1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DomTreeUpdater.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/InstrTypes.h" 45 #include "llvm/IR/Instruction.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/Metadata.h" 52 #include "llvm/IR/Module.h" 53 #include "llvm/IR/PassManager.h" 54 #include "llvm/IR/PatternMatch.h" 55 #include "llvm/IR/Type.h" 56 #include "llvm/IR/Use.h" 57 #include "llvm/IR/User.h" 58 #include "llvm/IR/Value.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/BlockFrequency.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <memory> 78 #include <utility> 79 80 using namespace llvm; 81 using namespace jumpthreading; 82 83 #define DEBUG_TYPE "jump-threading" 84 85 STATISTIC(NumThreads, "Number of jumps threaded"); 86 STATISTIC(NumFolds, "Number of terminators folded"); 87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 88 89 static cl::opt<unsigned> 90 BBDuplicateThreshold("jump-threading-threshold", 91 cl::desc("Max block size to duplicate for jump threading"), 92 cl::init(6), cl::Hidden); 93 94 static cl::opt<unsigned> 95 ImplicationSearchThreshold( 96 "jump-threading-implication-search-threshold", 97 cl::desc("The number of predecessors to search for a stronger " 98 "condition to use to thread over a weaker condition"), 99 cl::init(3), cl::Hidden); 100 101 static cl::opt<bool> PrintLVIAfterJumpThreading( 102 "print-lvi-after-jump-threading", 103 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 104 cl::Hidden); 105 106 namespace { 107 108 /// This pass performs 'jump threading', which looks at blocks that have 109 /// multiple predecessors and multiple successors. If one or more of the 110 /// predecessors of the block can be proven to always jump to one of the 111 /// successors, we forward the edge from the predecessor to the successor by 112 /// duplicating the contents of this block. 113 /// 114 /// An example of when this can occur is code like this: 115 /// 116 /// if () { ... 117 /// X = 4; 118 /// } 119 /// if (X < 3) { 120 /// 121 /// In this case, the unconditional branch at the end of the first if can be 122 /// revectored to the false side of the second if. 123 class JumpThreading : public FunctionPass { 124 JumpThreadingPass Impl; 125 126 public: 127 static char ID; // Pass identification 128 129 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 130 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 131 } 132 133 bool runOnFunction(Function &F) override; 134 135 void getAnalysisUsage(AnalysisUsage &AU) const override { 136 AU.addRequired<DominatorTreeWrapperPass>(); 137 AU.addPreserved<DominatorTreeWrapperPass>(); 138 AU.addRequired<AAResultsWrapperPass>(); 139 AU.addRequired<LazyValueInfoWrapperPass>(); 140 AU.addPreserved<LazyValueInfoWrapperPass>(); 141 AU.addPreserved<GlobalsAAWrapperPass>(); 142 AU.addRequired<TargetLibraryInfoWrapperPass>(); 143 } 144 145 void releaseMemory() override { Impl.releaseMemory(); } 146 }; 147 148 } // end anonymous namespace 149 150 char JumpThreading::ID = 0; 151 152 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 153 "Jump Threading", false, false) 154 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 156 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 157 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 158 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 159 "Jump Threading", false, false) 160 161 // Public interface to the Jump Threading pass 162 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 163 return new JumpThreading(Threshold); 164 } 165 166 JumpThreadingPass::JumpThreadingPass(int T) { 167 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 168 } 169 170 // Update branch probability information according to conditional 171 // branch probability. This is usually made possible for cloned branches 172 // in inline instances by the context specific profile in the caller. 173 // For instance, 174 // 175 // [Block PredBB] 176 // [Branch PredBr] 177 // if (t) { 178 // Block A; 179 // } else { 180 // Block B; 181 // } 182 // 183 // [Block BB] 184 // cond = PN([true, %A], [..., %B]); // PHI node 185 // [Branch CondBr] 186 // if (cond) { 187 // ... // P(cond == true) = 1% 188 // } 189 // 190 // Here we know that when block A is taken, cond must be true, which means 191 // P(cond == true | A) = 1 192 // 193 // Given that P(cond == true) = P(cond == true | A) * P(A) + 194 // P(cond == true | B) * P(B) 195 // we get: 196 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 197 // 198 // which gives us: 199 // P(A) is less than P(cond == true), i.e. 200 // P(t == true) <= P(cond == true) 201 // 202 // In other words, if we know P(cond == true) is unlikely, we know 203 // that P(t == true) is also unlikely. 204 // 205 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 206 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 207 if (!CondBr) 208 return; 209 210 BranchProbability BP; 211 uint64_t TrueWeight, FalseWeight; 212 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 213 return; 214 215 // Returns the outgoing edge of the dominating predecessor block 216 // that leads to the PhiNode's incoming block: 217 auto GetPredOutEdge = 218 [](BasicBlock *IncomingBB, 219 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 220 auto *PredBB = IncomingBB; 221 auto *SuccBB = PhiBB; 222 while (true) { 223 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 224 if (PredBr && PredBr->isConditional()) 225 return {PredBB, SuccBB}; 226 auto *SinglePredBB = PredBB->getSinglePredecessor(); 227 if (!SinglePredBB) 228 return {nullptr, nullptr}; 229 SuccBB = PredBB; 230 PredBB = SinglePredBB; 231 } 232 }; 233 234 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 235 Value *PhiOpnd = PN->getIncomingValue(i); 236 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 237 238 if (!CI || !CI->getType()->isIntegerTy(1)) 239 continue; 240 241 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 242 TrueWeight, TrueWeight + FalseWeight) 243 : BranchProbability::getBranchProbability( 244 FalseWeight, TrueWeight + FalseWeight)); 245 246 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 247 if (!PredOutEdge.first) 248 return; 249 250 BasicBlock *PredBB = PredOutEdge.first; 251 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 252 253 uint64_t PredTrueWeight, PredFalseWeight; 254 // FIXME: We currently only set the profile data when it is missing. 255 // With PGO, this can be used to refine even existing profile data with 256 // context information. This needs to be done after more performance 257 // testing. 258 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 259 continue; 260 261 // We can not infer anything useful when BP >= 50%, because BP is the 262 // upper bound probability value. 263 if (BP >= BranchProbability(50, 100)) 264 continue; 265 266 SmallVector<uint32_t, 2> Weights; 267 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 268 Weights.push_back(BP.getNumerator()); 269 Weights.push_back(BP.getCompl().getNumerator()); 270 } else { 271 Weights.push_back(BP.getCompl().getNumerator()); 272 Weights.push_back(BP.getNumerator()); 273 } 274 PredBr->setMetadata(LLVMContext::MD_prof, 275 MDBuilder(PredBr->getParent()->getContext()) 276 .createBranchWeights(Weights)); 277 } 278 } 279 280 /// runOnFunction - Toplevel algorithm. 281 bool JumpThreading::runOnFunction(Function &F) { 282 if (skipFunction(F)) 283 return false; 284 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 285 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 286 // DT if it's available. 287 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 288 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 289 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 290 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 291 std::unique_ptr<BlockFrequencyInfo> BFI; 292 std::unique_ptr<BranchProbabilityInfo> BPI; 293 bool HasProfileData = F.hasProfileData(); 294 if (HasProfileData) { 295 LoopInfo LI{DominatorTree(F)}; 296 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 297 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 298 } 299 300 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, 301 std::move(BFI), std::move(BPI)); 302 if (PrintLVIAfterJumpThreading) { 303 dbgs() << "LVI for function '" << F.getName() << "':\n"; 304 LVI->printLVI(F, *DT, dbgs()); 305 } 306 return Changed; 307 } 308 309 PreservedAnalyses JumpThreadingPass::run(Function &F, 310 FunctionAnalysisManager &AM) { 311 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 312 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 313 // DT if it's available. 314 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 315 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 316 auto &AA = AM.getResult<AAManager>(F); 317 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 318 319 std::unique_ptr<BlockFrequencyInfo> BFI; 320 std::unique_ptr<BranchProbabilityInfo> BPI; 321 if (F.hasProfileData()) { 322 LoopInfo LI{DominatorTree(F)}; 323 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 324 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 325 } 326 327 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, 328 std::move(BFI), std::move(BPI)); 329 330 if (!Changed) 331 return PreservedAnalyses::all(); 332 PreservedAnalyses PA; 333 PA.preserve<GlobalsAA>(); 334 PA.preserve<DominatorTreeAnalysis>(); 335 PA.preserve<LazyValueAnalysis>(); 336 return PA; 337 } 338 339 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 340 LazyValueInfo *LVI_, AliasAnalysis *AA_, 341 DomTreeUpdater *DTU_, bool HasProfileData_, 342 std::unique_ptr<BlockFrequencyInfo> BFI_, 343 std::unique_ptr<BranchProbabilityInfo> BPI_) { 344 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 345 TLI = TLI_; 346 LVI = LVI_; 347 AA = AA_; 348 DTU = DTU_; 349 BFI.reset(); 350 BPI.reset(); 351 // When profile data is available, we need to update edge weights after 352 // successful jump threading, which requires both BPI and BFI being available. 353 HasProfileData = HasProfileData_; 354 auto *GuardDecl = F.getParent()->getFunction( 355 Intrinsic::getName(Intrinsic::experimental_guard)); 356 HasGuards = GuardDecl && !GuardDecl->use_empty(); 357 if (HasProfileData) { 358 BPI = std::move(BPI_); 359 BFI = std::move(BFI_); 360 } 361 362 // JumpThreading must not processes blocks unreachable from entry. It's a 363 // waste of compute time and can potentially lead to hangs. 364 SmallPtrSet<BasicBlock *, 16> Unreachable; 365 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 366 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 367 DominatorTree &DT = DTU->getDomTree(); 368 for (auto &BB : F) 369 if (!DT.isReachableFromEntry(&BB)) 370 Unreachable.insert(&BB); 371 372 FindLoopHeaders(F); 373 374 bool EverChanged = false; 375 bool Changed; 376 do { 377 Changed = false; 378 for (auto &BB : F) { 379 if (Unreachable.count(&BB)) 380 continue; 381 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 382 Changed = true; 383 // Stop processing BB if it's the entry or is now deleted. The following 384 // routines attempt to eliminate BB and locating a suitable replacement 385 // for the entry is non-trivial. 386 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 387 continue; 388 389 if (pred_empty(&BB)) { 390 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 391 // the instructions in it. We must remove BB to prevent invalid IR. 392 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 393 << "' with terminator: " << *BB.getTerminator() 394 << '\n'); 395 LoopHeaders.erase(&BB); 396 LVI->eraseBlock(&BB); 397 DeleteDeadBlock(&BB, DTU); 398 Changed = true; 399 continue; 400 } 401 402 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 403 // is "almost empty", we attempt to merge BB with its sole successor. 404 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 405 if (BI && BI->isUnconditional() && 406 // The terminator must be the only non-phi instruction in BB. 407 BB.getFirstNonPHIOrDbg()->isTerminator() && 408 // Don't alter Loop headers and latches to ensure another pass can 409 // detect and transform nested loops later. 410 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 411 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 412 // BB is valid for cleanup here because we passed in DTU. F remains 413 // BB's parent until a DTU->getDomTree() event. 414 LVI->eraseBlock(&BB); 415 Changed = true; 416 } 417 } 418 EverChanged |= Changed; 419 } while (Changed); 420 421 LoopHeaders.clear(); 422 // Flush only the Dominator Tree. 423 DTU->getDomTree(); 424 LVI->enableDT(); 425 return EverChanged; 426 } 427 428 // Replace uses of Cond with ToVal when safe to do so. If all uses are 429 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 430 // because we may incorrectly replace uses when guards/assumes are uses of 431 // of `Cond` and we used the guards/assume to reason about the `Cond` value 432 // at the end of block. RAUW unconditionally replaces all uses 433 // including the guards/assumes themselves and the uses before the 434 // guard/assume. 435 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 436 assert(Cond->getType() == ToVal->getType()); 437 auto *BB = Cond->getParent(); 438 // We can unconditionally replace all uses in non-local blocks (i.e. uses 439 // strictly dominated by BB), since LVI information is true from the 440 // terminator of BB. 441 replaceNonLocalUsesWith(Cond, ToVal); 442 for (Instruction &I : reverse(*BB)) { 443 // Reached the Cond whose uses we are trying to replace, so there are no 444 // more uses. 445 if (&I == Cond) 446 break; 447 // We only replace uses in instructions that are guaranteed to reach the end 448 // of BB, where we know Cond is ToVal. 449 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 450 break; 451 I.replaceUsesOfWith(Cond, ToVal); 452 } 453 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 454 Cond->eraseFromParent(); 455 } 456 457 /// Return the cost of duplicating a piece of this block from first non-phi 458 /// and before StopAt instruction to thread across it. Stop scanning the block 459 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 460 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 461 Instruction *StopAt, 462 unsigned Threshold) { 463 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 464 /// Ignore PHI nodes, these will be flattened when duplication happens. 465 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 466 467 // FIXME: THREADING will delete values that are just used to compute the 468 // branch, so they shouldn't count against the duplication cost. 469 470 unsigned Bonus = 0; 471 if (BB->getTerminator() == StopAt) { 472 // Threading through a switch statement is particularly profitable. If this 473 // block ends in a switch, decrease its cost to make it more likely to 474 // happen. 475 if (isa<SwitchInst>(StopAt)) 476 Bonus = 6; 477 478 // The same holds for indirect branches, but slightly more so. 479 if (isa<IndirectBrInst>(StopAt)) 480 Bonus = 8; 481 } 482 483 // Bump the threshold up so the early exit from the loop doesn't skip the 484 // terminator-based Size adjustment at the end. 485 Threshold += Bonus; 486 487 // Sum up the cost of each instruction until we get to the terminator. Don't 488 // include the terminator because the copy won't include it. 489 unsigned Size = 0; 490 for (; &*I != StopAt; ++I) { 491 492 // Stop scanning the block if we've reached the threshold. 493 if (Size > Threshold) 494 return Size; 495 496 // Debugger intrinsics don't incur code size. 497 if (isa<DbgInfoIntrinsic>(I)) continue; 498 499 // If this is a pointer->pointer bitcast, it is free. 500 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 501 continue; 502 503 // Bail out if this instruction gives back a token type, it is not possible 504 // to duplicate it if it is used outside this BB. 505 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 506 return ~0U; 507 508 // All other instructions count for at least one unit. 509 ++Size; 510 511 // Calls are more expensive. If they are non-intrinsic calls, we model them 512 // as having cost of 4. If they are a non-vector intrinsic, we model them 513 // as having cost of 2 total, and if they are a vector intrinsic, we model 514 // them as having cost 1. 515 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 516 if (CI->cannotDuplicate() || CI->isConvergent()) 517 // Blocks with NoDuplicate are modelled as having infinite cost, so they 518 // are never duplicated. 519 return ~0U; 520 else if (!isa<IntrinsicInst>(CI)) 521 Size += 3; 522 else if (!CI->getType()->isVectorTy()) 523 Size += 1; 524 } 525 } 526 527 return Size > Bonus ? Size - Bonus : 0; 528 } 529 530 /// FindLoopHeaders - We do not want jump threading to turn proper loop 531 /// structures into irreducible loops. Doing this breaks up the loop nesting 532 /// hierarchy and pessimizes later transformations. To prevent this from 533 /// happening, we first have to find the loop headers. Here we approximate this 534 /// by finding targets of backedges in the CFG. 535 /// 536 /// Note that there definitely are cases when we want to allow threading of 537 /// edges across a loop header. For example, threading a jump from outside the 538 /// loop (the preheader) to an exit block of the loop is definitely profitable. 539 /// It is also almost always profitable to thread backedges from within the loop 540 /// to exit blocks, and is often profitable to thread backedges to other blocks 541 /// within the loop (forming a nested loop). This simple analysis is not rich 542 /// enough to track all of these properties and keep it up-to-date as the CFG 543 /// mutates, so we don't allow any of these transformations. 544 void JumpThreadingPass::FindLoopHeaders(Function &F) { 545 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 546 FindFunctionBackedges(F, Edges); 547 548 for (const auto &Edge : Edges) 549 LoopHeaders.insert(Edge.second); 550 } 551 552 /// getKnownConstant - Helper method to determine if we can thread over a 553 /// terminator with the given value as its condition, and if so what value to 554 /// use for that. What kind of value this is depends on whether we want an 555 /// integer or a block address, but an undef is always accepted. 556 /// Returns null if Val is null or not an appropriate constant. 557 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 558 if (!Val) 559 return nullptr; 560 561 // Undef is "known" enough. 562 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 563 return U; 564 565 if (Preference == WantBlockAddress) 566 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 567 568 return dyn_cast<ConstantInt>(Val); 569 } 570 571 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 572 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 573 /// in any of our predecessors. If so, return the known list of value and pred 574 /// BB in the result vector. 575 /// 576 /// This returns true if there were any known values. 577 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 578 Value *V, BasicBlock *BB, PredValueInfo &Result, 579 ConstantPreference Preference, Instruction *CxtI) { 580 // This method walks up use-def chains recursively. Because of this, we could 581 // get into an infinite loop going around loops in the use-def chain. To 582 // prevent this, keep track of what (value, block) pairs we've already visited 583 // and terminate the search if we loop back to them 584 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 585 return false; 586 587 // An RAII help to remove this pair from the recursion set once the recursion 588 // stack pops back out again. 589 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 590 591 // If V is a constant, then it is known in all predecessors. 592 if (Constant *KC = getKnownConstant(V, Preference)) { 593 for (BasicBlock *Pred : predecessors(BB)) 594 Result.push_back(std::make_pair(KC, Pred)); 595 596 return !Result.empty(); 597 } 598 599 // If V is a non-instruction value, or an instruction in a different block, 600 // then it can't be derived from a PHI. 601 Instruction *I = dyn_cast<Instruction>(V); 602 if (!I || I->getParent() != BB) { 603 604 // Okay, if this is a live-in value, see if it has a known value at the end 605 // of any of our predecessors. 606 // 607 // FIXME: This should be an edge property, not a block end property. 608 /// TODO: Per PR2563, we could infer value range information about a 609 /// predecessor based on its terminator. 610 // 611 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 612 // "I" is a non-local compare-with-a-constant instruction. This would be 613 // able to handle value inequalities better, for example if the compare is 614 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 615 // Perhaps getConstantOnEdge should be smart enough to do this? 616 617 if (DTU->hasPendingDomTreeUpdates()) 618 LVI->disableDT(); 619 else 620 LVI->enableDT(); 621 for (BasicBlock *P : predecessors(BB)) { 622 // If the value is known by LazyValueInfo to be a constant in a 623 // predecessor, use that information to try to thread this block. 624 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 625 if (Constant *KC = getKnownConstant(PredCst, Preference)) 626 Result.push_back(std::make_pair(KC, P)); 627 } 628 629 return !Result.empty(); 630 } 631 632 /// If I is a PHI node, then we know the incoming values for any constants. 633 if (PHINode *PN = dyn_cast<PHINode>(I)) { 634 if (DTU->hasPendingDomTreeUpdates()) 635 LVI->disableDT(); 636 else 637 LVI->enableDT(); 638 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 639 Value *InVal = PN->getIncomingValue(i); 640 if (Constant *KC = getKnownConstant(InVal, Preference)) { 641 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 642 } else { 643 Constant *CI = LVI->getConstantOnEdge(InVal, 644 PN->getIncomingBlock(i), 645 BB, CxtI); 646 if (Constant *KC = getKnownConstant(CI, Preference)) 647 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 648 } 649 } 650 651 return !Result.empty(); 652 } 653 654 // Handle Cast instructions. Only see through Cast when the source operand is 655 // PHI or Cmp to save the compilation time. 656 if (CastInst *CI = dyn_cast<CastInst>(I)) { 657 Value *Source = CI->getOperand(0); 658 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 659 return false; 660 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 661 if (Result.empty()) 662 return false; 663 664 // Convert the known values. 665 for (auto &R : Result) 666 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 667 668 return true; 669 } 670 671 // Handle some boolean conditions. 672 if (I->getType()->getPrimitiveSizeInBits() == 1) { 673 assert(Preference == WantInteger && "One-bit non-integer type?"); 674 // X | true -> true 675 // X & false -> false 676 if (I->getOpcode() == Instruction::Or || 677 I->getOpcode() == Instruction::And) { 678 PredValueInfoTy LHSVals, RHSVals; 679 680 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 681 WantInteger, CxtI); 682 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 683 WantInteger, CxtI); 684 685 if (LHSVals.empty() && RHSVals.empty()) 686 return false; 687 688 ConstantInt *InterestingVal; 689 if (I->getOpcode() == Instruction::Or) 690 InterestingVal = ConstantInt::getTrue(I->getContext()); 691 else 692 InterestingVal = ConstantInt::getFalse(I->getContext()); 693 694 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 695 696 // Scan for the sentinel. If we find an undef, force it to the 697 // interesting value: x|undef -> true and x&undef -> false. 698 for (const auto &LHSVal : LHSVals) 699 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 700 Result.emplace_back(InterestingVal, LHSVal.second); 701 LHSKnownBBs.insert(LHSVal.second); 702 } 703 for (const auto &RHSVal : RHSVals) 704 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 705 // If we already inferred a value for this block on the LHS, don't 706 // re-add it. 707 if (!LHSKnownBBs.count(RHSVal.second)) 708 Result.emplace_back(InterestingVal, RHSVal.second); 709 } 710 711 return !Result.empty(); 712 } 713 714 // Handle the NOT form of XOR. 715 if (I->getOpcode() == Instruction::Xor && 716 isa<ConstantInt>(I->getOperand(1)) && 717 cast<ConstantInt>(I->getOperand(1))->isOne()) { 718 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 719 WantInteger, CxtI); 720 if (Result.empty()) 721 return false; 722 723 // Invert the known values. 724 for (auto &R : Result) 725 R.first = ConstantExpr::getNot(R.first); 726 727 return true; 728 } 729 730 // Try to simplify some other binary operator values. 731 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 732 assert(Preference != WantBlockAddress 733 && "A binary operator creating a block address?"); 734 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 735 PredValueInfoTy LHSVals; 736 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 737 WantInteger, CxtI); 738 739 // Try to use constant folding to simplify the binary operator. 740 for (const auto &LHSVal : LHSVals) { 741 Constant *V = LHSVal.first; 742 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 743 744 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 745 Result.push_back(std::make_pair(KC, LHSVal.second)); 746 } 747 } 748 749 return !Result.empty(); 750 } 751 752 // Handle compare with phi operand, where the PHI is defined in this block. 753 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 754 assert(Preference == WantInteger && "Compares only produce integers"); 755 Type *CmpType = Cmp->getType(); 756 Value *CmpLHS = Cmp->getOperand(0); 757 Value *CmpRHS = Cmp->getOperand(1); 758 CmpInst::Predicate Pred = Cmp->getPredicate(); 759 760 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 761 if (!PN) 762 PN = dyn_cast<PHINode>(CmpRHS); 763 if (PN && PN->getParent() == BB) { 764 const DataLayout &DL = PN->getModule()->getDataLayout(); 765 // We can do this simplification if any comparisons fold to true or false. 766 // See if any do. 767 if (DTU->hasPendingDomTreeUpdates()) 768 LVI->disableDT(); 769 else 770 LVI->enableDT(); 771 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 772 BasicBlock *PredBB = PN->getIncomingBlock(i); 773 Value *LHS, *RHS; 774 if (PN == CmpLHS) { 775 LHS = PN->getIncomingValue(i); 776 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 777 } else { 778 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 779 RHS = PN->getIncomingValue(i); 780 } 781 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 782 if (!Res) { 783 if (!isa<Constant>(RHS)) 784 continue; 785 786 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 787 auto LHSInst = dyn_cast<Instruction>(LHS); 788 if (LHSInst && LHSInst->getParent() == BB) 789 continue; 790 791 LazyValueInfo::Tristate 792 ResT = LVI->getPredicateOnEdge(Pred, LHS, 793 cast<Constant>(RHS), PredBB, BB, 794 CxtI ? CxtI : Cmp); 795 if (ResT == LazyValueInfo::Unknown) 796 continue; 797 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 798 } 799 800 if (Constant *KC = getKnownConstant(Res, WantInteger)) 801 Result.push_back(std::make_pair(KC, PredBB)); 802 } 803 804 return !Result.empty(); 805 } 806 807 // If comparing a live-in value against a constant, see if we know the 808 // live-in value on any predecessors. 809 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 810 Constant *CmpConst = cast<Constant>(CmpRHS); 811 812 if (!isa<Instruction>(CmpLHS) || 813 cast<Instruction>(CmpLHS)->getParent() != BB) { 814 if (DTU->hasPendingDomTreeUpdates()) 815 LVI->disableDT(); 816 else 817 LVI->enableDT(); 818 for (BasicBlock *P : predecessors(BB)) { 819 // If the value is known by LazyValueInfo to be a constant in a 820 // predecessor, use that information to try to thread this block. 821 LazyValueInfo::Tristate Res = 822 LVI->getPredicateOnEdge(Pred, CmpLHS, 823 CmpConst, P, BB, CxtI ? CxtI : Cmp); 824 if (Res == LazyValueInfo::Unknown) 825 continue; 826 827 Constant *ResC = ConstantInt::get(CmpType, Res); 828 Result.push_back(std::make_pair(ResC, P)); 829 } 830 831 return !Result.empty(); 832 } 833 834 // InstCombine can fold some forms of constant range checks into 835 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 836 // x as a live-in. 837 { 838 using namespace PatternMatch; 839 840 Value *AddLHS; 841 ConstantInt *AddConst; 842 if (isa<ConstantInt>(CmpConst) && 843 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 844 if (!isa<Instruction>(AddLHS) || 845 cast<Instruction>(AddLHS)->getParent() != BB) { 846 if (DTU->hasPendingDomTreeUpdates()) 847 LVI->disableDT(); 848 else 849 LVI->enableDT(); 850 for (BasicBlock *P : predecessors(BB)) { 851 // If the value is known by LazyValueInfo to be a ConstantRange in 852 // a predecessor, use that information to try to thread this 853 // block. 854 ConstantRange CR = LVI->getConstantRangeOnEdge( 855 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 856 // Propagate the range through the addition. 857 CR = CR.add(AddConst->getValue()); 858 859 // Get the range where the compare returns true. 860 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 861 Pred, cast<ConstantInt>(CmpConst)->getValue()); 862 863 Constant *ResC; 864 if (CmpRange.contains(CR)) 865 ResC = ConstantInt::getTrue(CmpType); 866 else if (CmpRange.inverse().contains(CR)) 867 ResC = ConstantInt::getFalse(CmpType); 868 else 869 continue; 870 871 Result.push_back(std::make_pair(ResC, P)); 872 } 873 874 return !Result.empty(); 875 } 876 } 877 } 878 879 // Try to find a constant value for the LHS of a comparison, 880 // and evaluate it statically if we can. 881 PredValueInfoTy LHSVals; 882 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 883 WantInteger, CxtI); 884 885 for (const auto &LHSVal : LHSVals) { 886 Constant *V = LHSVal.first; 887 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 888 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 889 Result.push_back(std::make_pair(KC, LHSVal.second)); 890 } 891 892 return !Result.empty(); 893 } 894 } 895 896 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 897 // Handle select instructions where at least one operand is a known constant 898 // and we can figure out the condition value for any predecessor block. 899 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 900 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 901 PredValueInfoTy Conds; 902 if ((TrueVal || FalseVal) && 903 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 904 WantInteger, CxtI)) { 905 for (auto &C : Conds) { 906 Constant *Cond = C.first; 907 908 // Figure out what value to use for the condition. 909 bool KnownCond; 910 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 911 // A known boolean. 912 KnownCond = CI->isOne(); 913 } else { 914 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 915 // Either operand will do, so be sure to pick the one that's a known 916 // constant. 917 // FIXME: Do this more cleverly if both values are known constants? 918 KnownCond = (TrueVal != nullptr); 919 } 920 921 // See if the select has a known constant value for this predecessor. 922 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 923 Result.push_back(std::make_pair(Val, C.second)); 924 } 925 926 return !Result.empty(); 927 } 928 } 929 930 // If all else fails, see if LVI can figure out a constant value for us. 931 if (DTU->hasPendingDomTreeUpdates()) 932 LVI->disableDT(); 933 else 934 LVI->enableDT(); 935 Constant *CI = LVI->getConstant(V, BB, CxtI); 936 if (Constant *KC = getKnownConstant(CI, Preference)) { 937 for (BasicBlock *Pred : predecessors(BB)) 938 Result.push_back(std::make_pair(KC, Pred)); 939 } 940 941 return !Result.empty(); 942 } 943 944 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 945 /// in an undefined jump, decide which block is best to revector to. 946 /// 947 /// Since we can pick an arbitrary destination, we pick the successor with the 948 /// fewest predecessors. This should reduce the in-degree of the others. 949 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 950 TerminatorInst *BBTerm = BB->getTerminator(); 951 unsigned MinSucc = 0; 952 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 953 // Compute the successor with the minimum number of predecessors. 954 unsigned MinNumPreds = pred_size(TestBB); 955 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 956 TestBB = BBTerm->getSuccessor(i); 957 unsigned NumPreds = pred_size(TestBB); 958 if (NumPreds < MinNumPreds) { 959 MinSucc = i; 960 MinNumPreds = NumPreds; 961 } 962 } 963 964 return MinSucc; 965 } 966 967 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 968 if (!BB->hasAddressTaken()) return false; 969 970 // If the block has its address taken, it may be a tree of dead constants 971 // hanging off of it. These shouldn't keep the block alive. 972 BlockAddress *BA = BlockAddress::get(BB); 973 BA->removeDeadConstantUsers(); 974 return !BA->use_empty(); 975 } 976 977 /// ProcessBlock - If there are any predecessors whose control can be threaded 978 /// through to a successor, transform them now. 979 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 980 // If the block is trivially dead, just return and let the caller nuke it. 981 // This simplifies other transformations. 982 if (DTU->isBBPendingDeletion(BB) || 983 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 984 return false; 985 986 // If this block has a single predecessor, and if that pred has a single 987 // successor, merge the blocks. This encourages recursive jump threading 988 // because now the condition in this block can be threaded through 989 // predecessors of our predecessor block. 990 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 991 const TerminatorInst *TI = SinglePred->getTerminator(); 992 if (!TI->isExceptionalTerminator() && TI->getNumSuccessors() == 1 && 993 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 994 // If SinglePred was a loop header, BB becomes one. 995 if (LoopHeaders.erase(SinglePred)) 996 LoopHeaders.insert(BB); 997 998 LVI->eraseBlock(SinglePred); 999 MergeBasicBlockIntoOnlyPred(BB, DTU); 1000 1001 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 1002 // BB code within one basic block `BB`), we need to invalidate the LVI 1003 // information associated with BB, because the LVI information need not be 1004 // true for all of BB after the merge. For example, 1005 // Before the merge, LVI info and code is as follows: 1006 // SinglePred: <LVI info1 for %p val> 1007 // %y = use of %p 1008 // call @exit() // need not transfer execution to successor. 1009 // assume(%p) // from this point on %p is true 1010 // br label %BB 1011 // BB: <LVI info2 for %p val, i.e. %p is true> 1012 // %x = use of %p 1013 // br label exit 1014 // 1015 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1016 // (info2 and info1 respectively). After the merge and the deletion of the 1017 // LVI info1 for SinglePred. We have the following code: 1018 // BB: <LVI info2 for %p val> 1019 // %y = use of %p 1020 // call @exit() 1021 // assume(%p) 1022 // %x = use of %p <-- LVI info2 is correct from here onwards. 1023 // br label exit 1024 // LVI info2 for BB is incorrect at the beginning of BB. 1025 1026 // Invalidate LVI information for BB if the LVI is not provably true for 1027 // all of BB. 1028 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1029 LVI->eraseBlock(BB); 1030 return true; 1031 } 1032 } 1033 1034 if (TryToUnfoldSelectInCurrBB(BB)) 1035 return true; 1036 1037 // Look if we can propagate guards to predecessors. 1038 if (HasGuards && ProcessGuards(BB)) 1039 return true; 1040 1041 // What kind of constant we're looking for. 1042 ConstantPreference Preference = WantInteger; 1043 1044 // Look to see if the terminator is a conditional branch, switch or indirect 1045 // branch, if not we can't thread it. 1046 Value *Condition; 1047 Instruction *Terminator = BB->getTerminator(); 1048 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1049 // Can't thread an unconditional jump. 1050 if (BI->isUnconditional()) return false; 1051 Condition = BI->getCondition(); 1052 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1053 Condition = SI->getCondition(); 1054 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1055 // Can't thread indirect branch with no successors. 1056 if (IB->getNumSuccessors() == 0) return false; 1057 Condition = IB->getAddress()->stripPointerCasts(); 1058 Preference = WantBlockAddress; 1059 } else { 1060 return false; // Must be an invoke. 1061 } 1062 1063 // Run constant folding to see if we can reduce the condition to a simple 1064 // constant. 1065 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1066 Value *SimpleVal = 1067 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1068 if (SimpleVal) { 1069 I->replaceAllUsesWith(SimpleVal); 1070 if (isInstructionTriviallyDead(I, TLI)) 1071 I->eraseFromParent(); 1072 Condition = SimpleVal; 1073 } 1074 } 1075 1076 // If the terminator is branching on an undef, we can pick any of the 1077 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1078 if (isa<UndefValue>(Condition)) { 1079 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1080 std::vector<DominatorTree::UpdateType> Updates; 1081 1082 // Fold the branch/switch. 1083 TerminatorInst *BBTerm = BB->getTerminator(); 1084 Updates.reserve(BBTerm->getNumSuccessors()); 1085 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1086 if (i == BestSucc) continue; 1087 BasicBlock *Succ = BBTerm->getSuccessor(i); 1088 Succ->removePredecessor(BB, true); 1089 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1090 } 1091 1092 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1093 << "' folding undef terminator: " << *BBTerm << '\n'); 1094 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1095 BBTerm->eraseFromParent(); 1096 DTU->applyUpdates(Updates); 1097 return true; 1098 } 1099 1100 // If the terminator of this block is branching on a constant, simplify the 1101 // terminator to an unconditional branch. This can occur due to threading in 1102 // other blocks. 1103 if (getKnownConstant(Condition, Preference)) { 1104 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1105 << "' folding terminator: " << *BB->getTerminator() 1106 << '\n'); 1107 ++NumFolds; 1108 ConstantFoldTerminator(BB, true, nullptr, DTU); 1109 return true; 1110 } 1111 1112 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1113 1114 // All the rest of our checks depend on the condition being an instruction. 1115 if (!CondInst) { 1116 // FIXME: Unify this with code below. 1117 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1118 return true; 1119 return false; 1120 } 1121 1122 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1123 // If we're branching on a conditional, LVI might be able to determine 1124 // it's value at the branch instruction. We only handle comparisons 1125 // against a constant at this time. 1126 // TODO: This should be extended to handle switches as well. 1127 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1128 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1129 if (CondBr && CondConst) { 1130 // We should have returned as soon as we turn a conditional branch to 1131 // unconditional. Because its no longer interesting as far as jump 1132 // threading is concerned. 1133 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1134 1135 if (DTU->hasPendingDomTreeUpdates()) 1136 LVI->disableDT(); 1137 else 1138 LVI->enableDT(); 1139 LazyValueInfo::Tristate Ret = 1140 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1141 CondConst, CondBr); 1142 if (Ret != LazyValueInfo::Unknown) { 1143 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1144 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1145 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1146 ToRemoveSucc->removePredecessor(BB, true); 1147 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1148 CondBr->eraseFromParent(); 1149 if (CondCmp->use_empty()) 1150 CondCmp->eraseFromParent(); 1151 // We can safely replace *some* uses of the CondInst if it has 1152 // exactly one value as returned by LVI. RAUW is incorrect in the 1153 // presence of guards and assumes, that have the `Cond` as the use. This 1154 // is because we use the guards/assume to reason about the `Cond` value 1155 // at the end of block, but RAUW unconditionally replaces all uses 1156 // including the guards/assumes themselves and the uses before the 1157 // guard/assume. 1158 else if (CondCmp->getParent() == BB) { 1159 auto *CI = Ret == LazyValueInfo::True ? 1160 ConstantInt::getTrue(CondCmp->getType()) : 1161 ConstantInt::getFalse(CondCmp->getType()); 1162 ReplaceFoldableUses(CondCmp, CI); 1163 } 1164 DTU->deleteEdgeRelaxed(BB, ToRemoveSucc); 1165 return true; 1166 } 1167 1168 // We did not manage to simplify this branch, try to see whether 1169 // CondCmp depends on a known phi-select pattern. 1170 if (TryToUnfoldSelect(CondCmp, BB)) 1171 return true; 1172 } 1173 } 1174 1175 // Check for some cases that are worth simplifying. Right now we want to look 1176 // for loads that are used by a switch or by the condition for the branch. If 1177 // we see one, check to see if it's partially redundant. If so, insert a PHI 1178 // which can then be used to thread the values. 1179 Value *SimplifyValue = CondInst; 1180 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1181 if (isa<Constant>(CondCmp->getOperand(1))) 1182 SimplifyValue = CondCmp->getOperand(0); 1183 1184 // TODO: There are other places where load PRE would be profitable, such as 1185 // more complex comparisons. 1186 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1187 if (SimplifyPartiallyRedundantLoad(LoadI)) 1188 return true; 1189 1190 // Before threading, try to propagate profile data backwards: 1191 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1192 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1193 updatePredecessorProfileMetadata(PN, BB); 1194 1195 // Handle a variety of cases where we are branching on something derived from 1196 // a PHI node in the current block. If we can prove that any predecessors 1197 // compute a predictable value based on a PHI node, thread those predecessors. 1198 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1199 return true; 1200 1201 // If this is an otherwise-unfoldable branch on a phi node in the current 1202 // block, see if we can simplify. 1203 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1204 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1205 return ProcessBranchOnPHI(PN); 1206 1207 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1208 if (CondInst->getOpcode() == Instruction::Xor && 1209 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1210 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1211 1212 // Search for a stronger dominating condition that can be used to simplify a 1213 // conditional branch leaving BB. 1214 if (ProcessImpliedCondition(BB)) 1215 return true; 1216 1217 return false; 1218 } 1219 1220 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1221 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1222 if (!BI || !BI->isConditional()) 1223 return false; 1224 1225 Value *Cond = BI->getCondition(); 1226 BasicBlock *CurrentBB = BB; 1227 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1228 unsigned Iter = 0; 1229 1230 auto &DL = BB->getModule()->getDataLayout(); 1231 1232 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1233 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1234 if (!PBI || !PBI->isConditional()) 1235 return false; 1236 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1237 return false; 1238 1239 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1240 Optional<bool> Implication = 1241 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1242 if (Implication) { 1243 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1244 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1245 RemoveSucc->removePredecessor(BB); 1246 BranchInst::Create(KeepSucc, BI); 1247 BI->eraseFromParent(); 1248 DTU->deleteEdgeRelaxed(BB, RemoveSucc); 1249 return true; 1250 } 1251 CurrentBB = CurrentPred; 1252 CurrentPred = CurrentBB->getSinglePredecessor(); 1253 } 1254 1255 return false; 1256 } 1257 1258 /// Return true if Op is an instruction defined in the given block. 1259 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1260 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1261 if (OpInst->getParent() == BB) 1262 return true; 1263 return false; 1264 } 1265 1266 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1267 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1268 /// This is an important optimization that encourages jump threading, and needs 1269 /// to be run interlaced with other jump threading tasks. 1270 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1271 // Don't hack volatile and ordered loads. 1272 if (!LoadI->isUnordered()) return false; 1273 1274 // If the load is defined in a block with exactly one predecessor, it can't be 1275 // partially redundant. 1276 BasicBlock *LoadBB = LoadI->getParent(); 1277 if (LoadBB->getSinglePredecessor()) 1278 return false; 1279 1280 // If the load is defined in an EH pad, it can't be partially redundant, 1281 // because the edges between the invoke and the EH pad cannot have other 1282 // instructions between them. 1283 if (LoadBB->isEHPad()) 1284 return false; 1285 1286 Value *LoadedPtr = LoadI->getOperand(0); 1287 1288 // If the loaded operand is defined in the LoadBB and its not a phi, 1289 // it can't be available in predecessors. 1290 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1291 return false; 1292 1293 // Scan a few instructions up from the load, to see if it is obviously live at 1294 // the entry to its block. 1295 BasicBlock::iterator BBIt(LoadI); 1296 bool IsLoadCSE; 1297 if (Value *AvailableVal = FindAvailableLoadedValue( 1298 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1299 // If the value of the load is locally available within the block, just use 1300 // it. This frequently occurs for reg2mem'd allocas. 1301 1302 if (IsLoadCSE) { 1303 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1304 combineMetadataForCSE(NLoadI, LoadI, false); 1305 }; 1306 1307 // If the returned value is the load itself, replace with an undef. This can 1308 // only happen in dead loops. 1309 if (AvailableVal == LoadI) 1310 AvailableVal = UndefValue::get(LoadI->getType()); 1311 if (AvailableVal->getType() != LoadI->getType()) 1312 AvailableVal = CastInst::CreateBitOrPointerCast( 1313 AvailableVal, LoadI->getType(), "", LoadI); 1314 LoadI->replaceAllUsesWith(AvailableVal); 1315 LoadI->eraseFromParent(); 1316 return true; 1317 } 1318 1319 // Otherwise, if we scanned the whole block and got to the top of the block, 1320 // we know the block is locally transparent to the load. If not, something 1321 // might clobber its value. 1322 if (BBIt != LoadBB->begin()) 1323 return false; 1324 1325 // If all of the loads and stores that feed the value have the same AA tags, 1326 // then we can propagate them onto any newly inserted loads. 1327 AAMDNodes AATags; 1328 LoadI->getAAMetadata(AATags); 1329 1330 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1331 1332 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1333 1334 AvailablePredsTy AvailablePreds; 1335 BasicBlock *OneUnavailablePred = nullptr; 1336 SmallVector<LoadInst*, 8> CSELoads; 1337 1338 // If we got here, the loaded value is transparent through to the start of the 1339 // block. Check to see if it is available in any of the predecessor blocks. 1340 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1341 // If we already scanned this predecessor, skip it. 1342 if (!PredsScanned.insert(PredBB).second) 1343 continue; 1344 1345 BBIt = PredBB->end(); 1346 unsigned NumScanedInst = 0; 1347 Value *PredAvailable = nullptr; 1348 // NOTE: We don't CSE load that is volatile or anything stronger than 1349 // unordered, that should have been checked when we entered the function. 1350 assert(LoadI->isUnordered() && 1351 "Attempting to CSE volatile or atomic loads"); 1352 // If this is a load on a phi pointer, phi-translate it and search 1353 // for available load/store to the pointer in predecessors. 1354 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1355 PredAvailable = FindAvailablePtrLoadStore( 1356 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1357 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1358 1359 // If PredBB has a single predecessor, continue scanning through the 1360 // single predecessor. 1361 BasicBlock *SinglePredBB = PredBB; 1362 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1363 NumScanedInst < DefMaxInstsToScan) { 1364 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1365 if (SinglePredBB) { 1366 BBIt = SinglePredBB->end(); 1367 PredAvailable = FindAvailablePtrLoadStore( 1368 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1369 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1370 &NumScanedInst); 1371 } 1372 } 1373 1374 if (!PredAvailable) { 1375 OneUnavailablePred = PredBB; 1376 continue; 1377 } 1378 1379 if (IsLoadCSE) 1380 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1381 1382 // If so, this load is partially redundant. Remember this info so that we 1383 // can create a PHI node. 1384 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1385 } 1386 1387 // If the loaded value isn't available in any predecessor, it isn't partially 1388 // redundant. 1389 if (AvailablePreds.empty()) return false; 1390 1391 // Okay, the loaded value is available in at least one (and maybe all!) 1392 // predecessors. If the value is unavailable in more than one unique 1393 // predecessor, we want to insert a merge block for those common predecessors. 1394 // This ensures that we only have to insert one reload, thus not increasing 1395 // code size. 1396 BasicBlock *UnavailablePred = nullptr; 1397 1398 // If the value is unavailable in one of predecessors, we will end up 1399 // inserting a new instruction into them. It is only valid if all the 1400 // instructions before LoadI are guaranteed to pass execution to its 1401 // successor, or if LoadI is safe to speculate. 1402 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1403 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1404 // It requires domination tree analysis, so for this simple case it is an 1405 // overkill. 1406 if (PredsScanned.size() != AvailablePreds.size() && 1407 !isSafeToSpeculativelyExecute(LoadI)) 1408 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1409 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1410 return false; 1411 1412 // If there is exactly one predecessor where the value is unavailable, the 1413 // already computed 'OneUnavailablePred' block is it. If it ends in an 1414 // unconditional branch, we know that it isn't a critical edge. 1415 if (PredsScanned.size() == AvailablePreds.size()+1 && 1416 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1417 UnavailablePred = OneUnavailablePred; 1418 } else if (PredsScanned.size() != AvailablePreds.size()) { 1419 // Otherwise, we had multiple unavailable predecessors or we had a critical 1420 // edge from the one. 1421 SmallVector<BasicBlock*, 8> PredsToSplit; 1422 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1423 1424 for (const auto &AvailablePred : AvailablePreds) 1425 AvailablePredSet.insert(AvailablePred.first); 1426 1427 // Add all the unavailable predecessors to the PredsToSplit list. 1428 for (BasicBlock *P : predecessors(LoadBB)) { 1429 // If the predecessor is an indirect goto, we can't split the edge. 1430 if (isa<IndirectBrInst>(P->getTerminator())) 1431 return false; 1432 1433 if (!AvailablePredSet.count(P)) 1434 PredsToSplit.push_back(P); 1435 } 1436 1437 // Split them out to their own block. 1438 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1439 } 1440 1441 // If the value isn't available in all predecessors, then there will be 1442 // exactly one where it isn't available. Insert a load on that edge and add 1443 // it to the AvailablePreds list. 1444 if (UnavailablePred) { 1445 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1446 "Can't handle critical edge here!"); 1447 LoadInst *NewVal = 1448 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1449 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1450 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1451 UnavailablePred->getTerminator()); 1452 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1453 if (AATags) 1454 NewVal->setAAMetadata(AATags); 1455 1456 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1457 } 1458 1459 // Now we know that each predecessor of this block has a value in 1460 // AvailablePreds, sort them for efficient access as we're walking the preds. 1461 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1462 1463 // Create a PHI node at the start of the block for the PRE'd load value. 1464 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1465 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1466 &LoadBB->front()); 1467 PN->takeName(LoadI); 1468 PN->setDebugLoc(LoadI->getDebugLoc()); 1469 1470 // Insert new entries into the PHI for each predecessor. A single block may 1471 // have multiple entries here. 1472 for (pred_iterator PI = PB; PI != PE; ++PI) { 1473 BasicBlock *P = *PI; 1474 AvailablePredsTy::iterator I = 1475 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1476 std::make_pair(P, (Value*)nullptr)); 1477 1478 assert(I != AvailablePreds.end() && I->first == P && 1479 "Didn't find entry for predecessor!"); 1480 1481 // If we have an available predecessor but it requires casting, insert the 1482 // cast in the predecessor and use the cast. Note that we have to update the 1483 // AvailablePreds vector as we go so that all of the PHI entries for this 1484 // predecessor use the same bitcast. 1485 Value *&PredV = I->second; 1486 if (PredV->getType() != LoadI->getType()) 1487 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1488 P->getTerminator()); 1489 1490 PN->addIncoming(PredV, I->first); 1491 } 1492 1493 for (LoadInst *PredLoadI : CSELoads) { 1494 combineMetadataForCSE(PredLoadI, LoadI, true); 1495 } 1496 1497 LoadI->replaceAllUsesWith(PN); 1498 LoadI->eraseFromParent(); 1499 1500 return true; 1501 } 1502 1503 /// FindMostPopularDest - The specified list contains multiple possible 1504 /// threadable destinations. Pick the one that occurs the most frequently in 1505 /// the list. 1506 static BasicBlock * 1507 FindMostPopularDest(BasicBlock *BB, 1508 const SmallVectorImpl<std::pair<BasicBlock *, 1509 BasicBlock *>> &PredToDestList) { 1510 assert(!PredToDestList.empty()); 1511 1512 // Determine popularity. If there are multiple possible destinations, we 1513 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1514 // blocks with known and real destinations to threading undef. We'll handle 1515 // them later if interesting. 1516 DenseMap<BasicBlock*, unsigned> DestPopularity; 1517 for (const auto &PredToDest : PredToDestList) 1518 if (PredToDest.second) 1519 DestPopularity[PredToDest.second]++; 1520 1521 if (DestPopularity.empty()) 1522 return nullptr; 1523 1524 // Find the most popular dest. 1525 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1526 BasicBlock *MostPopularDest = DPI->first; 1527 unsigned Popularity = DPI->second; 1528 SmallVector<BasicBlock*, 4> SamePopularity; 1529 1530 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1531 // If the popularity of this entry isn't higher than the popularity we've 1532 // seen so far, ignore it. 1533 if (DPI->second < Popularity) 1534 ; // ignore. 1535 else if (DPI->second == Popularity) { 1536 // If it is the same as what we've seen so far, keep track of it. 1537 SamePopularity.push_back(DPI->first); 1538 } else { 1539 // If it is more popular, remember it. 1540 SamePopularity.clear(); 1541 MostPopularDest = DPI->first; 1542 Popularity = DPI->second; 1543 } 1544 } 1545 1546 // Okay, now we know the most popular destination. If there is more than one 1547 // destination, we need to determine one. This is arbitrary, but we need 1548 // to make a deterministic decision. Pick the first one that appears in the 1549 // successor list. 1550 if (!SamePopularity.empty()) { 1551 SamePopularity.push_back(MostPopularDest); 1552 TerminatorInst *TI = BB->getTerminator(); 1553 for (unsigned i = 0; ; ++i) { 1554 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1555 1556 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1557 continue; 1558 1559 MostPopularDest = TI->getSuccessor(i); 1560 break; 1561 } 1562 } 1563 1564 // Okay, we have finally picked the most popular destination. 1565 return MostPopularDest; 1566 } 1567 1568 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1569 ConstantPreference Preference, 1570 Instruction *CxtI) { 1571 // If threading this would thread across a loop header, don't even try to 1572 // thread the edge. 1573 if (LoopHeaders.count(BB)) 1574 return false; 1575 1576 PredValueInfoTy PredValues; 1577 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1578 return false; 1579 1580 assert(!PredValues.empty() && 1581 "ComputeValueKnownInPredecessors returned true with no values"); 1582 1583 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1584 for (const auto &PredValue : PredValues) { 1585 dbgs() << " BB '" << BB->getName() 1586 << "': FOUND condition = " << *PredValue.first 1587 << " for pred '" << PredValue.second->getName() << "'.\n"; 1588 }); 1589 1590 // Decide what we want to thread through. Convert our list of known values to 1591 // a list of known destinations for each pred. This also discards duplicate 1592 // predecessors and keeps track of the undefined inputs (which are represented 1593 // as a null dest in the PredToDestList). 1594 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1595 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1596 1597 BasicBlock *OnlyDest = nullptr; 1598 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1599 Constant *OnlyVal = nullptr; 1600 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1601 1602 unsigned PredWithKnownDest = 0; 1603 for (const auto &PredValue : PredValues) { 1604 BasicBlock *Pred = PredValue.second; 1605 if (!SeenPreds.insert(Pred).second) 1606 continue; // Duplicate predecessor entry. 1607 1608 Constant *Val = PredValue.first; 1609 1610 BasicBlock *DestBB; 1611 if (isa<UndefValue>(Val)) 1612 DestBB = nullptr; 1613 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1614 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1615 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1616 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1617 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1618 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1619 } else { 1620 assert(isa<IndirectBrInst>(BB->getTerminator()) 1621 && "Unexpected terminator"); 1622 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1623 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1624 } 1625 1626 // If we have exactly one destination, remember it for efficiency below. 1627 if (PredToDestList.empty()) { 1628 OnlyDest = DestBB; 1629 OnlyVal = Val; 1630 } else { 1631 if (OnlyDest != DestBB) 1632 OnlyDest = MultipleDestSentinel; 1633 // It possible we have same destination, but different value, e.g. default 1634 // case in switchinst. 1635 if (Val != OnlyVal) 1636 OnlyVal = MultipleVal; 1637 } 1638 1639 // We know where this predecessor is going. 1640 ++PredWithKnownDest; 1641 1642 // If the predecessor ends with an indirect goto, we can't change its 1643 // destination. 1644 if (isa<IndirectBrInst>(Pred->getTerminator())) 1645 continue; 1646 1647 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1648 } 1649 1650 // If all edges were unthreadable, we fail. 1651 if (PredToDestList.empty()) 1652 return false; 1653 1654 // If all the predecessors go to a single known successor, we want to fold, 1655 // not thread. By doing so, we do not need to duplicate the current block and 1656 // also miss potential opportunities in case we dont/cant duplicate. 1657 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1658 if (PredWithKnownDest == (size_t)pred_size(BB)) { 1659 bool SeenFirstBranchToOnlyDest = false; 1660 std::vector <DominatorTree::UpdateType> Updates; 1661 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1662 for (BasicBlock *SuccBB : successors(BB)) { 1663 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1664 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1665 } else { 1666 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1667 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1668 } 1669 } 1670 1671 // Finally update the terminator. 1672 TerminatorInst *Term = BB->getTerminator(); 1673 BranchInst::Create(OnlyDest, Term); 1674 Term->eraseFromParent(); 1675 DTU->applyUpdates(Updates); 1676 1677 // If the condition is now dead due to the removal of the old terminator, 1678 // erase it. 1679 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1680 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1681 CondInst->eraseFromParent(); 1682 // We can safely replace *some* uses of the CondInst if it has 1683 // exactly one value as returned by LVI. RAUW is incorrect in the 1684 // presence of guards and assumes, that have the `Cond` as the use. This 1685 // is because we use the guards/assume to reason about the `Cond` value 1686 // at the end of block, but RAUW unconditionally replaces all uses 1687 // including the guards/assumes themselves and the uses before the 1688 // guard/assume. 1689 else if (OnlyVal && OnlyVal != MultipleVal && 1690 CondInst->getParent() == BB) 1691 ReplaceFoldableUses(CondInst, OnlyVal); 1692 } 1693 return true; 1694 } 1695 } 1696 1697 // Determine which is the most common successor. If we have many inputs and 1698 // this block is a switch, we want to start by threading the batch that goes 1699 // to the most popular destination first. If we only know about one 1700 // threadable destination (the common case) we can avoid this. 1701 BasicBlock *MostPopularDest = OnlyDest; 1702 1703 if (MostPopularDest == MultipleDestSentinel) { 1704 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1705 // won't process them, but we might have other destination that are eligible 1706 // and we still want to process. 1707 erase_if(PredToDestList, 1708 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1709 return LoopHeaders.count(PredToDest.second) != 0; 1710 }); 1711 1712 if (PredToDestList.empty()) 1713 return false; 1714 1715 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1716 } 1717 1718 // Now that we know what the most popular destination is, factor all 1719 // predecessors that will jump to it into a single predecessor. 1720 SmallVector<BasicBlock*, 16> PredsToFactor; 1721 for (const auto &PredToDest : PredToDestList) 1722 if (PredToDest.second == MostPopularDest) { 1723 BasicBlock *Pred = PredToDest.first; 1724 1725 // This predecessor may be a switch or something else that has multiple 1726 // edges to the block. Factor each of these edges by listing them 1727 // according to # occurrences in PredsToFactor. 1728 for (BasicBlock *Succ : successors(Pred)) 1729 if (Succ == BB) 1730 PredsToFactor.push_back(Pred); 1731 } 1732 1733 // If the threadable edges are branching on an undefined value, we get to pick 1734 // the destination that these predecessors should get to. 1735 if (!MostPopularDest) 1736 MostPopularDest = BB->getTerminator()-> 1737 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1738 1739 // Ok, try to thread it! 1740 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1741 } 1742 1743 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1744 /// a PHI node in the current block. See if there are any simplifications we 1745 /// can do based on inputs to the phi node. 1746 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1747 BasicBlock *BB = PN->getParent(); 1748 1749 // TODO: We could make use of this to do it once for blocks with common PHI 1750 // values. 1751 SmallVector<BasicBlock*, 1> PredBBs; 1752 PredBBs.resize(1); 1753 1754 // If any of the predecessor blocks end in an unconditional branch, we can 1755 // *duplicate* the conditional branch into that block in order to further 1756 // encourage jump threading and to eliminate cases where we have branch on a 1757 // phi of an icmp (branch on icmp is much better). 1758 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1759 BasicBlock *PredBB = PN->getIncomingBlock(i); 1760 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1761 if (PredBr->isUnconditional()) { 1762 PredBBs[0] = PredBB; 1763 // Try to duplicate BB into PredBB. 1764 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1765 return true; 1766 } 1767 } 1768 1769 return false; 1770 } 1771 1772 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1773 /// a xor instruction in the current block. See if there are any 1774 /// simplifications we can do based on inputs to the xor. 1775 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1776 BasicBlock *BB = BO->getParent(); 1777 1778 // If either the LHS or RHS of the xor is a constant, don't do this 1779 // optimization. 1780 if (isa<ConstantInt>(BO->getOperand(0)) || 1781 isa<ConstantInt>(BO->getOperand(1))) 1782 return false; 1783 1784 // If the first instruction in BB isn't a phi, we won't be able to infer 1785 // anything special about any particular predecessor. 1786 if (!isa<PHINode>(BB->front())) 1787 return false; 1788 1789 // If this BB is a landing pad, we won't be able to split the edge into it. 1790 if (BB->isEHPad()) 1791 return false; 1792 1793 // If we have a xor as the branch input to this block, and we know that the 1794 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1795 // the condition into the predecessor and fix that value to true, saving some 1796 // logical ops on that path and encouraging other paths to simplify. 1797 // 1798 // This copies something like this: 1799 // 1800 // BB: 1801 // %X = phi i1 [1], [%X'] 1802 // %Y = icmp eq i32 %A, %B 1803 // %Z = xor i1 %X, %Y 1804 // br i1 %Z, ... 1805 // 1806 // Into: 1807 // BB': 1808 // %Y = icmp ne i32 %A, %B 1809 // br i1 %Y, ... 1810 1811 PredValueInfoTy XorOpValues; 1812 bool isLHS = true; 1813 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1814 WantInteger, BO)) { 1815 assert(XorOpValues.empty()); 1816 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1817 WantInteger, BO)) 1818 return false; 1819 isLHS = false; 1820 } 1821 1822 assert(!XorOpValues.empty() && 1823 "ComputeValueKnownInPredecessors returned true with no values"); 1824 1825 // Scan the information to see which is most popular: true or false. The 1826 // predecessors can be of the set true, false, or undef. 1827 unsigned NumTrue = 0, NumFalse = 0; 1828 for (const auto &XorOpValue : XorOpValues) { 1829 if (isa<UndefValue>(XorOpValue.first)) 1830 // Ignore undefs for the count. 1831 continue; 1832 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1833 ++NumFalse; 1834 else 1835 ++NumTrue; 1836 } 1837 1838 // Determine which value to split on, true, false, or undef if neither. 1839 ConstantInt *SplitVal = nullptr; 1840 if (NumTrue > NumFalse) 1841 SplitVal = ConstantInt::getTrue(BB->getContext()); 1842 else if (NumTrue != 0 || NumFalse != 0) 1843 SplitVal = ConstantInt::getFalse(BB->getContext()); 1844 1845 // Collect all of the blocks that this can be folded into so that we can 1846 // factor this once and clone it once. 1847 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1848 for (const auto &XorOpValue : XorOpValues) { 1849 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1850 continue; 1851 1852 BlocksToFoldInto.push_back(XorOpValue.second); 1853 } 1854 1855 // If we inferred a value for all of the predecessors, then duplication won't 1856 // help us. However, we can just replace the LHS or RHS with the constant. 1857 if (BlocksToFoldInto.size() == 1858 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1859 if (!SplitVal) { 1860 // If all preds provide undef, just nuke the xor, because it is undef too. 1861 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1862 BO->eraseFromParent(); 1863 } else if (SplitVal->isZero()) { 1864 // If all preds provide 0, replace the xor with the other input. 1865 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1866 BO->eraseFromParent(); 1867 } else { 1868 // If all preds provide 1, set the computed value to 1. 1869 BO->setOperand(!isLHS, SplitVal); 1870 } 1871 1872 return true; 1873 } 1874 1875 // Try to duplicate BB into PredBB. 1876 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1877 } 1878 1879 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1880 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1881 /// NewPred using the entries from OldPred (suitably mapped). 1882 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1883 BasicBlock *OldPred, 1884 BasicBlock *NewPred, 1885 DenseMap<Instruction*, Value*> &ValueMap) { 1886 for (PHINode &PN : PHIBB->phis()) { 1887 // Ok, we have a PHI node. Figure out what the incoming value was for the 1888 // DestBlock. 1889 Value *IV = PN.getIncomingValueForBlock(OldPred); 1890 1891 // Remap the value if necessary. 1892 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1893 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1894 if (I != ValueMap.end()) 1895 IV = I->second; 1896 } 1897 1898 PN.addIncoming(IV, NewPred); 1899 } 1900 } 1901 1902 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1903 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1904 /// across BB. Transform the IR to reflect this change. 1905 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1906 const SmallVectorImpl<BasicBlock *> &PredBBs, 1907 BasicBlock *SuccBB) { 1908 // If threading to the same block as we come from, we would infinite loop. 1909 if (SuccBB == BB) { 1910 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1911 << "' - would thread to self!\n"); 1912 return false; 1913 } 1914 1915 // If threading this would thread across a loop header, don't thread the edge. 1916 // See the comments above FindLoopHeaders for justifications and caveats. 1917 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1918 LLVM_DEBUG({ 1919 bool BBIsHeader = LoopHeaders.count(BB); 1920 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1921 dbgs() << " Not threading across " 1922 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1923 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1924 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1925 }); 1926 return false; 1927 } 1928 1929 unsigned JumpThreadCost = 1930 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1931 if (JumpThreadCost > BBDupThreshold) { 1932 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1933 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1934 return false; 1935 } 1936 1937 // And finally, do it! Start by factoring the predecessors if needed. 1938 BasicBlock *PredBB; 1939 if (PredBBs.size() == 1) 1940 PredBB = PredBBs[0]; 1941 else { 1942 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1943 << " common predecessors.\n"); 1944 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1945 } 1946 1947 // And finally, do it! 1948 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 1949 << "' to '" << SuccBB->getName() 1950 << "' with cost: " << JumpThreadCost 1951 << ", across block:\n " << *BB << "\n"); 1952 1953 if (DTU->hasPendingDomTreeUpdates()) 1954 LVI->disableDT(); 1955 else 1956 LVI->enableDT(); 1957 LVI->threadEdge(PredBB, BB, SuccBB); 1958 1959 // We are going to have to map operands from the original BB block to the new 1960 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1961 // account for entry from PredBB. 1962 DenseMap<Instruction*, Value*> ValueMapping; 1963 1964 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1965 BB->getName()+".thread", 1966 BB->getParent(), BB); 1967 NewBB->moveAfter(PredBB); 1968 1969 // Set the block frequency of NewBB. 1970 if (HasProfileData) { 1971 auto NewBBFreq = 1972 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1973 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1974 } 1975 1976 BasicBlock::iterator BI = BB->begin(); 1977 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1978 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1979 1980 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1981 // mapping and using it to remap operands in the cloned instructions. 1982 for (; !BI->isTerminator(); ++BI) { 1983 Instruction *New = BI->clone(); 1984 New->setName(BI->getName()); 1985 NewBB->getInstList().push_back(New); 1986 ValueMapping[&*BI] = New; 1987 1988 // Remap operands to patch up intra-block references. 1989 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1990 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1991 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1992 if (I != ValueMapping.end()) 1993 New->setOperand(i, I->second); 1994 } 1995 } 1996 1997 // We didn't copy the terminator from BB over to NewBB, because there is now 1998 // an unconditional jump to SuccBB. Insert the unconditional jump. 1999 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2000 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2001 2002 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2003 // PHI nodes for NewBB now. 2004 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2005 2006 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2007 // eliminates predecessors from BB, which requires us to simplify any PHI 2008 // nodes in BB. 2009 TerminatorInst *PredTerm = PredBB->getTerminator(); 2010 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2011 if (PredTerm->getSuccessor(i) == BB) { 2012 BB->removePredecessor(PredBB, true); 2013 PredTerm->setSuccessor(i, NewBB); 2014 } 2015 2016 // Enqueue required DT updates. 2017 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2018 {DominatorTree::Insert, PredBB, NewBB}, 2019 {DominatorTree::Delete, PredBB, BB}}); 2020 2021 // If there were values defined in BB that are used outside the block, then we 2022 // now have to update all uses of the value to use either the original value, 2023 // the cloned value, or some PHI derived value. This can require arbitrary 2024 // PHI insertion, of which we are prepared to do, clean these up now. 2025 SSAUpdater SSAUpdate; 2026 SmallVector<Use*, 16> UsesToRename; 2027 2028 for (Instruction &I : *BB) { 2029 // Scan all uses of this instruction to see if their uses are no longer 2030 // dominated by the previous def and if so, record them in UsesToRename. 2031 // Also, skip phi operands from PredBB - we'll remove them anyway. 2032 for (Use &U : I.uses()) { 2033 Instruction *User = cast<Instruction>(U.getUser()); 2034 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2035 if (UserPN->getIncomingBlock(U) == BB) 2036 continue; 2037 } else if (User->getParent() == BB) 2038 continue; 2039 2040 UsesToRename.push_back(&U); 2041 } 2042 2043 // If there are no uses outside the block, we're done with this instruction. 2044 if (UsesToRename.empty()) 2045 continue; 2046 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2047 2048 // We found a use of I outside of BB. Rename all uses of I that are outside 2049 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2050 // with the two values we know. 2051 SSAUpdate.Initialize(I.getType(), I.getName()); 2052 SSAUpdate.AddAvailableValue(BB, &I); 2053 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2054 2055 while (!UsesToRename.empty()) 2056 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2057 LLVM_DEBUG(dbgs() << "\n"); 2058 } 2059 2060 // At this point, the IR is fully up to date and consistent. Do a quick scan 2061 // over the new instructions and zap any that are constants or dead. This 2062 // frequently happens because of phi translation. 2063 SimplifyInstructionsInBlock(NewBB, TLI); 2064 2065 // Update the edge weight from BB to SuccBB, which should be less than before. 2066 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2067 2068 // Threaded an edge! 2069 ++NumThreads; 2070 return true; 2071 } 2072 2073 /// Create a new basic block that will be the predecessor of BB and successor of 2074 /// all blocks in Preds. When profile data is available, update the frequency of 2075 /// this new block. 2076 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2077 ArrayRef<BasicBlock *> Preds, 2078 const char *Suffix) { 2079 SmallVector<BasicBlock *, 2> NewBBs; 2080 2081 // Collect the frequencies of all predecessors of BB, which will be used to 2082 // update the edge weight of the result of splitting predecessors. 2083 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2084 if (HasProfileData) 2085 for (auto Pred : Preds) 2086 FreqMap.insert(std::make_pair( 2087 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2088 2089 // In the case when BB is a LandingPad block we create 2 new predecessors 2090 // instead of just one. 2091 if (BB->isLandingPad()) { 2092 std::string NewName = std::string(Suffix) + ".split-lp"; 2093 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2094 } else { 2095 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2096 } 2097 2098 std::vector<DominatorTree::UpdateType> Updates; 2099 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2100 for (auto NewBB : NewBBs) { 2101 BlockFrequency NewBBFreq(0); 2102 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2103 for (auto Pred : predecessors(NewBB)) { 2104 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2105 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2106 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2107 NewBBFreq += FreqMap.lookup(Pred); 2108 } 2109 if (HasProfileData) // Apply the summed frequency to NewBB. 2110 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2111 } 2112 2113 DTU->applyUpdates(Updates); 2114 return NewBBs[0]; 2115 } 2116 2117 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2118 const TerminatorInst *TI = BB->getTerminator(); 2119 assert(TI->getNumSuccessors() > 1 && "not a split"); 2120 2121 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2122 if (!WeightsNode) 2123 return false; 2124 2125 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2126 if (MDName->getString() != "branch_weights") 2127 return false; 2128 2129 // Ensure there are weights for all of the successors. Note that the first 2130 // operand to the metadata node is a name, not a weight. 2131 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2132 } 2133 2134 /// Update the block frequency of BB and branch weight and the metadata on the 2135 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2136 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2137 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2138 BasicBlock *BB, 2139 BasicBlock *NewBB, 2140 BasicBlock *SuccBB) { 2141 if (!HasProfileData) 2142 return; 2143 2144 assert(BFI && BPI && "BFI & BPI should have been created here"); 2145 2146 // As the edge from PredBB to BB is deleted, we have to update the block 2147 // frequency of BB. 2148 auto BBOrigFreq = BFI->getBlockFreq(BB); 2149 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2150 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2151 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2152 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2153 2154 // Collect updated outgoing edges' frequencies from BB and use them to update 2155 // edge probabilities. 2156 SmallVector<uint64_t, 4> BBSuccFreq; 2157 for (BasicBlock *Succ : successors(BB)) { 2158 auto SuccFreq = (Succ == SuccBB) 2159 ? BB2SuccBBFreq - NewBBFreq 2160 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2161 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2162 } 2163 2164 uint64_t MaxBBSuccFreq = 2165 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2166 2167 SmallVector<BranchProbability, 4> BBSuccProbs; 2168 if (MaxBBSuccFreq == 0) 2169 BBSuccProbs.assign(BBSuccFreq.size(), 2170 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2171 else { 2172 for (uint64_t Freq : BBSuccFreq) 2173 BBSuccProbs.push_back( 2174 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2175 // Normalize edge probabilities so that they sum up to one. 2176 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2177 BBSuccProbs.end()); 2178 } 2179 2180 // Update edge probabilities in BPI. 2181 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2182 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2183 2184 // Update the profile metadata as well. 2185 // 2186 // Don't do this if the profile of the transformed blocks was statically 2187 // estimated. (This could occur despite the function having an entry 2188 // frequency in completely cold parts of the CFG.) 2189 // 2190 // In this case we don't want to suggest to subsequent passes that the 2191 // calculated weights are fully consistent. Consider this graph: 2192 // 2193 // check_1 2194 // 50% / | 2195 // eq_1 | 50% 2196 // \ | 2197 // check_2 2198 // 50% / | 2199 // eq_2 | 50% 2200 // \ | 2201 // check_3 2202 // 50% / | 2203 // eq_3 | 50% 2204 // \ | 2205 // 2206 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2207 // the overall probabilities are inconsistent; the total probability that the 2208 // value is either 1, 2 or 3 is 150%. 2209 // 2210 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2211 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2212 // the loop exit edge. Then based solely on static estimation we would assume 2213 // the loop was extremely hot. 2214 // 2215 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2216 // shouldn't make edges extremely likely or unlikely based solely on static 2217 // estimation. 2218 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2219 SmallVector<uint32_t, 4> Weights; 2220 for (auto Prob : BBSuccProbs) 2221 Weights.push_back(Prob.getNumerator()); 2222 2223 auto TI = BB->getTerminator(); 2224 TI->setMetadata( 2225 LLVMContext::MD_prof, 2226 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2227 } 2228 } 2229 2230 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2231 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2232 /// If we can duplicate the contents of BB up into PredBB do so now, this 2233 /// improves the odds that the branch will be on an analyzable instruction like 2234 /// a compare. 2235 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2236 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2237 assert(!PredBBs.empty() && "Can't handle an empty set"); 2238 2239 // If BB is a loop header, then duplicating this block outside the loop would 2240 // cause us to transform this into an irreducible loop, don't do this. 2241 // See the comments above FindLoopHeaders for justifications and caveats. 2242 if (LoopHeaders.count(BB)) { 2243 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2244 << "' into predecessor block '" << PredBBs[0]->getName() 2245 << "' - it might create an irreducible loop!\n"); 2246 return false; 2247 } 2248 2249 unsigned DuplicationCost = 2250 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2251 if (DuplicationCost > BBDupThreshold) { 2252 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2253 << "' - Cost is too high: " << DuplicationCost << "\n"); 2254 return false; 2255 } 2256 2257 // And finally, do it! Start by factoring the predecessors if needed. 2258 std::vector<DominatorTree::UpdateType> Updates; 2259 BasicBlock *PredBB; 2260 if (PredBBs.size() == 1) 2261 PredBB = PredBBs[0]; 2262 else { 2263 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2264 << " common predecessors.\n"); 2265 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2266 } 2267 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2268 2269 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2270 // of PredBB. 2271 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2272 << "' into end of '" << PredBB->getName() 2273 << "' to eliminate branch on phi. Cost: " 2274 << DuplicationCost << " block is:" << *BB << "\n"); 2275 2276 // Unless PredBB ends with an unconditional branch, split the edge so that we 2277 // can just clone the bits from BB into the end of the new PredBB. 2278 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2279 2280 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2281 BasicBlock *OldPredBB = PredBB; 2282 PredBB = SplitEdge(OldPredBB, BB); 2283 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2284 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2285 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2286 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2287 } 2288 2289 // We are going to have to map operands from the original BB block into the 2290 // PredBB block. Evaluate PHI nodes in BB. 2291 DenseMap<Instruction*, Value*> ValueMapping; 2292 2293 BasicBlock::iterator BI = BB->begin(); 2294 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2295 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2296 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2297 // mapping and using it to remap operands in the cloned instructions. 2298 for (; BI != BB->end(); ++BI) { 2299 Instruction *New = BI->clone(); 2300 2301 // Remap operands to patch up intra-block references. 2302 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2303 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2304 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2305 if (I != ValueMapping.end()) 2306 New->setOperand(i, I->second); 2307 } 2308 2309 // If this instruction can be simplified after the operands are updated, 2310 // just use the simplified value instead. This frequently happens due to 2311 // phi translation. 2312 if (Value *IV = SimplifyInstruction( 2313 New, 2314 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2315 ValueMapping[&*BI] = IV; 2316 if (!New->mayHaveSideEffects()) { 2317 New->deleteValue(); 2318 New = nullptr; 2319 } 2320 } else { 2321 ValueMapping[&*BI] = New; 2322 } 2323 if (New) { 2324 // Otherwise, insert the new instruction into the block. 2325 New->setName(BI->getName()); 2326 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2327 // Update Dominance from simplified New instruction operands. 2328 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2329 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2330 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2331 } 2332 } 2333 2334 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2335 // add entries to the PHI nodes for branch from PredBB now. 2336 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2337 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2338 ValueMapping); 2339 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2340 ValueMapping); 2341 2342 // If there were values defined in BB that are used outside the block, then we 2343 // now have to update all uses of the value to use either the original value, 2344 // the cloned value, or some PHI derived value. This can require arbitrary 2345 // PHI insertion, of which we are prepared to do, clean these up now. 2346 SSAUpdater SSAUpdate; 2347 SmallVector<Use*, 16> UsesToRename; 2348 for (Instruction &I : *BB) { 2349 // Scan all uses of this instruction to see if it is used outside of its 2350 // block, and if so, record them in UsesToRename. 2351 for (Use &U : I.uses()) { 2352 Instruction *User = cast<Instruction>(U.getUser()); 2353 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2354 if (UserPN->getIncomingBlock(U) == BB) 2355 continue; 2356 } else if (User->getParent() == BB) 2357 continue; 2358 2359 UsesToRename.push_back(&U); 2360 } 2361 2362 // If there are no uses outside the block, we're done with this instruction. 2363 if (UsesToRename.empty()) 2364 continue; 2365 2366 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2367 2368 // We found a use of I outside of BB. Rename all uses of I that are outside 2369 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2370 // with the two values we know. 2371 SSAUpdate.Initialize(I.getType(), I.getName()); 2372 SSAUpdate.AddAvailableValue(BB, &I); 2373 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2374 2375 while (!UsesToRename.empty()) 2376 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2377 LLVM_DEBUG(dbgs() << "\n"); 2378 } 2379 2380 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2381 // that we nuked. 2382 BB->removePredecessor(PredBB, true); 2383 2384 // Remove the unconditional branch at the end of the PredBB block. 2385 OldPredBranch->eraseFromParent(); 2386 DTU->applyUpdates(Updates); 2387 2388 ++NumDupes; 2389 return true; 2390 } 2391 2392 /// TryToUnfoldSelect - Look for blocks of the form 2393 /// bb1: 2394 /// %a = select 2395 /// br bb2 2396 /// 2397 /// bb2: 2398 /// %p = phi [%a, %bb1] ... 2399 /// %c = icmp %p 2400 /// br i1 %c 2401 /// 2402 /// And expand the select into a branch structure if one of its arms allows %c 2403 /// to be folded. This later enables threading from bb1 over bb2. 2404 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2405 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2406 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2407 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2408 2409 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2410 CondLHS->getParent() != BB) 2411 return false; 2412 2413 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2414 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2415 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2416 2417 // Look if one of the incoming values is a select in the corresponding 2418 // predecessor. 2419 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2420 continue; 2421 2422 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2423 if (!PredTerm || !PredTerm->isUnconditional()) 2424 continue; 2425 2426 // Now check if one of the select values would allow us to constant fold the 2427 // terminator in BB. We don't do the transform if both sides fold, those 2428 // cases will be threaded in any case. 2429 if (DTU->hasPendingDomTreeUpdates()) 2430 LVI->disableDT(); 2431 else 2432 LVI->enableDT(); 2433 LazyValueInfo::Tristate LHSFolds = 2434 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2435 CondRHS, Pred, BB, CondCmp); 2436 LazyValueInfo::Tristate RHSFolds = 2437 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2438 CondRHS, Pred, BB, CondCmp); 2439 if ((LHSFolds != LazyValueInfo::Unknown || 2440 RHSFolds != LazyValueInfo::Unknown) && 2441 LHSFolds != RHSFolds) { 2442 // Expand the select. 2443 // 2444 // Pred -- 2445 // | v 2446 // | NewBB 2447 // | | 2448 // |----- 2449 // v 2450 // BB 2451 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2452 BB->getParent(), BB); 2453 // Move the unconditional branch to NewBB. 2454 PredTerm->removeFromParent(); 2455 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2456 // Create a conditional branch and update PHI nodes. 2457 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2458 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2459 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2460 // The select is now dead. 2461 SI->eraseFromParent(); 2462 2463 DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2464 {DominatorTree::Insert, Pred, NewBB}}); 2465 // Update any other PHI nodes in BB. 2466 for (BasicBlock::iterator BI = BB->begin(); 2467 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2468 if (Phi != CondLHS) 2469 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2470 return true; 2471 } 2472 } 2473 return false; 2474 } 2475 2476 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2477 /// same BB in the form 2478 /// bb: 2479 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2480 /// %s = select %p, trueval, falseval 2481 /// 2482 /// or 2483 /// 2484 /// bb: 2485 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2486 /// %c = cmp %p, 0 2487 /// %s = select %c, trueval, falseval 2488 /// 2489 /// And expand the select into a branch structure. This later enables 2490 /// jump-threading over bb in this pass. 2491 /// 2492 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2493 /// select if the associated PHI has at least one constant. If the unfolded 2494 /// select is not jump-threaded, it will be folded again in the later 2495 /// optimizations. 2496 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2497 // If threading this would thread across a loop header, don't thread the edge. 2498 // See the comments above FindLoopHeaders for justifications and caveats. 2499 if (LoopHeaders.count(BB)) 2500 return false; 2501 2502 for (BasicBlock::iterator BI = BB->begin(); 2503 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2504 // Look for a Phi having at least one constant incoming value. 2505 if (llvm::all_of(PN->incoming_values(), 2506 [](Value *V) { return !isa<ConstantInt>(V); })) 2507 continue; 2508 2509 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2510 // Check if SI is in BB and use V as condition. 2511 if (SI->getParent() != BB) 2512 return false; 2513 Value *Cond = SI->getCondition(); 2514 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2515 }; 2516 2517 SelectInst *SI = nullptr; 2518 for (Use &U : PN->uses()) { 2519 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2520 // Look for a ICmp in BB that compares PN with a constant and is the 2521 // condition of a Select. 2522 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2523 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2524 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2525 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2526 SI = SelectI; 2527 break; 2528 } 2529 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2530 // Look for a Select in BB that uses PN as condition. 2531 if (isUnfoldCandidate(SelectI, U.get())) { 2532 SI = SelectI; 2533 break; 2534 } 2535 } 2536 } 2537 2538 if (!SI) 2539 continue; 2540 // Expand the select. 2541 TerminatorInst *Term = 2542 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2543 BasicBlock *SplitBB = SI->getParent(); 2544 BasicBlock *NewBB = Term->getParent(); 2545 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2546 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2547 NewPN->addIncoming(SI->getFalseValue(), BB); 2548 SI->replaceAllUsesWith(NewPN); 2549 SI->eraseFromParent(); 2550 // NewBB and SplitBB are newly created blocks which require insertion. 2551 std::vector<DominatorTree::UpdateType> Updates; 2552 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2553 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2554 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2555 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2556 // BB's successors were moved to SplitBB, update DTU accordingly. 2557 for (auto *Succ : successors(SplitBB)) { 2558 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2559 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2560 } 2561 DTU->applyUpdates(Updates); 2562 return true; 2563 } 2564 return false; 2565 } 2566 2567 /// Try to propagate a guard from the current BB into one of its predecessors 2568 /// in case if another branch of execution implies that the condition of this 2569 /// guard is always true. Currently we only process the simplest case that 2570 /// looks like: 2571 /// 2572 /// Start: 2573 /// %cond = ... 2574 /// br i1 %cond, label %T1, label %F1 2575 /// T1: 2576 /// br label %Merge 2577 /// F1: 2578 /// br label %Merge 2579 /// Merge: 2580 /// %condGuard = ... 2581 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2582 /// 2583 /// And cond either implies condGuard or !condGuard. In this case all the 2584 /// instructions before the guard can be duplicated in both branches, and the 2585 /// guard is then threaded to one of them. 2586 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2587 using namespace PatternMatch; 2588 2589 // We only want to deal with two predecessors. 2590 BasicBlock *Pred1, *Pred2; 2591 auto PI = pred_begin(BB), PE = pred_end(BB); 2592 if (PI == PE) 2593 return false; 2594 Pred1 = *PI++; 2595 if (PI == PE) 2596 return false; 2597 Pred2 = *PI++; 2598 if (PI != PE) 2599 return false; 2600 if (Pred1 == Pred2) 2601 return false; 2602 2603 // Try to thread one of the guards of the block. 2604 // TODO: Look up deeper than to immediate predecessor? 2605 auto *Parent = Pred1->getSinglePredecessor(); 2606 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2607 return false; 2608 2609 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2610 for (auto &I : *BB) 2611 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2612 return true; 2613 2614 return false; 2615 } 2616 2617 /// Try to propagate the guard from BB which is the lower block of a diamond 2618 /// to one of its branches, in case if diamond's condition implies guard's 2619 /// condition. 2620 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2621 BranchInst *BI) { 2622 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2623 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2624 Value *GuardCond = Guard->getArgOperand(0); 2625 Value *BranchCond = BI->getCondition(); 2626 BasicBlock *TrueDest = BI->getSuccessor(0); 2627 BasicBlock *FalseDest = BI->getSuccessor(1); 2628 2629 auto &DL = BB->getModule()->getDataLayout(); 2630 bool TrueDestIsSafe = false; 2631 bool FalseDestIsSafe = false; 2632 2633 // True dest is safe if BranchCond => GuardCond. 2634 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2635 if (Impl && *Impl) 2636 TrueDestIsSafe = true; 2637 else { 2638 // False dest is safe if !BranchCond => GuardCond. 2639 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2640 if (Impl && *Impl) 2641 FalseDestIsSafe = true; 2642 } 2643 2644 if (!TrueDestIsSafe && !FalseDestIsSafe) 2645 return false; 2646 2647 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2648 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2649 2650 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2651 Instruction *AfterGuard = Guard->getNextNode(); 2652 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2653 if (Cost > BBDupThreshold) 2654 return false; 2655 // Duplicate all instructions before the guard and the guard itself to the 2656 // branch where implication is not proved. 2657 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2658 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2659 assert(GuardedBlock && "Could not create the guarded block?"); 2660 // Duplicate all instructions before the guard in the unguarded branch. 2661 // Since we have successfully duplicated the guarded block and this block 2662 // has fewer instructions, we expect it to succeed. 2663 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2664 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2665 assert(UnguardedBlock && "Could not create the unguarded block?"); 2666 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2667 << GuardedBlock->getName() << "\n"); 2668 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2669 // PredBB and BB. We need to perform two inserts and one delete for each of 2670 // the above calls to update Dominators. 2671 DTU->applyUpdates( 2672 {// Guarded block split. 2673 {DominatorTree::Delete, PredGuardedBlock, BB}, 2674 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2675 {DominatorTree::Insert, GuardedBlock, BB}, 2676 // Unguarded block split. 2677 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2678 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2679 {DominatorTree::Insert, UnguardedBlock, BB}}); 2680 // Some instructions before the guard may still have uses. For them, we need 2681 // to create Phi nodes merging their copies in both guarded and unguarded 2682 // branches. Those instructions that have no uses can be just removed. 2683 SmallVector<Instruction *, 4> ToRemove; 2684 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2685 if (!isa<PHINode>(&*BI)) 2686 ToRemove.push_back(&*BI); 2687 2688 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2689 assert(InsertionPoint && "Empty block?"); 2690 // Substitute with Phis & remove. 2691 for (auto *Inst : reverse(ToRemove)) { 2692 if (!Inst->use_empty()) { 2693 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2694 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2695 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2696 NewPN->insertBefore(InsertionPoint); 2697 Inst->replaceAllUsesWith(NewPN); 2698 } 2699 Inst->eraseFromParent(); 2700 } 2701 return true; 2702 } 2703