1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80
81 using namespace llvm;
82 using namespace jumpthreading;
83
84 #define DEBUG_TYPE "jump-threading"
85
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds, "Number of terminators folded");
88 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
89
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92 cl::desc("Max block size to duplicate for jump threading"),
93 cl::init(6), cl::Hidden);
94
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97 "jump-threading-implication-search-threshold",
98 cl::desc("The number of predecessors to search for a stronger "
99 "condition to use to thread over a weaker condition"),
100 cl::init(3), cl::Hidden);
101
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103 "print-lvi-after-jump-threading",
104 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105 cl::Hidden);
106
107 static cl::opt<bool> ThreadAcrossLoopHeaders(
108 "jump-threading-across-loop-headers",
109 cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
110 cl::init(false), cl::Hidden);
111
112
113 namespace {
114
115 /// This pass performs 'jump threading', which looks at blocks that have
116 /// multiple predecessors and multiple successors. If one or more of the
117 /// predecessors of the block can be proven to always jump to one of the
118 /// successors, we forward the edge from the predecessor to the successor by
119 /// duplicating the contents of this block.
120 ///
121 /// An example of when this can occur is code like this:
122 ///
123 /// if () { ...
124 /// X = 4;
125 /// }
126 /// if (X < 3) {
127 ///
128 /// In this case, the unconditional branch at the end of the first if can be
129 /// revectored to the false side of the second if.
130 class JumpThreading : public FunctionPass {
131 JumpThreadingPass Impl;
132
133 public:
134 static char ID; // Pass identification
135
JumpThreading(int T=-1)136 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
137 initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
138 }
139
140 bool runOnFunction(Function &F) override;
141
getAnalysisUsage(AnalysisUsage & AU) const142 void getAnalysisUsage(AnalysisUsage &AU) const override {
143 AU.addRequired<DominatorTreeWrapperPass>();
144 AU.addPreserved<DominatorTreeWrapperPass>();
145 AU.addRequired<AAResultsWrapperPass>();
146 AU.addRequired<LazyValueInfoWrapperPass>();
147 AU.addPreserved<LazyValueInfoWrapperPass>();
148 AU.addPreserved<GlobalsAAWrapperPass>();
149 AU.addRequired<TargetLibraryInfoWrapperPass>();
150 AU.addRequired<TargetTransformInfoWrapperPass>();
151 }
152
releaseMemory()153 void releaseMemory() override { Impl.releaseMemory(); }
154 };
155
156 } // end anonymous namespace
157
158 char JumpThreading::ID = 0;
159
160 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
161 "Jump Threading", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)162 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
164 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
165 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
166 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
167 "Jump Threading", false, false)
168
169 // Public interface to the Jump Threading pass
170 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
171 return new JumpThreading(Threshold);
172 }
173
JumpThreadingPass(int T)174 JumpThreadingPass::JumpThreadingPass(int T) {
175 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
176 }
177
178 // Update branch probability information according to conditional
179 // branch probability. This is usually made possible for cloned branches
180 // in inline instances by the context specific profile in the caller.
181 // For instance,
182 //
183 // [Block PredBB]
184 // [Branch PredBr]
185 // if (t) {
186 // Block A;
187 // } else {
188 // Block B;
189 // }
190 //
191 // [Block BB]
192 // cond = PN([true, %A], [..., %B]); // PHI node
193 // [Branch CondBr]
194 // if (cond) {
195 // ... // P(cond == true) = 1%
196 // }
197 //
198 // Here we know that when block A is taken, cond must be true, which means
199 // P(cond == true | A) = 1
200 //
201 // Given that P(cond == true) = P(cond == true | A) * P(A) +
202 // P(cond == true | B) * P(B)
203 // we get:
204 // P(cond == true ) = P(A) + P(cond == true | B) * P(B)
205 //
206 // which gives us:
207 // P(A) is less than P(cond == true), i.e.
208 // P(t == true) <= P(cond == true)
209 //
210 // In other words, if we know P(cond == true) is unlikely, we know
211 // that P(t == true) is also unlikely.
212 //
updatePredecessorProfileMetadata(PHINode * PN,BasicBlock * BB)213 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
214 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
215 if (!CondBr)
216 return;
217
218 uint64_t TrueWeight, FalseWeight;
219 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
220 return;
221
222 if (TrueWeight + FalseWeight == 0)
223 // Zero branch_weights do not give a hint for getting branch probabilities.
224 // Technically it would result in division by zero denominator, which is
225 // TrueWeight + FalseWeight.
226 return;
227
228 // Returns the outgoing edge of the dominating predecessor block
229 // that leads to the PhiNode's incoming block:
230 auto GetPredOutEdge =
231 [](BasicBlock *IncomingBB,
232 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
233 auto *PredBB = IncomingBB;
234 auto *SuccBB = PhiBB;
235 SmallPtrSet<BasicBlock *, 16> Visited;
236 while (true) {
237 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
238 if (PredBr && PredBr->isConditional())
239 return {PredBB, SuccBB};
240 Visited.insert(PredBB);
241 auto *SinglePredBB = PredBB->getSinglePredecessor();
242 if (!SinglePredBB)
243 return {nullptr, nullptr};
244
245 // Stop searching when SinglePredBB has been visited. It means we see
246 // an unreachable loop.
247 if (Visited.count(SinglePredBB))
248 return {nullptr, nullptr};
249
250 SuccBB = PredBB;
251 PredBB = SinglePredBB;
252 }
253 };
254
255 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
256 Value *PhiOpnd = PN->getIncomingValue(i);
257 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
258
259 if (!CI || !CI->getType()->isIntegerTy(1))
260 continue;
261
262 BranchProbability BP =
263 (CI->isOne() ? BranchProbability::getBranchProbability(
264 TrueWeight, TrueWeight + FalseWeight)
265 : BranchProbability::getBranchProbability(
266 FalseWeight, TrueWeight + FalseWeight));
267
268 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
269 if (!PredOutEdge.first)
270 return;
271
272 BasicBlock *PredBB = PredOutEdge.first;
273 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
274 if (!PredBr)
275 return;
276
277 uint64_t PredTrueWeight, PredFalseWeight;
278 // FIXME: We currently only set the profile data when it is missing.
279 // With PGO, this can be used to refine even existing profile data with
280 // context information. This needs to be done after more performance
281 // testing.
282 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
283 continue;
284
285 // We can not infer anything useful when BP >= 50%, because BP is the
286 // upper bound probability value.
287 if (BP >= BranchProbability(50, 100))
288 continue;
289
290 SmallVector<uint32_t, 2> Weights;
291 if (PredBr->getSuccessor(0) == PredOutEdge.second) {
292 Weights.push_back(BP.getNumerator());
293 Weights.push_back(BP.getCompl().getNumerator());
294 } else {
295 Weights.push_back(BP.getCompl().getNumerator());
296 Weights.push_back(BP.getNumerator());
297 }
298 PredBr->setMetadata(LLVMContext::MD_prof,
299 MDBuilder(PredBr->getParent()->getContext())
300 .createBranchWeights(Weights));
301 }
302 }
303
304 /// runOnFunction - Toplevel algorithm.
runOnFunction(Function & F)305 bool JumpThreading::runOnFunction(Function &F) {
306 if (skipFunction(F))
307 return false;
308 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
309 // Jump Threading has no sense for the targets with divergent CF
310 if (TTI->hasBranchDivergence())
311 return false;
312 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
313 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
314 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
315 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
316 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
317 std::unique_ptr<BlockFrequencyInfo> BFI;
318 std::unique_ptr<BranchProbabilityInfo> BPI;
319 if (F.hasProfileData()) {
320 LoopInfo LI{*DT};
321 BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
322 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
323 }
324
325 bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
326 std::move(BFI), std::move(BPI));
327 if (PrintLVIAfterJumpThreading) {
328 dbgs() << "LVI for function '" << F.getName() << "':\n";
329 LVI->printLVI(F, DTU.getDomTree(), dbgs());
330 }
331 return Changed;
332 }
333
run(Function & F,FunctionAnalysisManager & AM)334 PreservedAnalyses JumpThreadingPass::run(Function &F,
335 FunctionAnalysisManager &AM) {
336 auto &TTI = AM.getResult<TargetIRAnalysis>(F);
337 // Jump Threading has no sense for the targets with divergent CF
338 if (TTI.hasBranchDivergence())
339 return PreservedAnalyses::all();
340 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
341 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
342 auto &LVI = AM.getResult<LazyValueAnalysis>(F);
343 auto &AA = AM.getResult<AAManager>(F);
344 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
345
346 std::unique_ptr<BlockFrequencyInfo> BFI;
347 std::unique_ptr<BranchProbabilityInfo> BPI;
348 if (F.hasProfileData()) {
349 LoopInfo LI{DominatorTree(F)};
350 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
351 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
352 }
353
354 bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
355 std::move(BFI), std::move(BPI));
356
357 if (PrintLVIAfterJumpThreading) {
358 dbgs() << "LVI for function '" << F.getName() << "':\n";
359 LVI.printLVI(F, DTU.getDomTree(), dbgs());
360 }
361
362 if (!Changed)
363 return PreservedAnalyses::all();
364 PreservedAnalyses PA;
365 PA.preserve<DominatorTreeAnalysis>();
366 PA.preserve<LazyValueAnalysis>();
367 return PA;
368 }
369
runImpl(Function & F,TargetLibraryInfo * TLI_,TargetTransformInfo * TTI_,LazyValueInfo * LVI_,AliasAnalysis * AA_,DomTreeUpdater * DTU_,bool HasProfileData_,std::unique_ptr<BlockFrequencyInfo> BFI_,std::unique_ptr<BranchProbabilityInfo> BPI_)370 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
371 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
372 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
373 bool HasProfileData_,
374 std::unique_ptr<BlockFrequencyInfo> BFI_,
375 std::unique_ptr<BranchProbabilityInfo> BPI_) {
376 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
377 TLI = TLI_;
378 TTI = TTI_;
379 LVI = LVI_;
380 AA = AA_;
381 DTU = DTU_;
382 BFI.reset();
383 BPI.reset();
384 // When profile data is available, we need to update edge weights after
385 // successful jump threading, which requires both BPI and BFI being available.
386 HasProfileData = HasProfileData_;
387 auto *GuardDecl = F.getParent()->getFunction(
388 Intrinsic::getName(Intrinsic::experimental_guard));
389 HasGuards = GuardDecl && !GuardDecl->use_empty();
390 if (HasProfileData) {
391 BPI = std::move(BPI_);
392 BFI = std::move(BFI_);
393 }
394
395 // Reduce the number of instructions duplicated when optimizing strictly for
396 // size.
397 if (BBDuplicateThreshold.getNumOccurrences())
398 BBDupThreshold = BBDuplicateThreshold;
399 else if (F.hasFnAttribute(Attribute::MinSize))
400 BBDupThreshold = 3;
401 else
402 BBDupThreshold = DefaultBBDupThreshold;
403
404 // JumpThreading must not processes blocks unreachable from entry. It's a
405 // waste of compute time and can potentially lead to hangs.
406 SmallPtrSet<BasicBlock *, 16> Unreachable;
407 assert(DTU && "DTU isn't passed into JumpThreading before using it.");
408 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
409 DominatorTree &DT = DTU->getDomTree();
410 for (auto &BB : F)
411 if (!DT.isReachableFromEntry(&BB))
412 Unreachable.insert(&BB);
413
414 if (!ThreadAcrossLoopHeaders)
415 findLoopHeaders(F);
416
417 bool EverChanged = false;
418 bool Changed;
419 do {
420 Changed = false;
421 for (auto &BB : F) {
422 if (Unreachable.count(&BB))
423 continue;
424 while (processBlock(&BB)) // Thread all of the branches we can over BB.
425 Changed = true;
426
427 // Jump threading may have introduced redundant debug values into BB
428 // which should be removed.
429 if (Changed)
430 RemoveRedundantDbgInstrs(&BB);
431
432 // Stop processing BB if it's the entry or is now deleted. The following
433 // routines attempt to eliminate BB and locating a suitable replacement
434 // for the entry is non-trivial.
435 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
436 continue;
437
438 if (pred_empty(&BB)) {
439 // When processBlock makes BB unreachable it doesn't bother to fix up
440 // the instructions in it. We must remove BB to prevent invalid IR.
441 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName()
442 << "' with terminator: " << *BB.getTerminator()
443 << '\n');
444 LoopHeaders.erase(&BB);
445 LVI->eraseBlock(&BB);
446 DeleteDeadBlock(&BB, DTU);
447 Changed = true;
448 continue;
449 }
450
451 // processBlock doesn't thread BBs with unconditional TIs. However, if BB
452 // is "almost empty", we attempt to merge BB with its sole successor.
453 auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
454 if (BI && BI->isUnconditional()) {
455 BasicBlock *Succ = BI->getSuccessor(0);
456 if (
457 // The terminator must be the only non-phi instruction in BB.
458 BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
459 // Don't alter Loop headers and latches to ensure another pass can
460 // detect and transform nested loops later.
461 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
462 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
463 RemoveRedundantDbgInstrs(Succ);
464 // BB is valid for cleanup here because we passed in DTU. F remains
465 // BB's parent until a DTU->getDomTree() event.
466 LVI->eraseBlock(&BB);
467 Changed = true;
468 }
469 }
470 }
471 EverChanged |= Changed;
472 } while (Changed);
473
474 LoopHeaders.clear();
475 return EverChanged;
476 }
477
478 // Replace uses of Cond with ToVal when safe to do so. If all uses are
479 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
480 // because we may incorrectly replace uses when guards/assumes are uses of
481 // of `Cond` and we used the guards/assume to reason about the `Cond` value
482 // at the end of block. RAUW unconditionally replaces all uses
483 // including the guards/assumes themselves and the uses before the
484 // guard/assume.
replaceFoldableUses(Instruction * Cond,Value * ToVal,BasicBlock * KnownAtEndOfBB)485 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
486 BasicBlock *KnownAtEndOfBB) {
487 bool Changed = false;
488 assert(Cond->getType() == ToVal->getType());
489 // We can unconditionally replace all uses in non-local blocks (i.e. uses
490 // strictly dominated by BB), since LVI information is true from the
491 // terminator of BB.
492 if (Cond->getParent() == KnownAtEndOfBB)
493 Changed |= replaceNonLocalUsesWith(Cond, ToVal);
494 for (Instruction &I : reverse(*KnownAtEndOfBB)) {
495 // Reached the Cond whose uses we are trying to replace, so there are no
496 // more uses.
497 if (&I == Cond)
498 break;
499 // We only replace uses in instructions that are guaranteed to reach the end
500 // of BB, where we know Cond is ToVal.
501 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
502 break;
503 Changed |= I.replaceUsesOfWith(Cond, ToVal);
504 }
505 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
506 Cond->eraseFromParent();
507 Changed = true;
508 }
509 return Changed;
510 }
511
512 /// Return the cost of duplicating a piece of this block from first non-phi
513 /// and before StopAt instruction to thread across it. Stop scanning the block
514 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
getJumpThreadDuplicationCost(const TargetTransformInfo * TTI,BasicBlock * BB,Instruction * StopAt,unsigned Threshold)515 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
516 BasicBlock *BB,
517 Instruction *StopAt,
518 unsigned Threshold) {
519 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
520 /// Ignore PHI nodes, these will be flattened when duplication happens.
521 BasicBlock::const_iterator I(BB->getFirstNonPHI());
522
523 // FIXME: THREADING will delete values that are just used to compute the
524 // branch, so they shouldn't count against the duplication cost.
525
526 unsigned Bonus = 0;
527 if (BB->getTerminator() == StopAt) {
528 // Threading through a switch statement is particularly profitable. If this
529 // block ends in a switch, decrease its cost to make it more likely to
530 // happen.
531 if (isa<SwitchInst>(StopAt))
532 Bonus = 6;
533
534 // The same holds for indirect branches, but slightly more so.
535 if (isa<IndirectBrInst>(StopAt))
536 Bonus = 8;
537 }
538
539 // Bump the threshold up so the early exit from the loop doesn't skip the
540 // terminator-based Size adjustment at the end.
541 Threshold += Bonus;
542
543 // Sum up the cost of each instruction until we get to the terminator. Don't
544 // include the terminator because the copy won't include it.
545 unsigned Size = 0;
546 for (; &*I != StopAt; ++I) {
547
548 // Stop scanning the block if we've reached the threshold.
549 if (Size > Threshold)
550 return Size;
551
552 // Bail out if this instruction gives back a token type, it is not possible
553 // to duplicate it if it is used outside this BB.
554 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
555 return ~0U;
556
557 // Blocks with NoDuplicate are modelled as having infinite cost, so they
558 // are never duplicated.
559 if (const CallInst *CI = dyn_cast<CallInst>(I))
560 if (CI->cannotDuplicate() || CI->isConvergent())
561 return ~0U;
562
563 if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
564 == TargetTransformInfo::TCC_Free)
565 continue;
566
567 // All other instructions count for at least one unit.
568 ++Size;
569
570 // Calls are more expensive. If they are non-intrinsic calls, we model them
571 // as having cost of 4. If they are a non-vector intrinsic, we model them
572 // as having cost of 2 total, and if they are a vector intrinsic, we model
573 // them as having cost 1.
574 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
575 if (!isa<IntrinsicInst>(CI))
576 Size += 3;
577 else if (!CI->getType()->isVectorTy())
578 Size += 1;
579 }
580 }
581
582 return Size > Bonus ? Size - Bonus : 0;
583 }
584
585 /// findLoopHeaders - We do not want jump threading to turn proper loop
586 /// structures into irreducible loops. Doing this breaks up the loop nesting
587 /// hierarchy and pessimizes later transformations. To prevent this from
588 /// happening, we first have to find the loop headers. Here we approximate this
589 /// by finding targets of backedges in the CFG.
590 ///
591 /// Note that there definitely are cases when we want to allow threading of
592 /// edges across a loop header. For example, threading a jump from outside the
593 /// loop (the preheader) to an exit block of the loop is definitely profitable.
594 /// It is also almost always profitable to thread backedges from within the loop
595 /// to exit blocks, and is often profitable to thread backedges to other blocks
596 /// within the loop (forming a nested loop). This simple analysis is not rich
597 /// enough to track all of these properties and keep it up-to-date as the CFG
598 /// mutates, so we don't allow any of these transformations.
findLoopHeaders(Function & F)599 void JumpThreadingPass::findLoopHeaders(Function &F) {
600 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
601 FindFunctionBackedges(F, Edges);
602
603 for (const auto &Edge : Edges)
604 LoopHeaders.insert(Edge.second);
605 }
606
607 /// getKnownConstant - Helper method to determine if we can thread over a
608 /// terminator with the given value as its condition, and if so what value to
609 /// use for that. What kind of value this is depends on whether we want an
610 /// integer or a block address, but an undef is always accepted.
611 /// Returns null if Val is null or not an appropriate constant.
getKnownConstant(Value * Val,ConstantPreference Preference)612 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
613 if (!Val)
614 return nullptr;
615
616 // Undef is "known" enough.
617 if (UndefValue *U = dyn_cast<UndefValue>(Val))
618 return U;
619
620 if (Preference == WantBlockAddress)
621 return dyn_cast<BlockAddress>(Val->stripPointerCasts());
622
623 return dyn_cast<ConstantInt>(Val);
624 }
625
626 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
627 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
628 /// in any of our predecessors. If so, return the known list of value and pred
629 /// BB in the result vector.
630 ///
631 /// This returns true if there were any known values.
computeValueKnownInPredecessorsImpl(Value * V,BasicBlock * BB,PredValueInfo & Result,ConstantPreference Preference,DenseSet<Value * > & RecursionSet,Instruction * CxtI)632 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
633 Value *V, BasicBlock *BB, PredValueInfo &Result,
634 ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
635 Instruction *CxtI) {
636 // This method walks up use-def chains recursively. Because of this, we could
637 // get into an infinite loop going around loops in the use-def chain. To
638 // prevent this, keep track of what (value, block) pairs we've already visited
639 // and terminate the search if we loop back to them
640 if (!RecursionSet.insert(V).second)
641 return false;
642
643 // If V is a constant, then it is known in all predecessors.
644 if (Constant *KC = getKnownConstant(V, Preference)) {
645 for (BasicBlock *Pred : predecessors(BB))
646 Result.emplace_back(KC, Pred);
647
648 return !Result.empty();
649 }
650
651 // If V is a non-instruction value, or an instruction in a different block,
652 // then it can't be derived from a PHI.
653 Instruction *I = dyn_cast<Instruction>(V);
654 if (!I || I->getParent() != BB) {
655
656 // Okay, if this is a live-in value, see if it has a known value at the end
657 // of any of our predecessors.
658 //
659 // FIXME: This should be an edge property, not a block end property.
660 /// TODO: Per PR2563, we could infer value range information about a
661 /// predecessor based on its terminator.
662 //
663 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
664 // "I" is a non-local compare-with-a-constant instruction. This would be
665 // able to handle value inequalities better, for example if the compare is
666 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
667 // Perhaps getConstantOnEdge should be smart enough to do this?
668 for (BasicBlock *P : predecessors(BB)) {
669 // If the value is known by LazyValueInfo to be a constant in a
670 // predecessor, use that information to try to thread this block.
671 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
672 if (Constant *KC = getKnownConstant(PredCst, Preference))
673 Result.emplace_back(KC, P);
674 }
675
676 return !Result.empty();
677 }
678
679 /// If I is a PHI node, then we know the incoming values for any constants.
680 if (PHINode *PN = dyn_cast<PHINode>(I)) {
681 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
682 Value *InVal = PN->getIncomingValue(i);
683 if (Constant *KC = getKnownConstant(InVal, Preference)) {
684 Result.emplace_back(KC, PN->getIncomingBlock(i));
685 } else {
686 Constant *CI = LVI->getConstantOnEdge(InVal,
687 PN->getIncomingBlock(i),
688 BB, CxtI);
689 if (Constant *KC = getKnownConstant(CI, Preference))
690 Result.emplace_back(KC, PN->getIncomingBlock(i));
691 }
692 }
693
694 return !Result.empty();
695 }
696
697 // Handle Cast instructions.
698 if (CastInst *CI = dyn_cast<CastInst>(I)) {
699 Value *Source = CI->getOperand(0);
700 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
701 RecursionSet, CxtI);
702 if (Result.empty())
703 return false;
704
705 // Convert the known values.
706 for (auto &R : Result)
707 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
708
709 return true;
710 }
711
712 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
713 Value *Source = FI->getOperand(0);
714 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
715 RecursionSet, CxtI);
716
717 erase_if(Result, [](auto &Pair) {
718 return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
719 });
720
721 return !Result.empty();
722 }
723
724 // Handle some boolean conditions.
725 if (I->getType()->getPrimitiveSizeInBits() == 1) {
726 using namespace PatternMatch;
727 if (Preference != WantInteger)
728 return false;
729 // X | true -> true
730 // X & false -> false
731 Value *Op0, *Op1;
732 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
733 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
734 PredValueInfoTy LHSVals, RHSVals;
735
736 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
737 RecursionSet, CxtI);
738 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
739 RecursionSet, CxtI);
740
741 if (LHSVals.empty() && RHSVals.empty())
742 return false;
743
744 ConstantInt *InterestingVal;
745 if (match(I, m_LogicalOr()))
746 InterestingVal = ConstantInt::getTrue(I->getContext());
747 else
748 InterestingVal = ConstantInt::getFalse(I->getContext());
749
750 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
751
752 // Scan for the sentinel. If we find an undef, force it to the
753 // interesting value: x|undef -> true and x&undef -> false.
754 for (const auto &LHSVal : LHSVals)
755 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
756 Result.emplace_back(InterestingVal, LHSVal.second);
757 LHSKnownBBs.insert(LHSVal.second);
758 }
759 for (const auto &RHSVal : RHSVals)
760 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
761 // If we already inferred a value for this block on the LHS, don't
762 // re-add it.
763 if (!LHSKnownBBs.count(RHSVal.second))
764 Result.emplace_back(InterestingVal, RHSVal.second);
765 }
766
767 return !Result.empty();
768 }
769
770 // Handle the NOT form of XOR.
771 if (I->getOpcode() == Instruction::Xor &&
772 isa<ConstantInt>(I->getOperand(1)) &&
773 cast<ConstantInt>(I->getOperand(1))->isOne()) {
774 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
775 WantInteger, RecursionSet, CxtI);
776 if (Result.empty())
777 return false;
778
779 // Invert the known values.
780 for (auto &R : Result)
781 R.first = ConstantExpr::getNot(R.first);
782
783 return true;
784 }
785
786 // Try to simplify some other binary operator values.
787 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
788 if (Preference != WantInteger)
789 return false;
790 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
791 const DataLayout &DL = BO->getModule()->getDataLayout();
792 PredValueInfoTy LHSVals;
793 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
794 WantInteger, RecursionSet, CxtI);
795
796 // Try to use constant folding to simplify the binary operator.
797 for (const auto &LHSVal : LHSVals) {
798 Constant *V = LHSVal.first;
799 Constant *Folded =
800 ConstantFoldBinaryOpOperands(BO->getOpcode(), V, CI, DL);
801
802 if (Constant *KC = getKnownConstant(Folded, WantInteger))
803 Result.emplace_back(KC, LHSVal.second);
804 }
805 }
806
807 return !Result.empty();
808 }
809
810 // Handle compare with phi operand, where the PHI is defined in this block.
811 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
812 if (Preference != WantInteger)
813 return false;
814 Type *CmpType = Cmp->getType();
815 Value *CmpLHS = Cmp->getOperand(0);
816 Value *CmpRHS = Cmp->getOperand(1);
817 CmpInst::Predicate Pred = Cmp->getPredicate();
818
819 PHINode *PN = dyn_cast<PHINode>(CmpLHS);
820 if (!PN)
821 PN = dyn_cast<PHINode>(CmpRHS);
822 if (PN && PN->getParent() == BB) {
823 const DataLayout &DL = PN->getModule()->getDataLayout();
824 // We can do this simplification if any comparisons fold to true or false.
825 // See if any do.
826 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
827 BasicBlock *PredBB = PN->getIncomingBlock(i);
828 Value *LHS, *RHS;
829 if (PN == CmpLHS) {
830 LHS = PN->getIncomingValue(i);
831 RHS = CmpRHS->DoPHITranslation(BB, PredBB);
832 } else {
833 LHS = CmpLHS->DoPHITranslation(BB, PredBB);
834 RHS = PN->getIncomingValue(i);
835 }
836 Value *Res = simplifyCmpInst(Pred, LHS, RHS, {DL});
837 if (!Res) {
838 if (!isa<Constant>(RHS))
839 continue;
840
841 // getPredicateOnEdge call will make no sense if LHS is defined in BB.
842 auto LHSInst = dyn_cast<Instruction>(LHS);
843 if (LHSInst && LHSInst->getParent() == BB)
844 continue;
845
846 LazyValueInfo::Tristate
847 ResT = LVI->getPredicateOnEdge(Pred, LHS,
848 cast<Constant>(RHS), PredBB, BB,
849 CxtI ? CxtI : Cmp);
850 if (ResT == LazyValueInfo::Unknown)
851 continue;
852 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
853 }
854
855 if (Constant *KC = getKnownConstant(Res, WantInteger))
856 Result.emplace_back(KC, PredBB);
857 }
858
859 return !Result.empty();
860 }
861
862 // If comparing a live-in value against a constant, see if we know the
863 // live-in value on any predecessors.
864 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
865 Constant *CmpConst = cast<Constant>(CmpRHS);
866
867 if (!isa<Instruction>(CmpLHS) ||
868 cast<Instruction>(CmpLHS)->getParent() != BB) {
869 for (BasicBlock *P : predecessors(BB)) {
870 // If the value is known by LazyValueInfo to be a constant in a
871 // predecessor, use that information to try to thread this block.
872 LazyValueInfo::Tristate Res =
873 LVI->getPredicateOnEdge(Pred, CmpLHS,
874 CmpConst, P, BB, CxtI ? CxtI : Cmp);
875 if (Res == LazyValueInfo::Unknown)
876 continue;
877
878 Constant *ResC = ConstantInt::get(CmpType, Res);
879 Result.emplace_back(ResC, P);
880 }
881
882 return !Result.empty();
883 }
884
885 // InstCombine can fold some forms of constant range checks into
886 // (icmp (add (x, C1)), C2). See if we have we have such a thing with
887 // x as a live-in.
888 {
889 using namespace PatternMatch;
890
891 Value *AddLHS;
892 ConstantInt *AddConst;
893 if (isa<ConstantInt>(CmpConst) &&
894 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
895 if (!isa<Instruction>(AddLHS) ||
896 cast<Instruction>(AddLHS)->getParent() != BB) {
897 for (BasicBlock *P : predecessors(BB)) {
898 // If the value is known by LazyValueInfo to be a ConstantRange in
899 // a predecessor, use that information to try to thread this
900 // block.
901 ConstantRange CR = LVI->getConstantRangeOnEdge(
902 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
903 // Propagate the range through the addition.
904 CR = CR.add(AddConst->getValue());
905
906 // Get the range where the compare returns true.
907 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
908 Pred, cast<ConstantInt>(CmpConst)->getValue());
909
910 Constant *ResC;
911 if (CmpRange.contains(CR))
912 ResC = ConstantInt::getTrue(CmpType);
913 else if (CmpRange.inverse().contains(CR))
914 ResC = ConstantInt::getFalse(CmpType);
915 else
916 continue;
917
918 Result.emplace_back(ResC, P);
919 }
920
921 return !Result.empty();
922 }
923 }
924 }
925
926 // Try to find a constant value for the LHS of a comparison,
927 // and evaluate it statically if we can.
928 PredValueInfoTy LHSVals;
929 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
930 WantInteger, RecursionSet, CxtI);
931
932 for (const auto &LHSVal : LHSVals) {
933 Constant *V = LHSVal.first;
934 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
935 if (Constant *KC = getKnownConstant(Folded, WantInteger))
936 Result.emplace_back(KC, LHSVal.second);
937 }
938
939 return !Result.empty();
940 }
941 }
942
943 if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
944 // Handle select instructions where at least one operand is a known constant
945 // and we can figure out the condition value for any predecessor block.
946 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
947 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
948 PredValueInfoTy Conds;
949 if ((TrueVal || FalseVal) &&
950 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
951 WantInteger, RecursionSet, CxtI)) {
952 for (auto &C : Conds) {
953 Constant *Cond = C.first;
954
955 // Figure out what value to use for the condition.
956 bool KnownCond;
957 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
958 // A known boolean.
959 KnownCond = CI->isOne();
960 } else {
961 assert(isa<UndefValue>(Cond) && "Unexpected condition value");
962 // Either operand will do, so be sure to pick the one that's a known
963 // constant.
964 // FIXME: Do this more cleverly if both values are known constants?
965 KnownCond = (TrueVal != nullptr);
966 }
967
968 // See if the select has a known constant value for this predecessor.
969 if (Constant *Val = KnownCond ? TrueVal : FalseVal)
970 Result.emplace_back(Val, C.second);
971 }
972
973 return !Result.empty();
974 }
975 }
976
977 // If all else fails, see if LVI can figure out a constant value for us.
978 assert(CxtI->getParent() == BB && "CxtI should be in BB");
979 Constant *CI = LVI->getConstant(V, CxtI);
980 if (Constant *KC = getKnownConstant(CI, Preference)) {
981 for (BasicBlock *Pred : predecessors(BB))
982 Result.emplace_back(KC, Pred);
983 }
984
985 return !Result.empty();
986 }
987
988 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
989 /// in an undefined jump, decide which block is best to revector to.
990 ///
991 /// Since we can pick an arbitrary destination, we pick the successor with the
992 /// fewest predecessors. This should reduce the in-degree of the others.
getBestDestForJumpOnUndef(BasicBlock * BB)993 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
994 Instruction *BBTerm = BB->getTerminator();
995 unsigned MinSucc = 0;
996 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
997 // Compute the successor with the minimum number of predecessors.
998 unsigned MinNumPreds = pred_size(TestBB);
999 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1000 TestBB = BBTerm->getSuccessor(i);
1001 unsigned NumPreds = pred_size(TestBB);
1002 if (NumPreds < MinNumPreds) {
1003 MinSucc = i;
1004 MinNumPreds = NumPreds;
1005 }
1006 }
1007
1008 return MinSucc;
1009 }
1010
hasAddressTakenAndUsed(BasicBlock * BB)1011 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1012 if (!BB->hasAddressTaken()) return false;
1013
1014 // If the block has its address taken, it may be a tree of dead constants
1015 // hanging off of it. These shouldn't keep the block alive.
1016 BlockAddress *BA = BlockAddress::get(BB);
1017 BA->removeDeadConstantUsers();
1018 return !BA->use_empty();
1019 }
1020
1021 /// processBlock - If there are any predecessors whose control can be threaded
1022 /// through to a successor, transform them now.
processBlock(BasicBlock * BB)1023 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1024 // If the block is trivially dead, just return and let the caller nuke it.
1025 // This simplifies other transformations.
1026 if (DTU->isBBPendingDeletion(BB) ||
1027 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1028 return false;
1029
1030 // If this block has a single predecessor, and if that pred has a single
1031 // successor, merge the blocks. This encourages recursive jump threading
1032 // because now the condition in this block can be threaded through
1033 // predecessors of our predecessor block.
1034 if (maybeMergeBasicBlockIntoOnlyPred(BB))
1035 return true;
1036
1037 if (tryToUnfoldSelectInCurrBB(BB))
1038 return true;
1039
1040 // Look if we can propagate guards to predecessors.
1041 if (HasGuards && processGuards(BB))
1042 return true;
1043
1044 // What kind of constant we're looking for.
1045 ConstantPreference Preference = WantInteger;
1046
1047 // Look to see if the terminator is a conditional branch, switch or indirect
1048 // branch, if not we can't thread it.
1049 Value *Condition;
1050 Instruction *Terminator = BB->getTerminator();
1051 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1052 // Can't thread an unconditional jump.
1053 if (BI->isUnconditional()) return false;
1054 Condition = BI->getCondition();
1055 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1056 Condition = SI->getCondition();
1057 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1058 // Can't thread indirect branch with no successors.
1059 if (IB->getNumSuccessors() == 0) return false;
1060 Condition = IB->getAddress()->stripPointerCasts();
1061 Preference = WantBlockAddress;
1062 } else {
1063 return false; // Must be an invoke or callbr.
1064 }
1065
1066 // Keep track if we constant folded the condition in this invocation.
1067 bool ConstantFolded = false;
1068
1069 // Run constant folding to see if we can reduce the condition to a simple
1070 // constant.
1071 if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1072 Value *SimpleVal =
1073 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1074 if (SimpleVal) {
1075 I->replaceAllUsesWith(SimpleVal);
1076 if (isInstructionTriviallyDead(I, TLI))
1077 I->eraseFromParent();
1078 Condition = SimpleVal;
1079 ConstantFolded = true;
1080 }
1081 }
1082
1083 // If the terminator is branching on an undef or freeze undef, we can pick any
1084 // of the successors to branch to. Let getBestDestForJumpOnUndef decide.
1085 auto *FI = dyn_cast<FreezeInst>(Condition);
1086 if (isa<UndefValue>(Condition) ||
1087 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1088 unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1089 std::vector<DominatorTree::UpdateType> Updates;
1090
1091 // Fold the branch/switch.
1092 Instruction *BBTerm = BB->getTerminator();
1093 Updates.reserve(BBTerm->getNumSuccessors());
1094 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1095 if (i == BestSucc) continue;
1096 BasicBlock *Succ = BBTerm->getSuccessor(i);
1097 Succ->removePredecessor(BB, true);
1098 Updates.push_back({DominatorTree::Delete, BB, Succ});
1099 }
1100
1101 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1102 << "' folding undef terminator: " << *BBTerm << '\n');
1103 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1104 ++NumFolds;
1105 BBTerm->eraseFromParent();
1106 DTU->applyUpdatesPermissive(Updates);
1107 if (FI)
1108 FI->eraseFromParent();
1109 return true;
1110 }
1111
1112 // If the terminator of this block is branching on a constant, simplify the
1113 // terminator to an unconditional branch. This can occur due to threading in
1114 // other blocks.
1115 if (getKnownConstant(Condition, Preference)) {
1116 LLVM_DEBUG(dbgs() << " In block '" << BB->getName()
1117 << "' folding terminator: " << *BB->getTerminator()
1118 << '\n');
1119 ++NumFolds;
1120 ConstantFoldTerminator(BB, true, nullptr, DTU);
1121 if (HasProfileData)
1122 BPI->eraseBlock(BB);
1123 return true;
1124 }
1125
1126 Instruction *CondInst = dyn_cast<Instruction>(Condition);
1127
1128 // All the rest of our checks depend on the condition being an instruction.
1129 if (!CondInst) {
1130 // FIXME: Unify this with code below.
1131 if (processThreadableEdges(Condition, BB, Preference, Terminator))
1132 return true;
1133 return ConstantFolded;
1134 }
1135
1136 // Some of the following optimization can safely work on the unfrozen cond.
1137 Value *CondWithoutFreeze = CondInst;
1138 if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1139 CondWithoutFreeze = FI->getOperand(0);
1140
1141 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1142 // If we're branching on a conditional, LVI might be able to determine
1143 // it's value at the branch instruction. We only handle comparisons
1144 // against a constant at this time.
1145 if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1146 LazyValueInfo::Tristate Ret =
1147 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1148 CondConst, BB->getTerminator(),
1149 /*UseBlockValue=*/false);
1150 if (Ret != LazyValueInfo::Unknown) {
1151 // We can safely replace *some* uses of the CondInst if it has
1152 // exactly one value as returned by LVI. RAUW is incorrect in the
1153 // presence of guards and assumes, that have the `Cond` as the use. This
1154 // is because we use the guards/assume to reason about the `Cond` value
1155 // at the end of block, but RAUW unconditionally replaces all uses
1156 // including the guards/assumes themselves and the uses before the
1157 // guard/assume.
1158 auto *CI = Ret == LazyValueInfo::True ?
1159 ConstantInt::getTrue(CondCmp->getType()) :
1160 ConstantInt::getFalse(CondCmp->getType());
1161 if (replaceFoldableUses(CondCmp, CI, BB))
1162 return true;
1163 }
1164
1165 // We did not manage to simplify this branch, try to see whether
1166 // CondCmp depends on a known phi-select pattern.
1167 if (tryToUnfoldSelect(CondCmp, BB))
1168 return true;
1169 }
1170 }
1171
1172 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1173 if (tryToUnfoldSelect(SI, BB))
1174 return true;
1175
1176 // Check for some cases that are worth simplifying. Right now we want to look
1177 // for loads that are used by a switch or by the condition for the branch. If
1178 // we see one, check to see if it's partially redundant. If so, insert a PHI
1179 // which can then be used to thread the values.
1180 Value *SimplifyValue = CondWithoutFreeze;
1181
1182 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1183 if (isa<Constant>(CondCmp->getOperand(1)))
1184 SimplifyValue = CondCmp->getOperand(0);
1185
1186 // TODO: There are other places where load PRE would be profitable, such as
1187 // more complex comparisons.
1188 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1189 if (simplifyPartiallyRedundantLoad(LoadI))
1190 return true;
1191
1192 // Before threading, try to propagate profile data backwards:
1193 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1194 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1195 updatePredecessorProfileMetadata(PN, BB);
1196
1197 // Handle a variety of cases where we are branching on something derived from
1198 // a PHI node in the current block. If we can prove that any predecessors
1199 // compute a predictable value based on a PHI node, thread those predecessors.
1200 if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1201 return true;
1202
1203 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1204 // the current block, see if we can simplify.
1205 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1206 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1207 return processBranchOnPHI(PN);
1208
1209 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1210 if (CondInst->getOpcode() == Instruction::Xor &&
1211 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1212 return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1213
1214 // Search for a stronger dominating condition that can be used to simplify a
1215 // conditional branch leaving BB.
1216 if (processImpliedCondition(BB))
1217 return true;
1218
1219 return false;
1220 }
1221
processImpliedCondition(BasicBlock * BB)1222 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1223 auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1224 if (!BI || !BI->isConditional())
1225 return false;
1226
1227 Value *Cond = BI->getCondition();
1228 // Assuming that predecessor's branch was taken, if pred's branch condition
1229 // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1230 // freeze(Cond) is either true or a nondeterministic value.
1231 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1232 // without affecting other instructions.
1233 auto *FICond = dyn_cast<FreezeInst>(Cond);
1234 if (FICond && FICond->hasOneUse())
1235 Cond = FICond->getOperand(0);
1236 else
1237 FICond = nullptr;
1238
1239 BasicBlock *CurrentBB = BB;
1240 BasicBlock *CurrentPred = BB->getSinglePredecessor();
1241 unsigned Iter = 0;
1242
1243 auto &DL = BB->getModule()->getDataLayout();
1244
1245 while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1246 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1247 if (!PBI || !PBI->isConditional())
1248 return false;
1249 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1250 return false;
1251
1252 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1253 Optional<bool> Implication =
1254 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1255
1256 // If the branch condition of BB (which is Cond) and CurrentPred are
1257 // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1258 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1259 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1260 FICond->getOperand(0))
1261 Implication = CondIsTrue;
1262 }
1263
1264 if (Implication) {
1265 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1266 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1267 RemoveSucc->removePredecessor(BB);
1268 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1269 UncondBI->setDebugLoc(BI->getDebugLoc());
1270 ++NumFolds;
1271 BI->eraseFromParent();
1272 if (FICond)
1273 FICond->eraseFromParent();
1274
1275 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1276 if (HasProfileData)
1277 BPI->eraseBlock(BB);
1278 return true;
1279 }
1280 CurrentBB = CurrentPred;
1281 CurrentPred = CurrentBB->getSinglePredecessor();
1282 }
1283
1284 return false;
1285 }
1286
1287 /// Return true if Op is an instruction defined in the given block.
isOpDefinedInBlock(Value * Op,BasicBlock * BB)1288 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1289 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1290 if (OpInst->getParent() == BB)
1291 return true;
1292 return false;
1293 }
1294
1295 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1296 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1297 /// This is an important optimization that encourages jump threading, and needs
1298 /// to be run interlaced with other jump threading tasks.
simplifyPartiallyRedundantLoad(LoadInst * LoadI)1299 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1300 // Don't hack volatile and ordered loads.
1301 if (!LoadI->isUnordered()) return false;
1302
1303 // If the load is defined in a block with exactly one predecessor, it can't be
1304 // partially redundant.
1305 BasicBlock *LoadBB = LoadI->getParent();
1306 if (LoadBB->getSinglePredecessor())
1307 return false;
1308
1309 // If the load is defined in an EH pad, it can't be partially redundant,
1310 // because the edges between the invoke and the EH pad cannot have other
1311 // instructions between them.
1312 if (LoadBB->isEHPad())
1313 return false;
1314
1315 Value *LoadedPtr = LoadI->getOperand(0);
1316
1317 // If the loaded operand is defined in the LoadBB and its not a phi,
1318 // it can't be available in predecessors.
1319 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1320 return false;
1321
1322 // Scan a few instructions up from the load, to see if it is obviously live at
1323 // the entry to its block.
1324 BasicBlock::iterator BBIt(LoadI);
1325 bool IsLoadCSE;
1326 if (Value *AvailableVal = FindAvailableLoadedValue(
1327 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1328 // If the value of the load is locally available within the block, just use
1329 // it. This frequently occurs for reg2mem'd allocas.
1330
1331 if (IsLoadCSE) {
1332 LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1333 combineMetadataForCSE(NLoadI, LoadI, false);
1334 };
1335
1336 // If the returned value is the load itself, replace with poison. This can
1337 // only happen in dead loops.
1338 if (AvailableVal == LoadI)
1339 AvailableVal = PoisonValue::get(LoadI->getType());
1340 if (AvailableVal->getType() != LoadI->getType())
1341 AvailableVal = CastInst::CreateBitOrPointerCast(
1342 AvailableVal, LoadI->getType(), "", LoadI);
1343 LoadI->replaceAllUsesWith(AvailableVal);
1344 LoadI->eraseFromParent();
1345 return true;
1346 }
1347
1348 // Otherwise, if we scanned the whole block and got to the top of the block,
1349 // we know the block is locally transparent to the load. If not, something
1350 // might clobber its value.
1351 if (BBIt != LoadBB->begin())
1352 return false;
1353
1354 // If all of the loads and stores that feed the value have the same AA tags,
1355 // then we can propagate them onto any newly inserted loads.
1356 AAMDNodes AATags = LoadI->getAAMetadata();
1357
1358 SmallPtrSet<BasicBlock*, 8> PredsScanned;
1359
1360 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1361
1362 AvailablePredsTy AvailablePreds;
1363 BasicBlock *OneUnavailablePred = nullptr;
1364 SmallVector<LoadInst*, 8> CSELoads;
1365
1366 // If we got here, the loaded value is transparent through to the start of the
1367 // block. Check to see if it is available in any of the predecessor blocks.
1368 for (BasicBlock *PredBB : predecessors(LoadBB)) {
1369 // If we already scanned this predecessor, skip it.
1370 if (!PredsScanned.insert(PredBB).second)
1371 continue;
1372
1373 BBIt = PredBB->end();
1374 unsigned NumScanedInst = 0;
1375 Value *PredAvailable = nullptr;
1376 // NOTE: We don't CSE load that is volatile or anything stronger than
1377 // unordered, that should have been checked when we entered the function.
1378 assert(LoadI->isUnordered() &&
1379 "Attempting to CSE volatile or atomic loads");
1380 // If this is a load on a phi pointer, phi-translate it and search
1381 // for available load/store to the pointer in predecessors.
1382 Type *AccessTy = LoadI->getType();
1383 const auto &DL = LoadI->getModule()->getDataLayout();
1384 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1385 LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1386 AATags);
1387 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1388 PredBB, BBIt, DefMaxInstsToScan,
1389 AA, &IsLoadCSE, &NumScanedInst);
1390
1391 // If PredBB has a single predecessor, continue scanning through the
1392 // single predecessor.
1393 BasicBlock *SinglePredBB = PredBB;
1394 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1395 NumScanedInst < DefMaxInstsToScan) {
1396 SinglePredBB = SinglePredBB->getSinglePredecessor();
1397 if (SinglePredBB) {
1398 BBIt = SinglePredBB->end();
1399 PredAvailable = findAvailablePtrLoadStore(
1400 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1401 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1402 &NumScanedInst);
1403 }
1404 }
1405
1406 if (!PredAvailable) {
1407 OneUnavailablePred = PredBB;
1408 continue;
1409 }
1410
1411 if (IsLoadCSE)
1412 CSELoads.push_back(cast<LoadInst>(PredAvailable));
1413
1414 // If so, this load is partially redundant. Remember this info so that we
1415 // can create a PHI node.
1416 AvailablePreds.emplace_back(PredBB, PredAvailable);
1417 }
1418
1419 // If the loaded value isn't available in any predecessor, it isn't partially
1420 // redundant.
1421 if (AvailablePreds.empty()) return false;
1422
1423 // Okay, the loaded value is available in at least one (and maybe all!)
1424 // predecessors. If the value is unavailable in more than one unique
1425 // predecessor, we want to insert a merge block for those common predecessors.
1426 // This ensures that we only have to insert one reload, thus not increasing
1427 // code size.
1428 BasicBlock *UnavailablePred = nullptr;
1429
1430 // If the value is unavailable in one of predecessors, we will end up
1431 // inserting a new instruction into them. It is only valid if all the
1432 // instructions before LoadI are guaranteed to pass execution to its
1433 // successor, or if LoadI is safe to speculate.
1434 // TODO: If this logic becomes more complex, and we will perform PRE insertion
1435 // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1436 // It requires domination tree analysis, so for this simple case it is an
1437 // overkill.
1438 if (PredsScanned.size() != AvailablePreds.size() &&
1439 !isSafeToSpeculativelyExecute(LoadI))
1440 for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1441 if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1442 return false;
1443
1444 // If there is exactly one predecessor where the value is unavailable, the
1445 // already computed 'OneUnavailablePred' block is it. If it ends in an
1446 // unconditional branch, we know that it isn't a critical edge.
1447 if (PredsScanned.size() == AvailablePreds.size()+1 &&
1448 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1449 UnavailablePred = OneUnavailablePred;
1450 } else if (PredsScanned.size() != AvailablePreds.size()) {
1451 // Otherwise, we had multiple unavailable predecessors or we had a critical
1452 // edge from the one.
1453 SmallVector<BasicBlock*, 8> PredsToSplit;
1454 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1455
1456 for (const auto &AvailablePred : AvailablePreds)
1457 AvailablePredSet.insert(AvailablePred.first);
1458
1459 // Add all the unavailable predecessors to the PredsToSplit list.
1460 for (BasicBlock *P : predecessors(LoadBB)) {
1461 // If the predecessor is an indirect goto, we can't split the edge.
1462 if (isa<IndirectBrInst>(P->getTerminator()))
1463 return false;
1464
1465 if (!AvailablePredSet.count(P))
1466 PredsToSplit.push_back(P);
1467 }
1468
1469 // Split them out to their own block.
1470 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1471 }
1472
1473 // If the value isn't available in all predecessors, then there will be
1474 // exactly one where it isn't available. Insert a load on that edge and add
1475 // it to the AvailablePreds list.
1476 if (UnavailablePred) {
1477 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1478 "Can't handle critical edge here!");
1479 LoadInst *NewVal = new LoadInst(
1480 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1481 LoadI->getName() + ".pr", false, LoadI->getAlign(),
1482 LoadI->getOrdering(), LoadI->getSyncScopeID(),
1483 UnavailablePred->getTerminator());
1484 NewVal->setDebugLoc(LoadI->getDebugLoc());
1485 if (AATags)
1486 NewVal->setAAMetadata(AATags);
1487
1488 AvailablePreds.emplace_back(UnavailablePred, NewVal);
1489 }
1490
1491 // Now we know that each predecessor of this block has a value in
1492 // AvailablePreds, sort them for efficient access as we're walking the preds.
1493 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1494
1495 // Create a PHI node at the start of the block for the PRE'd load value.
1496 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1497 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1498 &LoadBB->front());
1499 PN->takeName(LoadI);
1500 PN->setDebugLoc(LoadI->getDebugLoc());
1501
1502 // Insert new entries into the PHI for each predecessor. A single block may
1503 // have multiple entries here.
1504 for (pred_iterator PI = PB; PI != PE; ++PI) {
1505 BasicBlock *P = *PI;
1506 AvailablePredsTy::iterator I =
1507 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1508
1509 assert(I != AvailablePreds.end() && I->first == P &&
1510 "Didn't find entry for predecessor!");
1511
1512 // If we have an available predecessor but it requires casting, insert the
1513 // cast in the predecessor and use the cast. Note that we have to update the
1514 // AvailablePreds vector as we go so that all of the PHI entries for this
1515 // predecessor use the same bitcast.
1516 Value *&PredV = I->second;
1517 if (PredV->getType() != LoadI->getType())
1518 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1519 P->getTerminator());
1520
1521 PN->addIncoming(PredV, I->first);
1522 }
1523
1524 for (LoadInst *PredLoadI : CSELoads) {
1525 combineMetadataForCSE(PredLoadI, LoadI, true);
1526 }
1527
1528 LoadI->replaceAllUsesWith(PN);
1529 LoadI->eraseFromParent();
1530
1531 return true;
1532 }
1533
1534 /// findMostPopularDest - The specified list contains multiple possible
1535 /// threadable destinations. Pick the one that occurs the most frequently in
1536 /// the list.
1537 static BasicBlock *
findMostPopularDest(BasicBlock * BB,const SmallVectorImpl<std::pair<BasicBlock *,BasicBlock * >> & PredToDestList)1538 findMostPopularDest(BasicBlock *BB,
1539 const SmallVectorImpl<std::pair<BasicBlock *,
1540 BasicBlock *>> &PredToDestList) {
1541 assert(!PredToDestList.empty());
1542
1543 // Determine popularity. If there are multiple possible destinations, we
1544 // explicitly choose to ignore 'undef' destinations. We prefer to thread
1545 // blocks with known and real destinations to threading undef. We'll handle
1546 // them later if interesting.
1547 MapVector<BasicBlock *, unsigned> DestPopularity;
1548
1549 // Populate DestPopularity with the successors in the order they appear in the
1550 // successor list. This way, we ensure determinism by iterating it in the
1551 // same order in std::max_element below. We map nullptr to 0 so that we can
1552 // return nullptr when PredToDestList contains nullptr only.
1553 DestPopularity[nullptr] = 0;
1554 for (auto *SuccBB : successors(BB))
1555 DestPopularity[SuccBB] = 0;
1556
1557 for (const auto &PredToDest : PredToDestList)
1558 if (PredToDest.second)
1559 DestPopularity[PredToDest.second]++;
1560
1561 // Find the most popular dest.
1562 auto MostPopular = std::max_element(
1563 DestPopularity.begin(), DestPopularity.end(), llvm::less_second());
1564
1565 // Okay, we have finally picked the most popular destination.
1566 return MostPopular->first;
1567 }
1568
1569 // Try to evaluate the value of V when the control flows from PredPredBB to
1570 // BB->getSinglePredecessor() and then on to BB.
evaluateOnPredecessorEdge(BasicBlock * BB,BasicBlock * PredPredBB,Value * V)1571 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1572 BasicBlock *PredPredBB,
1573 Value *V) {
1574 BasicBlock *PredBB = BB->getSinglePredecessor();
1575 assert(PredBB && "Expected a single predecessor");
1576
1577 if (Constant *Cst = dyn_cast<Constant>(V)) {
1578 return Cst;
1579 }
1580
1581 // Consult LVI if V is not an instruction in BB or PredBB.
1582 Instruction *I = dyn_cast<Instruction>(V);
1583 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1584 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1585 }
1586
1587 // Look into a PHI argument.
1588 if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1589 if (PHI->getParent() == PredBB)
1590 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1591 return nullptr;
1592 }
1593
1594 // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1595 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1596 if (CondCmp->getParent() == BB) {
1597 Constant *Op0 =
1598 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1599 Constant *Op1 =
1600 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1601 if (Op0 && Op1) {
1602 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1603 }
1604 }
1605 return nullptr;
1606 }
1607
1608 return nullptr;
1609 }
1610
processThreadableEdges(Value * Cond,BasicBlock * BB,ConstantPreference Preference,Instruction * CxtI)1611 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1612 ConstantPreference Preference,
1613 Instruction *CxtI) {
1614 // If threading this would thread across a loop header, don't even try to
1615 // thread the edge.
1616 if (LoopHeaders.count(BB))
1617 return false;
1618
1619 PredValueInfoTy PredValues;
1620 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1621 CxtI)) {
1622 // We don't have known values in predecessors. See if we can thread through
1623 // BB and its sole predecessor.
1624 return maybethreadThroughTwoBasicBlocks(BB, Cond);
1625 }
1626
1627 assert(!PredValues.empty() &&
1628 "computeValueKnownInPredecessors returned true with no values");
1629
1630 LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1631 for (const auto &PredValue : PredValues) {
1632 dbgs() << " BB '" << BB->getName()
1633 << "': FOUND condition = " << *PredValue.first
1634 << " for pred '" << PredValue.second->getName() << "'.\n";
1635 });
1636
1637 // Decide what we want to thread through. Convert our list of known values to
1638 // a list of known destinations for each pred. This also discards duplicate
1639 // predecessors and keeps track of the undefined inputs (which are represented
1640 // as a null dest in the PredToDestList).
1641 SmallPtrSet<BasicBlock*, 16> SeenPreds;
1642 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1643
1644 BasicBlock *OnlyDest = nullptr;
1645 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1646 Constant *OnlyVal = nullptr;
1647 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1648
1649 for (const auto &PredValue : PredValues) {
1650 BasicBlock *Pred = PredValue.second;
1651 if (!SeenPreds.insert(Pred).second)
1652 continue; // Duplicate predecessor entry.
1653
1654 Constant *Val = PredValue.first;
1655
1656 BasicBlock *DestBB;
1657 if (isa<UndefValue>(Val))
1658 DestBB = nullptr;
1659 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1660 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1661 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1662 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1663 assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1664 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1665 } else {
1666 assert(isa<IndirectBrInst>(BB->getTerminator())
1667 && "Unexpected terminator");
1668 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1669 DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1670 }
1671
1672 // If we have exactly one destination, remember it for efficiency below.
1673 if (PredToDestList.empty()) {
1674 OnlyDest = DestBB;
1675 OnlyVal = Val;
1676 } else {
1677 if (OnlyDest != DestBB)
1678 OnlyDest = MultipleDestSentinel;
1679 // It possible we have same destination, but different value, e.g. default
1680 // case in switchinst.
1681 if (Val != OnlyVal)
1682 OnlyVal = MultipleVal;
1683 }
1684
1685 // If the predecessor ends with an indirect goto, we can't change its
1686 // destination.
1687 if (isa<IndirectBrInst>(Pred->getTerminator()))
1688 continue;
1689
1690 PredToDestList.emplace_back(Pred, DestBB);
1691 }
1692
1693 // If all edges were unthreadable, we fail.
1694 if (PredToDestList.empty())
1695 return false;
1696
1697 // If all the predecessors go to a single known successor, we want to fold,
1698 // not thread. By doing so, we do not need to duplicate the current block and
1699 // also miss potential opportunities in case we dont/cant duplicate.
1700 if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1701 if (BB->hasNPredecessors(PredToDestList.size())) {
1702 bool SeenFirstBranchToOnlyDest = false;
1703 std::vector <DominatorTree::UpdateType> Updates;
1704 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1705 for (BasicBlock *SuccBB : successors(BB)) {
1706 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1707 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1708 } else {
1709 SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1710 Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1711 }
1712 }
1713
1714 // Finally update the terminator.
1715 Instruction *Term = BB->getTerminator();
1716 BranchInst::Create(OnlyDest, Term);
1717 ++NumFolds;
1718 Term->eraseFromParent();
1719 DTU->applyUpdatesPermissive(Updates);
1720 if (HasProfileData)
1721 BPI->eraseBlock(BB);
1722
1723 // If the condition is now dead due to the removal of the old terminator,
1724 // erase it.
1725 if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1726 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1727 CondInst->eraseFromParent();
1728 // We can safely replace *some* uses of the CondInst if it has
1729 // exactly one value as returned by LVI. RAUW is incorrect in the
1730 // presence of guards and assumes, that have the `Cond` as the use. This
1731 // is because we use the guards/assume to reason about the `Cond` value
1732 // at the end of block, but RAUW unconditionally replaces all uses
1733 // including the guards/assumes themselves and the uses before the
1734 // guard/assume.
1735 else if (OnlyVal && OnlyVal != MultipleVal)
1736 replaceFoldableUses(CondInst, OnlyVal, BB);
1737 }
1738 return true;
1739 }
1740 }
1741
1742 // Determine which is the most common successor. If we have many inputs and
1743 // this block is a switch, we want to start by threading the batch that goes
1744 // to the most popular destination first. If we only know about one
1745 // threadable destination (the common case) we can avoid this.
1746 BasicBlock *MostPopularDest = OnlyDest;
1747
1748 if (MostPopularDest == MultipleDestSentinel) {
1749 // Remove any loop headers from the Dest list, threadEdge conservatively
1750 // won't process them, but we might have other destination that are eligible
1751 // and we still want to process.
1752 erase_if(PredToDestList,
1753 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1754 return LoopHeaders.contains(PredToDest.second);
1755 });
1756
1757 if (PredToDestList.empty())
1758 return false;
1759
1760 MostPopularDest = findMostPopularDest(BB, PredToDestList);
1761 }
1762
1763 // Now that we know what the most popular destination is, factor all
1764 // predecessors that will jump to it into a single predecessor.
1765 SmallVector<BasicBlock*, 16> PredsToFactor;
1766 for (const auto &PredToDest : PredToDestList)
1767 if (PredToDest.second == MostPopularDest) {
1768 BasicBlock *Pred = PredToDest.first;
1769
1770 // This predecessor may be a switch or something else that has multiple
1771 // edges to the block. Factor each of these edges by listing them
1772 // according to # occurrences in PredsToFactor.
1773 for (BasicBlock *Succ : successors(Pred))
1774 if (Succ == BB)
1775 PredsToFactor.push_back(Pred);
1776 }
1777
1778 // If the threadable edges are branching on an undefined value, we get to pick
1779 // the destination that these predecessors should get to.
1780 if (!MostPopularDest)
1781 MostPopularDest = BB->getTerminator()->
1782 getSuccessor(getBestDestForJumpOnUndef(BB));
1783
1784 // Ok, try to thread it!
1785 return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1786 }
1787
1788 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1789 /// a PHI node (or freeze PHI) in the current block. See if there are any
1790 /// simplifications we can do based on inputs to the phi node.
processBranchOnPHI(PHINode * PN)1791 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1792 BasicBlock *BB = PN->getParent();
1793
1794 // TODO: We could make use of this to do it once for blocks with common PHI
1795 // values.
1796 SmallVector<BasicBlock*, 1> PredBBs;
1797 PredBBs.resize(1);
1798
1799 // If any of the predecessor blocks end in an unconditional branch, we can
1800 // *duplicate* the conditional branch into that block in order to further
1801 // encourage jump threading and to eliminate cases where we have branch on a
1802 // phi of an icmp (branch on icmp is much better).
1803 // This is still beneficial when a frozen phi is used as the branch condition
1804 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1805 // to br(icmp(freeze ...)).
1806 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1807 BasicBlock *PredBB = PN->getIncomingBlock(i);
1808 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1809 if (PredBr->isUnconditional()) {
1810 PredBBs[0] = PredBB;
1811 // Try to duplicate BB into PredBB.
1812 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1813 return true;
1814 }
1815 }
1816
1817 return false;
1818 }
1819
1820 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1821 /// a xor instruction in the current block. See if there are any
1822 /// simplifications we can do based on inputs to the xor.
processBranchOnXOR(BinaryOperator * BO)1823 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1824 BasicBlock *BB = BO->getParent();
1825
1826 // If either the LHS or RHS of the xor is a constant, don't do this
1827 // optimization.
1828 if (isa<ConstantInt>(BO->getOperand(0)) ||
1829 isa<ConstantInt>(BO->getOperand(1)))
1830 return false;
1831
1832 // If the first instruction in BB isn't a phi, we won't be able to infer
1833 // anything special about any particular predecessor.
1834 if (!isa<PHINode>(BB->front()))
1835 return false;
1836
1837 // If this BB is a landing pad, we won't be able to split the edge into it.
1838 if (BB->isEHPad())
1839 return false;
1840
1841 // If we have a xor as the branch input to this block, and we know that the
1842 // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1843 // the condition into the predecessor and fix that value to true, saving some
1844 // logical ops on that path and encouraging other paths to simplify.
1845 //
1846 // This copies something like this:
1847 //
1848 // BB:
1849 // %X = phi i1 [1], [%X']
1850 // %Y = icmp eq i32 %A, %B
1851 // %Z = xor i1 %X, %Y
1852 // br i1 %Z, ...
1853 //
1854 // Into:
1855 // BB':
1856 // %Y = icmp ne i32 %A, %B
1857 // br i1 %Y, ...
1858
1859 PredValueInfoTy XorOpValues;
1860 bool isLHS = true;
1861 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1862 WantInteger, BO)) {
1863 assert(XorOpValues.empty());
1864 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1865 WantInteger, BO))
1866 return false;
1867 isLHS = false;
1868 }
1869
1870 assert(!XorOpValues.empty() &&
1871 "computeValueKnownInPredecessors returned true with no values");
1872
1873 // Scan the information to see which is most popular: true or false. The
1874 // predecessors can be of the set true, false, or undef.
1875 unsigned NumTrue = 0, NumFalse = 0;
1876 for (const auto &XorOpValue : XorOpValues) {
1877 if (isa<UndefValue>(XorOpValue.first))
1878 // Ignore undefs for the count.
1879 continue;
1880 if (cast<ConstantInt>(XorOpValue.first)->isZero())
1881 ++NumFalse;
1882 else
1883 ++NumTrue;
1884 }
1885
1886 // Determine which value to split on, true, false, or undef if neither.
1887 ConstantInt *SplitVal = nullptr;
1888 if (NumTrue > NumFalse)
1889 SplitVal = ConstantInt::getTrue(BB->getContext());
1890 else if (NumTrue != 0 || NumFalse != 0)
1891 SplitVal = ConstantInt::getFalse(BB->getContext());
1892
1893 // Collect all of the blocks that this can be folded into so that we can
1894 // factor this once and clone it once.
1895 SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1896 for (const auto &XorOpValue : XorOpValues) {
1897 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1898 continue;
1899
1900 BlocksToFoldInto.push_back(XorOpValue.second);
1901 }
1902
1903 // If we inferred a value for all of the predecessors, then duplication won't
1904 // help us. However, we can just replace the LHS or RHS with the constant.
1905 if (BlocksToFoldInto.size() ==
1906 cast<PHINode>(BB->front()).getNumIncomingValues()) {
1907 if (!SplitVal) {
1908 // If all preds provide undef, just nuke the xor, because it is undef too.
1909 BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1910 BO->eraseFromParent();
1911 } else if (SplitVal->isZero()) {
1912 // If all preds provide 0, replace the xor with the other input.
1913 BO->replaceAllUsesWith(BO->getOperand(isLHS));
1914 BO->eraseFromParent();
1915 } else {
1916 // If all preds provide 1, set the computed value to 1.
1917 BO->setOperand(!isLHS, SplitVal);
1918 }
1919
1920 return true;
1921 }
1922
1923 // If any of predecessors end with an indirect goto, we can't change its
1924 // destination.
1925 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1926 return isa<IndirectBrInst>(Pred->getTerminator());
1927 }))
1928 return false;
1929
1930 // Try to duplicate BB into PredBB.
1931 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1932 }
1933
1934 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1935 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1936 /// NewPred using the entries from OldPred (suitably mapped).
addPHINodeEntriesForMappedBlock(BasicBlock * PHIBB,BasicBlock * OldPred,BasicBlock * NewPred,DenseMap<Instruction *,Value * > & ValueMap)1937 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1938 BasicBlock *OldPred,
1939 BasicBlock *NewPred,
1940 DenseMap<Instruction*, Value*> &ValueMap) {
1941 for (PHINode &PN : PHIBB->phis()) {
1942 // Ok, we have a PHI node. Figure out what the incoming value was for the
1943 // DestBlock.
1944 Value *IV = PN.getIncomingValueForBlock(OldPred);
1945
1946 // Remap the value if necessary.
1947 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1948 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1949 if (I != ValueMap.end())
1950 IV = I->second;
1951 }
1952
1953 PN.addIncoming(IV, NewPred);
1954 }
1955 }
1956
1957 /// Merge basic block BB into its sole predecessor if possible.
maybeMergeBasicBlockIntoOnlyPred(BasicBlock * BB)1958 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1959 BasicBlock *SinglePred = BB->getSinglePredecessor();
1960 if (!SinglePred)
1961 return false;
1962
1963 const Instruction *TI = SinglePred->getTerminator();
1964 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1965 SinglePred == BB || hasAddressTakenAndUsed(BB))
1966 return false;
1967
1968 // If SinglePred was a loop header, BB becomes one.
1969 if (LoopHeaders.erase(SinglePred))
1970 LoopHeaders.insert(BB);
1971
1972 LVI->eraseBlock(SinglePred);
1973 MergeBasicBlockIntoOnlyPred(BB, DTU);
1974
1975 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1976 // BB code within one basic block `BB`), we need to invalidate the LVI
1977 // information associated with BB, because the LVI information need not be
1978 // true for all of BB after the merge. For example,
1979 // Before the merge, LVI info and code is as follows:
1980 // SinglePred: <LVI info1 for %p val>
1981 // %y = use of %p
1982 // call @exit() // need not transfer execution to successor.
1983 // assume(%p) // from this point on %p is true
1984 // br label %BB
1985 // BB: <LVI info2 for %p val, i.e. %p is true>
1986 // %x = use of %p
1987 // br label exit
1988 //
1989 // Note that this LVI info for blocks BB and SinglPred is correct for %p
1990 // (info2 and info1 respectively). After the merge and the deletion of the
1991 // LVI info1 for SinglePred. We have the following code:
1992 // BB: <LVI info2 for %p val>
1993 // %y = use of %p
1994 // call @exit()
1995 // assume(%p)
1996 // %x = use of %p <-- LVI info2 is correct from here onwards.
1997 // br label exit
1998 // LVI info2 for BB is incorrect at the beginning of BB.
1999
2000 // Invalidate LVI information for BB if the LVI is not provably true for
2001 // all of BB.
2002 if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2003 LVI->eraseBlock(BB);
2004 return true;
2005 }
2006
2007 /// Update the SSA form. NewBB contains instructions that are copied from BB.
2008 /// ValueMapping maps old values in BB to new ones in NewBB.
updateSSA(BasicBlock * BB,BasicBlock * NewBB,DenseMap<Instruction *,Value * > & ValueMapping)2009 void JumpThreadingPass::updateSSA(
2010 BasicBlock *BB, BasicBlock *NewBB,
2011 DenseMap<Instruction *, Value *> &ValueMapping) {
2012 // If there were values defined in BB that are used outside the block, then we
2013 // now have to update all uses of the value to use either the original value,
2014 // the cloned value, or some PHI derived value. This can require arbitrary
2015 // PHI insertion, of which we are prepared to do, clean these up now.
2016 SSAUpdater SSAUpdate;
2017 SmallVector<Use *, 16> UsesToRename;
2018
2019 for (Instruction &I : *BB) {
2020 // Scan all uses of this instruction to see if it is used outside of its
2021 // block, and if so, record them in UsesToRename.
2022 for (Use &U : I.uses()) {
2023 Instruction *User = cast<Instruction>(U.getUser());
2024 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2025 if (UserPN->getIncomingBlock(U) == BB)
2026 continue;
2027 } else if (User->getParent() == BB)
2028 continue;
2029
2030 UsesToRename.push_back(&U);
2031 }
2032
2033 // If there are no uses outside the block, we're done with this instruction.
2034 if (UsesToRename.empty())
2035 continue;
2036 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2037
2038 // We found a use of I outside of BB. Rename all uses of I that are outside
2039 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
2040 // with the two values we know.
2041 SSAUpdate.Initialize(I.getType(), I.getName());
2042 SSAUpdate.AddAvailableValue(BB, &I);
2043 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2044
2045 while (!UsesToRename.empty())
2046 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2047 LLVM_DEBUG(dbgs() << "\n");
2048 }
2049 }
2050
2051 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone
2052 /// arguments that come from PredBB. Return the map from the variables in the
2053 /// source basic block to the variables in the newly created basic block.
2054 DenseMap<Instruction *, Value *>
cloneInstructions(BasicBlock::iterator BI,BasicBlock::iterator BE,BasicBlock * NewBB,BasicBlock * PredBB)2055 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2056 BasicBlock::iterator BE, BasicBlock *NewBB,
2057 BasicBlock *PredBB) {
2058 // We are going to have to map operands from the source basic block to the new
2059 // copy of the block 'NewBB'. If there are PHI nodes in the source basic
2060 // block, evaluate them to account for entry from PredBB.
2061 DenseMap<Instruction *, Value *> ValueMapping;
2062
2063 // Clone the phi nodes of the source basic block into NewBB. The resulting
2064 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2065 // might need to rewrite the operand of the cloned phi.
2066 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2067 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2068 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2069 ValueMapping[PN] = NewPN;
2070 }
2071
2072 // Clone noalias scope declarations in the threaded block. When threading a
2073 // loop exit, we would otherwise end up with two idential scope declarations
2074 // visible at the same time.
2075 SmallVector<MDNode *> NoAliasScopes;
2076 DenseMap<MDNode *, MDNode *> ClonedScopes;
2077 LLVMContext &Context = PredBB->getContext();
2078 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2079 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2080
2081 // Clone the non-phi instructions of the source basic block into NewBB,
2082 // keeping track of the mapping and using it to remap operands in the cloned
2083 // instructions.
2084 for (; BI != BE; ++BI) {
2085 Instruction *New = BI->clone();
2086 New->setName(BI->getName());
2087 NewBB->getInstList().push_back(New);
2088 ValueMapping[&*BI] = New;
2089 adaptNoAliasScopes(New, ClonedScopes, Context);
2090
2091 // Remap operands to patch up intra-block references.
2092 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2093 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2094 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2095 if (I != ValueMapping.end())
2096 New->setOperand(i, I->second);
2097 }
2098 }
2099
2100 return ValueMapping;
2101 }
2102
2103 /// Attempt to thread through two successive basic blocks.
maybethreadThroughTwoBasicBlocks(BasicBlock * BB,Value * Cond)2104 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2105 Value *Cond) {
2106 // Consider:
2107 //
2108 // PredBB:
2109 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2110 // %tobool = icmp eq i32 %cond, 0
2111 // br i1 %tobool, label %BB, label ...
2112 //
2113 // BB:
2114 // %cmp = icmp eq i32* %var, null
2115 // br i1 %cmp, label ..., label ...
2116 //
2117 // We don't know the value of %var at BB even if we know which incoming edge
2118 // we take to BB. However, once we duplicate PredBB for each of its incoming
2119 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2120 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2121
2122 // Require that BB end with a Branch for simplicity.
2123 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2124 if (!CondBr)
2125 return false;
2126
2127 // BB must have exactly one predecessor.
2128 BasicBlock *PredBB = BB->getSinglePredecessor();
2129 if (!PredBB)
2130 return false;
2131
2132 // Require that PredBB end with a conditional Branch. If PredBB ends with an
2133 // unconditional branch, we should be merging PredBB and BB instead. For
2134 // simplicity, we don't deal with a switch.
2135 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2136 if (!PredBBBranch || PredBBBranch->isUnconditional())
2137 return false;
2138
2139 // If PredBB has exactly one incoming edge, we don't gain anything by copying
2140 // PredBB.
2141 if (PredBB->getSinglePredecessor())
2142 return false;
2143
2144 // Don't thread through PredBB if it contains a successor edge to itself, in
2145 // which case we would infinite loop. Suppose we are threading an edge from
2146 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2147 // successor edge to itself. If we allowed jump threading in this case, we
2148 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since
2149 // PredBB.thread has a successor edge to PredBB, we would immediately come up
2150 // with another jump threading opportunity from PredBB.thread through PredBB
2151 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we
2152 // would keep peeling one iteration from PredBB.
2153 if (llvm::is_contained(successors(PredBB), PredBB))
2154 return false;
2155
2156 // Don't thread across a loop header.
2157 if (LoopHeaders.count(PredBB))
2158 return false;
2159
2160 // Avoid complication with duplicating EH pads.
2161 if (PredBB->isEHPad())
2162 return false;
2163
2164 // Find a predecessor that we can thread. For simplicity, we only consider a
2165 // successor edge out of BB to which we thread exactly one incoming edge into
2166 // PredBB.
2167 unsigned ZeroCount = 0;
2168 unsigned OneCount = 0;
2169 BasicBlock *ZeroPred = nullptr;
2170 BasicBlock *OnePred = nullptr;
2171 for (BasicBlock *P : predecessors(PredBB)) {
2172 // If PredPred ends with IndirectBrInst, we can't handle it.
2173 if (isa<IndirectBrInst>(P->getTerminator()))
2174 continue;
2175 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2176 evaluateOnPredecessorEdge(BB, P, Cond))) {
2177 if (CI->isZero()) {
2178 ZeroCount++;
2179 ZeroPred = P;
2180 } else if (CI->isOne()) {
2181 OneCount++;
2182 OnePred = P;
2183 }
2184 }
2185 }
2186
2187 // Disregard complicated cases where we have to thread multiple edges.
2188 BasicBlock *PredPredBB;
2189 if (ZeroCount == 1) {
2190 PredPredBB = ZeroPred;
2191 } else if (OneCount == 1) {
2192 PredPredBB = OnePred;
2193 } else {
2194 return false;
2195 }
2196
2197 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2198
2199 // If threading to the same block as we come from, we would infinite loop.
2200 if (SuccBB == BB) {
2201 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2202 << "' - would thread to self!\n");
2203 return false;
2204 }
2205
2206 // If threading this would thread across a loop header, don't thread the edge.
2207 // See the comments above findLoopHeaders for justifications and caveats.
2208 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2209 LLVM_DEBUG({
2210 bool BBIsHeader = LoopHeaders.count(BB);
2211 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2212 dbgs() << " Not threading across "
2213 << (BBIsHeader ? "loop header BB '" : "block BB '")
2214 << BB->getName() << "' to dest "
2215 << (SuccIsHeader ? "loop header BB '" : "block BB '")
2216 << SuccBB->getName()
2217 << "' - it might create an irreducible loop!\n";
2218 });
2219 return false;
2220 }
2221
2222 // Compute the cost of duplicating BB and PredBB.
2223 unsigned BBCost = getJumpThreadDuplicationCost(
2224 TTI, BB, BB->getTerminator(), BBDupThreshold);
2225 unsigned PredBBCost = getJumpThreadDuplicationCost(
2226 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2227
2228 // Give up if costs are too high. We need to check BBCost and PredBBCost
2229 // individually before checking their sum because getJumpThreadDuplicationCost
2230 // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2231 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2232 BBCost + PredBBCost > BBDupThreshold) {
2233 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2234 << "' - Cost is too high: " << PredBBCost
2235 << " for PredBB, " << BBCost << "for BB\n");
2236 return false;
2237 }
2238
2239 // Now we are ready to duplicate PredBB.
2240 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2241 return true;
2242 }
2243
threadThroughTwoBasicBlocks(BasicBlock * PredPredBB,BasicBlock * PredBB,BasicBlock * BB,BasicBlock * SuccBB)2244 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2245 BasicBlock *PredBB,
2246 BasicBlock *BB,
2247 BasicBlock *SuccBB) {
2248 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '"
2249 << BB->getName() << "'\n");
2250
2251 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2252 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2253
2254 BasicBlock *NewBB =
2255 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2256 PredBB->getParent(), PredBB);
2257 NewBB->moveAfter(PredBB);
2258
2259 // Set the block frequency of NewBB.
2260 if (HasProfileData) {
2261 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2262 BPI->getEdgeProbability(PredPredBB, PredBB);
2263 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2264 }
2265
2266 // We are going to have to map operands from the original BB block to the new
2267 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them
2268 // to account for entry from PredPredBB.
2269 DenseMap<Instruction *, Value *> ValueMapping =
2270 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2271
2272 // Copy the edge probabilities from PredBB to NewBB.
2273 if (HasProfileData)
2274 BPI->copyEdgeProbabilities(PredBB, NewBB);
2275
2276 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2277 // This eliminates predecessors from PredPredBB, which requires us to simplify
2278 // any PHI nodes in PredBB.
2279 Instruction *PredPredTerm = PredPredBB->getTerminator();
2280 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2281 if (PredPredTerm->getSuccessor(i) == PredBB) {
2282 PredBB->removePredecessor(PredPredBB, true);
2283 PredPredTerm->setSuccessor(i, NewBB);
2284 }
2285
2286 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2287 ValueMapping);
2288 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2289 ValueMapping);
2290
2291 DTU->applyUpdatesPermissive(
2292 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2293 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2294 {DominatorTree::Insert, PredPredBB, NewBB},
2295 {DominatorTree::Delete, PredPredBB, PredBB}});
2296
2297 updateSSA(PredBB, NewBB, ValueMapping);
2298
2299 // Clean up things like PHI nodes with single operands, dead instructions,
2300 // etc.
2301 SimplifyInstructionsInBlock(NewBB, TLI);
2302 SimplifyInstructionsInBlock(PredBB, TLI);
2303
2304 SmallVector<BasicBlock *, 1> PredsToFactor;
2305 PredsToFactor.push_back(NewBB);
2306 threadEdge(BB, PredsToFactor, SuccBB);
2307 }
2308
2309 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
tryThreadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)2310 bool JumpThreadingPass::tryThreadEdge(
2311 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2312 BasicBlock *SuccBB) {
2313 // If threading to the same block as we come from, we would infinite loop.
2314 if (SuccBB == BB) {
2315 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName()
2316 << "' - would thread to self!\n");
2317 return false;
2318 }
2319
2320 // If threading this would thread across a loop header, don't thread the edge.
2321 // See the comments above findLoopHeaders for justifications and caveats.
2322 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2323 LLVM_DEBUG({
2324 bool BBIsHeader = LoopHeaders.count(BB);
2325 bool SuccIsHeader = LoopHeaders.count(SuccBB);
2326 dbgs() << " Not threading across "
2327 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2328 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2329 << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2330 });
2331 return false;
2332 }
2333
2334 unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2335 TTI, BB, BB->getTerminator(), BBDupThreshold);
2336 if (JumpThreadCost > BBDupThreshold) {
2337 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName()
2338 << "' - Cost is too high: " << JumpThreadCost << "\n");
2339 return false;
2340 }
2341
2342 threadEdge(BB, PredBBs, SuccBB);
2343 return true;
2344 }
2345
2346 /// threadEdge - We have decided that it is safe and profitable to factor the
2347 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2348 /// across BB. Transform the IR to reflect this change.
threadEdge(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs,BasicBlock * SuccBB)2349 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2350 const SmallVectorImpl<BasicBlock *> &PredBBs,
2351 BasicBlock *SuccBB) {
2352 assert(SuccBB != BB && "Don't create an infinite loop");
2353
2354 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2355 "Don't thread across loop headers");
2356
2357 // And finally, do it! Start by factoring the predecessors if needed.
2358 BasicBlock *PredBB;
2359 if (PredBBs.size() == 1)
2360 PredBB = PredBBs[0];
2361 else {
2362 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2363 << " common predecessors.\n");
2364 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2365 }
2366
2367 // And finally, do it!
2368 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName()
2369 << "' to '" << SuccBB->getName()
2370 << ", across block:\n " << *BB << "\n");
2371
2372 LVI->threadEdge(PredBB, BB, SuccBB);
2373
2374 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2375 BB->getName()+".thread",
2376 BB->getParent(), BB);
2377 NewBB->moveAfter(PredBB);
2378
2379 // Set the block frequency of NewBB.
2380 if (HasProfileData) {
2381 auto NewBBFreq =
2382 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2383 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2384 }
2385
2386 // Copy all the instructions from BB to NewBB except the terminator.
2387 DenseMap<Instruction *, Value *> ValueMapping =
2388 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2389
2390 // We didn't copy the terminator from BB over to NewBB, because there is now
2391 // an unconditional jump to SuccBB. Insert the unconditional jump.
2392 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2393 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2394
2395 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2396 // PHI nodes for NewBB now.
2397 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2398
2399 // Update the terminator of PredBB to jump to NewBB instead of BB. This
2400 // eliminates predecessors from BB, which requires us to simplify any PHI
2401 // nodes in BB.
2402 Instruction *PredTerm = PredBB->getTerminator();
2403 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2404 if (PredTerm->getSuccessor(i) == BB) {
2405 BB->removePredecessor(PredBB, true);
2406 PredTerm->setSuccessor(i, NewBB);
2407 }
2408
2409 // Enqueue required DT updates.
2410 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2411 {DominatorTree::Insert, PredBB, NewBB},
2412 {DominatorTree::Delete, PredBB, BB}});
2413
2414 updateSSA(BB, NewBB, ValueMapping);
2415
2416 // At this point, the IR is fully up to date and consistent. Do a quick scan
2417 // over the new instructions and zap any that are constants or dead. This
2418 // frequently happens because of phi translation.
2419 SimplifyInstructionsInBlock(NewBB, TLI);
2420
2421 // Update the edge weight from BB to SuccBB, which should be less than before.
2422 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2423
2424 // Threaded an edge!
2425 ++NumThreads;
2426 }
2427
2428 /// Create a new basic block that will be the predecessor of BB and successor of
2429 /// all blocks in Preds. When profile data is available, update the frequency of
2430 /// this new block.
splitBlockPreds(BasicBlock * BB,ArrayRef<BasicBlock * > Preds,const char * Suffix)2431 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2432 ArrayRef<BasicBlock *> Preds,
2433 const char *Suffix) {
2434 SmallVector<BasicBlock *, 2> NewBBs;
2435
2436 // Collect the frequencies of all predecessors of BB, which will be used to
2437 // update the edge weight of the result of splitting predecessors.
2438 DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2439 if (HasProfileData)
2440 for (auto Pred : Preds)
2441 FreqMap.insert(std::make_pair(
2442 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2443
2444 // In the case when BB is a LandingPad block we create 2 new predecessors
2445 // instead of just one.
2446 if (BB->isLandingPad()) {
2447 std::string NewName = std::string(Suffix) + ".split-lp";
2448 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2449 } else {
2450 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2451 }
2452
2453 std::vector<DominatorTree::UpdateType> Updates;
2454 Updates.reserve((2 * Preds.size()) + NewBBs.size());
2455 for (auto NewBB : NewBBs) {
2456 BlockFrequency NewBBFreq(0);
2457 Updates.push_back({DominatorTree::Insert, NewBB, BB});
2458 for (auto Pred : predecessors(NewBB)) {
2459 Updates.push_back({DominatorTree::Delete, Pred, BB});
2460 Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2461 if (HasProfileData) // Update frequencies between Pred -> NewBB.
2462 NewBBFreq += FreqMap.lookup(Pred);
2463 }
2464 if (HasProfileData) // Apply the summed frequency to NewBB.
2465 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2466 }
2467
2468 DTU->applyUpdatesPermissive(Updates);
2469 return NewBBs[0];
2470 }
2471
doesBlockHaveProfileData(BasicBlock * BB)2472 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2473 const Instruction *TI = BB->getTerminator();
2474 assert(TI->getNumSuccessors() > 1 && "not a split");
2475
2476 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2477 if (!WeightsNode)
2478 return false;
2479
2480 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2481 if (MDName->getString() != "branch_weights")
2482 return false;
2483
2484 // Ensure there are weights for all of the successors. Note that the first
2485 // operand to the metadata node is a name, not a weight.
2486 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2487 }
2488
2489 /// Update the block frequency of BB and branch weight and the metadata on the
2490 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2491 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
updateBlockFreqAndEdgeWeight(BasicBlock * PredBB,BasicBlock * BB,BasicBlock * NewBB,BasicBlock * SuccBB)2492 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2493 BasicBlock *BB,
2494 BasicBlock *NewBB,
2495 BasicBlock *SuccBB) {
2496 if (!HasProfileData)
2497 return;
2498
2499 assert(BFI && BPI && "BFI & BPI should have been created here");
2500
2501 // As the edge from PredBB to BB is deleted, we have to update the block
2502 // frequency of BB.
2503 auto BBOrigFreq = BFI->getBlockFreq(BB);
2504 auto NewBBFreq = BFI->getBlockFreq(NewBB);
2505 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2506 auto BBNewFreq = BBOrigFreq - NewBBFreq;
2507 BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2508
2509 // Collect updated outgoing edges' frequencies from BB and use them to update
2510 // edge probabilities.
2511 SmallVector<uint64_t, 4> BBSuccFreq;
2512 for (BasicBlock *Succ : successors(BB)) {
2513 auto SuccFreq = (Succ == SuccBB)
2514 ? BB2SuccBBFreq - NewBBFreq
2515 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2516 BBSuccFreq.push_back(SuccFreq.getFrequency());
2517 }
2518
2519 uint64_t MaxBBSuccFreq =
2520 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2521
2522 SmallVector<BranchProbability, 4> BBSuccProbs;
2523 if (MaxBBSuccFreq == 0)
2524 BBSuccProbs.assign(BBSuccFreq.size(),
2525 {1, static_cast<unsigned>(BBSuccFreq.size())});
2526 else {
2527 for (uint64_t Freq : BBSuccFreq)
2528 BBSuccProbs.push_back(
2529 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2530 // Normalize edge probabilities so that they sum up to one.
2531 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2532 BBSuccProbs.end());
2533 }
2534
2535 // Update edge probabilities in BPI.
2536 BPI->setEdgeProbability(BB, BBSuccProbs);
2537
2538 // Update the profile metadata as well.
2539 //
2540 // Don't do this if the profile of the transformed blocks was statically
2541 // estimated. (This could occur despite the function having an entry
2542 // frequency in completely cold parts of the CFG.)
2543 //
2544 // In this case we don't want to suggest to subsequent passes that the
2545 // calculated weights are fully consistent. Consider this graph:
2546 //
2547 // check_1
2548 // 50% / |
2549 // eq_1 | 50%
2550 // \ |
2551 // check_2
2552 // 50% / |
2553 // eq_2 | 50%
2554 // \ |
2555 // check_3
2556 // 50% / |
2557 // eq_3 | 50%
2558 // \ |
2559 //
2560 // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2561 // the overall probabilities are inconsistent; the total probability that the
2562 // value is either 1, 2 or 3 is 150%.
2563 //
2564 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2565 // becomes 0%. This is even worse if the edge whose probability becomes 0% is
2566 // the loop exit edge. Then based solely on static estimation we would assume
2567 // the loop was extremely hot.
2568 //
2569 // FIXME this locally as well so that BPI and BFI are consistent as well. We
2570 // shouldn't make edges extremely likely or unlikely based solely on static
2571 // estimation.
2572 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2573 SmallVector<uint32_t, 4> Weights;
2574 for (auto Prob : BBSuccProbs)
2575 Weights.push_back(Prob.getNumerator());
2576
2577 auto TI = BB->getTerminator();
2578 TI->setMetadata(
2579 LLVMContext::MD_prof,
2580 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2581 }
2582 }
2583
2584 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2585 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2586 /// If we can duplicate the contents of BB up into PredBB do so now, this
2587 /// improves the odds that the branch will be on an analyzable instruction like
2588 /// a compare.
duplicateCondBranchOnPHIIntoPred(BasicBlock * BB,const SmallVectorImpl<BasicBlock * > & PredBBs)2589 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2590 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2591 assert(!PredBBs.empty() && "Can't handle an empty set");
2592
2593 // If BB is a loop header, then duplicating this block outside the loop would
2594 // cause us to transform this into an irreducible loop, don't do this.
2595 // See the comments above findLoopHeaders for justifications and caveats.
2596 if (LoopHeaders.count(BB)) {
2597 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName()
2598 << "' into predecessor block '" << PredBBs[0]->getName()
2599 << "' - it might create an irreducible loop!\n");
2600 return false;
2601 }
2602
2603 unsigned DuplicationCost = getJumpThreadDuplicationCost(
2604 TTI, BB, BB->getTerminator(), BBDupThreshold);
2605 if (DuplicationCost > BBDupThreshold) {
2606 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName()
2607 << "' - Cost is too high: " << DuplicationCost << "\n");
2608 return false;
2609 }
2610
2611 // And finally, do it! Start by factoring the predecessors if needed.
2612 std::vector<DominatorTree::UpdateType> Updates;
2613 BasicBlock *PredBB;
2614 if (PredBBs.size() == 1)
2615 PredBB = PredBBs[0];
2616 else {
2617 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size()
2618 << " common predecessors.\n");
2619 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2620 }
2621 Updates.push_back({DominatorTree::Delete, PredBB, BB});
2622
2623 // Okay, we decided to do this! Clone all the instructions in BB onto the end
2624 // of PredBB.
2625 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName()
2626 << "' into end of '" << PredBB->getName()
2627 << "' to eliminate branch on phi. Cost: "
2628 << DuplicationCost << " block is:" << *BB << "\n");
2629
2630 // Unless PredBB ends with an unconditional branch, split the edge so that we
2631 // can just clone the bits from BB into the end of the new PredBB.
2632 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2633
2634 if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2635 BasicBlock *OldPredBB = PredBB;
2636 PredBB = SplitEdge(OldPredBB, BB);
2637 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2638 Updates.push_back({DominatorTree::Insert, PredBB, BB});
2639 Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2640 OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2641 }
2642
2643 // We are going to have to map operands from the original BB block into the
2644 // PredBB block. Evaluate PHI nodes in BB.
2645 DenseMap<Instruction*, Value*> ValueMapping;
2646
2647 BasicBlock::iterator BI = BB->begin();
2648 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2649 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2650 // Clone the non-phi instructions of BB into PredBB, keeping track of the
2651 // mapping and using it to remap operands in the cloned instructions.
2652 for (; BI != BB->end(); ++BI) {
2653 Instruction *New = BI->clone();
2654
2655 // Remap operands to patch up intra-block references.
2656 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2657 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2658 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2659 if (I != ValueMapping.end())
2660 New->setOperand(i, I->second);
2661 }
2662
2663 // If this instruction can be simplified after the operands are updated,
2664 // just use the simplified value instead. This frequently happens due to
2665 // phi translation.
2666 if (Value *IV = simplifyInstruction(
2667 New,
2668 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2669 ValueMapping[&*BI] = IV;
2670 if (!New->mayHaveSideEffects()) {
2671 New->deleteValue();
2672 New = nullptr;
2673 }
2674 } else {
2675 ValueMapping[&*BI] = New;
2676 }
2677 if (New) {
2678 // Otherwise, insert the new instruction into the block.
2679 New->setName(BI->getName());
2680 PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2681 // Update Dominance from simplified New instruction operands.
2682 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2683 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2684 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2685 }
2686 }
2687
2688 // Check to see if the targets of the branch had PHI nodes. If so, we need to
2689 // add entries to the PHI nodes for branch from PredBB now.
2690 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2691 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2692 ValueMapping);
2693 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2694 ValueMapping);
2695
2696 updateSSA(BB, PredBB, ValueMapping);
2697
2698 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2699 // that we nuked.
2700 BB->removePredecessor(PredBB, true);
2701
2702 // Remove the unconditional branch at the end of the PredBB block.
2703 OldPredBranch->eraseFromParent();
2704 if (HasProfileData)
2705 BPI->copyEdgeProbabilities(BB, PredBB);
2706 DTU->applyUpdatesPermissive(Updates);
2707
2708 ++NumDupes;
2709 return true;
2710 }
2711
2712 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2713 // a Select instruction in Pred. BB has other predecessors and SI is used in
2714 // a PHI node in BB. SI has no other use.
2715 // A new basic block, NewBB, is created and SI is converted to compare and
2716 // conditional branch. SI is erased from parent.
unfoldSelectInstr(BasicBlock * Pred,BasicBlock * BB,SelectInst * SI,PHINode * SIUse,unsigned Idx)2717 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2718 SelectInst *SI, PHINode *SIUse,
2719 unsigned Idx) {
2720 // Expand the select.
2721 //
2722 // Pred --
2723 // | v
2724 // | NewBB
2725 // | |
2726 // |-----
2727 // v
2728 // BB
2729 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2730 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2731 BB->getParent(), BB);
2732 // Move the unconditional branch to NewBB.
2733 PredTerm->removeFromParent();
2734 NewBB->getInstList().insert(NewBB->end(), PredTerm);
2735 // Create a conditional branch and update PHI nodes.
2736 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2737 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2738 SIUse->setIncomingValue(Idx, SI->getFalseValue());
2739 SIUse->addIncoming(SI->getTrueValue(), NewBB);
2740
2741 // The select is now dead.
2742 SI->eraseFromParent();
2743 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2744 {DominatorTree::Insert, Pred, NewBB}});
2745
2746 // Update any other PHI nodes in BB.
2747 for (BasicBlock::iterator BI = BB->begin();
2748 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2749 if (Phi != SIUse)
2750 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2751 }
2752
tryToUnfoldSelect(SwitchInst * SI,BasicBlock * BB)2753 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2754 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2755
2756 if (!CondPHI || CondPHI->getParent() != BB)
2757 return false;
2758
2759 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2760 BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2761 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2762
2763 // The second and third condition can be potentially relaxed. Currently
2764 // the conditions help to simplify the code and allow us to reuse existing
2765 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2766 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2767 continue;
2768
2769 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2770 if (!PredTerm || !PredTerm->isUnconditional())
2771 continue;
2772
2773 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2774 return true;
2775 }
2776 return false;
2777 }
2778
2779 /// tryToUnfoldSelect - Look for blocks of the form
2780 /// bb1:
2781 /// %a = select
2782 /// br bb2
2783 ///
2784 /// bb2:
2785 /// %p = phi [%a, %bb1] ...
2786 /// %c = icmp %p
2787 /// br i1 %c
2788 ///
2789 /// And expand the select into a branch structure if one of its arms allows %c
2790 /// to be folded. This later enables threading from bb1 over bb2.
tryToUnfoldSelect(CmpInst * CondCmp,BasicBlock * BB)2791 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2792 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2793 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2794 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2795
2796 if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2797 CondLHS->getParent() != BB)
2798 return false;
2799
2800 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2801 BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2802 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2803
2804 // Look if one of the incoming values is a select in the corresponding
2805 // predecessor.
2806 if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2807 continue;
2808
2809 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2810 if (!PredTerm || !PredTerm->isUnconditional())
2811 continue;
2812
2813 // Now check if one of the select values would allow us to constant fold the
2814 // terminator in BB. We don't do the transform if both sides fold, those
2815 // cases will be threaded in any case.
2816 LazyValueInfo::Tristate LHSFolds =
2817 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2818 CondRHS, Pred, BB, CondCmp);
2819 LazyValueInfo::Tristate RHSFolds =
2820 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2821 CondRHS, Pred, BB, CondCmp);
2822 if ((LHSFolds != LazyValueInfo::Unknown ||
2823 RHSFolds != LazyValueInfo::Unknown) &&
2824 LHSFolds != RHSFolds) {
2825 unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2826 return true;
2827 }
2828 }
2829 return false;
2830 }
2831
2832 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2833 /// same BB in the form
2834 /// bb:
2835 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2836 /// %s = select %p, trueval, falseval
2837 ///
2838 /// or
2839 ///
2840 /// bb:
2841 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2842 /// %c = cmp %p, 0
2843 /// %s = select %c, trueval, falseval
2844 ///
2845 /// And expand the select into a branch structure. This later enables
2846 /// jump-threading over bb in this pass.
2847 ///
2848 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2849 /// select if the associated PHI has at least one constant. If the unfolded
2850 /// select is not jump-threaded, it will be folded again in the later
2851 /// optimizations.
tryToUnfoldSelectInCurrBB(BasicBlock * BB)2852 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2853 // This transform would reduce the quality of msan diagnostics.
2854 // Disable this transform under MemorySanitizer.
2855 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2856 return false;
2857
2858 // If threading this would thread across a loop header, don't thread the edge.
2859 // See the comments above findLoopHeaders for justifications and caveats.
2860 if (LoopHeaders.count(BB))
2861 return false;
2862
2863 for (BasicBlock::iterator BI = BB->begin();
2864 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2865 // Look for a Phi having at least one constant incoming value.
2866 if (llvm::all_of(PN->incoming_values(),
2867 [](Value *V) { return !isa<ConstantInt>(V); }))
2868 continue;
2869
2870 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2871 using namespace PatternMatch;
2872
2873 // Check if SI is in BB and use V as condition.
2874 if (SI->getParent() != BB)
2875 return false;
2876 Value *Cond = SI->getCondition();
2877 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2878 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2879 };
2880
2881 SelectInst *SI = nullptr;
2882 for (Use &U : PN->uses()) {
2883 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2884 // Look for a ICmp in BB that compares PN with a constant and is the
2885 // condition of a Select.
2886 if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2887 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2888 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2889 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2890 SI = SelectI;
2891 break;
2892 }
2893 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2894 // Look for a Select in BB that uses PN as condition.
2895 if (isUnfoldCandidate(SelectI, U.get())) {
2896 SI = SelectI;
2897 break;
2898 }
2899 }
2900 }
2901
2902 if (!SI)
2903 continue;
2904 // Expand the select.
2905 Value *Cond = SI->getCondition();
2906 if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2907 Cond = new FreezeInst(Cond, "cond.fr", SI);
2908 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2909 BasicBlock *SplitBB = SI->getParent();
2910 BasicBlock *NewBB = Term->getParent();
2911 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2912 NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2913 NewPN->addIncoming(SI->getFalseValue(), BB);
2914 SI->replaceAllUsesWith(NewPN);
2915 SI->eraseFromParent();
2916 // NewBB and SplitBB are newly created blocks which require insertion.
2917 std::vector<DominatorTree::UpdateType> Updates;
2918 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2919 Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2920 Updates.push_back({DominatorTree::Insert, BB, NewBB});
2921 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2922 // BB's successors were moved to SplitBB, update DTU accordingly.
2923 for (auto *Succ : successors(SplitBB)) {
2924 Updates.push_back({DominatorTree::Delete, BB, Succ});
2925 Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2926 }
2927 DTU->applyUpdatesPermissive(Updates);
2928 return true;
2929 }
2930 return false;
2931 }
2932
2933 /// Try to propagate a guard from the current BB into one of its predecessors
2934 /// in case if another branch of execution implies that the condition of this
2935 /// guard is always true. Currently we only process the simplest case that
2936 /// looks like:
2937 ///
2938 /// Start:
2939 /// %cond = ...
2940 /// br i1 %cond, label %T1, label %F1
2941 /// T1:
2942 /// br label %Merge
2943 /// F1:
2944 /// br label %Merge
2945 /// Merge:
2946 /// %condGuard = ...
2947 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2948 ///
2949 /// And cond either implies condGuard or !condGuard. In this case all the
2950 /// instructions before the guard can be duplicated in both branches, and the
2951 /// guard is then threaded to one of them.
processGuards(BasicBlock * BB)2952 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2953 using namespace PatternMatch;
2954
2955 // We only want to deal with two predecessors.
2956 BasicBlock *Pred1, *Pred2;
2957 auto PI = pred_begin(BB), PE = pred_end(BB);
2958 if (PI == PE)
2959 return false;
2960 Pred1 = *PI++;
2961 if (PI == PE)
2962 return false;
2963 Pred2 = *PI++;
2964 if (PI != PE)
2965 return false;
2966 if (Pred1 == Pred2)
2967 return false;
2968
2969 // Try to thread one of the guards of the block.
2970 // TODO: Look up deeper than to immediate predecessor?
2971 auto *Parent = Pred1->getSinglePredecessor();
2972 if (!Parent || Parent != Pred2->getSinglePredecessor())
2973 return false;
2974
2975 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2976 for (auto &I : *BB)
2977 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2978 return true;
2979
2980 return false;
2981 }
2982
2983 /// Try to propagate the guard from BB which is the lower block of a diamond
2984 /// to one of its branches, in case if diamond's condition implies guard's
2985 /// condition.
threadGuard(BasicBlock * BB,IntrinsicInst * Guard,BranchInst * BI)2986 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2987 BranchInst *BI) {
2988 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2989 assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2990 Value *GuardCond = Guard->getArgOperand(0);
2991 Value *BranchCond = BI->getCondition();
2992 BasicBlock *TrueDest = BI->getSuccessor(0);
2993 BasicBlock *FalseDest = BI->getSuccessor(1);
2994
2995 auto &DL = BB->getModule()->getDataLayout();
2996 bool TrueDestIsSafe = false;
2997 bool FalseDestIsSafe = false;
2998
2999 // True dest is safe if BranchCond => GuardCond.
3000 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3001 if (Impl && *Impl)
3002 TrueDestIsSafe = true;
3003 else {
3004 // False dest is safe if !BranchCond => GuardCond.
3005 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3006 if (Impl && *Impl)
3007 FalseDestIsSafe = true;
3008 }
3009
3010 if (!TrueDestIsSafe && !FalseDestIsSafe)
3011 return false;
3012
3013 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3014 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3015
3016 ValueToValueMapTy UnguardedMapping, GuardedMapping;
3017 Instruction *AfterGuard = Guard->getNextNode();
3018 unsigned Cost =
3019 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3020 if (Cost > BBDupThreshold)
3021 return false;
3022 // Duplicate all instructions before the guard and the guard itself to the
3023 // branch where implication is not proved.
3024 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3025 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3026 assert(GuardedBlock && "Could not create the guarded block?");
3027 // Duplicate all instructions before the guard in the unguarded branch.
3028 // Since we have successfully duplicated the guarded block and this block
3029 // has fewer instructions, we expect it to succeed.
3030 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3031 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3032 assert(UnguardedBlock && "Could not create the unguarded block?");
3033 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3034 << GuardedBlock->getName() << "\n");
3035 // Some instructions before the guard may still have uses. For them, we need
3036 // to create Phi nodes merging their copies in both guarded and unguarded
3037 // branches. Those instructions that have no uses can be just removed.
3038 SmallVector<Instruction *, 4> ToRemove;
3039 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3040 if (!isa<PHINode>(&*BI))
3041 ToRemove.push_back(&*BI);
3042
3043 Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3044 assert(InsertionPoint && "Empty block?");
3045 // Substitute with Phis & remove.
3046 for (auto *Inst : reverse(ToRemove)) {
3047 if (!Inst->use_empty()) {
3048 PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3049 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3050 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3051 NewPN->insertBefore(InsertionPoint);
3052 Inst->replaceAllUsesWith(NewPN);
3053 }
3054 Inst->eraseFromParent();
3055 }
3056 return true;
3057 }
3058