1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Cloning.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/SSAUpdater.h" 73 #include "llvm/Transforms/Utils/ValueMapper.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <iterator> 78 #include <memory> 79 #include <utility> 80 81 using namespace llvm; 82 using namespace jumpthreading; 83 84 #define DEBUG_TYPE "jump-threading" 85 86 STATISTIC(NumThreads, "Number of jumps threaded"); 87 STATISTIC(NumFolds, "Number of terminators folded"); 88 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 89 90 static cl::opt<unsigned> 91 BBDuplicateThreshold("jump-threading-threshold", 92 cl::desc("Max block size to duplicate for jump threading"), 93 cl::init(6), cl::Hidden); 94 95 static cl::opt<unsigned> 96 ImplicationSearchThreshold( 97 "jump-threading-implication-search-threshold", 98 cl::desc("The number of predecessors to search for a stronger " 99 "condition to use to thread over a weaker condition"), 100 cl::init(3), cl::Hidden); 101 102 static cl::opt<bool> PrintLVIAfterJumpThreading( 103 "print-lvi-after-jump-threading", 104 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 105 cl::Hidden); 106 107 static cl::opt<bool> JumpThreadingFreezeSelectCond( 108 "jump-threading-freeze-select-cond", 109 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> ThreadAcrossLoopHeaders( 113 "jump-threading-across-loop-headers", 114 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 115 cl::init(false), cl::Hidden); 116 117 118 namespace { 119 120 /// This pass performs 'jump threading', which looks at blocks that have 121 /// multiple predecessors and multiple successors. If one or more of the 122 /// predecessors of the block can be proven to always jump to one of the 123 /// successors, we forward the edge from the predecessor to the successor by 124 /// duplicating the contents of this block. 125 /// 126 /// An example of when this can occur is code like this: 127 /// 128 /// if () { ... 129 /// X = 4; 130 /// } 131 /// if (X < 3) { 132 /// 133 /// In this case, the unconditional branch at the end of the first if can be 134 /// revectored to the false side of the second if. 135 class JumpThreading : public FunctionPass { 136 JumpThreadingPass Impl; 137 138 public: 139 static char ID; // Pass identification 140 141 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 142 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 143 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnFunction(Function &F) override; 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addPreserved<DominatorTreeWrapperPass>(); 151 AU.addRequired<AAResultsWrapperPass>(); 152 AU.addRequired<LazyValueInfoWrapperPass>(); 153 AU.addPreserved<LazyValueInfoWrapperPass>(); 154 AU.addPreserved<GlobalsAAWrapperPass>(); 155 AU.addRequired<TargetLibraryInfoWrapperPass>(); 156 AU.addRequired<TargetTransformInfoWrapperPass>(); 157 } 158 159 void releaseMemory() override { Impl.releaseMemory(); } 160 }; 161 162 } // end anonymous namespace 163 164 char JumpThreading::ID = 0; 165 166 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 167 "Jump Threading", false, false) 168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 172 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 173 "Jump Threading", false, false) 174 175 // Public interface to the Jump Threading pass 176 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 177 return new JumpThreading(InsertFr, Threshold); 178 } 179 180 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 181 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 182 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 183 } 184 185 // Update branch probability information according to conditional 186 // branch probability. This is usually made possible for cloned branches 187 // in inline instances by the context specific profile in the caller. 188 // For instance, 189 // 190 // [Block PredBB] 191 // [Branch PredBr] 192 // if (t) { 193 // Block A; 194 // } else { 195 // Block B; 196 // } 197 // 198 // [Block BB] 199 // cond = PN([true, %A], [..., %B]); // PHI node 200 // [Branch CondBr] 201 // if (cond) { 202 // ... // P(cond == true) = 1% 203 // } 204 // 205 // Here we know that when block A is taken, cond must be true, which means 206 // P(cond == true | A) = 1 207 // 208 // Given that P(cond == true) = P(cond == true | A) * P(A) + 209 // P(cond == true | B) * P(B) 210 // we get: 211 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 212 // 213 // which gives us: 214 // P(A) is less than P(cond == true), i.e. 215 // P(t == true) <= P(cond == true) 216 // 217 // In other words, if we know P(cond == true) is unlikely, we know 218 // that P(t == true) is also unlikely. 219 // 220 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 221 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 222 if (!CondBr) 223 return; 224 225 uint64_t TrueWeight, FalseWeight; 226 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 227 return; 228 229 if (TrueWeight + FalseWeight == 0) 230 // Zero branch_weights do not give a hint for getting branch probabilities. 231 // Technically it would result in division by zero denominator, which is 232 // TrueWeight + FalseWeight. 233 return; 234 235 // Returns the outgoing edge of the dominating predecessor block 236 // that leads to the PhiNode's incoming block: 237 auto GetPredOutEdge = 238 [](BasicBlock *IncomingBB, 239 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 240 auto *PredBB = IncomingBB; 241 auto *SuccBB = PhiBB; 242 SmallPtrSet<BasicBlock *, 16> Visited; 243 while (true) { 244 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 245 if (PredBr && PredBr->isConditional()) 246 return {PredBB, SuccBB}; 247 Visited.insert(PredBB); 248 auto *SinglePredBB = PredBB->getSinglePredecessor(); 249 if (!SinglePredBB) 250 return {nullptr, nullptr}; 251 252 // Stop searching when SinglePredBB has been visited. It means we see 253 // an unreachable loop. 254 if (Visited.count(SinglePredBB)) 255 return {nullptr, nullptr}; 256 257 SuccBB = PredBB; 258 PredBB = SinglePredBB; 259 } 260 }; 261 262 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 263 Value *PhiOpnd = PN->getIncomingValue(i); 264 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 265 266 if (!CI || !CI->getType()->isIntegerTy(1)) 267 continue; 268 269 BranchProbability BP = 270 (CI->isOne() ? BranchProbability::getBranchProbability( 271 TrueWeight, TrueWeight + FalseWeight) 272 : BranchProbability::getBranchProbability( 273 FalseWeight, TrueWeight + FalseWeight)); 274 275 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 276 if (!PredOutEdge.first) 277 return; 278 279 BasicBlock *PredBB = PredOutEdge.first; 280 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 281 if (!PredBr) 282 return; 283 284 uint64_t PredTrueWeight, PredFalseWeight; 285 // FIXME: We currently only set the profile data when it is missing. 286 // With PGO, this can be used to refine even existing profile data with 287 // context information. This needs to be done after more performance 288 // testing. 289 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 290 continue; 291 292 // We can not infer anything useful when BP >= 50%, because BP is the 293 // upper bound probability value. 294 if (BP >= BranchProbability(50, 100)) 295 continue; 296 297 SmallVector<uint32_t, 2> Weights; 298 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 299 Weights.push_back(BP.getNumerator()); 300 Weights.push_back(BP.getCompl().getNumerator()); 301 } else { 302 Weights.push_back(BP.getCompl().getNumerator()); 303 Weights.push_back(BP.getNumerator()); 304 } 305 PredBr->setMetadata(LLVMContext::MD_prof, 306 MDBuilder(PredBr->getParent()->getContext()) 307 .createBranchWeights(Weights)); 308 } 309 } 310 311 /// runOnFunction - Toplevel algorithm. 312 bool JumpThreading::runOnFunction(Function &F) { 313 if (skipFunction(F)) 314 return false; 315 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 316 // Jump Threading has no sense for the targets with divergent CF 317 if (TTI->hasBranchDivergence()) 318 return false; 319 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 320 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 321 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 322 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 323 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 324 std::unique_ptr<BlockFrequencyInfo> BFI; 325 std::unique_ptr<BranchProbabilityInfo> BPI; 326 if (F.hasProfileData()) { 327 LoopInfo LI{DominatorTree(F)}; 328 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 329 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 330 } 331 332 bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(), 333 std::move(BFI), std::move(BPI)); 334 if (PrintLVIAfterJumpThreading) { 335 dbgs() << "LVI for function '" << F.getName() << "':\n"; 336 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 337 } 338 return Changed; 339 } 340 341 PreservedAnalyses JumpThreadingPass::run(Function &F, 342 FunctionAnalysisManager &AM) { 343 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 344 // Jump Threading has no sense for the targets with divergent CF 345 if (TTI.hasBranchDivergence()) 346 return PreservedAnalyses::all(); 347 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 348 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 349 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 350 auto &AA = AM.getResult<AAManager>(F); 351 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 352 353 std::unique_ptr<BlockFrequencyInfo> BFI; 354 std::unique_ptr<BranchProbabilityInfo> BPI; 355 if (F.hasProfileData()) { 356 LoopInfo LI{DominatorTree(F)}; 357 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 358 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 359 } 360 361 bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(), 362 std::move(BFI), std::move(BPI)); 363 364 if (PrintLVIAfterJumpThreading) { 365 dbgs() << "LVI for function '" << F.getName() << "':\n"; 366 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 367 } 368 369 if (!Changed) 370 return PreservedAnalyses::all(); 371 PreservedAnalyses PA; 372 PA.preserve<DominatorTreeAnalysis>(); 373 PA.preserve<LazyValueAnalysis>(); 374 return PA; 375 } 376 377 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 378 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 379 AliasAnalysis *AA_, DomTreeUpdater *DTU_, 380 bool HasProfileData_, 381 std::unique_ptr<BlockFrequencyInfo> BFI_, 382 std::unique_ptr<BranchProbabilityInfo> BPI_) { 383 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 384 TLI = TLI_; 385 TTI = TTI_; 386 LVI = LVI_; 387 AA = AA_; 388 DTU = DTU_; 389 BFI.reset(); 390 BPI.reset(); 391 // When profile data is available, we need to update edge weights after 392 // successful jump threading, which requires both BPI and BFI being available. 393 HasProfileData = HasProfileData_; 394 auto *GuardDecl = F.getParent()->getFunction( 395 Intrinsic::getName(Intrinsic::experimental_guard)); 396 HasGuards = GuardDecl && !GuardDecl->use_empty(); 397 if (HasProfileData) { 398 BPI = std::move(BPI_); 399 BFI = std::move(BFI_); 400 } 401 402 // Reduce the number of instructions duplicated when optimizing strictly for 403 // size. 404 if (BBDuplicateThreshold.getNumOccurrences()) 405 BBDupThreshold = BBDuplicateThreshold; 406 else if (F.hasFnAttribute(Attribute::MinSize)) 407 BBDupThreshold = 3; 408 else 409 BBDupThreshold = DefaultBBDupThreshold; 410 411 // JumpThreading must not processes blocks unreachable from entry. It's a 412 // waste of compute time and can potentially lead to hangs. 413 SmallPtrSet<BasicBlock *, 16> Unreachable; 414 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 416 DominatorTree &DT = DTU->getDomTree(); 417 for (auto &BB : F) 418 if (!DT.isReachableFromEntry(&BB)) 419 Unreachable.insert(&BB); 420 421 if (!ThreadAcrossLoopHeaders) 422 findLoopHeaders(F); 423 424 bool EverChanged = false; 425 bool Changed; 426 do { 427 Changed = false; 428 for (auto &BB : F) { 429 if (Unreachable.count(&BB)) 430 continue; 431 while (processBlock(&BB)) // Thread all of the branches we can over BB. 432 Changed = true; 433 434 // Jump threading may have introduced redundant debug values into BB 435 // which should be removed. 436 if (Changed) 437 RemoveRedundantDbgInstrs(&BB); 438 439 // Stop processing BB if it's the entry or is now deleted. The following 440 // routines attempt to eliminate BB and locating a suitable replacement 441 // for the entry is non-trivial. 442 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 443 continue; 444 445 if (pred_empty(&BB)) { 446 // When processBlock makes BB unreachable it doesn't bother to fix up 447 // the instructions in it. We must remove BB to prevent invalid IR. 448 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 449 << "' with terminator: " << *BB.getTerminator() 450 << '\n'); 451 LoopHeaders.erase(&BB); 452 LVI->eraseBlock(&BB); 453 DeleteDeadBlock(&BB, DTU); 454 Changed = true; 455 continue; 456 } 457 458 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 459 // is "almost empty", we attempt to merge BB with its sole successor. 460 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 461 if (BI && BI->isUnconditional()) { 462 BasicBlock *Succ = BI->getSuccessor(0); 463 if ( 464 // The terminator must be the only non-phi instruction in BB. 465 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 466 // Don't alter Loop headers and latches to ensure another pass can 467 // detect and transform nested loops later. 468 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 469 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 470 RemoveRedundantDbgInstrs(Succ); 471 // BB is valid for cleanup here because we passed in DTU. F remains 472 // BB's parent until a DTU->getDomTree() event. 473 LVI->eraseBlock(&BB); 474 Changed = true; 475 } 476 } 477 } 478 EverChanged |= Changed; 479 } while (Changed); 480 481 LoopHeaders.clear(); 482 return EverChanged; 483 } 484 485 // Replace uses of Cond with ToVal when safe to do so. If all uses are 486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 487 // because we may incorrectly replace uses when guards/assumes are uses of 488 // of `Cond` and we used the guards/assume to reason about the `Cond` value 489 // at the end of block. RAUW unconditionally replaces all uses 490 // including the guards/assumes themselves and the uses before the 491 // guard/assume. 492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 493 assert(Cond->getType() == ToVal->getType()); 494 auto *BB = Cond->getParent(); 495 // We can unconditionally replace all uses in non-local blocks (i.e. uses 496 // strictly dominated by BB), since LVI information is true from the 497 // terminator of BB. 498 replaceNonLocalUsesWith(Cond, ToVal); 499 for (Instruction &I : reverse(*BB)) { 500 // Reached the Cond whose uses we are trying to replace, so there are no 501 // more uses. 502 if (&I == Cond) 503 break; 504 // We only replace uses in instructions that are guaranteed to reach the end 505 // of BB, where we know Cond is ToVal. 506 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 507 break; 508 I.replaceUsesOfWith(Cond, ToVal); 509 } 510 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 511 Cond->eraseFromParent(); 512 } 513 514 /// Return the cost of duplicating a piece of this block from first non-phi 515 /// and before StopAt instruction to thread across it. Stop scanning the block 516 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 517 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 518 BasicBlock *BB, 519 Instruction *StopAt, 520 unsigned Threshold) { 521 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 522 /// Ignore PHI nodes, these will be flattened when duplication happens. 523 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 524 525 // FIXME: THREADING will delete values that are just used to compute the 526 // branch, so they shouldn't count against the duplication cost. 527 528 unsigned Bonus = 0; 529 if (BB->getTerminator() == StopAt) { 530 // Threading through a switch statement is particularly profitable. If this 531 // block ends in a switch, decrease its cost to make it more likely to 532 // happen. 533 if (isa<SwitchInst>(StopAt)) 534 Bonus = 6; 535 536 // The same holds for indirect branches, but slightly more so. 537 if (isa<IndirectBrInst>(StopAt)) 538 Bonus = 8; 539 } 540 541 // Bump the threshold up so the early exit from the loop doesn't skip the 542 // terminator-based Size adjustment at the end. 543 Threshold += Bonus; 544 545 // Sum up the cost of each instruction until we get to the terminator. Don't 546 // include the terminator because the copy won't include it. 547 unsigned Size = 0; 548 for (; &*I != StopAt; ++I) { 549 550 // Stop scanning the block if we've reached the threshold. 551 if (Size > Threshold) 552 return Size; 553 554 // Bail out if this instruction gives back a token type, it is not possible 555 // to duplicate it if it is used outside this BB. 556 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 557 return ~0U; 558 559 // Blocks with NoDuplicate are modelled as having infinite cost, so they 560 // are never duplicated. 561 if (const CallInst *CI = dyn_cast<CallInst>(I)) 562 if (CI->cannotDuplicate() || CI->isConvergent()) 563 return ~0U; 564 565 if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) 566 == TargetTransformInfo::TCC_Free) 567 continue; 568 569 // All other instructions count for at least one unit. 570 ++Size; 571 572 // Calls are more expensive. If they are non-intrinsic calls, we model them 573 // as having cost of 4. If they are a non-vector intrinsic, we model them 574 // as having cost of 2 total, and if they are a vector intrinsic, we model 575 // them as having cost 1. 576 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 577 if (!isa<IntrinsicInst>(CI)) 578 Size += 3; 579 else if (!CI->getType()->isVectorTy()) 580 Size += 1; 581 } 582 } 583 584 return Size > Bonus ? Size - Bonus : 0; 585 } 586 587 /// findLoopHeaders - We do not want jump threading to turn proper loop 588 /// structures into irreducible loops. Doing this breaks up the loop nesting 589 /// hierarchy and pessimizes later transformations. To prevent this from 590 /// happening, we first have to find the loop headers. Here we approximate this 591 /// by finding targets of backedges in the CFG. 592 /// 593 /// Note that there definitely are cases when we want to allow threading of 594 /// edges across a loop header. For example, threading a jump from outside the 595 /// loop (the preheader) to an exit block of the loop is definitely profitable. 596 /// It is also almost always profitable to thread backedges from within the loop 597 /// to exit blocks, and is often profitable to thread backedges to other blocks 598 /// within the loop (forming a nested loop). This simple analysis is not rich 599 /// enough to track all of these properties and keep it up-to-date as the CFG 600 /// mutates, so we don't allow any of these transformations. 601 void JumpThreadingPass::findLoopHeaders(Function &F) { 602 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 603 FindFunctionBackedges(F, Edges); 604 605 for (const auto &Edge : Edges) 606 LoopHeaders.insert(Edge.second); 607 } 608 609 /// getKnownConstant - Helper method to determine if we can thread over a 610 /// terminator with the given value as its condition, and if so what value to 611 /// use for that. What kind of value this is depends on whether we want an 612 /// integer or a block address, but an undef is always accepted. 613 /// Returns null if Val is null or not an appropriate constant. 614 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 615 if (!Val) 616 return nullptr; 617 618 // Undef is "known" enough. 619 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 620 return U; 621 622 if (Preference == WantBlockAddress) 623 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 624 625 return dyn_cast<ConstantInt>(Val); 626 } 627 628 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 629 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 630 /// in any of our predecessors. If so, return the known list of value and pred 631 /// BB in the result vector. 632 /// 633 /// This returns true if there were any known values. 634 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 635 Value *V, BasicBlock *BB, PredValueInfo &Result, 636 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 637 Instruction *CxtI) { 638 // This method walks up use-def chains recursively. Because of this, we could 639 // get into an infinite loop going around loops in the use-def chain. To 640 // prevent this, keep track of what (value, block) pairs we've already visited 641 // and terminate the search if we loop back to them 642 if (!RecursionSet.insert(V).second) 643 return false; 644 645 // If V is a constant, then it is known in all predecessors. 646 if (Constant *KC = getKnownConstant(V, Preference)) { 647 for (BasicBlock *Pred : predecessors(BB)) 648 Result.emplace_back(KC, Pred); 649 650 return !Result.empty(); 651 } 652 653 // If V is a non-instruction value, or an instruction in a different block, 654 // then it can't be derived from a PHI. 655 Instruction *I = dyn_cast<Instruction>(V); 656 if (!I || I->getParent() != BB) { 657 658 // Okay, if this is a live-in value, see if it has a known value at the end 659 // of any of our predecessors. 660 // 661 // FIXME: This should be an edge property, not a block end property. 662 /// TODO: Per PR2563, we could infer value range information about a 663 /// predecessor based on its terminator. 664 // 665 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 666 // "I" is a non-local compare-with-a-constant instruction. This would be 667 // able to handle value inequalities better, for example if the compare is 668 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 669 // Perhaps getConstantOnEdge should be smart enough to do this? 670 for (BasicBlock *P : predecessors(BB)) { 671 // If the value is known by LazyValueInfo to be a constant in a 672 // predecessor, use that information to try to thread this block. 673 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 674 if (Constant *KC = getKnownConstant(PredCst, Preference)) 675 Result.emplace_back(KC, P); 676 } 677 678 return !Result.empty(); 679 } 680 681 /// If I is a PHI node, then we know the incoming values for any constants. 682 if (PHINode *PN = dyn_cast<PHINode>(I)) { 683 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 684 Value *InVal = PN->getIncomingValue(i); 685 if (Constant *KC = getKnownConstant(InVal, Preference)) { 686 Result.emplace_back(KC, PN->getIncomingBlock(i)); 687 } else { 688 Constant *CI = LVI->getConstantOnEdge(InVal, 689 PN->getIncomingBlock(i), 690 BB, CxtI); 691 if (Constant *KC = getKnownConstant(CI, Preference)) 692 Result.emplace_back(KC, PN->getIncomingBlock(i)); 693 } 694 } 695 696 return !Result.empty(); 697 } 698 699 // Handle Cast instructions. 700 if (CastInst *CI = dyn_cast<CastInst>(I)) { 701 Value *Source = CI->getOperand(0); 702 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 703 RecursionSet, CxtI); 704 if (Result.empty()) 705 return false; 706 707 // Convert the known values. 708 for (auto &R : Result) 709 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 710 711 return true; 712 } 713 714 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 715 Value *Source = FI->getOperand(0); 716 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 717 RecursionSet, CxtI); 718 719 erase_if(Result, [](auto &Pair) { 720 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 721 }); 722 723 return !Result.empty(); 724 } 725 726 // Handle some boolean conditions. 727 if (I->getType()->getPrimitiveSizeInBits() == 1) { 728 using namespace PatternMatch; 729 if (Preference != WantInteger) 730 return false; 731 // X | true -> true 732 // X & false -> false 733 Value *Op0, *Op1; 734 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 735 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 736 PredValueInfoTy LHSVals, RHSVals; 737 738 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 739 RecursionSet, CxtI); 740 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 741 RecursionSet, CxtI); 742 743 if (LHSVals.empty() && RHSVals.empty()) 744 return false; 745 746 ConstantInt *InterestingVal; 747 if (match(I, m_LogicalOr())) 748 InterestingVal = ConstantInt::getTrue(I->getContext()); 749 else 750 InterestingVal = ConstantInt::getFalse(I->getContext()); 751 752 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 753 754 // Scan for the sentinel. If we find an undef, force it to the 755 // interesting value: x|undef -> true and x&undef -> false. 756 for (const auto &LHSVal : LHSVals) 757 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 758 Result.emplace_back(InterestingVal, LHSVal.second); 759 LHSKnownBBs.insert(LHSVal.second); 760 } 761 for (const auto &RHSVal : RHSVals) 762 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 763 // If we already inferred a value for this block on the LHS, don't 764 // re-add it. 765 if (!LHSKnownBBs.count(RHSVal.second)) 766 Result.emplace_back(InterestingVal, RHSVal.second); 767 } 768 769 return !Result.empty(); 770 } 771 772 // Handle the NOT form of XOR. 773 if (I->getOpcode() == Instruction::Xor && 774 isa<ConstantInt>(I->getOperand(1)) && 775 cast<ConstantInt>(I->getOperand(1))->isOne()) { 776 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 777 WantInteger, RecursionSet, CxtI); 778 if (Result.empty()) 779 return false; 780 781 // Invert the known values. 782 for (auto &R : Result) 783 R.first = ConstantExpr::getNot(R.first); 784 785 return true; 786 } 787 788 // Try to simplify some other binary operator values. 789 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 790 if (Preference != WantInteger) 791 return false; 792 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 793 PredValueInfoTy LHSVals; 794 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 795 WantInteger, RecursionSet, CxtI); 796 797 // Try to use constant folding to simplify the binary operator. 798 for (const auto &LHSVal : LHSVals) { 799 Constant *V = LHSVal.first; 800 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 801 802 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 803 Result.emplace_back(KC, LHSVal.second); 804 } 805 } 806 807 return !Result.empty(); 808 } 809 810 // Handle compare with phi operand, where the PHI is defined in this block. 811 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 812 if (Preference != WantInteger) 813 return false; 814 Type *CmpType = Cmp->getType(); 815 Value *CmpLHS = Cmp->getOperand(0); 816 Value *CmpRHS = Cmp->getOperand(1); 817 CmpInst::Predicate Pred = Cmp->getPredicate(); 818 819 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 820 if (!PN) 821 PN = dyn_cast<PHINode>(CmpRHS); 822 if (PN && PN->getParent() == BB) { 823 const DataLayout &DL = PN->getModule()->getDataLayout(); 824 // We can do this simplification if any comparisons fold to true or false. 825 // See if any do. 826 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 827 BasicBlock *PredBB = PN->getIncomingBlock(i); 828 Value *LHS, *RHS; 829 if (PN == CmpLHS) { 830 LHS = PN->getIncomingValue(i); 831 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 832 } else { 833 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 834 RHS = PN->getIncomingValue(i); 835 } 836 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 837 if (!Res) { 838 if (!isa<Constant>(RHS)) 839 continue; 840 841 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 842 auto LHSInst = dyn_cast<Instruction>(LHS); 843 if (LHSInst && LHSInst->getParent() == BB) 844 continue; 845 846 LazyValueInfo::Tristate 847 ResT = LVI->getPredicateOnEdge(Pred, LHS, 848 cast<Constant>(RHS), PredBB, BB, 849 CxtI ? CxtI : Cmp); 850 if (ResT == LazyValueInfo::Unknown) 851 continue; 852 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 853 } 854 855 if (Constant *KC = getKnownConstant(Res, WantInteger)) 856 Result.emplace_back(KC, PredBB); 857 } 858 859 return !Result.empty(); 860 } 861 862 // If comparing a live-in value against a constant, see if we know the 863 // live-in value on any predecessors. 864 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 865 Constant *CmpConst = cast<Constant>(CmpRHS); 866 867 if (!isa<Instruction>(CmpLHS) || 868 cast<Instruction>(CmpLHS)->getParent() != BB) { 869 for (BasicBlock *P : predecessors(BB)) { 870 // If the value is known by LazyValueInfo to be a constant in a 871 // predecessor, use that information to try to thread this block. 872 LazyValueInfo::Tristate Res = 873 LVI->getPredicateOnEdge(Pred, CmpLHS, 874 CmpConst, P, BB, CxtI ? CxtI : Cmp); 875 if (Res == LazyValueInfo::Unknown) 876 continue; 877 878 Constant *ResC = ConstantInt::get(CmpType, Res); 879 Result.emplace_back(ResC, P); 880 } 881 882 return !Result.empty(); 883 } 884 885 // InstCombine can fold some forms of constant range checks into 886 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 887 // x as a live-in. 888 { 889 using namespace PatternMatch; 890 891 Value *AddLHS; 892 ConstantInt *AddConst; 893 if (isa<ConstantInt>(CmpConst) && 894 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 895 if (!isa<Instruction>(AddLHS) || 896 cast<Instruction>(AddLHS)->getParent() != BB) { 897 for (BasicBlock *P : predecessors(BB)) { 898 // If the value is known by LazyValueInfo to be a ConstantRange in 899 // a predecessor, use that information to try to thread this 900 // block. 901 ConstantRange CR = LVI->getConstantRangeOnEdge( 902 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 903 // Propagate the range through the addition. 904 CR = CR.add(AddConst->getValue()); 905 906 // Get the range where the compare returns true. 907 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 908 Pred, cast<ConstantInt>(CmpConst)->getValue()); 909 910 Constant *ResC; 911 if (CmpRange.contains(CR)) 912 ResC = ConstantInt::getTrue(CmpType); 913 else if (CmpRange.inverse().contains(CR)) 914 ResC = ConstantInt::getFalse(CmpType); 915 else 916 continue; 917 918 Result.emplace_back(ResC, P); 919 } 920 921 return !Result.empty(); 922 } 923 } 924 } 925 926 // Try to find a constant value for the LHS of a comparison, 927 // and evaluate it statically if we can. 928 PredValueInfoTy LHSVals; 929 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 930 WantInteger, RecursionSet, CxtI); 931 932 for (const auto &LHSVal : LHSVals) { 933 Constant *V = LHSVal.first; 934 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 935 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 936 Result.emplace_back(KC, LHSVal.second); 937 } 938 939 return !Result.empty(); 940 } 941 } 942 943 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 944 // Handle select instructions where at least one operand is a known constant 945 // and we can figure out the condition value for any predecessor block. 946 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 947 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 948 PredValueInfoTy Conds; 949 if ((TrueVal || FalseVal) && 950 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 951 WantInteger, RecursionSet, CxtI)) { 952 for (auto &C : Conds) { 953 Constant *Cond = C.first; 954 955 // Figure out what value to use for the condition. 956 bool KnownCond; 957 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 958 // A known boolean. 959 KnownCond = CI->isOne(); 960 } else { 961 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 962 // Either operand will do, so be sure to pick the one that's a known 963 // constant. 964 // FIXME: Do this more cleverly if both values are known constants? 965 KnownCond = (TrueVal != nullptr); 966 } 967 968 // See if the select has a known constant value for this predecessor. 969 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 970 Result.emplace_back(Val, C.second); 971 } 972 973 return !Result.empty(); 974 } 975 } 976 977 // If all else fails, see if LVI can figure out a constant value for us. 978 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 979 Constant *CI = LVI->getConstant(V, CxtI); 980 if (Constant *KC = getKnownConstant(CI, Preference)) { 981 for (BasicBlock *Pred : predecessors(BB)) 982 Result.emplace_back(KC, Pred); 983 } 984 985 return !Result.empty(); 986 } 987 988 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 989 /// in an undefined jump, decide which block is best to revector to. 990 /// 991 /// Since we can pick an arbitrary destination, we pick the successor with the 992 /// fewest predecessors. This should reduce the in-degree of the others. 993 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 994 Instruction *BBTerm = BB->getTerminator(); 995 unsigned MinSucc = 0; 996 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 997 // Compute the successor with the minimum number of predecessors. 998 unsigned MinNumPreds = pred_size(TestBB); 999 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1000 TestBB = BBTerm->getSuccessor(i); 1001 unsigned NumPreds = pred_size(TestBB); 1002 if (NumPreds < MinNumPreds) { 1003 MinSucc = i; 1004 MinNumPreds = NumPreds; 1005 } 1006 } 1007 1008 return MinSucc; 1009 } 1010 1011 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1012 if (!BB->hasAddressTaken()) return false; 1013 1014 // If the block has its address taken, it may be a tree of dead constants 1015 // hanging off of it. These shouldn't keep the block alive. 1016 BlockAddress *BA = BlockAddress::get(BB); 1017 BA->removeDeadConstantUsers(); 1018 return !BA->use_empty(); 1019 } 1020 1021 /// processBlock - If there are any predecessors whose control can be threaded 1022 /// through to a successor, transform them now. 1023 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1024 // If the block is trivially dead, just return and let the caller nuke it. 1025 // This simplifies other transformations. 1026 if (DTU->isBBPendingDeletion(BB) || 1027 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1028 return false; 1029 1030 // If this block has a single predecessor, and if that pred has a single 1031 // successor, merge the blocks. This encourages recursive jump threading 1032 // because now the condition in this block can be threaded through 1033 // predecessors of our predecessor block. 1034 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1035 return true; 1036 1037 if (tryToUnfoldSelectInCurrBB(BB)) 1038 return true; 1039 1040 // Look if we can propagate guards to predecessors. 1041 if (HasGuards && processGuards(BB)) 1042 return true; 1043 1044 // What kind of constant we're looking for. 1045 ConstantPreference Preference = WantInteger; 1046 1047 // Look to see if the terminator is a conditional branch, switch or indirect 1048 // branch, if not we can't thread it. 1049 Value *Condition; 1050 Instruction *Terminator = BB->getTerminator(); 1051 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1052 // Can't thread an unconditional jump. 1053 if (BI->isUnconditional()) return false; 1054 Condition = BI->getCondition(); 1055 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1056 Condition = SI->getCondition(); 1057 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1058 // Can't thread indirect branch with no successors. 1059 if (IB->getNumSuccessors() == 0) return false; 1060 Condition = IB->getAddress()->stripPointerCasts(); 1061 Preference = WantBlockAddress; 1062 } else { 1063 return false; // Must be an invoke or callbr. 1064 } 1065 1066 // Keep track if we constant folded the condition in this invocation. 1067 bool ConstantFolded = false; 1068 1069 // Run constant folding to see if we can reduce the condition to a simple 1070 // constant. 1071 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1072 Value *SimpleVal = 1073 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1074 if (SimpleVal) { 1075 I->replaceAllUsesWith(SimpleVal); 1076 if (isInstructionTriviallyDead(I, TLI)) 1077 I->eraseFromParent(); 1078 Condition = SimpleVal; 1079 ConstantFolded = true; 1080 } 1081 } 1082 1083 // If the terminator is branching on an undef or freeze undef, we can pick any 1084 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1085 auto *FI = dyn_cast<FreezeInst>(Condition); 1086 if (isa<UndefValue>(Condition) || 1087 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1088 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1089 std::vector<DominatorTree::UpdateType> Updates; 1090 1091 // Fold the branch/switch. 1092 Instruction *BBTerm = BB->getTerminator(); 1093 Updates.reserve(BBTerm->getNumSuccessors()); 1094 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1095 if (i == BestSucc) continue; 1096 BasicBlock *Succ = BBTerm->getSuccessor(i); 1097 Succ->removePredecessor(BB, true); 1098 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1099 } 1100 1101 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1102 << "' folding undef terminator: " << *BBTerm << '\n'); 1103 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1104 ++NumFolds; 1105 BBTerm->eraseFromParent(); 1106 DTU->applyUpdatesPermissive(Updates); 1107 if (FI) 1108 FI->eraseFromParent(); 1109 return true; 1110 } 1111 1112 // If the terminator of this block is branching on a constant, simplify the 1113 // terminator to an unconditional branch. This can occur due to threading in 1114 // other blocks. 1115 if (getKnownConstant(Condition, Preference)) { 1116 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1117 << "' folding terminator: " << *BB->getTerminator() 1118 << '\n'); 1119 ++NumFolds; 1120 ConstantFoldTerminator(BB, true, nullptr, DTU); 1121 if (HasProfileData) 1122 BPI->eraseBlock(BB); 1123 return true; 1124 } 1125 1126 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1127 1128 // All the rest of our checks depend on the condition being an instruction. 1129 if (!CondInst) { 1130 // FIXME: Unify this with code below. 1131 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1132 return true; 1133 return ConstantFolded; 1134 } 1135 1136 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1137 // If we're branching on a conditional, LVI might be able to determine 1138 // it's value at the branch instruction. We only handle comparisons 1139 // against a constant at this time. 1140 // TODO: This should be extended to handle switches as well. 1141 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1142 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1143 if (CondBr && CondConst) { 1144 // We should have returned as soon as we turn a conditional branch to 1145 // unconditional. Because its no longer interesting as far as jump 1146 // threading is concerned. 1147 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1148 1149 LazyValueInfo::Tristate Ret = 1150 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1151 CondConst, CondBr, /*UseBlockValue=*/false); 1152 if (Ret != LazyValueInfo::Unknown) { 1153 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1154 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1155 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1156 ToRemoveSucc->removePredecessor(BB, true); 1157 BranchInst *UncondBr = 1158 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1159 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1160 ++NumFolds; 1161 CondBr->eraseFromParent(); 1162 if (CondCmp->use_empty()) 1163 CondCmp->eraseFromParent(); 1164 // We can safely replace *some* uses of the CondInst if it has 1165 // exactly one value as returned by LVI. RAUW is incorrect in the 1166 // presence of guards and assumes, that have the `Cond` as the use. This 1167 // is because we use the guards/assume to reason about the `Cond` value 1168 // at the end of block, but RAUW unconditionally replaces all uses 1169 // including the guards/assumes themselves and the uses before the 1170 // guard/assume. 1171 else if (CondCmp->getParent() == BB) { 1172 auto *CI = Ret == LazyValueInfo::True ? 1173 ConstantInt::getTrue(CondCmp->getType()) : 1174 ConstantInt::getFalse(CondCmp->getType()); 1175 replaceFoldableUses(CondCmp, CI); 1176 } 1177 DTU->applyUpdatesPermissive( 1178 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1179 if (HasProfileData) 1180 BPI->eraseBlock(BB); 1181 return true; 1182 } 1183 1184 // We did not manage to simplify this branch, try to see whether 1185 // CondCmp depends on a known phi-select pattern. 1186 if (tryToUnfoldSelect(CondCmp, BB)) 1187 return true; 1188 } 1189 } 1190 1191 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1192 if (tryToUnfoldSelect(SI, BB)) 1193 return true; 1194 1195 // Check for some cases that are worth simplifying. Right now we want to look 1196 // for loads that are used by a switch or by the condition for the branch. If 1197 // we see one, check to see if it's partially redundant. If so, insert a PHI 1198 // which can then be used to thread the values. 1199 Value *SimplifyValue = CondInst; 1200 1201 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1202 // Look into freeze's operand 1203 SimplifyValue = FI->getOperand(0); 1204 1205 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1206 if (isa<Constant>(CondCmp->getOperand(1))) 1207 SimplifyValue = CondCmp->getOperand(0); 1208 1209 // TODO: There are other places where load PRE would be profitable, such as 1210 // more complex comparisons. 1211 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1212 if (simplifyPartiallyRedundantLoad(LoadI)) 1213 return true; 1214 1215 // Before threading, try to propagate profile data backwards: 1216 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1217 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1218 updatePredecessorProfileMetadata(PN, BB); 1219 1220 // Handle a variety of cases where we are branching on something derived from 1221 // a PHI node in the current block. If we can prove that any predecessors 1222 // compute a predictable value based on a PHI node, thread those predecessors. 1223 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1224 return true; 1225 1226 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1227 // the current block, see if we can simplify. 1228 PHINode *PN = dyn_cast<PHINode>( 1229 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1230 : CondInst); 1231 1232 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1233 return processBranchOnPHI(PN); 1234 1235 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1236 if (CondInst->getOpcode() == Instruction::Xor && 1237 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1238 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1239 1240 // Search for a stronger dominating condition that can be used to simplify a 1241 // conditional branch leaving BB. 1242 if (processImpliedCondition(BB)) 1243 return true; 1244 1245 return false; 1246 } 1247 1248 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1249 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1250 if (!BI || !BI->isConditional()) 1251 return false; 1252 1253 Value *Cond = BI->getCondition(); 1254 BasicBlock *CurrentBB = BB; 1255 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1256 unsigned Iter = 0; 1257 1258 auto &DL = BB->getModule()->getDataLayout(); 1259 1260 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1261 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1262 if (!PBI || !PBI->isConditional()) 1263 return false; 1264 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1265 return false; 1266 1267 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1268 Optional<bool> Implication = 1269 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1270 if (Implication) { 1271 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1272 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1273 RemoveSucc->removePredecessor(BB); 1274 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1275 UncondBI->setDebugLoc(BI->getDebugLoc()); 1276 ++NumFolds; 1277 BI->eraseFromParent(); 1278 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1279 if (HasProfileData) 1280 BPI->eraseBlock(BB); 1281 return true; 1282 } 1283 CurrentBB = CurrentPred; 1284 CurrentPred = CurrentBB->getSinglePredecessor(); 1285 } 1286 1287 return false; 1288 } 1289 1290 /// Return true if Op is an instruction defined in the given block. 1291 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1292 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1293 if (OpInst->getParent() == BB) 1294 return true; 1295 return false; 1296 } 1297 1298 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1299 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1300 /// This is an important optimization that encourages jump threading, and needs 1301 /// to be run interlaced with other jump threading tasks. 1302 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1303 // Don't hack volatile and ordered loads. 1304 if (!LoadI->isUnordered()) return false; 1305 1306 // If the load is defined in a block with exactly one predecessor, it can't be 1307 // partially redundant. 1308 BasicBlock *LoadBB = LoadI->getParent(); 1309 if (LoadBB->getSinglePredecessor()) 1310 return false; 1311 1312 // If the load is defined in an EH pad, it can't be partially redundant, 1313 // because the edges between the invoke and the EH pad cannot have other 1314 // instructions between them. 1315 if (LoadBB->isEHPad()) 1316 return false; 1317 1318 Value *LoadedPtr = LoadI->getOperand(0); 1319 1320 // If the loaded operand is defined in the LoadBB and its not a phi, 1321 // it can't be available in predecessors. 1322 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1323 return false; 1324 1325 // Scan a few instructions up from the load, to see if it is obviously live at 1326 // the entry to its block. 1327 BasicBlock::iterator BBIt(LoadI); 1328 bool IsLoadCSE; 1329 if (Value *AvailableVal = FindAvailableLoadedValue( 1330 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1331 // If the value of the load is locally available within the block, just use 1332 // it. This frequently occurs for reg2mem'd allocas. 1333 1334 if (IsLoadCSE) { 1335 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1336 combineMetadataForCSE(NLoadI, LoadI, false); 1337 }; 1338 1339 // If the returned value is the load itself, replace with an undef. This can 1340 // only happen in dead loops. 1341 if (AvailableVal == LoadI) 1342 AvailableVal = UndefValue::get(LoadI->getType()); 1343 if (AvailableVal->getType() != LoadI->getType()) 1344 AvailableVal = CastInst::CreateBitOrPointerCast( 1345 AvailableVal, LoadI->getType(), "", LoadI); 1346 LoadI->replaceAllUsesWith(AvailableVal); 1347 LoadI->eraseFromParent(); 1348 return true; 1349 } 1350 1351 // Otherwise, if we scanned the whole block and got to the top of the block, 1352 // we know the block is locally transparent to the load. If not, something 1353 // might clobber its value. 1354 if (BBIt != LoadBB->begin()) 1355 return false; 1356 1357 // If all of the loads and stores that feed the value have the same AA tags, 1358 // then we can propagate them onto any newly inserted loads. 1359 AAMDNodes AATags = LoadI->getAAMetadata(); 1360 1361 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1362 1363 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1364 1365 AvailablePredsTy AvailablePreds; 1366 BasicBlock *OneUnavailablePred = nullptr; 1367 SmallVector<LoadInst*, 8> CSELoads; 1368 1369 // If we got here, the loaded value is transparent through to the start of the 1370 // block. Check to see if it is available in any of the predecessor blocks. 1371 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1372 // If we already scanned this predecessor, skip it. 1373 if (!PredsScanned.insert(PredBB).second) 1374 continue; 1375 1376 BBIt = PredBB->end(); 1377 unsigned NumScanedInst = 0; 1378 Value *PredAvailable = nullptr; 1379 // NOTE: We don't CSE load that is volatile or anything stronger than 1380 // unordered, that should have been checked when we entered the function. 1381 assert(LoadI->isUnordered() && 1382 "Attempting to CSE volatile or atomic loads"); 1383 // If this is a load on a phi pointer, phi-translate it and search 1384 // for available load/store to the pointer in predecessors. 1385 Type *AccessTy = LoadI->getType(); 1386 const auto &DL = LoadI->getModule()->getDataLayout(); 1387 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1388 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1389 AATags); 1390 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(), 1391 PredBB, BBIt, DefMaxInstsToScan, 1392 AA, &IsLoadCSE, &NumScanedInst); 1393 1394 // If PredBB has a single predecessor, continue scanning through the 1395 // single predecessor. 1396 BasicBlock *SinglePredBB = PredBB; 1397 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1398 NumScanedInst < DefMaxInstsToScan) { 1399 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1400 if (SinglePredBB) { 1401 BBIt = SinglePredBB->end(); 1402 PredAvailable = findAvailablePtrLoadStore( 1403 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1404 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1405 &NumScanedInst); 1406 } 1407 } 1408 1409 if (!PredAvailable) { 1410 OneUnavailablePred = PredBB; 1411 continue; 1412 } 1413 1414 if (IsLoadCSE) 1415 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1416 1417 // If so, this load is partially redundant. Remember this info so that we 1418 // can create a PHI node. 1419 AvailablePreds.emplace_back(PredBB, PredAvailable); 1420 } 1421 1422 // If the loaded value isn't available in any predecessor, it isn't partially 1423 // redundant. 1424 if (AvailablePreds.empty()) return false; 1425 1426 // Okay, the loaded value is available in at least one (and maybe all!) 1427 // predecessors. If the value is unavailable in more than one unique 1428 // predecessor, we want to insert a merge block for those common predecessors. 1429 // This ensures that we only have to insert one reload, thus not increasing 1430 // code size. 1431 BasicBlock *UnavailablePred = nullptr; 1432 1433 // If the value is unavailable in one of predecessors, we will end up 1434 // inserting a new instruction into them. It is only valid if all the 1435 // instructions before LoadI are guaranteed to pass execution to its 1436 // successor, or if LoadI is safe to speculate. 1437 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1438 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1439 // It requires domination tree analysis, so for this simple case it is an 1440 // overkill. 1441 if (PredsScanned.size() != AvailablePreds.size() && 1442 !isSafeToSpeculativelyExecute(LoadI)) 1443 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1444 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1445 return false; 1446 1447 // If there is exactly one predecessor where the value is unavailable, the 1448 // already computed 'OneUnavailablePred' block is it. If it ends in an 1449 // unconditional branch, we know that it isn't a critical edge. 1450 if (PredsScanned.size() == AvailablePreds.size()+1 && 1451 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1452 UnavailablePred = OneUnavailablePred; 1453 } else if (PredsScanned.size() != AvailablePreds.size()) { 1454 // Otherwise, we had multiple unavailable predecessors or we had a critical 1455 // edge from the one. 1456 SmallVector<BasicBlock*, 8> PredsToSplit; 1457 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1458 1459 for (const auto &AvailablePred : AvailablePreds) 1460 AvailablePredSet.insert(AvailablePred.first); 1461 1462 // Add all the unavailable predecessors to the PredsToSplit list. 1463 for (BasicBlock *P : predecessors(LoadBB)) { 1464 // If the predecessor is an indirect goto, we can't split the edge. 1465 // Same for CallBr. 1466 if (isa<IndirectBrInst>(P->getTerminator()) || 1467 isa<CallBrInst>(P->getTerminator())) 1468 return false; 1469 1470 if (!AvailablePredSet.count(P)) 1471 PredsToSplit.push_back(P); 1472 } 1473 1474 // Split them out to their own block. 1475 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1476 } 1477 1478 // If the value isn't available in all predecessors, then there will be 1479 // exactly one where it isn't available. Insert a load on that edge and add 1480 // it to the AvailablePreds list. 1481 if (UnavailablePred) { 1482 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1483 "Can't handle critical edge here!"); 1484 LoadInst *NewVal = new LoadInst( 1485 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1486 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1487 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1488 UnavailablePred->getTerminator()); 1489 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1490 if (AATags) 1491 NewVal->setAAMetadata(AATags); 1492 1493 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1494 } 1495 1496 // Now we know that each predecessor of this block has a value in 1497 // AvailablePreds, sort them for efficient access as we're walking the preds. 1498 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1499 1500 // Create a PHI node at the start of the block for the PRE'd load value. 1501 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1502 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1503 &LoadBB->front()); 1504 PN->takeName(LoadI); 1505 PN->setDebugLoc(LoadI->getDebugLoc()); 1506 1507 // Insert new entries into the PHI for each predecessor. A single block may 1508 // have multiple entries here. 1509 for (pred_iterator PI = PB; PI != PE; ++PI) { 1510 BasicBlock *P = *PI; 1511 AvailablePredsTy::iterator I = 1512 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1513 1514 assert(I != AvailablePreds.end() && I->first == P && 1515 "Didn't find entry for predecessor!"); 1516 1517 // If we have an available predecessor but it requires casting, insert the 1518 // cast in the predecessor and use the cast. Note that we have to update the 1519 // AvailablePreds vector as we go so that all of the PHI entries for this 1520 // predecessor use the same bitcast. 1521 Value *&PredV = I->second; 1522 if (PredV->getType() != LoadI->getType()) 1523 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1524 P->getTerminator()); 1525 1526 PN->addIncoming(PredV, I->first); 1527 } 1528 1529 for (LoadInst *PredLoadI : CSELoads) { 1530 combineMetadataForCSE(PredLoadI, LoadI, true); 1531 } 1532 1533 LoadI->replaceAllUsesWith(PN); 1534 LoadI->eraseFromParent(); 1535 1536 return true; 1537 } 1538 1539 /// findMostPopularDest - The specified list contains multiple possible 1540 /// threadable destinations. Pick the one that occurs the most frequently in 1541 /// the list. 1542 static BasicBlock * 1543 findMostPopularDest(BasicBlock *BB, 1544 const SmallVectorImpl<std::pair<BasicBlock *, 1545 BasicBlock *>> &PredToDestList) { 1546 assert(!PredToDestList.empty()); 1547 1548 // Determine popularity. If there are multiple possible destinations, we 1549 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1550 // blocks with known and real destinations to threading undef. We'll handle 1551 // them later if interesting. 1552 MapVector<BasicBlock *, unsigned> DestPopularity; 1553 1554 // Populate DestPopularity with the successors in the order they appear in the 1555 // successor list. This way, we ensure determinism by iterating it in the 1556 // same order in std::max_element below. We map nullptr to 0 so that we can 1557 // return nullptr when PredToDestList contains nullptr only. 1558 DestPopularity[nullptr] = 0; 1559 for (auto *SuccBB : successors(BB)) 1560 DestPopularity[SuccBB] = 0; 1561 1562 for (const auto &PredToDest : PredToDestList) 1563 if (PredToDest.second) 1564 DestPopularity[PredToDest.second]++; 1565 1566 // Find the most popular dest. 1567 using VT = decltype(DestPopularity)::value_type; 1568 auto MostPopular = std::max_element( 1569 DestPopularity.begin(), DestPopularity.end(), 1570 [](const VT &L, const VT &R) { return L.second < R.second; }); 1571 1572 // Okay, we have finally picked the most popular destination. 1573 return MostPopular->first; 1574 } 1575 1576 // Try to evaluate the value of V when the control flows from PredPredBB to 1577 // BB->getSinglePredecessor() and then on to BB. 1578 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1579 BasicBlock *PredPredBB, 1580 Value *V) { 1581 BasicBlock *PredBB = BB->getSinglePredecessor(); 1582 assert(PredBB && "Expected a single predecessor"); 1583 1584 if (Constant *Cst = dyn_cast<Constant>(V)) { 1585 return Cst; 1586 } 1587 1588 // Consult LVI if V is not an instruction in BB or PredBB. 1589 Instruction *I = dyn_cast<Instruction>(V); 1590 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1591 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1592 } 1593 1594 // Look into a PHI argument. 1595 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1596 if (PHI->getParent() == PredBB) 1597 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1598 return nullptr; 1599 } 1600 1601 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1602 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1603 if (CondCmp->getParent() == BB) { 1604 Constant *Op0 = 1605 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1606 Constant *Op1 = 1607 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1608 if (Op0 && Op1) { 1609 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1610 } 1611 } 1612 return nullptr; 1613 } 1614 1615 return nullptr; 1616 } 1617 1618 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1619 ConstantPreference Preference, 1620 Instruction *CxtI) { 1621 // If threading this would thread across a loop header, don't even try to 1622 // thread the edge. 1623 if (LoopHeaders.count(BB)) 1624 return false; 1625 1626 PredValueInfoTy PredValues; 1627 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1628 CxtI)) { 1629 // We don't have known values in predecessors. See if we can thread through 1630 // BB and its sole predecessor. 1631 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1632 } 1633 1634 assert(!PredValues.empty() && 1635 "computeValueKnownInPredecessors returned true with no values"); 1636 1637 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1638 for (const auto &PredValue : PredValues) { 1639 dbgs() << " BB '" << BB->getName() 1640 << "': FOUND condition = " << *PredValue.first 1641 << " for pred '" << PredValue.second->getName() << "'.\n"; 1642 }); 1643 1644 // Decide what we want to thread through. Convert our list of known values to 1645 // a list of known destinations for each pred. This also discards duplicate 1646 // predecessors and keeps track of the undefined inputs (which are represented 1647 // as a null dest in the PredToDestList). 1648 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1649 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1650 1651 BasicBlock *OnlyDest = nullptr; 1652 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1653 Constant *OnlyVal = nullptr; 1654 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1655 1656 for (const auto &PredValue : PredValues) { 1657 BasicBlock *Pred = PredValue.second; 1658 if (!SeenPreds.insert(Pred).second) 1659 continue; // Duplicate predecessor entry. 1660 1661 Constant *Val = PredValue.first; 1662 1663 BasicBlock *DestBB; 1664 if (isa<UndefValue>(Val)) 1665 DestBB = nullptr; 1666 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1667 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1668 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1669 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1670 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1671 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1672 } else { 1673 assert(isa<IndirectBrInst>(BB->getTerminator()) 1674 && "Unexpected terminator"); 1675 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1676 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1677 } 1678 1679 // If we have exactly one destination, remember it for efficiency below. 1680 if (PredToDestList.empty()) { 1681 OnlyDest = DestBB; 1682 OnlyVal = Val; 1683 } else { 1684 if (OnlyDest != DestBB) 1685 OnlyDest = MultipleDestSentinel; 1686 // It possible we have same destination, but different value, e.g. default 1687 // case in switchinst. 1688 if (Val != OnlyVal) 1689 OnlyVal = MultipleVal; 1690 } 1691 1692 // If the predecessor ends with an indirect goto, we can't change its 1693 // destination. Same for CallBr. 1694 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1695 isa<CallBrInst>(Pred->getTerminator())) 1696 continue; 1697 1698 PredToDestList.emplace_back(Pred, DestBB); 1699 } 1700 1701 // If all edges were unthreadable, we fail. 1702 if (PredToDestList.empty()) 1703 return false; 1704 1705 // If all the predecessors go to a single known successor, we want to fold, 1706 // not thread. By doing so, we do not need to duplicate the current block and 1707 // also miss potential opportunities in case we dont/cant duplicate. 1708 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1709 if (BB->hasNPredecessors(PredToDestList.size())) { 1710 bool SeenFirstBranchToOnlyDest = false; 1711 std::vector <DominatorTree::UpdateType> Updates; 1712 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1713 for (BasicBlock *SuccBB : successors(BB)) { 1714 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1715 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1716 } else { 1717 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1718 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1719 } 1720 } 1721 1722 // Finally update the terminator. 1723 Instruction *Term = BB->getTerminator(); 1724 BranchInst::Create(OnlyDest, Term); 1725 ++NumFolds; 1726 Term->eraseFromParent(); 1727 DTU->applyUpdatesPermissive(Updates); 1728 if (HasProfileData) 1729 BPI->eraseBlock(BB); 1730 1731 // If the condition is now dead due to the removal of the old terminator, 1732 // erase it. 1733 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1734 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1735 CondInst->eraseFromParent(); 1736 // We can safely replace *some* uses of the CondInst if it has 1737 // exactly one value as returned by LVI. RAUW is incorrect in the 1738 // presence of guards and assumes, that have the `Cond` as the use. This 1739 // is because we use the guards/assume to reason about the `Cond` value 1740 // at the end of block, but RAUW unconditionally replaces all uses 1741 // including the guards/assumes themselves and the uses before the 1742 // guard/assume. 1743 else if (OnlyVal && OnlyVal != MultipleVal && 1744 CondInst->getParent() == BB) 1745 replaceFoldableUses(CondInst, OnlyVal); 1746 } 1747 return true; 1748 } 1749 } 1750 1751 // Determine which is the most common successor. If we have many inputs and 1752 // this block is a switch, we want to start by threading the batch that goes 1753 // to the most popular destination first. If we only know about one 1754 // threadable destination (the common case) we can avoid this. 1755 BasicBlock *MostPopularDest = OnlyDest; 1756 1757 if (MostPopularDest == MultipleDestSentinel) { 1758 // Remove any loop headers from the Dest list, threadEdge conservatively 1759 // won't process them, but we might have other destination that are eligible 1760 // and we still want to process. 1761 erase_if(PredToDestList, 1762 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1763 return LoopHeaders.contains(PredToDest.second); 1764 }); 1765 1766 if (PredToDestList.empty()) 1767 return false; 1768 1769 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1770 } 1771 1772 // Now that we know what the most popular destination is, factor all 1773 // predecessors that will jump to it into a single predecessor. 1774 SmallVector<BasicBlock*, 16> PredsToFactor; 1775 for (const auto &PredToDest : PredToDestList) 1776 if (PredToDest.second == MostPopularDest) { 1777 BasicBlock *Pred = PredToDest.first; 1778 1779 // This predecessor may be a switch or something else that has multiple 1780 // edges to the block. Factor each of these edges by listing them 1781 // according to # occurrences in PredsToFactor. 1782 for (BasicBlock *Succ : successors(Pred)) 1783 if (Succ == BB) 1784 PredsToFactor.push_back(Pred); 1785 } 1786 1787 // If the threadable edges are branching on an undefined value, we get to pick 1788 // the destination that these predecessors should get to. 1789 if (!MostPopularDest) 1790 MostPopularDest = BB->getTerminator()-> 1791 getSuccessor(getBestDestForJumpOnUndef(BB)); 1792 1793 // Ok, try to thread it! 1794 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1795 } 1796 1797 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1798 /// a PHI node (or freeze PHI) in the current block. See if there are any 1799 /// simplifications we can do based on inputs to the phi node. 1800 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1801 BasicBlock *BB = PN->getParent(); 1802 1803 // TODO: We could make use of this to do it once for blocks with common PHI 1804 // values. 1805 SmallVector<BasicBlock*, 1> PredBBs; 1806 PredBBs.resize(1); 1807 1808 // If any of the predecessor blocks end in an unconditional branch, we can 1809 // *duplicate* the conditional branch into that block in order to further 1810 // encourage jump threading and to eliminate cases where we have branch on a 1811 // phi of an icmp (branch on icmp is much better). 1812 // This is still beneficial when a frozen phi is used as the branch condition 1813 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1814 // to br(icmp(freeze ...)). 1815 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1816 BasicBlock *PredBB = PN->getIncomingBlock(i); 1817 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1818 if (PredBr->isUnconditional()) { 1819 PredBBs[0] = PredBB; 1820 // Try to duplicate BB into PredBB. 1821 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1822 return true; 1823 } 1824 } 1825 1826 return false; 1827 } 1828 1829 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1830 /// a xor instruction in the current block. See if there are any 1831 /// simplifications we can do based on inputs to the xor. 1832 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1833 BasicBlock *BB = BO->getParent(); 1834 1835 // If either the LHS or RHS of the xor is a constant, don't do this 1836 // optimization. 1837 if (isa<ConstantInt>(BO->getOperand(0)) || 1838 isa<ConstantInt>(BO->getOperand(1))) 1839 return false; 1840 1841 // If the first instruction in BB isn't a phi, we won't be able to infer 1842 // anything special about any particular predecessor. 1843 if (!isa<PHINode>(BB->front())) 1844 return false; 1845 1846 // If this BB is a landing pad, we won't be able to split the edge into it. 1847 if (BB->isEHPad()) 1848 return false; 1849 1850 // If we have a xor as the branch input to this block, and we know that the 1851 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1852 // the condition into the predecessor and fix that value to true, saving some 1853 // logical ops on that path and encouraging other paths to simplify. 1854 // 1855 // This copies something like this: 1856 // 1857 // BB: 1858 // %X = phi i1 [1], [%X'] 1859 // %Y = icmp eq i32 %A, %B 1860 // %Z = xor i1 %X, %Y 1861 // br i1 %Z, ... 1862 // 1863 // Into: 1864 // BB': 1865 // %Y = icmp ne i32 %A, %B 1866 // br i1 %Y, ... 1867 1868 PredValueInfoTy XorOpValues; 1869 bool isLHS = true; 1870 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1871 WantInteger, BO)) { 1872 assert(XorOpValues.empty()); 1873 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1874 WantInteger, BO)) 1875 return false; 1876 isLHS = false; 1877 } 1878 1879 assert(!XorOpValues.empty() && 1880 "computeValueKnownInPredecessors returned true with no values"); 1881 1882 // Scan the information to see which is most popular: true or false. The 1883 // predecessors can be of the set true, false, or undef. 1884 unsigned NumTrue = 0, NumFalse = 0; 1885 for (const auto &XorOpValue : XorOpValues) { 1886 if (isa<UndefValue>(XorOpValue.first)) 1887 // Ignore undefs for the count. 1888 continue; 1889 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1890 ++NumFalse; 1891 else 1892 ++NumTrue; 1893 } 1894 1895 // Determine which value to split on, true, false, or undef if neither. 1896 ConstantInt *SplitVal = nullptr; 1897 if (NumTrue > NumFalse) 1898 SplitVal = ConstantInt::getTrue(BB->getContext()); 1899 else if (NumTrue != 0 || NumFalse != 0) 1900 SplitVal = ConstantInt::getFalse(BB->getContext()); 1901 1902 // Collect all of the blocks that this can be folded into so that we can 1903 // factor this once and clone it once. 1904 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1905 for (const auto &XorOpValue : XorOpValues) { 1906 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1907 continue; 1908 1909 BlocksToFoldInto.push_back(XorOpValue.second); 1910 } 1911 1912 // If we inferred a value for all of the predecessors, then duplication won't 1913 // help us. However, we can just replace the LHS or RHS with the constant. 1914 if (BlocksToFoldInto.size() == 1915 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1916 if (!SplitVal) { 1917 // If all preds provide undef, just nuke the xor, because it is undef too. 1918 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1919 BO->eraseFromParent(); 1920 } else if (SplitVal->isZero()) { 1921 // If all preds provide 0, replace the xor with the other input. 1922 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1923 BO->eraseFromParent(); 1924 } else { 1925 // If all preds provide 1, set the computed value to 1. 1926 BO->setOperand(!isLHS, SplitVal); 1927 } 1928 1929 return true; 1930 } 1931 1932 // If any of predecessors end with an indirect goto, we can't change its 1933 // destination. Same for CallBr. 1934 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1935 return isa<IndirectBrInst>(Pred->getTerminator()) || 1936 isa<CallBrInst>(Pred->getTerminator()); 1937 })) 1938 return false; 1939 1940 // Try to duplicate BB into PredBB. 1941 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1942 } 1943 1944 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1945 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1946 /// NewPred using the entries from OldPred (suitably mapped). 1947 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1948 BasicBlock *OldPred, 1949 BasicBlock *NewPred, 1950 DenseMap<Instruction*, Value*> &ValueMap) { 1951 for (PHINode &PN : PHIBB->phis()) { 1952 // Ok, we have a PHI node. Figure out what the incoming value was for the 1953 // DestBlock. 1954 Value *IV = PN.getIncomingValueForBlock(OldPred); 1955 1956 // Remap the value if necessary. 1957 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1958 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1959 if (I != ValueMap.end()) 1960 IV = I->second; 1961 } 1962 1963 PN.addIncoming(IV, NewPred); 1964 } 1965 } 1966 1967 /// Merge basic block BB into its sole predecessor if possible. 1968 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1969 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1970 if (!SinglePred) 1971 return false; 1972 1973 const Instruction *TI = SinglePred->getTerminator(); 1974 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1975 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1976 return false; 1977 1978 // If SinglePred was a loop header, BB becomes one. 1979 if (LoopHeaders.erase(SinglePred)) 1980 LoopHeaders.insert(BB); 1981 1982 LVI->eraseBlock(SinglePred); 1983 MergeBasicBlockIntoOnlyPred(BB, DTU); 1984 1985 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1986 // BB code within one basic block `BB`), we need to invalidate the LVI 1987 // information associated with BB, because the LVI information need not be 1988 // true for all of BB after the merge. For example, 1989 // Before the merge, LVI info and code is as follows: 1990 // SinglePred: <LVI info1 for %p val> 1991 // %y = use of %p 1992 // call @exit() // need not transfer execution to successor. 1993 // assume(%p) // from this point on %p is true 1994 // br label %BB 1995 // BB: <LVI info2 for %p val, i.e. %p is true> 1996 // %x = use of %p 1997 // br label exit 1998 // 1999 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2000 // (info2 and info1 respectively). After the merge and the deletion of the 2001 // LVI info1 for SinglePred. We have the following code: 2002 // BB: <LVI info2 for %p val> 2003 // %y = use of %p 2004 // call @exit() 2005 // assume(%p) 2006 // %x = use of %p <-- LVI info2 is correct from here onwards. 2007 // br label exit 2008 // LVI info2 for BB is incorrect at the beginning of BB. 2009 2010 // Invalidate LVI information for BB if the LVI is not provably true for 2011 // all of BB. 2012 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2013 LVI->eraseBlock(BB); 2014 return true; 2015 } 2016 2017 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2018 /// ValueMapping maps old values in BB to new ones in NewBB. 2019 void JumpThreadingPass::updateSSA( 2020 BasicBlock *BB, BasicBlock *NewBB, 2021 DenseMap<Instruction *, Value *> &ValueMapping) { 2022 // If there were values defined in BB that are used outside the block, then we 2023 // now have to update all uses of the value to use either the original value, 2024 // the cloned value, or some PHI derived value. This can require arbitrary 2025 // PHI insertion, of which we are prepared to do, clean these up now. 2026 SSAUpdater SSAUpdate; 2027 SmallVector<Use *, 16> UsesToRename; 2028 2029 for (Instruction &I : *BB) { 2030 // Scan all uses of this instruction to see if it is used outside of its 2031 // block, and if so, record them in UsesToRename. 2032 for (Use &U : I.uses()) { 2033 Instruction *User = cast<Instruction>(U.getUser()); 2034 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2035 if (UserPN->getIncomingBlock(U) == BB) 2036 continue; 2037 } else if (User->getParent() == BB) 2038 continue; 2039 2040 UsesToRename.push_back(&U); 2041 } 2042 2043 // If there are no uses outside the block, we're done with this instruction. 2044 if (UsesToRename.empty()) 2045 continue; 2046 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2047 2048 // We found a use of I outside of BB. Rename all uses of I that are outside 2049 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2050 // with the two values we know. 2051 SSAUpdate.Initialize(I.getType(), I.getName()); 2052 SSAUpdate.AddAvailableValue(BB, &I); 2053 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2054 2055 while (!UsesToRename.empty()) 2056 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2057 LLVM_DEBUG(dbgs() << "\n"); 2058 } 2059 } 2060 2061 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2062 /// arguments that come from PredBB. Return the map from the variables in the 2063 /// source basic block to the variables in the newly created basic block. 2064 DenseMap<Instruction *, Value *> 2065 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2066 BasicBlock::iterator BE, BasicBlock *NewBB, 2067 BasicBlock *PredBB) { 2068 // We are going to have to map operands from the source basic block to the new 2069 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2070 // block, evaluate them to account for entry from PredBB. 2071 DenseMap<Instruction *, Value *> ValueMapping; 2072 2073 // Clone the phi nodes of the source basic block into NewBB. The resulting 2074 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2075 // might need to rewrite the operand of the cloned phi. 2076 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2077 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2078 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2079 ValueMapping[PN] = NewPN; 2080 } 2081 2082 // Clone noalias scope declarations in the threaded block. When threading a 2083 // loop exit, we would otherwise end up with two idential scope declarations 2084 // visible at the same time. 2085 SmallVector<MDNode *> NoAliasScopes; 2086 DenseMap<MDNode *, MDNode *> ClonedScopes; 2087 LLVMContext &Context = PredBB->getContext(); 2088 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2089 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2090 2091 // Clone the non-phi instructions of the source basic block into NewBB, 2092 // keeping track of the mapping and using it to remap operands in the cloned 2093 // instructions. 2094 for (; BI != BE; ++BI) { 2095 Instruction *New = BI->clone(); 2096 New->setName(BI->getName()); 2097 NewBB->getInstList().push_back(New); 2098 ValueMapping[&*BI] = New; 2099 adaptNoAliasScopes(New, ClonedScopes, Context); 2100 2101 // Remap operands to patch up intra-block references. 2102 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2103 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2104 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2105 if (I != ValueMapping.end()) 2106 New->setOperand(i, I->second); 2107 } 2108 } 2109 2110 return ValueMapping; 2111 } 2112 2113 /// Attempt to thread through two successive basic blocks. 2114 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2115 Value *Cond) { 2116 // Consider: 2117 // 2118 // PredBB: 2119 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2120 // %tobool = icmp eq i32 %cond, 0 2121 // br i1 %tobool, label %BB, label ... 2122 // 2123 // BB: 2124 // %cmp = icmp eq i32* %var, null 2125 // br i1 %cmp, label ..., label ... 2126 // 2127 // We don't know the value of %var at BB even if we know which incoming edge 2128 // we take to BB. However, once we duplicate PredBB for each of its incoming 2129 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2130 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2131 2132 // Require that BB end with a Branch for simplicity. 2133 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2134 if (!CondBr) 2135 return false; 2136 2137 // BB must have exactly one predecessor. 2138 BasicBlock *PredBB = BB->getSinglePredecessor(); 2139 if (!PredBB) 2140 return false; 2141 2142 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2143 // unconditional branch, we should be merging PredBB and BB instead. For 2144 // simplicity, we don't deal with a switch. 2145 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2146 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2147 return false; 2148 2149 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2150 // PredBB. 2151 if (PredBB->getSinglePredecessor()) 2152 return false; 2153 2154 // Don't thread through PredBB if it contains a successor edge to itself, in 2155 // which case we would infinite loop. Suppose we are threading an edge from 2156 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2157 // successor edge to itself. If we allowed jump threading in this case, we 2158 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2159 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2160 // with another jump threading opportunity from PredBB.thread through PredBB 2161 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2162 // would keep peeling one iteration from PredBB. 2163 if (llvm::is_contained(successors(PredBB), PredBB)) 2164 return false; 2165 2166 // Don't thread across a loop header. 2167 if (LoopHeaders.count(PredBB)) 2168 return false; 2169 2170 // Avoid complication with duplicating EH pads. 2171 if (PredBB->isEHPad()) 2172 return false; 2173 2174 // Find a predecessor that we can thread. For simplicity, we only consider a 2175 // successor edge out of BB to which we thread exactly one incoming edge into 2176 // PredBB. 2177 unsigned ZeroCount = 0; 2178 unsigned OneCount = 0; 2179 BasicBlock *ZeroPred = nullptr; 2180 BasicBlock *OnePred = nullptr; 2181 for (BasicBlock *P : predecessors(PredBB)) { 2182 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2183 evaluateOnPredecessorEdge(BB, P, Cond))) { 2184 if (CI->isZero()) { 2185 ZeroCount++; 2186 ZeroPred = P; 2187 } else if (CI->isOne()) { 2188 OneCount++; 2189 OnePred = P; 2190 } 2191 } 2192 } 2193 2194 // Disregard complicated cases where we have to thread multiple edges. 2195 BasicBlock *PredPredBB; 2196 if (ZeroCount == 1) { 2197 PredPredBB = ZeroPred; 2198 } else if (OneCount == 1) { 2199 PredPredBB = OnePred; 2200 } else { 2201 return false; 2202 } 2203 2204 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2205 2206 // If threading to the same block as we come from, we would infinite loop. 2207 if (SuccBB == BB) { 2208 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2209 << "' - would thread to self!\n"); 2210 return false; 2211 } 2212 2213 // If threading this would thread across a loop header, don't thread the edge. 2214 // See the comments above findLoopHeaders for justifications and caveats. 2215 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2216 LLVM_DEBUG({ 2217 bool BBIsHeader = LoopHeaders.count(BB); 2218 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2219 dbgs() << " Not threading across " 2220 << (BBIsHeader ? "loop header BB '" : "block BB '") 2221 << BB->getName() << "' to dest " 2222 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2223 << SuccBB->getName() 2224 << "' - it might create an irreducible loop!\n"; 2225 }); 2226 return false; 2227 } 2228 2229 // Compute the cost of duplicating BB and PredBB. 2230 unsigned BBCost = getJumpThreadDuplicationCost( 2231 TTI, BB, BB->getTerminator(), BBDupThreshold); 2232 unsigned PredBBCost = getJumpThreadDuplicationCost( 2233 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2234 2235 // Give up if costs are too high. We need to check BBCost and PredBBCost 2236 // individually before checking their sum because getJumpThreadDuplicationCost 2237 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2238 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2239 BBCost + PredBBCost > BBDupThreshold) { 2240 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2241 << "' - Cost is too high: " << PredBBCost 2242 << " for PredBB, " << BBCost << "for BB\n"); 2243 return false; 2244 } 2245 2246 // Now we are ready to duplicate PredBB. 2247 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2248 return true; 2249 } 2250 2251 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2252 BasicBlock *PredBB, 2253 BasicBlock *BB, 2254 BasicBlock *SuccBB) { 2255 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2256 << BB->getName() << "'\n"); 2257 2258 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2259 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2260 2261 BasicBlock *NewBB = 2262 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2263 PredBB->getParent(), PredBB); 2264 NewBB->moveAfter(PredBB); 2265 2266 // Set the block frequency of NewBB. 2267 if (HasProfileData) { 2268 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2269 BPI->getEdgeProbability(PredPredBB, PredBB); 2270 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2271 } 2272 2273 // We are going to have to map operands from the original BB block to the new 2274 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2275 // to account for entry from PredPredBB. 2276 DenseMap<Instruction *, Value *> ValueMapping = 2277 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2278 2279 // Copy the edge probabilities from PredBB to NewBB. 2280 if (HasProfileData) 2281 BPI->copyEdgeProbabilities(PredBB, NewBB); 2282 2283 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2284 // This eliminates predecessors from PredPredBB, which requires us to simplify 2285 // any PHI nodes in PredBB. 2286 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2287 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2288 if (PredPredTerm->getSuccessor(i) == PredBB) { 2289 PredBB->removePredecessor(PredPredBB, true); 2290 PredPredTerm->setSuccessor(i, NewBB); 2291 } 2292 2293 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2294 ValueMapping); 2295 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2296 ValueMapping); 2297 2298 DTU->applyUpdatesPermissive( 2299 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2300 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2301 {DominatorTree::Insert, PredPredBB, NewBB}, 2302 {DominatorTree::Delete, PredPredBB, PredBB}}); 2303 2304 updateSSA(PredBB, NewBB, ValueMapping); 2305 2306 // Clean up things like PHI nodes with single operands, dead instructions, 2307 // etc. 2308 SimplifyInstructionsInBlock(NewBB, TLI); 2309 SimplifyInstructionsInBlock(PredBB, TLI); 2310 2311 SmallVector<BasicBlock *, 1> PredsToFactor; 2312 PredsToFactor.push_back(NewBB); 2313 threadEdge(BB, PredsToFactor, SuccBB); 2314 } 2315 2316 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2317 bool JumpThreadingPass::tryThreadEdge( 2318 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2319 BasicBlock *SuccBB) { 2320 // If threading to the same block as we come from, we would infinite loop. 2321 if (SuccBB == BB) { 2322 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2323 << "' - would thread to self!\n"); 2324 return false; 2325 } 2326 2327 // If threading this would thread across a loop header, don't thread the edge. 2328 // See the comments above findLoopHeaders for justifications and caveats. 2329 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2330 LLVM_DEBUG({ 2331 bool BBIsHeader = LoopHeaders.count(BB); 2332 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2333 dbgs() << " Not threading across " 2334 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2335 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2336 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2337 }); 2338 return false; 2339 } 2340 2341 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2342 TTI, BB, BB->getTerminator(), BBDupThreshold); 2343 if (JumpThreadCost > BBDupThreshold) { 2344 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2345 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2346 return false; 2347 } 2348 2349 threadEdge(BB, PredBBs, SuccBB); 2350 return true; 2351 } 2352 2353 /// threadEdge - We have decided that it is safe and profitable to factor the 2354 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2355 /// across BB. Transform the IR to reflect this change. 2356 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2357 const SmallVectorImpl<BasicBlock *> &PredBBs, 2358 BasicBlock *SuccBB) { 2359 assert(SuccBB != BB && "Don't create an infinite loop"); 2360 2361 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2362 "Don't thread across loop headers"); 2363 2364 // And finally, do it! Start by factoring the predecessors if needed. 2365 BasicBlock *PredBB; 2366 if (PredBBs.size() == 1) 2367 PredBB = PredBBs[0]; 2368 else { 2369 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2370 << " common predecessors.\n"); 2371 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2372 } 2373 2374 // And finally, do it! 2375 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2376 << "' to '" << SuccBB->getName() 2377 << ", across block:\n " << *BB << "\n"); 2378 2379 LVI->threadEdge(PredBB, BB, SuccBB); 2380 2381 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2382 BB->getName()+".thread", 2383 BB->getParent(), BB); 2384 NewBB->moveAfter(PredBB); 2385 2386 // Set the block frequency of NewBB. 2387 if (HasProfileData) { 2388 auto NewBBFreq = 2389 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2390 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2391 } 2392 2393 // Copy all the instructions from BB to NewBB except the terminator. 2394 DenseMap<Instruction *, Value *> ValueMapping = 2395 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2396 2397 // We didn't copy the terminator from BB over to NewBB, because there is now 2398 // an unconditional jump to SuccBB. Insert the unconditional jump. 2399 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2400 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2401 2402 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2403 // PHI nodes for NewBB now. 2404 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2405 2406 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2407 // eliminates predecessors from BB, which requires us to simplify any PHI 2408 // nodes in BB. 2409 Instruction *PredTerm = PredBB->getTerminator(); 2410 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2411 if (PredTerm->getSuccessor(i) == BB) { 2412 BB->removePredecessor(PredBB, true); 2413 PredTerm->setSuccessor(i, NewBB); 2414 } 2415 2416 // Enqueue required DT updates. 2417 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2418 {DominatorTree::Insert, PredBB, NewBB}, 2419 {DominatorTree::Delete, PredBB, BB}}); 2420 2421 updateSSA(BB, NewBB, ValueMapping); 2422 2423 // At this point, the IR is fully up to date and consistent. Do a quick scan 2424 // over the new instructions and zap any that are constants or dead. This 2425 // frequently happens because of phi translation. 2426 SimplifyInstructionsInBlock(NewBB, TLI); 2427 2428 // Update the edge weight from BB to SuccBB, which should be less than before. 2429 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2430 2431 // Threaded an edge! 2432 ++NumThreads; 2433 } 2434 2435 /// Create a new basic block that will be the predecessor of BB and successor of 2436 /// all blocks in Preds. When profile data is available, update the frequency of 2437 /// this new block. 2438 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2439 ArrayRef<BasicBlock *> Preds, 2440 const char *Suffix) { 2441 SmallVector<BasicBlock *, 2> NewBBs; 2442 2443 // Collect the frequencies of all predecessors of BB, which will be used to 2444 // update the edge weight of the result of splitting predecessors. 2445 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2446 if (HasProfileData) 2447 for (auto Pred : Preds) 2448 FreqMap.insert(std::make_pair( 2449 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2450 2451 // In the case when BB is a LandingPad block we create 2 new predecessors 2452 // instead of just one. 2453 if (BB->isLandingPad()) { 2454 std::string NewName = std::string(Suffix) + ".split-lp"; 2455 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2456 } else { 2457 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2458 } 2459 2460 std::vector<DominatorTree::UpdateType> Updates; 2461 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2462 for (auto NewBB : NewBBs) { 2463 BlockFrequency NewBBFreq(0); 2464 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2465 for (auto Pred : predecessors(NewBB)) { 2466 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2467 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2468 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2469 NewBBFreq += FreqMap.lookup(Pred); 2470 } 2471 if (HasProfileData) // Apply the summed frequency to NewBB. 2472 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2473 } 2474 2475 DTU->applyUpdatesPermissive(Updates); 2476 return NewBBs[0]; 2477 } 2478 2479 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2480 const Instruction *TI = BB->getTerminator(); 2481 assert(TI->getNumSuccessors() > 1 && "not a split"); 2482 2483 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2484 if (!WeightsNode) 2485 return false; 2486 2487 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2488 if (MDName->getString() != "branch_weights") 2489 return false; 2490 2491 // Ensure there are weights for all of the successors. Note that the first 2492 // operand to the metadata node is a name, not a weight. 2493 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2494 } 2495 2496 /// Update the block frequency of BB and branch weight and the metadata on the 2497 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2498 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2499 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2500 BasicBlock *BB, 2501 BasicBlock *NewBB, 2502 BasicBlock *SuccBB) { 2503 if (!HasProfileData) 2504 return; 2505 2506 assert(BFI && BPI && "BFI & BPI should have been created here"); 2507 2508 // As the edge from PredBB to BB is deleted, we have to update the block 2509 // frequency of BB. 2510 auto BBOrigFreq = BFI->getBlockFreq(BB); 2511 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2512 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2513 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2514 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2515 2516 // Collect updated outgoing edges' frequencies from BB and use them to update 2517 // edge probabilities. 2518 SmallVector<uint64_t, 4> BBSuccFreq; 2519 for (BasicBlock *Succ : successors(BB)) { 2520 auto SuccFreq = (Succ == SuccBB) 2521 ? BB2SuccBBFreq - NewBBFreq 2522 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2523 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2524 } 2525 2526 uint64_t MaxBBSuccFreq = 2527 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2528 2529 SmallVector<BranchProbability, 4> BBSuccProbs; 2530 if (MaxBBSuccFreq == 0) 2531 BBSuccProbs.assign(BBSuccFreq.size(), 2532 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2533 else { 2534 for (uint64_t Freq : BBSuccFreq) 2535 BBSuccProbs.push_back( 2536 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2537 // Normalize edge probabilities so that they sum up to one. 2538 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2539 BBSuccProbs.end()); 2540 } 2541 2542 // Update edge probabilities in BPI. 2543 BPI->setEdgeProbability(BB, BBSuccProbs); 2544 2545 // Update the profile metadata as well. 2546 // 2547 // Don't do this if the profile of the transformed blocks was statically 2548 // estimated. (This could occur despite the function having an entry 2549 // frequency in completely cold parts of the CFG.) 2550 // 2551 // In this case we don't want to suggest to subsequent passes that the 2552 // calculated weights are fully consistent. Consider this graph: 2553 // 2554 // check_1 2555 // 50% / | 2556 // eq_1 | 50% 2557 // \ | 2558 // check_2 2559 // 50% / | 2560 // eq_2 | 50% 2561 // \ | 2562 // check_3 2563 // 50% / | 2564 // eq_3 | 50% 2565 // \ | 2566 // 2567 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2568 // the overall probabilities are inconsistent; the total probability that the 2569 // value is either 1, 2 or 3 is 150%. 2570 // 2571 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2572 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2573 // the loop exit edge. Then based solely on static estimation we would assume 2574 // the loop was extremely hot. 2575 // 2576 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2577 // shouldn't make edges extremely likely or unlikely based solely on static 2578 // estimation. 2579 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2580 SmallVector<uint32_t, 4> Weights; 2581 for (auto Prob : BBSuccProbs) 2582 Weights.push_back(Prob.getNumerator()); 2583 2584 auto TI = BB->getTerminator(); 2585 TI->setMetadata( 2586 LLVMContext::MD_prof, 2587 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2588 } 2589 } 2590 2591 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2592 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2593 /// If we can duplicate the contents of BB up into PredBB do so now, this 2594 /// improves the odds that the branch will be on an analyzable instruction like 2595 /// a compare. 2596 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2597 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2598 assert(!PredBBs.empty() && "Can't handle an empty set"); 2599 2600 // If BB is a loop header, then duplicating this block outside the loop would 2601 // cause us to transform this into an irreducible loop, don't do this. 2602 // See the comments above findLoopHeaders for justifications and caveats. 2603 if (LoopHeaders.count(BB)) { 2604 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2605 << "' into predecessor block '" << PredBBs[0]->getName() 2606 << "' - it might create an irreducible loop!\n"); 2607 return false; 2608 } 2609 2610 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2611 TTI, BB, BB->getTerminator(), BBDupThreshold); 2612 if (DuplicationCost > BBDupThreshold) { 2613 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2614 << "' - Cost is too high: " << DuplicationCost << "\n"); 2615 return false; 2616 } 2617 2618 // And finally, do it! Start by factoring the predecessors if needed. 2619 std::vector<DominatorTree::UpdateType> Updates; 2620 BasicBlock *PredBB; 2621 if (PredBBs.size() == 1) 2622 PredBB = PredBBs[0]; 2623 else { 2624 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2625 << " common predecessors.\n"); 2626 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2627 } 2628 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2629 2630 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2631 // of PredBB. 2632 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2633 << "' into end of '" << PredBB->getName() 2634 << "' to eliminate branch on phi. Cost: " 2635 << DuplicationCost << " block is:" << *BB << "\n"); 2636 2637 // Unless PredBB ends with an unconditional branch, split the edge so that we 2638 // can just clone the bits from BB into the end of the new PredBB. 2639 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2640 2641 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2642 BasicBlock *OldPredBB = PredBB; 2643 PredBB = SplitEdge(OldPredBB, BB); 2644 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2645 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2646 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2647 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2648 } 2649 2650 // We are going to have to map operands from the original BB block into the 2651 // PredBB block. Evaluate PHI nodes in BB. 2652 DenseMap<Instruction*, Value*> ValueMapping; 2653 2654 BasicBlock::iterator BI = BB->begin(); 2655 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2656 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2657 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2658 // mapping and using it to remap operands in the cloned instructions. 2659 for (; BI != BB->end(); ++BI) { 2660 Instruction *New = BI->clone(); 2661 2662 // Remap operands to patch up intra-block references. 2663 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2664 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2665 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2666 if (I != ValueMapping.end()) 2667 New->setOperand(i, I->second); 2668 } 2669 2670 // If this instruction can be simplified after the operands are updated, 2671 // just use the simplified value instead. This frequently happens due to 2672 // phi translation. 2673 if (Value *IV = SimplifyInstruction( 2674 New, 2675 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2676 ValueMapping[&*BI] = IV; 2677 if (!New->mayHaveSideEffects()) { 2678 New->deleteValue(); 2679 New = nullptr; 2680 } 2681 } else { 2682 ValueMapping[&*BI] = New; 2683 } 2684 if (New) { 2685 // Otherwise, insert the new instruction into the block. 2686 New->setName(BI->getName()); 2687 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2688 // Update Dominance from simplified New instruction operands. 2689 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2690 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2691 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2692 } 2693 } 2694 2695 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2696 // add entries to the PHI nodes for branch from PredBB now. 2697 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2698 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2699 ValueMapping); 2700 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2701 ValueMapping); 2702 2703 updateSSA(BB, PredBB, ValueMapping); 2704 2705 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2706 // that we nuked. 2707 BB->removePredecessor(PredBB, true); 2708 2709 // Remove the unconditional branch at the end of the PredBB block. 2710 OldPredBranch->eraseFromParent(); 2711 if (HasProfileData) 2712 BPI->copyEdgeProbabilities(BB, PredBB); 2713 DTU->applyUpdatesPermissive(Updates); 2714 2715 ++NumDupes; 2716 return true; 2717 } 2718 2719 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2720 // a Select instruction in Pred. BB has other predecessors and SI is used in 2721 // a PHI node in BB. SI has no other use. 2722 // A new basic block, NewBB, is created and SI is converted to compare and 2723 // conditional branch. SI is erased from parent. 2724 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2725 SelectInst *SI, PHINode *SIUse, 2726 unsigned Idx) { 2727 // Expand the select. 2728 // 2729 // Pred -- 2730 // | v 2731 // | NewBB 2732 // | | 2733 // |----- 2734 // v 2735 // BB 2736 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2737 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2738 BB->getParent(), BB); 2739 // Move the unconditional branch to NewBB. 2740 PredTerm->removeFromParent(); 2741 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2742 // Create a conditional branch and update PHI nodes. 2743 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2744 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2745 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2746 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2747 2748 // The select is now dead. 2749 SI->eraseFromParent(); 2750 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2751 {DominatorTree::Insert, Pred, NewBB}}); 2752 2753 // Update any other PHI nodes in BB. 2754 for (BasicBlock::iterator BI = BB->begin(); 2755 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2756 if (Phi != SIUse) 2757 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2758 } 2759 2760 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2761 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2762 2763 if (!CondPHI || CondPHI->getParent() != BB) 2764 return false; 2765 2766 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2767 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2768 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2769 2770 // The second and third condition can be potentially relaxed. Currently 2771 // the conditions help to simplify the code and allow us to reuse existing 2772 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2773 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2774 continue; 2775 2776 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2777 if (!PredTerm || !PredTerm->isUnconditional()) 2778 continue; 2779 2780 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2781 return true; 2782 } 2783 return false; 2784 } 2785 2786 /// tryToUnfoldSelect - Look for blocks of the form 2787 /// bb1: 2788 /// %a = select 2789 /// br bb2 2790 /// 2791 /// bb2: 2792 /// %p = phi [%a, %bb1] ... 2793 /// %c = icmp %p 2794 /// br i1 %c 2795 /// 2796 /// And expand the select into a branch structure if one of its arms allows %c 2797 /// to be folded. This later enables threading from bb1 over bb2. 2798 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2799 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2800 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2801 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2802 2803 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2804 CondLHS->getParent() != BB) 2805 return false; 2806 2807 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2808 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2809 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2810 2811 // Look if one of the incoming values is a select in the corresponding 2812 // predecessor. 2813 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2814 continue; 2815 2816 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2817 if (!PredTerm || !PredTerm->isUnconditional()) 2818 continue; 2819 2820 // Now check if one of the select values would allow us to constant fold the 2821 // terminator in BB. We don't do the transform if both sides fold, those 2822 // cases will be threaded in any case. 2823 LazyValueInfo::Tristate LHSFolds = 2824 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2825 CondRHS, Pred, BB, CondCmp); 2826 LazyValueInfo::Tristate RHSFolds = 2827 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2828 CondRHS, Pred, BB, CondCmp); 2829 if ((LHSFolds != LazyValueInfo::Unknown || 2830 RHSFolds != LazyValueInfo::Unknown) && 2831 LHSFolds != RHSFolds) { 2832 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2833 return true; 2834 } 2835 } 2836 return false; 2837 } 2838 2839 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2840 /// same BB in the form 2841 /// bb: 2842 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2843 /// %s = select %p, trueval, falseval 2844 /// 2845 /// or 2846 /// 2847 /// bb: 2848 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2849 /// %c = cmp %p, 0 2850 /// %s = select %c, trueval, falseval 2851 /// 2852 /// And expand the select into a branch structure. This later enables 2853 /// jump-threading over bb in this pass. 2854 /// 2855 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2856 /// select if the associated PHI has at least one constant. If the unfolded 2857 /// select is not jump-threaded, it will be folded again in the later 2858 /// optimizations. 2859 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2860 // This transform would reduce the quality of msan diagnostics. 2861 // Disable this transform under MemorySanitizer. 2862 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2863 return false; 2864 2865 // If threading this would thread across a loop header, don't thread the edge. 2866 // See the comments above findLoopHeaders for justifications and caveats. 2867 if (LoopHeaders.count(BB)) 2868 return false; 2869 2870 for (BasicBlock::iterator BI = BB->begin(); 2871 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2872 // Look for a Phi having at least one constant incoming value. 2873 if (llvm::all_of(PN->incoming_values(), 2874 [](Value *V) { return !isa<ConstantInt>(V); })) 2875 continue; 2876 2877 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2878 using namespace PatternMatch; 2879 2880 // Check if SI is in BB and use V as condition. 2881 if (SI->getParent() != BB) 2882 return false; 2883 Value *Cond = SI->getCondition(); 2884 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2885 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2886 }; 2887 2888 SelectInst *SI = nullptr; 2889 for (Use &U : PN->uses()) { 2890 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2891 // Look for a ICmp in BB that compares PN with a constant and is the 2892 // condition of a Select. 2893 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2894 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2895 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2896 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2897 SI = SelectI; 2898 break; 2899 } 2900 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2901 // Look for a Select in BB that uses PN as condition. 2902 if (isUnfoldCandidate(SelectI, U.get())) { 2903 SI = SelectI; 2904 break; 2905 } 2906 } 2907 } 2908 2909 if (!SI) 2910 continue; 2911 // Expand the select. 2912 Value *Cond = SI->getCondition(); 2913 if (InsertFreezeWhenUnfoldingSelect && 2914 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2915 &DTU->getDomTree())) 2916 Cond = new FreezeInst(Cond, "cond.fr", SI); 2917 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2918 BasicBlock *SplitBB = SI->getParent(); 2919 BasicBlock *NewBB = Term->getParent(); 2920 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2921 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2922 NewPN->addIncoming(SI->getFalseValue(), BB); 2923 SI->replaceAllUsesWith(NewPN); 2924 SI->eraseFromParent(); 2925 // NewBB and SplitBB are newly created blocks which require insertion. 2926 std::vector<DominatorTree::UpdateType> Updates; 2927 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2928 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2929 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2930 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2931 // BB's successors were moved to SplitBB, update DTU accordingly. 2932 for (auto *Succ : successors(SplitBB)) { 2933 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2934 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2935 } 2936 DTU->applyUpdatesPermissive(Updates); 2937 return true; 2938 } 2939 return false; 2940 } 2941 2942 /// Try to propagate a guard from the current BB into one of its predecessors 2943 /// in case if another branch of execution implies that the condition of this 2944 /// guard is always true. Currently we only process the simplest case that 2945 /// looks like: 2946 /// 2947 /// Start: 2948 /// %cond = ... 2949 /// br i1 %cond, label %T1, label %F1 2950 /// T1: 2951 /// br label %Merge 2952 /// F1: 2953 /// br label %Merge 2954 /// Merge: 2955 /// %condGuard = ... 2956 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2957 /// 2958 /// And cond either implies condGuard or !condGuard. In this case all the 2959 /// instructions before the guard can be duplicated in both branches, and the 2960 /// guard is then threaded to one of them. 2961 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2962 using namespace PatternMatch; 2963 2964 // We only want to deal with two predecessors. 2965 BasicBlock *Pred1, *Pred2; 2966 auto PI = pred_begin(BB), PE = pred_end(BB); 2967 if (PI == PE) 2968 return false; 2969 Pred1 = *PI++; 2970 if (PI == PE) 2971 return false; 2972 Pred2 = *PI++; 2973 if (PI != PE) 2974 return false; 2975 if (Pred1 == Pred2) 2976 return false; 2977 2978 // Try to thread one of the guards of the block. 2979 // TODO: Look up deeper than to immediate predecessor? 2980 auto *Parent = Pred1->getSinglePredecessor(); 2981 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2982 return false; 2983 2984 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2985 for (auto &I : *BB) 2986 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2987 return true; 2988 2989 return false; 2990 } 2991 2992 /// Try to propagate the guard from BB which is the lower block of a diamond 2993 /// to one of its branches, in case if diamond's condition implies guard's 2994 /// condition. 2995 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2996 BranchInst *BI) { 2997 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2998 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2999 Value *GuardCond = Guard->getArgOperand(0); 3000 Value *BranchCond = BI->getCondition(); 3001 BasicBlock *TrueDest = BI->getSuccessor(0); 3002 BasicBlock *FalseDest = BI->getSuccessor(1); 3003 3004 auto &DL = BB->getModule()->getDataLayout(); 3005 bool TrueDestIsSafe = false; 3006 bool FalseDestIsSafe = false; 3007 3008 // True dest is safe if BranchCond => GuardCond. 3009 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3010 if (Impl && *Impl) 3011 TrueDestIsSafe = true; 3012 else { 3013 // False dest is safe if !BranchCond => GuardCond. 3014 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3015 if (Impl && *Impl) 3016 FalseDestIsSafe = true; 3017 } 3018 3019 if (!TrueDestIsSafe && !FalseDestIsSafe) 3020 return false; 3021 3022 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3023 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3024 3025 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3026 Instruction *AfterGuard = Guard->getNextNode(); 3027 unsigned Cost = 3028 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3029 if (Cost > BBDupThreshold) 3030 return false; 3031 // Duplicate all instructions before the guard and the guard itself to the 3032 // branch where implication is not proved. 3033 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3034 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3035 assert(GuardedBlock && "Could not create the guarded block?"); 3036 // Duplicate all instructions before the guard in the unguarded branch. 3037 // Since we have successfully duplicated the guarded block and this block 3038 // has fewer instructions, we expect it to succeed. 3039 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3040 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3041 assert(UnguardedBlock && "Could not create the unguarded block?"); 3042 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3043 << GuardedBlock->getName() << "\n"); 3044 // Some instructions before the guard may still have uses. For them, we need 3045 // to create Phi nodes merging their copies in both guarded and unguarded 3046 // branches. Those instructions that have no uses can be just removed. 3047 SmallVector<Instruction *, 4> ToRemove; 3048 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3049 if (!isa<PHINode>(&*BI)) 3050 ToRemove.push_back(&*BI); 3051 3052 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3053 assert(InsertionPoint && "Empty block?"); 3054 // Substitute with Phis & remove. 3055 for (auto *Inst : reverse(ToRemove)) { 3056 if (!Inst->use_empty()) { 3057 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3058 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3059 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3060 NewPN->insertBefore(InsertionPoint); 3061 Inst->replaceAllUsesWith(NewPN); 3062 } 3063 Inst->eraseFromParent(); 3064 } 3065 return true; 3066 } 3067