoop); 138 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 139 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 140 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE); 141 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 142 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 143 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE); 144 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 145 const DominatorTree *DT, 146 const Loop *CurLoop, 147 const LoopSafetyInfo *SafetyInfo, 148 OptimizationRemarkEmitter *ORE, 149 const Instruction *CtxI = nullptr); 150 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 151 AliasSetTracker *CurAST, Loop *CurLoop, 152 AliasAnalysis *AA); 153 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 154 Loop *CurLoop, 155 SinkAndHoistLICMFlags &Flags); 156 static Instruction *CloneInstructionInExitBlock( 157 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 158 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU); 159 160 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 161 AliasSetTracker *AST, MemorySSAUpdater *MSSAU); 162 163 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 164 ICFLoopSafetyInfo &SafetyInfo, 165 MemorySSAUpdater *MSSAU); 166 167 namespace { 168 struct LoopInvariantCodeMotion { 169 using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>; 170 bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, 171 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, 172 ScalarEvolution *SE, MemorySSA *MSSA, 173 OptimizationRemarkEmitter *ORE, bool DeleteAST); 174 175 ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; } 176 LoopInvariantCodeMotion(unsigned LicmMssaOptCap, 177 unsigned LicmMssaNoAccForPromotionCap) 178 : LicmMssaOptCap(LicmMssaOptCap), 179 LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {} 180 181 private: 182 ASTrackerMapTy LoopToAliasSetMap; 183 unsigned LicmMssaOptCap; 184 unsigned LicmMssaNoAccForPromotionCap; 185 186 std::unique_ptr<AliasSetTracker> 187 collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA); 188 std::unique_ptr<AliasSetTracker> 189 collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA, 190 MemorySSAUpdater *MSSAU); 191 }; 192 193 struct LegacyLICMPass : public LoopPass { 194 static char ID; // Pass identification, replacement for typeid 195 LegacyLICMPass( 196 unsigned LicmMssaOptCap = SetLicmMssaOptCap, 197 unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap) 198 : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) { 199 initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); 200 } 201 202 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 203 if (skipLoop(L)) { 204 // If we have run LICM on a previous loop but now we are skipping 205 // (because we've hit the opt-bisect limit), we need to clear the 206 // loop alias information. 207 LICM.getLoopToAliasSetMap().clear(); 208 return false; 209 } 210 211 auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); 212 MemorySSA *MSSA = EnableMSSALoopDependency 213 ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA()) 214 : nullptr; 215 // For the old PM, we can't use OptimizationRemarkEmitter as an analysis 216 // pass. Function analyses need to be preserved across loop transformations 217 // but ORE cannot be preserved (see comment before the pass definition). 218 OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); 219 return LICM.runOnLoop(L, 220 &getAnalysis<AAResultsWrapperPass>().getAAResults(), 221 &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), 222 &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 223 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 224 &getAnalysis<TargetTransformInfoWrapperPass>().getTTI( 225 *L->getHeader()->getParent()), 226 SE ? &SE->getSE() : nullptr, MSSA, &ORE, false); 227 } 228 229 /// This transformation requires natural loop information & requires that 230 /// loop preheaders be inserted into the CFG... 231 /// 232 void getAnalysisUsage(AnalysisUsage &AU) const override { 233 AU.addPreserved<DominatorTreeWrapperPass>(); 234 AU.addPreserved<LoopInfoWrapperPass>(); 235 AU.addRequired<TargetLibraryInfoWrapperPass>(); 236 if (EnableMSSALoopDependency) { 237 AU.addRequired<MemorySSAWrapperPass>(); 238 AU.addPreserved<MemorySSAWrapperPass>(); 239 } 240 AU.addRequired<TargetTransformInfoWrapperPass>(); 241 getLoopAnalysisUsage(AU); 242 } 243 244 using llvm::Pass::doFinalization; 245 246 bool doFinalization() override { 247 auto &AliasSetMap = LICM.getLoopToAliasSetMap(); 248 // All loops in the AliasSetMap should be cleaned up already. The only case 249 // where we fail to do so is if an outer loop gets deleted before LICM 250 // visits it. 251 assert(all_of(AliasSetMap, 252 [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) { 253 return !KV.first->getParentLoop(); 254 }) && 255 "Didn't free loop alias sets"); 256 AliasSetMap.clear(); 257 return false; 258 } 259 260 private: 261 LoopInvariantCodeMotion LICM; 262 263 /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info. 264 void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, 265 Loop *L) override; 266 267 /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias 268 /// set. 269 void deleteAnalysisValue(Value *V, Loop *L) override; 270 271 /// Simple Analysis hook. Delete loop L from alias set map. 272 void deleteAnalysisLoop(Loop *L) override; 273 }; 274 } // namespace 275 276 PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, 277 LoopStandardAnalysisResults &AR, LPMUpdater &) { 278 const auto &FAM = 279 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager(); 280 Function *F = L.getHeader()->getParent(); 281 282 auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F); 283 // FIXME: This should probably be optional rather than required. 284 if (!ORE) 285 report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not " 286 "cached at a higher level"); 287 288 LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 289 if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE, 290 AR.MSSA, ORE, true)) 291 return PreservedAnalyses::all(); 292 293 auto PA = getLoopPassPreservedAnalyses(); 294 295 PA.preserve<DominatorTreeAnalysis>(); 296 PA.preserve<LoopAnalysis>(); 297 if (EnableMSSALoopDependency) 298 PA.preserve<MemorySSAAnalysis>(); 299 300 return PA; 301 } 302 303 char LegacyLICMPass::ID = 0; 304 INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", 305 false, false) 306 INITIALIZE_PASS_DEPENDENCY(LoopPass) 307 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 308 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 309 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 310 INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, 311 false) 312 313 Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } 314 Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, 315 unsigned LicmMssaNoAccForPromotionCap) { 316 return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap); 317 } 318 319 /// Hoist expressions out of the specified loop. Note, alias info for inner 320 /// loop is not preserved so it is not a good idea to run LICM multiple 321 /// times on one loop. 322 /// We should delete AST for inner loops in the new pass manager to avoid 323 /// memory leak. 324 /// 325 bool LoopInvariantCodeMotion::runOnLoop( 326 Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT, 327 TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE, 328 MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) { 329 bool Changed = false; 330 331 assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); 332 333 std::unique_ptr<AliasSetTracker> CurAST; 334 std::unique_ptr<MemorySSAUpdater> MSSAU; 335 bool NoOfMemAccTooLarge = false; 336 unsigned LicmMssaOptCounter = 0; 337 338 if (!MSSA) { 339 LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n"); 340 CurAST = collectAliasInfoForLoop(L, LI, AA); 341 } else { 342 LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n"); 343 MSSAU = make_unique<MemorySSAUpdater>(MSSA); 344 345 unsigned AccessCapCount = 0; 346 for (auto *BB : L->getBlocks()) { 347 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 348 for (const auto &MA : *Accesses) { 349 (void)MA; 350 AccessCapCount++; 351 if (AccessCapCount > LicmMssaNoAccForPromotionCap) { 352 NoOfMemAccTooLarge = true; 353 break; 354 } 355 } 356 } 357 if (NoOfMemAccTooLarge) 358 break; 359 } 360 } 361 362 // Get the preheader block to move instructions into... 363 BasicBlock *Preheader = L->getLoopPreheader(); 364 365 // Compute loop safety information. 366 ICFLoopSafetyInfo SafetyInfo(DT); 367 SafetyInfo.computeLoopSafetyInfo(L); 368 369 // We want to visit all of the instructions in this loop... that are not parts 370 // of our subloops (they have already had their invariants hoisted out of 371 // their loop, into this loop, so there is no need to process the BODIES of 372 // the subloops). 373 // 374 // Traverse the body of the loop in depth first order on the dominator tree so 375 // that we are guaranteed to see definitions before we see uses. This allows 376 // us to sink instructions in one pass, without iteration. After sinking 377 // instructions, we perform another pass to hoist them out of the loop. 378 SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter, 379 LicmMssaOptCap, LicmMssaNoAccForPromotionCap, 380 /*IsSink=*/true}; 381 if (L->hasDedicatedExits()) 382 Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, 383 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE); 384 Flags.IsSink = false; 385 if (Preheader) 386 Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L, 387 CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE); 388 389 // Now that all loop invariants have been removed from the loop, promote any 390 // memory references to scalars that we can. 391 // Don't sink stores from loops without dedicated block exits. Exits 392 // containing indirect branches are not transformed by loop simplify, 393 // make sure we catch that. An additional load may be generated in the 394 // preheader for SSA updater, so also avoid sinking when no preheader 395 // is available. 396 if (!DisablePromotion && Preheader && L->hasDedicatedExits() && 397 !NoOfMemAccTooLarge) { 398 // Figure out the loop exits and their insertion points 399 SmallVector<BasicBlock *, 8> ExitBlocks; 400 L->getUniqueExitBlocks(ExitBlocks); 401 402 // We can't insert into a catchswitch. 403 bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { 404 return isa<CatchSwitchInst>(Exit->getTerminator()); 405 }); 406 407 if (!HasCatchSwitch) { 408 SmallVector<Instruction *, 8> InsertPts; 409 SmallVector<MemoryAccess *, 8> MSSAInsertPts; 410 InsertPts.reserve(ExitBlocks.size()); 411 if (MSSAU) 412 MSSAInsertPts.reserve(ExitBlocks.size()); 413 for (BasicBlock *ExitBlock : ExitBlocks) { 414 InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); 415 if (MSSAU) 416 MSSAInsertPts.push_back(nullptr); 417 } 418 419 PredIteratorCache PIC; 420 421 bool Promoted = false; 422 423 // Build an AST using MSSA. 424 if (!CurAST.get()) 425 CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get()); 426 427 // Loop over all of the alias sets in the tracker object. 428 for (AliasSet &AS : *CurAST) { 429 // We can promote this alias set if it has a store, if it is a "Must" 430 // alias set, if the pointer is loop invariant, and if we are not 431 // eliminating any volatile loads or stores. 432 if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() || 433 !L->isLoopInvariant(AS.begin()->getValue())) 434 continue; 435 436 assert( 437 !AS.empty() && 438 "Must alias set should have at least one pointer element in it!"); 439 440 SmallSetVector<Value *, 8> PointerMustAliases; 441 for (const auto &ASI : AS) 442 PointerMustAliases.insert(ASI.getValue()); 443 444 Promoted |= promoteLoopAccessesToScalars( 445 PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, 446 DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE); 447 } 448 449 // Once we have promoted values across the loop body we have to 450 // recursively reform LCSSA as any nested loop may now have values defined 451 // within the loop used in the outer loop. 452 // FIXME: This is really heavy handed. It would be a bit better to use an 453 // SSAUpdater strategy during promotion that was LCSSA aware and reformed 454 // it as it went. 455 if (Promoted) 456 formLCSSARecursively(*L, *DT, LI, SE); 457 458 Changed |= Promoted; 459 } 460 } 461 462 // Check that neither this loop nor its parent have had LCSSA broken. LICM is 463 // specifically moving instructions across the loop boundary and so it is 464 // especially in need of sanity checking here. 465 assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); 466 assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) && 467 "Parent loop not left in LCSSA form after LICM!"); 468 469 // If this loop is nested inside of another one, save the alias information 470 // for when we process the outer loop. 471 if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST) 472 LoopToAliasSetMap[L] = std::move(CurAST); 473 474 if (MSSAU.get() && VerifyMemorySSA) 475 MSSAU->getMemorySSA()->verifyMemorySSA(); 476 477 if (Changed && SE) 478 SE->forgetLoopDispositions(L); 479 return Changed; 480 } 481 482 /// Walk the specified region of the CFG (defined by all blocks dominated by 483 /// the specified block, and that are in the current loop) in reverse depth 484 /// first order w.r.t the DominatorTree. This allows us to visit uses before 485 /// definitions, allowing us to sink a loop body in one pass without iteration. 486 /// 487 bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, 488 DominatorTree *DT, TargetLibraryInfo *TLI, 489 TargetTransformInfo *TTI, Loop *CurLoop, 490 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 491 ICFLoopSafetyInfo *SafetyInfo, 492 SinkAndHoistLICMFlags &Flags, 493 OptimizationRemarkEmitter *ORE) { 494 495 // Verify inputs. 496 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 497 CurLoop != nullptr && SafetyInfo != nullptr && 498 "Unexpected input to sinkRegion."); 499 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 500 "Either AliasSetTracker or MemorySSA should be initialized."); 501 502 // We want to visit children before parents. We will enque all the parents 503 // before their children in the worklist and process the worklist in reverse 504 // order. 505 SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); 506 507 bool Changed = false; 508 for (DomTreeNode *DTN : reverse(Worklist)) { 509 BasicBlock *BB = DTN->getBlock(); 510 // Only need to process the contents of this block if it is not part of a 511 // subloop (which would already have been processed). 512 if (inSubLoop(BB, CurLoop, LI)) 513 continue; 514 515 for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { 516 Instruction &I = *--II; 517 518 // If the instruction is dead, we would try to sink it because it isn't 519 // used in the loop, instead, just delete it. 520 if (isInstructionTriviallyDead(&I, TLI)) { 521 LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); 522 salvageDebugInfo(I); 523 ++II; 524 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 525 Changed = true; 526 continue; 527 } 528 529 // Check to see if we can sink this instruction to the exit blocks 530 // of the loop. We can do this if the all users of the instruction are 531 // outside of the loop. In this case, it doesn't even matter if the 532 // operands of the instruction are loop invariant. 533 // 534 bool FreeInLoop = false; 535 if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) && 536 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 537 ORE) && 538 !I.mayHaveSideEffects()) { 539 if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { 540 if (!FreeInLoop) { 541 ++II; 542 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 543 } 544 Changed = true; 545 } 546 } 547 } 548 } 549 if (MSSAU && VerifyMemorySSA) 550 MSSAU->getMemorySSA()->verifyMemorySSA(); 551 return Changed; 552 } 553 554 namespace { 555 // This is a helper class for hoistRegion to make it able to hoist control flow 556 // in order to be able to hoist phis. The way this works is that we initially 557 // start hoisting to the loop preheader, and when we see a loop invariant branch 558 // we make note of this. When we then come to hoist an instruction that's 559 // conditional on such a branch we duplicate the branch and the relevant control 560 // flow, then hoist the instruction into the block corresponding to its original 561 // block in the duplicated control flow. 562 class ControlFlowHoister { 563 private: 564 // Information about the loop we are hoisting from 565 LoopInfo *LI; 566 DominatorTree *DT; 567 Loop *CurLoop; 568 MemorySSAUpdater *MSSAU; 569 570 // A map of blocks in the loop to the block their instructions will be hoisted 571 // to. 572 DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; 573 574 // The branches that we can hoist, mapped to the block that marks a 575 // convergence point of their control flow. 576 DenseMap<BranchInst *, BasicBlock *> HoistableBranches; 577 578 public: 579 ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, 580 MemorySSAUpdater *MSSAU) 581 : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} 582 583 void registerPossiblyHoistableBranch(BranchInst *BI) { 584 // We can only hoist conditional branches with loop invariant operands. 585 if (!ControlFlowHoisting || !BI->isConditional() || 586 !CurLoop->hasLoopInvariantOperands(BI)) 587 return; 588 589 // The branch destinations need to be in the loop, and we don't gain 590 // anything by duplicating conditional branches with duplicate successors, 591 // as it's essentially the same as an unconditional branch. 592 BasicBlock *TrueDest = BI->getSuccessor(0); 593 BasicBlock *FalseDest = BI->getSuccessor(1); 594 if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || 595 TrueDest == FalseDest) 596 return; 597 598 // We can hoist BI if one branch destination is the successor of the other, 599 // or both have common successor which we check by seeing if the 600 // intersection of their successors is non-empty. 601 // TODO: This could be expanded to allowing branches where both ends 602 // eventually converge to a single block. 603 SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; 604 TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); 605 FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); 606 BasicBlock *CommonSucc = nullptr; 607 if (TrueDestSucc.count(FalseDest)) { 608 CommonSucc = FalseDest; 609 } else if (FalseDestSucc.count(TrueDest)) { 610 CommonSucc = TrueDest; 611 } else { 612 set_intersect(TrueDestSucc, FalseDestSucc); 613 // If there's one common successor use that. 614 if (TrueDestSucc.size() == 1) 615 CommonSucc = *TrueDestSucc.begin(); 616 // If there's more than one pick whichever appears first in the block list 617 // (we can't use the value returned by TrueDestSucc.begin() as it's 618 // unpredicatable which element gets returned). 619 else if (!TrueDestSucc.empty()) { 620 Function *F = TrueDest->getParent(); 621 auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; 622 auto It = std::find_if(F->begin(), F->end(), IsSucc); 623 assert(It != F->end() && "Could not find successor in function"); 624 CommonSucc = &*It; 625 } 626 } 627 // The common successor has to be dominated by the branch, as otherwise 628 // there will be some other path to the successor that will not be 629 // controlled by this branch so any phi we hoist would be controlled by the 630 // wrong condition. This also takes care of avoiding hoisting of loop back 631 // edges. 632 // TODO: In some cases this could be relaxed if the successor is dominated 633 // by another block that's been hoisted and we can guarantee that the 634 // control flow has been replicated exactly. 635 if (CommonSucc && DT->dominates(BI, CommonSucc)) 636 HoistableBranches[BI] = CommonSucc; 637 } 638 639 bool canHoistPHI(PHINode *PN) { 640 // The phi must have loop invariant operands. 641 if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) 642 return false; 643 // We can hoist phis if the block they are in is the target of hoistable 644 // branches which cover all of the predecessors of the block. 645 SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; 646 BasicBlock *BB = PN->getParent(); 647 for (BasicBlock *PredBB : predecessors(BB)) 648 PredecessorBlocks.insert(PredBB); 649 // If we have less predecessor blocks than predecessors then the phi will 650 // have more than one incoming value for the same block which we can't 651 // handle. 652 // TODO: This could be handled be erasing some of the duplicate incoming 653 // values. 654 if (PredecessorBlocks.size() != pred_size(BB)) 655 return false; 656 for (auto &Pair : HoistableBranches) { 657 if (Pair.second == BB) { 658 // Which blocks are predecessors via this branch depends on if the 659 // branch is triangle-like or diamond-like. 660 if (Pair.first->getSuccessor(0) == BB) { 661 PredecessorBlocks.erase(Pair.first->getParent()); 662 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 663 } else if (Pair.first->getSuccessor(1) == BB) { 664 PredecessorBlocks.erase(Pair.first->getParent()); 665 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 666 } else { 667 PredecessorBlocks.erase(Pair.first->getSuccessor(0)); 668 PredecessorBlocks.erase(Pair.first->getSuccessor(1)); 669 } 670 } 671 } 672 // PredecessorBlocks will now be empty if for every predecessor of BB we 673 // found a hoistable branch source. 674 return PredecessorBlocks.empty(); 675 } 676 677 BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { 678 if (!ControlFlowHoisting) 679 return CurLoop->getLoopPreheader(); 680 // If BB has already been hoisted, return that 681 if (HoistDestinationMap.count(BB)) 682 return HoistDestinationMap[BB]; 683 684 // Check if this block is conditional based on a pending branch 685 auto HasBBAsSuccessor = 686 [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { 687 return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || 688 Pair.first->getSuccessor(1) == BB); 689 }; 690 auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(), 691 HasBBAsSuccessor); 692 693 // If not involved in a pending branch, hoist to preheader 694 BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); 695 if (It == HoistableBranches.end()) { 696 LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName() 697 << " as hoist destination for " << BB->getName() 698 << "\n"); 699 HoistDestinationMap[BB] = InitialPreheader; 700 return InitialPreheader; 701 } 702 BranchInst *BI = It->first; 703 assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == 704 HoistableBranches.end() && 705 "BB is expected to be the target of at most one branch"); 706 707 LLVMContext &C = BB->getContext(); 708 BasicBlock *TrueDest = BI->getSuccessor(0); 709 BasicBlock *FalseDest = BI->getSuccessor(1); 710 BasicBlock *CommonSucc = HoistableBranches[BI]; 711 BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); 712 713 // Create hoisted versions of blocks that currently don't have them 714 auto CreateHoistedBlock = [&](BasicBlock *Orig) { 715 if (HoistDestinationMap.count(Orig)) 716 return HoistDestinationMap[Orig]; 717 BasicBlock *New = 718 BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); 719 HoistDestinationMap[Orig] = New; 720 DT->addNewBlock(New, HoistTarget); 721 if (CurLoop->getParentLoop()) 722 CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); 723 ++NumCreatedBlocks; 724 LLVM_DEBUG(dbgs() << "LICM created " << New->getName() 725 << " as hoist destination for " << Orig->getName() 726 << "\n"); 727 return New; 728 }; 729 BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); 730 BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); 731 BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); 732 733 // Link up these blocks with branches. 734 if (!HoistCommonSucc->getTerminator()) { 735 // The new common successor we've generated will branch to whatever that 736 // hoist target branched to. 737 BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); 738 assert(TargetSucc && "Expected hoist target to have a single successor"); 739 HoistCommonSucc->moveBefore(TargetSucc); 740 BranchInst::Create(TargetSucc, HoistCommonSucc); 741 } 742 if (!HoistTrueDest->getTerminator()) { 743 HoistTrueDest->moveBefore(HoistCommonSucc); 744 BranchInst::Create(HoistCommonSucc, HoistTrueDest); 745 } 746 if (!HoistFalseDest->getTerminator()) { 747 HoistFalseDest->moveBefore(HoistCommonSucc); 748 BranchInst::Create(HoistCommonSucc, HoistFalseDest); 749 } 750 751 // If BI is being cloned to what was originally the preheader then 752 // HoistCommonSucc will now be the new preheader. 753 if (HoistTarget == InitialPreheader) { 754 // Phis in the loop header now need to use the new preheader. 755 InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); 756 if (MSSAU) 757 MSSAU->wireOldPredecessorsToNewImmediatePredecessor( 758 HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); 759 // The new preheader dominates the loop header. 760 DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); 761 DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); 762 DT->changeImmediateDominator(HeaderNode, PreheaderNode); 763 // The preheader hoist destination is now the new preheader, with the 764 // exception of the hoist destination of this branch. 765 for (auto &Pair : HoistDestinationMap) 766 if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) 767 Pair.second = HoistCommonSucc; 768 } 769 770 // Now finally clone BI. 771 ReplaceInstWithInst( 772 HoistTarget->getTerminator(), 773 BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); 774 ++NumClonedBranches; 775 776 assert(CurLoop->getLoopPreheader() && 777 "Hoisting blocks should not have destroyed preheader"); 778 return HoistDestinationMap[BB]; 779 } 780 }; 781 } // namespace 782 783 /// Walk the specified region of the CFG (defined by all blocks dominated by 784 /// the specified block, and that are in the current loop) in depth first 785 /// order w.r.t the DominatorTree. This allows us to visit definitions before 786 /// uses, allowing us to hoist a loop body in one pass without iteration. 787 /// 788 bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI, 789 DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop, 790 AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 791 ICFLoopSafetyInfo *SafetyInfo, 792 SinkAndHoistLICMFlags &Flags, 793 OptimizationRemarkEmitter *ORE) { 794 // Verify inputs. 795 assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && 796 CurLoop != nullptr && SafetyInfo != nullptr && 797 "Unexpected input to hoistRegion."); 798 assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) && 799 "Either AliasSetTracker or MemorySSA should be initialized."); 800 801 ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); 802 803 // Keep track of instructions that have been hoisted, as they may need to be 804 // re-hoisted if they end up not dominating all of their uses. 805 SmallVector<Instruction *, 16> HoistedInstructions; 806 807 // For PHI hoisting to work we need to hoist blocks before their successors. 808 // We can do this by iterating through the blocks in the loop in reverse 809 // post-order. 810 LoopBlocksRPO Worklist(CurLoop); 811 Worklist.perform(LI); 812 bool Changed = false; 813 for (BasicBlock *BB : Worklist) { 814 // Only need to process the contents of this block if it is not part of a 815 // subloop (which would already have been processed). 816 if (inSubLoop(BB, CurLoop, LI)) 817 continue; 818 819 for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) { 820 Instruction &I = *II++; 821 // Try constant folding this instruction. If all the operands are 822 // constants, it is technically hoistable, but it would be better to 823 // just fold it. 824 if (Constant *C = ConstantFoldInstruction( 825 &I, I.getModule()->getDataLayout(), TLI)) { 826 LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C 827 << '\n'); 828 if (CurAST) 829 CurAST->copyValue(&I, C); 830 // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). 831 I.replaceAllUsesWith(C); 832 if (isInstructionTriviallyDead(&I, TLI)) 833 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 834 Changed = true; 835 continue; 836 } 837 838 // Try hoisting the instruction out to the preheader. We can only do 839 // this if all of the operands of the instruction are loop invariant and 840 // if it is safe to hoist the instruction. 841 // TODO: It may be safe to hoist if we are hoisting to a conditional block 842 // and we have accurately duplicated the control flow from the loop header 843 // to that block. 844 if (CurLoop->hasLoopInvariantOperands(&I) && 845 canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags, 846 ORE) && 847 isSafeToExecuteUnconditionally( 848 I, DT, CurLoop, SafetyInfo, ORE, 849 CurLoop->getLoopPreheader()->getTerminator())) { 850 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 851 MSSAU, ORE); 852 HoistedInstructions.push_back(&I); 853 Changed = true; 854 continue; 855 } 856 857 // Attempt to remove floating point division out of the loop by 858 // converting it to a reciprocal multiplication. 859 if (I.getOpcode() == Instruction::FDiv && 860 CurLoop->isLoopInvariant(I.getOperand(1)) && 861 I.hasAllowReciprocal()) { 862 auto Divisor = I.getOperand(1); 863 auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); 864 auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); 865 ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); 866 SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); 867 ReciprocalDivisor->insertBefore(&I); 868 869 auto Product = 870 BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); 871 Product->setFastMathFlags(I.getFastMathFlags()); 872 SafetyInfo->insertInstructionTo(Product, I.getParent()); 873 Product->insertAfter(&I); 874 I.replaceAllUsesWith(Product); 875 eraseInstruction(I, *SafetyInfo, CurAST, MSSAU); 876 877 hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), 878 SafetyInfo, MSSAU, ORE); 879 HoistedInstructions.push_back(ReciprocalDivisor); 880 Changed = true; 881 continue; 882 } 883 884 auto IsInvariantStart = [&](Instruction &I) { 885 using namespace PatternMatch; 886 return I.use_empty() && 887 match(&I, m_Intrinsic<Intrinsic::invariant_start>()); 888 }; 889 auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { 890 return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && 891 SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); 892 }; 893 if ((IsInvariantStart(I) || isGuard(&I)) && 894 CurLoop->hasLoopInvariantOperands(&I) && 895 MustExecuteWithoutWritesBefore(I)) { 896 hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 897 MSSAU, ORE); 898 HoistedInstructions.push_back(&I); 899 Changed = true; 900 continue; 901 } 902 903 if (PHINode *PN = dyn_cast<PHINode>(&I)) { 904 if (CFH.canHoistPHI(PN)) { 905 // Redirect incoming blocks first to ensure that we create hoisted 906 // versions of those blocks before we hoist the phi. 907 for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) 908 PN->setIncomingBlock( 909 i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); 910 hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, 911 MSSAU, ORE); 912 assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); 913 Changed = true; 914 continue; 915 } 916 } 917 918 // Remember possibly hoistable branches so we can actually hoist them 919 // later if needed. 920 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 921 CFH.registerPossiblyHoistableBranch(BI); 922 } 923 } 924 925 // If we hoisted instructions to a conditional block they may not dominate 926 // their uses that weren't hoisted (such as phis where some operands are not 927 // loop invariant). If so make them unconditional by moving them to their 928 // immediate dominator. We iterate through the instructions in reverse order 929 // which ensures that when we rehoist an instruction we rehoist its operands, 930 // and also keep track of where in the block we are rehoisting to to make sure 931 // that we rehoist instructions before the instructions that use them. 932 Instruction *HoistPoint = nullptr; 933 if (ControlFlowHoisting) { 934 for (Instruction *I : reverse(HoistedInstructions)) { 935 if (!llvm::all_of(I->uses(), 936 [&](Use &U) { return DT->dominates(I, U); })) { 937 BasicBlock *Dominator = 938 DT->getNode(I->getParent())->getIDom()->getBlock(); 939 if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { 940 if (HoistPoint) 941 assert(DT->dominates(Dominator, HoistPoint->getParent()) && 942 "New hoist point expected to dominate old hoist point"); 943 HoistPoint = Dominator->getTerminator(); 944 } 945 LLVM_DEBUG(dbgs() << "LICM rehoisting to " 946 << HoistPoint->getParent()->getName() 947 << ": " << *I << "\n"); 948 moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU); 949 HoistPoint = I; 950 Changed = true; 951 } 952 } 953 } 954 if (MSSAU && VerifyMemorySSA) 955 MSSAU->getMemorySSA()->verifyMemorySSA(); 956 957 // Now that we've finished hoisting make sure that LI and DT are still 958 // valid. 959 #ifndef NDEBUG 960 if (Changed) { 961 assert(DT->verify(DominatorTree::VerificationLevel::Fast) && 962 "Dominator tree verification failed"); 963 LI->verify(*DT); 964 } 965 #endif 966 967 return Changed; 968 } 969 970 // Return true if LI is invariant within scope of the loop. LI is invariant if 971 // CurLoop is dominated by an invariant.start representing the same memory 972 // location and size as the memory location LI loads from, and also the 973 // invariant.start has no uses. 974 static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, 975 Loop *CurLoop) { 976 Value *Addr = LI->getOperand(0); 977 const DataLayout &DL = LI->getModule()->getDataLayout(); 978 const uint32_t LocSizeInBits = DL.getTypeSizeInBits( 979 cast<PointerType>(Addr->getType())->getElementType()); 980 981 // if the type is i8 addrspace(x)*, we know this is the type of 982 // llvm.invariant.start operand 983 auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), 984 LI->getPointerAddressSpace()); 985 unsigned BitcastsVisited = 0; 986 // Look through bitcasts until we reach the i8* type (this is invariant.start 987 // operand type). 988 while (Addr->getType() != PtrInt8Ty) { 989 auto *BC = dyn_cast<BitCastInst>(Addr); 990 // Avoid traversing high number of bitcast uses. 991 if (++BitcastsVisited > MaxNumUsesTraversed || !BC) 992 return false; 993 Addr = BC->getOperand(0); 994 } 995 996 unsigned UsesVisited = 0; 997 // Traverse all uses of the load operand value, to see if invariant.start is 998 // one of the uses, and whether it dominates the load instruction. 999 for (auto *U : Addr->users()) { 1000 // Avoid traversing for Load operand with high number of users. 1001 if (++UsesVisited > MaxNumUsesTraversed) 1002 return false; 1003 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1004 // If there are escaping uses of invariant.start instruction, the load maybe 1005 // non-invariant. 1006 if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || 1007 !II->use_empty()) 1008 continue; 1009 unsigned InvariantSizeInBits = 1010 cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8; 1011 // Confirm the invariant.start location size contains the load operand size 1012 // in bits. Also, the invariant.start should dominate the load, and we 1013 // should not hoist the load out of a loop that contains this dominating 1014 // invariant.start. 1015 if (LocSizeInBits <= InvariantSizeInBits && 1016 DT->properlyDominates(II->getParent(), CurLoop->getHeader())) 1017 return true; 1018 } 1019 1020 return false; 1021 } 1022 1023 namespace { 1024 /// Return true if-and-only-if we know how to (mechanically) both hoist and 1025 /// sink a given instruction out of a loop. Does not address legality 1026 /// concerns such as aliasing or speculation safety. 1027 bool isHoistableAndSinkableInst(Instruction &I) { 1028 // Only these instructions are hoistable/sinkable. 1029 return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || 1030 isa<FenceInst>(I) || isa<BinaryOperator>(I) || isa<CastInst>(I) || 1031 isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || 1032 isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 1033 isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || 1034 isa<InsertValueInst>(I)); 1035 } 1036 /// Return true if all of the alias sets within this AST are known not to 1037 /// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop. 1038 bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU, 1039 const Loop *L) { 1040 if (CurAST) { 1041 for (AliasSet &AS : *CurAST) { 1042 if (!AS.isForwardingAliasSet() && AS.isMod()) { 1043 return false; 1044 } 1045 } 1046 return true; 1047 } else { /*MSSAU*/ 1048 for (auto *BB : L->getBlocks()) 1049 if (MSSAU->getMemorySSA()->getBlockDefs(BB)) 1050 return false; 1051 return true; 1052 } 1053 } 1054 1055 /// Return true if I is the only Instruction with a MemoryAccess in L. 1056 bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, 1057 const MemorySSAUpdater *MSSAU) { 1058 for (auto *BB : L->getBlocks()) 1059 if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) { 1060 int NotAPhi = 0; 1061 for (const auto &Acc : *Accs) { 1062 if (isa<MemoryPhi>(&Acc)) 1063 continue; 1064 const auto *MUD = cast<MemoryUseOrDef>(&Acc); 1065 if (MUD->getMemoryInst() != I || NotAPhi++ == 1) 1066 return false; 1067 } 1068 } 1069 return true; 1070 } 1071 } 1072 1073 bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, 1074 Loop *CurLoop, AliasSetTracker *CurAST, 1075 MemorySSAUpdater *MSSAU, 1076 bool TargetExecutesOncePerLoop, 1077 SinkAndHoistLICMFlags *Flags, 1078 OptimizationRemarkEmitter *ORE) { 1079 // If we don't understand the instruction, bail early. 1080 if (!isHoistableAndSinkableInst(I)) 1081 return false; 1082 1083 MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr; 1084 if (MSSA) 1085 assert(Flags != nullptr && "Flags cannot be null."); 1086 1087 // Loads have extra constraints we have to verify before we can hoist them. 1088 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 1089 if (!LI->isUnordered()) 1090 return false; // Don't sink/hoist volatile or ordered atomic loads! 1091 1092 // Loads from constant memory are always safe to move, even if they end up 1093 // in the same alias set as something that ends up being modified. 1094 if (AA->pointsToConstantMemory(LI->getOperand(0))) 1095 return true; 1096 if (LI->getMetadata(LLVMContext::MD_invariant_load)) 1097 return true; 1098 1099 if (LI->isAtomic() && !TargetExecutesOncePerLoop) 1100 return false; // Don't risk duplicating unordered loads 1101 1102 // This checks for an invariant.start dominating the load. 1103 if (isLoadInvariantInLoop(LI, DT, CurLoop)) 1104 return true; 1105 1106 bool Invalidated; 1107 if (CurAST) 1108 Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST, 1109 CurLoop, AA); 1110 else 1111 Invalidated = pointerInvalidatedByLoopWithMSSA( 1112 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags); 1113 // Check loop-invariant address because this may also be a sinkable load 1114 // whose address is not necessarily loop-invariant. 1115 if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1116 ORE->emit([&]() { 1117 return OptimizationRemarkMissed( 1118 DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) 1119 << "failed to move load with loop-invariant address " 1120 "because the loop may invalidate its value"; 1121 }); 1122 1123 return !Invalidated; 1124 } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { 1125 // Don't sink or hoist dbg info; it's legal, but not useful. 1126 if (isa<DbgInfoIntrinsic>(I)) 1127 return false; 1128 1129 // Don't sink calls which can throw. 1130 if (CI->mayThrow()) 1131 return false; 1132 1133 using namespace PatternMatch; 1134 if (match(CI, m_Intrinsic<Intrinsic::assume>())) 1135 // Assumes don't actually alias anything or throw 1136 return true; 1137 1138 // Handle simple cases by querying alias analysis. 1139 FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI); 1140 if (Behavior == FMRB_DoesNotAccessMemory) 1141 return true; 1142 if (AliasAnalysis::onlyReadsMemory(Behavior)) { 1143 // A readonly argmemonly function only reads from memory pointed to by 1144 // it's arguments with arbitrary offsets. If we can prove there are no 1145 // writes to this memory in the loop, we can hoist or sink. 1146 if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) { 1147 // TODO: expand to writeable arguments 1148 for (Value *Op : CI->arg_operands()) 1149 if (Op->getType()->isPointerTy()) { 1150 bool Invalidated; 1151 if (CurAST) 1152 Invalidated = pointerInvalidatedByLoop( 1153 MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()), 1154 CurAST, CurLoop, AA); 1155 else 1156 Invalidated = pointerInvalidatedByLoopWithMSSA( 1157 MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, 1158 *Flags); 1159 if (Invalidated) 1160 return false; 1161 } 1162 return true; 1163 } 1164 1165 // If this call only reads from memory and there are no writes to memory 1166 // in the loop, we can hoist or sink the call as appropriate. 1167 if (isReadOnly(CurAST, MSSAU, CurLoop)) 1168 return true; 1169 } 1170 1171 // FIXME: This should use mod/ref information to see if we can hoist or 1172 // sink the call. 1173 1174 return false; 1175 } else if (auto *FI = dyn_cast<FenceInst>(&I)) { 1176 // Fences alias (most) everything to provide ordering. For the moment, 1177 // just give up if there are any other memory operations in the loop. 1178 if (CurAST) { 1179 auto Begin = CurAST->begin(); 1180 assert(Begin != CurAST->end() && "must contain FI"); 1181 if (std::next(Begin) != CurAST->end()) 1182 // constant memory for instance, TODO: handle better 1183 return false; 1184 auto *UniqueI = Begin->getUniqueInstruction(); 1185 if (!UniqueI) 1186 // other memory op, give up 1187 return false; 1188 (void)FI; // suppress unused variable warning 1189 assert(UniqueI == FI && "AS must contain FI"); 1190 return true; 1191 } else // MSSAU 1192 return isOnlyMemoryAccess(FI, CurLoop, MSSAU); 1193 } else if (auto *SI = dyn_cast<StoreInst>(&I)) { 1194 if (!SI->isUnordered()) 1195 return false; // Don't sink/hoist volatile or ordered atomic store! 1196 1197 // We can only hoist a store that we can prove writes a value which is not 1198 // read or overwritten within the loop. For those cases, we fallback to 1199 // load store promotion instead. TODO: We can extend this to cases where 1200 // there is exactly one write to the location and that write dominates an 1201 // arbitrary number of reads in the loop. 1202 if (CurAST) { 1203 auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI)); 1204 1205 if (AS.isRef() || !AS.isMustAlias()) 1206 // Quick exit test, handled by the full path below as well. 1207 return false; 1208 auto *UniqueI = AS.getUniqueInstruction(); 1209 if (!UniqueI) 1210 // other memory op, give up 1211 return false; 1212 assert(UniqueI == SI && "AS must contain SI"); 1213 return true; 1214 } else { // MSSAU 1215 if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) 1216 return true; 1217 // If there are more accesses than the Promotion cap, give up, we're not 1218 // walking a list that long. 1219 if (Flags->NoOfMemAccTooLarge) 1220 return false; 1221 // Check store only if there's still "quota" to check clobber. 1222 if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap) 1223 return false; 1224 // If there are interfering Uses (i.e. their defining access is in the 1225 // loop), or ordered loads (stored as Defs!), don't move this store. 1226 // Could do better here, but this is conservatively correct. 1227 // TODO: Cache set of Uses on the first walk in runOnLoop, update when 1228 // moving accesses. Can also extend to dominating uses. 1229 auto *SIMD = MSSA->getMemoryAccess(SI); 1230 for (auto *BB : CurLoop->getBlocks()) 1231 if (auto *Accesses = MSSA->getBlockAccesses(BB)) { 1232 for (const auto &MA : *Accesses) 1233 if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { 1234 auto *MD = MU->getDefiningAccess(); 1235 if (!MSSA->isLiveOnEntryDef(MD) && 1236 CurLoop->contains(MD->getBlock())) 1237 return false; 1238 // Disable hoisting past potentially interfering loads. Optimized 1239 // Uses may point to an access outside the loop, as getClobbering 1240 // checks the previous iteration when walking the backedge. 1241 // FIXME: More precise: no Uses that alias SI. 1242 if (!Flags->IsSink && !MSSA->dominates(SIMD, MU)) 1243 return false; 1244 } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 1245 if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { 1246 (void)LI; // Silence warning. 1247 assert(!LI->isUnordered() && "Expected unordered load"); 1248 return false; 1249 } 1250 } 1251 1252 auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); 1253 Flags->LicmMssaOptCounter++; 1254 // If there are no clobbering Defs in the loop, store is safe to hoist. 1255 return MSSA->isLiveOnEntryDef(Source) || 1256 !CurLoop->contains(Source->getBlock()); 1257 } 1258 } 1259 1260 assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); 1261 1262 // We've established mechanical ability and aliasing, it's up to the caller 1263 // to check fault safety 1264 return true; 1265 } 1266 1267 /// Returns true if a PHINode is a trivially replaceable with an 1268 /// Instruction. 1269 /// This is true when all incoming values are that instruction. 1270 /// This pattern occurs most often with LCSSA PHI nodes. 1271 /// 1272 static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { 1273 for (const Value *IncValue : PN.incoming_values()) 1274 if (IncValue != &I) 1275 return false; 1276 1277 return true; 1278 } 1279 1280 /// Return true if the instruction is free in the loop. 1281 static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, 1282 const TargetTransformInfo *TTI) { 1283 1284 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) { 1285 if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free) 1286 return false; 1287 // For a GEP, we cannot simply use getUserCost because currently it 1288 // optimistically assume that a GEP will fold into addressing mode 1289 // regardless of its users. 1290 const BasicBlock *BB = GEP->getParent(); 1291 for (const User *U : GEP->users()) { 1292 const Instruction *UI = cast<Instruction>(U); 1293 if (CurLoop->contains(UI) && 1294 (BB != UI->getParent() || 1295 (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) 1296 return false; 1297 } 1298 return true; 1299 } else 1300 return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free; 1301 } 1302 1303 /// Return true if the only users of this instruction are outside of 1304 /// the loop. If this is true, we can sink the instruction to the exit 1305 /// blocks of the loop. 1306 /// 1307 /// We also return true if the instruction could be folded away in lowering. 1308 /// (e.g., a GEP can be folded into a load as an addressing mode in the loop). 1309 static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, 1310 const LoopSafetyInfo *SafetyInfo, 1311 TargetTransformInfo *TTI, bool &FreeInLoop) { 1312 const auto &BlockColors = SafetyInfo->getBlockColors(); 1313 bool IsFree = isFreeInLoop(I, CurLoop, TTI); 1314 for (const User *U : I.users()) { 1315 const Instruction *UI = cast<Instruction>(U); 1316 if (const PHINode *PN = dyn_cast<PHINode>(UI)) { 1317 const BasicBlock *BB = PN->getParent(); 1318 // We cannot sink uses in catchswitches. 1319 if (isa<CatchSwitchInst>(BB->getTerminator())) 1320 return false; 1321 1322 // We need to sink a callsite to a unique funclet. Avoid sinking if the 1323 // phi use is too muddled. 1324 if (isa<CallInst>(I)) 1325 if (!BlockColors.empty() && 1326 BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) 1327 return false; 1328 } 1329 1330 if (CurLoop->contains(UI)) { 1331 if (IsFree) { 1332 FreeInLoop = true; 1333 continue; 1334 } 1335 return false; 1336 } 1337 } 1338 return true; 1339 } 1340 1341 static Instruction *CloneInstructionInExitBlock( 1342 Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, 1343 const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) { 1344 Instruction *New; 1345 if (auto *CI = dyn_cast<CallInst>(&I)) { 1346 const auto &BlockColors = SafetyInfo->getBlockColors(); 1347 1348 // Sinking call-sites need to be handled differently from other 1349 // instructions. The cloned call-site needs a funclet bundle operand 1350 // appropriate for its location in the CFG. 1351 SmallVector<OperandBundleDef, 1> OpBundles; 1352 for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); 1353 BundleIdx != BundleEnd; ++BundleIdx) { 1354 OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); 1355 if (Bundle.getTagID() == LLVMContext::OB_funclet) 1356 continue; 1357 1358 OpBundles.emplace_back(Bundle); 1359 } 1360 1361 if (!BlockColors.empty()) { 1362 const ColorVector &CV = BlockColors.find(&ExitBlock)->second; 1363 assert(CV.size() == 1 && "non-unique color for exit block!"); 1364 BasicBlock *BBColor = CV.front(); 1365 Instruction *EHPad = BBColor->getFirstNonPHI(); 1366 if (EHPad->isEHPad()) 1367 OpBundles.emplace_back("funclet", EHPad); 1368 } 1369 1370 New = CallInst::Create(CI, OpBundles); 1371 } else { 1372 New = I.clone(); 1373 } 1374 1375 ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New); 1376 if (!I.getName().empty()) 1377 New->setName(I.getName() + ".le"); 1378 1379 MemoryAccess *OldMemAcc; 1380 if (MSSAU && (OldMemAcc = MSSAU->getMemorySSA()->getMemoryAccess(&I))) { 1381 // Create a new MemoryAccess and let MemorySSA set its defining access. 1382 MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB( 1383 New, nullptr, New->getParent(), MemorySSA::Beginning); 1384 if (NewMemAcc) { 1385 if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) 1386 MSSAU->insertDef(MemDef, /*RenameUses=*/true); 1387 else { 1388 auto *MemUse = cast<MemoryUse>(NewMemAcc); 1389 MSSAU->insertUse(MemUse); 1390 } 1391 } 1392 } 1393 1394 // Build LCSSA PHI nodes for any in-loop operands. Note that this is 1395 // particularly cheap because we can rip off the PHI node that we're 1396 // replacing for the number and blocks of the predecessors. 1397 // OPT: If this shows up in a profile, we can instead finish sinking all 1398 // invariant instructions, and then walk their operands to re-establish 1399 // LCSSA. That will eliminate creating PHI nodes just to nuke them when 1400 // sinking bottom-up. 1401 for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE; 1402 ++OI) 1403 if (Instruction *OInst = dyn_cast<Instruction>(*OI)) 1404 if (Loop *OLoop = LI->getLoopFor(OInst->getParent())) 1405 if (!OLoop->contains(&PN)) { 1406 PHINode *OpPN = 1407 PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), 1408 OInst->getName() + ".lcssa", &ExitBlock.front()); 1409 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 1410 OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); 1411 *OI = OpPN; 1412 } 1413 return New; 1414 } 1415 1416 static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, 1417 AliasSetTracker *AST, MemorySSAUpdater *MSSAU) { 1418 if (AST) 1419 AST->deleteValue(&I); 1420 if (MSSAU) 1421 MSSAU->removeMemoryAccess(&I); 1422 SafetyInfo.removeInstruction(&I); 1423 I.eraseFromParent(); 1424 } 1425 1426 static void moveInstructionBefore(Instruction &I, Instruction &Dest, 1427 ICFLoopSafetyInfo &SafetyInfo, 1428 MemorySSAUpdater *MSSAU) { 1429 SafetyInfo.removeInstruction(&I); 1430 SafetyInfo.insertInstructionTo(&I, Dest.getParent()); 1431 I.moveBefore(&Dest); 1432 if (MSSAU) 1433 if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( 1434 MSSAU->getMemorySSA()->getMemoryAccess(&I))) 1435 MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End); 1436 } 1437 1438 static Instruction *sinkThroughTriviallyReplaceablePHI( 1439 PHINode *TPN, Instruction *I, LoopInfo *LI, 1440 SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, 1441 const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, 1442 MemorySSAUpdater *MSSAU) { 1443 assert(isTriviallyReplaceablePHI(*TPN, *I) && 1444 "Expect only trivially replaceable PHI"); 1445 BasicBlock *ExitBlock = TPN->getParent(); 1446 Instruction *New; 1447 auto It = SunkCopies.find(ExitBlock); 1448 if (It != SunkCopies.end()) 1449 New = It->second; 1450 else 1451 New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock( 1452 *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); 1453 return New; 1454 } 1455 1456 static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { 1457 BasicBlock *BB = PN->getParent(); 1458 if (!BB->canSplitPredecessors()) 1459 return false; 1460 // It's not impossible to split EHPad blocks, but if BlockColors already exist 1461 // it require updating BlockColors for all offspring blocks accordingly. By 1462 // skipping such corner case, we can make updating BlockColors after splitting 1463 // predecessor fairly simple. 1464 if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) 1465 return false; 1466 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 1467 BasicBlock *BBPred = *PI; 1468 if (isa<IndirectBrInst>(BBPred->getTerminator())) 1469 return false; 1470 } 1471 return true; 1472 } 1473 1474 static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, 1475 LoopInfo *LI, const Loop *CurLoop, 1476 LoopSafetyInfo *SafetyInfo, 1477 MemorySSAUpdater *MSSAU) { 1478 #ifndef NDEBUG 1479 SmallVector<BasicBlock *, 32> ExitBlocks; 1480 CurLoop->getUniqueExitBlocks(ExitBlocks); 1481 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1482 ExitBlocks.end()); 1483 #endif 1484 BasicBlock *ExitBB = PN->getParent(); 1485 assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); 1486 1487 // Split predecessors of the loop exit to make instructions in the loop are 1488 // exposed to exit blocks through trivially replaceable PHIs while keeping the 1489 // loop in the canonical form where each predecessor of each exit block should 1490 // be contained within the loop. For example, this will convert the loop below 1491 // from 1492 // 1493 // LB1: 1494 // %v1 = 1495 // br %LE, %LB2 1496 // LB2: 1497 // %v2 = 1498 // br %LE, %LB1 1499 // LE: 1500 // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable 1501 // 1502 // to 1503 // 1504 // LB1: 1505 // %v1 = 1506 // br %LE.split, %LB2 1507 // LB2: 1508 // %v2 = 1509 // br %LE.split2, %LB1 1510 // LE.split: 1511 // %p1 = phi [%v1, %LB1] <-- trivially replaceable 1512 // br %LE 1513 // LE.split2: 1514 // %p2 = phi [%v2, %LB2] <-- trivially replaceable 1515 // br %LE 1516 // LE: 1517 // %p = phi [%p1, %LE.split], [%p2, %LE.split2] 1518 // 1519 const auto &BlockColors = SafetyInfo->getBlockColors(); 1520 SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); 1521 while (!PredBBs.empty()) { 1522 BasicBlock *PredBB = *PredBBs.begin(); 1523 assert(CurLoop->contains(PredBB) && 1524 "Expect all predecessors are in the loop"); 1525 if (PN->getBasicBlockIndex(PredBB) >= 0) { 1526 BasicBlock *NewPred = SplitBlockPredecessors( 1527 ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); 1528 // Since we do not allow splitting EH-block with BlockColors in 1529 // canSplitPredecessors(), we can simply assign predecessor's color to 1530 // the new block. 1531 if (!BlockColors.empty()) 1532 // Grab a reference to the ColorVector to be inserted before getting the 1533 // reference to the vector we are copying because inserting the new 1534 // element in BlockColors might cause the map to be reallocated. 1535 SafetyInfo->copyColors(NewPred, PredBB); 1536 } 1537 PredBBs.remove(PredBB); 1538 } 1539 } 1540 1541 /// When an instruction is found to only be used outside of the loop, this 1542 /// function moves it to the exit blocks and patches up SSA form as needed. 1543 /// This method is guaranteed to remove the original instruction from its 1544 /// position, and may either delete it or move it to outside of the loop. 1545 /// 1546 static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, 1547 const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, 1548 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) { 1549 LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); 1550 ORE->emit([&]() { 1551 return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) 1552 << "sinking " << ore::NV("Inst", &I); 1553 }); 1554 bool Changed = false; 1555 if (isa<LoadInst>(I)) 1556 ++NumMovedLoads; 1557 else if (isa<CallInst>(I)) 1558 ++NumMovedCalls; 1559 ++NumSunk; 1560 1561 // Iterate over users to be ready for actual sinking. Replace users via 1562 // unreachable blocks with undef and make all user PHIs trivially replaceable. 1563 SmallPtrSet<Instruction *, 8> VisitedUsers; 1564 for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { 1565 auto *User = cast<Instruction>(*UI); 1566 Use &U = UI.getUse(); 1567 ++UI; 1568 1569 if (VisitedUsers.count(User) || CurLoop->contains(User)) 1570 continue; 1571 1572 if (!DT->isReachableFromEntry(User->getParent())) { 1573 U = UndefValue::get(I.getType()); 1574 Changed = true; 1575 continue; 1576 } 1577 1578 // The user must be a PHI node. 1579 PHINode *PN = cast<PHINode>(User); 1580 1581 // Surprisingly, instructions can be used outside of loops without any 1582 // exits. This can only happen in PHI nodes if the incoming block is 1583 // unreachable. 1584 BasicBlock *BB = PN->getIncomingBlock(U); 1585 if (!DT->isReachableFromEntry(BB)) { 1586 U = UndefValue::get(I.getType()); 1587 Changed = true; 1588 continue; 1589 } 1590 1591 VisitedUsers.insert(PN); 1592 if (isTriviallyReplaceablePHI(*PN, I)) 1593 continue; 1594 1595 if (!canSplitPredecessors(PN, SafetyInfo)) 1596 return Changed; 1597 1598 // Split predecessors of the PHI so that we can make users trivially 1599 // replaceable. 1600 splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU); 1601 1602 // Should rebuild the iterators, as they may be invalidated by 1603 // splitPredecessorsOfLoopExit(). 1604 UI = I.user_begin(); 1605 UE = I.user_end(); 1606 } 1607 1608 if (VisitedUsers.empty()) 1609 return Changed; 1610 1611 #ifndef NDEBUG 1612 SmallVector<BasicBlock *, 32> ExitBlocks; 1613 CurLoop->getUniqueExitBlocks(ExitBlocks); 1614 SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), 1615 ExitBlocks.end()); 1616 #endif 1617 1618 // Clones of this instruction. Don't create more than one per exit block! 1619 SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; 1620 1621 // If this instruction is only used outside of the loop, then all users are 1622 // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of 1623 // the instruction. 1624 SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); 1625 for (auto *UI : Users) { 1626 auto *User = cast<Instruction>(UI); 1627 1628 if (CurLoop->contains(User)) 1629 continue; 1630 1631 PHINode *PN = cast<PHINode>(User); 1632 assert(ExitBlockSet.count(PN->getParent()) && 1633 "The LCSSA PHI is not in an exit block!"); 1634 // The PHI must be trivially replaceable. 1635 Instruction *New = sinkThroughTriviallyReplaceablePHI( 1636 PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); 1637 PN->replaceAllUsesWith(New); 1638 eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr); 1639 Changed = true; 1640 } 1641 return Changed; 1642 } 1643 1644 /// When an instruction is found to only use loop invariant operands that 1645 /// is safe to hoist, this instruction is called to do the dirty work. 1646 /// 1647 static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, 1648 BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, 1649 MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) { 1650 LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I 1651 << "\n"); 1652 ORE->emit([&]() { 1653 return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " 1654 << ore::NV("Inst", &I); 1655 }); 1656 1657 // Metadata can be dependent on conditions we are hoisting above. 1658 // Conservatively strip all metadata on the instruction unless we were 1659 // guaranteed to execute I if we entered the loop, in which case the metadata 1660 // is valid in the loop preheader. 1661 if (I.hasMetadataOtherThanDebugLoc() && 1662 // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning 1663 // time in isGuaranteedToExecute if we don't actually have anything to 1664 // drop. It is a compile time optimization, not required for correctness. 1665 !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) 1666 I.dropUnknownNonDebugMetadata(); 1667 1668 if (isa<PHINode>(I)) 1669 // Move the new node to the end of the phi list in the destination block. 1670 moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU); 1671 else 1672 // Move the new node to the destination block, before its terminator. 1673 moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU); 1674 1675 // Apply line 0 debug locations when we are moving instructions to different 1676 // basic blocks because we want to avoid jumpy line tables. 1677 if (const DebugLoc &DL = I.getDebugLoc()) 1678 I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); 1679 1680 if (isa<LoadInst>(I)) 1681 ++NumMovedLoads; 1682 else if (isa<CallInst>(I)) 1683 ++NumMovedCalls; 1684 ++NumHoisted; 1685 } 1686 1687 /// Only sink or hoist an instruction if it is not a trapping instruction, 1688 /// or if the instruction is known not to trap when moved to the preheader. 1689 /// or if it is a trapping instruction and is guaranteed to execute. 1690 static bool isSafeToExecuteUnconditionally(Instruction &Inst, 1691 const DominatorTree *DT, 1692 const Loop *CurLoop, 1693 const LoopSafetyInfo *SafetyInfo, 1694 OptimizationRemarkEmitter *ORE, 1695 const Instruction *CtxI) { 1696 if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT)) 1697 return true; 1698 1699 bool GuaranteedToExecute = 1700 SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); 1701 1702 if (!GuaranteedToExecute) { 1703 auto *LI = dyn_cast<LoadInst>(&Inst); 1704 if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) 1705 ORE->emit([&]() { 1706 return OptimizationRemarkMissed( 1707 DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) 1708 << "failed to hoist load with loop-invariant address " 1709 "because load is conditionally executed"; 1710 }); 1711 } 1712 1713 return GuaranteedToExecute; 1714 } 1715 1716 namespace { 1717 class LoopPromoter : public LoadAndStorePromoter { 1718 Value *SomePtr; // Designated pointer to store to. 1719 const SmallSetVector<Value *, 8> &PointerMustAliases; 1720 SmallVectorImpl<BasicBlock *> &LoopExitBlocks; 1721 SmallVectorImpl<Instruction *> &LoopInsertPts; 1722 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; 1723 PredIteratorCache &PredCache; 1724 AliasSetTracker &AST; 1725 MemorySSAUpdater *MSSAU; 1726 LoopInfo &LI; 1727 DebugLoc DL; 1728 int Alignment; 1729 bool UnorderedAtomic; 1730 AAMDNodes AATags; 1731 ICFLoopSafetyInfo &SafetyInfo; 1732 1733 Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { 1734 if (Instruction *I = dyn_cast<Instruction>(V)) 1735 if (Loop *L = LI.getLoopFor(I->getParent())) 1736 if (!L->contains(BB)) { 1737 // We need to create an LCSSA PHI node for the incoming value and 1738 // store that. 1739 PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), 1740 I->getName() + ".lcssa", &BB->front()); 1741 for (BasicBlock *Pred : PredCache.get(BB)) 1742 PN->addIncoming(I, Pred); 1743 return PN; 1744 } 1745 return V; 1746 } 1747 1748 public: 1749 LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, 1750 const SmallSetVector<Value *, 8> &PMA, 1751 SmallVectorImpl<BasicBlock *> &LEB, 1752 SmallVectorImpl<Instruction *> &LIP, 1753 SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, 1754 AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li, 1755 DebugLoc dl, int alignment, bool UnorderedAtomic, 1756 const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo) 1757 : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA), 1758 LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), 1759 PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)), 1760 Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags), 1761 SafetyInfo(SafetyInfo) {} 1762 1763 bool isInstInList(Instruction *I, 1764 const SmallVectorImpl<Instruction *> &) const override { 1765 Value *Ptr; 1766 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 1767 Ptr = LI->getOperand(0); 1768 else 1769 Ptr = cast<StoreInst>(I)->getPointerOperand(); 1770 return PointerMustAliases.count(Ptr); 1771 } 1772 1773 void doExtraRewritesBeforeFinalDeletion() override { 1774 // Insert stores after in the loop exit blocks. Each exit block gets a 1775 // store of the live-out values that feed them. Since we've already told 1776 // the SSA updater about the defs in the loop and the preheader 1777 // definition, it is all set and we can start using it. 1778 for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { 1779 BasicBlock *ExitBlock = LoopExitBlocks[i]; 1780 Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); 1781 LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); 1782 Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); 1783 Instruction *InsertPos = LoopInsertPts[i]; 1784 StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); 1785 if (UnorderedAtomic) 1786 NewSI->setOrdering(AtomicOrdering::Unordered); 1787 NewSI->setAlignment(Alignment); 1788 NewSI->setDebugLoc(DL); 1789 if (AATags) 1790 NewSI->setAAMetadata(AATags); 1791 1792 if (MSSAU) { 1793 MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; 1794 MemoryAccess *NewMemAcc; 1795 if (!MSSAInsertPoint) { 1796 NewMemAcc = MSSAU->createMemoryAccessInBB( 1797 NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); 1798 } else { 1799 NewMemAcc = 1800 MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); 1801 } 1802 MSSAInsertPts[i] = NewMemAcc; 1803 MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true); 1804 // FIXME: true for safety, false may still be correct. 1805 } 1806 } 1807 } 1808 1809 void replaceLoadWithValue(LoadInst *LI, Value *V) const override { 1810 // Update alias analysis. 1811 AST.copyValue(LI, V); 1812 } 1813 void instructionDeleted(Instruction *I) const override { 1814 SafetyInfo.removeInstruction(I); 1815 AST.deleteValue(I); 1816 if (MSSAU) 1817 MSSAU->removeMemoryAccess(I); 1818 } 1819 }; 1820 1821 1822 /// Return true iff we can prove that a caller of this function can not inspect 1823 /// the contents of the provided object in a well defined program. 1824 bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) { 1825 if (isa<AllocaInst>(Object)) 1826 // Since the alloca goes out of scope, we know the caller can't retain a 1827 // reference to it and be well defined. Thus, we don't need to check for 1828 // capture. 1829 return true; 1830 1831 // For all other objects we need to know that the caller can't possibly 1832 // have gotten a reference to the object. There are two components of 1833 // that: 1834 // 1) Object can't be escaped by this function. This is what 1835 // PointerMayBeCaptured checks. 1836 // 2) Object can't have been captured at definition site. For this, we 1837 // need to know the return value is noalias. At the moment, we use a 1838 // weaker condition and handle only AllocLikeFunctions (which are 1839 // known to be noalias). TODO 1840 return isAllocLikeFn(Object, TLI) && 1841 !PointerMayBeCaptured(Object, true, true); 1842 } 1843 1844 } // namespace 1845 1846 /// Try to promote memory values to scalars by sinking stores out of the 1847 /// loop and moving loads to before the loop. We do this by looping over 1848 /// the stores in the loop, looking for stores to Must pointers which are 1849 /// loop invariant. 1850 /// 1851 bool llvm::promoteLoopAccessesToScalars( 1852 const SmallSetVector<Value *, 8> &PointerMustAliases, 1853 SmallVectorImpl<BasicBlock *> &ExitBlocks, 1854 SmallVectorImpl<Instruction *> &InsertPts, 1855 SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, 1856 LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI, 1857 Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU, 1858 ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) { 1859 // Verify inputs. 1860 assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && 1861 CurAST != nullptr && SafetyInfo != nullptr && 1862 "Unexpected Input to promoteLoopAccessesToScalars"); 1863 1864 Value *SomePtr = *PointerMustAliases.begin(); 1865 BasicBlock *Preheader = CurLoop->getLoopPreheader(); 1866 1867 // It is not safe to promote a load/store from the loop if the load/store is 1868 // conditional. For example, turning: 1869 // 1870 // for () { if (c) *P += 1; } 1871 // 1872 // into: 1873 // 1874 // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; 1875 // 1876 // is not safe, because *P may only be valid to access if 'c' is true. 1877 // 1878 // The safety property divides into two parts: 1879 // p1) The memory may not be dereferenceable on entry to the loop. In this 1880 // case, we can't insert the required load in the preheader. 1881 // p2) The memory model does not allow us to insert a store along any dynamic 1882 // path which did not originally have one. 1883 // 1884 // If at least one store is guaranteed to execute, both properties are 1885 // satisfied, and promotion is legal. 1886 // 1887 // This, however, is not a necessary condition. Even if no store/load is 1888 // guaranteed to execute, we can still establish these properties. 1889 // We can establish (p1) by proving that hoisting the load into the preheader 1890 // is safe (i.e. proving dereferenceability on all paths through the loop). We 1891 // can use any access within the alias set to prove dereferenceability, 1892 // since they're all must alias. 1893 // 1894 // There are two ways establish (p2): 1895 // a) Prove the location is thread-local. In this case the memory model 1896 // requirement does not apply, and stores are safe to insert. 1897 // b) Prove a store dominates every exit block. In this case, if an exit 1898 // blocks is reached, the original dynamic path would have taken us through 1899 // the store, so inserting a store into the exit block is safe. Note that this 1900 // is different from the store being guaranteed to execute. For instance, 1901 // if an exception is thrown on the first iteration of the loop, the original 1902 // store is never executed, but the exit blocks are not executed either. 1903 1904 bool DereferenceableInPH = false; 1905 bool SafeToInsertStore = false; 1906 1907 SmallVector<Instruction *, 64> LoopUses; 1908 1909 // We start with an alignment of one and try to find instructions that allow 1910 // us to prove better alignment. 1911 unsigned Alignment = 1; 1912 // Keep track of which types of access we see 1913 bool SawUnorderedAtomic = false; 1914 bool SawNotAtomic = false; 1915 AAMDNodes AATags; 1916 1917 const DataLayout &MDL = Preheader->getModule()->getDataLayout(); 1918 1919 bool IsKnownThreadLocalObject = false; 1920 if (SafetyInfo->anyBlockMayThrow()) { 1921 // If a loop can throw, we have to insert a store along each unwind edge. 1922 // That said, we can't actually make the unwind edge explicit. Therefore, 1923 // we have to prove that the store is dead along the unwind edge. We do 1924 // this by proving that the caller can't have a reference to the object 1925 // after return and thus can't possibly load from the object. 1926 Value *Object = GetUnderlyingObject(SomePtr, MDL); 1927 if (!isKnownNonEscaping(Object, TLI)) 1928 return false; 1929 // Subtlety: Alloca's aren't visible to callers, but *are* potentially 1930 // visible to other threads if captured and used during their lifetimes. 1931 IsKnownThreadLocalObject = !isa<AllocaInst>(Object); 1932 } 1933 1934 // Check that all of the pointers in the alias set have the same type. We 1935 // cannot (yet) promote a memory location that is loaded and stored in 1936 // different sizes. While we are at it, collect alignment and AA info. 1937 for (Value *ASIV : PointerMustAliases) { 1938 // Check that all of the pointers in the alias set have the same type. We 1939 // cannot (yet) promote a memory location that is loaded and stored in 1940 // different sizes. 1941 if (SomePtr->getType() != ASIV->getType()) 1942 return false; 1943 1944 for (User *U : ASIV->users()) { 1945 // Ignore instructions that are outside the loop. 1946 Instruction *UI = dyn_cast<Instruction>(U); 1947 if (!UI || !CurLoop->contains(UI)) 1948 continue; 1949 1950 // If there is an non-load/store instruction in the loop, we can't promote 1951 // it. 1952 if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { 1953 if (!Load->isUnordered()) 1954 return false; 1955 1956 SawUnorderedAtomic |= Load->isAtomic(); 1957 SawNotAtomic |= !Load->isAtomic(); 1958 1959 unsigned InstAlignment = Load->getAlignment(); 1960 if (!InstAlignment) 1961 InstAlignment = 1962 MDL.getABITypeAlignment(Load->getType()); 1963 1964 // Note that proving a load safe to speculate requires proving 1965 // sufficient alignment at the target location. Proving it guaranteed 1966 // to execute does as well. Thus we can increase our guaranteed 1967 // alignment as well. 1968 if (!DereferenceableInPH || (InstAlignment > Alignment)) 1969 if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo, 1970 ORE, Preheader->getTerminator())) { 1971 DereferenceableInPH = true; 1972 Alignment = std::max(Alignment, InstAlignment); 1973 } 1974 } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { 1975 // Stores *of* the pointer are not interesting, only stores *to* the 1976 // pointer. 1977 if (UI->getOperand(1) != ASIV) 1978 continue; 1979 if (!Store->isUnordered()) 1980 return false; 1981 1982 SawUnorderedAtomic |= Store->isAtomic(); 1983 SawNotAtomic |= !Store->isAtomic(); 1984 1985 // If the store is guaranteed to execute, both properties are satisfied. 1986 // We may want to check if a store is guaranteed to execute even if we 1987 // already know that promotion is safe, since it may have higher 1988 // alignment than any other guaranteed stores, in which case we can 1989 // raise the alignment on the promoted store. 1990 unsigned InstAlignment = Store->getAlignment(); 1991 if (!InstAlignment) 1992 InstAlignment = 1993 MDL.getABITypeAlignment(Store->getValueOperand()->getType()); 1994 1995 if (!DereferenceableInPH || !SafeToInsertStore || 1996 (InstAlignment > Alignment)) { 1997 if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) { 1998 DereferenceableInPH = true; 1999 SafeToInsertStore = true; 2000 Alignment = std::max(Alignment, InstAlignment); 2001 } 2002 } 2003 2004 // If a store dominates all exit blocks, it is safe to sink. 2005 // As explained above, if an exit block was executed, a dominating 2006 // store must have been executed at least once, so we are not 2007 // introducing stores on paths that did not have them. 2008 // Note that this only looks at explicit exit blocks. If we ever 2009 // start sinking stores into unwind edges (see above), this will break. 2010 if (!SafeToInsertStore) 2011 SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { 2012 return DT->dominates(Store->getParent(), Exit); 2013 }); 2014 2015 // If the store is not guaranteed to execute, we may still get 2016 // deref info through it. 2017 if (!DereferenceableInPH) { 2018 DereferenceableInPH = isDereferenceableAndAlignedPointer( 2019 Store->getPointerOperand(), Store->getAlignment(), MDL, 2020 Preheader->getTerminator(), DT); 2021 } 2022 } else 2023 return false; // Not a load or store. 2024 2025 // Merge the AA tags. 2026 if (LoopUses.empty()) { 2027 // On the first load/store, just take its AA tags. 2028 UI->getAAMetadata(AATags); 2029 } else if (AATags) { 2030 UI->getAAMetadata(AATags, /* Merge = */ true); 2031 } 2032 2033 LoopUses.push_back(UI); 2034 } 2035 } 2036 2037 // If we found both an unordered atomic instruction and a non-atomic memory 2038 // access, bail. We can't blindly promote non-atomic to atomic since we 2039 // might not be able to lower the result. We can't downgrade since that 2040 // would violate memory model. Also, align 0 is an error for atomics. 2041 if (SawUnorderedAtomic && SawNotAtomic) 2042 return false; 2043 2044 // If we're inserting an atomic load in the preheader, we must be able to 2045 // lower it. We're only guaranteed to be able to lower naturally aligned 2046 // atomics. 2047 auto *SomePtrElemType = SomePtr->getType()->getPointerElementType(); 2048 if (SawUnorderedAtomic && 2049 Alignment < MDL.getTypeStoreSize(SomePtrElemType)) 2050 return false; 2051 2052 // If we couldn't prove we can hoist the load, bail. 2053 if (!DereferenceableInPH) 2054 return false; 2055 2056 // We know we can hoist the load, but don't have a guaranteed store. 2057 // Check whether the location is thread-local. If it is, then we can insert 2058 // stores along paths which originally didn't have them without violating the 2059 // memory model. 2060 if (!SafeToInsertStore) { 2061 if (IsKnownThreadLocalObject) 2062 SafeToInsertStore = true; 2063 else { 2064 Value *Object = GetUnderlyingObject(SomePtr, MDL); 2065 SafeToInsertStore = 2066 (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) && 2067 !PointerMayBeCaptured(Object, true, true); 2068 } 2069 } 2070 2071 // If we've still failed to prove we can sink the store, give up. 2072 if (!SafeToInsertStore) 2073 return false; 2074 2075 // Otherwise, this is safe to promote, lets do it! 2076 LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr 2077 << '\n'); 2078 ORE->emit([&]() { 2079 return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", 2080 LoopUses[0]) 2081 << "Moving accesses to memory location out of the loop"; 2082 }); 2083 ++NumPromoted; 2084 2085 // Grab a debug location for the inserted loads/stores; given that the 2086 // inserted loads/stores have little relation to the original loads/stores, 2087 // this code just arbitrarily picks a location from one, since any debug 2088 // location is better than none. 2089 DebugLoc DL = LoopUses[0]->getDebugLoc(); 2090 2091 // We use the SSAUpdater interface to insert phi nodes as required. 2092 SmallVector<PHINode *, 16> NewPHIs; 2093 SSAUpdater SSA(&NewPHIs); 2094 LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks, 2095 InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL, 2096 Alignment, SawUnorderedAtomic, AATags, *SafetyInfo); 2097 2098 // Set up the preheader to have a definition of the value. It is the live-out 2099 // value from the preheader that uses in the loop will use. 2100 LoadInst *PreheaderLoad = new LoadInst( 2101 SomePtr->getType()->getPointerElementType(), SomePtr, 2102 SomePtr->getName() + ".promoted", Preheader->getTerminator()); 2103 if (SawUnorderedAtomic) 2104 PreheaderLoad->setOrdering(AtomicOrdering::Unordered); 2105 PreheaderLoad->setAlignment(Alignment); 2106 PreheaderLoad->setDebugLoc(DL); 2107 if (AATags) 2108 PreheaderLoad->setAAMetadata(AATags); 2109 SSA.AddAvailableValue(Preheader, PreheaderLoad); 2110 2111 MemoryAccess *PreheaderLoadMemoryAccess; 2112 if (MSSAU) { 2113 PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB( 2114 PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); 2115 MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); 2116 MSSAU->insertUse(NewMemUse); 2117 } 2118 2119 // Rewrite all the loads in the loop and remember all the definitions from 2120 // stores in the loop. 2121 Promoter.run(LoopUses); 2122 2123 if (MSSAU && VerifyMemorySSA) 2124 MSSAU->getMemorySSA()->verifyMemorySSA(); 2125 // If the SSAUpdater didn't use the load in the preheader, just zap it now. 2126 if (PreheaderLoad->use_empty()) 2127 eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU); 2128 2129 return true; 2130 } 2131 2132 /// Returns an owning pointer to an alias set which incorporates aliasing info 2133 /// from L and all subloops of L. 2134 /// FIXME: In new pass manager, there is no helper function to handle loop 2135 /// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed 2136 /// from scratch for every loop. Hook up with the helper functions when 2137 /// available in the new pass manager to avoid redundant computation. 2138 std::unique_ptr<AliasSetTracker> 2139 LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI, 2140 AliasAnalysis *AA) { 2141 std::unique_ptr<AliasSetTracker> CurAST; 2142 SmallVector<Loop *, 4> RecomputeLoops; 2143 for (Loop *InnerL : L->getSubLoops()) { 2144 auto MapI = LoopToAliasSetMap.find(InnerL); 2145 // If the AST for this inner loop is missing it may have been merged into 2146 // some other loop's AST and then that loop unrolled, and so we need to 2147 // recompute it. 2148 if (MapI == LoopToAliasSetMap.end()) { 2149 RecomputeLoops.push_back(InnerL); 2150 continue; 2151 } 2152 std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second); 2153 2154 if (CurAST) { 2155 // What if InnerLoop was modified by other passes ? 2156 // Once we've incorporated the inner loop's AST into ours, we don't need 2157 // the subloop's anymore. 2158 CurAST->add(*InnerAST); 2159 } else { 2160 CurAST = std::move(InnerAST); 2161 } 2162 LoopToAliasSetMap.erase(MapI); 2163 } 2164 if (!CurAST) 2165 CurAST = make_unique<AliasSetTracker>(*AA); 2166 2167 // Add everything from the sub loops that are no longer directly available. 2168 for (Loop *InnerL : RecomputeLoops) 2169 for (BasicBlock *BB : InnerL->blocks()) 2170 CurAST->add(*BB); 2171 2172 // And merge in this loop (without anything from inner loops). 2173 for (BasicBlock *BB : L->blocks()) 2174 if (LI->getLoopFor(BB) == L) 2175 CurAST->add(*BB); 2176 2177 return CurAST; 2178 } 2179 2180 std::unique_ptr<AliasSetTracker> 2181 LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA( 2182 Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) { 2183 auto *MSSA = MSSAU->getMemorySSA(); 2184 auto CurAST = make_unique<AliasSetTracker>(*AA, MSSA, L); 2185 CurAST->addAllInstructionsInLoopUsingMSSA(); 2186 return CurAST; 2187 } 2188 2189 /// Simple analysis hook. Clone alias set info. 2190 /// 2191 void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To, 2192 Loop *L) { 2193 auto ASTIt = LICM.getLoopToAliasSetMap().find(L); 2194 if (ASTIt == LICM.getLoopToAliasSetMap().end()) 2195 return; 2196 2197 ASTIt->second->copyValue(From, To); 2198 } 2199 2200 /// Simple Analysis hook. Delete value V from alias set 2201 /// 2202 void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) { 2203 auto ASTIt = LICM.getLoopToAliasSetMap().find(L); 2204 if (ASTIt == LICM.getLoopToAliasSetMap().end()) 2205 return; 2206 2207 ASTIt->second->deleteValue(V); 2208 } 2209 2210 /// Simple Analysis hook. Delete value L from alias set map. 2211 /// 2212 void LegacyLICMPass::deleteAnalysisLoop(Loop *L) { 2213 if (!LICM.getLoopToAliasSetMap().count(L)) 2214 return; 2215 2216 LICM.getLoopToAliasSetMap().erase(L); 2217 } 2218 2219 static bool pointerInvalidatedByLoop(MemoryLocation MemLoc, 2220 AliasSetTracker *CurAST, Loop *CurLoop, 2221 AliasAnalysis *AA) { 2222 // First check to see if any of the basic blocks in CurLoop invalidate *V. 2223 bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod(); 2224 2225 if (!isInvalidatedAccordingToAST || !LICMN2Theshold) 2226 return isInvalidatedAccordingToAST; 2227 2228 // Check with a diagnostic analysis if we can refine the information above. 2229 // This is to identify the limitations of using the AST. 2230 // The alias set mechanism used by LICM has a major weakness in that it 2231 // combines all things which may alias into a single set *before* asking 2232 // modref questions. As a result, a single readonly call within a loop will 2233 // collapse all loads and stores into a single alias set and report 2234 // invalidation if the loop contains any store. For example, readonly calls 2235 // with deopt states have this form and create a general alias set with all 2236 // loads and stores. In order to get any LICM in loops containing possible 2237 // deopt states we need a more precise invalidation of checking the mod ref 2238 // info of each instruction within the loop and LI. This has a complexity of 2239 // O(N^2), so currently, it is used only as a diagnostic tool since the 2240 // default value of LICMN2Threshold is zero. 2241 2242 // Don't look at nested loops. 2243 if (CurLoop->begin() != CurLoop->end()) 2244 return true; 2245 2246 int N = 0; 2247 for (BasicBlock *BB : CurLoop->getBlocks()) 2248 for (Instruction &I : *BB) { 2249 if (N >= LICMN2Theshold) { 2250 LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for " 2251 << *(MemLoc.Ptr) << "\n"); 2252 return true; 2253 } 2254 N++; 2255 auto Res = AA->getModRefInfo(&I, MemLoc); 2256 if (isModSet(Res)) { 2257 LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for " 2258 << *(MemLoc.Ptr) << "\n"); 2259 return true; 2260 } 2261 } 2262 LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n"); 2263 return false; 2264 } 2265 2266 static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU, 2267 Loop *CurLoop, 2268 SinkAndHoistLICMFlags &Flags) { 2269 // For hoisting, use the walker to determine safety 2270 if (!Flags.IsSink) { 2271 MemoryAccess *Source; 2272 // See declaration of SetLicmMssaOptCap for usage details. 2273 if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap) 2274 Source = MU->getDefiningAccess(); 2275 else { 2276 Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); 2277 Flags.LicmMssaOptCounter++; 2278 } 2279 return !MSSA->isLiveOnEntryDef(Source) && 2280 CurLoop->contains(Source->getBlock()); 2281 } 2282 2283 // For sinking, we'd need to check all Defs below this use. The getClobbering 2284 // call will look on the backedge of the loop, but will check aliasing with 2285 // the instructions on the previous iteration. 2286 // For example: 2287 // for (i ... ) 2288 // load a[i] ( Use (LoE) 2289 // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. 2290 // i++; 2291 // The load sees no clobbering inside the loop, as the backedge alias check 2292 // does phi translation, and will check aliasing against store a[i-1]. 2293 // However sinking the load outside the loop, below the store is incorrect. 2294 2295 // For now, only sink if there are no Defs in the loop, and the existing ones 2296 // precede the use and are in the same block. 2297 // FIXME: Increase precision: Safe to sink if Use post dominates the Def; 2298 // needs PostDominatorTreeAnalysis. 2299 // FIXME: More precise: no Defs that alias this Use. 2300 if (Flags.NoOfMemAccTooLarge) 2301 return true; 2302 for (auto *BB : CurLoop->getBlocks()) 2303 if (auto *Accesses = MSSA->getBlockDefs(BB)) 2304 for (const auto &MA : *Accesses) 2305 if (const auto *MD = dyn_cast<MemoryDef>(&MA)) 2306 if (MU->getBlock() != MD->getBlock() || 2307 !MSSA->locallyDominates(MD, MU)) 2308 return true; 2309 return false; 2310 } 2311 2312 /// Little predicate that returns true if the specified basic block is in 2313 /// a subloop of the current one, not the current one itself. 2314 /// 2315 static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { 2316 assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); 2317 return LI->getLoopFor(BB) != CurLoop; 2318 } 2319