1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/GlobalsModRef.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/InstructionSimplify.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/ValueTracking.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 40 #include "llvm/Transforms/Utils/Cloning.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 #include "llvm/Transforms/Utils/SSAUpdater.h" 43 #include <algorithm> 44 #include <memory> 45 using namespace llvm; 46 using namespace jumpthreading; 47 48 #define DEBUG_TYPE "jump-threading" 49 50 STATISTIC(NumThreads, "Number of jumps threaded"); 51 STATISTIC(NumFolds, "Number of terminators folded"); 52 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 53 54 static cl::opt<unsigned> 55 BBDuplicateThreshold("jump-threading-threshold", 56 cl::desc("Max block size to duplicate for jump threading"), 57 cl::init(6), cl::Hidden); 58 59 static cl::opt<unsigned> 60 ImplicationSearchThreshold( 61 "jump-threading-implication-search-threshold", 62 cl::desc("The number of predecessors to search for a stronger " 63 "condition to use to thread over a weaker condition"), 64 cl::init(3), cl::Hidden); 65 66 namespace { 67 /// This pass performs 'jump threading', which looks at blocks that have 68 /// multiple predecessors and multiple successors. If one or more of the 69 /// predecessors of the block can be proven to always jump to one of the 70 /// successors, we forward the edge from the predecessor to the successor by 71 /// duplicating the contents of this block. 72 /// 73 /// An example of when this can occur is code like this: 74 /// 75 /// if () { ... 76 /// X = 4; 77 /// } 78 /// if (X < 3) { 79 /// 80 /// In this case, the unconditional branch at the end of the first if can be 81 /// revectored to the false side of the second if. 82 /// 83 class JumpThreading : public FunctionPass { 84 JumpThreadingPass Impl; 85 86 public: 87 static char ID; // Pass identification 88 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 89 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 90 } 91 92 bool runOnFunction(Function &F) override; 93 94 void getAnalysisUsage(AnalysisUsage &AU) const override { 95 AU.addRequired<AAResultsWrapperPass>(); 96 AU.addRequired<LazyValueInfoWrapperPass>(); 97 AU.addPreserved<LazyValueInfoWrapperPass>(); 98 AU.addPreserved<GlobalsAAWrapperPass>(); 99 AU.addRequired<TargetLibraryInfoWrapperPass>(); 100 } 101 102 void releaseMemory() override { Impl.releaseMemory(); } 103 }; 104 } 105 106 char JumpThreading::ID = 0; 107 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 108 "Jump Threading", false, false) 109 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 110 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 111 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 112 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 113 "Jump Threading", false, false) 114 115 // Public interface to the Jump Threading pass 116 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 117 118 JumpThreadingPass::JumpThreadingPass(int T) { 119 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 120 } 121 122 /// runOnFunction - Top level algorithm. 123 /// 124 bool JumpThreading::runOnFunction(Function &F) { 125 if (skipFunction(F)) 126 return false; 127 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 128 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 129 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 130 std::unique_ptr<BlockFrequencyInfo> BFI; 131 std::unique_ptr<BranchProbabilityInfo> BPI; 132 bool HasProfileData = F.getEntryCount().hasValue(); 133 if (HasProfileData) { 134 LoopInfo LI{DominatorTree(F)}; 135 BPI.reset(new BranchProbabilityInfo(F, LI)); 136 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 137 } 138 139 return Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI), 140 std::move(BPI)); 141 } 142 143 PreservedAnalyses JumpThreadingPass::run(Function &F, 144 FunctionAnalysisManager &AM) { 145 146 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 147 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 148 auto &AA = AM.getResult<AAManager>(F); 149 150 std::unique_ptr<BlockFrequencyInfo> BFI; 151 std::unique_ptr<BranchProbabilityInfo> BPI; 152 bool HasProfileData = F.getEntryCount().hasValue(); 153 if (HasProfileData) { 154 LoopInfo LI{DominatorTree(F)}; 155 BPI.reset(new BranchProbabilityInfo(F, LI)); 156 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 157 } 158 159 bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI), 160 std::move(BPI)); 161 162 if (!Changed) 163 return PreservedAnalyses::all(); 164 PreservedAnalyses PA; 165 PA.preserve<GlobalsAA>(); 166 return PA; 167 } 168 169 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 170 LazyValueInfo *LVI_, AliasAnalysis *AA_, 171 bool HasProfileData_, 172 std::unique_ptr<BlockFrequencyInfo> BFI_, 173 std::unique_ptr<BranchProbabilityInfo> BPI_) { 174 175 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 176 TLI = TLI_; 177 LVI = LVI_; 178 AA = AA_; 179 BFI.reset(); 180 BPI.reset(); 181 // When profile data is available, we need to update edge weights after 182 // successful jump threading, which requires both BPI and BFI being available. 183 HasProfileData = HasProfileData_; 184 auto *GuardDecl = F.getParent()->getFunction( 185 Intrinsic::getName(Intrinsic::experimental_guard)); 186 HasGuards = GuardDecl && !GuardDecl->use_empty(); 187 if (HasProfileData) { 188 BPI = std::move(BPI_); 189 BFI = std::move(BFI_); 190 } 191 192 // Remove unreachable blocks from function as they may result in infinite 193 // loop. We do threading if we found something profitable. Jump threading a 194 // branch can create other opportunities. If these opportunities form a cycle 195 // i.e. if any jump threading is undoing previous threading in the path, then 196 // we will loop forever. We take care of this issue by not jump threading for 197 // back edges. This works for normal cases but not for unreachable blocks as 198 // they may have cycle with no back edge. 199 bool EverChanged = false; 200 EverChanged |= removeUnreachableBlocks(F, LVI); 201 202 FindLoopHeaders(F); 203 204 bool Changed; 205 do { 206 Changed = false; 207 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 208 BasicBlock *BB = &*I; 209 // Thread all of the branches we can over this block. 210 while (ProcessBlock(BB)) 211 Changed = true; 212 213 ++I; 214 215 // If the block is trivially dead, zap it. This eliminates the successor 216 // edges which simplifies the CFG. 217 if (pred_empty(BB) && 218 BB != &BB->getParent()->getEntryBlock()) { 219 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 220 << "' with terminator: " << *BB->getTerminator() << '\n'); 221 LoopHeaders.erase(BB); 222 LVI->eraseBlock(BB); 223 DeleteDeadBlock(BB); 224 Changed = true; 225 continue; 226 } 227 228 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 229 230 // Can't thread an unconditional jump, but if the block is "almost 231 // empty", we can replace uses of it with uses of the successor and make 232 // this dead. 233 // We should not eliminate the loop header either, because eliminating 234 // a loop header might later prevent LoopSimplify from transforming nested 235 // loops into simplified form. 236 if (BI && BI->isUnconditional() && 237 BB != &BB->getParent()->getEntryBlock() && 238 // If the terminator is the only non-phi instruction, try to nuke it. 239 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) { 240 // FIXME: It is always conservatively correct to drop the info 241 // for a block even if it doesn't get erased. This isn't totally 242 // awesome, but it allows us to use AssertingVH to prevent nasty 243 // dangling pointer issues within LazyValueInfo. 244 LVI->eraseBlock(BB); 245 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 246 Changed = true; 247 } 248 } 249 EverChanged |= Changed; 250 } while (Changed); 251 252 LoopHeaders.clear(); 253 return EverChanged; 254 } 255 256 /// Return the cost of duplicating a piece of this block from first non-phi 257 /// and before StopAt instruction to thread across it. Stop scanning the block 258 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 259 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 260 Instruction *StopAt, 261 unsigned Threshold) { 262 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 263 /// Ignore PHI nodes, these will be flattened when duplication happens. 264 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 265 266 // FIXME: THREADING will delete values that are just used to compute the 267 // branch, so they shouldn't count against the duplication cost. 268 269 unsigned Bonus = 0; 270 if (BB->getTerminator() == StopAt) { 271 // Threading through a switch statement is particularly profitable. If this 272 // block ends in a switch, decrease its cost to make it more likely to 273 // happen. 274 if (isa<SwitchInst>(StopAt)) 275 Bonus = 6; 276 277 // The same holds for indirect branches, but slightly more so. 278 if (isa<IndirectBrInst>(StopAt)) 279 Bonus = 8; 280 } 281 282 // Bump the threshold up so the early exit from the loop doesn't skip the 283 // terminator-based Size adjustment at the end. 284 Threshold += Bonus; 285 286 // Sum up the cost of each instruction until we get to the terminator. Don't 287 // include the terminator because the copy won't include it. 288 unsigned Size = 0; 289 for (; &*I != StopAt; ++I) { 290 291 // Stop scanning the block if we've reached the threshold. 292 if (Size > Threshold) 293 return Size; 294 295 // Debugger intrinsics don't incur code size. 296 if (isa<DbgInfoIntrinsic>(I)) continue; 297 298 // If this is a pointer->pointer bitcast, it is free. 299 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 300 continue; 301 302 // Bail out if this instruction gives back a token type, it is not possible 303 // to duplicate it if it is used outside this BB. 304 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 305 return ~0U; 306 307 // All other instructions count for at least one unit. 308 ++Size; 309 310 // Calls are more expensive. If they are non-intrinsic calls, we model them 311 // as having cost of 4. If they are a non-vector intrinsic, we model them 312 // as having cost of 2 total, and if they are a vector intrinsic, we model 313 // them as having cost 1. 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 315 if (CI->cannotDuplicate() || CI->isConvergent()) 316 // Blocks with NoDuplicate are modelled as having infinite cost, so they 317 // are never duplicated. 318 return ~0U; 319 else if (!isa<IntrinsicInst>(CI)) 320 Size += 3; 321 else if (!CI->getType()->isVectorTy()) 322 Size += 1; 323 } 324 } 325 326 return Size > Bonus ? Size - Bonus : 0; 327 } 328 329 /// FindLoopHeaders - We do not want jump threading to turn proper loop 330 /// structures into irreducible loops. Doing this breaks up the loop nesting 331 /// hierarchy and pessimizes later transformations. To prevent this from 332 /// happening, we first have to find the loop headers. Here we approximate this 333 /// by finding targets of backedges in the CFG. 334 /// 335 /// Note that there definitely are cases when we want to allow threading of 336 /// edges across a loop header. For example, threading a jump from outside the 337 /// loop (the preheader) to an exit block of the loop is definitely profitable. 338 /// It is also almost always profitable to thread backedges from within the loop 339 /// to exit blocks, and is often profitable to thread backedges to other blocks 340 /// within the loop (forming a nested loop). This simple analysis is not rich 341 /// enough to track all of these properties and keep it up-to-date as the CFG 342 /// mutates, so we don't allow any of these transformations. 343 /// 344 void JumpThreadingPass::FindLoopHeaders(Function &F) { 345 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 346 FindFunctionBackedges(F, Edges); 347 348 for (const auto &Edge : Edges) 349 LoopHeaders.insert(Edge.second); 350 } 351 352 /// getKnownConstant - Helper method to determine if we can thread over a 353 /// terminator with the given value as its condition, and if so what value to 354 /// use for that. What kind of value this is depends on whether we want an 355 /// integer or a block address, but an undef is always accepted. 356 /// Returns null if Val is null or not an appropriate constant. 357 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 358 if (!Val) 359 return nullptr; 360 361 // Undef is "known" enough. 362 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 363 return U; 364 365 if (Preference == WantBlockAddress) 366 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 367 368 return dyn_cast<ConstantInt>(Val); 369 } 370 371 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 372 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 373 /// in any of our predecessors. If so, return the known list of value and pred 374 /// BB in the result vector. 375 /// 376 /// This returns true if there were any known values. 377 /// 378 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 379 Value *V, BasicBlock *BB, PredValueInfo &Result, 380 ConstantPreference Preference, Instruction *CxtI) { 381 // This method walks up use-def chains recursively. Because of this, we could 382 // get into an infinite loop going around loops in the use-def chain. To 383 // prevent this, keep track of what (value, block) pairs we've already visited 384 // and terminate the search if we loop back to them 385 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 386 return false; 387 388 // An RAII help to remove this pair from the recursion set once the recursion 389 // stack pops back out again. 390 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 391 392 // If V is a constant, then it is known in all predecessors. 393 if (Constant *KC = getKnownConstant(V, Preference)) { 394 for (BasicBlock *Pred : predecessors(BB)) 395 Result.push_back(std::make_pair(KC, Pred)); 396 397 return !Result.empty(); 398 } 399 400 // If V is a non-instruction value, or an instruction in a different block, 401 // then it can't be derived from a PHI. 402 Instruction *I = dyn_cast<Instruction>(V); 403 if (!I || I->getParent() != BB) { 404 405 // Okay, if this is a live-in value, see if it has a known value at the end 406 // of any of our predecessors. 407 // 408 // FIXME: This should be an edge property, not a block end property. 409 /// TODO: Per PR2563, we could infer value range information about a 410 /// predecessor based on its terminator. 411 // 412 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 413 // "I" is a non-local compare-with-a-constant instruction. This would be 414 // able to handle value inequalities better, for example if the compare is 415 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 416 // Perhaps getConstantOnEdge should be smart enough to do this? 417 418 for (BasicBlock *P : predecessors(BB)) { 419 // If the value is known by LazyValueInfo to be a constant in a 420 // predecessor, use that information to try to thread this block. 421 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 422 if (Constant *KC = getKnownConstant(PredCst, Preference)) 423 Result.push_back(std::make_pair(KC, P)); 424 } 425 426 return !Result.empty(); 427 } 428 429 /// If I is a PHI node, then we know the incoming values for any constants. 430 if (PHINode *PN = dyn_cast<PHINode>(I)) { 431 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 432 Value *InVal = PN->getIncomingValue(i); 433 if (Constant *KC = getKnownConstant(InVal, Preference)) { 434 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 435 } else { 436 Constant *CI = LVI->getConstantOnEdge(InVal, 437 PN->getIncomingBlock(i), 438 BB, CxtI); 439 if (Constant *KC = getKnownConstant(CI, Preference)) 440 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 441 } 442 } 443 444 return !Result.empty(); 445 } 446 447 // Handle Cast instructions. Only see through Cast when the source operand is 448 // PHI or Cmp and the source type is i1 to save the compilation time. 449 if (CastInst *CI = dyn_cast<CastInst>(I)) { 450 Value *Source = CI->getOperand(0); 451 if (!Source->getType()->isIntegerTy(1)) 452 return false; 453 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 454 return false; 455 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 456 if (Result.empty()) 457 return false; 458 459 // Convert the known values. 460 for (auto &R : Result) 461 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 462 463 return true; 464 } 465 466 PredValueInfoTy LHSVals, RHSVals; 467 468 // Handle some boolean conditions. 469 if (I->getType()->getPrimitiveSizeInBits() == 1) { 470 assert(Preference == WantInteger && "One-bit non-integer type?"); 471 // X | true -> true 472 // X & false -> false 473 if (I->getOpcode() == Instruction::Or || 474 I->getOpcode() == Instruction::And) { 475 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 476 WantInteger, CxtI); 477 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 478 WantInteger, CxtI); 479 480 if (LHSVals.empty() && RHSVals.empty()) 481 return false; 482 483 ConstantInt *InterestingVal; 484 if (I->getOpcode() == Instruction::Or) 485 InterestingVal = ConstantInt::getTrue(I->getContext()); 486 else 487 InterestingVal = ConstantInt::getFalse(I->getContext()); 488 489 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 490 491 // Scan for the sentinel. If we find an undef, force it to the 492 // interesting value: x|undef -> true and x&undef -> false. 493 for (const auto &LHSVal : LHSVals) 494 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 495 Result.emplace_back(InterestingVal, LHSVal.second); 496 LHSKnownBBs.insert(LHSVal.second); 497 } 498 for (const auto &RHSVal : RHSVals) 499 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 500 // If we already inferred a value for this block on the LHS, don't 501 // re-add it. 502 if (!LHSKnownBBs.count(RHSVal.second)) 503 Result.emplace_back(InterestingVal, RHSVal.second); 504 } 505 506 return !Result.empty(); 507 } 508 509 // Handle the NOT form of XOR. 510 if (I->getOpcode() == Instruction::Xor && 511 isa<ConstantInt>(I->getOperand(1)) && 512 cast<ConstantInt>(I->getOperand(1))->isOne()) { 513 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 514 WantInteger, CxtI); 515 if (Result.empty()) 516 return false; 517 518 // Invert the known values. 519 for (auto &R : Result) 520 R.first = ConstantExpr::getNot(R.first); 521 522 return true; 523 } 524 525 // Try to simplify some other binary operator values. 526 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 527 assert(Preference != WantBlockAddress 528 && "A binary operator creating a block address?"); 529 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 530 PredValueInfoTy LHSVals; 531 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 532 WantInteger, CxtI); 533 534 // Try to use constant folding to simplify the binary operator. 535 for (const auto &LHSVal : LHSVals) { 536 Constant *V = LHSVal.first; 537 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 538 539 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 540 Result.push_back(std::make_pair(KC, LHSVal.second)); 541 } 542 } 543 544 return !Result.empty(); 545 } 546 547 // Handle compare with phi operand, where the PHI is defined in this block. 548 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 549 assert(Preference == WantInteger && "Compares only produce integers"); 550 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 551 if (PN && PN->getParent() == BB) { 552 const DataLayout &DL = PN->getModule()->getDataLayout(); 553 // We can do this simplification if any comparisons fold to true or false. 554 // See if any do. 555 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 556 BasicBlock *PredBB = PN->getIncomingBlock(i); 557 Value *LHS = PN->getIncomingValue(i); 558 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 559 560 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 561 if (!Res) { 562 if (!isa<Constant>(RHS)) 563 continue; 564 565 LazyValueInfo::Tristate 566 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 567 cast<Constant>(RHS), PredBB, BB, 568 CxtI ? CxtI : Cmp); 569 if (ResT == LazyValueInfo::Unknown) 570 continue; 571 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 572 } 573 574 if (Constant *KC = getKnownConstant(Res, WantInteger)) 575 Result.push_back(std::make_pair(KC, PredBB)); 576 } 577 578 return !Result.empty(); 579 } 580 581 // If comparing a live-in value against a constant, see if we know the 582 // live-in value on any predecessors. 583 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 584 if (!isa<Instruction>(Cmp->getOperand(0)) || 585 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 586 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 587 588 for (BasicBlock *P : predecessors(BB)) { 589 // If the value is known by LazyValueInfo to be a constant in a 590 // predecessor, use that information to try to thread this block. 591 LazyValueInfo::Tristate Res = 592 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 593 RHSCst, P, BB, CxtI ? CxtI : Cmp); 594 if (Res == LazyValueInfo::Unknown) 595 continue; 596 597 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 598 Result.push_back(std::make_pair(ResC, P)); 599 } 600 601 return !Result.empty(); 602 } 603 604 // Try to find a constant value for the LHS of a comparison, 605 // and evaluate it statically if we can. 606 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 607 PredValueInfoTy LHSVals; 608 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 609 WantInteger, CxtI); 610 611 for (const auto &LHSVal : LHSVals) { 612 Constant *V = LHSVal.first; 613 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 614 V, CmpConst); 615 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 616 Result.push_back(std::make_pair(KC, LHSVal.second)); 617 } 618 619 return !Result.empty(); 620 } 621 } 622 } 623 624 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 625 // Handle select instructions where at least one operand is a known constant 626 // and we can figure out the condition value for any predecessor block. 627 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 628 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 629 PredValueInfoTy Conds; 630 if ((TrueVal || FalseVal) && 631 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 632 WantInteger, CxtI)) { 633 for (auto &C : Conds) { 634 Constant *Cond = C.first; 635 636 // Figure out what value to use for the condition. 637 bool KnownCond; 638 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 639 // A known boolean. 640 KnownCond = CI->isOne(); 641 } else { 642 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 643 // Either operand will do, so be sure to pick the one that's a known 644 // constant. 645 // FIXME: Do this more cleverly if both values are known constants? 646 KnownCond = (TrueVal != nullptr); 647 } 648 649 // See if the select has a known constant value for this predecessor. 650 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 651 Result.push_back(std::make_pair(Val, C.second)); 652 } 653 654 return !Result.empty(); 655 } 656 } 657 658 // If all else fails, see if LVI can figure out a constant value for us. 659 Constant *CI = LVI->getConstant(V, BB, CxtI); 660 if (Constant *KC = getKnownConstant(CI, Preference)) { 661 for (BasicBlock *Pred : predecessors(BB)) 662 Result.push_back(std::make_pair(KC, Pred)); 663 } 664 665 return !Result.empty(); 666 } 667 668 669 670 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 671 /// in an undefined jump, decide which block is best to revector to. 672 /// 673 /// Since we can pick an arbitrary destination, we pick the successor with the 674 /// fewest predecessors. This should reduce the in-degree of the others. 675 /// 676 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 677 TerminatorInst *BBTerm = BB->getTerminator(); 678 unsigned MinSucc = 0; 679 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 680 // Compute the successor with the minimum number of predecessors. 681 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 682 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 683 TestBB = BBTerm->getSuccessor(i); 684 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 685 if (NumPreds < MinNumPreds) { 686 MinSucc = i; 687 MinNumPreds = NumPreds; 688 } 689 } 690 691 return MinSucc; 692 } 693 694 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 695 if (!BB->hasAddressTaken()) return false; 696 697 // If the block has its address taken, it may be a tree of dead constants 698 // hanging off of it. These shouldn't keep the block alive. 699 BlockAddress *BA = BlockAddress::get(BB); 700 BA->removeDeadConstantUsers(); 701 return !BA->use_empty(); 702 } 703 704 /// ProcessBlock - If there are any predecessors whose control can be threaded 705 /// through to a successor, transform them now. 706 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 707 // If the block is trivially dead, just return and let the caller nuke it. 708 // This simplifies other transformations. 709 if (pred_empty(BB) && 710 BB != &BB->getParent()->getEntryBlock()) 711 return false; 712 713 // If this block has a single predecessor, and if that pred has a single 714 // successor, merge the blocks. This encourages recursive jump threading 715 // because now the condition in this block can be threaded through 716 // predecessors of our predecessor block. 717 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 718 const TerminatorInst *TI = SinglePred->getTerminator(); 719 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 720 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 721 // If SinglePred was a loop header, BB becomes one. 722 if (LoopHeaders.erase(SinglePred)) 723 LoopHeaders.insert(BB); 724 725 LVI->eraseBlock(SinglePred); 726 MergeBasicBlockIntoOnlyPred(BB); 727 728 return true; 729 } 730 } 731 732 if (TryToUnfoldSelectInCurrBB(BB)) 733 return true; 734 735 // Look if we can propagate guards to predecessors. 736 if (HasGuards && ProcessGuards(BB)) 737 return true; 738 739 // What kind of constant we're looking for. 740 ConstantPreference Preference = WantInteger; 741 742 // Look to see if the terminator is a conditional branch, switch or indirect 743 // branch, if not we can't thread it. 744 Value *Condition; 745 Instruction *Terminator = BB->getTerminator(); 746 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 747 // Can't thread an unconditional jump. 748 if (BI->isUnconditional()) return false; 749 Condition = BI->getCondition(); 750 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 751 Condition = SI->getCondition(); 752 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 753 // Can't thread indirect branch with no successors. 754 if (IB->getNumSuccessors() == 0) return false; 755 Condition = IB->getAddress()->stripPointerCasts(); 756 Preference = WantBlockAddress; 757 } else { 758 return false; // Must be an invoke. 759 } 760 761 // Run constant folding to see if we can reduce the condition to a simple 762 // constant. 763 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 764 Value *SimpleVal = 765 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 766 if (SimpleVal) { 767 I->replaceAllUsesWith(SimpleVal); 768 if (isInstructionTriviallyDead(I, TLI)) 769 I->eraseFromParent(); 770 Condition = SimpleVal; 771 } 772 } 773 774 // If the terminator is branching on an undef, we can pick any of the 775 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 776 if (isa<UndefValue>(Condition)) { 777 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 778 779 // Fold the branch/switch. 780 TerminatorInst *BBTerm = BB->getTerminator(); 781 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 782 if (i == BestSucc) continue; 783 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 784 } 785 786 DEBUG(dbgs() << " In block '" << BB->getName() 787 << "' folding undef terminator: " << *BBTerm << '\n'); 788 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 789 BBTerm->eraseFromParent(); 790 return true; 791 } 792 793 // If the terminator of this block is branching on a constant, simplify the 794 // terminator to an unconditional branch. This can occur due to threading in 795 // other blocks. 796 if (getKnownConstant(Condition, Preference)) { 797 DEBUG(dbgs() << " In block '" << BB->getName() 798 << "' folding terminator: " << *BB->getTerminator() << '\n'); 799 ++NumFolds; 800 ConstantFoldTerminator(BB, true); 801 return true; 802 } 803 804 Instruction *CondInst = dyn_cast<Instruction>(Condition); 805 806 // All the rest of our checks depend on the condition being an instruction. 807 if (!CondInst) { 808 // FIXME: Unify this with code below. 809 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 810 return true; 811 return false; 812 } 813 814 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 815 // If we're branching on a conditional, LVI might be able to determine 816 // it's value at the branch instruction. We only handle comparisons 817 // against a constant at this time. 818 // TODO: This should be extended to handle switches as well. 819 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 820 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 821 if (CondBr && CondConst) { 822 // We should have returned as soon as we turn a conditional branch to 823 // unconditional. Because its no longer interesting as far as jump 824 // threading is concerned. 825 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 826 827 LazyValueInfo::Tristate Ret = 828 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 829 CondConst, CondBr); 830 if (Ret != LazyValueInfo::Unknown) { 831 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 832 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 833 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 834 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 835 CondBr->eraseFromParent(); 836 if (CondCmp->use_empty()) 837 CondCmp->eraseFromParent(); 838 else if (CondCmp->getParent() == BB) { 839 // If the fact we just learned is true for all uses of the 840 // condition, replace it with a constant value 841 auto *CI = Ret == LazyValueInfo::True ? 842 ConstantInt::getTrue(CondCmp->getType()) : 843 ConstantInt::getFalse(CondCmp->getType()); 844 CondCmp->replaceAllUsesWith(CI); 845 CondCmp->eraseFromParent(); 846 } 847 return true; 848 } 849 850 // We did not manage to simplify this branch, try to see whether 851 // CondCmp depends on a known phi-select pattern. 852 if (TryToUnfoldSelect(CondCmp, BB)) 853 return true; 854 } 855 } 856 857 // Check for some cases that are worth simplifying. Right now we want to look 858 // for loads that are used by a switch or by the condition for the branch. If 859 // we see one, check to see if it's partially redundant. If so, insert a PHI 860 // which can then be used to thread the values. 861 // 862 Value *SimplifyValue = CondInst; 863 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 864 if (isa<Constant>(CondCmp->getOperand(1))) 865 SimplifyValue = CondCmp->getOperand(0); 866 867 // TODO: There are other places where load PRE would be profitable, such as 868 // more complex comparisons. 869 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 870 if (SimplifyPartiallyRedundantLoad(LI)) 871 return true; 872 873 // Handle a variety of cases where we are branching on something derived from 874 // a PHI node in the current block. If we can prove that any predecessors 875 // compute a predictable value based on a PHI node, thread those predecessors. 876 // 877 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 878 return true; 879 880 // If this is an otherwise-unfoldable branch on a phi node in the current 881 // block, see if we can simplify. 882 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 883 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 884 return ProcessBranchOnPHI(PN); 885 886 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 887 if (CondInst->getOpcode() == Instruction::Xor && 888 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 889 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 890 891 // Search for a stronger dominating condition that can be used to simplify a 892 // conditional branch leaving BB. 893 if (ProcessImpliedCondition(BB)) 894 return true; 895 896 return false; 897 } 898 899 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 900 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 901 if (!BI || !BI->isConditional()) 902 return false; 903 904 Value *Cond = BI->getCondition(); 905 BasicBlock *CurrentBB = BB; 906 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 907 unsigned Iter = 0; 908 909 auto &DL = BB->getModule()->getDataLayout(); 910 911 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 912 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 913 if (!PBI || !PBI->isConditional()) 914 return false; 915 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 916 return false; 917 918 bool FalseDest = PBI->getSuccessor(1) == CurrentBB; 919 Optional<bool> Implication = 920 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest); 921 if (Implication) { 922 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 923 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 924 BI->eraseFromParent(); 925 return true; 926 } 927 CurrentBB = CurrentPred; 928 CurrentPred = CurrentBB->getSinglePredecessor(); 929 } 930 931 return false; 932 } 933 934 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 935 /// load instruction, eliminate it by replacing it with a PHI node. This is an 936 /// important optimization that encourages jump threading, and needs to be run 937 /// interlaced with other jump threading tasks. 938 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 939 // Don't hack volatile and ordered loads. 940 if (!LI->isUnordered()) return false; 941 942 // If the load is defined in a block with exactly one predecessor, it can't be 943 // partially redundant. 944 BasicBlock *LoadBB = LI->getParent(); 945 if (LoadBB->getSinglePredecessor()) 946 return false; 947 948 // If the load is defined in an EH pad, it can't be partially redundant, 949 // because the edges between the invoke and the EH pad cannot have other 950 // instructions between them. 951 if (LoadBB->isEHPad()) 952 return false; 953 954 Value *LoadedPtr = LI->getOperand(0); 955 956 // If the loaded operand is defined in the LoadBB, it can't be available. 957 // TODO: Could do simple PHI translation, that would be fun :) 958 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 959 if (PtrOp->getParent() == LoadBB) 960 return false; 961 962 // Scan a few instructions up from the load, to see if it is obviously live at 963 // the entry to its block. 964 BasicBlock::iterator BBIt(LI); 965 bool IsLoadCSE; 966 if (Value *AvailableVal = FindAvailableLoadedValue( 967 LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 968 // If the value of the load is locally available within the block, just use 969 // it. This frequently occurs for reg2mem'd allocas. 970 971 if (IsLoadCSE) { 972 LoadInst *NLI = cast<LoadInst>(AvailableVal); 973 combineMetadataForCSE(NLI, LI); 974 }; 975 976 // If the returned value is the load itself, replace with an undef. This can 977 // only happen in dead loops. 978 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 979 if (AvailableVal->getType() != LI->getType()) 980 AvailableVal = 981 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 982 LI->replaceAllUsesWith(AvailableVal); 983 LI->eraseFromParent(); 984 return true; 985 } 986 987 // Otherwise, if we scanned the whole block and got to the top of the block, 988 // we know the block is locally transparent to the load. If not, something 989 // might clobber its value. 990 if (BBIt != LoadBB->begin()) 991 return false; 992 993 // If all of the loads and stores that feed the value have the same AA tags, 994 // then we can propagate them onto any newly inserted loads. 995 AAMDNodes AATags; 996 LI->getAAMetadata(AATags); 997 998 SmallPtrSet<BasicBlock*, 8> PredsScanned; 999 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 1000 AvailablePredsTy AvailablePreds; 1001 BasicBlock *OneUnavailablePred = nullptr; 1002 SmallVector<LoadInst*, 8> CSELoads; 1003 1004 // If we got here, the loaded value is transparent through to the start of the 1005 // block. Check to see if it is available in any of the predecessor blocks. 1006 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1007 // If we already scanned this predecessor, skip it. 1008 if (!PredsScanned.insert(PredBB).second) 1009 continue; 1010 1011 // Scan the predecessor to see if the value is available in the pred. 1012 BBIt = PredBB->end(); 1013 unsigned NumScanedInst = 0; 1014 Value *PredAvailable = FindAvailableLoadedValue( 1015 LI, PredBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1016 1017 // If PredBB has a single predecessor, continue scanning through the single 1018 // predecessor. 1019 BasicBlock *SinglePredBB = PredBB; 1020 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1021 NumScanedInst < DefMaxInstsToScan) { 1022 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1023 if (SinglePredBB) { 1024 BBIt = SinglePredBB->end(); 1025 PredAvailable = FindAvailableLoadedValue( 1026 LI, SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst), AA, 1027 &IsLoadCSE, &NumScanedInst); 1028 } 1029 } 1030 1031 if (!PredAvailable) { 1032 OneUnavailablePred = PredBB; 1033 continue; 1034 } 1035 1036 if (IsLoadCSE) 1037 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1038 1039 // If so, this load is partially redundant. Remember this info so that we 1040 // can create a PHI node. 1041 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1042 } 1043 1044 // If the loaded value isn't available in any predecessor, it isn't partially 1045 // redundant. 1046 if (AvailablePreds.empty()) return false; 1047 1048 // Okay, the loaded value is available in at least one (and maybe all!) 1049 // predecessors. If the value is unavailable in more than one unique 1050 // predecessor, we want to insert a merge block for those common predecessors. 1051 // This ensures that we only have to insert one reload, thus not increasing 1052 // code size. 1053 BasicBlock *UnavailablePred = nullptr; 1054 1055 // If there is exactly one predecessor where the value is unavailable, the 1056 // already computed 'OneUnavailablePred' block is it. If it ends in an 1057 // unconditional branch, we know that it isn't a critical edge. 1058 if (PredsScanned.size() == AvailablePreds.size()+1 && 1059 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1060 UnavailablePred = OneUnavailablePred; 1061 } else if (PredsScanned.size() != AvailablePreds.size()) { 1062 // Otherwise, we had multiple unavailable predecessors or we had a critical 1063 // edge from the one. 1064 SmallVector<BasicBlock*, 8> PredsToSplit; 1065 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1066 1067 for (const auto &AvailablePred : AvailablePreds) 1068 AvailablePredSet.insert(AvailablePred.first); 1069 1070 // Add all the unavailable predecessors to the PredsToSplit list. 1071 for (BasicBlock *P : predecessors(LoadBB)) { 1072 // If the predecessor is an indirect goto, we can't split the edge. 1073 if (isa<IndirectBrInst>(P->getTerminator())) 1074 return false; 1075 1076 if (!AvailablePredSet.count(P)) 1077 PredsToSplit.push_back(P); 1078 } 1079 1080 // Split them out to their own block. 1081 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1082 } 1083 1084 // If the value isn't available in all predecessors, then there will be 1085 // exactly one where it isn't available. Insert a load on that edge and add 1086 // it to the AvailablePreds list. 1087 if (UnavailablePred) { 1088 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1089 "Can't handle critical edge here!"); 1090 LoadInst *NewVal = 1091 new LoadInst(LoadedPtr, LI->getName() + ".pr", false, 1092 LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(), 1093 UnavailablePred->getTerminator()); 1094 NewVal->setDebugLoc(LI->getDebugLoc()); 1095 if (AATags) 1096 NewVal->setAAMetadata(AATags); 1097 1098 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1099 } 1100 1101 // Now we know that each predecessor of this block has a value in 1102 // AvailablePreds, sort them for efficient access as we're walking the preds. 1103 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1104 1105 // Create a PHI node at the start of the block for the PRE'd load value. 1106 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1107 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1108 &LoadBB->front()); 1109 PN->takeName(LI); 1110 PN->setDebugLoc(LI->getDebugLoc()); 1111 1112 // Insert new entries into the PHI for each predecessor. A single block may 1113 // have multiple entries here. 1114 for (pred_iterator PI = PB; PI != PE; ++PI) { 1115 BasicBlock *P = *PI; 1116 AvailablePredsTy::iterator I = 1117 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1118 std::make_pair(P, (Value*)nullptr)); 1119 1120 assert(I != AvailablePreds.end() && I->first == P && 1121 "Didn't find entry for predecessor!"); 1122 1123 // If we have an available predecessor but it requires casting, insert the 1124 // cast in the predecessor and use the cast. Note that we have to update the 1125 // AvailablePreds vector as we go so that all of the PHI entries for this 1126 // predecessor use the same bitcast. 1127 Value *&PredV = I->second; 1128 if (PredV->getType() != LI->getType()) 1129 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1130 P->getTerminator()); 1131 1132 PN->addIncoming(PredV, I->first); 1133 } 1134 1135 for (LoadInst *PredLI : CSELoads) { 1136 combineMetadataForCSE(PredLI, LI); 1137 } 1138 1139 LI->replaceAllUsesWith(PN); 1140 LI->eraseFromParent(); 1141 1142 return true; 1143 } 1144 1145 /// FindMostPopularDest - The specified list contains multiple possible 1146 /// threadable destinations. Pick the one that occurs the most frequently in 1147 /// the list. 1148 static BasicBlock * 1149 FindMostPopularDest(BasicBlock *BB, 1150 const SmallVectorImpl<std::pair<BasicBlock*, 1151 BasicBlock*> > &PredToDestList) { 1152 assert(!PredToDestList.empty()); 1153 1154 // Determine popularity. If there are multiple possible destinations, we 1155 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1156 // blocks with known and real destinations to threading undef. We'll handle 1157 // them later if interesting. 1158 DenseMap<BasicBlock*, unsigned> DestPopularity; 1159 for (const auto &PredToDest : PredToDestList) 1160 if (PredToDest.second) 1161 DestPopularity[PredToDest.second]++; 1162 1163 // Find the most popular dest. 1164 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1165 BasicBlock *MostPopularDest = DPI->first; 1166 unsigned Popularity = DPI->second; 1167 SmallVector<BasicBlock*, 4> SamePopularity; 1168 1169 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1170 // If the popularity of this entry isn't higher than the popularity we've 1171 // seen so far, ignore it. 1172 if (DPI->second < Popularity) 1173 ; // ignore. 1174 else if (DPI->second == Popularity) { 1175 // If it is the same as what we've seen so far, keep track of it. 1176 SamePopularity.push_back(DPI->first); 1177 } else { 1178 // If it is more popular, remember it. 1179 SamePopularity.clear(); 1180 MostPopularDest = DPI->first; 1181 Popularity = DPI->second; 1182 } 1183 } 1184 1185 // Okay, now we know the most popular destination. If there is more than one 1186 // destination, we need to determine one. This is arbitrary, but we need 1187 // to make a deterministic decision. Pick the first one that appears in the 1188 // successor list. 1189 if (!SamePopularity.empty()) { 1190 SamePopularity.push_back(MostPopularDest); 1191 TerminatorInst *TI = BB->getTerminator(); 1192 for (unsigned i = 0; ; ++i) { 1193 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1194 1195 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1196 continue; 1197 1198 MostPopularDest = TI->getSuccessor(i); 1199 break; 1200 } 1201 } 1202 1203 // Okay, we have finally picked the most popular destination. 1204 return MostPopularDest; 1205 } 1206 1207 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1208 ConstantPreference Preference, 1209 Instruction *CxtI) { 1210 // If threading this would thread across a loop header, don't even try to 1211 // thread the edge. 1212 if (LoopHeaders.count(BB)) 1213 return false; 1214 1215 PredValueInfoTy PredValues; 1216 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1217 return false; 1218 1219 assert(!PredValues.empty() && 1220 "ComputeValueKnownInPredecessors returned true with no values"); 1221 1222 DEBUG(dbgs() << "IN BB: " << *BB; 1223 for (const auto &PredValue : PredValues) { 1224 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1225 << *PredValue.first 1226 << " for pred '" << PredValue.second->getName() << "'.\n"; 1227 }); 1228 1229 // Decide what we want to thread through. Convert our list of known values to 1230 // a list of known destinations for each pred. This also discards duplicate 1231 // predecessors and keeps track of the undefined inputs (which are represented 1232 // as a null dest in the PredToDestList). 1233 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1234 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1235 1236 BasicBlock *OnlyDest = nullptr; 1237 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1238 1239 for (const auto &PredValue : PredValues) { 1240 BasicBlock *Pred = PredValue.second; 1241 if (!SeenPreds.insert(Pred).second) 1242 continue; // Duplicate predecessor entry. 1243 1244 // If the predecessor ends with an indirect goto, we can't change its 1245 // destination. 1246 if (isa<IndirectBrInst>(Pred->getTerminator())) 1247 continue; 1248 1249 Constant *Val = PredValue.first; 1250 1251 BasicBlock *DestBB; 1252 if (isa<UndefValue>(Val)) 1253 DestBB = nullptr; 1254 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1255 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1256 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1257 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1258 } else { 1259 assert(isa<IndirectBrInst>(BB->getTerminator()) 1260 && "Unexpected terminator"); 1261 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1262 } 1263 1264 // If we have exactly one destination, remember it for efficiency below. 1265 if (PredToDestList.empty()) 1266 OnlyDest = DestBB; 1267 else if (OnlyDest != DestBB) 1268 OnlyDest = MultipleDestSentinel; 1269 1270 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1271 } 1272 1273 // If all edges were unthreadable, we fail. 1274 if (PredToDestList.empty()) 1275 return false; 1276 1277 // Determine which is the most common successor. If we have many inputs and 1278 // this block is a switch, we want to start by threading the batch that goes 1279 // to the most popular destination first. If we only know about one 1280 // threadable destination (the common case) we can avoid this. 1281 BasicBlock *MostPopularDest = OnlyDest; 1282 1283 if (MostPopularDest == MultipleDestSentinel) 1284 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1285 1286 // Now that we know what the most popular destination is, factor all 1287 // predecessors that will jump to it into a single predecessor. 1288 SmallVector<BasicBlock*, 16> PredsToFactor; 1289 for (const auto &PredToDest : PredToDestList) 1290 if (PredToDest.second == MostPopularDest) { 1291 BasicBlock *Pred = PredToDest.first; 1292 1293 // This predecessor may be a switch or something else that has multiple 1294 // edges to the block. Factor each of these edges by listing them 1295 // according to # occurrences in PredsToFactor. 1296 for (BasicBlock *Succ : successors(Pred)) 1297 if (Succ == BB) 1298 PredsToFactor.push_back(Pred); 1299 } 1300 1301 // If the threadable edges are branching on an undefined value, we get to pick 1302 // the destination that these predecessors should get to. 1303 if (!MostPopularDest) 1304 MostPopularDest = BB->getTerminator()-> 1305 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1306 1307 // Ok, try to thread it! 1308 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1309 } 1310 1311 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1312 /// a PHI node in the current block. See if there are any simplifications we 1313 /// can do based on inputs to the phi node. 1314 /// 1315 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1316 BasicBlock *BB = PN->getParent(); 1317 1318 // TODO: We could make use of this to do it once for blocks with common PHI 1319 // values. 1320 SmallVector<BasicBlock*, 1> PredBBs; 1321 PredBBs.resize(1); 1322 1323 // If any of the predecessor blocks end in an unconditional branch, we can 1324 // *duplicate* the conditional branch into that block in order to further 1325 // encourage jump threading and to eliminate cases where we have branch on a 1326 // phi of an icmp (branch on icmp is much better). 1327 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1328 BasicBlock *PredBB = PN->getIncomingBlock(i); 1329 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1330 if (PredBr->isUnconditional()) { 1331 PredBBs[0] = PredBB; 1332 // Try to duplicate BB into PredBB. 1333 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1334 return true; 1335 } 1336 } 1337 1338 return false; 1339 } 1340 1341 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1342 /// a xor instruction in the current block. See if there are any 1343 /// simplifications we can do based on inputs to the xor. 1344 /// 1345 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1346 BasicBlock *BB = BO->getParent(); 1347 1348 // If either the LHS or RHS of the xor is a constant, don't do this 1349 // optimization. 1350 if (isa<ConstantInt>(BO->getOperand(0)) || 1351 isa<ConstantInt>(BO->getOperand(1))) 1352 return false; 1353 1354 // If the first instruction in BB isn't a phi, we won't be able to infer 1355 // anything special about any particular predecessor. 1356 if (!isa<PHINode>(BB->front())) 1357 return false; 1358 1359 // If this BB is a landing pad, we won't be able to split the edge into it. 1360 if (BB->isEHPad()) 1361 return false; 1362 1363 // If we have a xor as the branch input to this block, and we know that the 1364 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1365 // the condition into the predecessor and fix that value to true, saving some 1366 // logical ops on that path and encouraging other paths to simplify. 1367 // 1368 // This copies something like this: 1369 // 1370 // BB: 1371 // %X = phi i1 [1], [%X'] 1372 // %Y = icmp eq i32 %A, %B 1373 // %Z = xor i1 %X, %Y 1374 // br i1 %Z, ... 1375 // 1376 // Into: 1377 // BB': 1378 // %Y = icmp ne i32 %A, %B 1379 // br i1 %Y, ... 1380 1381 PredValueInfoTy XorOpValues; 1382 bool isLHS = true; 1383 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1384 WantInteger, BO)) { 1385 assert(XorOpValues.empty()); 1386 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1387 WantInteger, BO)) 1388 return false; 1389 isLHS = false; 1390 } 1391 1392 assert(!XorOpValues.empty() && 1393 "ComputeValueKnownInPredecessors returned true with no values"); 1394 1395 // Scan the information to see which is most popular: true or false. The 1396 // predecessors can be of the set true, false, or undef. 1397 unsigned NumTrue = 0, NumFalse = 0; 1398 for (const auto &XorOpValue : XorOpValues) { 1399 if (isa<UndefValue>(XorOpValue.first)) 1400 // Ignore undefs for the count. 1401 continue; 1402 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1403 ++NumFalse; 1404 else 1405 ++NumTrue; 1406 } 1407 1408 // Determine which value to split on, true, false, or undef if neither. 1409 ConstantInt *SplitVal = nullptr; 1410 if (NumTrue > NumFalse) 1411 SplitVal = ConstantInt::getTrue(BB->getContext()); 1412 else if (NumTrue != 0 || NumFalse != 0) 1413 SplitVal = ConstantInt::getFalse(BB->getContext()); 1414 1415 // Collect all of the blocks that this can be folded into so that we can 1416 // factor this once and clone it once. 1417 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1418 for (const auto &XorOpValue : XorOpValues) { 1419 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1420 continue; 1421 1422 BlocksToFoldInto.push_back(XorOpValue.second); 1423 } 1424 1425 // If we inferred a value for all of the predecessors, then duplication won't 1426 // help us. However, we can just replace the LHS or RHS with the constant. 1427 if (BlocksToFoldInto.size() == 1428 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1429 if (!SplitVal) { 1430 // If all preds provide undef, just nuke the xor, because it is undef too. 1431 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1432 BO->eraseFromParent(); 1433 } else if (SplitVal->isZero()) { 1434 // If all preds provide 0, replace the xor with the other input. 1435 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1436 BO->eraseFromParent(); 1437 } else { 1438 // If all preds provide 1, set the computed value to 1. 1439 BO->setOperand(!isLHS, SplitVal); 1440 } 1441 1442 return true; 1443 } 1444 1445 // Try to duplicate BB into PredBB. 1446 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1447 } 1448 1449 1450 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1451 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1452 /// NewPred using the entries from OldPred (suitably mapped). 1453 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1454 BasicBlock *OldPred, 1455 BasicBlock *NewPred, 1456 DenseMap<Instruction*, Value*> &ValueMap) { 1457 for (BasicBlock::iterator PNI = PHIBB->begin(); 1458 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1459 // Ok, we have a PHI node. Figure out what the incoming value was for the 1460 // DestBlock. 1461 Value *IV = PN->getIncomingValueForBlock(OldPred); 1462 1463 // Remap the value if necessary. 1464 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1465 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1466 if (I != ValueMap.end()) 1467 IV = I->second; 1468 } 1469 1470 PN->addIncoming(IV, NewPred); 1471 } 1472 } 1473 1474 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1475 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1476 /// across BB. Transform the IR to reflect this change. 1477 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1478 const SmallVectorImpl<BasicBlock *> &PredBBs, 1479 BasicBlock *SuccBB) { 1480 // If threading to the same block as we come from, we would infinite loop. 1481 if (SuccBB == BB) { 1482 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1483 << "' - would thread to self!\n"); 1484 return false; 1485 } 1486 1487 // If threading this would thread across a loop header, don't thread the edge. 1488 // See the comments above FindLoopHeaders for justifications and caveats. 1489 if (LoopHeaders.count(BB)) { 1490 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1491 << "' to dest BB '" << SuccBB->getName() 1492 << "' - it might create an irreducible loop!\n"); 1493 return false; 1494 } 1495 1496 unsigned JumpThreadCost = 1497 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1498 if (JumpThreadCost > BBDupThreshold) { 1499 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1500 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1501 return false; 1502 } 1503 1504 // And finally, do it! Start by factoring the predecessors if needed. 1505 BasicBlock *PredBB; 1506 if (PredBBs.size() == 1) 1507 PredBB = PredBBs[0]; 1508 else { 1509 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1510 << " common predecessors.\n"); 1511 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1512 } 1513 1514 // And finally, do it! 1515 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1516 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1517 << ", across block:\n " 1518 << *BB << "\n"); 1519 1520 LVI->threadEdge(PredBB, BB, SuccBB); 1521 1522 // We are going to have to map operands from the original BB block to the new 1523 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1524 // account for entry from PredBB. 1525 DenseMap<Instruction*, Value*> ValueMapping; 1526 1527 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1528 BB->getName()+".thread", 1529 BB->getParent(), BB); 1530 NewBB->moveAfter(PredBB); 1531 1532 // Set the block frequency of NewBB. 1533 if (HasProfileData) { 1534 auto NewBBFreq = 1535 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1536 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1537 } 1538 1539 BasicBlock::iterator BI = BB->begin(); 1540 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1541 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1542 1543 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1544 // mapping and using it to remap operands in the cloned instructions. 1545 for (; !isa<TerminatorInst>(BI); ++BI) { 1546 Instruction *New = BI->clone(); 1547 New->setName(BI->getName()); 1548 NewBB->getInstList().push_back(New); 1549 ValueMapping[&*BI] = New; 1550 1551 // Remap operands to patch up intra-block references. 1552 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1553 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1554 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1555 if (I != ValueMapping.end()) 1556 New->setOperand(i, I->second); 1557 } 1558 } 1559 1560 // We didn't copy the terminator from BB over to NewBB, because there is now 1561 // an unconditional jump to SuccBB. Insert the unconditional jump. 1562 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1563 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1564 1565 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1566 // PHI nodes for NewBB now. 1567 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1568 1569 // If there were values defined in BB that are used outside the block, then we 1570 // now have to update all uses of the value to use either the original value, 1571 // the cloned value, or some PHI derived value. This can require arbitrary 1572 // PHI insertion, of which we are prepared to do, clean these up now. 1573 SSAUpdater SSAUpdate; 1574 SmallVector<Use*, 16> UsesToRename; 1575 for (Instruction &I : *BB) { 1576 // Scan all uses of this instruction to see if it is used outside of its 1577 // block, and if so, record them in UsesToRename. 1578 for (Use &U : I.uses()) { 1579 Instruction *User = cast<Instruction>(U.getUser()); 1580 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1581 if (UserPN->getIncomingBlock(U) == BB) 1582 continue; 1583 } else if (User->getParent() == BB) 1584 continue; 1585 1586 UsesToRename.push_back(&U); 1587 } 1588 1589 // If there are no uses outside the block, we're done with this instruction. 1590 if (UsesToRename.empty()) 1591 continue; 1592 1593 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1594 1595 // We found a use of I outside of BB. Rename all uses of I that are outside 1596 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1597 // with the two values we know. 1598 SSAUpdate.Initialize(I.getType(), I.getName()); 1599 SSAUpdate.AddAvailableValue(BB, &I); 1600 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1601 1602 while (!UsesToRename.empty()) 1603 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1604 DEBUG(dbgs() << "\n"); 1605 } 1606 1607 1608 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1609 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1610 // us to simplify any PHI nodes in BB. 1611 TerminatorInst *PredTerm = PredBB->getTerminator(); 1612 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1613 if (PredTerm->getSuccessor(i) == BB) { 1614 BB->removePredecessor(PredBB, true); 1615 PredTerm->setSuccessor(i, NewBB); 1616 } 1617 1618 // At this point, the IR is fully up to date and consistent. Do a quick scan 1619 // over the new instructions and zap any that are constants or dead. This 1620 // frequently happens because of phi translation. 1621 SimplifyInstructionsInBlock(NewBB, TLI); 1622 1623 // Update the edge weight from BB to SuccBB, which should be less than before. 1624 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1625 1626 // Threaded an edge! 1627 ++NumThreads; 1628 return true; 1629 } 1630 1631 /// Create a new basic block that will be the predecessor of BB and successor of 1632 /// all blocks in Preds. When profile data is available, update the frequency of 1633 /// this new block. 1634 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1635 ArrayRef<BasicBlock *> Preds, 1636 const char *Suffix) { 1637 // Collect the frequencies of all predecessors of BB, which will be used to 1638 // update the edge weight on BB->SuccBB. 1639 BlockFrequency PredBBFreq(0); 1640 if (HasProfileData) 1641 for (auto Pred : Preds) 1642 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1643 1644 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1645 1646 // Set the block frequency of the newly created PredBB, which is the sum of 1647 // frequencies of Preds. 1648 if (HasProfileData) 1649 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1650 return PredBB; 1651 } 1652 1653 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1654 const TerminatorInst *TI = BB->getTerminator(); 1655 assert(TI->getNumSuccessors() > 1 && "not a split"); 1656 1657 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1658 if (!WeightsNode) 1659 return false; 1660 1661 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1662 if (MDName->getString() != "branch_weights") 1663 return false; 1664 1665 // Ensure there are weights for all of the successors. Note that the first 1666 // operand to the metadata node is a name, not a weight. 1667 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 1668 } 1669 1670 /// Update the block frequency of BB and branch weight and the metadata on the 1671 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1672 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1673 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1674 BasicBlock *BB, 1675 BasicBlock *NewBB, 1676 BasicBlock *SuccBB) { 1677 if (!HasProfileData) 1678 return; 1679 1680 assert(BFI && BPI && "BFI & BPI should have been created here"); 1681 1682 // As the edge from PredBB to BB is deleted, we have to update the block 1683 // frequency of BB. 1684 auto BBOrigFreq = BFI->getBlockFreq(BB); 1685 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1686 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1687 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1688 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1689 1690 // Collect updated outgoing edges' frequencies from BB and use them to update 1691 // edge probabilities. 1692 SmallVector<uint64_t, 4> BBSuccFreq; 1693 for (BasicBlock *Succ : successors(BB)) { 1694 auto SuccFreq = (Succ == SuccBB) 1695 ? BB2SuccBBFreq - NewBBFreq 1696 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1697 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1698 } 1699 1700 uint64_t MaxBBSuccFreq = 1701 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1702 1703 SmallVector<BranchProbability, 4> BBSuccProbs; 1704 if (MaxBBSuccFreq == 0) 1705 BBSuccProbs.assign(BBSuccFreq.size(), 1706 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1707 else { 1708 for (uint64_t Freq : BBSuccFreq) 1709 BBSuccProbs.push_back( 1710 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1711 // Normalize edge probabilities so that they sum up to one. 1712 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1713 BBSuccProbs.end()); 1714 } 1715 1716 // Update edge probabilities in BPI. 1717 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1718 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1719 1720 // Update the profile metadata as well. 1721 // 1722 // Don't do this if the profile of the transformed blocks was statically 1723 // estimated. (This could occur despite the function having an entry 1724 // frequency in completely cold parts of the CFG.) 1725 // 1726 // In this case we don't want to suggest to subsequent passes that the 1727 // calculated weights are fully consistent. Consider this graph: 1728 // 1729 // check_1 1730 // 50% / | 1731 // eq_1 | 50% 1732 // \ | 1733 // check_2 1734 // 50% / | 1735 // eq_2 | 50% 1736 // \ | 1737 // check_3 1738 // 50% / | 1739 // eq_3 | 50% 1740 // \ | 1741 // 1742 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 1743 // the overall probabilities are inconsistent; the total probability that the 1744 // value is either 1, 2 or 3 is 150%. 1745 // 1746 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 1747 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 1748 // the loop exit edge. Then based solely on static estimation we would assume 1749 // the loop was extremely hot. 1750 // 1751 // FIXME this locally as well so that BPI and BFI are consistent as well. We 1752 // shouldn't make edges extremely likely or unlikely based solely on static 1753 // estimation. 1754 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 1755 SmallVector<uint32_t, 4> Weights; 1756 for (auto Prob : BBSuccProbs) 1757 Weights.push_back(Prob.getNumerator()); 1758 1759 auto TI = BB->getTerminator(); 1760 TI->setMetadata( 1761 LLVMContext::MD_prof, 1762 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1763 } 1764 } 1765 1766 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1767 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1768 /// If we can duplicate the contents of BB up into PredBB do so now, this 1769 /// improves the odds that the branch will be on an analyzable instruction like 1770 /// a compare. 1771 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1772 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1773 assert(!PredBBs.empty() && "Can't handle an empty set"); 1774 1775 // If BB is a loop header, then duplicating this block outside the loop would 1776 // cause us to transform this into an irreducible loop, don't do this. 1777 // See the comments above FindLoopHeaders for justifications and caveats. 1778 if (LoopHeaders.count(BB)) { 1779 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1780 << "' into predecessor block '" << PredBBs[0]->getName() 1781 << "' - it might create an irreducible loop!\n"); 1782 return false; 1783 } 1784 1785 unsigned DuplicationCost = 1786 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1787 if (DuplicationCost > BBDupThreshold) { 1788 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1789 << "' - Cost is too high: " << DuplicationCost << "\n"); 1790 return false; 1791 } 1792 1793 // And finally, do it! Start by factoring the predecessors if needed. 1794 BasicBlock *PredBB; 1795 if (PredBBs.size() == 1) 1796 PredBB = PredBBs[0]; 1797 else { 1798 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1799 << " common predecessors.\n"); 1800 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1801 } 1802 1803 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1804 // of PredBB. 1805 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1806 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1807 << DuplicationCost << " block is:" << *BB << "\n"); 1808 1809 // Unless PredBB ends with an unconditional branch, split the edge so that we 1810 // can just clone the bits from BB into the end of the new PredBB. 1811 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1812 1813 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1814 PredBB = SplitEdge(PredBB, BB); 1815 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1816 } 1817 1818 // We are going to have to map operands from the original BB block into the 1819 // PredBB block. Evaluate PHI nodes in BB. 1820 DenseMap<Instruction*, Value*> ValueMapping; 1821 1822 BasicBlock::iterator BI = BB->begin(); 1823 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1824 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1825 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1826 // mapping and using it to remap operands in the cloned instructions. 1827 for (; BI != BB->end(); ++BI) { 1828 Instruction *New = BI->clone(); 1829 1830 // Remap operands to patch up intra-block references. 1831 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1832 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1833 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1834 if (I != ValueMapping.end()) 1835 New->setOperand(i, I->second); 1836 } 1837 1838 // If this instruction can be simplified after the operands are updated, 1839 // just use the simplified value instead. This frequently happens due to 1840 // phi translation. 1841 if (Value *IV = 1842 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1843 ValueMapping[&*BI] = IV; 1844 if (!New->mayHaveSideEffects()) { 1845 delete New; 1846 New = nullptr; 1847 } 1848 } else { 1849 ValueMapping[&*BI] = New; 1850 } 1851 if (New) { 1852 // Otherwise, insert the new instruction into the block. 1853 New->setName(BI->getName()); 1854 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1855 } 1856 } 1857 1858 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1859 // add entries to the PHI nodes for branch from PredBB now. 1860 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1861 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1862 ValueMapping); 1863 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1864 ValueMapping); 1865 1866 // If there were values defined in BB that are used outside the block, then we 1867 // now have to update all uses of the value to use either the original value, 1868 // the cloned value, or some PHI derived value. This can require arbitrary 1869 // PHI insertion, of which we are prepared to do, clean these up now. 1870 SSAUpdater SSAUpdate; 1871 SmallVector<Use*, 16> UsesToRename; 1872 for (Instruction &I : *BB) { 1873 // Scan all uses of this instruction to see if it is used outside of its 1874 // block, and if so, record them in UsesToRename. 1875 for (Use &U : I.uses()) { 1876 Instruction *User = cast<Instruction>(U.getUser()); 1877 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1878 if (UserPN->getIncomingBlock(U) == BB) 1879 continue; 1880 } else if (User->getParent() == BB) 1881 continue; 1882 1883 UsesToRename.push_back(&U); 1884 } 1885 1886 // If there are no uses outside the block, we're done with this instruction. 1887 if (UsesToRename.empty()) 1888 continue; 1889 1890 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1891 1892 // We found a use of I outside of BB. Rename all uses of I that are outside 1893 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1894 // with the two values we know. 1895 SSAUpdate.Initialize(I.getType(), I.getName()); 1896 SSAUpdate.AddAvailableValue(BB, &I); 1897 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1898 1899 while (!UsesToRename.empty()) 1900 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1901 DEBUG(dbgs() << "\n"); 1902 } 1903 1904 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1905 // that we nuked. 1906 BB->removePredecessor(PredBB, true); 1907 1908 // Remove the unconditional branch at the end of the PredBB block. 1909 OldPredBranch->eraseFromParent(); 1910 1911 ++NumDupes; 1912 return true; 1913 } 1914 1915 /// TryToUnfoldSelect - Look for blocks of the form 1916 /// bb1: 1917 /// %a = select 1918 /// br bb2 1919 /// 1920 /// bb2: 1921 /// %p = phi [%a, %bb1] ... 1922 /// %c = icmp %p 1923 /// br i1 %c 1924 /// 1925 /// And expand the select into a branch structure if one of its arms allows %c 1926 /// to be folded. This later enables threading from bb1 over bb2. 1927 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1928 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1929 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1930 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1931 1932 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1933 CondLHS->getParent() != BB) 1934 return false; 1935 1936 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1937 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1938 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1939 1940 // Look if one of the incoming values is a select in the corresponding 1941 // predecessor. 1942 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1943 continue; 1944 1945 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1946 if (!PredTerm || !PredTerm->isUnconditional()) 1947 continue; 1948 1949 // Now check if one of the select values would allow us to constant fold the 1950 // terminator in BB. We don't do the transform if both sides fold, those 1951 // cases will be threaded in any case. 1952 LazyValueInfo::Tristate LHSFolds = 1953 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1954 CondRHS, Pred, BB, CondCmp); 1955 LazyValueInfo::Tristate RHSFolds = 1956 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1957 CondRHS, Pred, BB, CondCmp); 1958 if ((LHSFolds != LazyValueInfo::Unknown || 1959 RHSFolds != LazyValueInfo::Unknown) && 1960 LHSFolds != RHSFolds) { 1961 // Expand the select. 1962 // 1963 // Pred -- 1964 // | v 1965 // | NewBB 1966 // | | 1967 // |----- 1968 // v 1969 // BB 1970 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1971 BB->getParent(), BB); 1972 // Move the unconditional branch to NewBB. 1973 PredTerm->removeFromParent(); 1974 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1975 // Create a conditional branch and update PHI nodes. 1976 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1977 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1978 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1979 // The select is now dead. 1980 SI->eraseFromParent(); 1981 1982 // Update any other PHI nodes in BB. 1983 for (BasicBlock::iterator BI = BB->begin(); 1984 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1985 if (Phi != CondLHS) 1986 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1987 return true; 1988 } 1989 } 1990 return false; 1991 } 1992 1993 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1994 /// bb: 1995 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1996 /// %s = select p, trueval, falseval 1997 /// 1998 /// And expand the select into a branch structure. This later enables 1999 /// jump-threading over bb in this pass. 2000 /// 2001 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2002 /// select if the associated PHI has at least one constant. If the unfolded 2003 /// select is not jump-threaded, it will be folded again in the later 2004 /// optimizations. 2005 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2006 // If threading this would thread across a loop header, don't thread the edge. 2007 // See the comments above FindLoopHeaders for justifications and caveats. 2008 if (LoopHeaders.count(BB)) 2009 return false; 2010 2011 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 2012 // condition of the Select and at least one of the incoming values is a 2013 // constant. 2014 for (BasicBlock::iterator BI = BB->begin(); 2015 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2016 unsigned NumPHIValues = PN->getNumIncomingValues(); 2017 if (NumPHIValues == 0 || !PN->hasOneUse()) 2018 continue; 2019 2020 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 2021 if (!SI || SI->getParent() != BB) 2022 continue; 2023 2024 Value *Cond = SI->getCondition(); 2025 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 2026 continue; 2027 2028 bool HasConst = false; 2029 for (unsigned i = 0; i != NumPHIValues; ++i) { 2030 if (PN->getIncomingBlock(i) == BB) 2031 return false; 2032 if (isa<ConstantInt>(PN->getIncomingValue(i))) 2033 HasConst = true; 2034 } 2035 2036 if (HasConst) { 2037 // Expand the select. 2038 TerminatorInst *Term = 2039 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2040 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2041 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2042 NewPN->addIncoming(SI->getFalseValue(), BB); 2043 SI->replaceAllUsesWith(NewPN); 2044 SI->eraseFromParent(); 2045 return true; 2046 } 2047 } 2048 2049 return false; 2050 } 2051 2052 /// Try to propagate a guard from the current BB into one of its predecessors 2053 /// in case if another branch of execution implies that the condition of this 2054 /// guard is always true. Currently we only process the simplest case that 2055 /// looks like: 2056 /// 2057 /// Start: 2058 /// %cond = ... 2059 /// br i1 %cond, label %T1, label %F1 2060 /// T1: 2061 /// br label %Merge 2062 /// F1: 2063 /// br label %Merge 2064 /// Merge: 2065 /// %condGuard = ... 2066 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2067 /// 2068 /// And cond either implies condGuard or !condGuard. In this case all the 2069 /// instructions before the guard can be duplicated in both branches, and the 2070 /// guard is then threaded to one of them. 2071 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2072 using namespace PatternMatch; 2073 // We only want to deal with two predecessors. 2074 BasicBlock *Pred1, *Pred2; 2075 auto PI = pred_begin(BB), PE = pred_end(BB); 2076 if (PI == PE) 2077 return false; 2078 Pred1 = *PI++; 2079 if (PI == PE) 2080 return false; 2081 Pred2 = *PI++; 2082 if (PI != PE) 2083 return false; 2084 if (Pred1 == Pred2) 2085 return false; 2086 2087 // Try to thread one of the guards of the block. 2088 // TODO: Look up deeper than to immediate predecessor? 2089 auto *Parent = Pred1->getSinglePredecessor(); 2090 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2091 return false; 2092 2093 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2094 for (auto &I : *BB) 2095 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2096 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2097 return true; 2098 2099 return false; 2100 } 2101 2102 /// Try to propagate the guard from BB which is the lower block of a diamond 2103 /// to one of its branches, in case if diamond's condition implies guard's 2104 /// condition. 2105 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2106 BranchInst *BI) { 2107 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2108 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2109 Value *GuardCond = Guard->getArgOperand(0); 2110 Value *BranchCond = BI->getCondition(); 2111 BasicBlock *TrueDest = BI->getSuccessor(0); 2112 BasicBlock *FalseDest = BI->getSuccessor(1); 2113 2114 auto &DL = BB->getModule()->getDataLayout(); 2115 bool TrueDestIsSafe = false; 2116 bool FalseDestIsSafe = false; 2117 2118 // True dest is safe if BranchCond => GuardCond. 2119 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2120 if (Impl && *Impl) 2121 TrueDestIsSafe = true; 2122 else { 2123 // False dest is safe if !BranchCond => GuardCond. 2124 Impl = 2125 isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true); 2126 if (Impl && *Impl) 2127 FalseDestIsSafe = true; 2128 } 2129 2130 if (!TrueDestIsSafe && !FalseDestIsSafe) 2131 return false; 2132 2133 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2134 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2135 2136 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2137 Instruction *AfterGuard = Guard->getNextNode(); 2138 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2139 if (Cost > BBDupThreshold) 2140 return false; 2141 // Duplicate all instructions before the guard and the guard itself to the 2142 // branch where implication is not proved. 2143 GuardedBlock = DuplicateInstructionsInSplitBetween( 2144 BB, GuardedBlock, AfterGuard, GuardedMapping); 2145 assert(GuardedBlock && "Could not create the guarded block?"); 2146 // Duplicate all instructions before the guard in the unguarded branch. 2147 // Since we have successfully duplicated the guarded block and this block 2148 // has fewer instructions, we expect it to succeed. 2149 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2150 Guard, UnguardedMapping); 2151 assert(UnguardedBlock && "Could not create the unguarded block?"); 2152 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2153 << GuardedBlock->getName() << "\n"); 2154 2155 // Some instructions before the guard may still have uses. For them, we need 2156 // to create Phi nodes merging their copies in both guarded and unguarded 2157 // branches. Those instructions that have no uses can be just removed. 2158 SmallVector<Instruction *, 4> ToRemove; 2159 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2160 if (!isa<PHINode>(&*BI)) 2161 ToRemove.push_back(&*BI); 2162 2163 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2164 assert(InsertionPoint && "Empty block?"); 2165 // Substitute with Phis & remove. 2166 for (auto *Inst : reverse(ToRemove)) { 2167 if (!Inst->use_empty()) { 2168 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2169 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2170 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2171 NewPN->insertBefore(InsertionPoint); 2172 Inst->replaceAllUsesWith(NewPN); 2173 } 2174 Inst->eraseFromParent(); 2175 } 2176 return true; 2177 } 2178