1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> JumpThreadingFreezeSelectCond(
108     "jump-threading-freeze-select-cond",
109     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
110     cl::Hidden);
111 
112 static cl::opt<bool> ThreadAcrossLoopHeaders(
113     "jump-threading-across-loop-headers",
114     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115     cl::init(false), cl::Hidden);
116 
117 
118 namespace {
119 
120   /// This pass performs 'jump threading', which looks at blocks that have
121   /// multiple predecessors and multiple successors.  If one or more of the
122   /// predecessors of the block can be proven to always jump to one of the
123   /// successors, we forward the edge from the predecessor to the successor by
124   /// duplicating the contents of this block.
125   ///
126   /// An example of when this can occur is code like this:
127   ///
128   ///   if () { ...
129   ///     X = 4;
130   ///   }
131   ///   if (X < 3) {
132   ///
133   /// In this case, the unconditional branch at the end of the first if can be
134   /// revectored to the false side of the second if.
135   class JumpThreading : public FunctionPass {
136     JumpThreadingPass Impl;
137 
138   public:
139     static char ID; // Pass identification
140 
141     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
142         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
143       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
144     }
145 
146     bool runOnFunction(Function &F) override;
147 
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<DominatorTreeWrapperPass>();
150       AU.addPreserved<DominatorTreeWrapperPass>();
151       AU.addRequired<AAResultsWrapperPass>();
152       AU.addRequired<LazyValueInfoWrapperPass>();
153       AU.addPreserved<LazyValueInfoWrapperPass>();
154       AU.addPreserved<GlobalsAAWrapperPass>();
155       AU.addRequired<TargetLibraryInfoWrapperPass>();
156       AU.addRequired<TargetTransformInfoWrapperPass>();
157     }
158 
159     void releaseMemory() override { Impl.releaseMemory(); }
160   };
161 
162 } // end anonymous namespace
163 
164 char JumpThreading::ID = 0;
165 
166 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
167                 "Jump Threading", false, false)
168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
172 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
173                 "Jump Threading", false, false)
174 
175 // Public interface to the Jump Threading pass
176 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
177   return new JumpThreading(InsertFr, Threshold);
178 }
179 
180 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
181   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
182   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
183 }
184 
185 // Update branch probability information according to conditional
186 // branch probability. This is usually made possible for cloned branches
187 // in inline instances by the context specific profile in the caller.
188 // For instance,
189 //
190 //  [Block PredBB]
191 //  [Branch PredBr]
192 //  if (t) {
193 //     Block A;
194 //  } else {
195 //     Block B;
196 //  }
197 //
198 //  [Block BB]
199 //  cond = PN([true, %A], [..., %B]); // PHI node
200 //  [Branch CondBr]
201 //  if (cond) {
202 //    ...  // P(cond == true) = 1%
203 //  }
204 //
205 //  Here we know that when block A is taken, cond must be true, which means
206 //      P(cond == true | A) = 1
207 //
208 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
209 //                               P(cond == true | B) * P(B)
210 //  we get:
211 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
212 //
213 //  which gives us:
214 //     P(A) is less than P(cond == true), i.e.
215 //     P(t == true) <= P(cond == true)
216 //
217 //  In other words, if we know P(cond == true) is unlikely, we know
218 //  that P(t == true) is also unlikely.
219 //
220 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
221   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
222   if (!CondBr)
223     return;
224 
225   uint64_t TrueWeight, FalseWeight;
226   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
227     return;
228 
229   if (TrueWeight + FalseWeight == 0)
230     // Zero branch_weights do not give a hint for getting branch probabilities.
231     // Technically it would result in division by zero denominator, which is
232     // TrueWeight + FalseWeight.
233     return;
234 
235   // Returns the outgoing edge of the dominating predecessor block
236   // that leads to the PhiNode's incoming block:
237   auto GetPredOutEdge =
238       [](BasicBlock *IncomingBB,
239          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
240     auto *PredBB = IncomingBB;
241     auto *SuccBB = PhiBB;
242     SmallPtrSet<BasicBlock *, 16> Visited;
243     while (true) {
244       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
245       if (PredBr && PredBr->isConditional())
246         return {PredBB, SuccBB};
247       Visited.insert(PredBB);
248       auto *SinglePredBB = PredBB->getSinglePredecessor();
249       if (!SinglePredBB)
250         return {nullptr, nullptr};
251 
252       // Stop searching when SinglePredBB has been visited. It means we see
253       // an unreachable loop.
254       if (Visited.count(SinglePredBB))
255         return {nullptr, nullptr};
256 
257       SuccBB = PredBB;
258       PredBB = SinglePredBB;
259     }
260   };
261 
262   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263     Value *PhiOpnd = PN->getIncomingValue(i);
264     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
265 
266     if (!CI || !CI->getType()->isIntegerTy(1))
267       continue;
268 
269     BranchProbability BP =
270         (CI->isOne() ? BranchProbability::getBranchProbability(
271                            TrueWeight, TrueWeight + FalseWeight)
272                      : BranchProbability::getBranchProbability(
273                            FalseWeight, TrueWeight + FalseWeight));
274 
275     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
276     if (!PredOutEdge.first)
277       return;
278 
279     BasicBlock *PredBB = PredOutEdge.first;
280     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
281     if (!PredBr)
282       return;
283 
284     uint64_t PredTrueWeight, PredFalseWeight;
285     // FIXME: We currently only set the profile data when it is missing.
286     // With PGO, this can be used to refine even existing profile data with
287     // context information. This needs to be done after more performance
288     // testing.
289     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
290       continue;
291 
292     // We can not infer anything useful when BP >= 50%, because BP is the
293     // upper bound probability value.
294     if (BP >= BranchProbability(50, 100))
295       continue;
296 
297     SmallVector<uint32_t, 2> Weights;
298     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
299       Weights.push_back(BP.getNumerator());
300       Weights.push_back(BP.getCompl().getNumerator());
301     } else {
302       Weights.push_back(BP.getCompl().getNumerator());
303       Weights.push_back(BP.getNumerator());
304     }
305     PredBr->setMetadata(LLVMContext::MD_prof,
306                         MDBuilder(PredBr->getParent()->getContext())
307                             .createBranchWeights(Weights));
308   }
309 }
310 
311 /// runOnFunction - Toplevel algorithm.
312 bool JumpThreading::runOnFunction(Function &F) {
313   if (skipFunction(F))
314     return false;
315   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
316   // Jump Threading has no sense for the targets with divergent CF
317   if (TTI->hasBranchDivergence())
318     return false;
319   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
320   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
321   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
322   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
323   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
324   std::unique_ptr<BlockFrequencyInfo> BFI;
325   std::unique_ptr<BranchProbabilityInfo> BPI;
326   if (F.hasProfileData()) {
327     LoopInfo LI{DominatorTree(F)};
328     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
329     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
330   }
331 
332   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
333                               std::move(BFI), std::move(BPI));
334   if (PrintLVIAfterJumpThreading) {
335     dbgs() << "LVI for function '" << F.getName() << "':\n";
336     LVI->printLVI(F, DTU.getDomTree(), dbgs());
337   }
338   return Changed;
339 }
340 
341 PreservedAnalyses JumpThreadingPass::run(Function &F,
342                                          FunctionAnalysisManager &AM) {
343   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
344   // Jump Threading has no sense for the targets with divergent CF
345   if (TTI.hasBranchDivergence())
346     return PreservedAnalyses::all();
347   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
348   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
349   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
350   auto &AA = AM.getResult<AAManager>(F);
351   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
352 
353   std::unique_ptr<BlockFrequencyInfo> BFI;
354   std::unique_ptr<BranchProbabilityInfo> BPI;
355   if (F.hasProfileData()) {
356     LoopInfo LI{DominatorTree(F)};
357     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
358     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
359   }
360 
361   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
362                          std::move(BFI), std::move(BPI));
363 
364   if (PrintLVIAfterJumpThreading) {
365     dbgs() << "LVI for function '" << F.getName() << "':\n";
366     LVI.printLVI(F, DTU.getDomTree(), dbgs());
367   }
368 
369   if (!Changed)
370     return PreservedAnalyses::all();
371   PreservedAnalyses PA;
372   PA.preserve<DominatorTreeAnalysis>();
373   PA.preserve<LazyValueAnalysis>();
374   return PA;
375 }
376 
377 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
378                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
379                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
380                                 bool HasProfileData_,
381                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
382                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
383   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
384   TLI = TLI_;
385   TTI = TTI_;
386   LVI = LVI_;
387   AA = AA_;
388   DTU = DTU_;
389   BFI.reset();
390   BPI.reset();
391   // When profile data is available, we need to update edge weights after
392   // successful jump threading, which requires both BPI and BFI being available.
393   HasProfileData = HasProfileData_;
394   auto *GuardDecl = F.getParent()->getFunction(
395       Intrinsic::getName(Intrinsic::experimental_guard));
396   HasGuards = GuardDecl && !GuardDecl->use_empty();
397   if (HasProfileData) {
398     BPI = std::move(BPI_);
399     BFI = std::move(BFI_);
400   }
401 
402   // Reduce the number of instructions duplicated when optimizing strictly for
403   // size.
404   if (BBDuplicateThreshold.getNumOccurrences())
405     BBDupThreshold = BBDuplicateThreshold;
406   else if (F.hasFnAttribute(Attribute::MinSize))
407     BBDupThreshold = 3;
408   else
409     BBDupThreshold = DefaultBBDupThreshold;
410 
411   // JumpThreading must not processes blocks unreachable from entry. It's a
412   // waste of compute time and can potentially lead to hangs.
413   SmallPtrSet<BasicBlock *, 16> Unreachable;
414   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416   DominatorTree &DT = DTU->getDomTree();
417   for (auto &BB : F)
418     if (!DT.isReachableFromEntry(&BB))
419       Unreachable.insert(&BB);
420 
421   if (!ThreadAcrossLoopHeaders)
422     findLoopHeaders(F);
423 
424   bool EverChanged = false;
425   bool Changed;
426   do {
427     Changed = false;
428     for (auto &BB : F) {
429       if (Unreachable.count(&BB))
430         continue;
431       while (processBlock(&BB)) // Thread all of the branches we can over BB.
432         Changed = true;
433 
434       // Jump threading may have introduced redundant debug values into BB
435       // which should be removed.
436       if (Changed)
437         RemoveRedundantDbgInstrs(&BB);
438 
439       // Stop processing BB if it's the entry or is now deleted. The following
440       // routines attempt to eliminate BB and locating a suitable replacement
441       // for the entry is non-trivial.
442       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443         continue;
444 
445       if (pred_empty(&BB)) {
446         // When processBlock makes BB unreachable it doesn't bother to fix up
447         // the instructions in it. We must remove BB to prevent invalid IR.
448         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
449                           << "' with terminator: " << *BB.getTerminator()
450                           << '\n');
451         LoopHeaders.erase(&BB);
452         LVI->eraseBlock(&BB);
453         DeleteDeadBlock(&BB, DTU);
454         Changed = true;
455         continue;
456       }
457 
458       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459       // is "almost empty", we attempt to merge BB with its sole successor.
460       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461       if (BI && BI->isUnconditional()) {
462         BasicBlock *Succ = BI->getSuccessor(0);
463         if (
464             // The terminator must be the only non-phi instruction in BB.
465             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466             // Don't alter Loop headers and latches to ensure another pass can
467             // detect and transform nested loops later.
468             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470           RemoveRedundantDbgInstrs(Succ);
471           // BB is valid for cleanup here because we passed in DTU. F remains
472           // BB's parent until a DTU->getDomTree() event.
473           LVI->eraseBlock(&BB);
474           Changed = true;
475         }
476       }
477     }
478     EverChanged |= Changed;
479   } while (Changed);
480 
481   LoopHeaders.clear();
482   return EverChanged;
483 }
484 
485 // Replace uses of Cond with ToVal when safe to do so. If all uses are
486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487 // because we may incorrectly replace uses when guards/assumes are uses of
488 // of `Cond` and we used the guards/assume to reason about the `Cond` value
489 // at the end of block. RAUW unconditionally replaces all uses
490 // including the guards/assumes themselves and the uses before the
491 // guard/assume.
492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
493   assert(Cond->getType() == ToVal->getType());
494   auto *BB = Cond->getParent();
495   // We can unconditionally replace all uses in non-local blocks (i.e. uses
496   // strictly dominated by BB), since LVI information is true from the
497   // terminator of BB.
498   replaceNonLocalUsesWith(Cond, ToVal);
499   for (Instruction &I : reverse(*BB)) {
500     // Reached the Cond whose uses we are trying to replace, so there are no
501     // more uses.
502     if (&I == Cond)
503       break;
504     // We only replace uses in instructions that are guaranteed to reach the end
505     // of BB, where we know Cond is ToVal.
506     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
507       break;
508     I.replaceUsesOfWith(Cond, ToVal);
509   }
510   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
511     Cond->eraseFromParent();
512 }
513 
514 /// Return the cost of duplicating a piece of this block from first non-phi
515 /// and before StopAt instruction to thread across it. Stop scanning the block
516 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
517 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
518                                              BasicBlock *BB,
519                                              Instruction *StopAt,
520                                              unsigned Threshold) {
521   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
522   /// Ignore PHI nodes, these will be flattened when duplication happens.
523   BasicBlock::const_iterator I(BB->getFirstNonPHI());
524 
525   // FIXME: THREADING will delete values that are just used to compute the
526   // branch, so they shouldn't count against the duplication cost.
527 
528   unsigned Bonus = 0;
529   if (BB->getTerminator() == StopAt) {
530     // Threading through a switch statement is particularly profitable.  If this
531     // block ends in a switch, decrease its cost to make it more likely to
532     // happen.
533     if (isa<SwitchInst>(StopAt))
534       Bonus = 6;
535 
536     // The same holds for indirect branches, but slightly more so.
537     if (isa<IndirectBrInst>(StopAt))
538       Bonus = 8;
539   }
540 
541   // Bump the threshold up so the early exit from the loop doesn't skip the
542   // terminator-based Size adjustment at the end.
543   Threshold += Bonus;
544 
545   // Sum up the cost of each instruction until we get to the terminator.  Don't
546   // include the terminator because the copy won't include it.
547   unsigned Size = 0;
548   for (; &*I != StopAt; ++I) {
549 
550     // Stop scanning the block if we've reached the threshold.
551     if (Size > Threshold)
552       return Size;
553 
554     // Bail out if this instruction gives back a token type, it is not possible
555     // to duplicate it if it is used outside this BB.
556     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
557       return ~0U;
558 
559     // Blocks with NoDuplicate are modelled as having infinite cost, so they
560     // are never duplicated.
561     if (const CallInst *CI = dyn_cast<CallInst>(I))
562       if (CI->cannotDuplicate() || CI->isConvergent())
563         return ~0U;
564 
565     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
566             == TargetTransformInfo::TCC_Free)
567       continue;
568 
569     // All other instructions count for at least one unit.
570     ++Size;
571 
572     // Calls are more expensive.  If they are non-intrinsic calls, we model them
573     // as having cost of 4.  If they are a non-vector intrinsic, we model them
574     // as having cost of 2 total, and if they are a vector intrinsic, we model
575     // them as having cost 1.
576     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
577       if (!isa<IntrinsicInst>(CI))
578         Size += 3;
579       else if (!CI->getType()->isVectorTy())
580         Size += 1;
581     }
582   }
583 
584   return Size > Bonus ? Size - Bonus : 0;
585 }
586 
587 /// findLoopHeaders - We do not want jump threading to turn proper loop
588 /// structures into irreducible loops.  Doing this breaks up the loop nesting
589 /// hierarchy and pessimizes later transformations.  To prevent this from
590 /// happening, we first have to find the loop headers.  Here we approximate this
591 /// by finding targets of backedges in the CFG.
592 ///
593 /// Note that there definitely are cases when we want to allow threading of
594 /// edges across a loop header.  For example, threading a jump from outside the
595 /// loop (the preheader) to an exit block of the loop is definitely profitable.
596 /// It is also almost always profitable to thread backedges from within the loop
597 /// to exit blocks, and is often profitable to thread backedges to other blocks
598 /// within the loop (forming a nested loop).  This simple analysis is not rich
599 /// enough to track all of these properties and keep it up-to-date as the CFG
600 /// mutates, so we don't allow any of these transformations.
601 void JumpThreadingPass::findLoopHeaders(Function &F) {
602   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
603   FindFunctionBackedges(F, Edges);
604 
605   for (const auto &Edge : Edges)
606     LoopHeaders.insert(Edge.second);
607 }
608 
609 /// getKnownConstant - Helper method to determine if we can thread over a
610 /// terminator with the given value as its condition, and if so what value to
611 /// use for that. What kind of value this is depends on whether we want an
612 /// integer or a block address, but an undef is always accepted.
613 /// Returns null if Val is null or not an appropriate constant.
614 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
615   if (!Val)
616     return nullptr;
617 
618   // Undef is "known" enough.
619   if (UndefValue *U = dyn_cast<UndefValue>(Val))
620     return U;
621 
622   if (Preference == WantBlockAddress)
623     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
624 
625   return dyn_cast<ConstantInt>(Val);
626 }
627 
628 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
629 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
630 /// in any of our predecessors.  If so, return the known list of value and pred
631 /// BB in the result vector.
632 ///
633 /// This returns true if there were any known values.
634 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
635     Value *V, BasicBlock *BB, PredValueInfo &Result,
636     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
637     Instruction *CxtI) {
638   // This method walks up use-def chains recursively.  Because of this, we could
639   // get into an infinite loop going around loops in the use-def chain.  To
640   // prevent this, keep track of what (value, block) pairs we've already visited
641   // and terminate the search if we loop back to them
642   if (!RecursionSet.insert(V).second)
643     return false;
644 
645   // If V is a constant, then it is known in all predecessors.
646   if (Constant *KC = getKnownConstant(V, Preference)) {
647     for (BasicBlock *Pred : predecessors(BB))
648       Result.emplace_back(KC, Pred);
649 
650     return !Result.empty();
651   }
652 
653   // If V is a non-instruction value, or an instruction in a different block,
654   // then it can't be derived from a PHI.
655   Instruction *I = dyn_cast<Instruction>(V);
656   if (!I || I->getParent() != BB) {
657 
658     // Okay, if this is a live-in value, see if it has a known value at the end
659     // of any of our predecessors.
660     //
661     // FIXME: This should be an edge property, not a block end property.
662     /// TODO: Per PR2563, we could infer value range information about a
663     /// predecessor based on its terminator.
664     //
665     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
666     // "I" is a non-local compare-with-a-constant instruction.  This would be
667     // able to handle value inequalities better, for example if the compare is
668     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
669     // Perhaps getConstantOnEdge should be smart enough to do this?
670     for (BasicBlock *P : predecessors(BB)) {
671       // If the value is known by LazyValueInfo to be a constant in a
672       // predecessor, use that information to try to thread this block.
673       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
674       if (Constant *KC = getKnownConstant(PredCst, Preference))
675         Result.emplace_back(KC, P);
676     }
677 
678     return !Result.empty();
679   }
680 
681   /// If I is a PHI node, then we know the incoming values for any constants.
682   if (PHINode *PN = dyn_cast<PHINode>(I)) {
683     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
684       Value *InVal = PN->getIncomingValue(i);
685       if (Constant *KC = getKnownConstant(InVal, Preference)) {
686         Result.emplace_back(KC, PN->getIncomingBlock(i));
687       } else {
688         Constant *CI = LVI->getConstantOnEdge(InVal,
689                                               PN->getIncomingBlock(i),
690                                               BB, CxtI);
691         if (Constant *KC = getKnownConstant(CI, Preference))
692           Result.emplace_back(KC, PN->getIncomingBlock(i));
693       }
694     }
695 
696     return !Result.empty();
697   }
698 
699   // Handle Cast instructions.
700   if (CastInst *CI = dyn_cast<CastInst>(I)) {
701     Value *Source = CI->getOperand(0);
702     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
703                                         RecursionSet, CxtI);
704     if (Result.empty())
705       return false;
706 
707     // Convert the known values.
708     for (auto &R : Result)
709       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
710 
711     return true;
712   }
713 
714   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
715     Value *Source = FI->getOperand(0);
716     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
717                                         RecursionSet, CxtI);
718 
719     erase_if(Result, [](auto &Pair) {
720       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
721     });
722 
723     return !Result.empty();
724   }
725 
726   // Handle some boolean conditions.
727   if (I->getType()->getPrimitiveSizeInBits() == 1) {
728     using namespace PatternMatch;
729     if (Preference != WantInteger)
730       return false;
731     // X | true -> true
732     // X & false -> false
733     Value *Op0, *Op1;
734     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
735         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
736       PredValueInfoTy LHSVals, RHSVals;
737 
738       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
739                                           RecursionSet, CxtI);
740       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
741                                           RecursionSet, CxtI);
742 
743       if (LHSVals.empty() && RHSVals.empty())
744         return false;
745 
746       ConstantInt *InterestingVal;
747       if (match(I, m_LogicalOr()))
748         InterestingVal = ConstantInt::getTrue(I->getContext());
749       else
750         InterestingVal = ConstantInt::getFalse(I->getContext());
751 
752       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
753 
754       // Scan for the sentinel.  If we find an undef, force it to the
755       // interesting value: x|undef -> true and x&undef -> false.
756       for (const auto &LHSVal : LHSVals)
757         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
758           Result.emplace_back(InterestingVal, LHSVal.second);
759           LHSKnownBBs.insert(LHSVal.second);
760         }
761       for (const auto &RHSVal : RHSVals)
762         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
763           // If we already inferred a value for this block on the LHS, don't
764           // re-add it.
765           if (!LHSKnownBBs.count(RHSVal.second))
766             Result.emplace_back(InterestingVal, RHSVal.second);
767         }
768 
769       return !Result.empty();
770     }
771 
772     // Handle the NOT form of XOR.
773     if (I->getOpcode() == Instruction::Xor &&
774         isa<ConstantInt>(I->getOperand(1)) &&
775         cast<ConstantInt>(I->getOperand(1))->isOne()) {
776       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
777                                           WantInteger, RecursionSet, CxtI);
778       if (Result.empty())
779         return false;
780 
781       // Invert the known values.
782       for (auto &R : Result)
783         R.first = ConstantExpr::getNot(R.first);
784 
785       return true;
786     }
787 
788   // Try to simplify some other binary operator values.
789   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
790     if (Preference != WantInteger)
791       return false;
792     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
793       PredValueInfoTy LHSVals;
794       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
795                                           WantInteger, RecursionSet, CxtI);
796 
797       // Try to use constant folding to simplify the binary operator.
798       for (const auto &LHSVal : LHSVals) {
799         Constant *V = LHSVal.first;
800         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
801 
802         if (Constant *KC = getKnownConstant(Folded, WantInteger))
803           Result.emplace_back(KC, LHSVal.second);
804       }
805     }
806 
807     return !Result.empty();
808   }
809 
810   // Handle compare with phi operand, where the PHI is defined in this block.
811   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
812     if (Preference != WantInteger)
813       return false;
814     Type *CmpType = Cmp->getType();
815     Value *CmpLHS = Cmp->getOperand(0);
816     Value *CmpRHS = Cmp->getOperand(1);
817     CmpInst::Predicate Pred = Cmp->getPredicate();
818 
819     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
820     if (!PN)
821       PN = dyn_cast<PHINode>(CmpRHS);
822     if (PN && PN->getParent() == BB) {
823       const DataLayout &DL = PN->getModule()->getDataLayout();
824       // We can do this simplification if any comparisons fold to true or false.
825       // See if any do.
826       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
827         BasicBlock *PredBB = PN->getIncomingBlock(i);
828         Value *LHS, *RHS;
829         if (PN == CmpLHS) {
830           LHS = PN->getIncomingValue(i);
831           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
832         } else {
833           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
834           RHS = PN->getIncomingValue(i);
835         }
836         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
837         if (!Res) {
838           if (!isa<Constant>(RHS))
839             continue;
840 
841           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
842           auto LHSInst = dyn_cast<Instruction>(LHS);
843           if (LHSInst && LHSInst->getParent() == BB)
844             continue;
845 
846           LazyValueInfo::Tristate
847             ResT = LVI->getPredicateOnEdge(Pred, LHS,
848                                            cast<Constant>(RHS), PredBB, BB,
849                                            CxtI ? CxtI : Cmp);
850           if (ResT == LazyValueInfo::Unknown)
851             continue;
852           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
853         }
854 
855         if (Constant *KC = getKnownConstant(Res, WantInteger))
856           Result.emplace_back(KC, PredBB);
857       }
858 
859       return !Result.empty();
860     }
861 
862     // If comparing a live-in value against a constant, see if we know the
863     // live-in value on any predecessors.
864     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
865       Constant *CmpConst = cast<Constant>(CmpRHS);
866 
867       if (!isa<Instruction>(CmpLHS) ||
868           cast<Instruction>(CmpLHS)->getParent() != BB) {
869         for (BasicBlock *P : predecessors(BB)) {
870           // If the value is known by LazyValueInfo to be a constant in a
871           // predecessor, use that information to try to thread this block.
872           LazyValueInfo::Tristate Res =
873             LVI->getPredicateOnEdge(Pred, CmpLHS,
874                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
875           if (Res == LazyValueInfo::Unknown)
876             continue;
877 
878           Constant *ResC = ConstantInt::get(CmpType, Res);
879           Result.emplace_back(ResC, P);
880         }
881 
882         return !Result.empty();
883       }
884 
885       // InstCombine can fold some forms of constant range checks into
886       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
887       // x as a live-in.
888       {
889         using namespace PatternMatch;
890 
891         Value *AddLHS;
892         ConstantInt *AddConst;
893         if (isa<ConstantInt>(CmpConst) &&
894             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
895           if (!isa<Instruction>(AddLHS) ||
896               cast<Instruction>(AddLHS)->getParent() != BB) {
897             for (BasicBlock *P : predecessors(BB)) {
898               // If the value is known by LazyValueInfo to be a ConstantRange in
899               // a predecessor, use that information to try to thread this
900               // block.
901               ConstantRange CR = LVI->getConstantRangeOnEdge(
902                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
903               // Propagate the range through the addition.
904               CR = CR.add(AddConst->getValue());
905 
906               // Get the range where the compare returns true.
907               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
908                   Pred, cast<ConstantInt>(CmpConst)->getValue());
909 
910               Constant *ResC;
911               if (CmpRange.contains(CR))
912                 ResC = ConstantInt::getTrue(CmpType);
913               else if (CmpRange.inverse().contains(CR))
914                 ResC = ConstantInt::getFalse(CmpType);
915               else
916                 continue;
917 
918               Result.emplace_back(ResC, P);
919             }
920 
921             return !Result.empty();
922           }
923         }
924       }
925 
926       // Try to find a constant value for the LHS of a comparison,
927       // and evaluate it statically if we can.
928       PredValueInfoTy LHSVals;
929       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
930                                           WantInteger, RecursionSet, CxtI);
931 
932       for (const auto &LHSVal : LHSVals) {
933         Constant *V = LHSVal.first;
934         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
935         if (Constant *KC = getKnownConstant(Folded, WantInteger))
936           Result.emplace_back(KC, LHSVal.second);
937       }
938 
939       return !Result.empty();
940     }
941   }
942 
943   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
944     // Handle select instructions where at least one operand is a known constant
945     // and we can figure out the condition value for any predecessor block.
946     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
947     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
948     PredValueInfoTy Conds;
949     if ((TrueVal || FalseVal) &&
950         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
951                                             WantInteger, RecursionSet, CxtI)) {
952       for (auto &C : Conds) {
953         Constant *Cond = C.first;
954 
955         // Figure out what value to use for the condition.
956         bool KnownCond;
957         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
958           // A known boolean.
959           KnownCond = CI->isOne();
960         } else {
961           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
962           // Either operand will do, so be sure to pick the one that's a known
963           // constant.
964           // FIXME: Do this more cleverly if both values are known constants?
965           KnownCond = (TrueVal != nullptr);
966         }
967 
968         // See if the select has a known constant value for this predecessor.
969         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
970           Result.emplace_back(Val, C.second);
971       }
972 
973       return !Result.empty();
974     }
975   }
976 
977   // If all else fails, see if LVI can figure out a constant value for us.
978   assert(CxtI->getParent() == BB && "CxtI should be in BB");
979   Constant *CI = LVI->getConstant(V, CxtI);
980   if (Constant *KC = getKnownConstant(CI, Preference)) {
981     for (BasicBlock *Pred : predecessors(BB))
982       Result.emplace_back(KC, Pred);
983   }
984 
985   return !Result.empty();
986 }
987 
988 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
989 /// in an undefined jump, decide which block is best to revector to.
990 ///
991 /// Since we can pick an arbitrary destination, we pick the successor with the
992 /// fewest predecessors.  This should reduce the in-degree of the others.
993 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
994   Instruction *BBTerm = BB->getTerminator();
995   unsigned MinSucc = 0;
996   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
997   // Compute the successor with the minimum number of predecessors.
998   unsigned MinNumPreds = pred_size(TestBB);
999   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1000     TestBB = BBTerm->getSuccessor(i);
1001     unsigned NumPreds = pred_size(TestBB);
1002     if (NumPreds < MinNumPreds) {
1003       MinSucc = i;
1004       MinNumPreds = NumPreds;
1005     }
1006   }
1007 
1008   return MinSucc;
1009 }
1010 
1011 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1012   if (!BB->hasAddressTaken()) return false;
1013 
1014   // If the block has its address taken, it may be a tree of dead constants
1015   // hanging off of it.  These shouldn't keep the block alive.
1016   BlockAddress *BA = BlockAddress::get(BB);
1017   BA->removeDeadConstantUsers();
1018   return !BA->use_empty();
1019 }
1020 
1021 /// processBlock - If there are any predecessors whose control can be threaded
1022 /// through to a successor, transform them now.
1023 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1024   // If the block is trivially dead, just return and let the caller nuke it.
1025   // This simplifies other transformations.
1026   if (DTU->isBBPendingDeletion(BB) ||
1027       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1028     return false;
1029 
1030   // If this block has a single predecessor, and if that pred has a single
1031   // successor, merge the blocks.  This encourages recursive jump threading
1032   // because now the condition in this block can be threaded through
1033   // predecessors of our predecessor block.
1034   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1035     return true;
1036 
1037   if (tryToUnfoldSelectInCurrBB(BB))
1038     return true;
1039 
1040   // Look if we can propagate guards to predecessors.
1041   if (HasGuards && processGuards(BB))
1042     return true;
1043 
1044   // What kind of constant we're looking for.
1045   ConstantPreference Preference = WantInteger;
1046 
1047   // Look to see if the terminator is a conditional branch, switch or indirect
1048   // branch, if not we can't thread it.
1049   Value *Condition;
1050   Instruction *Terminator = BB->getTerminator();
1051   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1052     // Can't thread an unconditional jump.
1053     if (BI->isUnconditional()) return false;
1054     Condition = BI->getCondition();
1055   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1056     Condition = SI->getCondition();
1057   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1058     // Can't thread indirect branch with no successors.
1059     if (IB->getNumSuccessors() == 0) return false;
1060     Condition = IB->getAddress()->stripPointerCasts();
1061     Preference = WantBlockAddress;
1062   } else {
1063     return false; // Must be an invoke or callbr.
1064   }
1065 
1066   // Keep track if we constant folded the condition in this invocation.
1067   bool ConstantFolded = false;
1068 
1069   // Run constant folding to see if we can reduce the condition to a simple
1070   // constant.
1071   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1072     Value *SimpleVal =
1073         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1074     if (SimpleVal) {
1075       I->replaceAllUsesWith(SimpleVal);
1076       if (isInstructionTriviallyDead(I, TLI))
1077         I->eraseFromParent();
1078       Condition = SimpleVal;
1079       ConstantFolded = true;
1080     }
1081   }
1082 
1083   // If the terminator is branching on an undef or freeze undef, we can pick any
1084   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1085   auto *FI = dyn_cast<FreezeInst>(Condition);
1086   if (isa<UndefValue>(Condition) ||
1087       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1088     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1089     std::vector<DominatorTree::UpdateType> Updates;
1090 
1091     // Fold the branch/switch.
1092     Instruction *BBTerm = BB->getTerminator();
1093     Updates.reserve(BBTerm->getNumSuccessors());
1094     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1095       if (i == BestSucc) continue;
1096       BasicBlock *Succ = BBTerm->getSuccessor(i);
1097       Succ->removePredecessor(BB, true);
1098       Updates.push_back({DominatorTree::Delete, BB, Succ});
1099     }
1100 
1101     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1102                       << "' folding undef terminator: " << *BBTerm << '\n');
1103     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1104     ++NumFolds;
1105     BBTerm->eraseFromParent();
1106     DTU->applyUpdatesPermissive(Updates);
1107     if (FI)
1108       FI->eraseFromParent();
1109     return true;
1110   }
1111 
1112   // If the terminator of this block is branching on a constant, simplify the
1113   // terminator to an unconditional branch.  This can occur due to threading in
1114   // other blocks.
1115   if (getKnownConstant(Condition, Preference)) {
1116     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1117                       << "' folding terminator: " << *BB->getTerminator()
1118                       << '\n');
1119     ++NumFolds;
1120     ConstantFoldTerminator(BB, true, nullptr, DTU);
1121     if (HasProfileData)
1122       BPI->eraseBlock(BB);
1123     return true;
1124   }
1125 
1126   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1127 
1128   // All the rest of our checks depend on the condition being an instruction.
1129   if (!CondInst) {
1130     // FIXME: Unify this with code below.
1131     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1132       return true;
1133     return ConstantFolded;
1134   }
1135 
1136   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1137     // If we're branching on a conditional, LVI might be able to determine
1138     // it's value at the branch instruction.  We only handle comparisons
1139     // against a constant at this time.
1140     // TODO: This should be extended to handle switches as well.
1141     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1142     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1143     if (CondBr && CondConst) {
1144       // We should have returned as soon as we turn a conditional branch to
1145       // unconditional. Because its no longer interesting as far as jump
1146       // threading is concerned.
1147       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1148 
1149       LazyValueInfo::Tristate Ret =
1150           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1151                               CondConst, CondBr, /*UseBlockValue=*/false);
1152       if (Ret != LazyValueInfo::Unknown) {
1153         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1154         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1155         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1156         ToRemoveSucc->removePredecessor(BB, true);
1157         BranchInst *UncondBr =
1158           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1159         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1160         ++NumFolds;
1161         CondBr->eraseFromParent();
1162         if (CondCmp->use_empty())
1163           CondCmp->eraseFromParent();
1164         // We can safely replace *some* uses of the CondInst if it has
1165         // exactly one value as returned by LVI. RAUW is incorrect in the
1166         // presence of guards and assumes, that have the `Cond` as the use. This
1167         // is because we use the guards/assume to reason about the `Cond` value
1168         // at the end of block, but RAUW unconditionally replaces all uses
1169         // including the guards/assumes themselves and the uses before the
1170         // guard/assume.
1171         else if (CondCmp->getParent() == BB) {
1172           auto *CI = Ret == LazyValueInfo::True ?
1173             ConstantInt::getTrue(CondCmp->getType()) :
1174             ConstantInt::getFalse(CondCmp->getType());
1175           replaceFoldableUses(CondCmp, CI);
1176         }
1177         DTU->applyUpdatesPermissive(
1178             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1179         if (HasProfileData)
1180           BPI->eraseBlock(BB);
1181         return true;
1182       }
1183 
1184       // We did not manage to simplify this branch, try to see whether
1185       // CondCmp depends on a known phi-select pattern.
1186       if (tryToUnfoldSelect(CondCmp, BB))
1187         return true;
1188     }
1189   }
1190 
1191   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1192     if (tryToUnfoldSelect(SI, BB))
1193       return true;
1194 
1195   // Check for some cases that are worth simplifying.  Right now we want to look
1196   // for loads that are used by a switch or by the condition for the branch.  If
1197   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1198   // which can then be used to thread the values.
1199   Value *SimplifyValue = CondInst;
1200 
1201   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1202     // Look into freeze's operand
1203     SimplifyValue = FI->getOperand(0);
1204 
1205   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1206     if (isa<Constant>(CondCmp->getOperand(1)))
1207       SimplifyValue = CondCmp->getOperand(0);
1208 
1209   // TODO: There are other places where load PRE would be profitable, such as
1210   // more complex comparisons.
1211   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1212     if (simplifyPartiallyRedundantLoad(LoadI))
1213       return true;
1214 
1215   // Before threading, try to propagate profile data backwards:
1216   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1217     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1218       updatePredecessorProfileMetadata(PN, BB);
1219 
1220   // Handle a variety of cases where we are branching on something derived from
1221   // a PHI node in the current block.  If we can prove that any predecessors
1222   // compute a predictable value based on a PHI node, thread those predecessors.
1223   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1224     return true;
1225 
1226   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1227   // the current block, see if we can simplify.
1228   PHINode *PN = dyn_cast<PHINode>(
1229       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1230                                 : CondInst);
1231 
1232   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1233     return processBranchOnPHI(PN);
1234 
1235   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1236   if (CondInst->getOpcode() == Instruction::Xor &&
1237       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1238     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1239 
1240   // Search for a stronger dominating condition that can be used to simplify a
1241   // conditional branch leaving BB.
1242   if (processImpliedCondition(BB))
1243     return true;
1244 
1245   return false;
1246 }
1247 
1248 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1249   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1250   if (!BI || !BI->isConditional())
1251     return false;
1252 
1253   Value *Cond = BI->getCondition();
1254   BasicBlock *CurrentBB = BB;
1255   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1256   unsigned Iter = 0;
1257 
1258   auto &DL = BB->getModule()->getDataLayout();
1259 
1260   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1261     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1262     if (!PBI || !PBI->isConditional())
1263       return false;
1264     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1265       return false;
1266 
1267     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1268     Optional<bool> Implication =
1269         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1270     if (Implication) {
1271       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1272       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1273       RemoveSucc->removePredecessor(BB);
1274       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1275       UncondBI->setDebugLoc(BI->getDebugLoc());
1276       ++NumFolds;
1277       BI->eraseFromParent();
1278       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1279       if (HasProfileData)
1280         BPI->eraseBlock(BB);
1281       return true;
1282     }
1283     CurrentBB = CurrentPred;
1284     CurrentPred = CurrentBB->getSinglePredecessor();
1285   }
1286 
1287   return false;
1288 }
1289 
1290 /// Return true if Op is an instruction defined in the given block.
1291 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1292   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1293     if (OpInst->getParent() == BB)
1294       return true;
1295   return false;
1296 }
1297 
1298 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1299 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1300 /// This is an important optimization that encourages jump threading, and needs
1301 /// to be run interlaced with other jump threading tasks.
1302 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1303   // Don't hack volatile and ordered loads.
1304   if (!LoadI->isUnordered()) return false;
1305 
1306   // If the load is defined in a block with exactly one predecessor, it can't be
1307   // partially redundant.
1308   BasicBlock *LoadBB = LoadI->getParent();
1309   if (LoadBB->getSinglePredecessor())
1310     return false;
1311 
1312   // If the load is defined in an EH pad, it can't be partially redundant,
1313   // because the edges between the invoke and the EH pad cannot have other
1314   // instructions between them.
1315   if (LoadBB->isEHPad())
1316     return false;
1317 
1318   Value *LoadedPtr = LoadI->getOperand(0);
1319 
1320   // If the loaded operand is defined in the LoadBB and its not a phi,
1321   // it can't be available in predecessors.
1322   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1323     return false;
1324 
1325   // Scan a few instructions up from the load, to see if it is obviously live at
1326   // the entry to its block.
1327   BasicBlock::iterator BBIt(LoadI);
1328   bool IsLoadCSE;
1329   if (Value *AvailableVal = FindAvailableLoadedValue(
1330           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1331     // If the value of the load is locally available within the block, just use
1332     // it.  This frequently occurs for reg2mem'd allocas.
1333 
1334     if (IsLoadCSE) {
1335       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1336       combineMetadataForCSE(NLoadI, LoadI, false);
1337     };
1338 
1339     // If the returned value is the load itself, replace with an undef. This can
1340     // only happen in dead loops.
1341     if (AvailableVal == LoadI)
1342       AvailableVal = UndefValue::get(LoadI->getType());
1343     if (AvailableVal->getType() != LoadI->getType())
1344       AvailableVal = CastInst::CreateBitOrPointerCast(
1345           AvailableVal, LoadI->getType(), "", LoadI);
1346     LoadI->replaceAllUsesWith(AvailableVal);
1347     LoadI->eraseFromParent();
1348     return true;
1349   }
1350 
1351   // Otherwise, if we scanned the whole block and got to the top of the block,
1352   // we know the block is locally transparent to the load.  If not, something
1353   // might clobber its value.
1354   if (BBIt != LoadBB->begin())
1355     return false;
1356 
1357   // If all of the loads and stores that feed the value have the same AA tags,
1358   // then we can propagate them onto any newly inserted loads.
1359   AAMDNodes AATags = LoadI->getAAMetadata();
1360 
1361   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1362 
1363   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1364 
1365   AvailablePredsTy AvailablePreds;
1366   BasicBlock *OneUnavailablePred = nullptr;
1367   SmallVector<LoadInst*, 8> CSELoads;
1368 
1369   // If we got here, the loaded value is transparent through to the start of the
1370   // block.  Check to see if it is available in any of the predecessor blocks.
1371   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1372     // If we already scanned this predecessor, skip it.
1373     if (!PredsScanned.insert(PredBB).second)
1374       continue;
1375 
1376     BBIt = PredBB->end();
1377     unsigned NumScanedInst = 0;
1378     Value *PredAvailable = nullptr;
1379     // NOTE: We don't CSE load that is volatile or anything stronger than
1380     // unordered, that should have been checked when we entered the function.
1381     assert(LoadI->isUnordered() &&
1382            "Attempting to CSE volatile or atomic loads");
1383     // If this is a load on a phi pointer, phi-translate it and search
1384     // for available load/store to the pointer in predecessors.
1385     Type *AccessTy = LoadI->getType();
1386     const auto &DL = LoadI->getModule()->getDataLayout();
1387     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1388                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1389                        AATags);
1390     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1391                                               PredBB, BBIt, DefMaxInstsToScan,
1392                                               AA, &IsLoadCSE, &NumScanedInst);
1393 
1394     // If PredBB has a single predecessor, continue scanning through the
1395     // single predecessor.
1396     BasicBlock *SinglePredBB = PredBB;
1397     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1398            NumScanedInst < DefMaxInstsToScan) {
1399       SinglePredBB = SinglePredBB->getSinglePredecessor();
1400       if (SinglePredBB) {
1401         BBIt = SinglePredBB->end();
1402         PredAvailable = findAvailablePtrLoadStore(
1403             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1404             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1405             &NumScanedInst);
1406       }
1407     }
1408 
1409     if (!PredAvailable) {
1410       OneUnavailablePred = PredBB;
1411       continue;
1412     }
1413 
1414     if (IsLoadCSE)
1415       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1416 
1417     // If so, this load is partially redundant.  Remember this info so that we
1418     // can create a PHI node.
1419     AvailablePreds.emplace_back(PredBB, PredAvailable);
1420   }
1421 
1422   // If the loaded value isn't available in any predecessor, it isn't partially
1423   // redundant.
1424   if (AvailablePreds.empty()) return false;
1425 
1426   // Okay, the loaded value is available in at least one (and maybe all!)
1427   // predecessors.  If the value is unavailable in more than one unique
1428   // predecessor, we want to insert a merge block for those common predecessors.
1429   // This ensures that we only have to insert one reload, thus not increasing
1430   // code size.
1431   BasicBlock *UnavailablePred = nullptr;
1432 
1433   // If the value is unavailable in one of predecessors, we will end up
1434   // inserting a new instruction into them. It is only valid if all the
1435   // instructions before LoadI are guaranteed to pass execution to its
1436   // successor, or if LoadI is safe to speculate.
1437   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1438   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1439   // It requires domination tree analysis, so for this simple case it is an
1440   // overkill.
1441   if (PredsScanned.size() != AvailablePreds.size() &&
1442       !isSafeToSpeculativelyExecute(LoadI))
1443     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1444       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1445         return false;
1446 
1447   // If there is exactly one predecessor where the value is unavailable, the
1448   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1449   // unconditional branch, we know that it isn't a critical edge.
1450   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1451       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1452     UnavailablePred = OneUnavailablePred;
1453   } else if (PredsScanned.size() != AvailablePreds.size()) {
1454     // Otherwise, we had multiple unavailable predecessors or we had a critical
1455     // edge from the one.
1456     SmallVector<BasicBlock*, 8> PredsToSplit;
1457     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1458 
1459     for (const auto &AvailablePred : AvailablePreds)
1460       AvailablePredSet.insert(AvailablePred.first);
1461 
1462     // Add all the unavailable predecessors to the PredsToSplit list.
1463     for (BasicBlock *P : predecessors(LoadBB)) {
1464       // If the predecessor is an indirect goto, we can't split the edge.
1465       // Same for CallBr.
1466       if (isa<IndirectBrInst>(P->getTerminator()) ||
1467           isa<CallBrInst>(P->getTerminator()))
1468         return false;
1469 
1470       if (!AvailablePredSet.count(P))
1471         PredsToSplit.push_back(P);
1472     }
1473 
1474     // Split them out to their own block.
1475     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1476   }
1477 
1478   // If the value isn't available in all predecessors, then there will be
1479   // exactly one where it isn't available.  Insert a load on that edge and add
1480   // it to the AvailablePreds list.
1481   if (UnavailablePred) {
1482     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1483            "Can't handle critical edge here!");
1484     LoadInst *NewVal = new LoadInst(
1485         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1486         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1487         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1488         UnavailablePred->getTerminator());
1489     NewVal->setDebugLoc(LoadI->getDebugLoc());
1490     if (AATags)
1491       NewVal->setAAMetadata(AATags);
1492 
1493     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1494   }
1495 
1496   // Now we know that each predecessor of this block has a value in
1497   // AvailablePreds, sort them for efficient access as we're walking the preds.
1498   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1499 
1500   // Create a PHI node at the start of the block for the PRE'd load value.
1501   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1502   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1503                                 &LoadBB->front());
1504   PN->takeName(LoadI);
1505   PN->setDebugLoc(LoadI->getDebugLoc());
1506 
1507   // Insert new entries into the PHI for each predecessor.  A single block may
1508   // have multiple entries here.
1509   for (pred_iterator PI = PB; PI != PE; ++PI) {
1510     BasicBlock *P = *PI;
1511     AvailablePredsTy::iterator I =
1512         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1513 
1514     assert(I != AvailablePreds.end() && I->first == P &&
1515            "Didn't find entry for predecessor!");
1516 
1517     // If we have an available predecessor but it requires casting, insert the
1518     // cast in the predecessor and use the cast. Note that we have to update the
1519     // AvailablePreds vector as we go so that all of the PHI entries for this
1520     // predecessor use the same bitcast.
1521     Value *&PredV = I->second;
1522     if (PredV->getType() != LoadI->getType())
1523       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1524                                                P->getTerminator());
1525 
1526     PN->addIncoming(PredV, I->first);
1527   }
1528 
1529   for (LoadInst *PredLoadI : CSELoads) {
1530     combineMetadataForCSE(PredLoadI, LoadI, true);
1531   }
1532 
1533   LoadI->replaceAllUsesWith(PN);
1534   LoadI->eraseFromParent();
1535 
1536   return true;
1537 }
1538 
1539 /// findMostPopularDest - The specified list contains multiple possible
1540 /// threadable destinations.  Pick the one that occurs the most frequently in
1541 /// the list.
1542 static BasicBlock *
1543 findMostPopularDest(BasicBlock *BB,
1544                     const SmallVectorImpl<std::pair<BasicBlock *,
1545                                           BasicBlock *>> &PredToDestList) {
1546   assert(!PredToDestList.empty());
1547 
1548   // Determine popularity.  If there are multiple possible destinations, we
1549   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1550   // blocks with known and real destinations to threading undef.  We'll handle
1551   // them later if interesting.
1552   MapVector<BasicBlock *, unsigned> DestPopularity;
1553 
1554   // Populate DestPopularity with the successors in the order they appear in the
1555   // successor list.  This way, we ensure determinism by iterating it in the
1556   // same order in std::max_element below.  We map nullptr to 0 so that we can
1557   // return nullptr when PredToDestList contains nullptr only.
1558   DestPopularity[nullptr] = 0;
1559   for (auto *SuccBB : successors(BB))
1560     DestPopularity[SuccBB] = 0;
1561 
1562   for (const auto &PredToDest : PredToDestList)
1563     if (PredToDest.second)
1564       DestPopularity[PredToDest.second]++;
1565 
1566   // Find the most popular dest.
1567   using VT = decltype(DestPopularity)::value_type;
1568   auto MostPopular = std::max_element(
1569       DestPopularity.begin(), DestPopularity.end(),
1570       [](const VT &L, const VT &R) { return L.second < R.second; });
1571 
1572   // Okay, we have finally picked the most popular destination.
1573   return MostPopular->first;
1574 }
1575 
1576 // Try to evaluate the value of V when the control flows from PredPredBB to
1577 // BB->getSinglePredecessor() and then on to BB.
1578 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1579                                                        BasicBlock *PredPredBB,
1580                                                        Value *V) {
1581   BasicBlock *PredBB = BB->getSinglePredecessor();
1582   assert(PredBB && "Expected a single predecessor");
1583 
1584   if (Constant *Cst = dyn_cast<Constant>(V)) {
1585     return Cst;
1586   }
1587 
1588   // Consult LVI if V is not an instruction in BB or PredBB.
1589   Instruction *I = dyn_cast<Instruction>(V);
1590   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1591     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1592   }
1593 
1594   // Look into a PHI argument.
1595   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1596     if (PHI->getParent() == PredBB)
1597       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1598     return nullptr;
1599   }
1600 
1601   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1602   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1603     if (CondCmp->getParent() == BB) {
1604       Constant *Op0 =
1605           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1606       Constant *Op1 =
1607           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1608       if (Op0 && Op1) {
1609         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1610       }
1611     }
1612     return nullptr;
1613   }
1614 
1615   return nullptr;
1616 }
1617 
1618 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1619                                                ConstantPreference Preference,
1620                                                Instruction *CxtI) {
1621   // If threading this would thread across a loop header, don't even try to
1622   // thread the edge.
1623   if (LoopHeaders.count(BB))
1624     return false;
1625 
1626   PredValueInfoTy PredValues;
1627   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1628                                        CxtI)) {
1629     // We don't have known values in predecessors.  See if we can thread through
1630     // BB and its sole predecessor.
1631     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1632   }
1633 
1634   assert(!PredValues.empty() &&
1635          "computeValueKnownInPredecessors returned true with no values");
1636 
1637   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1638              for (const auto &PredValue : PredValues) {
1639                dbgs() << "  BB '" << BB->getName()
1640                       << "': FOUND condition = " << *PredValue.first
1641                       << " for pred '" << PredValue.second->getName() << "'.\n";
1642   });
1643 
1644   // Decide what we want to thread through.  Convert our list of known values to
1645   // a list of known destinations for each pred.  This also discards duplicate
1646   // predecessors and keeps track of the undefined inputs (which are represented
1647   // as a null dest in the PredToDestList).
1648   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1649   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1650 
1651   BasicBlock *OnlyDest = nullptr;
1652   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1653   Constant *OnlyVal = nullptr;
1654   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1655 
1656   for (const auto &PredValue : PredValues) {
1657     BasicBlock *Pred = PredValue.second;
1658     if (!SeenPreds.insert(Pred).second)
1659       continue;  // Duplicate predecessor entry.
1660 
1661     Constant *Val = PredValue.first;
1662 
1663     BasicBlock *DestBB;
1664     if (isa<UndefValue>(Val))
1665       DestBB = nullptr;
1666     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1667       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1668       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1669     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1670       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1671       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1672     } else {
1673       assert(isa<IndirectBrInst>(BB->getTerminator())
1674               && "Unexpected terminator");
1675       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1676       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1677     }
1678 
1679     // If we have exactly one destination, remember it for efficiency below.
1680     if (PredToDestList.empty()) {
1681       OnlyDest = DestBB;
1682       OnlyVal = Val;
1683     } else {
1684       if (OnlyDest != DestBB)
1685         OnlyDest = MultipleDestSentinel;
1686       // It possible we have same destination, but different value, e.g. default
1687       // case in switchinst.
1688       if (Val != OnlyVal)
1689         OnlyVal = MultipleVal;
1690     }
1691 
1692     // If the predecessor ends with an indirect goto, we can't change its
1693     // destination. Same for CallBr.
1694     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1695         isa<CallBrInst>(Pred->getTerminator()))
1696       continue;
1697 
1698     PredToDestList.emplace_back(Pred, DestBB);
1699   }
1700 
1701   // If all edges were unthreadable, we fail.
1702   if (PredToDestList.empty())
1703     return false;
1704 
1705   // If all the predecessors go to a single known successor, we want to fold,
1706   // not thread. By doing so, we do not need to duplicate the current block and
1707   // also miss potential opportunities in case we dont/cant duplicate.
1708   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1709     if (BB->hasNPredecessors(PredToDestList.size())) {
1710       bool SeenFirstBranchToOnlyDest = false;
1711       std::vector <DominatorTree::UpdateType> Updates;
1712       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1713       for (BasicBlock *SuccBB : successors(BB)) {
1714         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1715           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1716         } else {
1717           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1718           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1719         }
1720       }
1721 
1722       // Finally update the terminator.
1723       Instruction *Term = BB->getTerminator();
1724       BranchInst::Create(OnlyDest, Term);
1725       ++NumFolds;
1726       Term->eraseFromParent();
1727       DTU->applyUpdatesPermissive(Updates);
1728       if (HasProfileData)
1729         BPI->eraseBlock(BB);
1730 
1731       // If the condition is now dead due to the removal of the old terminator,
1732       // erase it.
1733       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1734         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1735           CondInst->eraseFromParent();
1736         // We can safely replace *some* uses of the CondInst if it has
1737         // exactly one value as returned by LVI. RAUW is incorrect in the
1738         // presence of guards and assumes, that have the `Cond` as the use. This
1739         // is because we use the guards/assume to reason about the `Cond` value
1740         // at the end of block, but RAUW unconditionally replaces all uses
1741         // including the guards/assumes themselves and the uses before the
1742         // guard/assume.
1743         else if (OnlyVal && OnlyVal != MultipleVal &&
1744                  CondInst->getParent() == BB)
1745           replaceFoldableUses(CondInst, OnlyVal);
1746       }
1747       return true;
1748     }
1749   }
1750 
1751   // Determine which is the most common successor.  If we have many inputs and
1752   // this block is a switch, we want to start by threading the batch that goes
1753   // to the most popular destination first.  If we only know about one
1754   // threadable destination (the common case) we can avoid this.
1755   BasicBlock *MostPopularDest = OnlyDest;
1756 
1757   if (MostPopularDest == MultipleDestSentinel) {
1758     // Remove any loop headers from the Dest list, threadEdge conservatively
1759     // won't process them, but we might have other destination that are eligible
1760     // and we still want to process.
1761     erase_if(PredToDestList,
1762              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1763                return LoopHeaders.contains(PredToDest.second);
1764              });
1765 
1766     if (PredToDestList.empty())
1767       return false;
1768 
1769     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1770   }
1771 
1772   // Now that we know what the most popular destination is, factor all
1773   // predecessors that will jump to it into a single predecessor.
1774   SmallVector<BasicBlock*, 16> PredsToFactor;
1775   for (const auto &PredToDest : PredToDestList)
1776     if (PredToDest.second == MostPopularDest) {
1777       BasicBlock *Pred = PredToDest.first;
1778 
1779       // This predecessor may be a switch or something else that has multiple
1780       // edges to the block.  Factor each of these edges by listing them
1781       // according to # occurrences in PredsToFactor.
1782       for (BasicBlock *Succ : successors(Pred))
1783         if (Succ == BB)
1784           PredsToFactor.push_back(Pred);
1785     }
1786 
1787   // If the threadable edges are branching on an undefined value, we get to pick
1788   // the destination that these predecessors should get to.
1789   if (!MostPopularDest)
1790     MostPopularDest = BB->getTerminator()->
1791                             getSuccessor(getBestDestForJumpOnUndef(BB));
1792 
1793   // Ok, try to thread it!
1794   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1795 }
1796 
1797 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1798 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1799 /// simplifications we can do based on inputs to the phi node.
1800 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1801   BasicBlock *BB = PN->getParent();
1802 
1803   // TODO: We could make use of this to do it once for blocks with common PHI
1804   // values.
1805   SmallVector<BasicBlock*, 1> PredBBs;
1806   PredBBs.resize(1);
1807 
1808   // If any of the predecessor blocks end in an unconditional branch, we can
1809   // *duplicate* the conditional branch into that block in order to further
1810   // encourage jump threading and to eliminate cases where we have branch on a
1811   // phi of an icmp (branch on icmp is much better).
1812   // This is still beneficial when a frozen phi is used as the branch condition
1813   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1814   // to br(icmp(freeze ...)).
1815   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1816     BasicBlock *PredBB = PN->getIncomingBlock(i);
1817     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1818       if (PredBr->isUnconditional()) {
1819         PredBBs[0] = PredBB;
1820         // Try to duplicate BB into PredBB.
1821         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1822           return true;
1823       }
1824   }
1825 
1826   return false;
1827 }
1828 
1829 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1830 /// a xor instruction in the current block.  See if there are any
1831 /// simplifications we can do based on inputs to the xor.
1832 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1833   BasicBlock *BB = BO->getParent();
1834 
1835   // If either the LHS or RHS of the xor is a constant, don't do this
1836   // optimization.
1837   if (isa<ConstantInt>(BO->getOperand(0)) ||
1838       isa<ConstantInt>(BO->getOperand(1)))
1839     return false;
1840 
1841   // If the first instruction in BB isn't a phi, we won't be able to infer
1842   // anything special about any particular predecessor.
1843   if (!isa<PHINode>(BB->front()))
1844     return false;
1845 
1846   // If this BB is a landing pad, we won't be able to split the edge into it.
1847   if (BB->isEHPad())
1848     return false;
1849 
1850   // If we have a xor as the branch input to this block, and we know that the
1851   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1852   // the condition into the predecessor and fix that value to true, saving some
1853   // logical ops on that path and encouraging other paths to simplify.
1854   //
1855   // This copies something like this:
1856   //
1857   //  BB:
1858   //    %X = phi i1 [1],  [%X']
1859   //    %Y = icmp eq i32 %A, %B
1860   //    %Z = xor i1 %X, %Y
1861   //    br i1 %Z, ...
1862   //
1863   // Into:
1864   //  BB':
1865   //    %Y = icmp ne i32 %A, %B
1866   //    br i1 %Y, ...
1867 
1868   PredValueInfoTy XorOpValues;
1869   bool isLHS = true;
1870   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1871                                        WantInteger, BO)) {
1872     assert(XorOpValues.empty());
1873     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1874                                          WantInteger, BO))
1875       return false;
1876     isLHS = false;
1877   }
1878 
1879   assert(!XorOpValues.empty() &&
1880          "computeValueKnownInPredecessors returned true with no values");
1881 
1882   // Scan the information to see which is most popular: true or false.  The
1883   // predecessors can be of the set true, false, or undef.
1884   unsigned NumTrue = 0, NumFalse = 0;
1885   for (const auto &XorOpValue : XorOpValues) {
1886     if (isa<UndefValue>(XorOpValue.first))
1887       // Ignore undefs for the count.
1888       continue;
1889     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1890       ++NumFalse;
1891     else
1892       ++NumTrue;
1893   }
1894 
1895   // Determine which value to split on, true, false, or undef if neither.
1896   ConstantInt *SplitVal = nullptr;
1897   if (NumTrue > NumFalse)
1898     SplitVal = ConstantInt::getTrue(BB->getContext());
1899   else if (NumTrue != 0 || NumFalse != 0)
1900     SplitVal = ConstantInt::getFalse(BB->getContext());
1901 
1902   // Collect all of the blocks that this can be folded into so that we can
1903   // factor this once and clone it once.
1904   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1905   for (const auto &XorOpValue : XorOpValues) {
1906     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1907       continue;
1908 
1909     BlocksToFoldInto.push_back(XorOpValue.second);
1910   }
1911 
1912   // If we inferred a value for all of the predecessors, then duplication won't
1913   // help us.  However, we can just replace the LHS or RHS with the constant.
1914   if (BlocksToFoldInto.size() ==
1915       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1916     if (!SplitVal) {
1917       // If all preds provide undef, just nuke the xor, because it is undef too.
1918       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1919       BO->eraseFromParent();
1920     } else if (SplitVal->isZero()) {
1921       // If all preds provide 0, replace the xor with the other input.
1922       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1923       BO->eraseFromParent();
1924     } else {
1925       // If all preds provide 1, set the computed value to 1.
1926       BO->setOperand(!isLHS, SplitVal);
1927     }
1928 
1929     return true;
1930   }
1931 
1932   // If any of predecessors end with an indirect goto, we can't change its
1933   // destination. Same for CallBr.
1934   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1935         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1936                isa<CallBrInst>(Pred->getTerminator());
1937       }))
1938     return false;
1939 
1940   // Try to duplicate BB into PredBB.
1941   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1942 }
1943 
1944 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1945 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1946 /// NewPred using the entries from OldPred (suitably mapped).
1947 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1948                                             BasicBlock *OldPred,
1949                                             BasicBlock *NewPred,
1950                                      DenseMap<Instruction*, Value*> &ValueMap) {
1951   for (PHINode &PN : PHIBB->phis()) {
1952     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1953     // DestBlock.
1954     Value *IV = PN.getIncomingValueForBlock(OldPred);
1955 
1956     // Remap the value if necessary.
1957     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1958       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1959       if (I != ValueMap.end())
1960         IV = I->second;
1961     }
1962 
1963     PN.addIncoming(IV, NewPred);
1964   }
1965 }
1966 
1967 /// Merge basic block BB into its sole predecessor if possible.
1968 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1969   BasicBlock *SinglePred = BB->getSinglePredecessor();
1970   if (!SinglePred)
1971     return false;
1972 
1973   const Instruction *TI = SinglePred->getTerminator();
1974   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1975       SinglePred == BB || hasAddressTakenAndUsed(BB))
1976     return false;
1977 
1978   // If SinglePred was a loop header, BB becomes one.
1979   if (LoopHeaders.erase(SinglePred))
1980     LoopHeaders.insert(BB);
1981 
1982   LVI->eraseBlock(SinglePred);
1983   MergeBasicBlockIntoOnlyPred(BB, DTU);
1984 
1985   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1986   // BB code within one basic block `BB`), we need to invalidate the LVI
1987   // information associated with BB, because the LVI information need not be
1988   // true for all of BB after the merge. For example,
1989   // Before the merge, LVI info and code is as follows:
1990   // SinglePred: <LVI info1 for %p val>
1991   // %y = use of %p
1992   // call @exit() // need not transfer execution to successor.
1993   // assume(%p) // from this point on %p is true
1994   // br label %BB
1995   // BB: <LVI info2 for %p val, i.e. %p is true>
1996   // %x = use of %p
1997   // br label exit
1998   //
1999   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2000   // (info2 and info1 respectively). After the merge and the deletion of the
2001   // LVI info1 for SinglePred. We have the following code:
2002   // BB: <LVI info2 for %p val>
2003   // %y = use of %p
2004   // call @exit()
2005   // assume(%p)
2006   // %x = use of %p <-- LVI info2 is correct from here onwards.
2007   // br label exit
2008   // LVI info2 for BB is incorrect at the beginning of BB.
2009 
2010   // Invalidate LVI information for BB if the LVI is not provably true for
2011   // all of BB.
2012   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2013     LVI->eraseBlock(BB);
2014   return true;
2015 }
2016 
2017 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2018 /// ValueMapping maps old values in BB to new ones in NewBB.
2019 void JumpThreadingPass::updateSSA(
2020     BasicBlock *BB, BasicBlock *NewBB,
2021     DenseMap<Instruction *, Value *> &ValueMapping) {
2022   // If there were values defined in BB that are used outside the block, then we
2023   // now have to update all uses of the value to use either the original value,
2024   // the cloned value, or some PHI derived value.  This can require arbitrary
2025   // PHI insertion, of which we are prepared to do, clean these up now.
2026   SSAUpdater SSAUpdate;
2027   SmallVector<Use *, 16> UsesToRename;
2028 
2029   for (Instruction &I : *BB) {
2030     // Scan all uses of this instruction to see if it is used outside of its
2031     // block, and if so, record them in UsesToRename.
2032     for (Use &U : I.uses()) {
2033       Instruction *User = cast<Instruction>(U.getUser());
2034       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2035         if (UserPN->getIncomingBlock(U) == BB)
2036           continue;
2037       } else if (User->getParent() == BB)
2038         continue;
2039 
2040       UsesToRename.push_back(&U);
2041     }
2042 
2043     // If there are no uses outside the block, we're done with this instruction.
2044     if (UsesToRename.empty())
2045       continue;
2046     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2047 
2048     // We found a use of I outside of BB.  Rename all uses of I that are outside
2049     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2050     // with the two values we know.
2051     SSAUpdate.Initialize(I.getType(), I.getName());
2052     SSAUpdate.AddAvailableValue(BB, &I);
2053     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2054 
2055     while (!UsesToRename.empty())
2056       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2057     LLVM_DEBUG(dbgs() << "\n");
2058   }
2059 }
2060 
2061 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2062 /// arguments that come from PredBB.  Return the map from the variables in the
2063 /// source basic block to the variables in the newly created basic block.
2064 DenseMap<Instruction *, Value *>
2065 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2066                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2067                                      BasicBlock *PredBB) {
2068   // We are going to have to map operands from the source basic block to the new
2069   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2070   // block, evaluate them to account for entry from PredBB.
2071   DenseMap<Instruction *, Value *> ValueMapping;
2072 
2073   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2074   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2075   // might need to rewrite the operand of the cloned phi.
2076   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2077     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2078     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2079     ValueMapping[PN] = NewPN;
2080   }
2081 
2082   // Clone noalias scope declarations in the threaded block. When threading a
2083   // loop exit, we would otherwise end up with two idential scope declarations
2084   // visible at the same time.
2085   SmallVector<MDNode *> NoAliasScopes;
2086   DenseMap<MDNode *, MDNode *> ClonedScopes;
2087   LLVMContext &Context = PredBB->getContext();
2088   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2089   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2090 
2091   // Clone the non-phi instructions of the source basic block into NewBB,
2092   // keeping track of the mapping and using it to remap operands in the cloned
2093   // instructions.
2094   for (; BI != BE; ++BI) {
2095     Instruction *New = BI->clone();
2096     New->setName(BI->getName());
2097     NewBB->getInstList().push_back(New);
2098     ValueMapping[&*BI] = New;
2099     adaptNoAliasScopes(New, ClonedScopes, Context);
2100 
2101     // Remap operands to patch up intra-block references.
2102     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2103       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2104         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2105         if (I != ValueMapping.end())
2106           New->setOperand(i, I->second);
2107       }
2108   }
2109 
2110   return ValueMapping;
2111 }
2112 
2113 /// Attempt to thread through two successive basic blocks.
2114 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2115                                                          Value *Cond) {
2116   // Consider:
2117   //
2118   // PredBB:
2119   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2120   //   %tobool = icmp eq i32 %cond, 0
2121   //   br i1 %tobool, label %BB, label ...
2122   //
2123   // BB:
2124   //   %cmp = icmp eq i32* %var, null
2125   //   br i1 %cmp, label ..., label ...
2126   //
2127   // We don't know the value of %var at BB even if we know which incoming edge
2128   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2129   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2130   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2131 
2132   // Require that BB end with a Branch for simplicity.
2133   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2134   if (!CondBr)
2135     return false;
2136 
2137   // BB must have exactly one predecessor.
2138   BasicBlock *PredBB = BB->getSinglePredecessor();
2139   if (!PredBB)
2140     return false;
2141 
2142   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2143   // unconditional branch, we should be merging PredBB and BB instead. For
2144   // simplicity, we don't deal with a switch.
2145   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2146   if (!PredBBBranch || PredBBBranch->isUnconditional())
2147     return false;
2148 
2149   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2150   // PredBB.
2151   if (PredBB->getSinglePredecessor())
2152     return false;
2153 
2154   // Don't thread through PredBB if it contains a successor edge to itself, in
2155   // which case we would infinite loop.  Suppose we are threading an edge from
2156   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2157   // successor edge to itself.  If we allowed jump threading in this case, we
2158   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2159   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2160   // with another jump threading opportunity from PredBB.thread through PredBB
2161   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2162   // would keep peeling one iteration from PredBB.
2163   if (llvm::is_contained(successors(PredBB), PredBB))
2164     return false;
2165 
2166   // Don't thread across a loop header.
2167   if (LoopHeaders.count(PredBB))
2168     return false;
2169 
2170   // Avoid complication with duplicating EH pads.
2171   if (PredBB->isEHPad())
2172     return false;
2173 
2174   // Find a predecessor that we can thread.  For simplicity, we only consider a
2175   // successor edge out of BB to which we thread exactly one incoming edge into
2176   // PredBB.
2177   unsigned ZeroCount = 0;
2178   unsigned OneCount = 0;
2179   BasicBlock *ZeroPred = nullptr;
2180   BasicBlock *OnePred = nullptr;
2181   for (BasicBlock *P : predecessors(PredBB)) {
2182     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2183             evaluateOnPredecessorEdge(BB, P, Cond))) {
2184       if (CI->isZero()) {
2185         ZeroCount++;
2186         ZeroPred = P;
2187       } else if (CI->isOne()) {
2188         OneCount++;
2189         OnePred = P;
2190       }
2191     }
2192   }
2193 
2194   // Disregard complicated cases where we have to thread multiple edges.
2195   BasicBlock *PredPredBB;
2196   if (ZeroCount == 1) {
2197     PredPredBB = ZeroPred;
2198   } else if (OneCount == 1) {
2199     PredPredBB = OnePred;
2200   } else {
2201     return false;
2202   }
2203 
2204   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2205 
2206   // If threading to the same block as we come from, we would infinite loop.
2207   if (SuccBB == BB) {
2208     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2209                       << "' - would thread to self!\n");
2210     return false;
2211   }
2212 
2213   // If threading this would thread across a loop header, don't thread the edge.
2214   // See the comments above findLoopHeaders for justifications and caveats.
2215   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2216     LLVM_DEBUG({
2217       bool BBIsHeader = LoopHeaders.count(BB);
2218       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2219       dbgs() << "  Not threading across "
2220              << (BBIsHeader ? "loop header BB '" : "block BB '")
2221              << BB->getName() << "' to dest "
2222              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2223              << SuccBB->getName()
2224              << "' - it might create an irreducible loop!\n";
2225     });
2226     return false;
2227   }
2228 
2229   // Compute the cost of duplicating BB and PredBB.
2230   unsigned BBCost = getJumpThreadDuplicationCost(
2231       TTI, BB, BB->getTerminator(), BBDupThreshold);
2232   unsigned PredBBCost = getJumpThreadDuplicationCost(
2233       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2234 
2235   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2236   // individually before checking their sum because getJumpThreadDuplicationCost
2237   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2238   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2239       BBCost + PredBBCost > BBDupThreshold) {
2240     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2241                       << "' - Cost is too high: " << PredBBCost
2242                       << " for PredBB, " << BBCost << "for BB\n");
2243     return false;
2244   }
2245 
2246   // Now we are ready to duplicate PredBB.
2247   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2248   return true;
2249 }
2250 
2251 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2252                                                     BasicBlock *PredBB,
2253                                                     BasicBlock *BB,
2254                                                     BasicBlock *SuccBB) {
2255   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2256                     << BB->getName() << "'\n");
2257 
2258   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2259   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2260 
2261   BasicBlock *NewBB =
2262       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2263                          PredBB->getParent(), PredBB);
2264   NewBB->moveAfter(PredBB);
2265 
2266   // Set the block frequency of NewBB.
2267   if (HasProfileData) {
2268     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2269                      BPI->getEdgeProbability(PredPredBB, PredBB);
2270     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2271   }
2272 
2273   // We are going to have to map operands from the original BB block to the new
2274   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2275   // to account for entry from PredPredBB.
2276   DenseMap<Instruction *, Value *> ValueMapping =
2277       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2278 
2279   // Copy the edge probabilities from PredBB to NewBB.
2280   if (HasProfileData)
2281     BPI->copyEdgeProbabilities(PredBB, NewBB);
2282 
2283   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2284   // This eliminates predecessors from PredPredBB, which requires us to simplify
2285   // any PHI nodes in PredBB.
2286   Instruction *PredPredTerm = PredPredBB->getTerminator();
2287   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2288     if (PredPredTerm->getSuccessor(i) == PredBB) {
2289       PredBB->removePredecessor(PredPredBB, true);
2290       PredPredTerm->setSuccessor(i, NewBB);
2291     }
2292 
2293   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2294                                   ValueMapping);
2295   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2296                                   ValueMapping);
2297 
2298   DTU->applyUpdatesPermissive(
2299       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2300        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2301        {DominatorTree::Insert, PredPredBB, NewBB},
2302        {DominatorTree::Delete, PredPredBB, PredBB}});
2303 
2304   updateSSA(PredBB, NewBB, ValueMapping);
2305 
2306   // Clean up things like PHI nodes with single operands, dead instructions,
2307   // etc.
2308   SimplifyInstructionsInBlock(NewBB, TLI);
2309   SimplifyInstructionsInBlock(PredBB, TLI);
2310 
2311   SmallVector<BasicBlock *, 1> PredsToFactor;
2312   PredsToFactor.push_back(NewBB);
2313   threadEdge(BB, PredsToFactor, SuccBB);
2314 }
2315 
2316 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2317 bool JumpThreadingPass::tryThreadEdge(
2318     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2319     BasicBlock *SuccBB) {
2320   // If threading to the same block as we come from, we would infinite loop.
2321   if (SuccBB == BB) {
2322     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2323                       << "' - would thread to self!\n");
2324     return false;
2325   }
2326 
2327   // If threading this would thread across a loop header, don't thread the edge.
2328   // See the comments above findLoopHeaders for justifications and caveats.
2329   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2330     LLVM_DEBUG({
2331       bool BBIsHeader = LoopHeaders.count(BB);
2332       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2333       dbgs() << "  Not threading across "
2334           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2335           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2336           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2337     });
2338     return false;
2339   }
2340 
2341   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2342       TTI, BB, BB->getTerminator(), BBDupThreshold);
2343   if (JumpThreadCost > BBDupThreshold) {
2344     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2345                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2346     return false;
2347   }
2348 
2349   threadEdge(BB, PredBBs, SuccBB);
2350   return true;
2351 }
2352 
2353 /// threadEdge - We have decided that it is safe and profitable to factor the
2354 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2355 /// across BB.  Transform the IR to reflect this change.
2356 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2357                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2358                                    BasicBlock *SuccBB) {
2359   assert(SuccBB != BB && "Don't create an infinite loop");
2360 
2361   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2362          "Don't thread across loop headers");
2363 
2364   // And finally, do it!  Start by factoring the predecessors if needed.
2365   BasicBlock *PredBB;
2366   if (PredBBs.size() == 1)
2367     PredBB = PredBBs[0];
2368   else {
2369     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2370                       << " common predecessors.\n");
2371     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2372   }
2373 
2374   // And finally, do it!
2375   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2376                     << "' to '" << SuccBB->getName()
2377                     << ", across block:\n    " << *BB << "\n");
2378 
2379   LVI->threadEdge(PredBB, BB, SuccBB);
2380 
2381   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2382                                          BB->getName()+".thread",
2383                                          BB->getParent(), BB);
2384   NewBB->moveAfter(PredBB);
2385 
2386   // Set the block frequency of NewBB.
2387   if (HasProfileData) {
2388     auto NewBBFreq =
2389         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2390     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2391   }
2392 
2393   // Copy all the instructions from BB to NewBB except the terminator.
2394   DenseMap<Instruction *, Value *> ValueMapping =
2395       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2396 
2397   // We didn't copy the terminator from BB over to NewBB, because there is now
2398   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2399   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2400   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2401 
2402   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2403   // PHI nodes for NewBB now.
2404   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2405 
2406   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2407   // eliminates predecessors from BB, which requires us to simplify any PHI
2408   // nodes in BB.
2409   Instruction *PredTerm = PredBB->getTerminator();
2410   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2411     if (PredTerm->getSuccessor(i) == BB) {
2412       BB->removePredecessor(PredBB, true);
2413       PredTerm->setSuccessor(i, NewBB);
2414     }
2415 
2416   // Enqueue required DT updates.
2417   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2418                                {DominatorTree::Insert, PredBB, NewBB},
2419                                {DominatorTree::Delete, PredBB, BB}});
2420 
2421   updateSSA(BB, NewBB, ValueMapping);
2422 
2423   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2424   // over the new instructions and zap any that are constants or dead.  This
2425   // frequently happens because of phi translation.
2426   SimplifyInstructionsInBlock(NewBB, TLI);
2427 
2428   // Update the edge weight from BB to SuccBB, which should be less than before.
2429   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2430 
2431   // Threaded an edge!
2432   ++NumThreads;
2433 }
2434 
2435 /// Create a new basic block that will be the predecessor of BB and successor of
2436 /// all blocks in Preds. When profile data is available, update the frequency of
2437 /// this new block.
2438 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2439                                                ArrayRef<BasicBlock *> Preds,
2440                                                const char *Suffix) {
2441   SmallVector<BasicBlock *, 2> NewBBs;
2442 
2443   // Collect the frequencies of all predecessors of BB, which will be used to
2444   // update the edge weight of the result of splitting predecessors.
2445   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2446   if (HasProfileData)
2447     for (auto Pred : Preds)
2448       FreqMap.insert(std::make_pair(
2449           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2450 
2451   // In the case when BB is a LandingPad block we create 2 new predecessors
2452   // instead of just one.
2453   if (BB->isLandingPad()) {
2454     std::string NewName = std::string(Suffix) + ".split-lp";
2455     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2456   } else {
2457     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2458   }
2459 
2460   std::vector<DominatorTree::UpdateType> Updates;
2461   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2462   for (auto NewBB : NewBBs) {
2463     BlockFrequency NewBBFreq(0);
2464     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2465     for (auto Pred : predecessors(NewBB)) {
2466       Updates.push_back({DominatorTree::Delete, Pred, BB});
2467       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2468       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2469         NewBBFreq += FreqMap.lookup(Pred);
2470     }
2471     if (HasProfileData) // Apply the summed frequency to NewBB.
2472       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2473   }
2474 
2475   DTU->applyUpdatesPermissive(Updates);
2476   return NewBBs[0];
2477 }
2478 
2479 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2480   const Instruction *TI = BB->getTerminator();
2481   assert(TI->getNumSuccessors() > 1 && "not a split");
2482 
2483   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2484   if (!WeightsNode)
2485     return false;
2486 
2487   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2488   if (MDName->getString() != "branch_weights")
2489     return false;
2490 
2491   // Ensure there are weights for all of the successors. Note that the first
2492   // operand to the metadata node is a name, not a weight.
2493   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2494 }
2495 
2496 /// Update the block frequency of BB and branch weight and the metadata on the
2497 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2498 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2499 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2500                                                      BasicBlock *BB,
2501                                                      BasicBlock *NewBB,
2502                                                      BasicBlock *SuccBB) {
2503   if (!HasProfileData)
2504     return;
2505 
2506   assert(BFI && BPI && "BFI & BPI should have been created here");
2507 
2508   // As the edge from PredBB to BB is deleted, we have to update the block
2509   // frequency of BB.
2510   auto BBOrigFreq = BFI->getBlockFreq(BB);
2511   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2512   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2513   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2514   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2515 
2516   // Collect updated outgoing edges' frequencies from BB and use them to update
2517   // edge probabilities.
2518   SmallVector<uint64_t, 4> BBSuccFreq;
2519   for (BasicBlock *Succ : successors(BB)) {
2520     auto SuccFreq = (Succ == SuccBB)
2521                         ? BB2SuccBBFreq - NewBBFreq
2522                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2523     BBSuccFreq.push_back(SuccFreq.getFrequency());
2524   }
2525 
2526   uint64_t MaxBBSuccFreq =
2527       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2528 
2529   SmallVector<BranchProbability, 4> BBSuccProbs;
2530   if (MaxBBSuccFreq == 0)
2531     BBSuccProbs.assign(BBSuccFreq.size(),
2532                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2533   else {
2534     for (uint64_t Freq : BBSuccFreq)
2535       BBSuccProbs.push_back(
2536           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2537     // Normalize edge probabilities so that they sum up to one.
2538     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2539                                               BBSuccProbs.end());
2540   }
2541 
2542   // Update edge probabilities in BPI.
2543   BPI->setEdgeProbability(BB, BBSuccProbs);
2544 
2545   // Update the profile metadata as well.
2546   //
2547   // Don't do this if the profile of the transformed blocks was statically
2548   // estimated.  (This could occur despite the function having an entry
2549   // frequency in completely cold parts of the CFG.)
2550   //
2551   // In this case we don't want to suggest to subsequent passes that the
2552   // calculated weights are fully consistent.  Consider this graph:
2553   //
2554   //                 check_1
2555   //             50% /  |
2556   //             eq_1   | 50%
2557   //                 \  |
2558   //                 check_2
2559   //             50% /  |
2560   //             eq_2   | 50%
2561   //                 \  |
2562   //                 check_3
2563   //             50% /  |
2564   //             eq_3   | 50%
2565   //                 \  |
2566   //
2567   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2568   // the overall probabilities are inconsistent; the total probability that the
2569   // value is either 1, 2 or 3 is 150%.
2570   //
2571   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2572   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2573   // the loop exit edge.  Then based solely on static estimation we would assume
2574   // the loop was extremely hot.
2575   //
2576   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2577   // shouldn't make edges extremely likely or unlikely based solely on static
2578   // estimation.
2579   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2580     SmallVector<uint32_t, 4> Weights;
2581     for (auto Prob : BBSuccProbs)
2582       Weights.push_back(Prob.getNumerator());
2583 
2584     auto TI = BB->getTerminator();
2585     TI->setMetadata(
2586         LLVMContext::MD_prof,
2587         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2588   }
2589 }
2590 
2591 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2592 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2593 /// If we can duplicate the contents of BB up into PredBB do so now, this
2594 /// improves the odds that the branch will be on an analyzable instruction like
2595 /// a compare.
2596 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2597     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2598   assert(!PredBBs.empty() && "Can't handle an empty set");
2599 
2600   // If BB is a loop header, then duplicating this block outside the loop would
2601   // cause us to transform this into an irreducible loop, don't do this.
2602   // See the comments above findLoopHeaders for justifications and caveats.
2603   if (LoopHeaders.count(BB)) {
2604     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2605                       << "' into predecessor block '" << PredBBs[0]->getName()
2606                       << "' - it might create an irreducible loop!\n");
2607     return false;
2608   }
2609 
2610   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2611       TTI, BB, BB->getTerminator(), BBDupThreshold);
2612   if (DuplicationCost > BBDupThreshold) {
2613     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2614                       << "' - Cost is too high: " << DuplicationCost << "\n");
2615     return false;
2616   }
2617 
2618   // And finally, do it!  Start by factoring the predecessors if needed.
2619   std::vector<DominatorTree::UpdateType> Updates;
2620   BasicBlock *PredBB;
2621   if (PredBBs.size() == 1)
2622     PredBB = PredBBs[0];
2623   else {
2624     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2625                       << " common predecessors.\n");
2626     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2627   }
2628   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2629 
2630   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2631   // of PredBB.
2632   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2633                     << "' into end of '" << PredBB->getName()
2634                     << "' to eliminate branch on phi.  Cost: "
2635                     << DuplicationCost << " block is:" << *BB << "\n");
2636 
2637   // Unless PredBB ends with an unconditional branch, split the edge so that we
2638   // can just clone the bits from BB into the end of the new PredBB.
2639   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2640 
2641   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2642     BasicBlock *OldPredBB = PredBB;
2643     PredBB = SplitEdge(OldPredBB, BB);
2644     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2645     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2646     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2647     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2648   }
2649 
2650   // We are going to have to map operands from the original BB block into the
2651   // PredBB block.  Evaluate PHI nodes in BB.
2652   DenseMap<Instruction*, Value*> ValueMapping;
2653 
2654   BasicBlock::iterator BI = BB->begin();
2655   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2656     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2657   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2658   // mapping and using it to remap operands in the cloned instructions.
2659   for (; BI != BB->end(); ++BI) {
2660     Instruction *New = BI->clone();
2661 
2662     // Remap operands to patch up intra-block references.
2663     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2664       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2665         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2666         if (I != ValueMapping.end())
2667           New->setOperand(i, I->second);
2668       }
2669 
2670     // If this instruction can be simplified after the operands are updated,
2671     // just use the simplified value instead.  This frequently happens due to
2672     // phi translation.
2673     if (Value *IV = SimplifyInstruction(
2674             New,
2675             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2676       ValueMapping[&*BI] = IV;
2677       if (!New->mayHaveSideEffects()) {
2678         New->deleteValue();
2679         New = nullptr;
2680       }
2681     } else {
2682       ValueMapping[&*BI] = New;
2683     }
2684     if (New) {
2685       // Otherwise, insert the new instruction into the block.
2686       New->setName(BI->getName());
2687       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2688       // Update Dominance from simplified New instruction operands.
2689       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2690         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2691           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2692     }
2693   }
2694 
2695   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2696   // add entries to the PHI nodes for branch from PredBB now.
2697   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2698   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2699                                   ValueMapping);
2700   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2701                                   ValueMapping);
2702 
2703   updateSSA(BB, PredBB, ValueMapping);
2704 
2705   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2706   // that we nuked.
2707   BB->removePredecessor(PredBB, true);
2708 
2709   // Remove the unconditional branch at the end of the PredBB block.
2710   OldPredBranch->eraseFromParent();
2711   if (HasProfileData)
2712     BPI->copyEdgeProbabilities(BB, PredBB);
2713   DTU->applyUpdatesPermissive(Updates);
2714 
2715   ++NumDupes;
2716   return true;
2717 }
2718 
2719 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2720 // a Select instruction in Pred. BB has other predecessors and SI is used in
2721 // a PHI node in BB. SI has no other use.
2722 // A new basic block, NewBB, is created and SI is converted to compare and
2723 // conditional branch. SI is erased from parent.
2724 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2725                                           SelectInst *SI, PHINode *SIUse,
2726                                           unsigned Idx) {
2727   // Expand the select.
2728   //
2729   // Pred --
2730   //  |    v
2731   //  |  NewBB
2732   //  |    |
2733   //  |-----
2734   //  v
2735   // BB
2736   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2737   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2738                                          BB->getParent(), BB);
2739   // Move the unconditional branch to NewBB.
2740   PredTerm->removeFromParent();
2741   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2742   // Create a conditional branch and update PHI nodes.
2743   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2744   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2745   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2746   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2747 
2748   // The select is now dead.
2749   SI->eraseFromParent();
2750   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2751                                {DominatorTree::Insert, Pred, NewBB}});
2752 
2753   // Update any other PHI nodes in BB.
2754   for (BasicBlock::iterator BI = BB->begin();
2755        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2756     if (Phi != SIUse)
2757       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2758 }
2759 
2760 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2761   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2762 
2763   if (!CondPHI || CondPHI->getParent() != BB)
2764     return false;
2765 
2766   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2767     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2768     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2769 
2770     // The second and third condition can be potentially relaxed. Currently
2771     // the conditions help to simplify the code and allow us to reuse existing
2772     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2773     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2774       continue;
2775 
2776     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2777     if (!PredTerm || !PredTerm->isUnconditional())
2778       continue;
2779 
2780     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2781     return true;
2782   }
2783   return false;
2784 }
2785 
2786 /// tryToUnfoldSelect - Look for blocks of the form
2787 /// bb1:
2788 ///   %a = select
2789 ///   br bb2
2790 ///
2791 /// bb2:
2792 ///   %p = phi [%a, %bb1] ...
2793 ///   %c = icmp %p
2794 ///   br i1 %c
2795 ///
2796 /// And expand the select into a branch structure if one of its arms allows %c
2797 /// to be folded. This later enables threading from bb1 over bb2.
2798 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2799   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2800   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2801   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2802 
2803   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2804       CondLHS->getParent() != BB)
2805     return false;
2806 
2807   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2808     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2809     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2810 
2811     // Look if one of the incoming values is a select in the corresponding
2812     // predecessor.
2813     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2814       continue;
2815 
2816     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2817     if (!PredTerm || !PredTerm->isUnconditional())
2818       continue;
2819 
2820     // Now check if one of the select values would allow us to constant fold the
2821     // terminator in BB. We don't do the transform if both sides fold, those
2822     // cases will be threaded in any case.
2823     LazyValueInfo::Tristate LHSFolds =
2824         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2825                                 CondRHS, Pred, BB, CondCmp);
2826     LazyValueInfo::Tristate RHSFolds =
2827         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2828                                 CondRHS, Pred, BB, CondCmp);
2829     if ((LHSFolds != LazyValueInfo::Unknown ||
2830          RHSFolds != LazyValueInfo::Unknown) &&
2831         LHSFolds != RHSFolds) {
2832       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2833       return true;
2834     }
2835   }
2836   return false;
2837 }
2838 
2839 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2840 /// same BB in the form
2841 /// bb:
2842 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2843 ///   %s = select %p, trueval, falseval
2844 ///
2845 /// or
2846 ///
2847 /// bb:
2848 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2849 ///   %c = cmp %p, 0
2850 ///   %s = select %c, trueval, falseval
2851 ///
2852 /// And expand the select into a branch structure. This later enables
2853 /// jump-threading over bb in this pass.
2854 ///
2855 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2856 /// select if the associated PHI has at least one constant.  If the unfolded
2857 /// select is not jump-threaded, it will be folded again in the later
2858 /// optimizations.
2859 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2860   // This transform would reduce the quality of msan diagnostics.
2861   // Disable this transform under MemorySanitizer.
2862   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2863     return false;
2864 
2865   // If threading this would thread across a loop header, don't thread the edge.
2866   // See the comments above findLoopHeaders for justifications and caveats.
2867   if (LoopHeaders.count(BB))
2868     return false;
2869 
2870   for (BasicBlock::iterator BI = BB->begin();
2871        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2872     // Look for a Phi having at least one constant incoming value.
2873     if (llvm::all_of(PN->incoming_values(),
2874                      [](Value *V) { return !isa<ConstantInt>(V); }))
2875       continue;
2876 
2877     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2878       using namespace PatternMatch;
2879 
2880       // Check if SI is in BB and use V as condition.
2881       if (SI->getParent() != BB)
2882         return false;
2883       Value *Cond = SI->getCondition();
2884       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2885       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2886     };
2887 
2888     SelectInst *SI = nullptr;
2889     for (Use &U : PN->uses()) {
2890       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2891         // Look for a ICmp in BB that compares PN with a constant and is the
2892         // condition of a Select.
2893         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2894             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2895           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2896             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2897               SI = SelectI;
2898               break;
2899             }
2900       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2901         // Look for a Select in BB that uses PN as condition.
2902         if (isUnfoldCandidate(SelectI, U.get())) {
2903           SI = SelectI;
2904           break;
2905         }
2906       }
2907     }
2908 
2909     if (!SI)
2910       continue;
2911     // Expand the select.
2912     Value *Cond = SI->getCondition();
2913     if (InsertFreezeWhenUnfoldingSelect &&
2914         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2915                                           &DTU->getDomTree()))
2916       Cond = new FreezeInst(Cond, "cond.fr", SI);
2917     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2918     BasicBlock *SplitBB = SI->getParent();
2919     BasicBlock *NewBB = Term->getParent();
2920     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2921     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2922     NewPN->addIncoming(SI->getFalseValue(), BB);
2923     SI->replaceAllUsesWith(NewPN);
2924     SI->eraseFromParent();
2925     // NewBB and SplitBB are newly created blocks which require insertion.
2926     std::vector<DominatorTree::UpdateType> Updates;
2927     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2928     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2929     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2930     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2931     // BB's successors were moved to SplitBB, update DTU accordingly.
2932     for (auto *Succ : successors(SplitBB)) {
2933       Updates.push_back({DominatorTree::Delete, BB, Succ});
2934       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2935     }
2936     DTU->applyUpdatesPermissive(Updates);
2937     return true;
2938   }
2939   return false;
2940 }
2941 
2942 /// Try to propagate a guard from the current BB into one of its predecessors
2943 /// in case if another branch of execution implies that the condition of this
2944 /// guard is always true. Currently we only process the simplest case that
2945 /// looks like:
2946 ///
2947 /// Start:
2948 ///   %cond = ...
2949 ///   br i1 %cond, label %T1, label %F1
2950 /// T1:
2951 ///   br label %Merge
2952 /// F1:
2953 ///   br label %Merge
2954 /// Merge:
2955 ///   %condGuard = ...
2956 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2957 ///
2958 /// And cond either implies condGuard or !condGuard. In this case all the
2959 /// instructions before the guard can be duplicated in both branches, and the
2960 /// guard is then threaded to one of them.
2961 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2962   using namespace PatternMatch;
2963 
2964   // We only want to deal with two predecessors.
2965   BasicBlock *Pred1, *Pred2;
2966   auto PI = pred_begin(BB), PE = pred_end(BB);
2967   if (PI == PE)
2968     return false;
2969   Pred1 = *PI++;
2970   if (PI == PE)
2971     return false;
2972   Pred2 = *PI++;
2973   if (PI != PE)
2974     return false;
2975   if (Pred1 == Pred2)
2976     return false;
2977 
2978   // Try to thread one of the guards of the block.
2979   // TODO: Look up deeper than to immediate predecessor?
2980   auto *Parent = Pred1->getSinglePredecessor();
2981   if (!Parent || Parent != Pred2->getSinglePredecessor())
2982     return false;
2983 
2984   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2985     for (auto &I : *BB)
2986       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2987         return true;
2988 
2989   return false;
2990 }
2991 
2992 /// Try to propagate the guard from BB which is the lower block of a diamond
2993 /// to one of its branches, in case if diamond's condition implies guard's
2994 /// condition.
2995 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2996                                     BranchInst *BI) {
2997   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2998   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2999   Value *GuardCond = Guard->getArgOperand(0);
3000   Value *BranchCond = BI->getCondition();
3001   BasicBlock *TrueDest = BI->getSuccessor(0);
3002   BasicBlock *FalseDest = BI->getSuccessor(1);
3003 
3004   auto &DL = BB->getModule()->getDataLayout();
3005   bool TrueDestIsSafe = false;
3006   bool FalseDestIsSafe = false;
3007 
3008   // True dest is safe if BranchCond => GuardCond.
3009   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3010   if (Impl && *Impl)
3011     TrueDestIsSafe = true;
3012   else {
3013     // False dest is safe if !BranchCond => GuardCond.
3014     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3015     if (Impl && *Impl)
3016       FalseDestIsSafe = true;
3017   }
3018 
3019   if (!TrueDestIsSafe && !FalseDestIsSafe)
3020     return false;
3021 
3022   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3023   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3024 
3025   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3026   Instruction *AfterGuard = Guard->getNextNode();
3027   unsigned Cost =
3028       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3029   if (Cost > BBDupThreshold)
3030     return false;
3031   // Duplicate all instructions before the guard and the guard itself to the
3032   // branch where implication is not proved.
3033   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3034       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3035   assert(GuardedBlock && "Could not create the guarded block?");
3036   // Duplicate all instructions before the guard in the unguarded branch.
3037   // Since we have successfully duplicated the guarded block and this block
3038   // has fewer instructions, we expect it to succeed.
3039   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3040       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3041   assert(UnguardedBlock && "Could not create the unguarded block?");
3042   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3043                     << GuardedBlock->getName() << "\n");
3044   // Some instructions before the guard may still have uses. For them, we need
3045   // to create Phi nodes merging their copies in both guarded and unguarded
3046   // branches. Those instructions that have no uses can be just removed.
3047   SmallVector<Instruction *, 4> ToRemove;
3048   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3049     if (!isa<PHINode>(&*BI))
3050       ToRemove.push_back(&*BI);
3051 
3052   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3053   assert(InsertionPoint && "Empty block?");
3054   // Substitute with Phis & remove.
3055   for (auto *Inst : reverse(ToRemove)) {
3056     if (!Inst->use_empty()) {
3057       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3058       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3059       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3060       NewPN->insertBefore(InsertionPoint);
3061       Inst->replaceAllUsesWith(NewPN);
3062     }
3063     Inst->eraseFromParent();
3064   }
3065   return true;
3066 }
3067