1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Pass.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 #include "llvm/Transforms/Utils/SSAUpdater.h"
40 #include <algorithm>
41 #include <memory>
42 using namespace llvm;
43 using namespace jumpthreading;
44 
45 #define DEBUG_TYPE "jump-threading"
46 
47 STATISTIC(NumThreads, "Number of jumps threaded");
48 STATISTIC(NumFolds,   "Number of terminators folded");
49 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
50 
51 static cl::opt<unsigned>
52 BBDuplicateThreshold("jump-threading-threshold",
53           cl::desc("Max block size to duplicate for jump threading"),
54           cl::init(6), cl::Hidden);
55 
56 static cl::opt<unsigned>
57 ImplicationSearchThreshold(
58   "jump-threading-implication-search-threshold",
59   cl::desc("The number of predecessors to search for a stronger "
60            "condition to use to thread over a weaker condition"),
61   cl::init(3), cl::Hidden);
62 
63 namespace {
64   /// This pass performs 'jump threading', which looks at blocks that have
65   /// multiple predecessors and multiple successors.  If one or more of the
66   /// predecessors of the block can be proven to always jump to one of the
67   /// successors, we forward the edge from the predecessor to the successor by
68   /// duplicating the contents of this block.
69   ///
70   /// An example of when this can occur is code like this:
71   ///
72   ///   if () { ...
73   ///     X = 4;
74   ///   }
75   ///   if (X < 3) {
76   ///
77   /// In this case, the unconditional branch at the end of the first if can be
78   /// revectored to the false side of the second if.
79   ///
80   class JumpThreading : public FunctionPass {
81     JumpThreadingPass Impl;
82 
83   public:
84     static char ID; // Pass identification
85     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
86       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
87     }
88 
89     bool runOnFunction(Function &F) override;
90 
91     void getAnalysisUsage(AnalysisUsage &AU) const override {
92       AU.addRequired<LazyValueInfoWrapperPass>();
93       AU.addPreserved<LazyValueInfoWrapperPass>();
94       AU.addPreserved<GlobalsAAWrapperPass>();
95       AU.addRequired<TargetLibraryInfoWrapperPass>();
96     }
97 
98     void releaseMemory() override { Impl.releaseMemory(); }
99   };
100 }
101 
102 char JumpThreading::ID = 0;
103 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
104                 "Jump Threading", false, false)
105 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
106 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
107 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
108                 "Jump Threading", false, false)
109 
110 // Public interface to the Jump Threading pass
111 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
112 
113 JumpThreadingPass::JumpThreadingPass(int T) {
114   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
115 }
116 
117 /// runOnFunction - Top level algorithm.
118 ///
119 bool JumpThreading::runOnFunction(Function &F) {
120   if (skipFunction(F))
121     return false;
122   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
123   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
124   std::unique_ptr<BlockFrequencyInfo> BFI;
125   std::unique_ptr<BranchProbabilityInfo> BPI;
126   bool HasProfileData = F.getEntryCount().hasValue();
127   if (HasProfileData) {
128     LoopInfo LI{DominatorTree(F)};
129     BPI.reset(new BranchProbabilityInfo(F, LI));
130     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
131   }
132   return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI),
133                       std::move(BPI));
134 }
135 
136 PreservedAnalyses JumpThreadingPass::run(Function &F,
137                                          FunctionAnalysisManager &AM) {
138 
139   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
140   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
141   std::unique_ptr<BlockFrequencyInfo> BFI;
142   std::unique_ptr<BranchProbabilityInfo> BPI;
143   bool HasProfileData = F.getEntryCount().hasValue();
144   if (HasProfileData) {
145     LoopInfo LI{DominatorTree(F)};
146     BPI.reset(new BranchProbabilityInfo(F, LI));
147     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
148   }
149   bool Changed =
150       runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI));
151 
152   if (!Changed)
153     return PreservedAnalyses::all();
154   PreservedAnalyses PA;
155   PA.preserve<GlobalsAA>();
156   return PA;
157 }
158 
159 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
160                                 LazyValueInfo *LVI_, bool HasProfileData_,
161                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
162                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
163 
164   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
165   TLI = TLI_;
166   LVI = LVI_;
167   BFI.reset();
168   BPI.reset();
169   // When profile data is available, we need to update edge weights after
170   // successful jump threading, which requires both BPI and BFI being available.
171   HasProfileData = HasProfileData_;
172   if (HasProfileData) {
173     BPI = std::move(BPI_);
174     BFI = std::move(BFI_);
175   }
176 
177   // Remove unreachable blocks from function as they may result in infinite
178   // loop. We do threading if we found something profitable. Jump threading a
179   // branch can create other opportunities. If these opportunities form a cycle
180   // i.e. if any jump threading is undoing previous threading in the path, then
181   // we will loop forever. We take care of this issue by not jump threading for
182   // back edges. This works for normal cases but not for unreachable blocks as
183   // they may have cycle with no back edge.
184   bool EverChanged = false;
185   EverChanged |= removeUnreachableBlocks(F, LVI);
186 
187   FindLoopHeaders(F);
188 
189   bool Changed;
190   do {
191     Changed = false;
192     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
193       BasicBlock *BB = &*I;
194       // Thread all of the branches we can over this block.
195       while (ProcessBlock(BB))
196         Changed = true;
197 
198       ++I;
199 
200       // If the block is trivially dead, zap it.  This eliminates the successor
201       // edges which simplifies the CFG.
202       if (pred_empty(BB) &&
203           BB != &BB->getParent()->getEntryBlock()) {
204         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
205               << "' with terminator: " << *BB->getTerminator() << '\n');
206         LoopHeaders.erase(BB);
207         LVI->eraseBlock(BB);
208         DeleteDeadBlock(BB);
209         Changed = true;
210         continue;
211       }
212 
213       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
214 
215       // Can't thread an unconditional jump, but if the block is "almost
216       // empty", we can replace uses of it with uses of the successor and make
217       // this dead.
218       // We should not eliminate the loop header either, because eliminating
219       // a loop header might later prevent LoopSimplify from transforming nested
220       // loops into simplified form.
221       if (BI && BI->isUnconditional() &&
222           BB != &BB->getParent()->getEntryBlock() &&
223           // If the terminator is the only non-phi instruction, try to nuke it.
224           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
225         // FIXME: It is always conservatively correct to drop the info
226         // for a block even if it doesn't get erased.  This isn't totally
227         // awesome, but it allows us to use AssertingVH to prevent nasty
228         // dangling pointer issues within LazyValueInfo.
229         LVI->eraseBlock(BB);
230         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
231           Changed = true;
232       }
233     }
234     EverChanged |= Changed;
235   } while (Changed);
236 
237   LoopHeaders.clear();
238   return EverChanged;
239 }
240 
241 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
242 /// thread across it. Stop scanning the block when passing the threshold.
243 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB,
244                                              unsigned Threshold) {
245   /// Ignore PHI nodes, these will be flattened when duplication happens.
246   BasicBlock::const_iterator I(BB->getFirstNonPHI());
247 
248   // FIXME: THREADING will delete values that are just used to compute the
249   // branch, so they shouldn't count against the duplication cost.
250 
251   unsigned Bonus = 0;
252   const TerminatorInst *BBTerm = BB->getTerminator();
253   // Threading through a switch statement is particularly profitable.  If this
254   // block ends in a switch, decrease its cost to make it more likely to happen.
255   if (isa<SwitchInst>(BBTerm))
256     Bonus = 6;
257 
258   // The same holds for indirect branches, but slightly more so.
259   if (isa<IndirectBrInst>(BBTerm))
260     Bonus = 8;
261 
262   // Bump the threshold up so the early exit from the loop doesn't skip the
263   // terminator-based Size adjustment at the end.
264   Threshold += Bonus;
265 
266   // Sum up the cost of each instruction until we get to the terminator.  Don't
267   // include the terminator because the copy won't include it.
268   unsigned Size = 0;
269   for (; !isa<TerminatorInst>(I); ++I) {
270 
271     // Stop scanning the block if we've reached the threshold.
272     if (Size > Threshold)
273       return Size;
274 
275     // Debugger intrinsics don't incur code size.
276     if (isa<DbgInfoIntrinsic>(I)) continue;
277 
278     // If this is a pointer->pointer bitcast, it is free.
279     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
280       continue;
281 
282     // Bail out if this instruction gives back a token type, it is not possible
283     // to duplicate it if it is used outside this BB.
284     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
285       return ~0U;
286 
287     // All other instructions count for at least one unit.
288     ++Size;
289 
290     // Calls are more expensive.  If they are non-intrinsic calls, we model them
291     // as having cost of 4.  If they are a non-vector intrinsic, we model them
292     // as having cost of 2 total, and if they are a vector intrinsic, we model
293     // them as having cost 1.
294     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
295       if (CI->cannotDuplicate() || CI->isConvergent())
296         // Blocks with NoDuplicate are modelled as having infinite cost, so they
297         // are never duplicated.
298         return ~0U;
299       else if (!isa<IntrinsicInst>(CI))
300         Size += 3;
301       else if (!CI->getType()->isVectorTy())
302         Size += 1;
303     }
304   }
305 
306   return Size > Bonus ? Size - Bonus : 0;
307 }
308 
309 /// FindLoopHeaders - We do not want jump threading to turn proper loop
310 /// structures into irreducible loops.  Doing this breaks up the loop nesting
311 /// hierarchy and pessimizes later transformations.  To prevent this from
312 /// happening, we first have to find the loop headers.  Here we approximate this
313 /// by finding targets of backedges in the CFG.
314 ///
315 /// Note that there definitely are cases when we want to allow threading of
316 /// edges across a loop header.  For example, threading a jump from outside the
317 /// loop (the preheader) to an exit block of the loop is definitely profitable.
318 /// It is also almost always profitable to thread backedges from within the loop
319 /// to exit blocks, and is often profitable to thread backedges to other blocks
320 /// within the loop (forming a nested loop).  This simple analysis is not rich
321 /// enough to track all of these properties and keep it up-to-date as the CFG
322 /// mutates, so we don't allow any of these transformations.
323 ///
324 void JumpThreadingPass::FindLoopHeaders(Function &F) {
325   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
326   FindFunctionBackedges(F, Edges);
327 
328   for (const auto &Edge : Edges)
329     LoopHeaders.insert(Edge.second);
330 }
331 
332 /// getKnownConstant - Helper method to determine if we can thread over a
333 /// terminator with the given value as its condition, and if so what value to
334 /// use for that. What kind of value this is depends on whether we want an
335 /// integer or a block address, but an undef is always accepted.
336 /// Returns null if Val is null or not an appropriate constant.
337 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
338   if (!Val)
339     return nullptr;
340 
341   // Undef is "known" enough.
342   if (UndefValue *U = dyn_cast<UndefValue>(Val))
343     return U;
344 
345   if (Preference == WantBlockAddress)
346     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
347 
348   return dyn_cast<ConstantInt>(Val);
349 }
350 
351 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
352 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
353 /// in any of our predecessors.  If so, return the known list of value and pred
354 /// BB in the result vector.
355 ///
356 /// This returns true if there were any known values.
357 ///
358 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
359     Value *V, BasicBlock *BB, PredValueInfo &Result,
360     ConstantPreference Preference, Instruction *CxtI) {
361   // This method walks up use-def chains recursively.  Because of this, we could
362   // get into an infinite loop going around loops in the use-def chain.  To
363   // prevent this, keep track of what (value, block) pairs we've already visited
364   // and terminate the search if we loop back to them
365   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
366     return false;
367 
368   // An RAII help to remove this pair from the recursion set once the recursion
369   // stack pops back out again.
370   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
371 
372   // If V is a constant, then it is known in all predecessors.
373   if (Constant *KC = getKnownConstant(V, Preference)) {
374     for (BasicBlock *Pred : predecessors(BB))
375       Result.push_back(std::make_pair(KC, Pred));
376 
377     return !Result.empty();
378   }
379 
380   // If V is a non-instruction value, or an instruction in a different block,
381   // then it can't be derived from a PHI.
382   Instruction *I = dyn_cast<Instruction>(V);
383   if (!I || I->getParent() != BB) {
384 
385     // Okay, if this is a live-in value, see if it has a known value at the end
386     // of any of our predecessors.
387     //
388     // FIXME: This should be an edge property, not a block end property.
389     /// TODO: Per PR2563, we could infer value range information about a
390     /// predecessor based on its terminator.
391     //
392     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
393     // "I" is a non-local compare-with-a-constant instruction.  This would be
394     // able to handle value inequalities better, for example if the compare is
395     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
396     // Perhaps getConstantOnEdge should be smart enough to do this?
397 
398     for (BasicBlock *P : predecessors(BB)) {
399       // If the value is known by LazyValueInfo to be a constant in a
400       // predecessor, use that information to try to thread this block.
401       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
402       if (Constant *KC = getKnownConstant(PredCst, Preference))
403         Result.push_back(std::make_pair(KC, P));
404     }
405 
406     return !Result.empty();
407   }
408 
409   /// If I is a PHI node, then we know the incoming values for any constants.
410   if (PHINode *PN = dyn_cast<PHINode>(I)) {
411     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
412       Value *InVal = PN->getIncomingValue(i);
413       if (Constant *KC = getKnownConstant(InVal, Preference)) {
414         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
415       } else {
416         Constant *CI = LVI->getConstantOnEdge(InVal,
417                                               PN->getIncomingBlock(i),
418                                               BB, CxtI);
419         if (Constant *KC = getKnownConstant(CI, Preference))
420           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
421       }
422     }
423 
424     return !Result.empty();
425   }
426 
427   // Handle Cast instructions.  Only see through Cast when the source operand is
428   // PHI or Cmp and the source type is i1 to save the compilation time.
429   if (CastInst *CI = dyn_cast<CastInst>(I)) {
430     Value *Source = CI->getOperand(0);
431     if (!Source->getType()->isIntegerTy(1))
432       return false;
433     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
434       return false;
435     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
436     if (Result.empty())
437       return false;
438 
439     // Convert the known values.
440     for (auto &R : Result)
441       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
442 
443     return true;
444   }
445 
446   PredValueInfoTy LHSVals, RHSVals;
447 
448   // Handle some boolean conditions.
449   if (I->getType()->getPrimitiveSizeInBits() == 1) {
450     assert(Preference == WantInteger && "One-bit non-integer type?");
451     // X | true -> true
452     // X & false -> false
453     if (I->getOpcode() == Instruction::Or ||
454         I->getOpcode() == Instruction::And) {
455       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
456                                       WantInteger, CxtI);
457       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
458                                       WantInteger, CxtI);
459 
460       if (LHSVals.empty() && RHSVals.empty())
461         return false;
462 
463       ConstantInt *InterestingVal;
464       if (I->getOpcode() == Instruction::Or)
465         InterestingVal = ConstantInt::getTrue(I->getContext());
466       else
467         InterestingVal = ConstantInt::getFalse(I->getContext());
468 
469       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
470 
471       // Scan for the sentinel.  If we find an undef, force it to the
472       // interesting value: x|undef -> true and x&undef -> false.
473       for (const auto &LHSVal : LHSVals)
474         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
475           Result.emplace_back(InterestingVal, LHSVal.second);
476           LHSKnownBBs.insert(LHSVal.second);
477         }
478       for (const auto &RHSVal : RHSVals)
479         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
480           // If we already inferred a value for this block on the LHS, don't
481           // re-add it.
482           if (!LHSKnownBBs.count(RHSVal.second))
483             Result.emplace_back(InterestingVal, RHSVal.second);
484         }
485 
486       return !Result.empty();
487     }
488 
489     // Handle the NOT form of XOR.
490     if (I->getOpcode() == Instruction::Xor &&
491         isa<ConstantInt>(I->getOperand(1)) &&
492         cast<ConstantInt>(I->getOperand(1))->isOne()) {
493       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
494                                       WantInteger, CxtI);
495       if (Result.empty())
496         return false;
497 
498       // Invert the known values.
499       for (auto &R : Result)
500         R.first = ConstantExpr::getNot(R.first);
501 
502       return true;
503     }
504 
505   // Try to simplify some other binary operator values.
506   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
507     assert(Preference != WantBlockAddress
508             && "A binary operator creating a block address?");
509     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
510       PredValueInfoTy LHSVals;
511       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
512                                       WantInteger, CxtI);
513 
514       // Try to use constant folding to simplify the binary operator.
515       for (const auto &LHSVal : LHSVals) {
516         Constant *V = LHSVal.first;
517         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
518 
519         if (Constant *KC = getKnownConstant(Folded, WantInteger))
520           Result.push_back(std::make_pair(KC, LHSVal.second));
521       }
522     }
523 
524     return !Result.empty();
525   }
526 
527   // Handle compare with phi operand, where the PHI is defined in this block.
528   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
529     assert(Preference == WantInteger && "Compares only produce integers");
530     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
531     if (PN && PN->getParent() == BB) {
532       const DataLayout &DL = PN->getModule()->getDataLayout();
533       // We can do this simplification if any comparisons fold to true or false.
534       // See if any do.
535       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
536         BasicBlock *PredBB = PN->getIncomingBlock(i);
537         Value *LHS = PN->getIncomingValue(i);
538         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
539 
540         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
541         if (!Res) {
542           if (!isa<Constant>(RHS))
543             continue;
544 
545           LazyValueInfo::Tristate
546             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
547                                            cast<Constant>(RHS), PredBB, BB,
548                                            CxtI ? CxtI : Cmp);
549           if (ResT == LazyValueInfo::Unknown)
550             continue;
551           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
552         }
553 
554         if (Constant *KC = getKnownConstant(Res, WantInteger))
555           Result.push_back(std::make_pair(KC, PredBB));
556       }
557 
558       return !Result.empty();
559     }
560 
561     // If comparing a live-in value against a constant, see if we know the
562     // live-in value on any predecessors.
563     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
564       if (!isa<Instruction>(Cmp->getOperand(0)) ||
565           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
566         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
567 
568         for (BasicBlock *P : predecessors(BB)) {
569           // If the value is known by LazyValueInfo to be a constant in a
570           // predecessor, use that information to try to thread this block.
571           LazyValueInfo::Tristate Res =
572             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
573                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
574           if (Res == LazyValueInfo::Unknown)
575             continue;
576 
577           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
578           Result.push_back(std::make_pair(ResC, P));
579         }
580 
581         return !Result.empty();
582       }
583 
584       // Try to find a constant value for the LHS of a comparison,
585       // and evaluate it statically if we can.
586       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
587         PredValueInfoTy LHSVals;
588         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
589                                         WantInteger, CxtI);
590 
591         for (const auto &LHSVal : LHSVals) {
592           Constant *V = LHSVal.first;
593           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
594                                                       V, CmpConst);
595           if (Constant *KC = getKnownConstant(Folded, WantInteger))
596             Result.push_back(std::make_pair(KC, LHSVal.second));
597         }
598 
599         return !Result.empty();
600       }
601     }
602   }
603 
604   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
605     // Handle select instructions where at least one operand is a known constant
606     // and we can figure out the condition value for any predecessor block.
607     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
608     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
609     PredValueInfoTy Conds;
610     if ((TrueVal || FalseVal) &&
611         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
612                                         WantInteger, CxtI)) {
613       for (auto &C : Conds) {
614         Constant *Cond = C.first;
615 
616         // Figure out what value to use for the condition.
617         bool KnownCond;
618         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
619           // A known boolean.
620           KnownCond = CI->isOne();
621         } else {
622           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
623           // Either operand will do, so be sure to pick the one that's a known
624           // constant.
625           // FIXME: Do this more cleverly if both values are known constants?
626           KnownCond = (TrueVal != nullptr);
627         }
628 
629         // See if the select has a known constant value for this predecessor.
630         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
631           Result.push_back(std::make_pair(Val, C.second));
632       }
633 
634       return !Result.empty();
635     }
636   }
637 
638   // If all else fails, see if LVI can figure out a constant value for us.
639   Constant *CI = LVI->getConstant(V, BB, CxtI);
640   if (Constant *KC = getKnownConstant(CI, Preference)) {
641     for (BasicBlock *Pred : predecessors(BB))
642       Result.push_back(std::make_pair(KC, Pred));
643   }
644 
645   return !Result.empty();
646 }
647 
648 
649 
650 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
651 /// in an undefined jump, decide which block is best to revector to.
652 ///
653 /// Since we can pick an arbitrary destination, we pick the successor with the
654 /// fewest predecessors.  This should reduce the in-degree of the others.
655 ///
656 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
657   TerminatorInst *BBTerm = BB->getTerminator();
658   unsigned MinSucc = 0;
659   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
660   // Compute the successor with the minimum number of predecessors.
661   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
662   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
663     TestBB = BBTerm->getSuccessor(i);
664     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
665     if (NumPreds < MinNumPreds) {
666       MinSucc = i;
667       MinNumPreds = NumPreds;
668     }
669   }
670 
671   return MinSucc;
672 }
673 
674 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
675   if (!BB->hasAddressTaken()) return false;
676 
677   // If the block has its address taken, it may be a tree of dead constants
678   // hanging off of it.  These shouldn't keep the block alive.
679   BlockAddress *BA = BlockAddress::get(BB);
680   BA->removeDeadConstantUsers();
681   return !BA->use_empty();
682 }
683 
684 /// ProcessBlock - If there are any predecessors whose control can be threaded
685 /// through to a successor, transform them now.
686 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
687   // If the block is trivially dead, just return and let the caller nuke it.
688   // This simplifies other transformations.
689   if (pred_empty(BB) &&
690       BB != &BB->getParent()->getEntryBlock())
691     return false;
692 
693   // If this block has a single predecessor, and if that pred has a single
694   // successor, merge the blocks.  This encourages recursive jump threading
695   // because now the condition in this block can be threaded through
696   // predecessors of our predecessor block.
697   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
698     const TerminatorInst *TI = SinglePred->getTerminator();
699     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
700         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
701       // If SinglePred was a loop header, BB becomes one.
702       if (LoopHeaders.erase(SinglePred))
703         LoopHeaders.insert(BB);
704 
705       LVI->eraseBlock(SinglePred);
706       MergeBasicBlockIntoOnlyPred(BB);
707 
708       return true;
709     }
710   }
711 
712   if (TryToUnfoldSelectInCurrBB(BB))
713     return true;
714 
715   // What kind of constant we're looking for.
716   ConstantPreference Preference = WantInteger;
717 
718   // Look to see if the terminator is a conditional branch, switch or indirect
719   // branch, if not we can't thread it.
720   Value *Condition;
721   Instruction *Terminator = BB->getTerminator();
722   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
723     // Can't thread an unconditional jump.
724     if (BI->isUnconditional()) return false;
725     Condition = BI->getCondition();
726   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
727     Condition = SI->getCondition();
728   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
729     // Can't thread indirect branch with no successors.
730     if (IB->getNumSuccessors() == 0) return false;
731     Condition = IB->getAddress()->stripPointerCasts();
732     Preference = WantBlockAddress;
733   } else {
734     return false; // Must be an invoke.
735   }
736 
737   // Run constant folding to see if we can reduce the condition to a simple
738   // constant.
739   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
740     Value *SimpleVal =
741         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
742     if (SimpleVal) {
743       I->replaceAllUsesWith(SimpleVal);
744       if (isInstructionTriviallyDead(I, TLI))
745         I->eraseFromParent();
746       Condition = SimpleVal;
747     }
748   }
749 
750   // If the terminator is branching on an undef, we can pick any of the
751   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
752   if (isa<UndefValue>(Condition)) {
753     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
754 
755     // Fold the branch/switch.
756     TerminatorInst *BBTerm = BB->getTerminator();
757     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
758       if (i == BestSucc) continue;
759       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
760     }
761 
762     DEBUG(dbgs() << "  In block '" << BB->getName()
763           << "' folding undef terminator: " << *BBTerm << '\n');
764     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
765     BBTerm->eraseFromParent();
766     return true;
767   }
768 
769   // If the terminator of this block is branching on a constant, simplify the
770   // terminator to an unconditional branch.  This can occur due to threading in
771   // other blocks.
772   if (getKnownConstant(Condition, Preference)) {
773     DEBUG(dbgs() << "  In block '" << BB->getName()
774           << "' folding terminator: " << *BB->getTerminator() << '\n');
775     ++NumFolds;
776     ConstantFoldTerminator(BB, true);
777     return true;
778   }
779 
780   Instruction *CondInst = dyn_cast<Instruction>(Condition);
781 
782   // All the rest of our checks depend on the condition being an instruction.
783   if (!CondInst) {
784     // FIXME: Unify this with code below.
785     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
786       return true;
787     return false;
788   }
789 
790 
791   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
792     // If we're branching on a conditional, LVI might be able to determine
793     // it's value at the branch instruction.  We only handle comparisons
794     // against a constant at this time.
795     // TODO: This should be extended to handle switches as well.
796     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
797     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
798     if (CondBr && CondConst && CondBr->isConditional()) {
799       LazyValueInfo::Tristate Ret =
800         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
801                             CondConst, CondBr);
802       if (Ret != LazyValueInfo::Unknown) {
803         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
804         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
805         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
806         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
807         CondBr->eraseFromParent();
808         if (CondCmp->use_empty())
809           CondCmp->eraseFromParent();
810         else if (CondCmp->getParent() == BB) {
811           // If the fact we just learned is true for all uses of the
812           // condition, replace it with a constant value
813           auto *CI = Ret == LazyValueInfo::True ?
814             ConstantInt::getTrue(CondCmp->getType()) :
815             ConstantInt::getFalse(CondCmp->getType());
816           CondCmp->replaceAllUsesWith(CI);
817           CondCmp->eraseFromParent();
818         }
819         return true;
820       }
821     }
822 
823     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
824       return true;
825   }
826 
827   // Check for some cases that are worth simplifying.  Right now we want to look
828   // for loads that are used by a switch or by the condition for the branch.  If
829   // we see one, check to see if it's partially redundant.  If so, insert a PHI
830   // which can then be used to thread the values.
831   //
832   Value *SimplifyValue = CondInst;
833   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
834     if (isa<Constant>(CondCmp->getOperand(1)))
835       SimplifyValue = CondCmp->getOperand(0);
836 
837   // TODO: There are other places where load PRE would be profitable, such as
838   // more complex comparisons.
839   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
840     if (SimplifyPartiallyRedundantLoad(LI))
841       return true;
842 
843 
844   // Handle a variety of cases where we are branching on something derived from
845   // a PHI node in the current block.  If we can prove that any predecessors
846   // compute a predictable value based on a PHI node, thread those predecessors.
847   //
848   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
849     return true;
850 
851   // If this is an otherwise-unfoldable branch on a phi node in the current
852   // block, see if we can simplify.
853   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
854     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
855       return ProcessBranchOnPHI(PN);
856 
857 
858   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
859   if (CondInst->getOpcode() == Instruction::Xor &&
860       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
861     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
862 
863   // Search for a stronger dominating condition that can be used to simplify a
864   // conditional branch leaving BB.
865   if (ProcessImpliedCondition(BB))
866     return true;
867 
868   return false;
869 }
870 
871 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
872   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
873   if (!BI || !BI->isConditional())
874     return false;
875 
876   Value *Cond = BI->getCondition();
877   BasicBlock *CurrentBB = BB;
878   BasicBlock *CurrentPred = BB->getSinglePredecessor();
879   unsigned Iter = 0;
880 
881   auto &DL = BB->getModule()->getDataLayout();
882 
883   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
884     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
885     if (!PBI || !PBI->isConditional())
886       return false;
887     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
888       return false;
889 
890     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
891     Optional<bool> Implication =
892       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
893     if (Implication) {
894       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
895       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
896       BI->eraseFromParent();
897       return true;
898     }
899     CurrentBB = CurrentPred;
900     CurrentPred = CurrentBB->getSinglePredecessor();
901   }
902 
903   return false;
904 }
905 
906 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
907 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
908 /// important optimization that encourages jump threading, and needs to be run
909 /// interlaced with other jump threading tasks.
910 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
911   // Don't hack volatile and ordered loads.
912   if (!LI->isUnordered()) return false;
913 
914   // If the load is defined in a block with exactly one predecessor, it can't be
915   // partially redundant.
916   BasicBlock *LoadBB = LI->getParent();
917   if (LoadBB->getSinglePredecessor())
918     return false;
919 
920   // If the load is defined in an EH pad, it can't be partially redundant,
921   // because the edges between the invoke and the EH pad cannot have other
922   // instructions between them.
923   if (LoadBB->isEHPad())
924     return false;
925 
926   Value *LoadedPtr = LI->getOperand(0);
927 
928   // If the loaded operand is defined in the LoadBB, it can't be available.
929   // TODO: Could do simple PHI translation, that would be fun :)
930   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
931     if (PtrOp->getParent() == LoadBB)
932       return false;
933 
934   // Scan a few instructions up from the load, to see if it is obviously live at
935   // the entry to its block.
936   BasicBlock::iterator BBIt(LI);
937   bool IsLoadCSE;
938   if (Value *AvailableVal =
939         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan, nullptr, &IsLoadCSE)) {
940     // If the value of the load is locally available within the block, just use
941     // it.  This frequently occurs for reg2mem'd allocas.
942 
943     if (IsLoadCSE) {
944       LoadInst *NLI = cast<LoadInst>(AvailableVal);
945       combineMetadataForCSE(NLI, LI);
946     };
947 
948     // If the returned value is the load itself, replace with an undef. This can
949     // only happen in dead loops.
950     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
951     if (AvailableVal->getType() != LI->getType())
952       AvailableVal =
953           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
954     LI->replaceAllUsesWith(AvailableVal);
955     LI->eraseFromParent();
956     return true;
957   }
958 
959   // Otherwise, if we scanned the whole block and got to the top of the block,
960   // we know the block is locally transparent to the load.  If not, something
961   // might clobber its value.
962   if (BBIt != LoadBB->begin())
963     return false;
964 
965   // If all of the loads and stores that feed the value have the same AA tags,
966   // then we can propagate them onto any newly inserted loads.
967   AAMDNodes AATags;
968   LI->getAAMetadata(AATags);
969 
970   SmallPtrSet<BasicBlock*, 8> PredsScanned;
971   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
972   AvailablePredsTy AvailablePreds;
973   BasicBlock *OneUnavailablePred = nullptr;
974   SmallVector<LoadInst*, 8> CSELoads;
975 
976   // If we got here, the loaded value is transparent through to the start of the
977   // block.  Check to see if it is available in any of the predecessor blocks.
978   for (BasicBlock *PredBB : predecessors(LoadBB)) {
979     // If we already scanned this predecessor, skip it.
980     if (!PredsScanned.insert(PredBB).second)
981       continue;
982 
983     // Scan the predecessor to see if the value is available in the pred.
984     BBIt = PredBB->end();
985     unsigned NumScanedInst = 0;
986     Value *PredAvailable =
987         FindAvailableLoadedValue(LI, PredBB, BBIt, DefMaxInstsToScan, nullptr,
988                                  &IsLoadCSE, &NumScanedInst);
989 
990     // If PredBB has a single predecessor, continue scanning through the single
991     // precessor.
992     BasicBlock *SinglePredBB = PredBB;
993     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
994            NumScanedInst < DefMaxInstsToScan) {
995       SinglePredBB = SinglePredBB->getSinglePredecessor();
996       if (SinglePredBB) {
997         BBIt = SinglePredBB->end();
998         PredAvailable = FindAvailableLoadedValue(
999             LI, SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst),
1000             nullptr, &IsLoadCSE, &NumScanedInst);
1001       }
1002     }
1003 
1004     if (!PredAvailable) {
1005       OneUnavailablePred = PredBB;
1006       continue;
1007     }
1008 
1009     if (IsLoadCSE)
1010       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1011 
1012     // If so, this load is partially redundant.  Remember this info so that we
1013     // can create a PHI node.
1014     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1015   }
1016 
1017   // If the loaded value isn't available in any predecessor, it isn't partially
1018   // redundant.
1019   if (AvailablePreds.empty()) return false;
1020 
1021   // Okay, the loaded value is available in at least one (and maybe all!)
1022   // predecessors.  If the value is unavailable in more than one unique
1023   // predecessor, we want to insert a merge block for those common predecessors.
1024   // This ensures that we only have to insert one reload, thus not increasing
1025   // code size.
1026   BasicBlock *UnavailablePred = nullptr;
1027 
1028   // If there is exactly one predecessor where the value is unavailable, the
1029   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1030   // unconditional branch, we know that it isn't a critical edge.
1031   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1032       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1033     UnavailablePred = OneUnavailablePred;
1034   } else if (PredsScanned.size() != AvailablePreds.size()) {
1035     // Otherwise, we had multiple unavailable predecessors or we had a critical
1036     // edge from the one.
1037     SmallVector<BasicBlock*, 8> PredsToSplit;
1038     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1039 
1040     for (const auto &AvailablePred : AvailablePreds)
1041       AvailablePredSet.insert(AvailablePred.first);
1042 
1043     // Add all the unavailable predecessors to the PredsToSplit list.
1044     for (BasicBlock *P : predecessors(LoadBB)) {
1045       // If the predecessor is an indirect goto, we can't split the edge.
1046       if (isa<IndirectBrInst>(P->getTerminator()))
1047         return false;
1048 
1049       if (!AvailablePredSet.count(P))
1050         PredsToSplit.push_back(P);
1051     }
1052 
1053     // Split them out to their own block.
1054     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1055   }
1056 
1057   // If the value isn't available in all predecessors, then there will be
1058   // exactly one where it isn't available.  Insert a load on that edge and add
1059   // it to the AvailablePreds list.
1060   if (UnavailablePred) {
1061     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1062            "Can't handle critical edge here!");
1063     LoadInst *NewVal =
1064         new LoadInst(LoadedPtr, LI->getName() + ".pr", false,
1065                      LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(),
1066                      UnavailablePred->getTerminator());
1067     NewVal->setDebugLoc(LI->getDebugLoc());
1068     if (AATags)
1069       NewVal->setAAMetadata(AATags);
1070 
1071     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1072   }
1073 
1074   // Now we know that each predecessor of this block has a value in
1075   // AvailablePreds, sort them for efficient access as we're walking the preds.
1076   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1077 
1078   // Create a PHI node at the start of the block for the PRE'd load value.
1079   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1080   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1081                                 &LoadBB->front());
1082   PN->takeName(LI);
1083   PN->setDebugLoc(LI->getDebugLoc());
1084 
1085   // Insert new entries into the PHI for each predecessor.  A single block may
1086   // have multiple entries here.
1087   for (pred_iterator PI = PB; PI != PE; ++PI) {
1088     BasicBlock *P = *PI;
1089     AvailablePredsTy::iterator I =
1090       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1091                        std::make_pair(P, (Value*)nullptr));
1092 
1093     assert(I != AvailablePreds.end() && I->first == P &&
1094            "Didn't find entry for predecessor!");
1095 
1096     // If we have an available predecessor but it requires casting, insert the
1097     // cast in the predecessor and use the cast. Note that we have to update the
1098     // AvailablePreds vector as we go so that all of the PHI entries for this
1099     // predecessor use the same bitcast.
1100     Value *&PredV = I->second;
1101     if (PredV->getType() != LI->getType())
1102       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1103                                                P->getTerminator());
1104 
1105     PN->addIncoming(PredV, I->first);
1106   }
1107 
1108   for (LoadInst *PredLI : CSELoads) {
1109     combineMetadataForCSE(PredLI, LI);
1110   }
1111 
1112   LI->replaceAllUsesWith(PN);
1113   LI->eraseFromParent();
1114 
1115   return true;
1116 }
1117 
1118 /// FindMostPopularDest - The specified list contains multiple possible
1119 /// threadable destinations.  Pick the one that occurs the most frequently in
1120 /// the list.
1121 static BasicBlock *
1122 FindMostPopularDest(BasicBlock *BB,
1123                     const SmallVectorImpl<std::pair<BasicBlock*,
1124                                   BasicBlock*> > &PredToDestList) {
1125   assert(!PredToDestList.empty());
1126 
1127   // Determine popularity.  If there are multiple possible destinations, we
1128   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1129   // blocks with known and real destinations to threading undef.  We'll handle
1130   // them later if interesting.
1131   DenseMap<BasicBlock*, unsigned> DestPopularity;
1132   for (const auto &PredToDest : PredToDestList)
1133     if (PredToDest.second)
1134       DestPopularity[PredToDest.second]++;
1135 
1136   // Find the most popular dest.
1137   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1138   BasicBlock *MostPopularDest = DPI->first;
1139   unsigned Popularity = DPI->second;
1140   SmallVector<BasicBlock*, 4> SamePopularity;
1141 
1142   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1143     // If the popularity of this entry isn't higher than the popularity we've
1144     // seen so far, ignore it.
1145     if (DPI->second < Popularity)
1146       ; // ignore.
1147     else if (DPI->second == Popularity) {
1148       // If it is the same as what we've seen so far, keep track of it.
1149       SamePopularity.push_back(DPI->first);
1150     } else {
1151       // If it is more popular, remember it.
1152       SamePopularity.clear();
1153       MostPopularDest = DPI->first;
1154       Popularity = DPI->second;
1155     }
1156   }
1157 
1158   // Okay, now we know the most popular destination.  If there is more than one
1159   // destination, we need to determine one.  This is arbitrary, but we need
1160   // to make a deterministic decision.  Pick the first one that appears in the
1161   // successor list.
1162   if (!SamePopularity.empty()) {
1163     SamePopularity.push_back(MostPopularDest);
1164     TerminatorInst *TI = BB->getTerminator();
1165     for (unsigned i = 0; ; ++i) {
1166       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1167 
1168       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1169         continue;
1170 
1171       MostPopularDest = TI->getSuccessor(i);
1172       break;
1173     }
1174   }
1175 
1176   // Okay, we have finally picked the most popular destination.
1177   return MostPopularDest;
1178 }
1179 
1180 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1181                                                ConstantPreference Preference,
1182                                                Instruction *CxtI) {
1183   // If threading this would thread across a loop header, don't even try to
1184   // thread the edge.
1185   if (LoopHeaders.count(BB))
1186     return false;
1187 
1188   PredValueInfoTy PredValues;
1189   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1190     return false;
1191 
1192   assert(!PredValues.empty() &&
1193          "ComputeValueKnownInPredecessors returned true with no values");
1194 
1195   DEBUG(dbgs() << "IN BB: " << *BB;
1196         for (const auto &PredValue : PredValues) {
1197           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1198             << *PredValue.first
1199             << " for pred '" << PredValue.second->getName() << "'.\n";
1200         });
1201 
1202   // Decide what we want to thread through.  Convert our list of known values to
1203   // a list of known destinations for each pred.  This also discards duplicate
1204   // predecessors and keeps track of the undefined inputs (which are represented
1205   // as a null dest in the PredToDestList).
1206   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1207   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1208 
1209   BasicBlock *OnlyDest = nullptr;
1210   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1211 
1212   for (const auto &PredValue : PredValues) {
1213     BasicBlock *Pred = PredValue.second;
1214     if (!SeenPreds.insert(Pred).second)
1215       continue;  // Duplicate predecessor entry.
1216 
1217     // If the predecessor ends with an indirect goto, we can't change its
1218     // destination.
1219     if (isa<IndirectBrInst>(Pred->getTerminator()))
1220       continue;
1221 
1222     Constant *Val = PredValue.first;
1223 
1224     BasicBlock *DestBB;
1225     if (isa<UndefValue>(Val))
1226       DestBB = nullptr;
1227     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1228       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1229     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1230       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1231     } else {
1232       assert(isa<IndirectBrInst>(BB->getTerminator())
1233               && "Unexpected terminator");
1234       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1235     }
1236 
1237     // If we have exactly one destination, remember it for efficiency below.
1238     if (PredToDestList.empty())
1239       OnlyDest = DestBB;
1240     else if (OnlyDest != DestBB)
1241       OnlyDest = MultipleDestSentinel;
1242 
1243     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1244   }
1245 
1246   // If all edges were unthreadable, we fail.
1247   if (PredToDestList.empty())
1248     return false;
1249 
1250   // Determine which is the most common successor.  If we have many inputs and
1251   // this block is a switch, we want to start by threading the batch that goes
1252   // to the most popular destination first.  If we only know about one
1253   // threadable destination (the common case) we can avoid this.
1254   BasicBlock *MostPopularDest = OnlyDest;
1255 
1256   if (MostPopularDest == MultipleDestSentinel)
1257     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1258 
1259   // Now that we know what the most popular destination is, factor all
1260   // predecessors that will jump to it into a single predecessor.
1261   SmallVector<BasicBlock*, 16> PredsToFactor;
1262   for (const auto &PredToDest : PredToDestList)
1263     if (PredToDest.second == MostPopularDest) {
1264       BasicBlock *Pred = PredToDest.first;
1265 
1266       // This predecessor may be a switch or something else that has multiple
1267       // edges to the block.  Factor each of these edges by listing them
1268       // according to # occurrences in PredsToFactor.
1269       for (BasicBlock *Succ : successors(Pred))
1270         if (Succ == BB)
1271           PredsToFactor.push_back(Pred);
1272     }
1273 
1274   // If the threadable edges are branching on an undefined value, we get to pick
1275   // the destination that these predecessors should get to.
1276   if (!MostPopularDest)
1277     MostPopularDest = BB->getTerminator()->
1278                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1279 
1280   // Ok, try to thread it!
1281   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1282 }
1283 
1284 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1285 /// a PHI node in the current block.  See if there are any simplifications we
1286 /// can do based on inputs to the phi node.
1287 ///
1288 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1289   BasicBlock *BB = PN->getParent();
1290 
1291   // TODO: We could make use of this to do it once for blocks with common PHI
1292   // values.
1293   SmallVector<BasicBlock*, 1> PredBBs;
1294   PredBBs.resize(1);
1295 
1296   // If any of the predecessor blocks end in an unconditional branch, we can
1297   // *duplicate* the conditional branch into that block in order to further
1298   // encourage jump threading and to eliminate cases where we have branch on a
1299   // phi of an icmp (branch on icmp is much better).
1300   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1301     BasicBlock *PredBB = PN->getIncomingBlock(i);
1302     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1303       if (PredBr->isUnconditional()) {
1304         PredBBs[0] = PredBB;
1305         // Try to duplicate BB into PredBB.
1306         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1307           return true;
1308       }
1309   }
1310 
1311   return false;
1312 }
1313 
1314 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1315 /// a xor instruction in the current block.  See if there are any
1316 /// simplifications we can do based on inputs to the xor.
1317 ///
1318 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1319   BasicBlock *BB = BO->getParent();
1320 
1321   // If either the LHS or RHS of the xor is a constant, don't do this
1322   // optimization.
1323   if (isa<ConstantInt>(BO->getOperand(0)) ||
1324       isa<ConstantInt>(BO->getOperand(1)))
1325     return false;
1326 
1327   // If the first instruction in BB isn't a phi, we won't be able to infer
1328   // anything special about any particular predecessor.
1329   if (!isa<PHINode>(BB->front()))
1330     return false;
1331 
1332   // If this BB is a landing pad, we won't be able to split the edge into it.
1333   if (BB->isEHPad())
1334     return false;
1335 
1336   // If we have a xor as the branch input to this block, and we know that the
1337   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1338   // the condition into the predecessor and fix that value to true, saving some
1339   // logical ops on that path and encouraging other paths to simplify.
1340   //
1341   // This copies something like this:
1342   //
1343   //  BB:
1344   //    %X = phi i1 [1],  [%X']
1345   //    %Y = icmp eq i32 %A, %B
1346   //    %Z = xor i1 %X, %Y
1347   //    br i1 %Z, ...
1348   //
1349   // Into:
1350   //  BB':
1351   //    %Y = icmp ne i32 %A, %B
1352   //    br i1 %Y, ...
1353 
1354   PredValueInfoTy XorOpValues;
1355   bool isLHS = true;
1356   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1357                                        WantInteger, BO)) {
1358     assert(XorOpValues.empty());
1359     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1360                                          WantInteger, BO))
1361       return false;
1362     isLHS = false;
1363   }
1364 
1365   assert(!XorOpValues.empty() &&
1366          "ComputeValueKnownInPredecessors returned true with no values");
1367 
1368   // Scan the information to see which is most popular: true or false.  The
1369   // predecessors can be of the set true, false, or undef.
1370   unsigned NumTrue = 0, NumFalse = 0;
1371   for (const auto &XorOpValue : XorOpValues) {
1372     if (isa<UndefValue>(XorOpValue.first))
1373       // Ignore undefs for the count.
1374       continue;
1375     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1376       ++NumFalse;
1377     else
1378       ++NumTrue;
1379   }
1380 
1381   // Determine which value to split on, true, false, or undef if neither.
1382   ConstantInt *SplitVal = nullptr;
1383   if (NumTrue > NumFalse)
1384     SplitVal = ConstantInt::getTrue(BB->getContext());
1385   else if (NumTrue != 0 || NumFalse != 0)
1386     SplitVal = ConstantInt::getFalse(BB->getContext());
1387 
1388   // Collect all of the blocks that this can be folded into so that we can
1389   // factor this once and clone it once.
1390   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1391   for (const auto &XorOpValue : XorOpValues) {
1392     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1393       continue;
1394 
1395     BlocksToFoldInto.push_back(XorOpValue.second);
1396   }
1397 
1398   // If we inferred a value for all of the predecessors, then duplication won't
1399   // help us.  However, we can just replace the LHS or RHS with the constant.
1400   if (BlocksToFoldInto.size() ==
1401       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1402     if (!SplitVal) {
1403       // If all preds provide undef, just nuke the xor, because it is undef too.
1404       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1405       BO->eraseFromParent();
1406     } else if (SplitVal->isZero()) {
1407       // If all preds provide 0, replace the xor with the other input.
1408       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1409       BO->eraseFromParent();
1410     } else {
1411       // If all preds provide 1, set the computed value to 1.
1412       BO->setOperand(!isLHS, SplitVal);
1413     }
1414 
1415     return true;
1416   }
1417 
1418   // Try to duplicate BB into PredBB.
1419   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1420 }
1421 
1422 
1423 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1424 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1425 /// NewPred using the entries from OldPred (suitably mapped).
1426 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1427                                             BasicBlock *OldPred,
1428                                             BasicBlock *NewPred,
1429                                      DenseMap<Instruction*, Value*> &ValueMap) {
1430   for (BasicBlock::iterator PNI = PHIBB->begin();
1431        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1432     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1433     // DestBlock.
1434     Value *IV = PN->getIncomingValueForBlock(OldPred);
1435 
1436     // Remap the value if necessary.
1437     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1438       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1439       if (I != ValueMap.end())
1440         IV = I->second;
1441     }
1442 
1443     PN->addIncoming(IV, NewPred);
1444   }
1445 }
1446 
1447 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1448 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1449 /// across BB.  Transform the IR to reflect this change.
1450 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1451                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1452                                    BasicBlock *SuccBB) {
1453   // If threading to the same block as we come from, we would infinite loop.
1454   if (SuccBB == BB) {
1455     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1456           << "' - would thread to self!\n");
1457     return false;
1458   }
1459 
1460   // If threading this would thread across a loop header, don't thread the edge.
1461   // See the comments above FindLoopHeaders for justifications and caveats.
1462   if (LoopHeaders.count(BB)) {
1463     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1464           << "' to dest BB '" << SuccBB->getName()
1465           << "' - it might create an irreducible loop!\n");
1466     return false;
1467   }
1468 
1469   unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1470   if (JumpThreadCost > BBDupThreshold) {
1471     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1472           << "' - Cost is too high: " << JumpThreadCost << "\n");
1473     return false;
1474   }
1475 
1476   // And finally, do it!  Start by factoring the predecessors if needed.
1477   BasicBlock *PredBB;
1478   if (PredBBs.size() == 1)
1479     PredBB = PredBBs[0];
1480   else {
1481     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1482           << " common predecessors.\n");
1483     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1484   }
1485 
1486   // And finally, do it!
1487   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1488         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1489         << ", across block:\n    "
1490         << *BB << "\n");
1491 
1492   LVI->threadEdge(PredBB, BB, SuccBB);
1493 
1494   // We are going to have to map operands from the original BB block to the new
1495   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1496   // account for entry from PredBB.
1497   DenseMap<Instruction*, Value*> ValueMapping;
1498 
1499   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1500                                          BB->getName()+".thread",
1501                                          BB->getParent(), BB);
1502   NewBB->moveAfter(PredBB);
1503 
1504   // Set the block frequency of NewBB.
1505   if (HasProfileData) {
1506     auto NewBBFreq =
1507         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1508     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1509   }
1510 
1511   BasicBlock::iterator BI = BB->begin();
1512   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1513     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1514 
1515   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1516   // mapping and using it to remap operands in the cloned instructions.
1517   for (; !isa<TerminatorInst>(BI); ++BI) {
1518     Instruction *New = BI->clone();
1519     New->setName(BI->getName());
1520     NewBB->getInstList().push_back(New);
1521     ValueMapping[&*BI] = New;
1522 
1523     // Remap operands to patch up intra-block references.
1524     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1525       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1526         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1527         if (I != ValueMapping.end())
1528           New->setOperand(i, I->second);
1529       }
1530   }
1531 
1532   // We didn't copy the terminator from BB over to NewBB, because there is now
1533   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1534   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1535   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1536 
1537   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1538   // PHI nodes for NewBB now.
1539   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1540 
1541   // If there were values defined in BB that are used outside the block, then we
1542   // now have to update all uses of the value to use either the original value,
1543   // the cloned value, or some PHI derived value.  This can require arbitrary
1544   // PHI insertion, of which we are prepared to do, clean these up now.
1545   SSAUpdater SSAUpdate;
1546   SmallVector<Use*, 16> UsesToRename;
1547   for (Instruction &I : *BB) {
1548     // Scan all uses of this instruction to see if it is used outside of its
1549     // block, and if so, record them in UsesToRename.
1550     for (Use &U : I.uses()) {
1551       Instruction *User = cast<Instruction>(U.getUser());
1552       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1553         if (UserPN->getIncomingBlock(U) == BB)
1554           continue;
1555       } else if (User->getParent() == BB)
1556         continue;
1557 
1558       UsesToRename.push_back(&U);
1559     }
1560 
1561     // If there are no uses outside the block, we're done with this instruction.
1562     if (UsesToRename.empty())
1563       continue;
1564 
1565     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1566 
1567     // We found a use of I outside of BB.  Rename all uses of I that are outside
1568     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1569     // with the two values we know.
1570     SSAUpdate.Initialize(I.getType(), I.getName());
1571     SSAUpdate.AddAvailableValue(BB, &I);
1572     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1573 
1574     while (!UsesToRename.empty())
1575       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1576     DEBUG(dbgs() << "\n");
1577   }
1578 
1579 
1580   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1581   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1582   // us to simplify any PHI nodes in BB.
1583   TerminatorInst *PredTerm = PredBB->getTerminator();
1584   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1585     if (PredTerm->getSuccessor(i) == BB) {
1586       BB->removePredecessor(PredBB, true);
1587       PredTerm->setSuccessor(i, NewBB);
1588     }
1589 
1590   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1591   // over the new instructions and zap any that are constants or dead.  This
1592   // frequently happens because of phi translation.
1593   SimplifyInstructionsInBlock(NewBB, TLI);
1594 
1595   // Update the edge weight from BB to SuccBB, which should be less than before.
1596   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1597 
1598   // Threaded an edge!
1599   ++NumThreads;
1600   return true;
1601 }
1602 
1603 /// Create a new basic block that will be the predecessor of BB and successor of
1604 /// all blocks in Preds. When profile data is available, update the frequency of
1605 /// this new block.
1606 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1607                                                ArrayRef<BasicBlock *> Preds,
1608                                                const char *Suffix) {
1609   // Collect the frequencies of all predecessors of BB, which will be used to
1610   // update the edge weight on BB->SuccBB.
1611   BlockFrequency PredBBFreq(0);
1612   if (HasProfileData)
1613     for (auto Pred : Preds)
1614       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1615 
1616   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1617 
1618   // Set the block frequency of the newly created PredBB, which is the sum of
1619   // frequencies of Preds.
1620   if (HasProfileData)
1621     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1622   return PredBB;
1623 }
1624 
1625 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
1626   const TerminatorInst *TI = BB->getTerminator();
1627   assert(TI->getNumSuccessors() > 1 && "not a split");
1628 
1629   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
1630   if (!WeightsNode)
1631     return false;
1632 
1633   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
1634   if (MDName->getString() != "branch_weights")
1635     return false;
1636 
1637   // Ensure there are weights for all of the successors. Note that the first
1638   // operand to the metadata node is a name, not a weight.
1639   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
1640 }
1641 
1642 /// Update the block frequency of BB and branch weight and the metadata on the
1643 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1644 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1645 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1646                                                      BasicBlock *BB,
1647                                                      BasicBlock *NewBB,
1648                                                      BasicBlock *SuccBB) {
1649   if (!HasProfileData)
1650     return;
1651 
1652   assert(BFI && BPI && "BFI & BPI should have been created here");
1653 
1654   // As the edge from PredBB to BB is deleted, we have to update the block
1655   // frequency of BB.
1656   auto BBOrigFreq = BFI->getBlockFreq(BB);
1657   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1658   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1659   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1660   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1661 
1662   // Collect updated outgoing edges' frequencies from BB and use them to update
1663   // edge probabilities.
1664   SmallVector<uint64_t, 4> BBSuccFreq;
1665   for (BasicBlock *Succ : successors(BB)) {
1666     auto SuccFreq = (Succ == SuccBB)
1667                         ? BB2SuccBBFreq - NewBBFreq
1668                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1669     BBSuccFreq.push_back(SuccFreq.getFrequency());
1670   }
1671 
1672   uint64_t MaxBBSuccFreq =
1673       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1674 
1675   SmallVector<BranchProbability, 4> BBSuccProbs;
1676   if (MaxBBSuccFreq == 0)
1677     BBSuccProbs.assign(BBSuccFreq.size(),
1678                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1679   else {
1680     for (uint64_t Freq : BBSuccFreq)
1681       BBSuccProbs.push_back(
1682           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1683     // Normalize edge probabilities so that they sum up to one.
1684     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1685                                               BBSuccProbs.end());
1686   }
1687 
1688   // Update edge probabilities in BPI.
1689   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1690     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1691 
1692   // Update the profile metadata as well.
1693   //
1694   // Don't do this if the profile of the transformed blocks was statically
1695   // estimated.  (This could occur despite the function having an entry
1696   // frequency in completely cold parts of the CFG.)
1697   //
1698   // In this case we don't want to suggest to subsequent passes that the
1699   // calculated weights are fully consistent.  Consider this graph:
1700   //
1701   //                 check_1
1702   //             50% /  |
1703   //             eq_1   | 50%
1704   //                 \  |
1705   //                 check_2
1706   //             50% /  |
1707   //             eq_2   | 50%
1708   //                 \  |
1709   //                 check_3
1710   //             50% /  |
1711   //             eq_3   | 50%
1712   //                 \  |
1713   //
1714   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
1715   // the overall probabilities are inconsistent; the total probability that the
1716   // value is either 1, 2 or 3 is 150%.
1717   //
1718   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
1719   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
1720   // the loop exit edge.  Then based solely on static estimation we would assume
1721   // the loop was extremely hot.
1722   //
1723   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
1724   // shouldn't make edges extremely likely or unlikely based solely on static
1725   // estimation.
1726   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
1727     SmallVector<uint32_t, 4> Weights;
1728     for (auto Prob : BBSuccProbs)
1729       Weights.push_back(Prob.getNumerator());
1730 
1731     auto TI = BB->getTerminator();
1732     TI->setMetadata(
1733         LLVMContext::MD_prof,
1734         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1735   }
1736 }
1737 
1738 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1739 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1740 /// If we can duplicate the contents of BB up into PredBB do so now, this
1741 /// improves the odds that the branch will be on an analyzable instruction like
1742 /// a compare.
1743 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1744     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1745   assert(!PredBBs.empty() && "Can't handle an empty set");
1746 
1747   // If BB is a loop header, then duplicating this block outside the loop would
1748   // cause us to transform this into an irreducible loop, don't do this.
1749   // See the comments above FindLoopHeaders for justifications and caveats.
1750   if (LoopHeaders.count(BB)) {
1751     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1752           << "' into predecessor block '" << PredBBs[0]->getName()
1753           << "' - it might create an irreducible loop!\n");
1754     return false;
1755   }
1756 
1757   unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold);
1758   if (DuplicationCost > BBDupThreshold) {
1759     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1760           << "' - Cost is too high: " << DuplicationCost << "\n");
1761     return false;
1762   }
1763 
1764   // And finally, do it!  Start by factoring the predecessors if needed.
1765   BasicBlock *PredBB;
1766   if (PredBBs.size() == 1)
1767     PredBB = PredBBs[0];
1768   else {
1769     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1770           << " common predecessors.\n");
1771     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1772   }
1773 
1774   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1775   // of PredBB.
1776   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1777         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1778         << DuplicationCost << " block is:" << *BB << "\n");
1779 
1780   // Unless PredBB ends with an unconditional branch, split the edge so that we
1781   // can just clone the bits from BB into the end of the new PredBB.
1782   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1783 
1784   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1785     PredBB = SplitEdge(PredBB, BB);
1786     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1787   }
1788 
1789   // We are going to have to map operands from the original BB block into the
1790   // PredBB block.  Evaluate PHI nodes in BB.
1791   DenseMap<Instruction*, Value*> ValueMapping;
1792 
1793   BasicBlock::iterator BI = BB->begin();
1794   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1795     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1796   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1797   // mapping and using it to remap operands in the cloned instructions.
1798   for (; BI != BB->end(); ++BI) {
1799     Instruction *New = BI->clone();
1800 
1801     // Remap operands to patch up intra-block references.
1802     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1803       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1804         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1805         if (I != ValueMapping.end())
1806           New->setOperand(i, I->second);
1807       }
1808 
1809     // If this instruction can be simplified after the operands are updated,
1810     // just use the simplified value instead.  This frequently happens due to
1811     // phi translation.
1812     if (Value *IV =
1813             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1814       ValueMapping[&*BI] = IV;
1815       if (!New->mayHaveSideEffects()) {
1816         delete New;
1817         New = nullptr;
1818       }
1819     } else {
1820       ValueMapping[&*BI] = New;
1821     }
1822     if (New) {
1823       // Otherwise, insert the new instruction into the block.
1824       New->setName(BI->getName());
1825       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1826     }
1827   }
1828 
1829   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1830   // add entries to the PHI nodes for branch from PredBB now.
1831   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1832   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1833                                   ValueMapping);
1834   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1835                                   ValueMapping);
1836 
1837   // If there were values defined in BB that are used outside the block, then we
1838   // now have to update all uses of the value to use either the original value,
1839   // the cloned value, or some PHI derived value.  This can require arbitrary
1840   // PHI insertion, of which we are prepared to do, clean these up now.
1841   SSAUpdater SSAUpdate;
1842   SmallVector<Use*, 16> UsesToRename;
1843   for (Instruction &I : *BB) {
1844     // Scan all uses of this instruction to see if it is used outside of its
1845     // block, and if so, record them in UsesToRename.
1846     for (Use &U : I.uses()) {
1847       Instruction *User = cast<Instruction>(U.getUser());
1848       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1849         if (UserPN->getIncomingBlock(U) == BB)
1850           continue;
1851       } else if (User->getParent() == BB)
1852         continue;
1853 
1854       UsesToRename.push_back(&U);
1855     }
1856 
1857     // If there are no uses outside the block, we're done with this instruction.
1858     if (UsesToRename.empty())
1859       continue;
1860 
1861     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1862 
1863     // We found a use of I outside of BB.  Rename all uses of I that are outside
1864     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1865     // with the two values we know.
1866     SSAUpdate.Initialize(I.getType(), I.getName());
1867     SSAUpdate.AddAvailableValue(BB, &I);
1868     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1869 
1870     while (!UsesToRename.empty())
1871       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1872     DEBUG(dbgs() << "\n");
1873   }
1874 
1875   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1876   // that we nuked.
1877   BB->removePredecessor(PredBB, true);
1878 
1879   // Remove the unconditional branch at the end of the PredBB block.
1880   OldPredBranch->eraseFromParent();
1881 
1882   ++NumDupes;
1883   return true;
1884 }
1885 
1886 /// TryToUnfoldSelect - Look for blocks of the form
1887 /// bb1:
1888 ///   %a = select
1889 ///   br bb
1890 ///
1891 /// bb2:
1892 ///   %p = phi [%a, %bb] ...
1893 ///   %c = icmp %p
1894 ///   br i1 %c
1895 ///
1896 /// And expand the select into a branch structure if one of its arms allows %c
1897 /// to be folded. This later enables threading from bb1 over bb2.
1898 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1899   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1900   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1901   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1902 
1903   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1904       CondLHS->getParent() != BB)
1905     return false;
1906 
1907   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1908     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1909     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1910 
1911     // Look if one of the incoming values is a select in the corresponding
1912     // predecessor.
1913     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1914       continue;
1915 
1916     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1917     if (!PredTerm || !PredTerm->isUnconditional())
1918       continue;
1919 
1920     // Now check if one of the select values would allow us to constant fold the
1921     // terminator in BB. We don't do the transform if both sides fold, those
1922     // cases will be threaded in any case.
1923     LazyValueInfo::Tristate LHSFolds =
1924         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1925                                 CondRHS, Pred, BB, CondCmp);
1926     LazyValueInfo::Tristate RHSFolds =
1927         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1928                                 CondRHS, Pred, BB, CondCmp);
1929     if ((LHSFolds != LazyValueInfo::Unknown ||
1930          RHSFolds != LazyValueInfo::Unknown) &&
1931         LHSFolds != RHSFolds) {
1932       // Expand the select.
1933       //
1934       // Pred --
1935       //  |    v
1936       //  |  NewBB
1937       //  |    |
1938       //  |-----
1939       //  v
1940       // BB
1941       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1942                                              BB->getParent(), BB);
1943       // Move the unconditional branch to NewBB.
1944       PredTerm->removeFromParent();
1945       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1946       // Create a conditional branch and update PHI nodes.
1947       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1948       CondLHS->setIncomingValue(I, SI->getFalseValue());
1949       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1950       // The select is now dead.
1951       SI->eraseFromParent();
1952 
1953       // Update any other PHI nodes in BB.
1954       for (BasicBlock::iterator BI = BB->begin();
1955            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1956         if (Phi != CondLHS)
1957           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1958       return true;
1959     }
1960   }
1961   return false;
1962 }
1963 
1964 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1965 /// bb:
1966 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1967 ///   %s = select p, trueval, falseval
1968 ///
1969 /// And expand the select into a branch structure. This later enables
1970 /// jump-threading over bb in this pass.
1971 ///
1972 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1973 /// select if the associated PHI has at least one constant.  If the unfolded
1974 /// select is not jump-threaded, it will be folded again in the later
1975 /// optimizations.
1976 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1977   // If threading this would thread across a loop header, don't thread the edge.
1978   // See the comments above FindLoopHeaders for justifications and caveats.
1979   if (LoopHeaders.count(BB))
1980     return false;
1981 
1982   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1983   // condition of the Select and at least one of the incoming values is a
1984   // constant.
1985   for (BasicBlock::iterator BI = BB->begin();
1986        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
1987     unsigned NumPHIValues = PN->getNumIncomingValues();
1988     if (NumPHIValues == 0 || !PN->hasOneUse())
1989       continue;
1990 
1991     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
1992     if (!SI || SI->getParent() != BB)
1993       continue;
1994 
1995     Value *Cond = SI->getCondition();
1996     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
1997       continue;
1998 
1999     bool HasConst = false;
2000     for (unsigned i = 0; i != NumPHIValues; ++i) {
2001       if (PN->getIncomingBlock(i) == BB)
2002         return false;
2003       if (isa<ConstantInt>(PN->getIncomingValue(i)))
2004         HasConst = true;
2005     }
2006 
2007     if (HasConst) {
2008       // Expand the select.
2009       TerminatorInst *Term =
2010           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2011       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2012       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2013       NewPN->addIncoming(SI->getFalseValue(), BB);
2014       SI->replaceAllUsesWith(NewPN);
2015       SI->eraseFromParent();
2016       return true;
2017     }
2018   }
2019 
2020   return false;
2021 }
2022