1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/TargetTransformInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constant.h" 41 #include "llvm/IR/ConstantRange.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/IntrinsicInst.h" 50 #include "llvm/IR/Intrinsics.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/PassManager.h" 56 #include "llvm/IR/PatternMatch.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Cloning.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/SSAUpdater.h" 73 #include "llvm/Transforms/Utils/ValueMapper.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstdint> 77 #include <iterator> 78 #include <memory> 79 #include <utility> 80 81 using namespace llvm; 82 using namespace jumpthreading; 83 84 #define DEBUG_TYPE "jump-threading" 85 86 STATISTIC(NumThreads, "Number of jumps threaded"); 87 STATISTIC(NumFolds, "Number of terminators folded"); 88 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 89 90 static cl::opt<unsigned> 91 BBDuplicateThreshold("jump-threading-threshold", 92 cl::desc("Max block size to duplicate for jump threading"), 93 cl::init(6), cl::Hidden); 94 95 static cl::opt<unsigned> 96 ImplicationSearchThreshold( 97 "jump-threading-implication-search-threshold", 98 cl::desc("The number of predecessors to search for a stronger " 99 "condition to use to thread over a weaker condition"), 100 cl::init(3), cl::Hidden); 101 102 static cl::opt<bool> PrintLVIAfterJumpThreading( 103 "print-lvi-after-jump-threading", 104 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 105 cl::Hidden); 106 107 static cl::opt<bool> JumpThreadingFreezeSelectCond( 108 "jump-threading-freeze-select-cond", 109 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> ThreadAcrossLoopHeaders( 113 "jump-threading-across-loop-headers", 114 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 115 cl::init(false), cl::Hidden); 116 117 118 namespace { 119 120 /// This pass performs 'jump threading', which looks at blocks that have 121 /// multiple predecessors and multiple successors. If one or more of the 122 /// predecessors of the block can be proven to always jump to one of the 123 /// successors, we forward the edge from the predecessor to the successor by 124 /// duplicating the contents of this block. 125 /// 126 /// An example of when this can occur is code like this: 127 /// 128 /// if () { ... 129 /// X = 4; 130 /// } 131 /// if (X < 3) { 132 /// 133 /// In this case, the unconditional branch at the end of the first if can be 134 /// revectored to the false side of the second if. 135 class JumpThreading : public FunctionPass { 136 JumpThreadingPass Impl; 137 138 public: 139 static char ID; // Pass identification 140 141 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 142 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 143 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnFunction(Function &F) override; 147 148 void getAnalysisUsage(AnalysisUsage &AU) const override { 149 AU.addRequired<DominatorTreeWrapperPass>(); 150 AU.addPreserved<DominatorTreeWrapperPass>(); 151 AU.addRequired<AAResultsWrapperPass>(); 152 AU.addRequired<LazyValueInfoWrapperPass>(); 153 AU.addPreserved<LazyValueInfoWrapperPass>(); 154 AU.addPreserved<GlobalsAAWrapperPass>(); 155 AU.addRequired<TargetLibraryInfoWrapperPass>(); 156 AU.addRequired<TargetTransformInfoWrapperPass>(); 157 } 158 159 void releaseMemory() override { Impl.releaseMemory(); } 160 }; 161 162 } // end anonymous namespace 163 164 char JumpThreading::ID = 0; 165 166 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 167 "Jump Threading", false, false) 168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 172 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 173 "Jump Threading", false, false) 174 175 // Public interface to the Jump Threading pass 176 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 177 return new JumpThreading(InsertFr, Threshold); 178 } 179 180 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 181 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 182 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 183 } 184 185 // Update branch probability information according to conditional 186 // branch probability. This is usually made possible for cloned branches 187 // in inline instances by the context specific profile in the caller. 188 // For instance, 189 // 190 // [Block PredBB] 191 // [Branch PredBr] 192 // if (t) { 193 // Block A; 194 // } else { 195 // Block B; 196 // } 197 // 198 // [Block BB] 199 // cond = PN([true, %A], [..., %B]); // PHI node 200 // [Branch CondBr] 201 // if (cond) { 202 // ... // P(cond == true) = 1% 203 // } 204 // 205 // Here we know that when block A is taken, cond must be true, which means 206 // P(cond == true | A) = 1 207 // 208 // Given that P(cond == true) = P(cond == true | A) * P(A) + 209 // P(cond == true | B) * P(B) 210 // we get: 211 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 212 // 213 // which gives us: 214 // P(A) is less than P(cond == true), i.e. 215 // P(t == true) <= P(cond == true) 216 // 217 // In other words, if we know P(cond == true) is unlikely, we know 218 // that P(t == true) is also unlikely. 219 // 220 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 221 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 222 if (!CondBr) 223 return; 224 225 uint64_t TrueWeight, FalseWeight; 226 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 227 return; 228 229 if (TrueWeight + FalseWeight == 0) 230 // Zero branch_weights do not give a hint for getting branch probabilities. 231 // Technically it would result in division by zero denominator, which is 232 // TrueWeight + FalseWeight. 233 return; 234 235 // Returns the outgoing edge of the dominating predecessor block 236 // that leads to the PhiNode's incoming block: 237 auto GetPredOutEdge = 238 [](BasicBlock *IncomingBB, 239 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 240 auto *PredBB = IncomingBB; 241 auto *SuccBB = PhiBB; 242 SmallPtrSet<BasicBlock *, 16> Visited; 243 while (true) { 244 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 245 if (PredBr && PredBr->isConditional()) 246 return {PredBB, SuccBB}; 247 Visited.insert(PredBB); 248 auto *SinglePredBB = PredBB->getSinglePredecessor(); 249 if (!SinglePredBB) 250 return {nullptr, nullptr}; 251 252 // Stop searching when SinglePredBB has been visited. It means we see 253 // an unreachable loop. 254 if (Visited.count(SinglePredBB)) 255 return {nullptr, nullptr}; 256 257 SuccBB = PredBB; 258 PredBB = SinglePredBB; 259 } 260 }; 261 262 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 263 Value *PhiOpnd = PN->getIncomingValue(i); 264 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 265 266 if (!CI || !CI->getType()->isIntegerTy(1)) 267 continue; 268 269 BranchProbability BP = 270 (CI->isOne() ? BranchProbability::getBranchProbability( 271 TrueWeight, TrueWeight + FalseWeight) 272 : BranchProbability::getBranchProbability( 273 FalseWeight, TrueWeight + FalseWeight)); 274 275 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 276 if (!PredOutEdge.first) 277 return; 278 279 BasicBlock *PredBB = PredOutEdge.first; 280 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 281 if (!PredBr) 282 return; 283 284 uint64_t PredTrueWeight, PredFalseWeight; 285 // FIXME: We currently only set the profile data when it is missing. 286 // With PGO, this can be used to refine even existing profile data with 287 // context information. This needs to be done after more performance 288 // testing. 289 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 290 continue; 291 292 // We can not infer anything useful when BP >= 50%, because BP is the 293 // upper bound probability value. 294 if (BP >= BranchProbability(50, 100)) 295 continue; 296 297 SmallVector<uint32_t, 2> Weights; 298 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 299 Weights.push_back(BP.getNumerator()); 300 Weights.push_back(BP.getCompl().getNumerator()); 301 } else { 302 Weights.push_back(BP.getCompl().getNumerator()); 303 Weights.push_back(BP.getNumerator()); 304 } 305 PredBr->setMetadata(LLVMContext::MD_prof, 306 MDBuilder(PredBr->getParent()->getContext()) 307 .createBranchWeights(Weights)); 308 } 309 } 310 311 /// runOnFunction - Toplevel algorithm. 312 bool JumpThreading::runOnFunction(Function &F) { 313 if (skipFunction(F)) 314 return false; 315 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 316 // Jump Threading has no sense for the targets with divergent CF 317 if (TTI->hasBranchDivergence()) 318 return false; 319 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 320 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 321 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 322 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 323 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 324 std::unique_ptr<BlockFrequencyInfo> BFI; 325 std::unique_ptr<BranchProbabilityInfo> BPI; 326 if (F.hasProfileData()) { 327 LoopInfo LI{DominatorTree(F)}; 328 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 329 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 330 } 331 332 bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(), 333 std::move(BFI), std::move(BPI)); 334 if (PrintLVIAfterJumpThreading) { 335 dbgs() << "LVI for function '" << F.getName() << "':\n"; 336 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 337 } 338 return Changed; 339 } 340 341 PreservedAnalyses JumpThreadingPass::run(Function &F, 342 FunctionAnalysisManager &AM) { 343 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 344 // Jump Threading has no sense for the targets with divergent CF 345 if (TTI.hasBranchDivergence()) 346 return PreservedAnalyses::all(); 347 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 348 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 349 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 350 auto &AA = AM.getResult<AAManager>(F); 351 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 352 353 std::unique_ptr<BlockFrequencyInfo> BFI; 354 std::unique_ptr<BranchProbabilityInfo> BPI; 355 if (F.hasProfileData()) { 356 LoopInfo LI{DominatorTree(F)}; 357 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 358 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 359 } 360 361 bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(), 362 std::move(BFI), std::move(BPI)); 363 364 if (PrintLVIAfterJumpThreading) { 365 dbgs() << "LVI for function '" << F.getName() << "':\n"; 366 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 367 } 368 369 if (!Changed) 370 return PreservedAnalyses::all(); 371 PreservedAnalyses PA; 372 PA.preserve<DominatorTreeAnalysis>(); 373 PA.preserve<LazyValueAnalysis>(); 374 return PA; 375 } 376 377 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 378 TargetTransformInfo *TTI_, LazyValueInfo *LVI_, 379 AliasAnalysis *AA_, DomTreeUpdater *DTU_, 380 bool HasProfileData_, 381 std::unique_ptr<BlockFrequencyInfo> BFI_, 382 std::unique_ptr<BranchProbabilityInfo> BPI_) { 383 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 384 TLI = TLI_; 385 TTI = TTI_; 386 LVI = LVI_; 387 AA = AA_; 388 DTU = DTU_; 389 BFI.reset(); 390 BPI.reset(); 391 // When profile data is available, we need to update edge weights after 392 // successful jump threading, which requires both BPI and BFI being available. 393 HasProfileData = HasProfileData_; 394 auto *GuardDecl = F.getParent()->getFunction( 395 Intrinsic::getName(Intrinsic::experimental_guard)); 396 HasGuards = GuardDecl && !GuardDecl->use_empty(); 397 if (HasProfileData) { 398 BPI = std::move(BPI_); 399 BFI = std::move(BFI_); 400 } 401 402 // Reduce the number of instructions duplicated when optimizing strictly for 403 // size. 404 if (BBDuplicateThreshold.getNumOccurrences()) 405 BBDupThreshold = BBDuplicateThreshold; 406 else if (F.hasFnAttribute(Attribute::MinSize)) 407 BBDupThreshold = 3; 408 else 409 BBDupThreshold = DefaultBBDupThreshold; 410 411 // JumpThreading must not processes blocks unreachable from entry. It's a 412 // waste of compute time and can potentially lead to hangs. 413 SmallPtrSet<BasicBlock *, 16> Unreachable; 414 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 416 DominatorTree &DT = DTU->getDomTree(); 417 for (auto &BB : F) 418 if (!DT.isReachableFromEntry(&BB)) 419 Unreachable.insert(&BB); 420 421 if (!ThreadAcrossLoopHeaders) 422 findLoopHeaders(F); 423 424 bool EverChanged = false; 425 bool Changed; 426 do { 427 Changed = false; 428 for (auto &BB : F) { 429 if (Unreachable.count(&BB)) 430 continue; 431 while (processBlock(&BB)) // Thread all of the branches we can over BB. 432 Changed = true; 433 434 // Jump threading may have introduced redundant debug values into BB 435 // which should be removed. 436 if (Changed) 437 RemoveRedundantDbgInstrs(&BB); 438 439 // Stop processing BB if it's the entry or is now deleted. The following 440 // routines attempt to eliminate BB and locating a suitable replacement 441 // for the entry is non-trivial. 442 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 443 continue; 444 445 if (pred_empty(&BB)) { 446 // When processBlock makes BB unreachable it doesn't bother to fix up 447 // the instructions in it. We must remove BB to prevent invalid IR. 448 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 449 << "' with terminator: " << *BB.getTerminator() 450 << '\n'); 451 LoopHeaders.erase(&BB); 452 LVI->eraseBlock(&BB); 453 DeleteDeadBlock(&BB, DTU); 454 Changed = true; 455 continue; 456 } 457 458 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 459 // is "almost empty", we attempt to merge BB with its sole successor. 460 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 461 if (BI && BI->isUnconditional()) { 462 BasicBlock *Succ = BI->getSuccessor(0); 463 if ( 464 // The terminator must be the only non-phi instruction in BB. 465 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 466 // Don't alter Loop headers and latches to ensure another pass can 467 // detect and transform nested loops later. 468 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 469 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 470 RemoveRedundantDbgInstrs(Succ); 471 // BB is valid for cleanup here because we passed in DTU. F remains 472 // BB's parent until a DTU->getDomTree() event. 473 LVI->eraseBlock(&BB); 474 Changed = true; 475 } 476 } 477 } 478 EverChanged |= Changed; 479 } while (Changed); 480 481 LoopHeaders.clear(); 482 return EverChanged; 483 } 484 485 // Replace uses of Cond with ToVal when safe to do so. If all uses are 486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 487 // because we may incorrectly replace uses when guards/assumes are uses of 488 // of `Cond` and we used the guards/assume to reason about the `Cond` value 489 // at the end of block. RAUW unconditionally replaces all uses 490 // including the guards/assumes themselves and the uses before the 491 // guard/assume. 492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 493 assert(Cond->getType() == ToVal->getType()); 494 auto *BB = Cond->getParent(); 495 // We can unconditionally replace all uses in non-local blocks (i.e. uses 496 // strictly dominated by BB), since LVI information is true from the 497 // terminator of BB. 498 replaceNonLocalUsesWith(Cond, ToVal); 499 for (Instruction &I : reverse(*BB)) { 500 // Reached the Cond whose uses we are trying to replace, so there are no 501 // more uses. 502 if (&I == Cond) 503 break; 504 // We only replace uses in instructions that are guaranteed to reach the end 505 // of BB, where we know Cond is ToVal. 506 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 507 break; 508 I.replaceUsesOfWith(Cond, ToVal); 509 } 510 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 511 Cond->eraseFromParent(); 512 } 513 514 /// Return the cost of duplicating a piece of this block from first non-phi 515 /// and before StopAt instruction to thread across it. Stop scanning the block 516 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 517 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI, 518 BasicBlock *BB, 519 Instruction *StopAt, 520 unsigned Threshold) { 521 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 522 /// Ignore PHI nodes, these will be flattened when duplication happens. 523 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 524 525 // FIXME: THREADING will delete values that are just used to compute the 526 // branch, so they shouldn't count against the duplication cost. 527 528 unsigned Bonus = 0; 529 if (BB->getTerminator() == StopAt) { 530 // Threading through a switch statement is particularly profitable. If this 531 // block ends in a switch, decrease its cost to make it more likely to 532 // happen. 533 if (isa<SwitchInst>(StopAt)) 534 Bonus = 6; 535 536 // The same holds for indirect branches, but slightly more so. 537 if (isa<IndirectBrInst>(StopAt)) 538 Bonus = 8; 539 } 540 541 // Bump the threshold up so the early exit from the loop doesn't skip the 542 // terminator-based Size adjustment at the end. 543 Threshold += Bonus; 544 545 // Sum up the cost of each instruction until we get to the terminator. Don't 546 // include the terminator because the copy won't include it. 547 unsigned Size = 0; 548 for (; &*I != StopAt; ++I) { 549 550 // Stop scanning the block if we've reached the threshold. 551 if (Size > Threshold) 552 return Size; 553 554 // Bail out if this instruction gives back a token type, it is not possible 555 // to duplicate it if it is used outside this BB. 556 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 557 return ~0U; 558 559 // Blocks with NoDuplicate are modelled as having infinite cost, so they 560 // are never duplicated. 561 if (const CallInst *CI = dyn_cast<CallInst>(I)) 562 if (CI->cannotDuplicate() || CI->isConvergent()) 563 return ~0U; 564 565 if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency) 566 == TargetTransformInfo::TCC_Free) 567 continue; 568 569 // All other instructions count for at least one unit. 570 ++Size; 571 572 // Calls are more expensive. If they are non-intrinsic calls, we model them 573 // as having cost of 4. If they are a non-vector intrinsic, we model them 574 // as having cost of 2 total, and if they are a vector intrinsic, we model 575 // them as having cost 1. 576 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 577 if (!isa<IntrinsicInst>(CI)) 578 Size += 3; 579 else if (!CI->getType()->isVectorTy()) 580 Size += 1; 581 } 582 } 583 584 return Size > Bonus ? Size - Bonus : 0; 585 } 586 587 /// findLoopHeaders - We do not want jump threading to turn proper loop 588 /// structures into irreducible loops. Doing this breaks up the loop nesting 589 /// hierarchy and pessimizes later transformations. To prevent this from 590 /// happening, we first have to find the loop headers. Here we approximate this 591 /// by finding targets of backedges in the CFG. 592 /// 593 /// Note that there definitely are cases when we want to allow threading of 594 /// edges across a loop header. For example, threading a jump from outside the 595 /// loop (the preheader) to an exit block of the loop is definitely profitable. 596 /// It is also almost always profitable to thread backedges from within the loop 597 /// to exit blocks, and is often profitable to thread backedges to other blocks 598 /// within the loop (forming a nested loop). This simple analysis is not rich 599 /// enough to track all of these properties and keep it up-to-date as the CFG 600 /// mutates, so we don't allow any of these transformations. 601 void JumpThreadingPass::findLoopHeaders(Function &F) { 602 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 603 FindFunctionBackedges(F, Edges); 604 605 for (const auto &Edge : Edges) 606 LoopHeaders.insert(Edge.second); 607 } 608 609 /// getKnownConstant - Helper method to determine if we can thread over a 610 /// terminator with the given value as its condition, and if so what value to 611 /// use for that. What kind of value this is depends on whether we want an 612 /// integer or a block address, but an undef is always accepted. 613 /// Returns null if Val is null or not an appropriate constant. 614 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 615 if (!Val) 616 return nullptr; 617 618 // Undef is "known" enough. 619 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 620 return U; 621 622 if (Preference == WantBlockAddress) 623 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 624 625 return dyn_cast<ConstantInt>(Val); 626 } 627 628 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 629 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 630 /// in any of our predecessors. If so, return the known list of value and pred 631 /// BB in the result vector. 632 /// 633 /// This returns true if there were any known values. 634 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 635 Value *V, BasicBlock *BB, PredValueInfo &Result, 636 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 637 Instruction *CxtI) { 638 // This method walks up use-def chains recursively. Because of this, we could 639 // get into an infinite loop going around loops in the use-def chain. To 640 // prevent this, keep track of what (value, block) pairs we've already visited 641 // and terminate the search if we loop back to them 642 if (!RecursionSet.insert(V).second) 643 return false; 644 645 // If V is a constant, then it is known in all predecessors. 646 if (Constant *KC = getKnownConstant(V, Preference)) { 647 for (BasicBlock *Pred : predecessors(BB)) 648 Result.emplace_back(KC, Pred); 649 650 return !Result.empty(); 651 } 652 653 // If V is a non-instruction value, or an instruction in a different block, 654 // then it can't be derived from a PHI. 655 Instruction *I = dyn_cast<Instruction>(V); 656 if (!I || I->getParent() != BB) { 657 658 // Okay, if this is a live-in value, see if it has a known value at the end 659 // of any of our predecessors. 660 // 661 // FIXME: This should be an edge property, not a block end property. 662 /// TODO: Per PR2563, we could infer value range information about a 663 /// predecessor based on its terminator. 664 // 665 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 666 // "I" is a non-local compare-with-a-constant instruction. This would be 667 // able to handle value inequalities better, for example if the compare is 668 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 669 // Perhaps getConstantOnEdge should be smart enough to do this? 670 for (BasicBlock *P : predecessors(BB)) { 671 // If the value is known by LazyValueInfo to be a constant in a 672 // predecessor, use that information to try to thread this block. 673 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 674 if (Constant *KC = getKnownConstant(PredCst, Preference)) 675 Result.emplace_back(KC, P); 676 } 677 678 return !Result.empty(); 679 } 680 681 /// If I is a PHI node, then we know the incoming values for any constants. 682 if (PHINode *PN = dyn_cast<PHINode>(I)) { 683 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 684 Value *InVal = PN->getIncomingValue(i); 685 if (Constant *KC = getKnownConstant(InVal, Preference)) { 686 Result.emplace_back(KC, PN->getIncomingBlock(i)); 687 } else { 688 Constant *CI = LVI->getConstantOnEdge(InVal, 689 PN->getIncomingBlock(i), 690 BB, CxtI); 691 if (Constant *KC = getKnownConstant(CI, Preference)) 692 Result.emplace_back(KC, PN->getIncomingBlock(i)); 693 } 694 } 695 696 return !Result.empty(); 697 } 698 699 // Handle Cast instructions. 700 if (CastInst *CI = dyn_cast<CastInst>(I)) { 701 Value *Source = CI->getOperand(0); 702 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 703 RecursionSet, CxtI); 704 if (Result.empty()) 705 return false; 706 707 // Convert the known values. 708 for (auto &R : Result) 709 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 710 711 return true; 712 } 713 714 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 715 Value *Source = FI->getOperand(0); 716 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 717 RecursionSet, CxtI); 718 719 erase_if(Result, [](auto &Pair) { 720 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 721 }); 722 723 return !Result.empty(); 724 } 725 726 // Handle some boolean conditions. 727 if (I->getType()->getPrimitiveSizeInBits() == 1) { 728 using namespace PatternMatch; 729 if (Preference != WantInteger) 730 return false; 731 // X | true -> true 732 // X & false -> false 733 Value *Op0, *Op1; 734 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 735 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 736 PredValueInfoTy LHSVals, RHSVals; 737 738 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 739 RecursionSet, CxtI); 740 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 741 RecursionSet, CxtI); 742 743 if (LHSVals.empty() && RHSVals.empty()) 744 return false; 745 746 ConstantInt *InterestingVal; 747 if (match(I, m_LogicalOr())) 748 InterestingVal = ConstantInt::getTrue(I->getContext()); 749 else 750 InterestingVal = ConstantInt::getFalse(I->getContext()); 751 752 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 753 754 // Scan for the sentinel. If we find an undef, force it to the 755 // interesting value: x|undef -> true and x&undef -> false. 756 for (const auto &LHSVal : LHSVals) 757 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 758 Result.emplace_back(InterestingVal, LHSVal.second); 759 LHSKnownBBs.insert(LHSVal.second); 760 } 761 for (const auto &RHSVal : RHSVals) 762 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 763 // If we already inferred a value for this block on the LHS, don't 764 // re-add it. 765 if (!LHSKnownBBs.count(RHSVal.second)) 766 Result.emplace_back(InterestingVal, RHSVal.second); 767 } 768 769 return !Result.empty(); 770 } 771 772 // Handle the NOT form of XOR. 773 if (I->getOpcode() == Instruction::Xor && 774 isa<ConstantInt>(I->getOperand(1)) && 775 cast<ConstantInt>(I->getOperand(1))->isOne()) { 776 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 777 WantInteger, RecursionSet, CxtI); 778 if (Result.empty()) 779 return false; 780 781 // Invert the known values. 782 for (auto &R : Result) 783 R.first = ConstantExpr::getNot(R.first); 784 785 return true; 786 } 787 788 // Try to simplify some other binary operator values. 789 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 790 if (Preference != WantInteger) 791 return false; 792 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 793 PredValueInfoTy LHSVals; 794 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 795 WantInteger, RecursionSet, CxtI); 796 797 // Try to use constant folding to simplify the binary operator. 798 for (const auto &LHSVal : LHSVals) { 799 Constant *V = LHSVal.first; 800 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 801 802 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 803 Result.emplace_back(KC, LHSVal.second); 804 } 805 } 806 807 return !Result.empty(); 808 } 809 810 // Handle compare with phi operand, where the PHI is defined in this block. 811 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 812 if (Preference != WantInteger) 813 return false; 814 Type *CmpType = Cmp->getType(); 815 Value *CmpLHS = Cmp->getOperand(0); 816 Value *CmpRHS = Cmp->getOperand(1); 817 CmpInst::Predicate Pred = Cmp->getPredicate(); 818 819 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 820 if (!PN) 821 PN = dyn_cast<PHINode>(CmpRHS); 822 if (PN && PN->getParent() == BB) { 823 const DataLayout &DL = PN->getModule()->getDataLayout(); 824 // We can do this simplification if any comparisons fold to true or false. 825 // See if any do. 826 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 827 BasicBlock *PredBB = PN->getIncomingBlock(i); 828 Value *LHS, *RHS; 829 if (PN == CmpLHS) { 830 LHS = PN->getIncomingValue(i); 831 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 832 } else { 833 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 834 RHS = PN->getIncomingValue(i); 835 } 836 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 837 if (!Res) { 838 if (!isa<Constant>(RHS)) 839 continue; 840 841 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 842 auto LHSInst = dyn_cast<Instruction>(LHS); 843 if (LHSInst && LHSInst->getParent() == BB) 844 continue; 845 846 LazyValueInfo::Tristate 847 ResT = LVI->getPredicateOnEdge(Pred, LHS, 848 cast<Constant>(RHS), PredBB, BB, 849 CxtI ? CxtI : Cmp); 850 if (ResT == LazyValueInfo::Unknown) 851 continue; 852 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 853 } 854 855 if (Constant *KC = getKnownConstant(Res, WantInteger)) 856 Result.emplace_back(KC, PredBB); 857 } 858 859 return !Result.empty(); 860 } 861 862 // If comparing a live-in value against a constant, see if we know the 863 // live-in value on any predecessors. 864 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 865 Constant *CmpConst = cast<Constant>(CmpRHS); 866 867 if (!isa<Instruction>(CmpLHS) || 868 cast<Instruction>(CmpLHS)->getParent() != BB) { 869 for (BasicBlock *P : predecessors(BB)) { 870 // If the value is known by LazyValueInfo to be a constant in a 871 // predecessor, use that information to try to thread this block. 872 LazyValueInfo::Tristate Res = 873 LVI->getPredicateOnEdge(Pred, CmpLHS, 874 CmpConst, P, BB, CxtI ? CxtI : Cmp); 875 if (Res == LazyValueInfo::Unknown) 876 continue; 877 878 Constant *ResC = ConstantInt::get(CmpType, Res); 879 Result.emplace_back(ResC, P); 880 } 881 882 return !Result.empty(); 883 } 884 885 // InstCombine can fold some forms of constant range checks into 886 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 887 // x as a live-in. 888 { 889 using namespace PatternMatch; 890 891 Value *AddLHS; 892 ConstantInt *AddConst; 893 if (isa<ConstantInt>(CmpConst) && 894 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 895 if (!isa<Instruction>(AddLHS) || 896 cast<Instruction>(AddLHS)->getParent() != BB) { 897 for (BasicBlock *P : predecessors(BB)) { 898 // If the value is known by LazyValueInfo to be a ConstantRange in 899 // a predecessor, use that information to try to thread this 900 // block. 901 ConstantRange CR = LVI->getConstantRangeOnEdge( 902 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 903 // Propagate the range through the addition. 904 CR = CR.add(AddConst->getValue()); 905 906 // Get the range where the compare returns true. 907 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 908 Pred, cast<ConstantInt>(CmpConst)->getValue()); 909 910 Constant *ResC; 911 if (CmpRange.contains(CR)) 912 ResC = ConstantInt::getTrue(CmpType); 913 else if (CmpRange.inverse().contains(CR)) 914 ResC = ConstantInt::getFalse(CmpType); 915 else 916 continue; 917 918 Result.emplace_back(ResC, P); 919 } 920 921 return !Result.empty(); 922 } 923 } 924 } 925 926 // Try to find a constant value for the LHS of a comparison, 927 // and evaluate it statically if we can. 928 PredValueInfoTy LHSVals; 929 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 930 WantInteger, RecursionSet, CxtI); 931 932 for (const auto &LHSVal : LHSVals) { 933 Constant *V = LHSVal.first; 934 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 935 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 936 Result.emplace_back(KC, LHSVal.second); 937 } 938 939 return !Result.empty(); 940 } 941 } 942 943 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 944 // Handle select instructions where at least one operand is a known constant 945 // and we can figure out the condition value for any predecessor block. 946 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 947 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 948 PredValueInfoTy Conds; 949 if ((TrueVal || FalseVal) && 950 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 951 WantInteger, RecursionSet, CxtI)) { 952 for (auto &C : Conds) { 953 Constant *Cond = C.first; 954 955 // Figure out what value to use for the condition. 956 bool KnownCond; 957 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 958 // A known boolean. 959 KnownCond = CI->isOne(); 960 } else { 961 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 962 // Either operand will do, so be sure to pick the one that's a known 963 // constant. 964 // FIXME: Do this more cleverly if both values are known constants? 965 KnownCond = (TrueVal != nullptr); 966 } 967 968 // See if the select has a known constant value for this predecessor. 969 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 970 Result.emplace_back(Val, C.second); 971 } 972 973 return !Result.empty(); 974 } 975 } 976 977 // If all else fails, see if LVI can figure out a constant value for us. 978 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 979 Constant *CI = LVI->getConstant(V, CxtI); 980 if (Constant *KC = getKnownConstant(CI, Preference)) { 981 for (BasicBlock *Pred : predecessors(BB)) 982 Result.emplace_back(KC, Pred); 983 } 984 985 return !Result.empty(); 986 } 987 988 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 989 /// in an undefined jump, decide which block is best to revector to. 990 /// 991 /// Since we can pick an arbitrary destination, we pick the successor with the 992 /// fewest predecessors. This should reduce the in-degree of the others. 993 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 994 Instruction *BBTerm = BB->getTerminator(); 995 unsigned MinSucc = 0; 996 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 997 // Compute the successor with the minimum number of predecessors. 998 unsigned MinNumPreds = pred_size(TestBB); 999 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1000 TestBB = BBTerm->getSuccessor(i); 1001 unsigned NumPreds = pred_size(TestBB); 1002 if (NumPreds < MinNumPreds) { 1003 MinSucc = i; 1004 MinNumPreds = NumPreds; 1005 } 1006 } 1007 1008 return MinSucc; 1009 } 1010 1011 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1012 if (!BB->hasAddressTaken()) return false; 1013 1014 // If the block has its address taken, it may be a tree of dead constants 1015 // hanging off of it. These shouldn't keep the block alive. 1016 BlockAddress *BA = BlockAddress::get(BB); 1017 BA->removeDeadConstantUsers(); 1018 return !BA->use_empty(); 1019 } 1020 1021 /// processBlock - If there are any predecessors whose control can be threaded 1022 /// through to a successor, transform them now. 1023 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1024 // If the block is trivially dead, just return and let the caller nuke it. 1025 // This simplifies other transformations. 1026 if (DTU->isBBPendingDeletion(BB) || 1027 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1028 return false; 1029 1030 // If this block has a single predecessor, and if that pred has a single 1031 // successor, merge the blocks. This encourages recursive jump threading 1032 // because now the condition in this block can be threaded through 1033 // predecessors of our predecessor block. 1034 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1035 return true; 1036 1037 if (tryToUnfoldSelectInCurrBB(BB)) 1038 return true; 1039 1040 // Look if we can propagate guards to predecessors. 1041 if (HasGuards && processGuards(BB)) 1042 return true; 1043 1044 // What kind of constant we're looking for. 1045 ConstantPreference Preference = WantInteger; 1046 1047 // Look to see if the terminator is a conditional branch, switch or indirect 1048 // branch, if not we can't thread it. 1049 Value *Condition; 1050 Instruction *Terminator = BB->getTerminator(); 1051 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1052 // Can't thread an unconditional jump. 1053 if (BI->isUnconditional()) return false; 1054 Condition = BI->getCondition(); 1055 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1056 Condition = SI->getCondition(); 1057 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1058 // Can't thread indirect branch with no successors. 1059 if (IB->getNumSuccessors() == 0) return false; 1060 Condition = IB->getAddress()->stripPointerCasts(); 1061 Preference = WantBlockAddress; 1062 } else { 1063 return false; // Must be an invoke or callbr. 1064 } 1065 1066 // Keep track if we constant folded the condition in this invocation. 1067 bool ConstantFolded = false; 1068 1069 // Run constant folding to see if we can reduce the condition to a simple 1070 // constant. 1071 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1072 Value *SimpleVal = 1073 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1074 if (SimpleVal) { 1075 I->replaceAllUsesWith(SimpleVal); 1076 if (isInstructionTriviallyDead(I, TLI)) 1077 I->eraseFromParent(); 1078 Condition = SimpleVal; 1079 ConstantFolded = true; 1080 } 1081 } 1082 1083 // If the terminator is branching on an undef or freeze undef, we can pick any 1084 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1085 auto *FI = dyn_cast<FreezeInst>(Condition); 1086 if (isa<UndefValue>(Condition) || 1087 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1088 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1089 std::vector<DominatorTree::UpdateType> Updates; 1090 1091 // Fold the branch/switch. 1092 Instruction *BBTerm = BB->getTerminator(); 1093 Updates.reserve(BBTerm->getNumSuccessors()); 1094 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1095 if (i == BestSucc) continue; 1096 BasicBlock *Succ = BBTerm->getSuccessor(i); 1097 Succ->removePredecessor(BB, true); 1098 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1099 } 1100 1101 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1102 << "' folding undef terminator: " << *BBTerm << '\n'); 1103 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1104 ++NumFolds; 1105 BBTerm->eraseFromParent(); 1106 DTU->applyUpdatesPermissive(Updates); 1107 if (FI) 1108 FI->eraseFromParent(); 1109 return true; 1110 } 1111 1112 // If the terminator of this block is branching on a constant, simplify the 1113 // terminator to an unconditional branch. This can occur due to threading in 1114 // other blocks. 1115 if (getKnownConstant(Condition, Preference)) { 1116 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1117 << "' folding terminator: " << *BB->getTerminator() 1118 << '\n'); 1119 ++NumFolds; 1120 ConstantFoldTerminator(BB, true, nullptr, DTU); 1121 if (HasProfileData) 1122 BPI->eraseBlock(BB); 1123 return true; 1124 } 1125 1126 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1127 1128 // All the rest of our checks depend on the condition being an instruction. 1129 if (!CondInst) { 1130 // FIXME: Unify this with code below. 1131 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1132 return true; 1133 return ConstantFolded; 1134 } 1135 1136 // Some of the following optimization can safely work on the unfrozen cond. 1137 Value *CondWithoutFreeze = CondInst; 1138 if (auto *FI = dyn_cast<FreezeInst>(CondInst)) 1139 CondWithoutFreeze = FI->getOperand(0); 1140 1141 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1142 // If we're branching on a conditional, LVI might be able to determine 1143 // it's value at the branch instruction. We only handle comparisons 1144 // against a constant at this time. 1145 // TODO: This should be extended to handle switches as well. 1146 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1147 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1148 if (CondBr && CondConst) { 1149 // We should have returned as soon as we turn a conditional branch to 1150 // unconditional. Because its no longer interesting as far as jump 1151 // threading is concerned. 1152 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1153 1154 LazyValueInfo::Tristate Ret = 1155 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1156 CondConst, CondBr, /*UseBlockValue=*/false); 1157 if (Ret != LazyValueInfo::Unknown) { 1158 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1159 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1160 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1161 ToRemoveSucc->removePredecessor(BB, true); 1162 BranchInst *UncondBr = 1163 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1164 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1165 ++NumFolds; 1166 CondBr->eraseFromParent(); 1167 if (CondCmp->use_empty()) 1168 CondCmp->eraseFromParent(); 1169 // We can safely replace *some* uses of the CondInst if it has 1170 // exactly one value as returned by LVI. RAUW is incorrect in the 1171 // presence of guards and assumes, that have the `Cond` as the use. This 1172 // is because we use the guards/assume to reason about the `Cond` value 1173 // at the end of block, but RAUW unconditionally replaces all uses 1174 // including the guards/assumes themselves and the uses before the 1175 // guard/assume. 1176 else if (CondCmp->getParent() == BB) { 1177 auto *CI = Ret == LazyValueInfo::True ? 1178 ConstantInt::getTrue(CondCmp->getType()) : 1179 ConstantInt::getFalse(CondCmp->getType()); 1180 replaceFoldableUses(CondCmp, CI); 1181 } 1182 DTU->applyUpdatesPermissive( 1183 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1184 if (HasProfileData) 1185 BPI->eraseBlock(BB); 1186 return true; 1187 } 1188 1189 // We did not manage to simplify this branch, try to see whether 1190 // CondCmp depends on a known phi-select pattern. 1191 if (tryToUnfoldSelect(CondCmp, BB)) 1192 return true; 1193 } 1194 } 1195 1196 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1197 if (tryToUnfoldSelect(SI, BB)) 1198 return true; 1199 1200 // Check for some cases that are worth simplifying. Right now we want to look 1201 // for loads that are used by a switch or by the condition for the branch. If 1202 // we see one, check to see if it's partially redundant. If so, insert a PHI 1203 // which can then be used to thread the values. 1204 Value *SimplifyValue = CondWithoutFreeze; 1205 1206 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1207 if (isa<Constant>(CondCmp->getOperand(1))) 1208 SimplifyValue = CondCmp->getOperand(0); 1209 1210 // TODO: There are other places where load PRE would be profitable, such as 1211 // more complex comparisons. 1212 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1213 if (simplifyPartiallyRedundantLoad(LoadI)) 1214 return true; 1215 1216 // Before threading, try to propagate profile data backwards: 1217 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1218 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1219 updatePredecessorProfileMetadata(PN, BB); 1220 1221 // Handle a variety of cases where we are branching on something derived from 1222 // a PHI node in the current block. If we can prove that any predecessors 1223 // compute a predictable value based on a PHI node, thread those predecessors. 1224 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1225 return true; 1226 1227 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1228 // the current block, see if we can simplify. 1229 PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze); 1230 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1231 return processBranchOnPHI(PN); 1232 1233 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1234 if (CondInst->getOpcode() == Instruction::Xor && 1235 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1236 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1237 1238 // Search for a stronger dominating condition that can be used to simplify a 1239 // conditional branch leaving BB. 1240 if (processImpliedCondition(BB)) 1241 return true; 1242 1243 return false; 1244 } 1245 1246 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1247 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1248 if (!BI || !BI->isConditional()) 1249 return false; 1250 1251 Value *Cond = BI->getCondition(); 1252 // Assuming that predecessor's branch was taken, if pred's branch condition 1253 // (V) implies Cond, Cond can be either true, undef, or poison. In this case, 1254 // freeze(Cond) is either true or a nondeterministic value. 1255 // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true 1256 // without affecting other instructions. 1257 auto *FICond = dyn_cast<FreezeInst>(Cond); 1258 if (FICond && FICond->hasOneUse()) 1259 Cond = FICond->getOperand(0); 1260 else 1261 FICond = nullptr; 1262 1263 BasicBlock *CurrentBB = BB; 1264 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1265 unsigned Iter = 0; 1266 1267 auto &DL = BB->getModule()->getDataLayout(); 1268 1269 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1270 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1271 if (!PBI || !PBI->isConditional()) 1272 return false; 1273 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1274 return false; 1275 1276 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1277 Optional<bool> Implication = 1278 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1279 1280 // If the branch condition of BB (which is Cond) and CurrentPred are 1281 // exactly the same freeze instruction, Cond can be folded into CondIsTrue. 1282 if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) { 1283 if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) == 1284 FICond->getOperand(0)) 1285 Implication = CondIsTrue; 1286 } 1287 1288 if (Implication) { 1289 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1290 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1291 RemoveSucc->removePredecessor(BB); 1292 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1293 UncondBI->setDebugLoc(BI->getDebugLoc()); 1294 ++NumFolds; 1295 BI->eraseFromParent(); 1296 if (FICond) 1297 FICond->eraseFromParent(); 1298 1299 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1300 if (HasProfileData) 1301 BPI->eraseBlock(BB); 1302 return true; 1303 } 1304 CurrentBB = CurrentPred; 1305 CurrentPred = CurrentBB->getSinglePredecessor(); 1306 } 1307 1308 return false; 1309 } 1310 1311 /// Return true if Op is an instruction defined in the given block. 1312 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1313 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1314 if (OpInst->getParent() == BB) 1315 return true; 1316 return false; 1317 } 1318 1319 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1320 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1321 /// This is an important optimization that encourages jump threading, and needs 1322 /// to be run interlaced with other jump threading tasks. 1323 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1324 // Don't hack volatile and ordered loads. 1325 if (!LoadI->isUnordered()) return false; 1326 1327 // If the load is defined in a block with exactly one predecessor, it can't be 1328 // partially redundant. 1329 BasicBlock *LoadBB = LoadI->getParent(); 1330 if (LoadBB->getSinglePredecessor()) 1331 return false; 1332 1333 // If the load is defined in an EH pad, it can't be partially redundant, 1334 // because the edges between the invoke and the EH pad cannot have other 1335 // instructions between them. 1336 if (LoadBB->isEHPad()) 1337 return false; 1338 1339 Value *LoadedPtr = LoadI->getOperand(0); 1340 1341 // If the loaded operand is defined in the LoadBB and its not a phi, 1342 // it can't be available in predecessors. 1343 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1344 return false; 1345 1346 // Scan a few instructions up from the load, to see if it is obviously live at 1347 // the entry to its block. 1348 BasicBlock::iterator BBIt(LoadI); 1349 bool IsLoadCSE; 1350 if (Value *AvailableVal = FindAvailableLoadedValue( 1351 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1352 // If the value of the load is locally available within the block, just use 1353 // it. This frequently occurs for reg2mem'd allocas. 1354 1355 if (IsLoadCSE) { 1356 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1357 combineMetadataForCSE(NLoadI, LoadI, false); 1358 }; 1359 1360 // If the returned value is the load itself, replace with an undef. This can 1361 // only happen in dead loops. 1362 if (AvailableVal == LoadI) 1363 AvailableVal = UndefValue::get(LoadI->getType()); 1364 if (AvailableVal->getType() != LoadI->getType()) 1365 AvailableVal = CastInst::CreateBitOrPointerCast( 1366 AvailableVal, LoadI->getType(), "", LoadI); 1367 LoadI->replaceAllUsesWith(AvailableVal); 1368 LoadI->eraseFromParent(); 1369 return true; 1370 } 1371 1372 // Otherwise, if we scanned the whole block and got to the top of the block, 1373 // we know the block is locally transparent to the load. If not, something 1374 // might clobber its value. 1375 if (BBIt != LoadBB->begin()) 1376 return false; 1377 1378 // If all of the loads and stores that feed the value have the same AA tags, 1379 // then we can propagate them onto any newly inserted loads. 1380 AAMDNodes AATags = LoadI->getAAMetadata(); 1381 1382 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1383 1384 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1385 1386 AvailablePredsTy AvailablePreds; 1387 BasicBlock *OneUnavailablePred = nullptr; 1388 SmallVector<LoadInst*, 8> CSELoads; 1389 1390 // If we got here, the loaded value is transparent through to the start of the 1391 // block. Check to see if it is available in any of the predecessor blocks. 1392 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1393 // If we already scanned this predecessor, skip it. 1394 if (!PredsScanned.insert(PredBB).second) 1395 continue; 1396 1397 BBIt = PredBB->end(); 1398 unsigned NumScanedInst = 0; 1399 Value *PredAvailable = nullptr; 1400 // NOTE: We don't CSE load that is volatile or anything stronger than 1401 // unordered, that should have been checked when we entered the function. 1402 assert(LoadI->isUnordered() && 1403 "Attempting to CSE volatile or atomic loads"); 1404 // If this is a load on a phi pointer, phi-translate it and search 1405 // for available load/store to the pointer in predecessors. 1406 Type *AccessTy = LoadI->getType(); 1407 const auto &DL = LoadI->getModule()->getDataLayout(); 1408 MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB), 1409 LocationSize::precise(DL.getTypeStoreSize(AccessTy)), 1410 AATags); 1411 PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(), 1412 PredBB, BBIt, DefMaxInstsToScan, 1413 AA, &IsLoadCSE, &NumScanedInst); 1414 1415 // If PredBB has a single predecessor, continue scanning through the 1416 // single predecessor. 1417 BasicBlock *SinglePredBB = PredBB; 1418 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1419 NumScanedInst < DefMaxInstsToScan) { 1420 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1421 if (SinglePredBB) { 1422 BBIt = SinglePredBB->end(); 1423 PredAvailable = findAvailablePtrLoadStore( 1424 Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt, 1425 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1426 &NumScanedInst); 1427 } 1428 } 1429 1430 if (!PredAvailable) { 1431 OneUnavailablePred = PredBB; 1432 continue; 1433 } 1434 1435 if (IsLoadCSE) 1436 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1437 1438 // If so, this load is partially redundant. Remember this info so that we 1439 // can create a PHI node. 1440 AvailablePreds.emplace_back(PredBB, PredAvailable); 1441 } 1442 1443 // If the loaded value isn't available in any predecessor, it isn't partially 1444 // redundant. 1445 if (AvailablePreds.empty()) return false; 1446 1447 // Okay, the loaded value is available in at least one (and maybe all!) 1448 // predecessors. If the value is unavailable in more than one unique 1449 // predecessor, we want to insert a merge block for those common predecessors. 1450 // This ensures that we only have to insert one reload, thus not increasing 1451 // code size. 1452 BasicBlock *UnavailablePred = nullptr; 1453 1454 // If the value is unavailable in one of predecessors, we will end up 1455 // inserting a new instruction into them. It is only valid if all the 1456 // instructions before LoadI are guaranteed to pass execution to its 1457 // successor, or if LoadI is safe to speculate. 1458 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1459 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1460 // It requires domination tree analysis, so for this simple case it is an 1461 // overkill. 1462 if (PredsScanned.size() != AvailablePreds.size() && 1463 !isSafeToSpeculativelyExecute(LoadI)) 1464 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1465 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1466 return false; 1467 1468 // If there is exactly one predecessor where the value is unavailable, the 1469 // already computed 'OneUnavailablePred' block is it. If it ends in an 1470 // unconditional branch, we know that it isn't a critical edge. 1471 if (PredsScanned.size() == AvailablePreds.size()+1 && 1472 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1473 UnavailablePred = OneUnavailablePred; 1474 } else if (PredsScanned.size() != AvailablePreds.size()) { 1475 // Otherwise, we had multiple unavailable predecessors or we had a critical 1476 // edge from the one. 1477 SmallVector<BasicBlock*, 8> PredsToSplit; 1478 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1479 1480 for (const auto &AvailablePred : AvailablePreds) 1481 AvailablePredSet.insert(AvailablePred.first); 1482 1483 // Add all the unavailable predecessors to the PredsToSplit list. 1484 for (BasicBlock *P : predecessors(LoadBB)) { 1485 // If the predecessor is an indirect goto, we can't split the edge. 1486 // Same for CallBr. 1487 if (isa<IndirectBrInst>(P->getTerminator()) || 1488 isa<CallBrInst>(P->getTerminator())) 1489 return false; 1490 1491 if (!AvailablePredSet.count(P)) 1492 PredsToSplit.push_back(P); 1493 } 1494 1495 // Split them out to their own block. 1496 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1497 } 1498 1499 // If the value isn't available in all predecessors, then there will be 1500 // exactly one where it isn't available. Insert a load on that edge and add 1501 // it to the AvailablePreds list. 1502 if (UnavailablePred) { 1503 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1504 "Can't handle critical edge here!"); 1505 LoadInst *NewVal = new LoadInst( 1506 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1507 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1508 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1509 UnavailablePred->getTerminator()); 1510 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1511 if (AATags) 1512 NewVal->setAAMetadata(AATags); 1513 1514 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1515 } 1516 1517 // Now we know that each predecessor of this block has a value in 1518 // AvailablePreds, sort them for efficient access as we're walking the preds. 1519 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1520 1521 // Create a PHI node at the start of the block for the PRE'd load value. 1522 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1523 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1524 &LoadBB->front()); 1525 PN->takeName(LoadI); 1526 PN->setDebugLoc(LoadI->getDebugLoc()); 1527 1528 // Insert new entries into the PHI for each predecessor. A single block may 1529 // have multiple entries here. 1530 for (pred_iterator PI = PB; PI != PE; ++PI) { 1531 BasicBlock *P = *PI; 1532 AvailablePredsTy::iterator I = 1533 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1534 1535 assert(I != AvailablePreds.end() && I->first == P && 1536 "Didn't find entry for predecessor!"); 1537 1538 // If we have an available predecessor but it requires casting, insert the 1539 // cast in the predecessor and use the cast. Note that we have to update the 1540 // AvailablePreds vector as we go so that all of the PHI entries for this 1541 // predecessor use the same bitcast. 1542 Value *&PredV = I->second; 1543 if (PredV->getType() != LoadI->getType()) 1544 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1545 P->getTerminator()); 1546 1547 PN->addIncoming(PredV, I->first); 1548 } 1549 1550 for (LoadInst *PredLoadI : CSELoads) { 1551 combineMetadataForCSE(PredLoadI, LoadI, true); 1552 } 1553 1554 LoadI->replaceAllUsesWith(PN); 1555 LoadI->eraseFromParent(); 1556 1557 return true; 1558 } 1559 1560 /// findMostPopularDest - The specified list contains multiple possible 1561 /// threadable destinations. Pick the one that occurs the most frequently in 1562 /// the list. 1563 static BasicBlock * 1564 findMostPopularDest(BasicBlock *BB, 1565 const SmallVectorImpl<std::pair<BasicBlock *, 1566 BasicBlock *>> &PredToDestList) { 1567 assert(!PredToDestList.empty()); 1568 1569 // Determine popularity. If there are multiple possible destinations, we 1570 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1571 // blocks with known and real destinations to threading undef. We'll handle 1572 // them later if interesting. 1573 MapVector<BasicBlock *, unsigned> DestPopularity; 1574 1575 // Populate DestPopularity with the successors in the order they appear in the 1576 // successor list. This way, we ensure determinism by iterating it in the 1577 // same order in std::max_element below. We map nullptr to 0 so that we can 1578 // return nullptr when PredToDestList contains nullptr only. 1579 DestPopularity[nullptr] = 0; 1580 for (auto *SuccBB : successors(BB)) 1581 DestPopularity[SuccBB] = 0; 1582 1583 for (const auto &PredToDest : PredToDestList) 1584 if (PredToDest.second) 1585 DestPopularity[PredToDest.second]++; 1586 1587 // Find the most popular dest. 1588 using VT = decltype(DestPopularity)::value_type; 1589 auto MostPopular = std::max_element( 1590 DestPopularity.begin(), DestPopularity.end(), 1591 [](const VT &L, const VT &R) { return L.second < R.second; }); 1592 1593 // Okay, we have finally picked the most popular destination. 1594 return MostPopular->first; 1595 } 1596 1597 // Try to evaluate the value of V when the control flows from PredPredBB to 1598 // BB->getSinglePredecessor() and then on to BB. 1599 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1600 BasicBlock *PredPredBB, 1601 Value *V) { 1602 BasicBlock *PredBB = BB->getSinglePredecessor(); 1603 assert(PredBB && "Expected a single predecessor"); 1604 1605 if (Constant *Cst = dyn_cast<Constant>(V)) { 1606 return Cst; 1607 } 1608 1609 // Consult LVI if V is not an instruction in BB or PredBB. 1610 Instruction *I = dyn_cast<Instruction>(V); 1611 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1612 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1613 } 1614 1615 // Look into a PHI argument. 1616 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1617 if (PHI->getParent() == PredBB) 1618 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1619 return nullptr; 1620 } 1621 1622 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1623 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1624 if (CondCmp->getParent() == BB) { 1625 Constant *Op0 = 1626 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1627 Constant *Op1 = 1628 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1629 if (Op0 && Op1) { 1630 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1631 } 1632 } 1633 return nullptr; 1634 } 1635 1636 return nullptr; 1637 } 1638 1639 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1640 ConstantPreference Preference, 1641 Instruction *CxtI) { 1642 // If threading this would thread across a loop header, don't even try to 1643 // thread the edge. 1644 if (LoopHeaders.count(BB)) 1645 return false; 1646 1647 PredValueInfoTy PredValues; 1648 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1649 CxtI)) { 1650 // We don't have known values in predecessors. See if we can thread through 1651 // BB and its sole predecessor. 1652 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1653 } 1654 1655 assert(!PredValues.empty() && 1656 "computeValueKnownInPredecessors returned true with no values"); 1657 1658 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1659 for (const auto &PredValue : PredValues) { 1660 dbgs() << " BB '" << BB->getName() 1661 << "': FOUND condition = " << *PredValue.first 1662 << " for pred '" << PredValue.second->getName() << "'.\n"; 1663 }); 1664 1665 // Decide what we want to thread through. Convert our list of known values to 1666 // a list of known destinations for each pred. This also discards duplicate 1667 // predecessors and keeps track of the undefined inputs (which are represented 1668 // as a null dest in the PredToDestList). 1669 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1670 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1671 1672 BasicBlock *OnlyDest = nullptr; 1673 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1674 Constant *OnlyVal = nullptr; 1675 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1676 1677 for (const auto &PredValue : PredValues) { 1678 BasicBlock *Pred = PredValue.second; 1679 if (!SeenPreds.insert(Pred).second) 1680 continue; // Duplicate predecessor entry. 1681 1682 Constant *Val = PredValue.first; 1683 1684 BasicBlock *DestBB; 1685 if (isa<UndefValue>(Val)) 1686 DestBB = nullptr; 1687 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1688 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1689 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1690 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1691 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1692 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1693 } else { 1694 assert(isa<IndirectBrInst>(BB->getTerminator()) 1695 && "Unexpected terminator"); 1696 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1697 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1698 } 1699 1700 // If we have exactly one destination, remember it for efficiency below. 1701 if (PredToDestList.empty()) { 1702 OnlyDest = DestBB; 1703 OnlyVal = Val; 1704 } else { 1705 if (OnlyDest != DestBB) 1706 OnlyDest = MultipleDestSentinel; 1707 // It possible we have same destination, but different value, e.g. default 1708 // case in switchinst. 1709 if (Val != OnlyVal) 1710 OnlyVal = MultipleVal; 1711 } 1712 1713 // If the predecessor ends with an indirect goto, we can't change its 1714 // destination. Same for CallBr. 1715 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1716 isa<CallBrInst>(Pred->getTerminator())) 1717 continue; 1718 1719 PredToDestList.emplace_back(Pred, DestBB); 1720 } 1721 1722 // If all edges were unthreadable, we fail. 1723 if (PredToDestList.empty()) 1724 return false; 1725 1726 // If all the predecessors go to a single known successor, we want to fold, 1727 // not thread. By doing so, we do not need to duplicate the current block and 1728 // also miss potential opportunities in case we dont/cant duplicate. 1729 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1730 if (BB->hasNPredecessors(PredToDestList.size())) { 1731 bool SeenFirstBranchToOnlyDest = false; 1732 std::vector <DominatorTree::UpdateType> Updates; 1733 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1734 for (BasicBlock *SuccBB : successors(BB)) { 1735 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1736 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1737 } else { 1738 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1739 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1740 } 1741 } 1742 1743 // Finally update the terminator. 1744 Instruction *Term = BB->getTerminator(); 1745 BranchInst::Create(OnlyDest, Term); 1746 ++NumFolds; 1747 Term->eraseFromParent(); 1748 DTU->applyUpdatesPermissive(Updates); 1749 if (HasProfileData) 1750 BPI->eraseBlock(BB); 1751 1752 // If the condition is now dead due to the removal of the old terminator, 1753 // erase it. 1754 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1755 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1756 CondInst->eraseFromParent(); 1757 // We can safely replace *some* uses of the CondInst if it has 1758 // exactly one value as returned by LVI. RAUW is incorrect in the 1759 // presence of guards and assumes, that have the `Cond` as the use. This 1760 // is because we use the guards/assume to reason about the `Cond` value 1761 // at the end of block, but RAUW unconditionally replaces all uses 1762 // including the guards/assumes themselves and the uses before the 1763 // guard/assume. 1764 else if (OnlyVal && OnlyVal != MultipleVal && 1765 CondInst->getParent() == BB) 1766 replaceFoldableUses(CondInst, OnlyVal); 1767 } 1768 return true; 1769 } 1770 } 1771 1772 // Determine which is the most common successor. If we have many inputs and 1773 // this block is a switch, we want to start by threading the batch that goes 1774 // to the most popular destination first. If we only know about one 1775 // threadable destination (the common case) we can avoid this. 1776 BasicBlock *MostPopularDest = OnlyDest; 1777 1778 if (MostPopularDest == MultipleDestSentinel) { 1779 // Remove any loop headers from the Dest list, threadEdge conservatively 1780 // won't process them, but we might have other destination that are eligible 1781 // and we still want to process. 1782 erase_if(PredToDestList, 1783 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1784 return LoopHeaders.contains(PredToDest.second); 1785 }); 1786 1787 if (PredToDestList.empty()) 1788 return false; 1789 1790 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1791 } 1792 1793 // Now that we know what the most popular destination is, factor all 1794 // predecessors that will jump to it into a single predecessor. 1795 SmallVector<BasicBlock*, 16> PredsToFactor; 1796 for (const auto &PredToDest : PredToDestList) 1797 if (PredToDest.second == MostPopularDest) { 1798 BasicBlock *Pred = PredToDest.first; 1799 1800 // This predecessor may be a switch or something else that has multiple 1801 // edges to the block. Factor each of these edges by listing them 1802 // according to # occurrences in PredsToFactor. 1803 for (BasicBlock *Succ : successors(Pred)) 1804 if (Succ == BB) 1805 PredsToFactor.push_back(Pred); 1806 } 1807 1808 // If the threadable edges are branching on an undefined value, we get to pick 1809 // the destination that these predecessors should get to. 1810 if (!MostPopularDest) 1811 MostPopularDest = BB->getTerminator()-> 1812 getSuccessor(getBestDestForJumpOnUndef(BB)); 1813 1814 // Ok, try to thread it! 1815 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1816 } 1817 1818 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1819 /// a PHI node (or freeze PHI) in the current block. See if there are any 1820 /// simplifications we can do based on inputs to the phi node. 1821 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1822 BasicBlock *BB = PN->getParent(); 1823 1824 // TODO: We could make use of this to do it once for blocks with common PHI 1825 // values. 1826 SmallVector<BasicBlock*, 1> PredBBs; 1827 PredBBs.resize(1); 1828 1829 // If any of the predecessor blocks end in an unconditional branch, we can 1830 // *duplicate* the conditional branch into that block in order to further 1831 // encourage jump threading and to eliminate cases where we have branch on a 1832 // phi of an icmp (branch on icmp is much better). 1833 // This is still beneficial when a frozen phi is used as the branch condition 1834 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1835 // to br(icmp(freeze ...)). 1836 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1837 BasicBlock *PredBB = PN->getIncomingBlock(i); 1838 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1839 if (PredBr->isUnconditional()) { 1840 PredBBs[0] = PredBB; 1841 // Try to duplicate BB into PredBB. 1842 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1843 return true; 1844 } 1845 } 1846 1847 return false; 1848 } 1849 1850 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1851 /// a xor instruction in the current block. See if there are any 1852 /// simplifications we can do based on inputs to the xor. 1853 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1854 BasicBlock *BB = BO->getParent(); 1855 1856 // If either the LHS or RHS of the xor is a constant, don't do this 1857 // optimization. 1858 if (isa<ConstantInt>(BO->getOperand(0)) || 1859 isa<ConstantInt>(BO->getOperand(1))) 1860 return false; 1861 1862 // If the first instruction in BB isn't a phi, we won't be able to infer 1863 // anything special about any particular predecessor. 1864 if (!isa<PHINode>(BB->front())) 1865 return false; 1866 1867 // If this BB is a landing pad, we won't be able to split the edge into it. 1868 if (BB->isEHPad()) 1869 return false; 1870 1871 // If we have a xor as the branch input to this block, and we know that the 1872 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1873 // the condition into the predecessor and fix that value to true, saving some 1874 // logical ops on that path and encouraging other paths to simplify. 1875 // 1876 // This copies something like this: 1877 // 1878 // BB: 1879 // %X = phi i1 [1], [%X'] 1880 // %Y = icmp eq i32 %A, %B 1881 // %Z = xor i1 %X, %Y 1882 // br i1 %Z, ... 1883 // 1884 // Into: 1885 // BB': 1886 // %Y = icmp ne i32 %A, %B 1887 // br i1 %Y, ... 1888 1889 PredValueInfoTy XorOpValues; 1890 bool isLHS = true; 1891 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1892 WantInteger, BO)) { 1893 assert(XorOpValues.empty()); 1894 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1895 WantInteger, BO)) 1896 return false; 1897 isLHS = false; 1898 } 1899 1900 assert(!XorOpValues.empty() && 1901 "computeValueKnownInPredecessors returned true with no values"); 1902 1903 // Scan the information to see which is most popular: true or false. The 1904 // predecessors can be of the set true, false, or undef. 1905 unsigned NumTrue = 0, NumFalse = 0; 1906 for (const auto &XorOpValue : XorOpValues) { 1907 if (isa<UndefValue>(XorOpValue.first)) 1908 // Ignore undefs for the count. 1909 continue; 1910 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1911 ++NumFalse; 1912 else 1913 ++NumTrue; 1914 } 1915 1916 // Determine which value to split on, true, false, or undef if neither. 1917 ConstantInt *SplitVal = nullptr; 1918 if (NumTrue > NumFalse) 1919 SplitVal = ConstantInt::getTrue(BB->getContext()); 1920 else if (NumTrue != 0 || NumFalse != 0) 1921 SplitVal = ConstantInt::getFalse(BB->getContext()); 1922 1923 // Collect all of the blocks that this can be folded into so that we can 1924 // factor this once and clone it once. 1925 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1926 for (const auto &XorOpValue : XorOpValues) { 1927 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1928 continue; 1929 1930 BlocksToFoldInto.push_back(XorOpValue.second); 1931 } 1932 1933 // If we inferred a value for all of the predecessors, then duplication won't 1934 // help us. However, we can just replace the LHS or RHS with the constant. 1935 if (BlocksToFoldInto.size() == 1936 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1937 if (!SplitVal) { 1938 // If all preds provide undef, just nuke the xor, because it is undef too. 1939 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1940 BO->eraseFromParent(); 1941 } else if (SplitVal->isZero()) { 1942 // If all preds provide 0, replace the xor with the other input. 1943 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1944 BO->eraseFromParent(); 1945 } else { 1946 // If all preds provide 1, set the computed value to 1. 1947 BO->setOperand(!isLHS, SplitVal); 1948 } 1949 1950 return true; 1951 } 1952 1953 // If any of predecessors end with an indirect goto, we can't change its 1954 // destination. Same for CallBr. 1955 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1956 return isa<IndirectBrInst>(Pred->getTerminator()) || 1957 isa<CallBrInst>(Pred->getTerminator()); 1958 })) 1959 return false; 1960 1961 // Try to duplicate BB into PredBB. 1962 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1963 } 1964 1965 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1966 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1967 /// NewPred using the entries from OldPred (suitably mapped). 1968 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1969 BasicBlock *OldPred, 1970 BasicBlock *NewPred, 1971 DenseMap<Instruction*, Value*> &ValueMap) { 1972 for (PHINode &PN : PHIBB->phis()) { 1973 // Ok, we have a PHI node. Figure out what the incoming value was for the 1974 // DestBlock. 1975 Value *IV = PN.getIncomingValueForBlock(OldPred); 1976 1977 // Remap the value if necessary. 1978 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1979 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1980 if (I != ValueMap.end()) 1981 IV = I->second; 1982 } 1983 1984 PN.addIncoming(IV, NewPred); 1985 } 1986 } 1987 1988 /// Merge basic block BB into its sole predecessor if possible. 1989 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1990 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1991 if (!SinglePred) 1992 return false; 1993 1994 const Instruction *TI = SinglePred->getTerminator(); 1995 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1996 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1997 return false; 1998 1999 // If SinglePred was a loop header, BB becomes one. 2000 if (LoopHeaders.erase(SinglePred)) 2001 LoopHeaders.insert(BB); 2002 2003 LVI->eraseBlock(SinglePred); 2004 MergeBasicBlockIntoOnlyPred(BB, DTU); 2005 2006 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 2007 // BB code within one basic block `BB`), we need to invalidate the LVI 2008 // information associated with BB, because the LVI information need not be 2009 // true for all of BB after the merge. For example, 2010 // Before the merge, LVI info and code is as follows: 2011 // SinglePred: <LVI info1 for %p val> 2012 // %y = use of %p 2013 // call @exit() // need not transfer execution to successor. 2014 // assume(%p) // from this point on %p is true 2015 // br label %BB 2016 // BB: <LVI info2 for %p val, i.e. %p is true> 2017 // %x = use of %p 2018 // br label exit 2019 // 2020 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2021 // (info2 and info1 respectively). After the merge and the deletion of the 2022 // LVI info1 for SinglePred. We have the following code: 2023 // BB: <LVI info2 for %p val> 2024 // %y = use of %p 2025 // call @exit() 2026 // assume(%p) 2027 // %x = use of %p <-- LVI info2 is correct from here onwards. 2028 // br label exit 2029 // LVI info2 for BB is incorrect at the beginning of BB. 2030 2031 // Invalidate LVI information for BB if the LVI is not provably true for 2032 // all of BB. 2033 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2034 LVI->eraseBlock(BB); 2035 return true; 2036 } 2037 2038 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2039 /// ValueMapping maps old values in BB to new ones in NewBB. 2040 void JumpThreadingPass::updateSSA( 2041 BasicBlock *BB, BasicBlock *NewBB, 2042 DenseMap<Instruction *, Value *> &ValueMapping) { 2043 // If there were values defined in BB that are used outside the block, then we 2044 // now have to update all uses of the value to use either the original value, 2045 // the cloned value, or some PHI derived value. This can require arbitrary 2046 // PHI insertion, of which we are prepared to do, clean these up now. 2047 SSAUpdater SSAUpdate; 2048 SmallVector<Use *, 16> UsesToRename; 2049 2050 for (Instruction &I : *BB) { 2051 // Scan all uses of this instruction to see if it is used outside of its 2052 // block, and if so, record them in UsesToRename. 2053 for (Use &U : I.uses()) { 2054 Instruction *User = cast<Instruction>(U.getUser()); 2055 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2056 if (UserPN->getIncomingBlock(U) == BB) 2057 continue; 2058 } else if (User->getParent() == BB) 2059 continue; 2060 2061 UsesToRename.push_back(&U); 2062 } 2063 2064 // If there are no uses outside the block, we're done with this instruction. 2065 if (UsesToRename.empty()) 2066 continue; 2067 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2068 2069 // We found a use of I outside of BB. Rename all uses of I that are outside 2070 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2071 // with the two values we know. 2072 SSAUpdate.Initialize(I.getType(), I.getName()); 2073 SSAUpdate.AddAvailableValue(BB, &I); 2074 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2075 2076 while (!UsesToRename.empty()) 2077 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2078 LLVM_DEBUG(dbgs() << "\n"); 2079 } 2080 } 2081 2082 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2083 /// arguments that come from PredBB. Return the map from the variables in the 2084 /// source basic block to the variables in the newly created basic block. 2085 DenseMap<Instruction *, Value *> 2086 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2087 BasicBlock::iterator BE, BasicBlock *NewBB, 2088 BasicBlock *PredBB) { 2089 // We are going to have to map operands from the source basic block to the new 2090 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2091 // block, evaluate them to account for entry from PredBB. 2092 DenseMap<Instruction *, Value *> ValueMapping; 2093 2094 // Clone the phi nodes of the source basic block into NewBB. The resulting 2095 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2096 // might need to rewrite the operand of the cloned phi. 2097 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2098 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2099 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2100 ValueMapping[PN] = NewPN; 2101 } 2102 2103 // Clone noalias scope declarations in the threaded block. When threading a 2104 // loop exit, we would otherwise end up with two idential scope declarations 2105 // visible at the same time. 2106 SmallVector<MDNode *> NoAliasScopes; 2107 DenseMap<MDNode *, MDNode *> ClonedScopes; 2108 LLVMContext &Context = PredBB->getContext(); 2109 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2110 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2111 2112 // Clone the non-phi instructions of the source basic block into NewBB, 2113 // keeping track of the mapping and using it to remap operands in the cloned 2114 // instructions. 2115 for (; BI != BE; ++BI) { 2116 Instruction *New = BI->clone(); 2117 New->setName(BI->getName()); 2118 NewBB->getInstList().push_back(New); 2119 ValueMapping[&*BI] = New; 2120 adaptNoAliasScopes(New, ClonedScopes, Context); 2121 2122 // Remap operands to patch up intra-block references. 2123 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2124 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2125 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2126 if (I != ValueMapping.end()) 2127 New->setOperand(i, I->second); 2128 } 2129 } 2130 2131 return ValueMapping; 2132 } 2133 2134 /// Attempt to thread through two successive basic blocks. 2135 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2136 Value *Cond) { 2137 // Consider: 2138 // 2139 // PredBB: 2140 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2141 // %tobool = icmp eq i32 %cond, 0 2142 // br i1 %tobool, label %BB, label ... 2143 // 2144 // BB: 2145 // %cmp = icmp eq i32* %var, null 2146 // br i1 %cmp, label ..., label ... 2147 // 2148 // We don't know the value of %var at BB even if we know which incoming edge 2149 // we take to BB. However, once we duplicate PredBB for each of its incoming 2150 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2151 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2152 2153 // Require that BB end with a Branch for simplicity. 2154 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2155 if (!CondBr) 2156 return false; 2157 2158 // BB must have exactly one predecessor. 2159 BasicBlock *PredBB = BB->getSinglePredecessor(); 2160 if (!PredBB) 2161 return false; 2162 2163 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2164 // unconditional branch, we should be merging PredBB and BB instead. For 2165 // simplicity, we don't deal with a switch. 2166 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2167 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2168 return false; 2169 2170 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2171 // PredBB. 2172 if (PredBB->getSinglePredecessor()) 2173 return false; 2174 2175 // Don't thread through PredBB if it contains a successor edge to itself, in 2176 // which case we would infinite loop. Suppose we are threading an edge from 2177 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2178 // successor edge to itself. If we allowed jump threading in this case, we 2179 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2180 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2181 // with another jump threading opportunity from PredBB.thread through PredBB 2182 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2183 // would keep peeling one iteration from PredBB. 2184 if (llvm::is_contained(successors(PredBB), PredBB)) 2185 return false; 2186 2187 // Don't thread across a loop header. 2188 if (LoopHeaders.count(PredBB)) 2189 return false; 2190 2191 // Avoid complication with duplicating EH pads. 2192 if (PredBB->isEHPad()) 2193 return false; 2194 2195 // Find a predecessor that we can thread. For simplicity, we only consider a 2196 // successor edge out of BB to which we thread exactly one incoming edge into 2197 // PredBB. 2198 unsigned ZeroCount = 0; 2199 unsigned OneCount = 0; 2200 BasicBlock *ZeroPred = nullptr; 2201 BasicBlock *OnePred = nullptr; 2202 for (BasicBlock *P : predecessors(PredBB)) { 2203 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2204 evaluateOnPredecessorEdge(BB, P, Cond))) { 2205 if (CI->isZero()) { 2206 ZeroCount++; 2207 ZeroPred = P; 2208 } else if (CI->isOne()) { 2209 OneCount++; 2210 OnePred = P; 2211 } 2212 } 2213 } 2214 2215 // Disregard complicated cases where we have to thread multiple edges. 2216 BasicBlock *PredPredBB; 2217 if (ZeroCount == 1) { 2218 PredPredBB = ZeroPred; 2219 } else if (OneCount == 1) { 2220 PredPredBB = OnePred; 2221 } else { 2222 return false; 2223 } 2224 2225 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2226 2227 // If threading to the same block as we come from, we would infinite loop. 2228 if (SuccBB == BB) { 2229 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2230 << "' - would thread to self!\n"); 2231 return false; 2232 } 2233 2234 // If threading this would thread across a loop header, don't thread the edge. 2235 // See the comments above findLoopHeaders for justifications and caveats. 2236 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2237 LLVM_DEBUG({ 2238 bool BBIsHeader = LoopHeaders.count(BB); 2239 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2240 dbgs() << " Not threading across " 2241 << (BBIsHeader ? "loop header BB '" : "block BB '") 2242 << BB->getName() << "' to dest " 2243 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2244 << SuccBB->getName() 2245 << "' - it might create an irreducible loop!\n"; 2246 }); 2247 return false; 2248 } 2249 2250 // Compute the cost of duplicating BB and PredBB. 2251 unsigned BBCost = getJumpThreadDuplicationCost( 2252 TTI, BB, BB->getTerminator(), BBDupThreshold); 2253 unsigned PredBBCost = getJumpThreadDuplicationCost( 2254 TTI, PredBB, PredBB->getTerminator(), BBDupThreshold); 2255 2256 // Give up if costs are too high. We need to check BBCost and PredBBCost 2257 // individually before checking their sum because getJumpThreadDuplicationCost 2258 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2259 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2260 BBCost + PredBBCost > BBDupThreshold) { 2261 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2262 << "' - Cost is too high: " << PredBBCost 2263 << " for PredBB, " << BBCost << "for BB\n"); 2264 return false; 2265 } 2266 2267 // Now we are ready to duplicate PredBB. 2268 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2269 return true; 2270 } 2271 2272 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2273 BasicBlock *PredBB, 2274 BasicBlock *BB, 2275 BasicBlock *SuccBB) { 2276 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2277 << BB->getName() << "'\n"); 2278 2279 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2280 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2281 2282 BasicBlock *NewBB = 2283 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2284 PredBB->getParent(), PredBB); 2285 NewBB->moveAfter(PredBB); 2286 2287 // Set the block frequency of NewBB. 2288 if (HasProfileData) { 2289 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2290 BPI->getEdgeProbability(PredPredBB, PredBB); 2291 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2292 } 2293 2294 // We are going to have to map operands from the original BB block to the new 2295 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2296 // to account for entry from PredPredBB. 2297 DenseMap<Instruction *, Value *> ValueMapping = 2298 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2299 2300 // Copy the edge probabilities from PredBB to NewBB. 2301 if (HasProfileData) 2302 BPI->copyEdgeProbabilities(PredBB, NewBB); 2303 2304 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2305 // This eliminates predecessors from PredPredBB, which requires us to simplify 2306 // any PHI nodes in PredBB. 2307 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2308 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2309 if (PredPredTerm->getSuccessor(i) == PredBB) { 2310 PredBB->removePredecessor(PredPredBB, true); 2311 PredPredTerm->setSuccessor(i, NewBB); 2312 } 2313 2314 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2315 ValueMapping); 2316 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2317 ValueMapping); 2318 2319 DTU->applyUpdatesPermissive( 2320 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2321 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2322 {DominatorTree::Insert, PredPredBB, NewBB}, 2323 {DominatorTree::Delete, PredPredBB, PredBB}}); 2324 2325 updateSSA(PredBB, NewBB, ValueMapping); 2326 2327 // Clean up things like PHI nodes with single operands, dead instructions, 2328 // etc. 2329 SimplifyInstructionsInBlock(NewBB, TLI); 2330 SimplifyInstructionsInBlock(PredBB, TLI); 2331 2332 SmallVector<BasicBlock *, 1> PredsToFactor; 2333 PredsToFactor.push_back(NewBB); 2334 threadEdge(BB, PredsToFactor, SuccBB); 2335 } 2336 2337 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2338 bool JumpThreadingPass::tryThreadEdge( 2339 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2340 BasicBlock *SuccBB) { 2341 // If threading to the same block as we come from, we would infinite loop. 2342 if (SuccBB == BB) { 2343 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2344 << "' - would thread to self!\n"); 2345 return false; 2346 } 2347 2348 // If threading this would thread across a loop header, don't thread the edge. 2349 // See the comments above findLoopHeaders for justifications and caveats. 2350 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2351 LLVM_DEBUG({ 2352 bool BBIsHeader = LoopHeaders.count(BB); 2353 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2354 dbgs() << " Not threading across " 2355 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2356 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2357 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2358 }); 2359 return false; 2360 } 2361 2362 unsigned JumpThreadCost = getJumpThreadDuplicationCost( 2363 TTI, BB, BB->getTerminator(), BBDupThreshold); 2364 if (JumpThreadCost > BBDupThreshold) { 2365 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2366 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2367 return false; 2368 } 2369 2370 threadEdge(BB, PredBBs, SuccBB); 2371 return true; 2372 } 2373 2374 /// threadEdge - We have decided that it is safe and profitable to factor the 2375 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2376 /// across BB. Transform the IR to reflect this change. 2377 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2378 const SmallVectorImpl<BasicBlock *> &PredBBs, 2379 BasicBlock *SuccBB) { 2380 assert(SuccBB != BB && "Don't create an infinite loop"); 2381 2382 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2383 "Don't thread across loop headers"); 2384 2385 // And finally, do it! Start by factoring the predecessors if needed. 2386 BasicBlock *PredBB; 2387 if (PredBBs.size() == 1) 2388 PredBB = PredBBs[0]; 2389 else { 2390 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2391 << " common predecessors.\n"); 2392 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2393 } 2394 2395 // And finally, do it! 2396 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2397 << "' to '" << SuccBB->getName() 2398 << ", across block:\n " << *BB << "\n"); 2399 2400 LVI->threadEdge(PredBB, BB, SuccBB); 2401 2402 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2403 BB->getName()+".thread", 2404 BB->getParent(), BB); 2405 NewBB->moveAfter(PredBB); 2406 2407 // Set the block frequency of NewBB. 2408 if (HasProfileData) { 2409 auto NewBBFreq = 2410 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2411 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2412 } 2413 2414 // Copy all the instructions from BB to NewBB except the terminator. 2415 DenseMap<Instruction *, Value *> ValueMapping = 2416 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2417 2418 // We didn't copy the terminator from BB over to NewBB, because there is now 2419 // an unconditional jump to SuccBB. Insert the unconditional jump. 2420 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2421 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2422 2423 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2424 // PHI nodes for NewBB now. 2425 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2426 2427 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2428 // eliminates predecessors from BB, which requires us to simplify any PHI 2429 // nodes in BB. 2430 Instruction *PredTerm = PredBB->getTerminator(); 2431 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2432 if (PredTerm->getSuccessor(i) == BB) { 2433 BB->removePredecessor(PredBB, true); 2434 PredTerm->setSuccessor(i, NewBB); 2435 } 2436 2437 // Enqueue required DT updates. 2438 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2439 {DominatorTree::Insert, PredBB, NewBB}, 2440 {DominatorTree::Delete, PredBB, BB}}); 2441 2442 updateSSA(BB, NewBB, ValueMapping); 2443 2444 // At this point, the IR is fully up to date and consistent. Do a quick scan 2445 // over the new instructions and zap any that are constants or dead. This 2446 // frequently happens because of phi translation. 2447 SimplifyInstructionsInBlock(NewBB, TLI); 2448 2449 // Update the edge weight from BB to SuccBB, which should be less than before. 2450 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2451 2452 // Threaded an edge! 2453 ++NumThreads; 2454 } 2455 2456 /// Create a new basic block that will be the predecessor of BB and successor of 2457 /// all blocks in Preds. When profile data is available, update the frequency of 2458 /// this new block. 2459 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2460 ArrayRef<BasicBlock *> Preds, 2461 const char *Suffix) { 2462 SmallVector<BasicBlock *, 2> NewBBs; 2463 2464 // Collect the frequencies of all predecessors of BB, which will be used to 2465 // update the edge weight of the result of splitting predecessors. 2466 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2467 if (HasProfileData) 2468 for (auto Pred : Preds) 2469 FreqMap.insert(std::make_pair( 2470 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2471 2472 // In the case when BB is a LandingPad block we create 2 new predecessors 2473 // instead of just one. 2474 if (BB->isLandingPad()) { 2475 std::string NewName = std::string(Suffix) + ".split-lp"; 2476 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2477 } else { 2478 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2479 } 2480 2481 std::vector<DominatorTree::UpdateType> Updates; 2482 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2483 for (auto NewBB : NewBBs) { 2484 BlockFrequency NewBBFreq(0); 2485 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2486 for (auto Pred : predecessors(NewBB)) { 2487 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2488 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2489 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2490 NewBBFreq += FreqMap.lookup(Pred); 2491 } 2492 if (HasProfileData) // Apply the summed frequency to NewBB. 2493 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2494 } 2495 2496 DTU->applyUpdatesPermissive(Updates); 2497 return NewBBs[0]; 2498 } 2499 2500 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2501 const Instruction *TI = BB->getTerminator(); 2502 assert(TI->getNumSuccessors() > 1 && "not a split"); 2503 2504 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2505 if (!WeightsNode) 2506 return false; 2507 2508 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2509 if (MDName->getString() != "branch_weights") 2510 return false; 2511 2512 // Ensure there are weights for all of the successors. Note that the first 2513 // operand to the metadata node is a name, not a weight. 2514 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2515 } 2516 2517 /// Update the block frequency of BB and branch weight and the metadata on the 2518 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2519 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2520 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2521 BasicBlock *BB, 2522 BasicBlock *NewBB, 2523 BasicBlock *SuccBB) { 2524 if (!HasProfileData) 2525 return; 2526 2527 assert(BFI && BPI && "BFI & BPI should have been created here"); 2528 2529 // As the edge from PredBB to BB is deleted, we have to update the block 2530 // frequency of BB. 2531 auto BBOrigFreq = BFI->getBlockFreq(BB); 2532 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2533 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2534 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2535 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2536 2537 // Collect updated outgoing edges' frequencies from BB and use them to update 2538 // edge probabilities. 2539 SmallVector<uint64_t, 4> BBSuccFreq; 2540 for (BasicBlock *Succ : successors(BB)) { 2541 auto SuccFreq = (Succ == SuccBB) 2542 ? BB2SuccBBFreq - NewBBFreq 2543 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2544 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2545 } 2546 2547 uint64_t MaxBBSuccFreq = 2548 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2549 2550 SmallVector<BranchProbability, 4> BBSuccProbs; 2551 if (MaxBBSuccFreq == 0) 2552 BBSuccProbs.assign(BBSuccFreq.size(), 2553 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2554 else { 2555 for (uint64_t Freq : BBSuccFreq) 2556 BBSuccProbs.push_back( 2557 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2558 // Normalize edge probabilities so that they sum up to one. 2559 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2560 BBSuccProbs.end()); 2561 } 2562 2563 // Update edge probabilities in BPI. 2564 BPI->setEdgeProbability(BB, BBSuccProbs); 2565 2566 // Update the profile metadata as well. 2567 // 2568 // Don't do this if the profile of the transformed blocks was statically 2569 // estimated. (This could occur despite the function having an entry 2570 // frequency in completely cold parts of the CFG.) 2571 // 2572 // In this case we don't want to suggest to subsequent passes that the 2573 // calculated weights are fully consistent. Consider this graph: 2574 // 2575 // check_1 2576 // 50% / | 2577 // eq_1 | 50% 2578 // \ | 2579 // check_2 2580 // 50% / | 2581 // eq_2 | 50% 2582 // \ | 2583 // check_3 2584 // 50% / | 2585 // eq_3 | 50% 2586 // \ | 2587 // 2588 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2589 // the overall probabilities are inconsistent; the total probability that the 2590 // value is either 1, 2 or 3 is 150%. 2591 // 2592 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2593 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2594 // the loop exit edge. Then based solely on static estimation we would assume 2595 // the loop was extremely hot. 2596 // 2597 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2598 // shouldn't make edges extremely likely or unlikely based solely on static 2599 // estimation. 2600 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2601 SmallVector<uint32_t, 4> Weights; 2602 for (auto Prob : BBSuccProbs) 2603 Weights.push_back(Prob.getNumerator()); 2604 2605 auto TI = BB->getTerminator(); 2606 TI->setMetadata( 2607 LLVMContext::MD_prof, 2608 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2609 } 2610 } 2611 2612 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2613 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2614 /// If we can duplicate the contents of BB up into PredBB do so now, this 2615 /// improves the odds that the branch will be on an analyzable instruction like 2616 /// a compare. 2617 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2618 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2619 assert(!PredBBs.empty() && "Can't handle an empty set"); 2620 2621 // If BB is a loop header, then duplicating this block outside the loop would 2622 // cause us to transform this into an irreducible loop, don't do this. 2623 // See the comments above findLoopHeaders for justifications and caveats. 2624 if (LoopHeaders.count(BB)) { 2625 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2626 << "' into predecessor block '" << PredBBs[0]->getName() 2627 << "' - it might create an irreducible loop!\n"); 2628 return false; 2629 } 2630 2631 unsigned DuplicationCost = getJumpThreadDuplicationCost( 2632 TTI, BB, BB->getTerminator(), BBDupThreshold); 2633 if (DuplicationCost > BBDupThreshold) { 2634 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2635 << "' - Cost is too high: " << DuplicationCost << "\n"); 2636 return false; 2637 } 2638 2639 // And finally, do it! Start by factoring the predecessors if needed. 2640 std::vector<DominatorTree::UpdateType> Updates; 2641 BasicBlock *PredBB; 2642 if (PredBBs.size() == 1) 2643 PredBB = PredBBs[0]; 2644 else { 2645 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2646 << " common predecessors.\n"); 2647 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2648 } 2649 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2650 2651 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2652 // of PredBB. 2653 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2654 << "' into end of '" << PredBB->getName() 2655 << "' to eliminate branch on phi. Cost: " 2656 << DuplicationCost << " block is:" << *BB << "\n"); 2657 2658 // Unless PredBB ends with an unconditional branch, split the edge so that we 2659 // can just clone the bits from BB into the end of the new PredBB. 2660 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2661 2662 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2663 BasicBlock *OldPredBB = PredBB; 2664 PredBB = SplitEdge(OldPredBB, BB); 2665 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2666 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2667 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2668 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2669 } 2670 2671 // We are going to have to map operands from the original BB block into the 2672 // PredBB block. Evaluate PHI nodes in BB. 2673 DenseMap<Instruction*, Value*> ValueMapping; 2674 2675 BasicBlock::iterator BI = BB->begin(); 2676 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2677 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2678 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2679 // mapping and using it to remap operands in the cloned instructions. 2680 for (; BI != BB->end(); ++BI) { 2681 Instruction *New = BI->clone(); 2682 2683 // Remap operands to patch up intra-block references. 2684 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2685 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2686 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2687 if (I != ValueMapping.end()) 2688 New->setOperand(i, I->second); 2689 } 2690 2691 // If this instruction can be simplified after the operands are updated, 2692 // just use the simplified value instead. This frequently happens due to 2693 // phi translation. 2694 if (Value *IV = SimplifyInstruction( 2695 New, 2696 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2697 ValueMapping[&*BI] = IV; 2698 if (!New->mayHaveSideEffects()) { 2699 New->deleteValue(); 2700 New = nullptr; 2701 } 2702 } else { 2703 ValueMapping[&*BI] = New; 2704 } 2705 if (New) { 2706 // Otherwise, insert the new instruction into the block. 2707 New->setName(BI->getName()); 2708 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2709 // Update Dominance from simplified New instruction operands. 2710 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2711 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2712 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2713 } 2714 } 2715 2716 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2717 // add entries to the PHI nodes for branch from PredBB now. 2718 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2719 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2720 ValueMapping); 2721 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2722 ValueMapping); 2723 2724 updateSSA(BB, PredBB, ValueMapping); 2725 2726 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2727 // that we nuked. 2728 BB->removePredecessor(PredBB, true); 2729 2730 // Remove the unconditional branch at the end of the PredBB block. 2731 OldPredBranch->eraseFromParent(); 2732 if (HasProfileData) 2733 BPI->copyEdgeProbabilities(BB, PredBB); 2734 DTU->applyUpdatesPermissive(Updates); 2735 2736 ++NumDupes; 2737 return true; 2738 } 2739 2740 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2741 // a Select instruction in Pred. BB has other predecessors and SI is used in 2742 // a PHI node in BB. SI has no other use. 2743 // A new basic block, NewBB, is created and SI is converted to compare and 2744 // conditional branch. SI is erased from parent. 2745 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2746 SelectInst *SI, PHINode *SIUse, 2747 unsigned Idx) { 2748 // Expand the select. 2749 // 2750 // Pred -- 2751 // | v 2752 // | NewBB 2753 // | | 2754 // |----- 2755 // v 2756 // BB 2757 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2758 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2759 BB->getParent(), BB); 2760 // Move the unconditional branch to NewBB. 2761 PredTerm->removeFromParent(); 2762 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2763 // Create a conditional branch and update PHI nodes. 2764 auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2765 BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc()); 2766 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2767 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2768 2769 // The select is now dead. 2770 SI->eraseFromParent(); 2771 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2772 {DominatorTree::Insert, Pred, NewBB}}); 2773 2774 // Update any other PHI nodes in BB. 2775 for (BasicBlock::iterator BI = BB->begin(); 2776 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2777 if (Phi != SIUse) 2778 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2779 } 2780 2781 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2782 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2783 2784 if (!CondPHI || CondPHI->getParent() != BB) 2785 return false; 2786 2787 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2788 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2789 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2790 2791 // The second and third condition can be potentially relaxed. Currently 2792 // the conditions help to simplify the code and allow us to reuse existing 2793 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2794 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2795 continue; 2796 2797 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2798 if (!PredTerm || !PredTerm->isUnconditional()) 2799 continue; 2800 2801 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2802 return true; 2803 } 2804 return false; 2805 } 2806 2807 /// tryToUnfoldSelect - Look for blocks of the form 2808 /// bb1: 2809 /// %a = select 2810 /// br bb2 2811 /// 2812 /// bb2: 2813 /// %p = phi [%a, %bb1] ... 2814 /// %c = icmp %p 2815 /// br i1 %c 2816 /// 2817 /// And expand the select into a branch structure if one of its arms allows %c 2818 /// to be folded. This later enables threading from bb1 over bb2. 2819 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2820 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2821 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2822 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2823 2824 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2825 CondLHS->getParent() != BB) 2826 return false; 2827 2828 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2829 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2830 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2831 2832 // Look if one of the incoming values is a select in the corresponding 2833 // predecessor. 2834 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2835 continue; 2836 2837 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2838 if (!PredTerm || !PredTerm->isUnconditional()) 2839 continue; 2840 2841 // Now check if one of the select values would allow us to constant fold the 2842 // terminator in BB. We don't do the transform if both sides fold, those 2843 // cases will be threaded in any case. 2844 LazyValueInfo::Tristate LHSFolds = 2845 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2846 CondRHS, Pred, BB, CondCmp); 2847 LazyValueInfo::Tristate RHSFolds = 2848 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2849 CondRHS, Pred, BB, CondCmp); 2850 if ((LHSFolds != LazyValueInfo::Unknown || 2851 RHSFolds != LazyValueInfo::Unknown) && 2852 LHSFolds != RHSFolds) { 2853 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2854 return true; 2855 } 2856 } 2857 return false; 2858 } 2859 2860 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2861 /// same BB in the form 2862 /// bb: 2863 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2864 /// %s = select %p, trueval, falseval 2865 /// 2866 /// or 2867 /// 2868 /// bb: 2869 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2870 /// %c = cmp %p, 0 2871 /// %s = select %c, trueval, falseval 2872 /// 2873 /// And expand the select into a branch structure. This later enables 2874 /// jump-threading over bb in this pass. 2875 /// 2876 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2877 /// select if the associated PHI has at least one constant. If the unfolded 2878 /// select is not jump-threaded, it will be folded again in the later 2879 /// optimizations. 2880 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2881 // This transform would reduce the quality of msan diagnostics. 2882 // Disable this transform under MemorySanitizer. 2883 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2884 return false; 2885 2886 // If threading this would thread across a loop header, don't thread the edge. 2887 // See the comments above findLoopHeaders for justifications and caveats. 2888 if (LoopHeaders.count(BB)) 2889 return false; 2890 2891 for (BasicBlock::iterator BI = BB->begin(); 2892 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2893 // Look for a Phi having at least one constant incoming value. 2894 if (llvm::all_of(PN->incoming_values(), 2895 [](Value *V) { return !isa<ConstantInt>(V); })) 2896 continue; 2897 2898 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2899 using namespace PatternMatch; 2900 2901 // Check if SI is in BB and use V as condition. 2902 if (SI->getParent() != BB) 2903 return false; 2904 Value *Cond = SI->getCondition(); 2905 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2906 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2907 }; 2908 2909 SelectInst *SI = nullptr; 2910 for (Use &U : PN->uses()) { 2911 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2912 // Look for a ICmp in BB that compares PN with a constant and is the 2913 // condition of a Select. 2914 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2915 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2916 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2917 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2918 SI = SelectI; 2919 break; 2920 } 2921 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2922 // Look for a Select in BB that uses PN as condition. 2923 if (isUnfoldCandidate(SelectI, U.get())) { 2924 SI = SelectI; 2925 break; 2926 } 2927 } 2928 } 2929 2930 if (!SI) 2931 continue; 2932 // Expand the select. 2933 Value *Cond = SI->getCondition(); 2934 if (InsertFreezeWhenUnfoldingSelect && 2935 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI)) 2936 Cond = new FreezeInst(Cond, "cond.fr", SI); 2937 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2938 BasicBlock *SplitBB = SI->getParent(); 2939 BasicBlock *NewBB = Term->getParent(); 2940 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2941 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2942 NewPN->addIncoming(SI->getFalseValue(), BB); 2943 SI->replaceAllUsesWith(NewPN); 2944 SI->eraseFromParent(); 2945 // NewBB and SplitBB are newly created blocks which require insertion. 2946 std::vector<DominatorTree::UpdateType> Updates; 2947 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2948 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2949 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2950 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2951 // BB's successors were moved to SplitBB, update DTU accordingly. 2952 for (auto *Succ : successors(SplitBB)) { 2953 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2954 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2955 } 2956 DTU->applyUpdatesPermissive(Updates); 2957 return true; 2958 } 2959 return false; 2960 } 2961 2962 /// Try to propagate a guard from the current BB into one of its predecessors 2963 /// in case if another branch of execution implies that the condition of this 2964 /// guard is always true. Currently we only process the simplest case that 2965 /// looks like: 2966 /// 2967 /// Start: 2968 /// %cond = ... 2969 /// br i1 %cond, label %T1, label %F1 2970 /// T1: 2971 /// br label %Merge 2972 /// F1: 2973 /// br label %Merge 2974 /// Merge: 2975 /// %condGuard = ... 2976 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2977 /// 2978 /// And cond either implies condGuard or !condGuard. In this case all the 2979 /// instructions before the guard can be duplicated in both branches, and the 2980 /// guard is then threaded to one of them. 2981 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2982 using namespace PatternMatch; 2983 2984 // We only want to deal with two predecessors. 2985 BasicBlock *Pred1, *Pred2; 2986 auto PI = pred_begin(BB), PE = pred_end(BB); 2987 if (PI == PE) 2988 return false; 2989 Pred1 = *PI++; 2990 if (PI == PE) 2991 return false; 2992 Pred2 = *PI++; 2993 if (PI != PE) 2994 return false; 2995 if (Pred1 == Pred2) 2996 return false; 2997 2998 // Try to thread one of the guards of the block. 2999 // TODO: Look up deeper than to immediate predecessor? 3000 auto *Parent = Pred1->getSinglePredecessor(); 3001 if (!Parent || Parent != Pred2->getSinglePredecessor()) 3002 return false; 3003 3004 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 3005 for (auto &I : *BB) 3006 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 3007 return true; 3008 3009 return false; 3010 } 3011 3012 /// Try to propagate the guard from BB which is the lower block of a diamond 3013 /// to one of its branches, in case if diamond's condition implies guard's 3014 /// condition. 3015 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 3016 BranchInst *BI) { 3017 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 3018 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 3019 Value *GuardCond = Guard->getArgOperand(0); 3020 Value *BranchCond = BI->getCondition(); 3021 BasicBlock *TrueDest = BI->getSuccessor(0); 3022 BasicBlock *FalseDest = BI->getSuccessor(1); 3023 3024 auto &DL = BB->getModule()->getDataLayout(); 3025 bool TrueDestIsSafe = false; 3026 bool FalseDestIsSafe = false; 3027 3028 // True dest is safe if BranchCond => GuardCond. 3029 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3030 if (Impl && *Impl) 3031 TrueDestIsSafe = true; 3032 else { 3033 // False dest is safe if !BranchCond => GuardCond. 3034 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3035 if (Impl && *Impl) 3036 FalseDestIsSafe = true; 3037 } 3038 3039 if (!TrueDestIsSafe && !FalseDestIsSafe) 3040 return false; 3041 3042 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3043 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3044 3045 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3046 Instruction *AfterGuard = Guard->getNextNode(); 3047 unsigned Cost = 3048 getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold); 3049 if (Cost > BBDupThreshold) 3050 return false; 3051 // Duplicate all instructions before the guard and the guard itself to the 3052 // branch where implication is not proved. 3053 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3054 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3055 assert(GuardedBlock && "Could not create the guarded block?"); 3056 // Duplicate all instructions before the guard in the unguarded branch. 3057 // Since we have successfully duplicated the guarded block and this block 3058 // has fewer instructions, we expect it to succeed. 3059 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3060 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3061 assert(UnguardedBlock && "Could not create the unguarded block?"); 3062 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3063 << GuardedBlock->getName() << "\n"); 3064 // Some instructions before the guard may still have uses. For them, we need 3065 // to create Phi nodes merging their copies in both guarded and unguarded 3066 // branches. Those instructions that have no uses can be just removed. 3067 SmallVector<Instruction *, 4> ToRemove; 3068 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3069 if (!isa<PHINode>(&*BI)) 3070 ToRemove.push_back(&*BI); 3071 3072 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3073 assert(InsertionPoint && "Empty block?"); 3074 // Substitute with Phis & remove. 3075 for (auto *Inst : reverse(ToRemove)) { 3076 if (!Inst->use_empty()) { 3077 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3078 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3079 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3080 NewPN->insertBefore(InsertionPoint); 3081 Inst->replaceAllUsesWith(NewPN); 3082 } 3083 Inst->eraseFromParent(); 3084 } 3085 return true; 3086 } 3087