1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/BranchProbability.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<DominatorTreeWrapperPass>();
135       AU.addPreserved<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<LazyValueInfoWrapperPass>();
139       AU.addPreserved<GlobalsAAWrapperPass>();
140       AU.addRequired<TargetLibraryInfoWrapperPass>();
141     }
142 
143     void releaseMemory() override { Impl.releaseMemory(); }
144   };
145 
146 } // end anonymous namespace
147 
148 char JumpThreading::ID = 0;
149 
150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
151                 "Jump Threading", false, false)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
156 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
157                 "Jump Threading", false, false)
158 
159 // Public interface to the Jump Threading pass
160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
161   return new JumpThreading(Threshold);
162 }
163 
164 JumpThreadingPass::JumpThreadingPass(int T) {
165   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
166 }
167 
168 // Update branch probability information according to conditional
169 // branch probablity. This is usually made possible for cloned branches
170 // in inline instances by the context specific profile in the caller.
171 // For instance,
172 //
173 //  [Block PredBB]
174 //  [Branch PredBr]
175 //  if (t) {
176 //     Block A;
177 //  } else {
178 //     Block B;
179 //  }
180 //
181 //  [Block BB]
182 //  cond = PN([true, %A], [..., %B]); // PHI node
183 //  [Branch CondBr]
184 //  if (cond) {
185 //    ...  // P(cond == true) = 1%
186 //  }
187 //
188 //  Here we know that when block A is taken, cond must be true, which means
189 //      P(cond == true | A) = 1
190 //
191 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
192 //                               P(cond == true | B) * P(B)
193 //  we get:
194 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
195 //
196 //  which gives us:
197 //     P(A) is less than P(cond == true), i.e.
198 //     P(t == true) <= P(cond == true)
199 //
200 //  In other words, if we know P(cond == true) is unlikely, we know
201 //  that P(t == true) is also unlikely.
202 //
203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
204   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
205   if (!CondBr)
206     return;
207 
208   BranchProbability BP;
209   uint64_t TrueWeight, FalseWeight;
210   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
211     return;
212 
213   // Returns the outgoing edge of the dominating predecessor block
214   // that leads to the PhiNode's incoming block:
215   auto GetPredOutEdge =
216       [](BasicBlock *IncomingBB,
217          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
218     auto *PredBB = IncomingBB;
219     auto *SuccBB = PhiBB;
220     while (true) {
221       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
222       if (PredBr && PredBr->isConditional())
223         return {PredBB, SuccBB};
224       auto *SinglePredBB = PredBB->getSinglePredecessor();
225       if (!SinglePredBB)
226         return {nullptr, nullptr};
227       SuccBB = PredBB;
228       PredBB = SinglePredBB;
229     }
230   };
231 
232   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
233     Value *PhiOpnd = PN->getIncomingValue(i);
234     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
235 
236     if (!CI || !CI->getType()->isIntegerTy(1))
237       continue;
238 
239     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
240                             TrueWeight, TrueWeight + FalseWeight)
241                       : BranchProbability::getBranchProbability(
242                             FalseWeight, TrueWeight + FalseWeight));
243 
244     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
245     if (!PredOutEdge.first)
246       return;
247 
248     BasicBlock *PredBB = PredOutEdge.first;
249     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
250 
251     uint64_t PredTrueWeight, PredFalseWeight;
252     // FIXME: We currently only set the profile data when it is missing.
253     // With PGO, this can be used to refine even existing profile data with
254     // context information. This needs to be done after more performance
255     // testing.
256     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
257       continue;
258 
259     // We can not infer anything useful when BP >= 50%, because BP is the
260     // upper bound probability value.
261     if (BP >= BranchProbability(50, 100))
262       continue;
263 
264     SmallVector<uint32_t, 2> Weights;
265     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
266       Weights.push_back(BP.getNumerator());
267       Weights.push_back(BP.getCompl().getNumerator());
268     } else {
269       Weights.push_back(BP.getCompl().getNumerator());
270       Weights.push_back(BP.getNumerator());
271     }
272     PredBr->setMetadata(LLVMContext::MD_prof,
273                         MDBuilder(PredBr->getParent()->getContext())
274                             .createBranchWeights(Weights));
275   }
276 }
277 
278 /// runOnFunction - Toplevel algorithm.
279 bool JumpThreading::runOnFunction(Function &F) {
280   if (skipFunction(F))
281     return false;
282   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
283   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
284   // DT if it's available.
285   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
286   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
287   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
288   DeferredDominance DDT(*DT);
289   std::unique_ptr<BlockFrequencyInfo> BFI;
290   std::unique_ptr<BranchProbabilityInfo> BPI;
291   bool HasProfileData = F.hasProfileData();
292   if (HasProfileData) {
293     LoopInfo LI{DominatorTree(F)};
294     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
295     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
296   }
297 
298   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
299                               std::move(BFI), std::move(BPI));
300   if (PrintLVIAfterJumpThreading) {
301     dbgs() << "LVI for function '" << F.getName() << "':\n";
302     LVI->printLVI(F, *DT, dbgs());
303   }
304   return Changed;
305 }
306 
307 PreservedAnalyses JumpThreadingPass::run(Function &F,
308                                          FunctionAnalysisManager &AM) {
309   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
310   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
311   // DT if it's available.
312   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
313   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
314   auto &AA = AM.getResult<AAManager>(F);
315   DeferredDominance DDT(DT);
316 
317   std::unique_ptr<BlockFrequencyInfo> BFI;
318   std::unique_ptr<BranchProbabilityInfo> BPI;
319   if (F.hasProfileData()) {
320     LoopInfo LI{DominatorTree(F)};
321     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
322     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
323   }
324 
325   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
326                          std::move(BFI), std::move(BPI));
327 
328   if (!Changed)
329     return PreservedAnalyses::all();
330   PreservedAnalyses PA;
331   PA.preserve<GlobalsAA>();
332   PA.preserve<DominatorTreeAnalysis>();
333   PA.preserve<LazyValueAnalysis>();
334   return PA;
335 }
336 
337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
338                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
339                                 DeferredDominance *DDT_, bool HasProfileData_,
340                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
341                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
342   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
343   TLI = TLI_;
344   LVI = LVI_;
345   AA = AA_;
346   DDT = DDT_;
347   BFI.reset();
348   BPI.reset();
349   // When profile data is available, we need to update edge weights after
350   // successful jump threading, which requires both BPI and BFI being available.
351   HasProfileData = HasProfileData_;
352   auto *GuardDecl = F.getParent()->getFunction(
353       Intrinsic::getName(Intrinsic::experimental_guard));
354   HasGuards = GuardDecl && !GuardDecl->use_empty();
355   if (HasProfileData) {
356     BPI = std::move(BPI_);
357     BFI = std::move(BFI_);
358   }
359 
360   // Remove unreachable blocks from function as they may result in infinite
361   // loop. We do threading if we found something profitable. Jump threading a
362   // branch can create other opportunities. If these opportunities form a cycle
363   // i.e. if any jump threading is undoing previous threading in the path, then
364   // we will loop forever. We take care of this issue by not jump threading for
365   // back edges. This works for normal cases but not for unreachable blocks as
366   // they may have cycle with no back edge.
367   bool EverChanged = false;
368   EverChanged |= removeUnreachableBlocks(F, LVI, DDT);
369 
370   FindLoopHeaders(F);
371 
372   bool Changed;
373   do {
374     Changed = false;
375     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
376       BasicBlock *BB = &*I;
377       // Thread all of the branches we can over this block.
378       while (ProcessBlock(BB))
379         Changed = true;
380 
381       ++I;
382 
383       // Don't thread branches over a block that's slated for deletion.
384       if (DDT->pendingDeletedBB(BB))
385         continue;
386 
387       // If the block is trivially dead, zap it.  This eliminates the successor
388       // edges which simplifies the CFG.
389       if (pred_empty(BB) &&
390           BB != &BB->getParent()->getEntryBlock()) {
391         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
392               << "' with terminator: " << *BB->getTerminator() << '\n');
393         LoopHeaders.erase(BB);
394         LVI->eraseBlock(BB);
395         DeleteDeadBlock(BB, DDT);
396         Changed = true;
397         continue;
398       }
399 
400       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
401 
402       // Can't thread an unconditional jump, but if the block is "almost
403       // empty", we can replace uses of it with uses of the successor and make
404       // this dead.
405       // We should not eliminate the loop header or latch either, because
406       // eliminating a loop header or latch might later prevent LoopSimplify
407       // from transforming nested loops into simplified form. We will rely on
408       // later passes in backend to clean up empty blocks.
409       if (BI && BI->isUnconditional() &&
410           BB != &BB->getParent()->getEntryBlock() &&
411           // If the terminator is the only non-phi instruction, try to nuke it.
412           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) &&
413           !LoopHeaders.count(BI->getSuccessor(0))) {
414         // FIXME: It is always conservatively correct to drop the info
415         // for a block even if it doesn't get erased.  This isn't totally
416         // awesome, but it allows us to use AssertingVH to prevent nasty
417         // dangling pointer issues within LazyValueInfo.
418         LVI->eraseBlock(BB);
419         if (TryToSimplifyUncondBranchFromEmptyBlock(BB, DDT))
420           Changed = true;
421       }
422     }
423     EverChanged |= Changed;
424   } while (Changed);
425 
426   LoopHeaders.clear();
427   DDT->flush();
428   return EverChanged;
429 }
430 
431 // Replace uses of Cond with ToVal when safe to do so. If all uses are
432 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
433 // because we may incorrectly replace uses when guards/assumes are uses of
434 // of `Cond` and we used the guards/assume to reason about the `Cond` value
435 // at the end of block. RAUW unconditionally replaces all uses
436 // including the guards/assumes themselves and the uses before the
437 // guard/assume.
438 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
439   assert(Cond->getType() == ToVal->getType());
440   auto *BB = Cond->getParent();
441   // We can unconditionally replace all uses in non-local blocks (i.e. uses
442   // strictly dominated by BB), since LVI information is true from the
443   // terminator of BB.
444   replaceNonLocalUsesWith(Cond, ToVal);
445   for (Instruction &I : reverse(*BB)) {
446     // Reached the Cond whose uses we are trying to replace, so there are no
447     // more uses.
448     if (&I == Cond)
449       break;
450     // We only replace uses in instructions that are guaranteed to reach the end
451     // of BB, where we know Cond is ToVal.
452     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
453       break;
454     I.replaceUsesOfWith(Cond, ToVal);
455   }
456   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
457     Cond->eraseFromParent();
458 }
459 
460 /// Return the cost of duplicating a piece of this block from first non-phi
461 /// and before StopAt instruction to thread across it. Stop scanning the block
462 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
463 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
464                                              Instruction *StopAt,
465                                              unsigned Threshold) {
466   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
467   /// Ignore PHI nodes, these will be flattened when duplication happens.
468   BasicBlock::const_iterator I(BB->getFirstNonPHI());
469 
470   // FIXME: THREADING will delete values that are just used to compute the
471   // branch, so they shouldn't count against the duplication cost.
472 
473   unsigned Bonus = 0;
474   if (BB->getTerminator() == StopAt) {
475     // Threading through a switch statement is particularly profitable.  If this
476     // block ends in a switch, decrease its cost to make it more likely to
477     // happen.
478     if (isa<SwitchInst>(StopAt))
479       Bonus = 6;
480 
481     // The same holds for indirect branches, but slightly more so.
482     if (isa<IndirectBrInst>(StopAt))
483       Bonus = 8;
484   }
485 
486   // Bump the threshold up so the early exit from the loop doesn't skip the
487   // terminator-based Size adjustment at the end.
488   Threshold += Bonus;
489 
490   // Sum up the cost of each instruction until we get to the terminator.  Don't
491   // include the terminator because the copy won't include it.
492   unsigned Size = 0;
493   for (; &*I != StopAt; ++I) {
494 
495     // Stop scanning the block if we've reached the threshold.
496     if (Size > Threshold)
497       return Size;
498 
499     // Debugger intrinsics don't incur code size.
500     if (isa<DbgInfoIntrinsic>(I)) continue;
501 
502     // If this is a pointer->pointer bitcast, it is free.
503     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
504       continue;
505 
506     // Bail out if this instruction gives back a token type, it is not possible
507     // to duplicate it if it is used outside this BB.
508     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
509       return ~0U;
510 
511     // All other instructions count for at least one unit.
512     ++Size;
513 
514     // Calls are more expensive.  If they are non-intrinsic calls, we model them
515     // as having cost of 4.  If they are a non-vector intrinsic, we model them
516     // as having cost of 2 total, and if they are a vector intrinsic, we model
517     // them as having cost 1.
518     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
519       if (CI->cannotDuplicate() || CI->isConvergent())
520         // Blocks with NoDuplicate are modelled as having infinite cost, so they
521         // are never duplicated.
522         return ~0U;
523       else if (!isa<IntrinsicInst>(CI))
524         Size += 3;
525       else if (!CI->getType()->isVectorTy())
526         Size += 1;
527     }
528   }
529 
530   return Size > Bonus ? Size - Bonus : 0;
531 }
532 
533 /// FindLoopHeaders - We do not want jump threading to turn proper loop
534 /// structures into irreducible loops.  Doing this breaks up the loop nesting
535 /// hierarchy and pessimizes later transformations.  To prevent this from
536 /// happening, we first have to find the loop headers.  Here we approximate this
537 /// by finding targets of backedges in the CFG.
538 ///
539 /// Note that there definitely are cases when we want to allow threading of
540 /// edges across a loop header.  For example, threading a jump from outside the
541 /// loop (the preheader) to an exit block of the loop is definitely profitable.
542 /// It is also almost always profitable to thread backedges from within the loop
543 /// to exit blocks, and is often profitable to thread backedges to other blocks
544 /// within the loop (forming a nested loop).  This simple analysis is not rich
545 /// enough to track all of these properties and keep it up-to-date as the CFG
546 /// mutates, so we don't allow any of these transformations.
547 void JumpThreadingPass::FindLoopHeaders(Function &F) {
548   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
549   FindFunctionBackedges(F, Edges);
550 
551   for (const auto &Edge : Edges)
552     LoopHeaders.insert(Edge.second);
553 }
554 
555 /// getKnownConstant - Helper method to determine if we can thread over a
556 /// terminator with the given value as its condition, and if so what value to
557 /// use for that. What kind of value this is depends on whether we want an
558 /// integer or a block address, but an undef is always accepted.
559 /// Returns null if Val is null or not an appropriate constant.
560 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
561   if (!Val)
562     return nullptr;
563 
564   // Undef is "known" enough.
565   if (UndefValue *U = dyn_cast<UndefValue>(Val))
566     return U;
567 
568   if (Preference == WantBlockAddress)
569     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
570 
571   return dyn_cast<ConstantInt>(Val);
572 }
573 
574 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
575 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
576 /// in any of our predecessors.  If so, return the known list of value and pred
577 /// BB in the result vector.
578 ///
579 /// This returns true if there were any known values.
580 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
581     Value *V, BasicBlock *BB, PredValueInfo &Result,
582     ConstantPreference Preference, Instruction *CxtI) {
583   // This method walks up use-def chains recursively.  Because of this, we could
584   // get into an infinite loop going around loops in the use-def chain.  To
585   // prevent this, keep track of what (value, block) pairs we've already visited
586   // and terminate the search if we loop back to them
587   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
588     return false;
589 
590   // An RAII help to remove this pair from the recursion set once the recursion
591   // stack pops back out again.
592   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
593 
594   // If V is a constant, then it is known in all predecessors.
595   if (Constant *KC = getKnownConstant(V, Preference)) {
596     for (BasicBlock *Pred : predecessors(BB))
597       Result.push_back(std::make_pair(KC, Pred));
598 
599     return !Result.empty();
600   }
601 
602   // If V is a non-instruction value, or an instruction in a different block,
603   // then it can't be derived from a PHI.
604   Instruction *I = dyn_cast<Instruction>(V);
605   if (!I || I->getParent() != BB) {
606 
607     // Okay, if this is a live-in value, see if it has a known value at the end
608     // of any of our predecessors.
609     //
610     // FIXME: This should be an edge property, not a block end property.
611     /// TODO: Per PR2563, we could infer value range information about a
612     /// predecessor based on its terminator.
613     //
614     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
615     // "I" is a non-local compare-with-a-constant instruction.  This would be
616     // able to handle value inequalities better, for example if the compare is
617     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
618     // Perhaps getConstantOnEdge should be smart enough to do this?
619 
620     for (BasicBlock *P : predecessors(BB)) {
621       // If the value is known by LazyValueInfo to be a constant in a
622       // predecessor, use that information to try to thread this block.
623       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
624       if (Constant *KC = getKnownConstant(PredCst, Preference))
625         Result.push_back(std::make_pair(KC, P));
626     }
627 
628     return !Result.empty();
629   }
630 
631   /// If I is a PHI node, then we know the incoming values for any constants.
632   if (PHINode *PN = dyn_cast<PHINode>(I)) {
633     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
634       Value *InVal = PN->getIncomingValue(i);
635       if (Constant *KC = getKnownConstant(InVal, Preference)) {
636         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
637       } else {
638         Constant *CI = LVI->getConstantOnEdge(InVal,
639                                               PN->getIncomingBlock(i),
640                                               BB, CxtI);
641         if (Constant *KC = getKnownConstant(CI, Preference))
642           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
643       }
644     }
645 
646     return !Result.empty();
647   }
648 
649   // Handle Cast instructions.  Only see through Cast when the source operand is
650   // PHI or Cmp and the source type is i1 to save the compilation time.
651   if (CastInst *CI = dyn_cast<CastInst>(I)) {
652     Value *Source = CI->getOperand(0);
653     if (!Source->getType()->isIntegerTy(1))
654       return false;
655     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
656       return false;
657     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
658     if (Result.empty())
659       return false;
660 
661     // Convert the known values.
662     for (auto &R : Result)
663       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
664 
665     return true;
666   }
667 
668   // Handle some boolean conditions.
669   if (I->getType()->getPrimitiveSizeInBits() == 1) {
670     assert(Preference == WantInteger && "One-bit non-integer type?");
671     // X | true -> true
672     // X & false -> false
673     if (I->getOpcode() == Instruction::Or ||
674         I->getOpcode() == Instruction::And) {
675       PredValueInfoTy LHSVals, RHSVals;
676 
677       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
678                                       WantInteger, CxtI);
679       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
680                                       WantInteger, CxtI);
681 
682       if (LHSVals.empty() && RHSVals.empty())
683         return false;
684 
685       ConstantInt *InterestingVal;
686       if (I->getOpcode() == Instruction::Or)
687         InterestingVal = ConstantInt::getTrue(I->getContext());
688       else
689         InterestingVal = ConstantInt::getFalse(I->getContext());
690 
691       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
692 
693       // Scan for the sentinel.  If we find an undef, force it to the
694       // interesting value: x|undef -> true and x&undef -> false.
695       for (const auto &LHSVal : LHSVals)
696         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
697           Result.emplace_back(InterestingVal, LHSVal.second);
698           LHSKnownBBs.insert(LHSVal.second);
699         }
700       for (const auto &RHSVal : RHSVals)
701         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
702           // If we already inferred a value for this block on the LHS, don't
703           // re-add it.
704           if (!LHSKnownBBs.count(RHSVal.second))
705             Result.emplace_back(InterestingVal, RHSVal.second);
706         }
707 
708       return !Result.empty();
709     }
710 
711     // Handle the NOT form of XOR.
712     if (I->getOpcode() == Instruction::Xor &&
713         isa<ConstantInt>(I->getOperand(1)) &&
714         cast<ConstantInt>(I->getOperand(1))->isOne()) {
715       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
716                                       WantInteger, CxtI);
717       if (Result.empty())
718         return false;
719 
720       // Invert the known values.
721       for (auto &R : Result)
722         R.first = ConstantExpr::getNot(R.first);
723 
724       return true;
725     }
726 
727   // Try to simplify some other binary operator values.
728   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
729     assert(Preference != WantBlockAddress
730             && "A binary operator creating a block address?");
731     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
732       PredValueInfoTy LHSVals;
733       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
734                                       WantInteger, CxtI);
735 
736       // Try to use constant folding to simplify the binary operator.
737       for (const auto &LHSVal : LHSVals) {
738         Constant *V = LHSVal.first;
739         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
740 
741         if (Constant *KC = getKnownConstant(Folded, WantInteger))
742           Result.push_back(std::make_pair(KC, LHSVal.second));
743       }
744     }
745 
746     return !Result.empty();
747   }
748 
749   // Handle compare with phi operand, where the PHI is defined in this block.
750   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
751     assert(Preference == WantInteger && "Compares only produce integers");
752     Type *CmpType = Cmp->getType();
753     Value *CmpLHS = Cmp->getOperand(0);
754     Value *CmpRHS = Cmp->getOperand(1);
755     CmpInst::Predicate Pred = Cmp->getPredicate();
756 
757     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
758     if (PN && PN->getParent() == BB) {
759       const DataLayout &DL = PN->getModule()->getDataLayout();
760       // We can do this simplification if any comparisons fold to true or false.
761       // See if any do.
762       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
763         BasicBlock *PredBB = PN->getIncomingBlock(i);
764         Value *LHS = PN->getIncomingValue(i);
765         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
766 
767         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
768         if (!Res) {
769           if (!isa<Constant>(RHS))
770             continue;
771 
772           LazyValueInfo::Tristate
773             ResT = LVI->getPredicateOnEdge(Pred, LHS,
774                                            cast<Constant>(RHS), PredBB, BB,
775                                            CxtI ? CxtI : Cmp);
776           if (ResT == LazyValueInfo::Unknown)
777             continue;
778           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
779         }
780 
781         if (Constant *KC = getKnownConstant(Res, WantInteger))
782           Result.push_back(std::make_pair(KC, PredBB));
783       }
784 
785       return !Result.empty();
786     }
787 
788     // If comparing a live-in value against a constant, see if we know the
789     // live-in value on any predecessors.
790     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
791       Constant *CmpConst = cast<Constant>(CmpRHS);
792 
793       if (!isa<Instruction>(CmpLHS) ||
794           cast<Instruction>(CmpLHS)->getParent() != BB) {
795         for (BasicBlock *P : predecessors(BB)) {
796           // If the value is known by LazyValueInfo to be a constant in a
797           // predecessor, use that information to try to thread this block.
798           LazyValueInfo::Tristate Res =
799             LVI->getPredicateOnEdge(Pred, CmpLHS,
800                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
801           if (Res == LazyValueInfo::Unknown)
802             continue;
803 
804           Constant *ResC = ConstantInt::get(CmpType, Res);
805           Result.push_back(std::make_pair(ResC, P));
806         }
807 
808         return !Result.empty();
809       }
810 
811       // InstCombine can fold some forms of constant range checks into
812       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
813       // x as a live-in.
814       {
815         using namespace PatternMatch;
816 
817         Value *AddLHS;
818         ConstantInt *AddConst;
819         if (isa<ConstantInt>(CmpConst) &&
820             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
821           if (!isa<Instruction>(AddLHS) ||
822               cast<Instruction>(AddLHS)->getParent() != BB) {
823             for (BasicBlock *P : predecessors(BB)) {
824               // If the value is known by LazyValueInfo to be a ConstantRange in
825               // a predecessor, use that information to try to thread this
826               // block.
827               ConstantRange CR = LVI->getConstantRangeOnEdge(
828                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
829               // Propagate the range through the addition.
830               CR = CR.add(AddConst->getValue());
831 
832               // Get the range where the compare returns true.
833               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
834                   Pred, cast<ConstantInt>(CmpConst)->getValue());
835 
836               Constant *ResC;
837               if (CmpRange.contains(CR))
838                 ResC = ConstantInt::getTrue(CmpType);
839               else if (CmpRange.inverse().contains(CR))
840                 ResC = ConstantInt::getFalse(CmpType);
841               else
842                 continue;
843 
844               Result.push_back(std::make_pair(ResC, P));
845             }
846 
847             return !Result.empty();
848           }
849         }
850       }
851 
852       // Try to find a constant value for the LHS of a comparison,
853       // and evaluate it statically if we can.
854       PredValueInfoTy LHSVals;
855       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
856                                       WantInteger, CxtI);
857 
858       for (const auto &LHSVal : LHSVals) {
859         Constant *V = LHSVal.first;
860         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
861         if (Constant *KC = getKnownConstant(Folded, WantInteger))
862           Result.push_back(std::make_pair(KC, LHSVal.second));
863       }
864 
865       return !Result.empty();
866     }
867   }
868 
869   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
870     // Handle select instructions where at least one operand is a known constant
871     // and we can figure out the condition value for any predecessor block.
872     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
873     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
874     PredValueInfoTy Conds;
875     if ((TrueVal || FalseVal) &&
876         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
877                                         WantInteger, CxtI)) {
878       for (auto &C : Conds) {
879         Constant *Cond = C.first;
880 
881         // Figure out what value to use for the condition.
882         bool KnownCond;
883         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
884           // A known boolean.
885           KnownCond = CI->isOne();
886         } else {
887           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
888           // Either operand will do, so be sure to pick the one that's a known
889           // constant.
890           // FIXME: Do this more cleverly if both values are known constants?
891           KnownCond = (TrueVal != nullptr);
892         }
893 
894         // See if the select has a known constant value for this predecessor.
895         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
896           Result.push_back(std::make_pair(Val, C.second));
897       }
898 
899       return !Result.empty();
900     }
901   }
902 
903   // If all else fails, see if LVI can figure out a constant value for us.
904   Constant *CI = LVI->getConstant(V, BB, CxtI);
905   if (Constant *KC = getKnownConstant(CI, Preference)) {
906     for (BasicBlock *Pred : predecessors(BB))
907       Result.push_back(std::make_pair(KC, Pred));
908   }
909 
910   return !Result.empty();
911 }
912 
913 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
914 /// in an undefined jump, decide which block is best to revector to.
915 ///
916 /// Since we can pick an arbitrary destination, we pick the successor with the
917 /// fewest predecessors.  This should reduce the in-degree of the others.
918 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
919   TerminatorInst *BBTerm = BB->getTerminator();
920   unsigned MinSucc = 0;
921   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
922   // Compute the successor with the minimum number of predecessors.
923   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
924   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
925     TestBB = BBTerm->getSuccessor(i);
926     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
927     if (NumPreds < MinNumPreds) {
928       MinSucc = i;
929       MinNumPreds = NumPreds;
930     }
931   }
932 
933   return MinSucc;
934 }
935 
936 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
937   if (!BB->hasAddressTaken()) return false;
938 
939   // If the block has its address taken, it may be a tree of dead constants
940   // hanging off of it.  These shouldn't keep the block alive.
941   BlockAddress *BA = BlockAddress::get(BB);
942   BA->removeDeadConstantUsers();
943   return !BA->use_empty();
944 }
945 
946 /// ProcessBlock - If there are any predecessors whose control can be threaded
947 /// through to a successor, transform them now.
948 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
949   // If the block is trivially dead, just return and let the caller nuke it.
950   // This simplifies other transformations.
951   if (DDT->pendingDeletedBB(BB) ||
952       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
953     return false;
954 
955   // If this block has a single predecessor, and if that pred has a single
956   // successor, merge the blocks.  This encourages recursive jump threading
957   // because now the condition in this block can be threaded through
958   // predecessors of our predecessor block.
959   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
960     const TerminatorInst *TI = SinglePred->getTerminator();
961     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
962         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
963       // If SinglePred was a loop header, BB becomes one.
964       if (LoopHeaders.erase(SinglePred))
965         LoopHeaders.insert(BB);
966 
967       LVI->eraseBlock(SinglePred);
968       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
969 
970       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
971       // BB code within one basic block `BB`), we need to invalidate the LVI
972       // information associated with BB, because the LVI information need not be
973       // true for all of BB after the merge. For example,
974       // Before the merge, LVI info and code is as follows:
975       // SinglePred: <LVI info1 for %p val>
976       // %y = use of %p
977       // call @exit() // need not transfer execution to successor.
978       // assume(%p) // from this point on %p is true
979       // br label %BB
980       // BB: <LVI info2 for %p val, i.e. %p is true>
981       // %x = use of %p
982       // br label exit
983       //
984       // Note that this LVI info for blocks BB and SinglPred is correct for %p
985       // (info2 and info1 respectively). After the merge and the deletion of the
986       // LVI info1 for SinglePred. We have the following code:
987       // BB: <LVI info2 for %p val>
988       // %y = use of %p
989       // call @exit()
990       // assume(%p)
991       // %x = use of %p <-- LVI info2 is correct from here onwards.
992       // br label exit
993       // LVI info2 for BB is incorrect at the beginning of BB.
994 
995       // Invalidate LVI information for BB if the LVI is not provably true for
996       // all of BB.
997       if (any_of(*BB, [](Instruction &I) {
998             return !isGuaranteedToTransferExecutionToSuccessor(&I);
999           }))
1000         LVI->eraseBlock(BB);
1001       return true;
1002     }
1003   }
1004 
1005   if (TryToUnfoldSelectInCurrBB(BB))
1006     return true;
1007 
1008   // Look if we can propagate guards to predecessors.
1009   if (HasGuards && ProcessGuards(BB))
1010     return true;
1011 
1012   // What kind of constant we're looking for.
1013   ConstantPreference Preference = WantInteger;
1014 
1015   // Look to see if the terminator is a conditional branch, switch or indirect
1016   // branch, if not we can't thread it.
1017   Value *Condition;
1018   Instruction *Terminator = BB->getTerminator();
1019   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1020     // Can't thread an unconditional jump.
1021     if (BI->isUnconditional()) return false;
1022     Condition = BI->getCondition();
1023   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1024     Condition = SI->getCondition();
1025   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1026     // Can't thread indirect branch with no successors.
1027     if (IB->getNumSuccessors() == 0) return false;
1028     Condition = IB->getAddress()->stripPointerCasts();
1029     Preference = WantBlockAddress;
1030   } else {
1031     return false; // Must be an invoke.
1032   }
1033 
1034   // Run constant folding to see if we can reduce the condition to a simple
1035   // constant.
1036   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1037     Value *SimpleVal =
1038         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1039     if (SimpleVal) {
1040       I->replaceAllUsesWith(SimpleVal);
1041       if (isInstructionTriviallyDead(I, TLI))
1042         I->eraseFromParent();
1043       Condition = SimpleVal;
1044     }
1045   }
1046 
1047   // If the terminator is branching on an undef, we can pick any of the
1048   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1049   if (isa<UndefValue>(Condition)) {
1050     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1051     std::vector<DominatorTree::UpdateType> Updates;
1052 
1053     // Fold the branch/switch.
1054     TerminatorInst *BBTerm = BB->getTerminator();
1055     Updates.reserve(BBTerm->getNumSuccessors());
1056     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1057       if (i == BestSucc) continue;
1058       BasicBlock *Succ = BBTerm->getSuccessor(i);
1059       Succ->removePredecessor(BB, true);
1060       Updates.push_back({DominatorTree::Delete, BB, Succ});
1061     }
1062 
1063     DEBUG(dbgs() << "  In block '" << BB->getName()
1064           << "' folding undef terminator: " << *BBTerm << '\n');
1065     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1066     BBTerm->eraseFromParent();
1067     DDT->applyUpdates(Updates);
1068     return true;
1069   }
1070 
1071   // If the terminator of this block is branching on a constant, simplify the
1072   // terminator to an unconditional branch.  This can occur due to threading in
1073   // other blocks.
1074   if (getKnownConstant(Condition, Preference)) {
1075     DEBUG(dbgs() << "  In block '" << BB->getName()
1076           << "' folding terminator: " << *BB->getTerminator() << '\n');
1077     ++NumFolds;
1078     ConstantFoldTerminator(BB, true, nullptr, DDT);
1079     return true;
1080   }
1081 
1082   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1083 
1084   // All the rest of our checks depend on the condition being an instruction.
1085   if (!CondInst) {
1086     // FIXME: Unify this with code below.
1087     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1088       return true;
1089     return false;
1090   }
1091 
1092   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1093     // If we're branching on a conditional, LVI might be able to determine
1094     // it's value at the branch instruction.  We only handle comparisons
1095     // against a constant at this time.
1096     // TODO: This should be extended to handle switches as well.
1097     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1098     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1099     if (CondBr && CondConst) {
1100       // We should have returned as soon as we turn a conditional branch to
1101       // unconditional. Because its no longer interesting as far as jump
1102       // threading is concerned.
1103       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1104 
1105       LazyValueInfo::Tristate Ret =
1106         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1107                             CondConst, CondBr);
1108       if (Ret != LazyValueInfo::Unknown) {
1109         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1110         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1111         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1112         ToRemoveSucc->removePredecessor(BB, true);
1113         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1114         CondBr->eraseFromParent();
1115         if (CondCmp->use_empty())
1116           CondCmp->eraseFromParent();
1117         // We can safely replace *some* uses of the CondInst if it has
1118         // exactly one value as returned by LVI. RAUW is incorrect in the
1119         // presence of guards and assumes, that have the `Cond` as the use. This
1120         // is because we use the guards/assume to reason about the `Cond` value
1121         // at the end of block, but RAUW unconditionally replaces all uses
1122         // including the guards/assumes themselves and the uses before the
1123         // guard/assume.
1124         else if (CondCmp->getParent() == BB) {
1125           auto *CI = Ret == LazyValueInfo::True ?
1126             ConstantInt::getTrue(CondCmp->getType()) :
1127             ConstantInt::getFalse(CondCmp->getType());
1128           ReplaceFoldableUses(CondCmp, CI);
1129         }
1130         DDT->deleteEdge(BB, ToRemoveSucc);
1131         return true;
1132       }
1133 
1134       // We did not manage to simplify this branch, try to see whether
1135       // CondCmp depends on a known phi-select pattern.
1136       if (TryToUnfoldSelect(CondCmp, BB))
1137         return true;
1138     }
1139   }
1140 
1141   // Check for some cases that are worth simplifying.  Right now we want to look
1142   // for loads that are used by a switch or by the condition for the branch.  If
1143   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1144   // which can then be used to thread the values.
1145   Value *SimplifyValue = CondInst;
1146   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1147     if (isa<Constant>(CondCmp->getOperand(1)))
1148       SimplifyValue = CondCmp->getOperand(0);
1149 
1150   // TODO: There are other places where load PRE would be profitable, such as
1151   // more complex comparisons.
1152   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
1153     if (SimplifyPartiallyRedundantLoad(LI))
1154       return true;
1155 
1156   // Before threading, try to propagate profile data backwards:
1157   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1158     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1159       updatePredecessorProfileMetadata(PN, BB);
1160 
1161   // Handle a variety of cases where we are branching on something derived from
1162   // a PHI node in the current block.  If we can prove that any predecessors
1163   // compute a predictable value based on a PHI node, thread those predecessors.
1164   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1165     return true;
1166 
1167   // If this is an otherwise-unfoldable branch on a phi node in the current
1168   // block, see if we can simplify.
1169   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1170     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1171       return ProcessBranchOnPHI(PN);
1172 
1173   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1174   if (CondInst->getOpcode() == Instruction::Xor &&
1175       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1176     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1177 
1178   // Search for a stronger dominating condition that can be used to simplify a
1179   // conditional branch leaving BB.
1180   if (ProcessImpliedCondition(BB))
1181     return true;
1182 
1183   return false;
1184 }
1185 
1186 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1187   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1188   if (!BI || !BI->isConditional())
1189     return false;
1190 
1191   Value *Cond = BI->getCondition();
1192   BasicBlock *CurrentBB = BB;
1193   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1194   unsigned Iter = 0;
1195 
1196   auto &DL = BB->getModule()->getDataLayout();
1197 
1198   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1199     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1200     if (!PBI || !PBI->isConditional())
1201       return false;
1202     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1203       return false;
1204 
1205     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1206     Optional<bool> Implication =
1207         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1208     if (Implication) {
1209       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1210       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1211       RemoveSucc->removePredecessor(BB);
1212       BranchInst::Create(KeepSucc, BI);
1213       BI->eraseFromParent();
1214       DDT->deleteEdge(BB, RemoveSucc);
1215       return true;
1216     }
1217     CurrentBB = CurrentPred;
1218     CurrentPred = CurrentBB->getSinglePredecessor();
1219   }
1220 
1221   return false;
1222 }
1223 
1224 /// Return true if Op is an instruction defined in the given block.
1225 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1226   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1227     if (OpInst->getParent() == BB)
1228       return true;
1229   return false;
1230 }
1231 
1232 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
1233 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
1234 /// important optimization that encourages jump threading, and needs to be run
1235 /// interlaced with other jump threading tasks.
1236 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
1237   // Don't hack volatile and ordered loads.
1238   if (!LI->isUnordered()) return false;
1239 
1240   // If the load is defined in a block with exactly one predecessor, it can't be
1241   // partially redundant.
1242   BasicBlock *LoadBB = LI->getParent();
1243   if (LoadBB->getSinglePredecessor())
1244     return false;
1245 
1246   // If the load is defined in an EH pad, it can't be partially redundant,
1247   // because the edges between the invoke and the EH pad cannot have other
1248   // instructions between them.
1249   if (LoadBB->isEHPad())
1250     return false;
1251 
1252   Value *LoadedPtr = LI->getOperand(0);
1253 
1254   // If the loaded operand is defined in the LoadBB and its not a phi,
1255   // it can't be available in predecessors.
1256   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1257     return false;
1258 
1259   // Scan a few instructions up from the load, to see if it is obviously live at
1260   // the entry to its block.
1261   BasicBlock::iterator BBIt(LI);
1262   bool IsLoadCSE;
1263   if (Value *AvailableVal = FindAvailableLoadedValue(
1264           LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1265     // If the value of the load is locally available within the block, just use
1266     // it.  This frequently occurs for reg2mem'd allocas.
1267 
1268     if (IsLoadCSE) {
1269       LoadInst *NLI = cast<LoadInst>(AvailableVal);
1270       combineMetadataForCSE(NLI, LI);
1271     };
1272 
1273     // If the returned value is the load itself, replace with an undef. This can
1274     // only happen in dead loops.
1275     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
1276     if (AvailableVal->getType() != LI->getType())
1277       AvailableVal =
1278           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
1279     LI->replaceAllUsesWith(AvailableVal);
1280     LI->eraseFromParent();
1281     return true;
1282   }
1283 
1284   // Otherwise, if we scanned the whole block and got to the top of the block,
1285   // we know the block is locally transparent to the load.  If not, something
1286   // might clobber its value.
1287   if (BBIt != LoadBB->begin())
1288     return false;
1289 
1290   // If all of the loads and stores that feed the value have the same AA tags,
1291   // then we can propagate them onto any newly inserted loads.
1292   AAMDNodes AATags;
1293   LI->getAAMetadata(AATags);
1294 
1295   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1296 
1297   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1298 
1299   AvailablePredsTy AvailablePreds;
1300   BasicBlock *OneUnavailablePred = nullptr;
1301   SmallVector<LoadInst*, 8> CSELoads;
1302 
1303   // If we got here, the loaded value is transparent through to the start of the
1304   // block.  Check to see if it is available in any of the predecessor blocks.
1305   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1306     // If we already scanned this predecessor, skip it.
1307     if (!PredsScanned.insert(PredBB).second)
1308       continue;
1309 
1310     BBIt = PredBB->end();
1311     unsigned NumScanedInst = 0;
1312     Value *PredAvailable = nullptr;
1313     // NOTE: We don't CSE load that is volatile or anything stronger than
1314     // unordered, that should have been checked when we entered the function.
1315     assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads");
1316     // If this is a load on a phi pointer, phi-translate it and search
1317     // for available load/store to the pointer in predecessors.
1318     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1319     PredAvailable = FindAvailablePtrLoadStore(
1320         Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1321         AA, &IsLoadCSE, &NumScanedInst);
1322 
1323     // If PredBB has a single predecessor, continue scanning through the
1324     // single precessor.
1325     BasicBlock *SinglePredBB = PredBB;
1326     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1327            NumScanedInst < DefMaxInstsToScan) {
1328       SinglePredBB = SinglePredBB->getSinglePredecessor();
1329       if (SinglePredBB) {
1330         BBIt = SinglePredBB->end();
1331         PredAvailable = FindAvailablePtrLoadStore(
1332             Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt,
1333             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1334             &NumScanedInst);
1335       }
1336     }
1337 
1338     if (!PredAvailable) {
1339       OneUnavailablePred = PredBB;
1340       continue;
1341     }
1342 
1343     if (IsLoadCSE)
1344       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1345 
1346     // If so, this load is partially redundant.  Remember this info so that we
1347     // can create a PHI node.
1348     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1349   }
1350 
1351   // If the loaded value isn't available in any predecessor, it isn't partially
1352   // redundant.
1353   if (AvailablePreds.empty()) return false;
1354 
1355   // Okay, the loaded value is available in at least one (and maybe all!)
1356   // predecessors.  If the value is unavailable in more than one unique
1357   // predecessor, we want to insert a merge block for those common predecessors.
1358   // This ensures that we only have to insert one reload, thus not increasing
1359   // code size.
1360   BasicBlock *UnavailablePred = nullptr;
1361 
1362   // If the value is unavailable in one of predecessors, we will end up
1363   // inserting a new instruction into them. It is only valid if all the
1364   // instructions before LI are guaranteed to pass execution to its successor,
1365   // or if LI is safe to speculate.
1366   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1367   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1368   // It requires domination tree analysis, so for this simple case it is an
1369   // overkill.
1370   if (PredsScanned.size() != AvailablePreds.size() &&
1371       !isSafeToSpeculativelyExecute(LI))
1372     for (auto I = LoadBB->begin(); &*I != LI; ++I)
1373       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1374         return false;
1375 
1376   // If there is exactly one predecessor where the value is unavailable, the
1377   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1378   // unconditional branch, we know that it isn't a critical edge.
1379   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1380       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1381     UnavailablePred = OneUnavailablePred;
1382   } else if (PredsScanned.size() != AvailablePreds.size()) {
1383     // Otherwise, we had multiple unavailable predecessors or we had a critical
1384     // edge from the one.
1385     SmallVector<BasicBlock*, 8> PredsToSplit;
1386     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1387 
1388     for (const auto &AvailablePred : AvailablePreds)
1389       AvailablePredSet.insert(AvailablePred.first);
1390 
1391     // Add all the unavailable predecessors to the PredsToSplit list.
1392     for (BasicBlock *P : predecessors(LoadBB)) {
1393       // If the predecessor is an indirect goto, we can't split the edge.
1394       if (isa<IndirectBrInst>(P->getTerminator()))
1395         return false;
1396 
1397       if (!AvailablePredSet.count(P))
1398         PredsToSplit.push_back(P);
1399     }
1400 
1401     // Split them out to their own block.
1402     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1403   }
1404 
1405   // If the value isn't available in all predecessors, then there will be
1406   // exactly one where it isn't available.  Insert a load on that edge and add
1407   // it to the AvailablePreds list.
1408   if (UnavailablePred) {
1409     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1410            "Can't handle critical edge here!");
1411     LoadInst *NewVal = new LoadInst(
1412         LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1413         LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(),
1414         LI->getSyncScopeID(), UnavailablePred->getTerminator());
1415     NewVal->setDebugLoc(LI->getDebugLoc());
1416     if (AATags)
1417       NewVal->setAAMetadata(AATags);
1418 
1419     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1420   }
1421 
1422   // Now we know that each predecessor of this block has a value in
1423   // AvailablePreds, sort them for efficient access as we're walking the preds.
1424   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1425 
1426   // Create a PHI node at the start of the block for the PRE'd load value.
1427   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1428   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1429                                 &LoadBB->front());
1430   PN->takeName(LI);
1431   PN->setDebugLoc(LI->getDebugLoc());
1432 
1433   // Insert new entries into the PHI for each predecessor.  A single block may
1434   // have multiple entries here.
1435   for (pred_iterator PI = PB; PI != PE; ++PI) {
1436     BasicBlock *P = *PI;
1437     AvailablePredsTy::iterator I =
1438       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1439                        std::make_pair(P, (Value*)nullptr));
1440 
1441     assert(I != AvailablePreds.end() && I->first == P &&
1442            "Didn't find entry for predecessor!");
1443 
1444     // If we have an available predecessor but it requires casting, insert the
1445     // cast in the predecessor and use the cast. Note that we have to update the
1446     // AvailablePreds vector as we go so that all of the PHI entries for this
1447     // predecessor use the same bitcast.
1448     Value *&PredV = I->second;
1449     if (PredV->getType() != LI->getType())
1450       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1451                                                P->getTerminator());
1452 
1453     PN->addIncoming(PredV, I->first);
1454   }
1455 
1456   for (LoadInst *PredLI : CSELoads) {
1457     combineMetadataForCSE(PredLI, LI);
1458   }
1459 
1460   LI->replaceAllUsesWith(PN);
1461   LI->eraseFromParent();
1462 
1463   return true;
1464 }
1465 
1466 /// FindMostPopularDest - The specified list contains multiple possible
1467 /// threadable destinations.  Pick the one that occurs the most frequently in
1468 /// the list.
1469 static BasicBlock *
1470 FindMostPopularDest(BasicBlock *BB,
1471                     const SmallVectorImpl<std::pair<BasicBlock *,
1472                                           BasicBlock *>> &PredToDestList) {
1473   assert(!PredToDestList.empty());
1474 
1475   // Determine popularity.  If there are multiple possible destinations, we
1476   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1477   // blocks with known and real destinations to threading undef.  We'll handle
1478   // them later if interesting.
1479   DenseMap<BasicBlock*, unsigned> DestPopularity;
1480   for (const auto &PredToDest : PredToDestList)
1481     if (PredToDest.second)
1482       DestPopularity[PredToDest.second]++;
1483 
1484   // Find the most popular dest.
1485   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1486   BasicBlock *MostPopularDest = DPI->first;
1487   unsigned Popularity = DPI->second;
1488   SmallVector<BasicBlock*, 4> SamePopularity;
1489 
1490   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1491     // If the popularity of this entry isn't higher than the popularity we've
1492     // seen so far, ignore it.
1493     if (DPI->second < Popularity)
1494       ; // ignore.
1495     else if (DPI->second == Popularity) {
1496       // If it is the same as what we've seen so far, keep track of it.
1497       SamePopularity.push_back(DPI->first);
1498     } else {
1499       // If it is more popular, remember it.
1500       SamePopularity.clear();
1501       MostPopularDest = DPI->first;
1502       Popularity = DPI->second;
1503     }
1504   }
1505 
1506   // Okay, now we know the most popular destination.  If there is more than one
1507   // destination, we need to determine one.  This is arbitrary, but we need
1508   // to make a deterministic decision.  Pick the first one that appears in the
1509   // successor list.
1510   if (!SamePopularity.empty()) {
1511     SamePopularity.push_back(MostPopularDest);
1512     TerminatorInst *TI = BB->getTerminator();
1513     for (unsigned i = 0; ; ++i) {
1514       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1515 
1516       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1517         continue;
1518 
1519       MostPopularDest = TI->getSuccessor(i);
1520       break;
1521     }
1522   }
1523 
1524   // Okay, we have finally picked the most popular destination.
1525   return MostPopularDest;
1526 }
1527 
1528 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1529                                                ConstantPreference Preference,
1530                                                Instruction *CxtI) {
1531   // If threading this would thread across a loop header, don't even try to
1532   // thread the edge.
1533   if (LoopHeaders.count(BB))
1534     return false;
1535 
1536   PredValueInfoTy PredValues;
1537   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1538     return false;
1539 
1540   assert(!PredValues.empty() &&
1541          "ComputeValueKnownInPredecessors returned true with no values");
1542 
1543   DEBUG(dbgs() << "IN BB: " << *BB;
1544         for (const auto &PredValue : PredValues) {
1545           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1546             << *PredValue.first
1547             << " for pred '" << PredValue.second->getName() << "'.\n";
1548         });
1549 
1550   // Decide what we want to thread through.  Convert our list of known values to
1551   // a list of known destinations for each pred.  This also discards duplicate
1552   // predecessors and keeps track of the undefined inputs (which are represented
1553   // as a null dest in the PredToDestList).
1554   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1555   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1556 
1557   BasicBlock *OnlyDest = nullptr;
1558   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1559   Constant *OnlyVal = nullptr;
1560   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1561 
1562   unsigned PredWithKnownDest = 0;
1563   for (const auto &PredValue : PredValues) {
1564     BasicBlock *Pred = PredValue.second;
1565     if (!SeenPreds.insert(Pred).second)
1566       continue;  // Duplicate predecessor entry.
1567 
1568     Constant *Val = PredValue.first;
1569 
1570     BasicBlock *DestBB;
1571     if (isa<UndefValue>(Val))
1572       DestBB = nullptr;
1573     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1574       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1575       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1576     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1577       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1578       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1579     } else {
1580       assert(isa<IndirectBrInst>(BB->getTerminator())
1581               && "Unexpected terminator");
1582       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1583       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1584     }
1585 
1586     // If we have exactly one destination, remember it for efficiency below.
1587     if (PredToDestList.empty()) {
1588       OnlyDest = DestBB;
1589       OnlyVal = Val;
1590     } else {
1591       if (OnlyDest != DestBB)
1592         OnlyDest = MultipleDestSentinel;
1593       // It possible we have same destination, but different value, e.g. default
1594       // case in switchinst.
1595       if (Val != OnlyVal)
1596         OnlyVal = MultipleVal;
1597     }
1598 
1599     // We know where this predecessor is going.
1600     ++PredWithKnownDest;
1601 
1602     // If the predecessor ends with an indirect goto, we can't change its
1603     // destination.
1604     if (isa<IndirectBrInst>(Pred->getTerminator()))
1605       continue;
1606 
1607     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1608   }
1609 
1610   // If all edges were unthreadable, we fail.
1611   if (PredToDestList.empty())
1612     return false;
1613 
1614   // If all the predecessors go to a single known successor, we want to fold,
1615   // not thread. By doing so, we do not need to duplicate the current block and
1616   // also miss potential opportunities in case we dont/cant duplicate.
1617   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1618     if (PredWithKnownDest ==
1619         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1620       bool SeenFirstBranchToOnlyDest = false;
1621       std::vector <DominatorTree::UpdateType> Updates;
1622       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1623       for (BasicBlock *SuccBB : successors(BB)) {
1624         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1625           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1626         } else {
1627           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1628           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1629         }
1630       }
1631 
1632       // Finally update the terminator.
1633       TerminatorInst *Term = BB->getTerminator();
1634       BranchInst::Create(OnlyDest, Term);
1635       Term->eraseFromParent();
1636       DDT->applyUpdates(Updates);
1637 
1638       // If the condition is now dead due to the removal of the old terminator,
1639       // erase it.
1640       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1641         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1642           CondInst->eraseFromParent();
1643         // We can safely replace *some* uses of the CondInst if it has
1644         // exactly one value as returned by LVI. RAUW is incorrect in the
1645         // presence of guards and assumes, that have the `Cond` as the use. This
1646         // is because we use the guards/assume to reason about the `Cond` value
1647         // at the end of block, but RAUW unconditionally replaces all uses
1648         // including the guards/assumes themselves and the uses before the
1649         // guard/assume.
1650         else if (OnlyVal && OnlyVal != MultipleVal &&
1651                  CondInst->getParent() == BB)
1652           ReplaceFoldableUses(CondInst, OnlyVal);
1653       }
1654       return true;
1655     }
1656   }
1657 
1658   // Determine which is the most common successor.  If we have many inputs and
1659   // this block is a switch, we want to start by threading the batch that goes
1660   // to the most popular destination first.  If we only know about one
1661   // threadable destination (the common case) we can avoid this.
1662   BasicBlock *MostPopularDest = OnlyDest;
1663 
1664   if (MostPopularDest == MultipleDestSentinel)
1665     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1666 
1667   // Now that we know what the most popular destination is, factor all
1668   // predecessors that will jump to it into a single predecessor.
1669   SmallVector<BasicBlock*, 16> PredsToFactor;
1670   for (const auto &PredToDest : PredToDestList)
1671     if (PredToDest.second == MostPopularDest) {
1672       BasicBlock *Pred = PredToDest.first;
1673 
1674       // This predecessor may be a switch or something else that has multiple
1675       // edges to the block.  Factor each of these edges by listing them
1676       // according to # occurrences in PredsToFactor.
1677       for (BasicBlock *Succ : successors(Pred))
1678         if (Succ == BB)
1679           PredsToFactor.push_back(Pred);
1680     }
1681 
1682   // If the threadable edges are branching on an undefined value, we get to pick
1683   // the destination that these predecessors should get to.
1684   if (!MostPopularDest)
1685     MostPopularDest = BB->getTerminator()->
1686                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1687 
1688   // Ok, try to thread it!
1689   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1690 }
1691 
1692 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1693 /// a PHI node in the current block.  See if there are any simplifications we
1694 /// can do based on inputs to the phi node.
1695 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1696   BasicBlock *BB = PN->getParent();
1697 
1698   // TODO: We could make use of this to do it once for blocks with common PHI
1699   // values.
1700   SmallVector<BasicBlock*, 1> PredBBs;
1701   PredBBs.resize(1);
1702 
1703   // If any of the predecessor blocks end in an unconditional branch, we can
1704   // *duplicate* the conditional branch into that block in order to further
1705   // encourage jump threading and to eliminate cases where we have branch on a
1706   // phi of an icmp (branch on icmp is much better).
1707   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1708     BasicBlock *PredBB = PN->getIncomingBlock(i);
1709     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1710       if (PredBr->isUnconditional()) {
1711         PredBBs[0] = PredBB;
1712         // Try to duplicate BB into PredBB.
1713         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1714           return true;
1715       }
1716   }
1717 
1718   return false;
1719 }
1720 
1721 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1722 /// a xor instruction in the current block.  See if there are any
1723 /// simplifications we can do based on inputs to the xor.
1724 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1725   BasicBlock *BB = BO->getParent();
1726 
1727   // If either the LHS or RHS of the xor is a constant, don't do this
1728   // optimization.
1729   if (isa<ConstantInt>(BO->getOperand(0)) ||
1730       isa<ConstantInt>(BO->getOperand(1)))
1731     return false;
1732 
1733   // If the first instruction in BB isn't a phi, we won't be able to infer
1734   // anything special about any particular predecessor.
1735   if (!isa<PHINode>(BB->front()))
1736     return false;
1737 
1738   // If this BB is a landing pad, we won't be able to split the edge into it.
1739   if (BB->isEHPad())
1740     return false;
1741 
1742   // If we have a xor as the branch input to this block, and we know that the
1743   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1744   // the condition into the predecessor and fix that value to true, saving some
1745   // logical ops on that path and encouraging other paths to simplify.
1746   //
1747   // This copies something like this:
1748   //
1749   //  BB:
1750   //    %X = phi i1 [1],  [%X']
1751   //    %Y = icmp eq i32 %A, %B
1752   //    %Z = xor i1 %X, %Y
1753   //    br i1 %Z, ...
1754   //
1755   // Into:
1756   //  BB':
1757   //    %Y = icmp ne i32 %A, %B
1758   //    br i1 %Y, ...
1759 
1760   PredValueInfoTy XorOpValues;
1761   bool isLHS = true;
1762   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1763                                        WantInteger, BO)) {
1764     assert(XorOpValues.empty());
1765     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1766                                          WantInteger, BO))
1767       return false;
1768     isLHS = false;
1769   }
1770 
1771   assert(!XorOpValues.empty() &&
1772          "ComputeValueKnownInPredecessors returned true with no values");
1773 
1774   // Scan the information to see which is most popular: true or false.  The
1775   // predecessors can be of the set true, false, or undef.
1776   unsigned NumTrue = 0, NumFalse = 0;
1777   for (const auto &XorOpValue : XorOpValues) {
1778     if (isa<UndefValue>(XorOpValue.first))
1779       // Ignore undefs for the count.
1780       continue;
1781     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1782       ++NumFalse;
1783     else
1784       ++NumTrue;
1785   }
1786 
1787   // Determine which value to split on, true, false, or undef if neither.
1788   ConstantInt *SplitVal = nullptr;
1789   if (NumTrue > NumFalse)
1790     SplitVal = ConstantInt::getTrue(BB->getContext());
1791   else if (NumTrue != 0 || NumFalse != 0)
1792     SplitVal = ConstantInt::getFalse(BB->getContext());
1793 
1794   // Collect all of the blocks that this can be folded into so that we can
1795   // factor this once and clone it once.
1796   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1797   for (const auto &XorOpValue : XorOpValues) {
1798     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1799       continue;
1800 
1801     BlocksToFoldInto.push_back(XorOpValue.second);
1802   }
1803 
1804   // If we inferred a value for all of the predecessors, then duplication won't
1805   // help us.  However, we can just replace the LHS or RHS with the constant.
1806   if (BlocksToFoldInto.size() ==
1807       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1808     if (!SplitVal) {
1809       // If all preds provide undef, just nuke the xor, because it is undef too.
1810       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1811       BO->eraseFromParent();
1812     } else if (SplitVal->isZero()) {
1813       // If all preds provide 0, replace the xor with the other input.
1814       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1815       BO->eraseFromParent();
1816     } else {
1817       // If all preds provide 1, set the computed value to 1.
1818       BO->setOperand(!isLHS, SplitVal);
1819     }
1820 
1821     return true;
1822   }
1823 
1824   // Try to duplicate BB into PredBB.
1825   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1826 }
1827 
1828 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1829 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1830 /// NewPred using the entries from OldPred (suitably mapped).
1831 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1832                                             BasicBlock *OldPred,
1833                                             BasicBlock *NewPred,
1834                                      DenseMap<Instruction*, Value*> &ValueMap) {
1835   for (PHINode &PN : PHIBB->phis()) {
1836     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1837     // DestBlock.
1838     Value *IV = PN.getIncomingValueForBlock(OldPred);
1839 
1840     // Remap the value if necessary.
1841     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1842       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1843       if (I != ValueMap.end())
1844         IV = I->second;
1845     }
1846 
1847     PN.addIncoming(IV, NewPred);
1848   }
1849 }
1850 
1851 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1852 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1853 /// across BB.  Transform the IR to reflect this change.
1854 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1855                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1856                                    BasicBlock *SuccBB) {
1857   // If threading to the same block as we come from, we would infinite loop.
1858   if (SuccBB == BB) {
1859     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1860           << "' - would thread to self!\n");
1861     return false;
1862   }
1863 
1864   // If threading this would thread across a loop header, don't thread the edge.
1865   // See the comments above FindLoopHeaders for justifications and caveats.
1866   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1867     DEBUG({
1868       bool BBIsHeader = LoopHeaders.count(BB);
1869       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1870       dbgs() << "  Not threading across "
1871           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1872           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1873           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1874     });
1875     return false;
1876   }
1877 
1878   unsigned JumpThreadCost =
1879       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1880   if (JumpThreadCost > BBDupThreshold) {
1881     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1882           << "' - Cost is too high: " << JumpThreadCost << "\n");
1883     return false;
1884   }
1885 
1886   // And finally, do it!  Start by factoring the predecessors if needed.
1887   BasicBlock *PredBB;
1888   if (PredBBs.size() == 1)
1889     PredBB = PredBBs[0];
1890   else {
1891     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1892           << " common predecessors.\n");
1893     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1894   }
1895 
1896   // And finally, do it!
1897   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1898         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1899         << ", across block:\n    "
1900         << *BB << "\n");
1901 
1902   LVI->threadEdge(PredBB, BB, SuccBB);
1903 
1904   // We are going to have to map operands from the original BB block to the new
1905   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1906   // account for entry from PredBB.
1907   DenseMap<Instruction*, Value*> ValueMapping;
1908 
1909   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1910                                          BB->getName()+".thread",
1911                                          BB->getParent(), BB);
1912   NewBB->moveAfter(PredBB);
1913 
1914   // Set the block frequency of NewBB.
1915   if (HasProfileData) {
1916     auto NewBBFreq =
1917         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1918     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1919   }
1920 
1921   BasicBlock::iterator BI = BB->begin();
1922   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1923     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1924 
1925   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1926   // mapping and using it to remap operands in the cloned instructions.
1927   for (; !isa<TerminatorInst>(BI); ++BI) {
1928     Instruction *New = BI->clone();
1929     New->setName(BI->getName());
1930     NewBB->getInstList().push_back(New);
1931     ValueMapping[&*BI] = New;
1932 
1933     // Remap operands to patch up intra-block references.
1934     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1935       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1936         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1937         if (I != ValueMapping.end())
1938           New->setOperand(i, I->second);
1939       }
1940   }
1941 
1942   // We didn't copy the terminator from BB over to NewBB, because there is now
1943   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1944   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1945   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1946 
1947   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1948   // PHI nodes for NewBB now.
1949   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1950 
1951   // If there were values defined in BB that are used outside the block, then we
1952   // now have to update all uses of the value to use either the original value,
1953   // the cloned value, or some PHI derived value.  This can require arbitrary
1954   // PHI insertion, of which we are prepared to do, clean these up now.
1955   SSAUpdater SSAUpdate;
1956   SmallVector<Use*, 16> UsesToRename;
1957   for (Instruction &I : *BB) {
1958     // Scan all uses of this instruction to see if it is used outside of its
1959     // block, and if so, record them in UsesToRename.
1960     for (Use &U : I.uses()) {
1961       Instruction *User = cast<Instruction>(U.getUser());
1962       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1963         if (UserPN->getIncomingBlock(U) == BB)
1964           continue;
1965       } else if (User->getParent() == BB)
1966         continue;
1967 
1968       UsesToRename.push_back(&U);
1969     }
1970 
1971     // If there are no uses outside the block, we're done with this instruction.
1972     if (UsesToRename.empty())
1973       continue;
1974 
1975     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1976 
1977     // We found a use of I outside of BB.  Rename all uses of I that are outside
1978     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1979     // with the two values we know.
1980     SSAUpdate.Initialize(I.getType(), I.getName());
1981     SSAUpdate.AddAvailableValue(BB, &I);
1982     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1983 
1984     while (!UsesToRename.empty())
1985       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1986     DEBUG(dbgs() << "\n");
1987   }
1988 
1989   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1990   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1991   // us to simplify any PHI nodes in BB.
1992   TerminatorInst *PredTerm = PredBB->getTerminator();
1993   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1994     if (PredTerm->getSuccessor(i) == BB) {
1995       BB->removePredecessor(PredBB, true);
1996       PredTerm->setSuccessor(i, NewBB);
1997     }
1998 
1999   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2000                      {DominatorTree::Insert, PredBB, NewBB},
2001                      {DominatorTree::Delete, PredBB, BB}});
2002 
2003   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2004   // over the new instructions and zap any that are constants or dead.  This
2005   // frequently happens because of phi translation.
2006   SimplifyInstructionsInBlock(NewBB, TLI);
2007 
2008   // Update the edge weight from BB to SuccBB, which should be less than before.
2009   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2010 
2011   // Threaded an edge!
2012   ++NumThreads;
2013   return true;
2014 }
2015 
2016 /// Create a new basic block that will be the predecessor of BB and successor of
2017 /// all blocks in Preds. When profile data is available, update the frequency of
2018 /// this new block.
2019 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2020                                                ArrayRef<BasicBlock *> Preds,
2021                                                const char *Suffix) {
2022   SmallVector<BasicBlock *, 2> NewBBs;
2023 
2024   // Collect the frequencies of all predecessors of BB, which will be used to
2025   // update the edge weight of the result of splitting predecessors.
2026   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2027   if (HasProfileData)
2028     for (auto Pred : Preds)
2029       FreqMap.insert(std::make_pair(
2030           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2031 
2032   // In the case when BB is a LandingPad block we create 2 new predecessors
2033   // instead of just one.
2034   if (BB->isLandingPad()) {
2035     std::string NewName = std::string(Suffix) + ".split-lp";
2036     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2037   } else {
2038     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2039   }
2040 
2041   std::vector<DominatorTree::UpdateType> Updates;
2042   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2043   for (auto NewBB : NewBBs) {
2044     BlockFrequency NewBBFreq(0);
2045     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2046     for (auto Pred : predecessors(NewBB)) {
2047       Updates.push_back({DominatorTree::Delete, Pred, BB});
2048       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2049       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2050         NewBBFreq += FreqMap.lookup(Pred);
2051     }
2052     if (HasProfileData) // Apply the summed frequency to NewBB.
2053       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2054   }
2055 
2056   DDT->applyUpdates(Updates);
2057   return NewBBs[0];
2058 }
2059 
2060 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2061   const TerminatorInst *TI = BB->getTerminator();
2062   assert(TI->getNumSuccessors() > 1 && "not a split");
2063 
2064   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2065   if (!WeightsNode)
2066     return false;
2067 
2068   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2069   if (MDName->getString() != "branch_weights")
2070     return false;
2071 
2072   // Ensure there are weights for all of the successors. Note that the first
2073   // operand to the metadata node is a name, not a weight.
2074   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2075 }
2076 
2077 /// Update the block frequency of BB and branch weight and the metadata on the
2078 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2079 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2080 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2081                                                      BasicBlock *BB,
2082                                                      BasicBlock *NewBB,
2083                                                      BasicBlock *SuccBB) {
2084   if (!HasProfileData)
2085     return;
2086 
2087   assert(BFI && BPI && "BFI & BPI should have been created here");
2088 
2089   // As the edge from PredBB to BB is deleted, we have to update the block
2090   // frequency of BB.
2091   auto BBOrigFreq = BFI->getBlockFreq(BB);
2092   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2093   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2094   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2095   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2096 
2097   // Collect updated outgoing edges' frequencies from BB and use them to update
2098   // edge probabilities.
2099   SmallVector<uint64_t, 4> BBSuccFreq;
2100   for (BasicBlock *Succ : successors(BB)) {
2101     auto SuccFreq = (Succ == SuccBB)
2102                         ? BB2SuccBBFreq - NewBBFreq
2103                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2104     BBSuccFreq.push_back(SuccFreq.getFrequency());
2105   }
2106 
2107   uint64_t MaxBBSuccFreq =
2108       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2109 
2110   SmallVector<BranchProbability, 4> BBSuccProbs;
2111   if (MaxBBSuccFreq == 0)
2112     BBSuccProbs.assign(BBSuccFreq.size(),
2113                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2114   else {
2115     for (uint64_t Freq : BBSuccFreq)
2116       BBSuccProbs.push_back(
2117           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2118     // Normalize edge probabilities so that they sum up to one.
2119     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2120                                               BBSuccProbs.end());
2121   }
2122 
2123   // Update edge probabilities in BPI.
2124   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2125     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2126 
2127   // Update the profile metadata as well.
2128   //
2129   // Don't do this if the profile of the transformed blocks was statically
2130   // estimated.  (This could occur despite the function having an entry
2131   // frequency in completely cold parts of the CFG.)
2132   //
2133   // In this case we don't want to suggest to subsequent passes that the
2134   // calculated weights are fully consistent.  Consider this graph:
2135   //
2136   //                 check_1
2137   //             50% /  |
2138   //             eq_1   | 50%
2139   //                 \  |
2140   //                 check_2
2141   //             50% /  |
2142   //             eq_2   | 50%
2143   //                 \  |
2144   //                 check_3
2145   //             50% /  |
2146   //             eq_3   | 50%
2147   //                 \  |
2148   //
2149   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2150   // the overall probabilities are inconsistent; the total probability that the
2151   // value is either 1, 2 or 3 is 150%.
2152   //
2153   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2154   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2155   // the loop exit edge.  Then based solely on static estimation we would assume
2156   // the loop was extremely hot.
2157   //
2158   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2159   // shouldn't make edges extremely likely or unlikely based solely on static
2160   // estimation.
2161   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2162     SmallVector<uint32_t, 4> Weights;
2163     for (auto Prob : BBSuccProbs)
2164       Weights.push_back(Prob.getNumerator());
2165 
2166     auto TI = BB->getTerminator();
2167     TI->setMetadata(
2168         LLVMContext::MD_prof,
2169         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2170   }
2171 }
2172 
2173 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2174 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2175 /// If we can duplicate the contents of BB up into PredBB do so now, this
2176 /// improves the odds that the branch will be on an analyzable instruction like
2177 /// a compare.
2178 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2179     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2180   assert(!PredBBs.empty() && "Can't handle an empty set");
2181 
2182   // If BB is a loop header, then duplicating this block outside the loop would
2183   // cause us to transform this into an irreducible loop, don't do this.
2184   // See the comments above FindLoopHeaders for justifications and caveats.
2185   if (LoopHeaders.count(BB)) {
2186     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2187           << "' into predecessor block '" << PredBBs[0]->getName()
2188           << "' - it might create an irreducible loop!\n");
2189     return false;
2190   }
2191 
2192   unsigned DuplicationCost =
2193       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2194   if (DuplicationCost > BBDupThreshold) {
2195     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2196           << "' - Cost is too high: " << DuplicationCost << "\n");
2197     return false;
2198   }
2199 
2200   // And finally, do it!  Start by factoring the predecessors if needed.
2201   std::vector<DominatorTree::UpdateType> Updates;
2202   BasicBlock *PredBB;
2203   if (PredBBs.size() == 1)
2204     PredBB = PredBBs[0];
2205   else {
2206     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2207           << " common predecessors.\n");
2208     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2209   }
2210   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2211 
2212   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2213   // of PredBB.
2214   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2215         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2216         << DuplicationCost << " block is:" << *BB << "\n");
2217 
2218   // Unless PredBB ends with an unconditional branch, split the edge so that we
2219   // can just clone the bits from BB into the end of the new PredBB.
2220   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2221 
2222   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2223     BasicBlock *OldPredBB = PredBB;
2224     PredBB = SplitEdge(OldPredBB, BB);
2225     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2226     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2227     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2228     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2229   }
2230 
2231   // We are going to have to map operands from the original BB block into the
2232   // PredBB block.  Evaluate PHI nodes in BB.
2233   DenseMap<Instruction*, Value*> ValueMapping;
2234 
2235   BasicBlock::iterator BI = BB->begin();
2236   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2237     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2238   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2239   // mapping and using it to remap operands in the cloned instructions.
2240   for (; BI != BB->end(); ++BI) {
2241     Instruction *New = BI->clone();
2242 
2243     // Remap operands to patch up intra-block references.
2244     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2245       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2246         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2247         if (I != ValueMapping.end())
2248           New->setOperand(i, I->second);
2249       }
2250 
2251     // If this instruction can be simplified after the operands are updated,
2252     // just use the simplified value instead.  This frequently happens due to
2253     // phi translation.
2254     if (Value *IV = SimplifyInstruction(
2255             New,
2256             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2257       ValueMapping[&*BI] = IV;
2258       if (!New->mayHaveSideEffects()) {
2259         New->deleteValue();
2260         New = nullptr;
2261       }
2262     } else {
2263       ValueMapping[&*BI] = New;
2264     }
2265     if (New) {
2266       // Otherwise, insert the new instruction into the block.
2267       New->setName(BI->getName());
2268       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2269       // Update Dominance from simplified New instruction operands.
2270       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2271         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2272           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2273     }
2274   }
2275 
2276   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2277   // add entries to the PHI nodes for branch from PredBB now.
2278   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2279   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2280                                   ValueMapping);
2281   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2282                                   ValueMapping);
2283 
2284   // If there were values defined in BB that are used outside the block, then we
2285   // now have to update all uses of the value to use either the original value,
2286   // the cloned value, or some PHI derived value.  This can require arbitrary
2287   // PHI insertion, of which we are prepared to do, clean these up now.
2288   SSAUpdater SSAUpdate;
2289   SmallVector<Use*, 16> UsesToRename;
2290   for (Instruction &I : *BB) {
2291     // Scan all uses of this instruction to see if it is used outside of its
2292     // block, and if so, record them in UsesToRename.
2293     for (Use &U : I.uses()) {
2294       Instruction *User = cast<Instruction>(U.getUser());
2295       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2296         if (UserPN->getIncomingBlock(U) == BB)
2297           continue;
2298       } else if (User->getParent() == BB)
2299         continue;
2300 
2301       UsesToRename.push_back(&U);
2302     }
2303 
2304     // If there are no uses outside the block, we're done with this instruction.
2305     if (UsesToRename.empty())
2306       continue;
2307 
2308     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2309 
2310     // We found a use of I outside of BB.  Rename all uses of I that are outside
2311     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2312     // with the two values we know.
2313     SSAUpdate.Initialize(I.getType(), I.getName());
2314     SSAUpdate.AddAvailableValue(BB, &I);
2315     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2316 
2317     while (!UsesToRename.empty())
2318       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2319     DEBUG(dbgs() << "\n");
2320   }
2321 
2322   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2323   // that we nuked.
2324   BB->removePredecessor(PredBB, true);
2325 
2326   // Remove the unconditional branch at the end of the PredBB block.
2327   OldPredBranch->eraseFromParent();
2328   DDT->applyUpdates(Updates);
2329 
2330   ++NumDupes;
2331   return true;
2332 }
2333 
2334 /// TryToUnfoldSelect - Look for blocks of the form
2335 /// bb1:
2336 ///   %a = select
2337 ///   br bb2
2338 ///
2339 /// bb2:
2340 ///   %p = phi [%a, %bb1] ...
2341 ///   %c = icmp %p
2342 ///   br i1 %c
2343 ///
2344 /// And expand the select into a branch structure if one of its arms allows %c
2345 /// to be folded. This later enables threading from bb1 over bb2.
2346 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2347   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2348   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2349   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2350 
2351   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2352       CondLHS->getParent() != BB)
2353     return false;
2354 
2355   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2356     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2357     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2358 
2359     // Look if one of the incoming values is a select in the corresponding
2360     // predecessor.
2361     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2362       continue;
2363 
2364     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2365     if (!PredTerm || !PredTerm->isUnconditional())
2366       continue;
2367 
2368     // Now check if one of the select values would allow us to constant fold the
2369     // terminator in BB. We don't do the transform if both sides fold, those
2370     // cases will be threaded in any case.
2371     LazyValueInfo::Tristate LHSFolds =
2372         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2373                                 CondRHS, Pred, BB, CondCmp);
2374     LazyValueInfo::Tristate RHSFolds =
2375         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2376                                 CondRHS, Pred, BB, CondCmp);
2377     if ((LHSFolds != LazyValueInfo::Unknown ||
2378          RHSFolds != LazyValueInfo::Unknown) &&
2379         LHSFolds != RHSFolds) {
2380       // Expand the select.
2381       //
2382       // Pred --
2383       //  |    v
2384       //  |  NewBB
2385       //  |    |
2386       //  |-----
2387       //  v
2388       // BB
2389       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2390                                              BB->getParent(), BB);
2391       // Move the unconditional branch to NewBB.
2392       PredTerm->removeFromParent();
2393       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2394       // Create a conditional branch and update PHI nodes.
2395       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2396       CondLHS->setIncomingValue(I, SI->getFalseValue());
2397       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2398       // The select is now dead.
2399       SI->eraseFromParent();
2400 
2401       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2402                          {DominatorTree::Insert, Pred, NewBB}});
2403       // Update any other PHI nodes in BB.
2404       for (BasicBlock::iterator BI = BB->begin();
2405            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2406         if (Phi != CondLHS)
2407           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2408       return true;
2409     }
2410   }
2411   return false;
2412 }
2413 
2414 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2415 /// same BB in the form
2416 /// bb:
2417 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2418 ///   %s = select %p, trueval, falseval
2419 ///
2420 /// or
2421 ///
2422 /// bb:
2423 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2424 ///   %c = cmp %p, 0
2425 ///   %s = select %c, trueval, falseval
2426 ///
2427 /// And expand the select into a branch structure. This later enables
2428 /// jump-threading over bb in this pass.
2429 ///
2430 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2431 /// select if the associated PHI has at least one constant.  If the unfolded
2432 /// select is not jump-threaded, it will be folded again in the later
2433 /// optimizations.
2434 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2435   // If threading this would thread across a loop header, don't thread the edge.
2436   // See the comments above FindLoopHeaders for justifications and caveats.
2437   if (LoopHeaders.count(BB))
2438     return false;
2439 
2440   for (BasicBlock::iterator BI = BB->begin();
2441        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2442     // Look for a Phi having at least one constant incoming value.
2443     if (llvm::all_of(PN->incoming_values(),
2444                      [](Value *V) { return !isa<ConstantInt>(V); }))
2445       continue;
2446 
2447     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2448       // Check if SI is in BB and use V as condition.
2449       if (SI->getParent() != BB)
2450         return false;
2451       Value *Cond = SI->getCondition();
2452       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2453     };
2454 
2455     SelectInst *SI = nullptr;
2456     for (Use &U : PN->uses()) {
2457       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2458         // Look for a ICmp in BB that compares PN with a constant and is the
2459         // condition of a Select.
2460         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2461             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2462           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2463             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2464               SI = SelectI;
2465               break;
2466             }
2467       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2468         // Look for a Select in BB that uses PN as condtion.
2469         if (isUnfoldCandidate(SelectI, U.get())) {
2470           SI = SelectI;
2471           break;
2472         }
2473       }
2474     }
2475 
2476     if (!SI)
2477       continue;
2478     // Expand the select.
2479     TerminatorInst *Term =
2480         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2481     BasicBlock *SplitBB = SI->getParent();
2482     BasicBlock *NewBB = Term->getParent();
2483     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2484     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2485     NewPN->addIncoming(SI->getFalseValue(), BB);
2486     SI->replaceAllUsesWith(NewPN);
2487     SI->eraseFromParent();
2488     // NewBB and SplitBB are newly created blocks which require insertion.
2489     std::vector<DominatorTree::UpdateType> Updates;
2490     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2491     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2492     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2493     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2494     // BB's successors were moved to SplitBB, update DDT accordingly.
2495     for (auto *Succ : successors(SplitBB)) {
2496       Updates.push_back({DominatorTree::Delete, BB, Succ});
2497       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2498     }
2499     DDT->applyUpdates(Updates);
2500     return true;
2501   }
2502   return false;
2503 }
2504 
2505 /// Try to propagate a guard from the current BB into one of its predecessors
2506 /// in case if another branch of execution implies that the condition of this
2507 /// guard is always true. Currently we only process the simplest case that
2508 /// looks like:
2509 ///
2510 /// Start:
2511 ///   %cond = ...
2512 ///   br i1 %cond, label %T1, label %F1
2513 /// T1:
2514 ///   br label %Merge
2515 /// F1:
2516 ///   br label %Merge
2517 /// Merge:
2518 ///   %condGuard = ...
2519 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2520 ///
2521 /// And cond either implies condGuard or !condGuard. In this case all the
2522 /// instructions before the guard can be duplicated in both branches, and the
2523 /// guard is then threaded to one of them.
2524 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2525   using namespace PatternMatch;
2526 
2527   // We only want to deal with two predecessors.
2528   BasicBlock *Pred1, *Pred2;
2529   auto PI = pred_begin(BB), PE = pred_end(BB);
2530   if (PI == PE)
2531     return false;
2532   Pred1 = *PI++;
2533   if (PI == PE)
2534     return false;
2535   Pred2 = *PI++;
2536   if (PI != PE)
2537     return false;
2538   if (Pred1 == Pred2)
2539     return false;
2540 
2541   // Try to thread one of the guards of the block.
2542   // TODO: Look up deeper than to immediate predecessor?
2543   auto *Parent = Pred1->getSinglePredecessor();
2544   if (!Parent || Parent != Pred2->getSinglePredecessor())
2545     return false;
2546 
2547   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2548     for (auto &I : *BB)
2549       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2550         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2551           return true;
2552 
2553   return false;
2554 }
2555 
2556 /// Try to propagate the guard from BB which is the lower block of a diamond
2557 /// to one of its branches, in case if diamond's condition implies guard's
2558 /// condition.
2559 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2560                                     BranchInst *BI) {
2561   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2562   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2563   Value *GuardCond = Guard->getArgOperand(0);
2564   Value *BranchCond = BI->getCondition();
2565   BasicBlock *TrueDest = BI->getSuccessor(0);
2566   BasicBlock *FalseDest = BI->getSuccessor(1);
2567 
2568   auto &DL = BB->getModule()->getDataLayout();
2569   bool TrueDestIsSafe = false;
2570   bool FalseDestIsSafe = false;
2571 
2572   // True dest is safe if BranchCond => GuardCond.
2573   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2574   if (Impl && *Impl)
2575     TrueDestIsSafe = true;
2576   else {
2577     // False dest is safe if !BranchCond => GuardCond.
2578     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2579     if (Impl && *Impl)
2580       FalseDestIsSafe = true;
2581   }
2582 
2583   if (!TrueDestIsSafe && !FalseDestIsSafe)
2584     return false;
2585 
2586   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2587   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2588 
2589   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2590   Instruction *AfterGuard = Guard->getNextNode();
2591   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2592   if (Cost > BBDupThreshold)
2593     return false;
2594   // Duplicate all instructions before the guard and the guard itself to the
2595   // branch where implication is not proved.
2596   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2597       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2598   assert(GuardedBlock && "Could not create the guarded block?");
2599   // Duplicate all instructions before the guard in the unguarded branch.
2600   // Since we have successfully duplicated the guarded block and this block
2601   // has fewer instructions, we expect it to succeed.
2602   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2603       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2604   assert(UnguardedBlock && "Could not create the unguarded block?");
2605   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2606                << GuardedBlock->getName() << "\n");
2607   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2608   // PredBB and BB. We need to perform two inserts and one delete for each of
2609   // the above calls to update Dominators.
2610   DDT->applyUpdates(
2611       {// Guarded block split.
2612        {DominatorTree::Delete, PredGuardedBlock, BB},
2613        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2614        {DominatorTree::Insert, GuardedBlock, BB},
2615        // Unguarded block split.
2616        {DominatorTree::Delete, PredUnguardedBlock, BB},
2617        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2618        {DominatorTree::Insert, UnguardedBlock, BB}});
2619   // Some instructions before the guard may still have uses. For them, we need
2620   // to create Phi nodes merging their copies in both guarded and unguarded
2621   // branches. Those instructions that have no uses can be just removed.
2622   SmallVector<Instruction *, 4> ToRemove;
2623   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2624     if (!isa<PHINode>(&*BI))
2625       ToRemove.push_back(&*BI);
2626 
2627   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2628   assert(InsertionPoint && "Empty block?");
2629   // Substitute with Phis & remove.
2630   for (auto *Inst : reverse(ToRemove)) {
2631     if (!Inst->use_empty()) {
2632       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2633       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2634       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2635       NewPN->insertBefore(InsertionPoint);
2636       Inst->replaceAllUsesWith(NewPN);
2637     }
2638     Inst->eraseFromParent();
2639   }
2640   return true;
2641 }
2642