1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 #include <algorithm>
44 #include <memory>
45 using namespace llvm;
46 using namespace jumpthreading;
47 
48 #define DEBUG_TYPE "jump-threading"
49 
50 STATISTIC(NumThreads, "Number of jumps threaded");
51 STATISTIC(NumFolds,   "Number of terminators folded");
52 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
53 
54 static cl::opt<unsigned>
55 BBDuplicateThreshold("jump-threading-threshold",
56           cl::desc("Max block size to duplicate for jump threading"),
57           cl::init(6), cl::Hidden);
58 
59 static cl::opt<unsigned>
60 ImplicationSearchThreshold(
61   "jump-threading-implication-search-threshold",
62   cl::desc("The number of predecessors to search for a stronger "
63            "condition to use to thread over a weaker condition"),
64   cl::init(3), cl::Hidden);
65 
66 namespace {
67   /// This pass performs 'jump threading', which looks at blocks that have
68   /// multiple predecessors and multiple successors.  If one or more of the
69   /// predecessors of the block can be proven to always jump to one of the
70   /// successors, we forward the edge from the predecessor to the successor by
71   /// duplicating the contents of this block.
72   ///
73   /// An example of when this can occur is code like this:
74   ///
75   ///   if () { ...
76   ///     X = 4;
77   ///   }
78   ///   if (X < 3) {
79   ///
80   /// In this case, the unconditional branch at the end of the first if can be
81   /// revectored to the false side of the second if.
82   ///
83   class JumpThreading : public FunctionPass {
84     JumpThreadingPass Impl;
85 
86   public:
87     static char ID; // Pass identification
88     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
89       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
90     }
91 
92     bool runOnFunction(Function &F) override;
93 
94     void getAnalysisUsage(AnalysisUsage &AU) const override {
95       AU.addRequired<AAResultsWrapperPass>();
96       AU.addRequired<LazyValueInfoWrapperPass>();
97       AU.addPreserved<LazyValueInfoWrapperPass>();
98       AU.addPreserved<GlobalsAAWrapperPass>();
99       AU.addRequired<TargetLibraryInfoWrapperPass>();
100     }
101 
102     void releaseMemory() override { Impl.releaseMemory(); }
103   };
104 }
105 
106 char JumpThreading::ID = 0;
107 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
108                 "Jump Threading", false, false)
109 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
110 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
111 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
112 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
113                 "Jump Threading", false, false)
114 
115 // Public interface to the Jump Threading pass
116 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
117 
118 JumpThreadingPass::JumpThreadingPass(int T) {
119   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
120 }
121 
122 /// runOnFunction - Top level algorithm.
123 ///
124 bool JumpThreading::runOnFunction(Function &F) {
125   if (skipFunction(F))
126     return false;
127   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
128   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
129   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
130   std::unique_ptr<BlockFrequencyInfo> BFI;
131   std::unique_ptr<BranchProbabilityInfo> BPI;
132   bool HasProfileData = F.getEntryCount().hasValue();
133   if (HasProfileData) {
134     LoopInfo LI{DominatorTree(F)};
135     BPI.reset(new BranchProbabilityInfo(F, LI));
136     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
137   }
138 
139   return Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI),
140                       std::move(BPI));
141 }
142 
143 PreservedAnalyses JumpThreadingPass::run(Function &F,
144                                          FunctionAnalysisManager &AM) {
145 
146   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
147   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
148   auto &AA = AM.getResult<AAManager>(F);
149 
150   std::unique_ptr<BlockFrequencyInfo> BFI;
151   std::unique_ptr<BranchProbabilityInfo> BPI;
152   bool HasProfileData = F.getEntryCount().hasValue();
153   if (HasProfileData) {
154     LoopInfo LI{DominatorTree(F)};
155     BPI.reset(new BranchProbabilityInfo(F, LI));
156     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
157   }
158 
159   bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI),
160                          std::move(BPI));
161 
162   if (!Changed)
163     return PreservedAnalyses::all();
164   PreservedAnalyses PA;
165   PA.preserve<GlobalsAA>();
166   return PA;
167 }
168 
169 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
170                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
171                                 bool HasProfileData_,
172                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
173                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
174 
175   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
176   TLI = TLI_;
177   LVI = LVI_;
178   AA = AA_;
179   BFI.reset();
180   BPI.reset();
181   // When profile data is available, we need to update edge weights after
182   // successful jump threading, which requires both BPI and BFI being available.
183   HasProfileData = HasProfileData_;
184   auto *GuardDecl = F.getParent()->getFunction(
185       Intrinsic::getName(Intrinsic::experimental_guard));
186   HasGuards = GuardDecl && !GuardDecl->use_empty();
187   if (HasProfileData) {
188     BPI = std::move(BPI_);
189     BFI = std::move(BFI_);
190   }
191 
192   // Remove unreachable blocks from function as they may result in infinite
193   // loop. We do threading if we found something profitable. Jump threading a
194   // branch can create other opportunities. If these opportunities form a cycle
195   // i.e. if any jump threading is undoing previous threading in the path, then
196   // we will loop forever. We take care of this issue by not jump threading for
197   // back edges. This works for normal cases but not for unreachable blocks as
198   // they may have cycle with no back edge.
199   bool EverChanged = false;
200   EverChanged |= removeUnreachableBlocks(F, LVI);
201 
202   FindLoopHeaders(F);
203 
204   bool Changed;
205   do {
206     Changed = false;
207     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
208       BasicBlock *BB = &*I;
209       // Thread all of the branches we can over this block.
210       while (ProcessBlock(BB))
211         Changed = true;
212 
213       ++I;
214 
215       // If the block is trivially dead, zap it.  This eliminates the successor
216       // edges which simplifies the CFG.
217       if (pred_empty(BB) &&
218           BB != &BB->getParent()->getEntryBlock()) {
219         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
220               << "' with terminator: " << *BB->getTerminator() << '\n');
221         LoopHeaders.erase(BB);
222         LVI->eraseBlock(BB);
223         DeleteDeadBlock(BB);
224         Changed = true;
225         continue;
226       }
227 
228       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
229 
230       // Can't thread an unconditional jump, but if the block is "almost
231       // empty", we can replace uses of it with uses of the successor and make
232       // this dead.
233       // We should not eliminate the loop header either, because eliminating
234       // a loop header might later prevent LoopSimplify from transforming nested
235       // loops into simplified form.
236       if (BI && BI->isUnconditional() &&
237           BB != &BB->getParent()->getEntryBlock() &&
238           // If the terminator is the only non-phi instruction, try to nuke it.
239           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
240         // FIXME: It is always conservatively correct to drop the info
241         // for a block even if it doesn't get erased.  This isn't totally
242         // awesome, but it allows us to use AssertingVH to prevent nasty
243         // dangling pointer issues within LazyValueInfo.
244         LVI->eraseBlock(BB);
245         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
246           Changed = true;
247       }
248     }
249     EverChanged |= Changed;
250   } while (Changed);
251 
252   LoopHeaders.clear();
253   return EverChanged;
254 }
255 
256 /// Return the cost of duplicating a piece of this block from first non-phi
257 /// and before StopAt instruction to thread across it. Stop scanning the block
258 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
259 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
260                                              Instruction *StopAt,
261                                              unsigned Threshold) {
262   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
263   /// Ignore PHI nodes, these will be flattened when duplication happens.
264   BasicBlock::const_iterator I(BB->getFirstNonPHI());
265 
266   // FIXME: THREADING will delete values that are just used to compute the
267   // branch, so they shouldn't count against the duplication cost.
268 
269   unsigned Bonus = 0;
270   if (BB->getTerminator() == StopAt) {
271     // Threading through a switch statement is particularly profitable.  If this
272     // block ends in a switch, decrease its cost to make it more likely to
273     // happen.
274     if (isa<SwitchInst>(StopAt))
275       Bonus = 6;
276 
277     // The same holds for indirect branches, but slightly more so.
278     if (isa<IndirectBrInst>(StopAt))
279       Bonus = 8;
280   }
281 
282   // Bump the threshold up so the early exit from the loop doesn't skip the
283   // terminator-based Size adjustment at the end.
284   Threshold += Bonus;
285 
286   // Sum up the cost of each instruction until we get to the terminator.  Don't
287   // include the terminator because the copy won't include it.
288   unsigned Size = 0;
289   for (; &*I != StopAt; ++I) {
290 
291     // Stop scanning the block if we've reached the threshold.
292     if (Size > Threshold)
293       return Size;
294 
295     // Debugger intrinsics don't incur code size.
296     if (isa<DbgInfoIntrinsic>(I)) continue;
297 
298     // If this is a pointer->pointer bitcast, it is free.
299     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
300       continue;
301 
302     // Bail out if this instruction gives back a token type, it is not possible
303     // to duplicate it if it is used outside this BB.
304     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
305       return ~0U;
306 
307     // All other instructions count for at least one unit.
308     ++Size;
309 
310     // Calls are more expensive.  If they are non-intrinsic calls, we model them
311     // as having cost of 4.  If they are a non-vector intrinsic, we model them
312     // as having cost of 2 total, and if they are a vector intrinsic, we model
313     // them as having cost 1.
314     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
315       if (CI->cannotDuplicate() || CI->isConvergent())
316         // Blocks with NoDuplicate are modelled as having infinite cost, so they
317         // are never duplicated.
318         return ~0U;
319       else if (!isa<IntrinsicInst>(CI))
320         Size += 3;
321       else if (!CI->getType()->isVectorTy())
322         Size += 1;
323     }
324   }
325 
326   return Size > Bonus ? Size - Bonus : 0;
327 }
328 
329 /// FindLoopHeaders - We do not want jump threading to turn proper loop
330 /// structures into irreducible loops.  Doing this breaks up the loop nesting
331 /// hierarchy and pessimizes later transformations.  To prevent this from
332 /// happening, we first have to find the loop headers.  Here we approximate this
333 /// by finding targets of backedges in the CFG.
334 ///
335 /// Note that there definitely are cases when we want to allow threading of
336 /// edges across a loop header.  For example, threading a jump from outside the
337 /// loop (the preheader) to an exit block of the loop is definitely profitable.
338 /// It is also almost always profitable to thread backedges from within the loop
339 /// to exit blocks, and is often profitable to thread backedges to other blocks
340 /// within the loop (forming a nested loop).  This simple analysis is not rich
341 /// enough to track all of these properties and keep it up-to-date as the CFG
342 /// mutates, so we don't allow any of these transformations.
343 ///
344 void JumpThreadingPass::FindLoopHeaders(Function &F) {
345   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
346   FindFunctionBackedges(F, Edges);
347 
348   for (const auto &Edge : Edges)
349     LoopHeaders.insert(Edge.second);
350 }
351 
352 /// getKnownConstant - Helper method to determine if we can thread over a
353 /// terminator with the given value as its condition, and if so what value to
354 /// use for that. What kind of value this is depends on whether we want an
355 /// integer or a block address, but an undef is always accepted.
356 /// Returns null if Val is null or not an appropriate constant.
357 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
358   if (!Val)
359     return nullptr;
360 
361   // Undef is "known" enough.
362   if (UndefValue *U = dyn_cast<UndefValue>(Val))
363     return U;
364 
365   if (Preference == WantBlockAddress)
366     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
367 
368   return dyn_cast<ConstantInt>(Val);
369 }
370 
371 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
372 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
373 /// in any of our predecessors.  If so, return the known list of value and pred
374 /// BB in the result vector.
375 ///
376 /// This returns true if there were any known values.
377 ///
378 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
379     Value *V, BasicBlock *BB, PredValueInfo &Result,
380     ConstantPreference Preference, Instruction *CxtI) {
381   // This method walks up use-def chains recursively.  Because of this, we could
382   // get into an infinite loop going around loops in the use-def chain.  To
383   // prevent this, keep track of what (value, block) pairs we've already visited
384   // and terminate the search if we loop back to them
385   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
386     return false;
387 
388   // An RAII help to remove this pair from the recursion set once the recursion
389   // stack pops back out again.
390   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
391 
392   // If V is a constant, then it is known in all predecessors.
393   if (Constant *KC = getKnownConstant(V, Preference)) {
394     for (BasicBlock *Pred : predecessors(BB))
395       Result.push_back(std::make_pair(KC, Pred));
396 
397     return !Result.empty();
398   }
399 
400   // If V is a non-instruction value, or an instruction in a different block,
401   // then it can't be derived from a PHI.
402   Instruction *I = dyn_cast<Instruction>(V);
403   if (!I || I->getParent() != BB) {
404 
405     // Okay, if this is a live-in value, see if it has a known value at the end
406     // of any of our predecessors.
407     //
408     // FIXME: This should be an edge property, not a block end property.
409     /// TODO: Per PR2563, we could infer value range information about a
410     /// predecessor based on its terminator.
411     //
412     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
413     // "I" is a non-local compare-with-a-constant instruction.  This would be
414     // able to handle value inequalities better, for example if the compare is
415     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
416     // Perhaps getConstantOnEdge should be smart enough to do this?
417 
418     for (BasicBlock *P : predecessors(BB)) {
419       // If the value is known by LazyValueInfo to be a constant in a
420       // predecessor, use that information to try to thread this block.
421       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
422       if (Constant *KC = getKnownConstant(PredCst, Preference))
423         Result.push_back(std::make_pair(KC, P));
424     }
425 
426     return !Result.empty();
427   }
428 
429   /// If I is a PHI node, then we know the incoming values for any constants.
430   if (PHINode *PN = dyn_cast<PHINode>(I)) {
431     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
432       Value *InVal = PN->getIncomingValue(i);
433       if (Constant *KC = getKnownConstant(InVal, Preference)) {
434         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
435       } else {
436         Constant *CI = LVI->getConstantOnEdge(InVal,
437                                               PN->getIncomingBlock(i),
438                                               BB, CxtI);
439         if (Constant *KC = getKnownConstant(CI, Preference))
440           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
441       }
442     }
443 
444     return !Result.empty();
445   }
446 
447   // Handle Cast instructions.  Only see through Cast when the source operand is
448   // PHI or Cmp and the source type is i1 to save the compilation time.
449   if (CastInst *CI = dyn_cast<CastInst>(I)) {
450     Value *Source = CI->getOperand(0);
451     if (!Source->getType()->isIntegerTy(1))
452       return false;
453     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
454       return false;
455     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
456     if (Result.empty())
457       return false;
458 
459     // Convert the known values.
460     for (auto &R : Result)
461       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
462 
463     return true;
464   }
465 
466   PredValueInfoTy LHSVals, RHSVals;
467 
468   // Handle some boolean conditions.
469   if (I->getType()->getPrimitiveSizeInBits() == 1) {
470     assert(Preference == WantInteger && "One-bit non-integer type?");
471     // X | true -> true
472     // X & false -> false
473     if (I->getOpcode() == Instruction::Or ||
474         I->getOpcode() == Instruction::And) {
475       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
476                                       WantInteger, CxtI);
477       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
478                                       WantInteger, CxtI);
479 
480       if (LHSVals.empty() && RHSVals.empty())
481         return false;
482 
483       ConstantInt *InterestingVal;
484       if (I->getOpcode() == Instruction::Or)
485         InterestingVal = ConstantInt::getTrue(I->getContext());
486       else
487         InterestingVal = ConstantInt::getFalse(I->getContext());
488 
489       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
490 
491       // Scan for the sentinel.  If we find an undef, force it to the
492       // interesting value: x|undef -> true and x&undef -> false.
493       for (const auto &LHSVal : LHSVals)
494         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
495           Result.emplace_back(InterestingVal, LHSVal.second);
496           LHSKnownBBs.insert(LHSVal.second);
497         }
498       for (const auto &RHSVal : RHSVals)
499         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
500           // If we already inferred a value for this block on the LHS, don't
501           // re-add it.
502           if (!LHSKnownBBs.count(RHSVal.second))
503             Result.emplace_back(InterestingVal, RHSVal.second);
504         }
505 
506       return !Result.empty();
507     }
508 
509     // Handle the NOT form of XOR.
510     if (I->getOpcode() == Instruction::Xor &&
511         isa<ConstantInt>(I->getOperand(1)) &&
512         cast<ConstantInt>(I->getOperand(1))->isOne()) {
513       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
514                                       WantInteger, CxtI);
515       if (Result.empty())
516         return false;
517 
518       // Invert the known values.
519       for (auto &R : Result)
520         R.first = ConstantExpr::getNot(R.first);
521 
522       return true;
523     }
524 
525   // Try to simplify some other binary operator values.
526   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
527     assert(Preference != WantBlockAddress
528             && "A binary operator creating a block address?");
529     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
530       PredValueInfoTy LHSVals;
531       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
532                                       WantInteger, CxtI);
533 
534       // Try to use constant folding to simplify the binary operator.
535       for (const auto &LHSVal : LHSVals) {
536         Constant *V = LHSVal.first;
537         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
538 
539         if (Constant *KC = getKnownConstant(Folded, WantInteger))
540           Result.push_back(std::make_pair(KC, LHSVal.second));
541       }
542     }
543 
544     return !Result.empty();
545   }
546 
547   // Handle compare with phi operand, where the PHI is defined in this block.
548   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
549     assert(Preference == WantInteger && "Compares only produce integers");
550     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
551     if (PN && PN->getParent() == BB) {
552       const DataLayout &DL = PN->getModule()->getDataLayout();
553       // We can do this simplification if any comparisons fold to true or false.
554       // See if any do.
555       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
556         BasicBlock *PredBB = PN->getIncomingBlock(i);
557         Value *LHS = PN->getIncomingValue(i);
558         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
559 
560         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
561         if (!Res) {
562           if (!isa<Constant>(RHS))
563             continue;
564 
565           LazyValueInfo::Tristate
566             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
567                                            cast<Constant>(RHS), PredBB, BB,
568                                            CxtI ? CxtI : Cmp);
569           if (ResT == LazyValueInfo::Unknown)
570             continue;
571           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
572         }
573 
574         if (Constant *KC = getKnownConstant(Res, WantInteger))
575           Result.push_back(std::make_pair(KC, PredBB));
576       }
577 
578       return !Result.empty();
579     }
580 
581     // If comparing a live-in value against a constant, see if we know the
582     // live-in value on any predecessors.
583     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
584       if (!isa<Instruction>(Cmp->getOperand(0)) ||
585           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
586         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
587 
588         for (BasicBlock *P : predecessors(BB)) {
589           // If the value is known by LazyValueInfo to be a constant in a
590           // predecessor, use that information to try to thread this block.
591           LazyValueInfo::Tristate Res =
592             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
593                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
594           if (Res == LazyValueInfo::Unknown)
595             continue;
596 
597           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
598           Result.push_back(std::make_pair(ResC, P));
599         }
600 
601         return !Result.empty();
602       }
603 
604       // Try to find a constant value for the LHS of a comparison,
605       // and evaluate it statically if we can.
606       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
607         PredValueInfoTy LHSVals;
608         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
609                                         WantInteger, CxtI);
610 
611         for (const auto &LHSVal : LHSVals) {
612           Constant *V = LHSVal.first;
613           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
614                                                       V, CmpConst);
615           if (Constant *KC = getKnownConstant(Folded, WantInteger))
616             Result.push_back(std::make_pair(KC, LHSVal.second));
617         }
618 
619         return !Result.empty();
620       }
621     }
622   }
623 
624   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
625     // Handle select instructions where at least one operand is a known constant
626     // and we can figure out the condition value for any predecessor block.
627     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
628     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
629     PredValueInfoTy Conds;
630     if ((TrueVal || FalseVal) &&
631         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
632                                         WantInteger, CxtI)) {
633       for (auto &C : Conds) {
634         Constant *Cond = C.first;
635 
636         // Figure out what value to use for the condition.
637         bool KnownCond;
638         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
639           // A known boolean.
640           KnownCond = CI->isOne();
641         } else {
642           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
643           // Either operand will do, so be sure to pick the one that's a known
644           // constant.
645           // FIXME: Do this more cleverly if both values are known constants?
646           KnownCond = (TrueVal != nullptr);
647         }
648 
649         // See if the select has a known constant value for this predecessor.
650         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
651           Result.push_back(std::make_pair(Val, C.second));
652       }
653 
654       return !Result.empty();
655     }
656   }
657 
658   // If all else fails, see if LVI can figure out a constant value for us.
659   Constant *CI = LVI->getConstant(V, BB, CxtI);
660   if (Constant *KC = getKnownConstant(CI, Preference)) {
661     for (BasicBlock *Pred : predecessors(BB))
662       Result.push_back(std::make_pair(KC, Pred));
663   }
664 
665   return !Result.empty();
666 }
667 
668 
669 
670 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
671 /// in an undefined jump, decide which block is best to revector to.
672 ///
673 /// Since we can pick an arbitrary destination, we pick the successor with the
674 /// fewest predecessors.  This should reduce the in-degree of the others.
675 ///
676 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
677   TerminatorInst *BBTerm = BB->getTerminator();
678   unsigned MinSucc = 0;
679   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
680   // Compute the successor with the minimum number of predecessors.
681   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
682   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
683     TestBB = BBTerm->getSuccessor(i);
684     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
685     if (NumPreds < MinNumPreds) {
686       MinSucc = i;
687       MinNumPreds = NumPreds;
688     }
689   }
690 
691   return MinSucc;
692 }
693 
694 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
695   if (!BB->hasAddressTaken()) return false;
696 
697   // If the block has its address taken, it may be a tree of dead constants
698   // hanging off of it.  These shouldn't keep the block alive.
699   BlockAddress *BA = BlockAddress::get(BB);
700   BA->removeDeadConstantUsers();
701   return !BA->use_empty();
702 }
703 
704 /// ProcessBlock - If there are any predecessors whose control can be threaded
705 /// through to a successor, transform them now.
706 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
707   // If the block is trivially dead, just return and let the caller nuke it.
708   // This simplifies other transformations.
709   if (pred_empty(BB) &&
710       BB != &BB->getParent()->getEntryBlock())
711     return false;
712 
713   // If this block has a single predecessor, and if that pred has a single
714   // successor, merge the blocks.  This encourages recursive jump threading
715   // because now the condition in this block can be threaded through
716   // predecessors of our predecessor block.
717   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
718     const TerminatorInst *TI = SinglePred->getTerminator();
719     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
720         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
721       // If SinglePred was a loop header, BB becomes one.
722       if (LoopHeaders.erase(SinglePred))
723         LoopHeaders.insert(BB);
724 
725       LVI->eraseBlock(SinglePred);
726       MergeBasicBlockIntoOnlyPred(BB);
727 
728       return true;
729     }
730   }
731 
732   if (TryToUnfoldSelectInCurrBB(BB))
733     return true;
734 
735   // Look if we can propagate guards to predecessors.
736   if (HasGuards && ProcessGuards(BB))
737     return true;
738 
739   // What kind of constant we're looking for.
740   ConstantPreference Preference = WantInteger;
741 
742   // Look to see if the terminator is a conditional branch, switch or indirect
743   // branch, if not we can't thread it.
744   Value *Condition;
745   Instruction *Terminator = BB->getTerminator();
746   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
747     // Can't thread an unconditional jump.
748     if (BI->isUnconditional()) return false;
749     Condition = BI->getCondition();
750   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
751     Condition = SI->getCondition();
752   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
753     // Can't thread indirect branch with no successors.
754     if (IB->getNumSuccessors() == 0) return false;
755     Condition = IB->getAddress()->stripPointerCasts();
756     Preference = WantBlockAddress;
757   } else {
758     return false; // Must be an invoke.
759   }
760 
761   // Run constant folding to see if we can reduce the condition to a simple
762   // constant.
763   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
764     Value *SimpleVal =
765         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
766     if (SimpleVal) {
767       I->replaceAllUsesWith(SimpleVal);
768       if (isInstructionTriviallyDead(I, TLI))
769         I->eraseFromParent();
770       Condition = SimpleVal;
771     }
772   }
773 
774   // If the terminator is branching on an undef, we can pick any of the
775   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
776   if (isa<UndefValue>(Condition)) {
777     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
778 
779     // Fold the branch/switch.
780     TerminatorInst *BBTerm = BB->getTerminator();
781     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
782       if (i == BestSucc) continue;
783       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
784     }
785 
786     DEBUG(dbgs() << "  In block '" << BB->getName()
787           << "' folding undef terminator: " << *BBTerm << '\n');
788     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
789     BBTerm->eraseFromParent();
790     return true;
791   }
792 
793   // If the terminator of this block is branching on a constant, simplify the
794   // terminator to an unconditional branch.  This can occur due to threading in
795   // other blocks.
796   if (getKnownConstant(Condition, Preference)) {
797     DEBUG(dbgs() << "  In block '" << BB->getName()
798           << "' folding terminator: " << *BB->getTerminator() << '\n');
799     ++NumFolds;
800     ConstantFoldTerminator(BB, true);
801     return true;
802   }
803 
804   Instruction *CondInst = dyn_cast<Instruction>(Condition);
805 
806   // All the rest of our checks depend on the condition being an instruction.
807   if (!CondInst) {
808     // FIXME: Unify this with code below.
809     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
810       return true;
811     return false;
812   }
813 
814   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
815     // If we're branching on a conditional, LVI might be able to determine
816     // it's value at the branch instruction.  We only handle comparisons
817     // against a constant at this time.
818     // TODO: This should be extended to handle switches as well.
819     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
820     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
821     if (CondBr && CondConst) {
822       // We should have returned as soon as we turn a conditional branch to
823       // unconditional. Because its no longer interesting as far as jump
824       // threading is concerned.
825       assert(CondBr->isConditional() && "Threading on unconditional terminator");
826 
827       LazyValueInfo::Tristate Ret =
828         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
829                             CondConst, CondBr);
830       if (Ret != LazyValueInfo::Unknown) {
831         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
832         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
833         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
834         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
835         CondBr->eraseFromParent();
836         if (CondCmp->use_empty())
837           CondCmp->eraseFromParent();
838         else if (CondCmp->getParent() == BB) {
839           // If the fact we just learned is true for all uses of the
840           // condition, replace it with a constant value
841           auto *CI = Ret == LazyValueInfo::True ?
842             ConstantInt::getTrue(CondCmp->getType()) :
843             ConstantInt::getFalse(CondCmp->getType());
844           CondCmp->replaceAllUsesWith(CI);
845           CondCmp->eraseFromParent();
846         }
847         return true;
848       }
849 
850       // We did not manage to simplify this branch, try to see whether
851       // CondCmp depends on a known phi-select pattern.
852       if (TryToUnfoldSelect(CondCmp, BB))
853         return true;
854     }
855   }
856 
857   // Check for some cases that are worth simplifying.  Right now we want to look
858   // for loads that are used by a switch or by the condition for the branch.  If
859   // we see one, check to see if it's partially redundant.  If so, insert a PHI
860   // which can then be used to thread the values.
861   //
862   Value *SimplifyValue = CondInst;
863   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
864     if (isa<Constant>(CondCmp->getOperand(1)))
865       SimplifyValue = CondCmp->getOperand(0);
866 
867   // TODO: There are other places where load PRE would be profitable, such as
868   // more complex comparisons.
869   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
870     if (SimplifyPartiallyRedundantLoad(LI))
871       return true;
872 
873   // Handle a variety of cases where we are branching on something derived from
874   // a PHI node in the current block.  If we can prove that any predecessors
875   // compute a predictable value based on a PHI node, thread those predecessors.
876   //
877   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
878     return true;
879 
880   // If this is an otherwise-unfoldable branch on a phi node in the current
881   // block, see if we can simplify.
882   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
883     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
884       return ProcessBranchOnPHI(PN);
885 
886   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
887   if (CondInst->getOpcode() == Instruction::Xor &&
888       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
889     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
890 
891   // Search for a stronger dominating condition that can be used to simplify a
892   // conditional branch leaving BB.
893   if (ProcessImpliedCondition(BB))
894     return true;
895 
896   return false;
897 }
898 
899 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
900   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
901   if (!BI || !BI->isConditional())
902     return false;
903 
904   Value *Cond = BI->getCondition();
905   BasicBlock *CurrentBB = BB;
906   BasicBlock *CurrentPred = BB->getSinglePredecessor();
907   unsigned Iter = 0;
908 
909   auto &DL = BB->getModule()->getDataLayout();
910 
911   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
912     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
913     if (!PBI || !PBI->isConditional())
914       return false;
915     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
916       return false;
917 
918     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
919     Optional<bool> Implication =
920       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
921     if (Implication) {
922       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
923       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
924       BI->eraseFromParent();
925       return true;
926     }
927     CurrentBB = CurrentPred;
928     CurrentPred = CurrentBB->getSinglePredecessor();
929   }
930 
931   return false;
932 }
933 
934 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
935 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
936 /// important optimization that encourages jump threading, and needs to be run
937 /// interlaced with other jump threading tasks.
938 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
939   // Don't hack volatile and ordered loads.
940   if (!LI->isUnordered()) return false;
941 
942   // If the load is defined in a block with exactly one predecessor, it can't be
943   // partially redundant.
944   BasicBlock *LoadBB = LI->getParent();
945   if (LoadBB->getSinglePredecessor())
946     return false;
947 
948   // If the load is defined in an EH pad, it can't be partially redundant,
949   // because the edges between the invoke and the EH pad cannot have other
950   // instructions between them.
951   if (LoadBB->isEHPad())
952     return false;
953 
954   Value *LoadedPtr = LI->getOperand(0);
955 
956   // If the loaded operand is defined in the LoadBB, it can't be available.
957   // TODO: Could do simple PHI translation, that would be fun :)
958   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
959     if (PtrOp->getParent() == LoadBB)
960       return false;
961 
962   // Scan a few instructions up from the load, to see if it is obviously live at
963   // the entry to its block.
964   BasicBlock::iterator BBIt(LI);
965   bool IsLoadCSE;
966   if (Value *AvailableVal = FindAvailableLoadedValue(
967           LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
968     // If the value of the load is locally available within the block, just use
969     // it.  This frequently occurs for reg2mem'd allocas.
970 
971     if (IsLoadCSE) {
972       LoadInst *NLI = cast<LoadInst>(AvailableVal);
973       combineMetadataForCSE(NLI, LI);
974     };
975 
976     // If the returned value is the load itself, replace with an undef. This can
977     // only happen in dead loops.
978     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
979     if (AvailableVal->getType() != LI->getType())
980       AvailableVal =
981           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
982     LI->replaceAllUsesWith(AvailableVal);
983     LI->eraseFromParent();
984     return true;
985   }
986 
987   // Otherwise, if we scanned the whole block and got to the top of the block,
988   // we know the block is locally transparent to the load.  If not, something
989   // might clobber its value.
990   if (BBIt != LoadBB->begin())
991     return false;
992 
993   // If all of the loads and stores that feed the value have the same AA tags,
994   // then we can propagate them onto any newly inserted loads.
995   AAMDNodes AATags;
996   LI->getAAMetadata(AATags);
997 
998   SmallPtrSet<BasicBlock*, 8> PredsScanned;
999   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
1000   AvailablePredsTy AvailablePreds;
1001   BasicBlock *OneUnavailablePred = nullptr;
1002   SmallVector<LoadInst*, 8> CSELoads;
1003 
1004   // If we got here, the loaded value is transparent through to the start of the
1005   // block.  Check to see if it is available in any of the predecessor blocks.
1006   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1007     // If we already scanned this predecessor, skip it.
1008     if (!PredsScanned.insert(PredBB).second)
1009       continue;
1010 
1011     // Scan the predecessor to see if the value is available in the pred.
1012     BBIt = PredBB->end();
1013     unsigned NumScanedInst = 0;
1014     Value *PredAvailable = FindAvailableLoadedValue(
1015         LI, PredBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1016 
1017     // If PredBB has a single predecessor, continue scanning through the single
1018     // predecessor.
1019     BasicBlock *SinglePredBB = PredBB;
1020     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1021            NumScanedInst < DefMaxInstsToScan) {
1022       SinglePredBB = SinglePredBB->getSinglePredecessor();
1023       if (SinglePredBB) {
1024         BBIt = SinglePredBB->end();
1025         PredAvailable = FindAvailableLoadedValue(
1026             LI, SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst), AA,
1027             &IsLoadCSE, &NumScanedInst);
1028       }
1029     }
1030 
1031     if (!PredAvailable) {
1032       OneUnavailablePred = PredBB;
1033       continue;
1034     }
1035 
1036     if (IsLoadCSE)
1037       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1038 
1039     // If so, this load is partially redundant.  Remember this info so that we
1040     // can create a PHI node.
1041     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1042   }
1043 
1044   // If the loaded value isn't available in any predecessor, it isn't partially
1045   // redundant.
1046   if (AvailablePreds.empty()) return false;
1047 
1048   // Okay, the loaded value is available in at least one (and maybe all!)
1049   // predecessors.  If the value is unavailable in more than one unique
1050   // predecessor, we want to insert a merge block for those common predecessors.
1051   // This ensures that we only have to insert one reload, thus not increasing
1052   // code size.
1053   BasicBlock *UnavailablePred = nullptr;
1054 
1055   // If there is exactly one predecessor where the value is unavailable, the
1056   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1057   // unconditional branch, we know that it isn't a critical edge.
1058   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1059       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1060     UnavailablePred = OneUnavailablePred;
1061   } else if (PredsScanned.size() != AvailablePreds.size()) {
1062     // Otherwise, we had multiple unavailable predecessors or we had a critical
1063     // edge from the one.
1064     SmallVector<BasicBlock*, 8> PredsToSplit;
1065     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1066 
1067     for (const auto &AvailablePred : AvailablePreds)
1068       AvailablePredSet.insert(AvailablePred.first);
1069 
1070     // Add all the unavailable predecessors to the PredsToSplit list.
1071     for (BasicBlock *P : predecessors(LoadBB)) {
1072       // If the predecessor is an indirect goto, we can't split the edge.
1073       if (isa<IndirectBrInst>(P->getTerminator()))
1074         return false;
1075 
1076       if (!AvailablePredSet.count(P))
1077         PredsToSplit.push_back(P);
1078     }
1079 
1080     // Split them out to their own block.
1081     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1082   }
1083 
1084   // If the value isn't available in all predecessors, then there will be
1085   // exactly one where it isn't available.  Insert a load on that edge and add
1086   // it to the AvailablePreds list.
1087   if (UnavailablePred) {
1088     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1089            "Can't handle critical edge here!");
1090     LoadInst *NewVal =
1091         new LoadInst(LoadedPtr, LI->getName() + ".pr", false,
1092                      LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(),
1093                      UnavailablePred->getTerminator());
1094     NewVal->setDebugLoc(LI->getDebugLoc());
1095     if (AATags)
1096       NewVal->setAAMetadata(AATags);
1097 
1098     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1099   }
1100 
1101   // Now we know that each predecessor of this block has a value in
1102   // AvailablePreds, sort them for efficient access as we're walking the preds.
1103   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1104 
1105   // Create a PHI node at the start of the block for the PRE'd load value.
1106   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1107   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1108                                 &LoadBB->front());
1109   PN->takeName(LI);
1110   PN->setDebugLoc(LI->getDebugLoc());
1111 
1112   // Insert new entries into the PHI for each predecessor.  A single block may
1113   // have multiple entries here.
1114   for (pred_iterator PI = PB; PI != PE; ++PI) {
1115     BasicBlock *P = *PI;
1116     AvailablePredsTy::iterator I =
1117       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1118                        std::make_pair(P, (Value*)nullptr));
1119 
1120     assert(I != AvailablePreds.end() && I->first == P &&
1121            "Didn't find entry for predecessor!");
1122 
1123     // If we have an available predecessor but it requires casting, insert the
1124     // cast in the predecessor and use the cast. Note that we have to update the
1125     // AvailablePreds vector as we go so that all of the PHI entries for this
1126     // predecessor use the same bitcast.
1127     Value *&PredV = I->second;
1128     if (PredV->getType() != LI->getType())
1129       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1130                                                P->getTerminator());
1131 
1132     PN->addIncoming(PredV, I->first);
1133   }
1134 
1135   for (LoadInst *PredLI : CSELoads) {
1136     combineMetadataForCSE(PredLI, LI);
1137   }
1138 
1139   LI->replaceAllUsesWith(PN);
1140   LI->eraseFromParent();
1141 
1142   return true;
1143 }
1144 
1145 /// FindMostPopularDest - The specified list contains multiple possible
1146 /// threadable destinations.  Pick the one that occurs the most frequently in
1147 /// the list.
1148 static BasicBlock *
1149 FindMostPopularDest(BasicBlock *BB,
1150                     const SmallVectorImpl<std::pair<BasicBlock*,
1151                                   BasicBlock*> > &PredToDestList) {
1152   assert(!PredToDestList.empty());
1153 
1154   // Determine popularity.  If there are multiple possible destinations, we
1155   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1156   // blocks with known and real destinations to threading undef.  We'll handle
1157   // them later if interesting.
1158   DenseMap<BasicBlock*, unsigned> DestPopularity;
1159   for (const auto &PredToDest : PredToDestList)
1160     if (PredToDest.second)
1161       DestPopularity[PredToDest.second]++;
1162 
1163   // Find the most popular dest.
1164   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1165   BasicBlock *MostPopularDest = DPI->first;
1166   unsigned Popularity = DPI->second;
1167   SmallVector<BasicBlock*, 4> SamePopularity;
1168 
1169   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1170     // If the popularity of this entry isn't higher than the popularity we've
1171     // seen so far, ignore it.
1172     if (DPI->second < Popularity)
1173       ; // ignore.
1174     else if (DPI->second == Popularity) {
1175       // If it is the same as what we've seen so far, keep track of it.
1176       SamePopularity.push_back(DPI->first);
1177     } else {
1178       // If it is more popular, remember it.
1179       SamePopularity.clear();
1180       MostPopularDest = DPI->first;
1181       Popularity = DPI->second;
1182     }
1183   }
1184 
1185   // Okay, now we know the most popular destination.  If there is more than one
1186   // destination, we need to determine one.  This is arbitrary, but we need
1187   // to make a deterministic decision.  Pick the first one that appears in the
1188   // successor list.
1189   if (!SamePopularity.empty()) {
1190     SamePopularity.push_back(MostPopularDest);
1191     TerminatorInst *TI = BB->getTerminator();
1192     for (unsigned i = 0; ; ++i) {
1193       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1194 
1195       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1196         continue;
1197 
1198       MostPopularDest = TI->getSuccessor(i);
1199       break;
1200     }
1201   }
1202 
1203   // Okay, we have finally picked the most popular destination.
1204   return MostPopularDest;
1205 }
1206 
1207 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1208                                                ConstantPreference Preference,
1209                                                Instruction *CxtI) {
1210   // If threading this would thread across a loop header, don't even try to
1211   // thread the edge.
1212   if (LoopHeaders.count(BB))
1213     return false;
1214 
1215   PredValueInfoTy PredValues;
1216   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1217     return false;
1218 
1219   assert(!PredValues.empty() &&
1220          "ComputeValueKnownInPredecessors returned true with no values");
1221 
1222   DEBUG(dbgs() << "IN BB: " << *BB;
1223         for (const auto &PredValue : PredValues) {
1224           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1225             << *PredValue.first
1226             << " for pred '" << PredValue.second->getName() << "'.\n";
1227         });
1228 
1229   // Decide what we want to thread through.  Convert our list of known values to
1230   // a list of known destinations for each pred.  This also discards duplicate
1231   // predecessors and keeps track of the undefined inputs (which are represented
1232   // as a null dest in the PredToDestList).
1233   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1234   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1235 
1236   BasicBlock *OnlyDest = nullptr;
1237   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1238 
1239   for (const auto &PredValue : PredValues) {
1240     BasicBlock *Pred = PredValue.second;
1241     if (!SeenPreds.insert(Pred).second)
1242       continue;  // Duplicate predecessor entry.
1243 
1244     // If the predecessor ends with an indirect goto, we can't change its
1245     // destination.
1246     if (isa<IndirectBrInst>(Pred->getTerminator()))
1247       continue;
1248 
1249     Constant *Val = PredValue.first;
1250 
1251     BasicBlock *DestBB;
1252     if (isa<UndefValue>(Val))
1253       DestBB = nullptr;
1254     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1255       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1256     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1257       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1258     } else {
1259       assert(isa<IndirectBrInst>(BB->getTerminator())
1260               && "Unexpected terminator");
1261       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1262     }
1263 
1264     // If we have exactly one destination, remember it for efficiency below.
1265     if (PredToDestList.empty())
1266       OnlyDest = DestBB;
1267     else if (OnlyDest != DestBB)
1268       OnlyDest = MultipleDestSentinel;
1269 
1270     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1271   }
1272 
1273   // If all edges were unthreadable, we fail.
1274   if (PredToDestList.empty())
1275     return false;
1276 
1277   // Determine which is the most common successor.  If we have many inputs and
1278   // this block is a switch, we want to start by threading the batch that goes
1279   // to the most popular destination first.  If we only know about one
1280   // threadable destination (the common case) we can avoid this.
1281   BasicBlock *MostPopularDest = OnlyDest;
1282 
1283   if (MostPopularDest == MultipleDestSentinel)
1284     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1285 
1286   // Now that we know what the most popular destination is, factor all
1287   // predecessors that will jump to it into a single predecessor.
1288   SmallVector<BasicBlock*, 16> PredsToFactor;
1289   for (const auto &PredToDest : PredToDestList)
1290     if (PredToDest.second == MostPopularDest) {
1291       BasicBlock *Pred = PredToDest.first;
1292 
1293       // This predecessor may be a switch or something else that has multiple
1294       // edges to the block.  Factor each of these edges by listing them
1295       // according to # occurrences in PredsToFactor.
1296       for (BasicBlock *Succ : successors(Pred))
1297         if (Succ == BB)
1298           PredsToFactor.push_back(Pred);
1299     }
1300 
1301   // If the threadable edges are branching on an undefined value, we get to pick
1302   // the destination that these predecessors should get to.
1303   if (!MostPopularDest)
1304     MostPopularDest = BB->getTerminator()->
1305                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1306 
1307   // Ok, try to thread it!
1308   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1309 }
1310 
1311 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1312 /// a PHI node in the current block.  See if there are any simplifications we
1313 /// can do based on inputs to the phi node.
1314 ///
1315 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1316   BasicBlock *BB = PN->getParent();
1317 
1318   // TODO: We could make use of this to do it once for blocks with common PHI
1319   // values.
1320   SmallVector<BasicBlock*, 1> PredBBs;
1321   PredBBs.resize(1);
1322 
1323   // If any of the predecessor blocks end in an unconditional branch, we can
1324   // *duplicate* the conditional branch into that block in order to further
1325   // encourage jump threading and to eliminate cases where we have branch on a
1326   // phi of an icmp (branch on icmp is much better).
1327   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1328     BasicBlock *PredBB = PN->getIncomingBlock(i);
1329     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1330       if (PredBr->isUnconditional()) {
1331         PredBBs[0] = PredBB;
1332         // Try to duplicate BB into PredBB.
1333         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1334           return true;
1335       }
1336   }
1337 
1338   return false;
1339 }
1340 
1341 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1342 /// a xor instruction in the current block.  See if there are any
1343 /// simplifications we can do based on inputs to the xor.
1344 ///
1345 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1346   BasicBlock *BB = BO->getParent();
1347 
1348   // If either the LHS or RHS of the xor is a constant, don't do this
1349   // optimization.
1350   if (isa<ConstantInt>(BO->getOperand(0)) ||
1351       isa<ConstantInt>(BO->getOperand(1)))
1352     return false;
1353 
1354   // If the first instruction in BB isn't a phi, we won't be able to infer
1355   // anything special about any particular predecessor.
1356   if (!isa<PHINode>(BB->front()))
1357     return false;
1358 
1359   // If this BB is a landing pad, we won't be able to split the edge into it.
1360   if (BB->isEHPad())
1361     return false;
1362 
1363   // If we have a xor as the branch input to this block, and we know that the
1364   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1365   // the condition into the predecessor and fix that value to true, saving some
1366   // logical ops on that path and encouraging other paths to simplify.
1367   //
1368   // This copies something like this:
1369   //
1370   //  BB:
1371   //    %X = phi i1 [1],  [%X']
1372   //    %Y = icmp eq i32 %A, %B
1373   //    %Z = xor i1 %X, %Y
1374   //    br i1 %Z, ...
1375   //
1376   // Into:
1377   //  BB':
1378   //    %Y = icmp ne i32 %A, %B
1379   //    br i1 %Y, ...
1380 
1381   PredValueInfoTy XorOpValues;
1382   bool isLHS = true;
1383   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1384                                        WantInteger, BO)) {
1385     assert(XorOpValues.empty());
1386     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1387                                          WantInteger, BO))
1388       return false;
1389     isLHS = false;
1390   }
1391 
1392   assert(!XorOpValues.empty() &&
1393          "ComputeValueKnownInPredecessors returned true with no values");
1394 
1395   // Scan the information to see which is most popular: true or false.  The
1396   // predecessors can be of the set true, false, or undef.
1397   unsigned NumTrue = 0, NumFalse = 0;
1398   for (const auto &XorOpValue : XorOpValues) {
1399     if (isa<UndefValue>(XorOpValue.first))
1400       // Ignore undefs for the count.
1401       continue;
1402     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1403       ++NumFalse;
1404     else
1405       ++NumTrue;
1406   }
1407 
1408   // Determine which value to split on, true, false, or undef if neither.
1409   ConstantInt *SplitVal = nullptr;
1410   if (NumTrue > NumFalse)
1411     SplitVal = ConstantInt::getTrue(BB->getContext());
1412   else if (NumTrue != 0 || NumFalse != 0)
1413     SplitVal = ConstantInt::getFalse(BB->getContext());
1414 
1415   // Collect all of the blocks that this can be folded into so that we can
1416   // factor this once and clone it once.
1417   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1418   for (const auto &XorOpValue : XorOpValues) {
1419     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1420       continue;
1421 
1422     BlocksToFoldInto.push_back(XorOpValue.second);
1423   }
1424 
1425   // If we inferred a value for all of the predecessors, then duplication won't
1426   // help us.  However, we can just replace the LHS or RHS with the constant.
1427   if (BlocksToFoldInto.size() ==
1428       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1429     if (!SplitVal) {
1430       // If all preds provide undef, just nuke the xor, because it is undef too.
1431       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1432       BO->eraseFromParent();
1433     } else if (SplitVal->isZero()) {
1434       // If all preds provide 0, replace the xor with the other input.
1435       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1436       BO->eraseFromParent();
1437     } else {
1438       // If all preds provide 1, set the computed value to 1.
1439       BO->setOperand(!isLHS, SplitVal);
1440     }
1441 
1442     return true;
1443   }
1444 
1445   // Try to duplicate BB into PredBB.
1446   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1447 }
1448 
1449 
1450 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1451 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1452 /// NewPred using the entries from OldPred (suitably mapped).
1453 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1454                                             BasicBlock *OldPred,
1455                                             BasicBlock *NewPred,
1456                                      DenseMap<Instruction*, Value*> &ValueMap) {
1457   for (BasicBlock::iterator PNI = PHIBB->begin();
1458        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1459     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1460     // DestBlock.
1461     Value *IV = PN->getIncomingValueForBlock(OldPred);
1462 
1463     // Remap the value if necessary.
1464     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1465       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1466       if (I != ValueMap.end())
1467         IV = I->second;
1468     }
1469 
1470     PN->addIncoming(IV, NewPred);
1471   }
1472 }
1473 
1474 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1475 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1476 /// across BB.  Transform the IR to reflect this change.
1477 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1478                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1479                                    BasicBlock *SuccBB) {
1480   // If threading to the same block as we come from, we would infinite loop.
1481   if (SuccBB == BB) {
1482     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1483           << "' - would thread to self!\n");
1484     return false;
1485   }
1486 
1487   // If threading this would thread across a loop header, don't thread the edge.
1488   // See the comments above FindLoopHeaders for justifications and caveats.
1489   if (LoopHeaders.count(BB)) {
1490     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1491           << "' to dest BB '" << SuccBB->getName()
1492           << "' - it might create an irreducible loop!\n");
1493     return false;
1494   }
1495 
1496   unsigned JumpThreadCost =
1497       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1498   if (JumpThreadCost > BBDupThreshold) {
1499     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1500           << "' - Cost is too high: " << JumpThreadCost << "\n");
1501     return false;
1502   }
1503 
1504   // And finally, do it!  Start by factoring the predecessors if needed.
1505   BasicBlock *PredBB;
1506   if (PredBBs.size() == 1)
1507     PredBB = PredBBs[0];
1508   else {
1509     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1510           << " common predecessors.\n");
1511     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1512   }
1513 
1514   // And finally, do it!
1515   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1516         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1517         << ", across block:\n    "
1518         << *BB << "\n");
1519 
1520   LVI->threadEdge(PredBB, BB, SuccBB);
1521 
1522   // We are going to have to map operands from the original BB block to the new
1523   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1524   // account for entry from PredBB.
1525   DenseMap<Instruction*, Value*> ValueMapping;
1526 
1527   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1528                                          BB->getName()+".thread",
1529                                          BB->getParent(), BB);
1530   NewBB->moveAfter(PredBB);
1531 
1532   // Set the block frequency of NewBB.
1533   if (HasProfileData) {
1534     auto NewBBFreq =
1535         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1536     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1537   }
1538 
1539   BasicBlock::iterator BI = BB->begin();
1540   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1541     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1542 
1543   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1544   // mapping and using it to remap operands in the cloned instructions.
1545   for (; !isa<TerminatorInst>(BI); ++BI) {
1546     Instruction *New = BI->clone();
1547     New->setName(BI->getName());
1548     NewBB->getInstList().push_back(New);
1549     ValueMapping[&*BI] = New;
1550 
1551     // Remap operands to patch up intra-block references.
1552     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1553       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1554         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1555         if (I != ValueMapping.end())
1556           New->setOperand(i, I->second);
1557       }
1558   }
1559 
1560   // We didn't copy the terminator from BB over to NewBB, because there is now
1561   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1562   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1563   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1564 
1565   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1566   // PHI nodes for NewBB now.
1567   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1568 
1569   // If there were values defined in BB that are used outside the block, then we
1570   // now have to update all uses of the value to use either the original value,
1571   // the cloned value, or some PHI derived value.  This can require arbitrary
1572   // PHI insertion, of which we are prepared to do, clean these up now.
1573   SSAUpdater SSAUpdate;
1574   SmallVector<Use*, 16> UsesToRename;
1575   for (Instruction &I : *BB) {
1576     // Scan all uses of this instruction to see if it is used outside of its
1577     // block, and if so, record them in UsesToRename.
1578     for (Use &U : I.uses()) {
1579       Instruction *User = cast<Instruction>(U.getUser());
1580       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1581         if (UserPN->getIncomingBlock(U) == BB)
1582           continue;
1583       } else if (User->getParent() == BB)
1584         continue;
1585 
1586       UsesToRename.push_back(&U);
1587     }
1588 
1589     // If there are no uses outside the block, we're done with this instruction.
1590     if (UsesToRename.empty())
1591       continue;
1592 
1593     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1594 
1595     // We found a use of I outside of BB.  Rename all uses of I that are outside
1596     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1597     // with the two values we know.
1598     SSAUpdate.Initialize(I.getType(), I.getName());
1599     SSAUpdate.AddAvailableValue(BB, &I);
1600     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1601 
1602     while (!UsesToRename.empty())
1603       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1604     DEBUG(dbgs() << "\n");
1605   }
1606 
1607 
1608   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1609   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1610   // us to simplify any PHI nodes in BB.
1611   TerminatorInst *PredTerm = PredBB->getTerminator();
1612   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1613     if (PredTerm->getSuccessor(i) == BB) {
1614       BB->removePredecessor(PredBB, true);
1615       PredTerm->setSuccessor(i, NewBB);
1616     }
1617 
1618   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1619   // over the new instructions and zap any that are constants or dead.  This
1620   // frequently happens because of phi translation.
1621   SimplifyInstructionsInBlock(NewBB, TLI);
1622 
1623   // Update the edge weight from BB to SuccBB, which should be less than before.
1624   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1625 
1626   // Threaded an edge!
1627   ++NumThreads;
1628   return true;
1629 }
1630 
1631 /// Create a new basic block that will be the predecessor of BB and successor of
1632 /// all blocks in Preds. When profile data is available, update the frequency of
1633 /// this new block.
1634 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1635                                                ArrayRef<BasicBlock *> Preds,
1636                                                const char *Suffix) {
1637   // Collect the frequencies of all predecessors of BB, which will be used to
1638   // update the edge weight on BB->SuccBB.
1639   BlockFrequency PredBBFreq(0);
1640   if (HasProfileData)
1641     for (auto Pred : Preds)
1642       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1643 
1644   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1645 
1646   // Set the block frequency of the newly created PredBB, which is the sum of
1647   // frequencies of Preds.
1648   if (HasProfileData)
1649     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1650   return PredBB;
1651 }
1652 
1653 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
1654   const TerminatorInst *TI = BB->getTerminator();
1655   assert(TI->getNumSuccessors() > 1 && "not a split");
1656 
1657   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
1658   if (!WeightsNode)
1659     return false;
1660 
1661   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
1662   if (MDName->getString() != "branch_weights")
1663     return false;
1664 
1665   // Ensure there are weights for all of the successors. Note that the first
1666   // operand to the metadata node is a name, not a weight.
1667   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
1668 }
1669 
1670 /// Update the block frequency of BB and branch weight and the metadata on the
1671 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1672 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1673 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1674                                                      BasicBlock *BB,
1675                                                      BasicBlock *NewBB,
1676                                                      BasicBlock *SuccBB) {
1677   if (!HasProfileData)
1678     return;
1679 
1680   assert(BFI && BPI && "BFI & BPI should have been created here");
1681 
1682   // As the edge from PredBB to BB is deleted, we have to update the block
1683   // frequency of BB.
1684   auto BBOrigFreq = BFI->getBlockFreq(BB);
1685   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1686   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1687   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1688   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1689 
1690   // Collect updated outgoing edges' frequencies from BB and use them to update
1691   // edge probabilities.
1692   SmallVector<uint64_t, 4> BBSuccFreq;
1693   for (BasicBlock *Succ : successors(BB)) {
1694     auto SuccFreq = (Succ == SuccBB)
1695                         ? BB2SuccBBFreq - NewBBFreq
1696                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1697     BBSuccFreq.push_back(SuccFreq.getFrequency());
1698   }
1699 
1700   uint64_t MaxBBSuccFreq =
1701       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1702 
1703   SmallVector<BranchProbability, 4> BBSuccProbs;
1704   if (MaxBBSuccFreq == 0)
1705     BBSuccProbs.assign(BBSuccFreq.size(),
1706                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1707   else {
1708     for (uint64_t Freq : BBSuccFreq)
1709       BBSuccProbs.push_back(
1710           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1711     // Normalize edge probabilities so that they sum up to one.
1712     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1713                                               BBSuccProbs.end());
1714   }
1715 
1716   // Update edge probabilities in BPI.
1717   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1718     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1719 
1720   // Update the profile metadata as well.
1721   //
1722   // Don't do this if the profile of the transformed blocks was statically
1723   // estimated.  (This could occur despite the function having an entry
1724   // frequency in completely cold parts of the CFG.)
1725   //
1726   // In this case we don't want to suggest to subsequent passes that the
1727   // calculated weights are fully consistent.  Consider this graph:
1728   //
1729   //                 check_1
1730   //             50% /  |
1731   //             eq_1   | 50%
1732   //                 \  |
1733   //                 check_2
1734   //             50% /  |
1735   //             eq_2   | 50%
1736   //                 \  |
1737   //                 check_3
1738   //             50% /  |
1739   //             eq_3   | 50%
1740   //                 \  |
1741   //
1742   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
1743   // the overall probabilities are inconsistent; the total probability that the
1744   // value is either 1, 2 or 3 is 150%.
1745   //
1746   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
1747   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
1748   // the loop exit edge.  Then based solely on static estimation we would assume
1749   // the loop was extremely hot.
1750   //
1751   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
1752   // shouldn't make edges extremely likely or unlikely based solely on static
1753   // estimation.
1754   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
1755     SmallVector<uint32_t, 4> Weights;
1756     for (auto Prob : BBSuccProbs)
1757       Weights.push_back(Prob.getNumerator());
1758 
1759     auto TI = BB->getTerminator();
1760     TI->setMetadata(
1761         LLVMContext::MD_prof,
1762         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1763   }
1764 }
1765 
1766 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1767 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1768 /// If we can duplicate the contents of BB up into PredBB do so now, this
1769 /// improves the odds that the branch will be on an analyzable instruction like
1770 /// a compare.
1771 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1772     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1773   assert(!PredBBs.empty() && "Can't handle an empty set");
1774 
1775   // If BB is a loop header, then duplicating this block outside the loop would
1776   // cause us to transform this into an irreducible loop, don't do this.
1777   // See the comments above FindLoopHeaders for justifications and caveats.
1778   if (LoopHeaders.count(BB)) {
1779     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1780           << "' into predecessor block '" << PredBBs[0]->getName()
1781           << "' - it might create an irreducible loop!\n");
1782     return false;
1783   }
1784 
1785   unsigned DuplicationCost =
1786       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1787   if (DuplicationCost > BBDupThreshold) {
1788     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1789           << "' - Cost is too high: " << DuplicationCost << "\n");
1790     return false;
1791   }
1792 
1793   // And finally, do it!  Start by factoring the predecessors if needed.
1794   BasicBlock *PredBB;
1795   if (PredBBs.size() == 1)
1796     PredBB = PredBBs[0];
1797   else {
1798     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1799           << " common predecessors.\n");
1800     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1801   }
1802 
1803   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1804   // of PredBB.
1805   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1806         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1807         << DuplicationCost << " block is:" << *BB << "\n");
1808 
1809   // Unless PredBB ends with an unconditional branch, split the edge so that we
1810   // can just clone the bits from BB into the end of the new PredBB.
1811   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1812 
1813   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1814     PredBB = SplitEdge(PredBB, BB);
1815     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1816   }
1817 
1818   // We are going to have to map operands from the original BB block into the
1819   // PredBB block.  Evaluate PHI nodes in BB.
1820   DenseMap<Instruction*, Value*> ValueMapping;
1821 
1822   BasicBlock::iterator BI = BB->begin();
1823   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1824     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1825   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1826   // mapping and using it to remap operands in the cloned instructions.
1827   for (; BI != BB->end(); ++BI) {
1828     Instruction *New = BI->clone();
1829 
1830     // Remap operands to patch up intra-block references.
1831     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1832       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1833         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1834         if (I != ValueMapping.end())
1835           New->setOperand(i, I->second);
1836       }
1837 
1838     // If this instruction can be simplified after the operands are updated,
1839     // just use the simplified value instead.  This frequently happens due to
1840     // phi translation.
1841     if (Value *IV =
1842             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1843       ValueMapping[&*BI] = IV;
1844       if (!New->mayHaveSideEffects()) {
1845         delete New;
1846         New = nullptr;
1847       }
1848     } else {
1849       ValueMapping[&*BI] = New;
1850     }
1851     if (New) {
1852       // Otherwise, insert the new instruction into the block.
1853       New->setName(BI->getName());
1854       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1855     }
1856   }
1857 
1858   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1859   // add entries to the PHI nodes for branch from PredBB now.
1860   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1861   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1862                                   ValueMapping);
1863   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1864                                   ValueMapping);
1865 
1866   // If there were values defined in BB that are used outside the block, then we
1867   // now have to update all uses of the value to use either the original value,
1868   // the cloned value, or some PHI derived value.  This can require arbitrary
1869   // PHI insertion, of which we are prepared to do, clean these up now.
1870   SSAUpdater SSAUpdate;
1871   SmallVector<Use*, 16> UsesToRename;
1872   for (Instruction &I : *BB) {
1873     // Scan all uses of this instruction to see if it is used outside of its
1874     // block, and if so, record them in UsesToRename.
1875     for (Use &U : I.uses()) {
1876       Instruction *User = cast<Instruction>(U.getUser());
1877       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1878         if (UserPN->getIncomingBlock(U) == BB)
1879           continue;
1880       } else if (User->getParent() == BB)
1881         continue;
1882 
1883       UsesToRename.push_back(&U);
1884     }
1885 
1886     // If there are no uses outside the block, we're done with this instruction.
1887     if (UsesToRename.empty())
1888       continue;
1889 
1890     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1891 
1892     // We found a use of I outside of BB.  Rename all uses of I that are outside
1893     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1894     // with the two values we know.
1895     SSAUpdate.Initialize(I.getType(), I.getName());
1896     SSAUpdate.AddAvailableValue(BB, &I);
1897     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1898 
1899     while (!UsesToRename.empty())
1900       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1901     DEBUG(dbgs() << "\n");
1902   }
1903 
1904   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1905   // that we nuked.
1906   BB->removePredecessor(PredBB, true);
1907 
1908   // Remove the unconditional branch at the end of the PredBB block.
1909   OldPredBranch->eraseFromParent();
1910 
1911   ++NumDupes;
1912   return true;
1913 }
1914 
1915 /// TryToUnfoldSelect - Look for blocks of the form
1916 /// bb1:
1917 ///   %a = select
1918 ///   br bb2
1919 ///
1920 /// bb2:
1921 ///   %p = phi [%a, %bb1] ...
1922 ///   %c = icmp %p
1923 ///   br i1 %c
1924 ///
1925 /// And expand the select into a branch structure if one of its arms allows %c
1926 /// to be folded. This later enables threading from bb1 over bb2.
1927 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1928   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1929   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1930   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1931 
1932   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1933       CondLHS->getParent() != BB)
1934     return false;
1935 
1936   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1937     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1938     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1939 
1940     // Look if one of the incoming values is a select in the corresponding
1941     // predecessor.
1942     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1943       continue;
1944 
1945     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1946     if (!PredTerm || !PredTerm->isUnconditional())
1947       continue;
1948 
1949     // Now check if one of the select values would allow us to constant fold the
1950     // terminator in BB. We don't do the transform if both sides fold, those
1951     // cases will be threaded in any case.
1952     LazyValueInfo::Tristate LHSFolds =
1953         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1954                                 CondRHS, Pred, BB, CondCmp);
1955     LazyValueInfo::Tristate RHSFolds =
1956         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1957                                 CondRHS, Pred, BB, CondCmp);
1958     if ((LHSFolds != LazyValueInfo::Unknown ||
1959          RHSFolds != LazyValueInfo::Unknown) &&
1960         LHSFolds != RHSFolds) {
1961       // Expand the select.
1962       //
1963       // Pred --
1964       //  |    v
1965       //  |  NewBB
1966       //  |    |
1967       //  |-----
1968       //  v
1969       // BB
1970       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1971                                              BB->getParent(), BB);
1972       // Move the unconditional branch to NewBB.
1973       PredTerm->removeFromParent();
1974       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1975       // Create a conditional branch and update PHI nodes.
1976       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1977       CondLHS->setIncomingValue(I, SI->getFalseValue());
1978       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1979       // The select is now dead.
1980       SI->eraseFromParent();
1981 
1982       // Update any other PHI nodes in BB.
1983       for (BasicBlock::iterator BI = BB->begin();
1984            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1985         if (Phi != CondLHS)
1986           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1987       return true;
1988     }
1989   }
1990   return false;
1991 }
1992 
1993 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1994 /// bb:
1995 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1996 ///   %s = select p, trueval, falseval
1997 ///
1998 /// And expand the select into a branch structure. This later enables
1999 /// jump-threading over bb in this pass.
2000 ///
2001 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2002 /// select if the associated PHI has at least one constant.  If the unfolded
2003 /// select is not jump-threaded, it will be folded again in the later
2004 /// optimizations.
2005 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2006   // If threading this would thread across a loop header, don't thread the edge.
2007   // See the comments above FindLoopHeaders for justifications and caveats.
2008   if (LoopHeaders.count(BB))
2009     return false;
2010 
2011   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
2012   // condition of the Select and at least one of the incoming values is a
2013   // constant.
2014   for (BasicBlock::iterator BI = BB->begin();
2015        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2016     unsigned NumPHIValues = PN->getNumIncomingValues();
2017     if (NumPHIValues == 0 || !PN->hasOneUse())
2018       continue;
2019 
2020     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
2021     if (!SI || SI->getParent() != BB)
2022       continue;
2023 
2024     Value *Cond = SI->getCondition();
2025     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
2026       continue;
2027 
2028     bool HasConst = false;
2029     for (unsigned i = 0; i != NumPHIValues; ++i) {
2030       if (PN->getIncomingBlock(i) == BB)
2031         return false;
2032       if (isa<ConstantInt>(PN->getIncomingValue(i)))
2033         HasConst = true;
2034     }
2035 
2036     if (HasConst) {
2037       // Expand the select.
2038       TerminatorInst *Term =
2039           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2040       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2041       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2042       NewPN->addIncoming(SI->getFalseValue(), BB);
2043       SI->replaceAllUsesWith(NewPN);
2044       SI->eraseFromParent();
2045       return true;
2046     }
2047   }
2048 
2049   return false;
2050 }
2051 
2052 /// Try to propagate a guard from the current BB into one of its predecessors
2053 /// in case if another branch of execution implies that the condition of this
2054 /// guard is always true. Currently we only process the simplest case that
2055 /// looks like:
2056 ///
2057 /// Start:
2058 ///   %cond = ...
2059 ///   br i1 %cond, label %T1, label %F1
2060 /// T1:
2061 ///   br label %Merge
2062 /// F1:
2063 ///   br label %Merge
2064 /// Merge:
2065 ///   %condGuard = ...
2066 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2067 ///
2068 /// And cond either implies condGuard or !condGuard. In this case all the
2069 /// instructions before the guard can be duplicated in both branches, and the
2070 /// guard is then threaded to one of them.
2071 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2072   using namespace PatternMatch;
2073   // We only want to deal with two predecessors.
2074   BasicBlock *Pred1, *Pred2;
2075   auto PI = pred_begin(BB), PE = pred_end(BB);
2076   if (PI == PE)
2077     return false;
2078   Pred1 = *PI++;
2079   if (PI == PE)
2080     return false;
2081   Pred2 = *PI++;
2082   if (PI != PE)
2083     return false;
2084   if (Pred1 == Pred2)
2085     return false;
2086 
2087   // Try to thread one of the guards of the block.
2088   // TODO: Look up deeper than to immediate predecessor?
2089   auto *Parent = Pred1->getSinglePredecessor();
2090   if (!Parent || Parent != Pred2->getSinglePredecessor())
2091     return false;
2092 
2093   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2094     for (auto &I : *BB)
2095       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2096         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2097           return true;
2098 
2099   return false;
2100 }
2101 
2102 /// Try to propagate the guard from BB which is the lower block of a diamond
2103 /// to one of its branches, in case if diamond's condition implies guard's
2104 /// condition.
2105 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2106                                     BranchInst *BI) {
2107   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2108   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2109   Value *GuardCond = Guard->getArgOperand(0);
2110   Value *BranchCond = BI->getCondition();
2111   BasicBlock *TrueDest = BI->getSuccessor(0);
2112   BasicBlock *FalseDest = BI->getSuccessor(1);
2113 
2114   auto &DL = BB->getModule()->getDataLayout();
2115   bool TrueDestIsSafe = false;
2116   bool FalseDestIsSafe = false;
2117 
2118   // True dest is safe if BranchCond => GuardCond.
2119   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2120   if (Impl && *Impl)
2121     TrueDestIsSafe = true;
2122   else {
2123     // False dest is safe if !BranchCond => GuardCond.
2124     Impl =
2125         isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true);
2126     if (Impl && *Impl)
2127       FalseDestIsSafe = true;
2128   }
2129 
2130   if (!TrueDestIsSafe && !FalseDestIsSafe)
2131     return false;
2132 
2133   BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2134   BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2135 
2136   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2137   Instruction *AfterGuard = Guard->getNextNode();
2138   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2139   if (Cost > BBDupThreshold)
2140     return false;
2141   // Duplicate all instructions before the guard and the guard itself to the
2142   // branch where implication is not proved.
2143   GuardedBlock = DuplicateInstructionsInSplitBetween(
2144       BB, GuardedBlock, AfterGuard, GuardedMapping);
2145   assert(GuardedBlock && "Could not create the guarded block?");
2146   // Duplicate all instructions before the guard in the unguarded branch.
2147   // Since we have successfully duplicated the guarded block and this block
2148   // has fewer instructions, we expect it to succeed.
2149   UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
2150                                                        Guard, UnguardedMapping);
2151   assert(UnguardedBlock && "Could not create the unguarded block?");
2152   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2153                << GuardedBlock->getName() << "\n");
2154 
2155   // Some instructions before the guard may still have uses. For them, we need
2156   // to create Phi nodes merging their copies in both guarded and unguarded
2157   // branches. Those instructions that have no uses can be just removed.
2158   SmallVector<Instruction *, 4> ToRemove;
2159   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2160     if (!isa<PHINode>(&*BI))
2161       ToRemove.push_back(&*BI);
2162 
2163   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2164   assert(InsertionPoint && "Empty block?");
2165   // Substitute with Phis & remove.
2166   for (auto *Inst : reverse(ToRemove)) {
2167     if (!Inst->use_empty()) {
2168       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2169       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2170       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2171       NewPN->insertBefore(InsertionPoint);
2172       Inst->replaceAllUsesWith(NewPN);
2173     }
2174     Inst->eraseFromParent();
2175   }
2176   return true;
2177 }
2178