1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> JumpThreadingFreezeSelectCond(
108     "jump-threading-freeze-select-cond",
109     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
110     cl::Hidden);
111 
112 static cl::opt<bool> ThreadAcrossLoopHeaders(
113     "jump-threading-across-loop-headers",
114     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115     cl::init(false), cl::Hidden);
116 
117 
118 namespace {
119 
120   /// This pass performs 'jump threading', which looks at blocks that have
121   /// multiple predecessors and multiple successors.  If one or more of the
122   /// predecessors of the block can be proven to always jump to one of the
123   /// successors, we forward the edge from the predecessor to the successor by
124   /// duplicating the contents of this block.
125   ///
126   /// An example of when this can occur is code like this:
127   ///
128   ///   if () { ...
129   ///     X = 4;
130   ///   }
131   ///   if (X < 3) {
132   ///
133   /// In this case, the unconditional branch at the end of the first if can be
134   /// revectored to the false side of the second if.
135   class JumpThreading : public FunctionPass {
136     JumpThreadingPass Impl;
137 
138   public:
139     static char ID; // Pass identification
140 
141     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
142         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
143       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
144     }
145 
146     bool runOnFunction(Function &F) override;
147 
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<DominatorTreeWrapperPass>();
150       AU.addPreserved<DominatorTreeWrapperPass>();
151       AU.addRequired<AAResultsWrapperPass>();
152       AU.addRequired<LazyValueInfoWrapperPass>();
153       AU.addPreserved<LazyValueInfoWrapperPass>();
154       AU.addPreserved<GlobalsAAWrapperPass>();
155       AU.addRequired<TargetLibraryInfoWrapperPass>();
156       AU.addRequired<TargetTransformInfoWrapperPass>();
157     }
158 
159     void releaseMemory() override { Impl.releaseMemory(); }
160   };
161 
162 } // end anonymous namespace
163 
164 char JumpThreading::ID = 0;
165 
166 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
167                 "Jump Threading", false, false)
168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
172 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
173                 "Jump Threading", false, false)
174 
175 // Public interface to the Jump Threading pass
176 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
177   return new JumpThreading(InsertFr, Threshold);
178 }
179 
180 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
181   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
182   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
183 }
184 
185 // Update branch probability information according to conditional
186 // branch probability. This is usually made possible for cloned branches
187 // in inline instances by the context specific profile in the caller.
188 // For instance,
189 //
190 //  [Block PredBB]
191 //  [Branch PredBr]
192 //  if (t) {
193 //     Block A;
194 //  } else {
195 //     Block B;
196 //  }
197 //
198 //  [Block BB]
199 //  cond = PN([true, %A], [..., %B]); // PHI node
200 //  [Branch CondBr]
201 //  if (cond) {
202 //    ...  // P(cond == true) = 1%
203 //  }
204 //
205 //  Here we know that when block A is taken, cond must be true, which means
206 //      P(cond == true | A) = 1
207 //
208 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
209 //                               P(cond == true | B) * P(B)
210 //  we get:
211 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
212 //
213 //  which gives us:
214 //     P(A) is less than P(cond == true), i.e.
215 //     P(t == true) <= P(cond == true)
216 //
217 //  In other words, if we know P(cond == true) is unlikely, we know
218 //  that P(t == true) is also unlikely.
219 //
220 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
221   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
222   if (!CondBr)
223     return;
224 
225   uint64_t TrueWeight, FalseWeight;
226   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
227     return;
228 
229   if (TrueWeight + FalseWeight == 0)
230     // Zero branch_weights do not give a hint for getting branch probabilities.
231     // Technically it would result in division by zero denominator, which is
232     // TrueWeight + FalseWeight.
233     return;
234 
235   // Returns the outgoing edge of the dominating predecessor block
236   // that leads to the PhiNode's incoming block:
237   auto GetPredOutEdge =
238       [](BasicBlock *IncomingBB,
239          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
240     auto *PredBB = IncomingBB;
241     auto *SuccBB = PhiBB;
242     SmallPtrSet<BasicBlock *, 16> Visited;
243     while (true) {
244       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
245       if (PredBr && PredBr->isConditional())
246         return {PredBB, SuccBB};
247       Visited.insert(PredBB);
248       auto *SinglePredBB = PredBB->getSinglePredecessor();
249       if (!SinglePredBB)
250         return {nullptr, nullptr};
251 
252       // Stop searching when SinglePredBB has been visited. It means we see
253       // an unreachable loop.
254       if (Visited.count(SinglePredBB))
255         return {nullptr, nullptr};
256 
257       SuccBB = PredBB;
258       PredBB = SinglePredBB;
259     }
260   };
261 
262   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263     Value *PhiOpnd = PN->getIncomingValue(i);
264     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
265 
266     if (!CI || !CI->getType()->isIntegerTy(1))
267       continue;
268 
269     BranchProbability BP =
270         (CI->isOne() ? BranchProbability::getBranchProbability(
271                            TrueWeight, TrueWeight + FalseWeight)
272                      : BranchProbability::getBranchProbability(
273                            FalseWeight, TrueWeight + FalseWeight));
274 
275     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
276     if (!PredOutEdge.first)
277       return;
278 
279     BasicBlock *PredBB = PredOutEdge.first;
280     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
281     if (!PredBr)
282       return;
283 
284     uint64_t PredTrueWeight, PredFalseWeight;
285     // FIXME: We currently only set the profile data when it is missing.
286     // With PGO, this can be used to refine even existing profile data with
287     // context information. This needs to be done after more performance
288     // testing.
289     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
290       continue;
291 
292     // We can not infer anything useful when BP >= 50%, because BP is the
293     // upper bound probability value.
294     if (BP >= BranchProbability(50, 100))
295       continue;
296 
297     SmallVector<uint32_t, 2> Weights;
298     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
299       Weights.push_back(BP.getNumerator());
300       Weights.push_back(BP.getCompl().getNumerator());
301     } else {
302       Weights.push_back(BP.getCompl().getNumerator());
303       Weights.push_back(BP.getNumerator());
304     }
305     PredBr->setMetadata(LLVMContext::MD_prof,
306                         MDBuilder(PredBr->getParent()->getContext())
307                             .createBranchWeights(Weights));
308   }
309 }
310 
311 /// runOnFunction - Toplevel algorithm.
312 bool JumpThreading::runOnFunction(Function &F) {
313   if (skipFunction(F))
314     return false;
315   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
316   // Jump Threading has no sense for the targets with divergent CF
317   if (TTI->hasBranchDivergence())
318     return false;
319   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
320   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
321   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
322   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
323   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
324   std::unique_ptr<BlockFrequencyInfo> BFI;
325   std::unique_ptr<BranchProbabilityInfo> BPI;
326   if (F.hasProfileData()) {
327     LoopInfo LI{DominatorTree(F)};
328     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
329     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
330   }
331 
332   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
333                               std::move(BFI), std::move(BPI));
334   if (PrintLVIAfterJumpThreading) {
335     dbgs() << "LVI for function '" << F.getName() << "':\n";
336     LVI->printLVI(F, DTU.getDomTree(), dbgs());
337   }
338   return Changed;
339 }
340 
341 PreservedAnalyses JumpThreadingPass::run(Function &F,
342                                          FunctionAnalysisManager &AM) {
343   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
344   // Jump Threading has no sense for the targets with divergent CF
345   if (TTI.hasBranchDivergence())
346     return PreservedAnalyses::all();
347   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
348   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
349   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
350   auto &AA = AM.getResult<AAManager>(F);
351   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
352 
353   std::unique_ptr<BlockFrequencyInfo> BFI;
354   std::unique_ptr<BranchProbabilityInfo> BPI;
355   if (F.hasProfileData()) {
356     LoopInfo LI{DominatorTree(F)};
357     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
358     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
359   }
360 
361   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
362                          std::move(BFI), std::move(BPI));
363 
364   if (PrintLVIAfterJumpThreading) {
365     dbgs() << "LVI for function '" << F.getName() << "':\n";
366     LVI.printLVI(F, DTU.getDomTree(), dbgs());
367   }
368 
369   if (!Changed)
370     return PreservedAnalyses::all();
371   PreservedAnalyses PA;
372   PA.preserve<DominatorTreeAnalysis>();
373   PA.preserve<LazyValueAnalysis>();
374   return PA;
375 }
376 
377 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
378                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
379                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
380                                 bool HasProfileData_,
381                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
382                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
383   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
384   TLI = TLI_;
385   TTI = TTI_;
386   LVI = LVI_;
387   AA = AA_;
388   DTU = DTU_;
389   BFI.reset();
390   BPI.reset();
391   // When profile data is available, we need to update edge weights after
392   // successful jump threading, which requires both BPI and BFI being available.
393   HasProfileData = HasProfileData_;
394   auto *GuardDecl = F.getParent()->getFunction(
395       Intrinsic::getName(Intrinsic::experimental_guard));
396   HasGuards = GuardDecl && !GuardDecl->use_empty();
397   if (HasProfileData) {
398     BPI = std::move(BPI_);
399     BFI = std::move(BFI_);
400   }
401 
402   // Reduce the number of instructions duplicated when optimizing strictly for
403   // size.
404   if (BBDuplicateThreshold.getNumOccurrences())
405     BBDupThreshold = BBDuplicateThreshold;
406   else if (F.hasFnAttribute(Attribute::MinSize))
407     BBDupThreshold = 3;
408   else
409     BBDupThreshold = DefaultBBDupThreshold;
410 
411   // JumpThreading must not processes blocks unreachable from entry. It's a
412   // waste of compute time and can potentially lead to hangs.
413   SmallPtrSet<BasicBlock *, 16> Unreachable;
414   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
415   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
416   DominatorTree &DT = DTU->getDomTree();
417   for (auto &BB : F)
418     if (!DT.isReachableFromEntry(&BB))
419       Unreachable.insert(&BB);
420 
421   if (!ThreadAcrossLoopHeaders)
422     findLoopHeaders(F);
423 
424   bool EverChanged = false;
425   bool Changed;
426   do {
427     Changed = false;
428     for (auto &BB : F) {
429       if (Unreachable.count(&BB))
430         continue;
431       while (processBlock(&BB)) // Thread all of the branches we can over BB.
432         Changed = true;
433 
434       // Jump threading may have introduced redundant debug values into BB
435       // which should be removed.
436       if (Changed)
437         RemoveRedundantDbgInstrs(&BB);
438 
439       // Stop processing BB if it's the entry or is now deleted. The following
440       // routines attempt to eliminate BB and locating a suitable replacement
441       // for the entry is non-trivial.
442       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
443         continue;
444 
445       if (pred_empty(&BB)) {
446         // When processBlock makes BB unreachable it doesn't bother to fix up
447         // the instructions in it. We must remove BB to prevent invalid IR.
448         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
449                           << "' with terminator: " << *BB.getTerminator()
450                           << '\n');
451         LoopHeaders.erase(&BB);
452         LVI->eraseBlock(&BB);
453         DeleteDeadBlock(&BB, DTU);
454         Changed = true;
455         continue;
456       }
457 
458       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
459       // is "almost empty", we attempt to merge BB with its sole successor.
460       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
461       if (BI && BI->isUnconditional()) {
462         BasicBlock *Succ = BI->getSuccessor(0);
463         if (
464             // The terminator must be the only non-phi instruction in BB.
465             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
466             // Don't alter Loop headers and latches to ensure another pass can
467             // detect and transform nested loops later.
468             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
469             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
470           RemoveRedundantDbgInstrs(Succ);
471           // BB is valid for cleanup here because we passed in DTU. F remains
472           // BB's parent until a DTU->getDomTree() event.
473           LVI->eraseBlock(&BB);
474           Changed = true;
475         }
476       }
477     }
478     EverChanged |= Changed;
479   } while (Changed);
480 
481   LoopHeaders.clear();
482   return EverChanged;
483 }
484 
485 // Replace uses of Cond with ToVal when safe to do so. If all uses are
486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
487 // because we may incorrectly replace uses when guards/assumes are uses of
488 // of `Cond` and we used the guards/assume to reason about the `Cond` value
489 // at the end of block. RAUW unconditionally replaces all uses
490 // including the guards/assumes themselves and the uses before the
491 // guard/assume.
492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
493   assert(Cond->getType() == ToVal->getType());
494   auto *BB = Cond->getParent();
495   // We can unconditionally replace all uses in non-local blocks (i.e. uses
496   // strictly dominated by BB), since LVI information is true from the
497   // terminator of BB.
498   replaceNonLocalUsesWith(Cond, ToVal);
499   for (Instruction &I : reverse(*BB)) {
500     // Reached the Cond whose uses we are trying to replace, so there are no
501     // more uses.
502     if (&I == Cond)
503       break;
504     // We only replace uses in instructions that are guaranteed to reach the end
505     // of BB, where we know Cond is ToVal.
506     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
507       break;
508     I.replaceUsesOfWith(Cond, ToVal);
509   }
510   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
511     Cond->eraseFromParent();
512 }
513 
514 /// Return the cost of duplicating a piece of this block from first non-phi
515 /// and before StopAt instruction to thread across it. Stop scanning the block
516 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
517 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
518                                              BasicBlock *BB,
519                                              Instruction *StopAt,
520                                              unsigned Threshold) {
521   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
522   /// Ignore PHI nodes, these will be flattened when duplication happens.
523   BasicBlock::const_iterator I(BB->getFirstNonPHI());
524 
525   // FIXME: THREADING will delete values that are just used to compute the
526   // branch, so they shouldn't count against the duplication cost.
527 
528   unsigned Bonus = 0;
529   if (BB->getTerminator() == StopAt) {
530     // Threading through a switch statement is particularly profitable.  If this
531     // block ends in a switch, decrease its cost to make it more likely to
532     // happen.
533     if (isa<SwitchInst>(StopAt))
534       Bonus = 6;
535 
536     // The same holds for indirect branches, but slightly more so.
537     if (isa<IndirectBrInst>(StopAt))
538       Bonus = 8;
539   }
540 
541   // Bump the threshold up so the early exit from the loop doesn't skip the
542   // terminator-based Size adjustment at the end.
543   Threshold += Bonus;
544 
545   // Sum up the cost of each instruction until we get to the terminator.  Don't
546   // include the terminator because the copy won't include it.
547   unsigned Size = 0;
548   for (; &*I != StopAt; ++I) {
549 
550     // Stop scanning the block if we've reached the threshold.
551     if (Size > Threshold)
552       return Size;
553 
554     // Bail out if this instruction gives back a token type, it is not possible
555     // to duplicate it if it is used outside this BB.
556     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
557       return ~0U;
558 
559     // Blocks with NoDuplicate are modelled as having infinite cost, so they
560     // are never duplicated.
561     if (const CallInst *CI = dyn_cast<CallInst>(I))
562       if (CI->cannotDuplicate() || CI->isConvergent())
563         return ~0U;
564 
565     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
566             == TargetTransformInfo::TCC_Free)
567       continue;
568 
569     // All other instructions count for at least one unit.
570     ++Size;
571 
572     // Calls are more expensive.  If they are non-intrinsic calls, we model them
573     // as having cost of 4.  If they are a non-vector intrinsic, we model them
574     // as having cost of 2 total, and if they are a vector intrinsic, we model
575     // them as having cost 1.
576     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
577       if (!isa<IntrinsicInst>(CI))
578         Size += 3;
579       else if (!CI->getType()->isVectorTy())
580         Size += 1;
581     }
582   }
583 
584   return Size > Bonus ? Size - Bonus : 0;
585 }
586 
587 /// findLoopHeaders - We do not want jump threading to turn proper loop
588 /// structures into irreducible loops.  Doing this breaks up the loop nesting
589 /// hierarchy and pessimizes later transformations.  To prevent this from
590 /// happening, we first have to find the loop headers.  Here we approximate this
591 /// by finding targets of backedges in the CFG.
592 ///
593 /// Note that there definitely are cases when we want to allow threading of
594 /// edges across a loop header.  For example, threading a jump from outside the
595 /// loop (the preheader) to an exit block of the loop is definitely profitable.
596 /// It is also almost always profitable to thread backedges from within the loop
597 /// to exit blocks, and is often profitable to thread backedges to other blocks
598 /// within the loop (forming a nested loop).  This simple analysis is not rich
599 /// enough to track all of these properties and keep it up-to-date as the CFG
600 /// mutates, so we don't allow any of these transformations.
601 void JumpThreadingPass::findLoopHeaders(Function &F) {
602   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
603   FindFunctionBackedges(F, Edges);
604 
605   for (const auto &Edge : Edges)
606     LoopHeaders.insert(Edge.second);
607 }
608 
609 /// getKnownConstant - Helper method to determine if we can thread over a
610 /// terminator with the given value as its condition, and if so what value to
611 /// use for that. What kind of value this is depends on whether we want an
612 /// integer or a block address, but an undef is always accepted.
613 /// Returns null if Val is null or not an appropriate constant.
614 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
615   if (!Val)
616     return nullptr;
617 
618   // Undef is "known" enough.
619   if (UndefValue *U = dyn_cast<UndefValue>(Val))
620     return U;
621 
622   if (Preference == WantBlockAddress)
623     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
624 
625   return dyn_cast<ConstantInt>(Val);
626 }
627 
628 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
629 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
630 /// in any of our predecessors.  If so, return the known list of value and pred
631 /// BB in the result vector.
632 ///
633 /// This returns true if there were any known values.
634 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
635     Value *V, BasicBlock *BB, PredValueInfo &Result,
636     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
637     Instruction *CxtI) {
638   // This method walks up use-def chains recursively.  Because of this, we could
639   // get into an infinite loop going around loops in the use-def chain.  To
640   // prevent this, keep track of what (value, block) pairs we've already visited
641   // and terminate the search if we loop back to them
642   if (!RecursionSet.insert(V).second)
643     return false;
644 
645   // If V is a constant, then it is known in all predecessors.
646   if (Constant *KC = getKnownConstant(V, Preference)) {
647     for (BasicBlock *Pred : predecessors(BB))
648       Result.emplace_back(KC, Pred);
649 
650     return !Result.empty();
651   }
652 
653   // If V is a non-instruction value, or an instruction in a different block,
654   // then it can't be derived from a PHI.
655   Instruction *I = dyn_cast<Instruction>(V);
656   if (!I || I->getParent() != BB) {
657 
658     // Okay, if this is a live-in value, see if it has a known value at the end
659     // of any of our predecessors.
660     //
661     // FIXME: This should be an edge property, not a block end property.
662     /// TODO: Per PR2563, we could infer value range information about a
663     /// predecessor based on its terminator.
664     //
665     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
666     // "I" is a non-local compare-with-a-constant instruction.  This would be
667     // able to handle value inequalities better, for example if the compare is
668     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
669     // Perhaps getConstantOnEdge should be smart enough to do this?
670     for (BasicBlock *P : predecessors(BB)) {
671       // If the value is known by LazyValueInfo to be a constant in a
672       // predecessor, use that information to try to thread this block.
673       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
674       if (Constant *KC = getKnownConstant(PredCst, Preference))
675         Result.emplace_back(KC, P);
676     }
677 
678     return !Result.empty();
679   }
680 
681   /// If I is a PHI node, then we know the incoming values for any constants.
682   if (PHINode *PN = dyn_cast<PHINode>(I)) {
683     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
684       Value *InVal = PN->getIncomingValue(i);
685       if (Constant *KC = getKnownConstant(InVal, Preference)) {
686         Result.emplace_back(KC, PN->getIncomingBlock(i));
687       } else {
688         Constant *CI = LVI->getConstantOnEdge(InVal,
689                                               PN->getIncomingBlock(i),
690                                               BB, CxtI);
691         if (Constant *KC = getKnownConstant(CI, Preference))
692           Result.emplace_back(KC, PN->getIncomingBlock(i));
693       }
694     }
695 
696     return !Result.empty();
697   }
698 
699   // Handle Cast instructions.
700   if (CastInst *CI = dyn_cast<CastInst>(I)) {
701     Value *Source = CI->getOperand(0);
702     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
703                                         RecursionSet, CxtI);
704     if (Result.empty())
705       return false;
706 
707     // Convert the known values.
708     for (auto &R : Result)
709       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
710 
711     return true;
712   }
713 
714   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
715     Value *Source = FI->getOperand(0);
716     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
717                                         RecursionSet, CxtI);
718 
719     erase_if(Result, [](auto &Pair) {
720       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
721     });
722 
723     return !Result.empty();
724   }
725 
726   // Handle some boolean conditions.
727   if (I->getType()->getPrimitiveSizeInBits() == 1) {
728     using namespace PatternMatch;
729     if (Preference != WantInteger)
730       return false;
731     // X | true -> true
732     // X & false -> false
733     Value *Op0, *Op1;
734     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
735         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
736       PredValueInfoTy LHSVals, RHSVals;
737 
738       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
739                                           RecursionSet, CxtI);
740       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
741                                           RecursionSet, CxtI);
742 
743       if (LHSVals.empty() && RHSVals.empty())
744         return false;
745 
746       ConstantInt *InterestingVal;
747       if (match(I, m_LogicalOr()))
748         InterestingVal = ConstantInt::getTrue(I->getContext());
749       else
750         InterestingVal = ConstantInt::getFalse(I->getContext());
751 
752       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
753 
754       // Scan for the sentinel.  If we find an undef, force it to the
755       // interesting value: x|undef -> true and x&undef -> false.
756       for (const auto &LHSVal : LHSVals)
757         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
758           Result.emplace_back(InterestingVal, LHSVal.second);
759           LHSKnownBBs.insert(LHSVal.second);
760         }
761       for (const auto &RHSVal : RHSVals)
762         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
763           // If we already inferred a value for this block on the LHS, don't
764           // re-add it.
765           if (!LHSKnownBBs.count(RHSVal.second))
766             Result.emplace_back(InterestingVal, RHSVal.second);
767         }
768 
769       return !Result.empty();
770     }
771 
772     // Handle the NOT form of XOR.
773     if (I->getOpcode() == Instruction::Xor &&
774         isa<ConstantInt>(I->getOperand(1)) &&
775         cast<ConstantInt>(I->getOperand(1))->isOne()) {
776       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
777                                           WantInteger, RecursionSet, CxtI);
778       if (Result.empty())
779         return false;
780 
781       // Invert the known values.
782       for (auto &R : Result)
783         R.first = ConstantExpr::getNot(R.first);
784 
785       return true;
786     }
787 
788   // Try to simplify some other binary operator values.
789   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
790     if (Preference != WantInteger)
791       return false;
792     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
793       PredValueInfoTy LHSVals;
794       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
795                                           WantInteger, RecursionSet, CxtI);
796 
797       // Try to use constant folding to simplify the binary operator.
798       for (const auto &LHSVal : LHSVals) {
799         Constant *V = LHSVal.first;
800         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
801 
802         if (Constant *KC = getKnownConstant(Folded, WantInteger))
803           Result.emplace_back(KC, LHSVal.second);
804       }
805     }
806 
807     return !Result.empty();
808   }
809 
810   // Handle compare with phi operand, where the PHI is defined in this block.
811   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
812     if (Preference != WantInteger)
813       return false;
814     Type *CmpType = Cmp->getType();
815     Value *CmpLHS = Cmp->getOperand(0);
816     Value *CmpRHS = Cmp->getOperand(1);
817     CmpInst::Predicate Pred = Cmp->getPredicate();
818 
819     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
820     if (!PN)
821       PN = dyn_cast<PHINode>(CmpRHS);
822     if (PN && PN->getParent() == BB) {
823       const DataLayout &DL = PN->getModule()->getDataLayout();
824       // We can do this simplification if any comparisons fold to true or false.
825       // See if any do.
826       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
827         BasicBlock *PredBB = PN->getIncomingBlock(i);
828         Value *LHS, *RHS;
829         if (PN == CmpLHS) {
830           LHS = PN->getIncomingValue(i);
831           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
832         } else {
833           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
834           RHS = PN->getIncomingValue(i);
835         }
836         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
837         if (!Res) {
838           if (!isa<Constant>(RHS))
839             continue;
840 
841           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
842           auto LHSInst = dyn_cast<Instruction>(LHS);
843           if (LHSInst && LHSInst->getParent() == BB)
844             continue;
845 
846           LazyValueInfo::Tristate
847             ResT = LVI->getPredicateOnEdge(Pred, LHS,
848                                            cast<Constant>(RHS), PredBB, BB,
849                                            CxtI ? CxtI : Cmp);
850           if (ResT == LazyValueInfo::Unknown)
851             continue;
852           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
853         }
854 
855         if (Constant *KC = getKnownConstant(Res, WantInteger))
856           Result.emplace_back(KC, PredBB);
857       }
858 
859       return !Result.empty();
860     }
861 
862     // If comparing a live-in value against a constant, see if we know the
863     // live-in value on any predecessors.
864     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
865       Constant *CmpConst = cast<Constant>(CmpRHS);
866 
867       if (!isa<Instruction>(CmpLHS) ||
868           cast<Instruction>(CmpLHS)->getParent() != BB) {
869         for (BasicBlock *P : predecessors(BB)) {
870           // If the value is known by LazyValueInfo to be a constant in a
871           // predecessor, use that information to try to thread this block.
872           LazyValueInfo::Tristate Res =
873             LVI->getPredicateOnEdge(Pred, CmpLHS,
874                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
875           if (Res == LazyValueInfo::Unknown)
876             continue;
877 
878           Constant *ResC = ConstantInt::get(CmpType, Res);
879           Result.emplace_back(ResC, P);
880         }
881 
882         return !Result.empty();
883       }
884 
885       // InstCombine can fold some forms of constant range checks into
886       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
887       // x as a live-in.
888       {
889         using namespace PatternMatch;
890 
891         Value *AddLHS;
892         ConstantInt *AddConst;
893         if (isa<ConstantInt>(CmpConst) &&
894             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
895           if (!isa<Instruction>(AddLHS) ||
896               cast<Instruction>(AddLHS)->getParent() != BB) {
897             for (BasicBlock *P : predecessors(BB)) {
898               // If the value is known by LazyValueInfo to be a ConstantRange in
899               // a predecessor, use that information to try to thread this
900               // block.
901               ConstantRange CR = LVI->getConstantRangeOnEdge(
902                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
903               // Propagate the range through the addition.
904               CR = CR.add(AddConst->getValue());
905 
906               // Get the range where the compare returns true.
907               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
908                   Pred, cast<ConstantInt>(CmpConst)->getValue());
909 
910               Constant *ResC;
911               if (CmpRange.contains(CR))
912                 ResC = ConstantInt::getTrue(CmpType);
913               else if (CmpRange.inverse().contains(CR))
914                 ResC = ConstantInt::getFalse(CmpType);
915               else
916                 continue;
917 
918               Result.emplace_back(ResC, P);
919             }
920 
921             return !Result.empty();
922           }
923         }
924       }
925 
926       // Try to find a constant value for the LHS of a comparison,
927       // and evaluate it statically if we can.
928       PredValueInfoTy LHSVals;
929       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
930                                           WantInteger, RecursionSet, CxtI);
931 
932       for (const auto &LHSVal : LHSVals) {
933         Constant *V = LHSVal.first;
934         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
935         if (Constant *KC = getKnownConstant(Folded, WantInteger))
936           Result.emplace_back(KC, LHSVal.second);
937       }
938 
939       return !Result.empty();
940     }
941   }
942 
943   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
944     // Handle select instructions where at least one operand is a known constant
945     // and we can figure out the condition value for any predecessor block.
946     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
947     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
948     PredValueInfoTy Conds;
949     if ((TrueVal || FalseVal) &&
950         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
951                                             WantInteger, RecursionSet, CxtI)) {
952       for (auto &C : Conds) {
953         Constant *Cond = C.first;
954 
955         // Figure out what value to use for the condition.
956         bool KnownCond;
957         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
958           // A known boolean.
959           KnownCond = CI->isOne();
960         } else {
961           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
962           // Either operand will do, so be sure to pick the one that's a known
963           // constant.
964           // FIXME: Do this more cleverly if both values are known constants?
965           KnownCond = (TrueVal != nullptr);
966         }
967 
968         // See if the select has a known constant value for this predecessor.
969         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
970           Result.emplace_back(Val, C.second);
971       }
972 
973       return !Result.empty();
974     }
975   }
976 
977   // If all else fails, see if LVI can figure out a constant value for us.
978   assert(CxtI->getParent() == BB && "CxtI should be in BB");
979   Constant *CI = LVI->getConstant(V, CxtI);
980   if (Constant *KC = getKnownConstant(CI, Preference)) {
981     for (BasicBlock *Pred : predecessors(BB))
982       Result.emplace_back(KC, Pred);
983   }
984 
985   return !Result.empty();
986 }
987 
988 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
989 /// in an undefined jump, decide which block is best to revector to.
990 ///
991 /// Since we can pick an arbitrary destination, we pick the successor with the
992 /// fewest predecessors.  This should reduce the in-degree of the others.
993 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
994   Instruction *BBTerm = BB->getTerminator();
995   unsigned MinSucc = 0;
996   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
997   // Compute the successor with the minimum number of predecessors.
998   unsigned MinNumPreds = pred_size(TestBB);
999   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1000     TestBB = BBTerm->getSuccessor(i);
1001     unsigned NumPreds = pred_size(TestBB);
1002     if (NumPreds < MinNumPreds) {
1003       MinSucc = i;
1004       MinNumPreds = NumPreds;
1005     }
1006   }
1007 
1008   return MinSucc;
1009 }
1010 
1011 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1012   if (!BB->hasAddressTaken()) return false;
1013 
1014   // If the block has its address taken, it may be a tree of dead constants
1015   // hanging off of it.  These shouldn't keep the block alive.
1016   BlockAddress *BA = BlockAddress::get(BB);
1017   BA->removeDeadConstantUsers();
1018   return !BA->use_empty();
1019 }
1020 
1021 /// processBlock - If there are any predecessors whose control can be threaded
1022 /// through to a successor, transform them now.
1023 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1024   // If the block is trivially dead, just return and let the caller nuke it.
1025   // This simplifies other transformations.
1026   if (DTU->isBBPendingDeletion(BB) ||
1027       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1028     return false;
1029 
1030   // If this block has a single predecessor, and if that pred has a single
1031   // successor, merge the blocks.  This encourages recursive jump threading
1032   // because now the condition in this block can be threaded through
1033   // predecessors of our predecessor block.
1034   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1035     return true;
1036 
1037   if (tryToUnfoldSelectInCurrBB(BB))
1038     return true;
1039 
1040   // Look if we can propagate guards to predecessors.
1041   if (HasGuards && processGuards(BB))
1042     return true;
1043 
1044   // What kind of constant we're looking for.
1045   ConstantPreference Preference = WantInteger;
1046 
1047   // Look to see if the terminator is a conditional branch, switch or indirect
1048   // branch, if not we can't thread it.
1049   Value *Condition;
1050   Instruction *Terminator = BB->getTerminator();
1051   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1052     // Can't thread an unconditional jump.
1053     if (BI->isUnconditional()) return false;
1054     Condition = BI->getCondition();
1055   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1056     Condition = SI->getCondition();
1057   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1058     // Can't thread indirect branch with no successors.
1059     if (IB->getNumSuccessors() == 0) return false;
1060     Condition = IB->getAddress()->stripPointerCasts();
1061     Preference = WantBlockAddress;
1062   } else {
1063     return false; // Must be an invoke or callbr.
1064   }
1065 
1066   // Keep track if we constant folded the condition in this invocation.
1067   bool ConstantFolded = false;
1068 
1069   // Run constant folding to see if we can reduce the condition to a simple
1070   // constant.
1071   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1072     Value *SimpleVal =
1073         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1074     if (SimpleVal) {
1075       I->replaceAllUsesWith(SimpleVal);
1076       if (isInstructionTriviallyDead(I, TLI))
1077         I->eraseFromParent();
1078       Condition = SimpleVal;
1079       ConstantFolded = true;
1080     }
1081   }
1082 
1083   // If the terminator is branching on an undef or freeze undef, we can pick any
1084   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1085   auto *FI = dyn_cast<FreezeInst>(Condition);
1086   if (isa<UndefValue>(Condition) ||
1087       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1088     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1089     std::vector<DominatorTree::UpdateType> Updates;
1090 
1091     // Fold the branch/switch.
1092     Instruction *BBTerm = BB->getTerminator();
1093     Updates.reserve(BBTerm->getNumSuccessors());
1094     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1095       if (i == BestSucc) continue;
1096       BasicBlock *Succ = BBTerm->getSuccessor(i);
1097       Succ->removePredecessor(BB, true);
1098       Updates.push_back({DominatorTree::Delete, BB, Succ});
1099     }
1100 
1101     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1102                       << "' folding undef terminator: " << *BBTerm << '\n');
1103     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1104     ++NumFolds;
1105     BBTerm->eraseFromParent();
1106     DTU->applyUpdatesPermissive(Updates);
1107     if (FI)
1108       FI->eraseFromParent();
1109     return true;
1110   }
1111 
1112   // If the terminator of this block is branching on a constant, simplify the
1113   // terminator to an unconditional branch.  This can occur due to threading in
1114   // other blocks.
1115   if (getKnownConstant(Condition, Preference)) {
1116     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1117                       << "' folding terminator: " << *BB->getTerminator()
1118                       << '\n');
1119     ++NumFolds;
1120     ConstantFoldTerminator(BB, true, nullptr, DTU);
1121     if (HasProfileData)
1122       BPI->eraseBlock(BB);
1123     return true;
1124   }
1125 
1126   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1127 
1128   // All the rest of our checks depend on the condition being an instruction.
1129   if (!CondInst) {
1130     // FIXME: Unify this with code below.
1131     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1132       return true;
1133     return ConstantFolded;
1134   }
1135 
1136   // Some of the following optimization can safely work on the unfrozen cond.
1137   Value *CondWithoutFreeze = CondInst;
1138   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1139     CondWithoutFreeze = FI->getOperand(0);
1140 
1141   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1142     // If we're branching on a conditional, LVI might be able to determine
1143     // it's value at the branch instruction.  We only handle comparisons
1144     // against a constant at this time.
1145     // TODO: This should be extended to handle switches as well.
1146     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1147     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1148     if (CondBr && CondConst) {
1149       // We should have returned as soon as we turn a conditional branch to
1150       // unconditional. Because its no longer interesting as far as jump
1151       // threading is concerned.
1152       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1153 
1154       LazyValueInfo::Tristate Ret =
1155           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1156                               CondConst, CondBr, /*UseBlockValue=*/false);
1157       if (Ret != LazyValueInfo::Unknown) {
1158         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1159         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1160         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1161         ToRemoveSucc->removePredecessor(BB, true);
1162         BranchInst *UncondBr =
1163           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1164         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1165         ++NumFolds;
1166         CondBr->eraseFromParent();
1167         if (CondCmp->use_empty())
1168           CondCmp->eraseFromParent();
1169         // We can safely replace *some* uses of the CondInst if it has
1170         // exactly one value as returned by LVI. RAUW is incorrect in the
1171         // presence of guards and assumes, that have the `Cond` as the use. This
1172         // is because we use the guards/assume to reason about the `Cond` value
1173         // at the end of block, but RAUW unconditionally replaces all uses
1174         // including the guards/assumes themselves and the uses before the
1175         // guard/assume.
1176         else if (CondCmp->getParent() == BB) {
1177           auto *CI = Ret == LazyValueInfo::True ?
1178             ConstantInt::getTrue(CondCmp->getType()) :
1179             ConstantInt::getFalse(CondCmp->getType());
1180           replaceFoldableUses(CondCmp, CI);
1181         }
1182         DTU->applyUpdatesPermissive(
1183             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1184         if (HasProfileData)
1185           BPI->eraseBlock(BB);
1186         return true;
1187       }
1188 
1189       // We did not manage to simplify this branch, try to see whether
1190       // CondCmp depends on a known phi-select pattern.
1191       if (tryToUnfoldSelect(CondCmp, BB))
1192         return true;
1193     }
1194   }
1195 
1196   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1197     if (tryToUnfoldSelect(SI, BB))
1198       return true;
1199 
1200   // Check for some cases that are worth simplifying.  Right now we want to look
1201   // for loads that are used by a switch or by the condition for the branch.  If
1202   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1203   // which can then be used to thread the values.
1204   Value *SimplifyValue = CondWithoutFreeze;
1205 
1206   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1207     if (isa<Constant>(CondCmp->getOperand(1)))
1208       SimplifyValue = CondCmp->getOperand(0);
1209 
1210   // TODO: There are other places where load PRE would be profitable, such as
1211   // more complex comparisons.
1212   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1213     if (simplifyPartiallyRedundantLoad(LoadI))
1214       return true;
1215 
1216   // Before threading, try to propagate profile data backwards:
1217   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1218     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1219       updatePredecessorProfileMetadata(PN, BB);
1220 
1221   // Handle a variety of cases where we are branching on something derived from
1222   // a PHI node in the current block.  If we can prove that any predecessors
1223   // compute a predictable value based on a PHI node, thread those predecessors.
1224   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1225     return true;
1226 
1227   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1228   // the current block, see if we can simplify.
1229   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1230   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1231     return processBranchOnPHI(PN);
1232 
1233   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1234   if (CondInst->getOpcode() == Instruction::Xor &&
1235       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1236     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1237 
1238   // Search for a stronger dominating condition that can be used to simplify a
1239   // conditional branch leaving BB.
1240   if (processImpliedCondition(BB))
1241     return true;
1242 
1243   return false;
1244 }
1245 
1246 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1247   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1248   if (!BI || !BI->isConditional())
1249     return false;
1250 
1251   Value *Cond = BI->getCondition();
1252   // Assuming that predecessor's branch was taken, if pred's branch condition
1253   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1254   // freeze(Cond) is either true or a nondeterministic value.
1255   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1256   // without affecting other instructions.
1257   auto *FICond = dyn_cast<FreezeInst>(Cond);
1258   if (FICond && FICond->hasOneUse())
1259     Cond = FICond->getOperand(0);
1260   else
1261     FICond = nullptr;
1262 
1263   BasicBlock *CurrentBB = BB;
1264   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1265   unsigned Iter = 0;
1266 
1267   auto &DL = BB->getModule()->getDataLayout();
1268 
1269   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1270     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1271     if (!PBI || !PBI->isConditional())
1272       return false;
1273     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1274       return false;
1275 
1276     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1277     Optional<bool> Implication =
1278         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1279 
1280     // If the branch condition of BB (which is Cond) and CurrentPred are
1281     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1282     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1283       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1284           FICond->getOperand(0))
1285         Implication = CondIsTrue;
1286     }
1287 
1288     if (Implication) {
1289       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1290       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1291       RemoveSucc->removePredecessor(BB);
1292       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1293       UncondBI->setDebugLoc(BI->getDebugLoc());
1294       ++NumFolds;
1295       BI->eraseFromParent();
1296       if (FICond)
1297         FICond->eraseFromParent();
1298 
1299       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1300       if (HasProfileData)
1301         BPI->eraseBlock(BB);
1302       return true;
1303     }
1304     CurrentBB = CurrentPred;
1305     CurrentPred = CurrentBB->getSinglePredecessor();
1306   }
1307 
1308   return false;
1309 }
1310 
1311 /// Return true if Op is an instruction defined in the given block.
1312 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1313   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1314     if (OpInst->getParent() == BB)
1315       return true;
1316   return false;
1317 }
1318 
1319 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1320 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1321 /// This is an important optimization that encourages jump threading, and needs
1322 /// to be run interlaced with other jump threading tasks.
1323 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1324   // Don't hack volatile and ordered loads.
1325   if (!LoadI->isUnordered()) return false;
1326 
1327   // If the load is defined in a block with exactly one predecessor, it can't be
1328   // partially redundant.
1329   BasicBlock *LoadBB = LoadI->getParent();
1330   if (LoadBB->getSinglePredecessor())
1331     return false;
1332 
1333   // If the load is defined in an EH pad, it can't be partially redundant,
1334   // because the edges between the invoke and the EH pad cannot have other
1335   // instructions between them.
1336   if (LoadBB->isEHPad())
1337     return false;
1338 
1339   Value *LoadedPtr = LoadI->getOperand(0);
1340 
1341   // If the loaded operand is defined in the LoadBB and its not a phi,
1342   // it can't be available in predecessors.
1343   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1344     return false;
1345 
1346   // Scan a few instructions up from the load, to see if it is obviously live at
1347   // the entry to its block.
1348   BasicBlock::iterator BBIt(LoadI);
1349   bool IsLoadCSE;
1350   if (Value *AvailableVal = FindAvailableLoadedValue(
1351           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1352     // If the value of the load is locally available within the block, just use
1353     // it.  This frequently occurs for reg2mem'd allocas.
1354 
1355     if (IsLoadCSE) {
1356       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1357       combineMetadataForCSE(NLoadI, LoadI, false);
1358     };
1359 
1360     // If the returned value is the load itself, replace with an undef. This can
1361     // only happen in dead loops.
1362     if (AvailableVal == LoadI)
1363       AvailableVal = UndefValue::get(LoadI->getType());
1364     if (AvailableVal->getType() != LoadI->getType())
1365       AvailableVal = CastInst::CreateBitOrPointerCast(
1366           AvailableVal, LoadI->getType(), "", LoadI);
1367     LoadI->replaceAllUsesWith(AvailableVal);
1368     LoadI->eraseFromParent();
1369     return true;
1370   }
1371 
1372   // Otherwise, if we scanned the whole block and got to the top of the block,
1373   // we know the block is locally transparent to the load.  If not, something
1374   // might clobber its value.
1375   if (BBIt != LoadBB->begin())
1376     return false;
1377 
1378   // If all of the loads and stores that feed the value have the same AA tags,
1379   // then we can propagate them onto any newly inserted loads.
1380   AAMDNodes AATags = LoadI->getAAMetadata();
1381 
1382   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1383 
1384   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1385 
1386   AvailablePredsTy AvailablePreds;
1387   BasicBlock *OneUnavailablePred = nullptr;
1388   SmallVector<LoadInst*, 8> CSELoads;
1389 
1390   // If we got here, the loaded value is transparent through to the start of the
1391   // block.  Check to see if it is available in any of the predecessor blocks.
1392   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1393     // If we already scanned this predecessor, skip it.
1394     if (!PredsScanned.insert(PredBB).second)
1395       continue;
1396 
1397     BBIt = PredBB->end();
1398     unsigned NumScanedInst = 0;
1399     Value *PredAvailable = nullptr;
1400     // NOTE: We don't CSE load that is volatile or anything stronger than
1401     // unordered, that should have been checked when we entered the function.
1402     assert(LoadI->isUnordered() &&
1403            "Attempting to CSE volatile or atomic loads");
1404     // If this is a load on a phi pointer, phi-translate it and search
1405     // for available load/store to the pointer in predecessors.
1406     Type *AccessTy = LoadI->getType();
1407     const auto &DL = LoadI->getModule()->getDataLayout();
1408     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1409                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1410                        AATags);
1411     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1412                                               PredBB, BBIt, DefMaxInstsToScan,
1413                                               AA, &IsLoadCSE, &NumScanedInst);
1414 
1415     // If PredBB has a single predecessor, continue scanning through the
1416     // single predecessor.
1417     BasicBlock *SinglePredBB = PredBB;
1418     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1419            NumScanedInst < DefMaxInstsToScan) {
1420       SinglePredBB = SinglePredBB->getSinglePredecessor();
1421       if (SinglePredBB) {
1422         BBIt = SinglePredBB->end();
1423         PredAvailable = findAvailablePtrLoadStore(
1424             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1425             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1426             &NumScanedInst);
1427       }
1428     }
1429 
1430     if (!PredAvailable) {
1431       OneUnavailablePred = PredBB;
1432       continue;
1433     }
1434 
1435     if (IsLoadCSE)
1436       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1437 
1438     // If so, this load is partially redundant.  Remember this info so that we
1439     // can create a PHI node.
1440     AvailablePreds.emplace_back(PredBB, PredAvailable);
1441   }
1442 
1443   // If the loaded value isn't available in any predecessor, it isn't partially
1444   // redundant.
1445   if (AvailablePreds.empty()) return false;
1446 
1447   // Okay, the loaded value is available in at least one (and maybe all!)
1448   // predecessors.  If the value is unavailable in more than one unique
1449   // predecessor, we want to insert a merge block for those common predecessors.
1450   // This ensures that we only have to insert one reload, thus not increasing
1451   // code size.
1452   BasicBlock *UnavailablePred = nullptr;
1453 
1454   // If the value is unavailable in one of predecessors, we will end up
1455   // inserting a new instruction into them. It is only valid if all the
1456   // instructions before LoadI are guaranteed to pass execution to its
1457   // successor, or if LoadI is safe to speculate.
1458   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1459   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1460   // It requires domination tree analysis, so for this simple case it is an
1461   // overkill.
1462   if (PredsScanned.size() != AvailablePreds.size() &&
1463       !isSafeToSpeculativelyExecute(LoadI))
1464     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1465       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1466         return false;
1467 
1468   // If there is exactly one predecessor where the value is unavailable, the
1469   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1470   // unconditional branch, we know that it isn't a critical edge.
1471   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1472       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1473     UnavailablePred = OneUnavailablePred;
1474   } else if (PredsScanned.size() != AvailablePreds.size()) {
1475     // Otherwise, we had multiple unavailable predecessors or we had a critical
1476     // edge from the one.
1477     SmallVector<BasicBlock*, 8> PredsToSplit;
1478     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1479 
1480     for (const auto &AvailablePred : AvailablePreds)
1481       AvailablePredSet.insert(AvailablePred.first);
1482 
1483     // Add all the unavailable predecessors to the PredsToSplit list.
1484     for (BasicBlock *P : predecessors(LoadBB)) {
1485       // If the predecessor is an indirect goto, we can't split the edge.
1486       // Same for CallBr.
1487       if (isa<IndirectBrInst>(P->getTerminator()) ||
1488           isa<CallBrInst>(P->getTerminator()))
1489         return false;
1490 
1491       if (!AvailablePredSet.count(P))
1492         PredsToSplit.push_back(P);
1493     }
1494 
1495     // Split them out to their own block.
1496     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1497   }
1498 
1499   // If the value isn't available in all predecessors, then there will be
1500   // exactly one where it isn't available.  Insert a load on that edge and add
1501   // it to the AvailablePreds list.
1502   if (UnavailablePred) {
1503     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1504            "Can't handle critical edge here!");
1505     LoadInst *NewVal = new LoadInst(
1506         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1507         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1508         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1509         UnavailablePred->getTerminator());
1510     NewVal->setDebugLoc(LoadI->getDebugLoc());
1511     if (AATags)
1512       NewVal->setAAMetadata(AATags);
1513 
1514     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1515   }
1516 
1517   // Now we know that each predecessor of this block has a value in
1518   // AvailablePreds, sort them for efficient access as we're walking the preds.
1519   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1520 
1521   // Create a PHI node at the start of the block for the PRE'd load value.
1522   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1523   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1524                                 &LoadBB->front());
1525   PN->takeName(LoadI);
1526   PN->setDebugLoc(LoadI->getDebugLoc());
1527 
1528   // Insert new entries into the PHI for each predecessor.  A single block may
1529   // have multiple entries here.
1530   for (pred_iterator PI = PB; PI != PE; ++PI) {
1531     BasicBlock *P = *PI;
1532     AvailablePredsTy::iterator I =
1533         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1534 
1535     assert(I != AvailablePreds.end() && I->first == P &&
1536            "Didn't find entry for predecessor!");
1537 
1538     // If we have an available predecessor but it requires casting, insert the
1539     // cast in the predecessor and use the cast. Note that we have to update the
1540     // AvailablePreds vector as we go so that all of the PHI entries for this
1541     // predecessor use the same bitcast.
1542     Value *&PredV = I->second;
1543     if (PredV->getType() != LoadI->getType())
1544       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1545                                                P->getTerminator());
1546 
1547     PN->addIncoming(PredV, I->first);
1548   }
1549 
1550   for (LoadInst *PredLoadI : CSELoads) {
1551     combineMetadataForCSE(PredLoadI, LoadI, true);
1552   }
1553 
1554   LoadI->replaceAllUsesWith(PN);
1555   LoadI->eraseFromParent();
1556 
1557   return true;
1558 }
1559 
1560 /// findMostPopularDest - The specified list contains multiple possible
1561 /// threadable destinations.  Pick the one that occurs the most frequently in
1562 /// the list.
1563 static BasicBlock *
1564 findMostPopularDest(BasicBlock *BB,
1565                     const SmallVectorImpl<std::pair<BasicBlock *,
1566                                           BasicBlock *>> &PredToDestList) {
1567   assert(!PredToDestList.empty());
1568 
1569   // Determine popularity.  If there are multiple possible destinations, we
1570   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1571   // blocks with known and real destinations to threading undef.  We'll handle
1572   // them later if interesting.
1573   MapVector<BasicBlock *, unsigned> DestPopularity;
1574 
1575   // Populate DestPopularity with the successors in the order they appear in the
1576   // successor list.  This way, we ensure determinism by iterating it in the
1577   // same order in std::max_element below.  We map nullptr to 0 so that we can
1578   // return nullptr when PredToDestList contains nullptr only.
1579   DestPopularity[nullptr] = 0;
1580   for (auto *SuccBB : successors(BB))
1581     DestPopularity[SuccBB] = 0;
1582 
1583   for (const auto &PredToDest : PredToDestList)
1584     if (PredToDest.second)
1585       DestPopularity[PredToDest.second]++;
1586 
1587   // Find the most popular dest.
1588   using VT = decltype(DestPopularity)::value_type;
1589   auto MostPopular = std::max_element(
1590       DestPopularity.begin(), DestPopularity.end(),
1591       [](const VT &L, const VT &R) { return L.second < R.second; });
1592 
1593   // Okay, we have finally picked the most popular destination.
1594   return MostPopular->first;
1595 }
1596 
1597 // Try to evaluate the value of V when the control flows from PredPredBB to
1598 // BB->getSinglePredecessor() and then on to BB.
1599 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1600                                                        BasicBlock *PredPredBB,
1601                                                        Value *V) {
1602   BasicBlock *PredBB = BB->getSinglePredecessor();
1603   assert(PredBB && "Expected a single predecessor");
1604 
1605   if (Constant *Cst = dyn_cast<Constant>(V)) {
1606     return Cst;
1607   }
1608 
1609   // Consult LVI if V is not an instruction in BB or PredBB.
1610   Instruction *I = dyn_cast<Instruction>(V);
1611   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1612     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1613   }
1614 
1615   // Look into a PHI argument.
1616   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1617     if (PHI->getParent() == PredBB)
1618       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1619     return nullptr;
1620   }
1621 
1622   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1623   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1624     if (CondCmp->getParent() == BB) {
1625       Constant *Op0 =
1626           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1627       Constant *Op1 =
1628           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1629       if (Op0 && Op1) {
1630         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1631       }
1632     }
1633     return nullptr;
1634   }
1635 
1636   return nullptr;
1637 }
1638 
1639 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1640                                                ConstantPreference Preference,
1641                                                Instruction *CxtI) {
1642   // If threading this would thread across a loop header, don't even try to
1643   // thread the edge.
1644   if (LoopHeaders.count(BB))
1645     return false;
1646 
1647   PredValueInfoTy PredValues;
1648   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1649                                        CxtI)) {
1650     // We don't have known values in predecessors.  See if we can thread through
1651     // BB and its sole predecessor.
1652     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1653   }
1654 
1655   assert(!PredValues.empty() &&
1656          "computeValueKnownInPredecessors returned true with no values");
1657 
1658   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1659              for (const auto &PredValue : PredValues) {
1660                dbgs() << "  BB '" << BB->getName()
1661                       << "': FOUND condition = " << *PredValue.first
1662                       << " for pred '" << PredValue.second->getName() << "'.\n";
1663   });
1664 
1665   // Decide what we want to thread through.  Convert our list of known values to
1666   // a list of known destinations for each pred.  This also discards duplicate
1667   // predecessors and keeps track of the undefined inputs (which are represented
1668   // as a null dest in the PredToDestList).
1669   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1670   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1671 
1672   BasicBlock *OnlyDest = nullptr;
1673   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1674   Constant *OnlyVal = nullptr;
1675   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1676 
1677   for (const auto &PredValue : PredValues) {
1678     BasicBlock *Pred = PredValue.second;
1679     if (!SeenPreds.insert(Pred).second)
1680       continue;  // Duplicate predecessor entry.
1681 
1682     Constant *Val = PredValue.first;
1683 
1684     BasicBlock *DestBB;
1685     if (isa<UndefValue>(Val))
1686       DestBB = nullptr;
1687     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1688       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1689       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1690     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1691       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1692       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1693     } else {
1694       assert(isa<IndirectBrInst>(BB->getTerminator())
1695               && "Unexpected terminator");
1696       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1697       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1698     }
1699 
1700     // If we have exactly one destination, remember it for efficiency below.
1701     if (PredToDestList.empty()) {
1702       OnlyDest = DestBB;
1703       OnlyVal = Val;
1704     } else {
1705       if (OnlyDest != DestBB)
1706         OnlyDest = MultipleDestSentinel;
1707       // It possible we have same destination, but different value, e.g. default
1708       // case in switchinst.
1709       if (Val != OnlyVal)
1710         OnlyVal = MultipleVal;
1711     }
1712 
1713     // If the predecessor ends with an indirect goto, we can't change its
1714     // destination. Same for CallBr.
1715     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1716         isa<CallBrInst>(Pred->getTerminator()))
1717       continue;
1718 
1719     PredToDestList.emplace_back(Pred, DestBB);
1720   }
1721 
1722   // If all edges were unthreadable, we fail.
1723   if (PredToDestList.empty())
1724     return false;
1725 
1726   // If all the predecessors go to a single known successor, we want to fold,
1727   // not thread. By doing so, we do not need to duplicate the current block and
1728   // also miss potential opportunities in case we dont/cant duplicate.
1729   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1730     if (BB->hasNPredecessors(PredToDestList.size())) {
1731       bool SeenFirstBranchToOnlyDest = false;
1732       std::vector <DominatorTree::UpdateType> Updates;
1733       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1734       for (BasicBlock *SuccBB : successors(BB)) {
1735         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1736           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1737         } else {
1738           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1739           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1740         }
1741       }
1742 
1743       // Finally update the terminator.
1744       Instruction *Term = BB->getTerminator();
1745       BranchInst::Create(OnlyDest, Term);
1746       ++NumFolds;
1747       Term->eraseFromParent();
1748       DTU->applyUpdatesPermissive(Updates);
1749       if (HasProfileData)
1750         BPI->eraseBlock(BB);
1751 
1752       // If the condition is now dead due to the removal of the old terminator,
1753       // erase it.
1754       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1755         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1756           CondInst->eraseFromParent();
1757         // We can safely replace *some* uses of the CondInst if it has
1758         // exactly one value as returned by LVI. RAUW is incorrect in the
1759         // presence of guards and assumes, that have the `Cond` as the use. This
1760         // is because we use the guards/assume to reason about the `Cond` value
1761         // at the end of block, but RAUW unconditionally replaces all uses
1762         // including the guards/assumes themselves and the uses before the
1763         // guard/assume.
1764         else if (OnlyVal && OnlyVal != MultipleVal &&
1765                  CondInst->getParent() == BB)
1766           replaceFoldableUses(CondInst, OnlyVal);
1767       }
1768       return true;
1769     }
1770   }
1771 
1772   // Determine which is the most common successor.  If we have many inputs and
1773   // this block is a switch, we want to start by threading the batch that goes
1774   // to the most popular destination first.  If we only know about one
1775   // threadable destination (the common case) we can avoid this.
1776   BasicBlock *MostPopularDest = OnlyDest;
1777 
1778   if (MostPopularDest == MultipleDestSentinel) {
1779     // Remove any loop headers from the Dest list, threadEdge conservatively
1780     // won't process them, but we might have other destination that are eligible
1781     // and we still want to process.
1782     erase_if(PredToDestList,
1783              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1784                return LoopHeaders.contains(PredToDest.second);
1785              });
1786 
1787     if (PredToDestList.empty())
1788       return false;
1789 
1790     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1791   }
1792 
1793   // Now that we know what the most popular destination is, factor all
1794   // predecessors that will jump to it into a single predecessor.
1795   SmallVector<BasicBlock*, 16> PredsToFactor;
1796   for (const auto &PredToDest : PredToDestList)
1797     if (PredToDest.second == MostPopularDest) {
1798       BasicBlock *Pred = PredToDest.first;
1799 
1800       // This predecessor may be a switch or something else that has multiple
1801       // edges to the block.  Factor each of these edges by listing them
1802       // according to # occurrences in PredsToFactor.
1803       for (BasicBlock *Succ : successors(Pred))
1804         if (Succ == BB)
1805           PredsToFactor.push_back(Pred);
1806     }
1807 
1808   // If the threadable edges are branching on an undefined value, we get to pick
1809   // the destination that these predecessors should get to.
1810   if (!MostPopularDest)
1811     MostPopularDest = BB->getTerminator()->
1812                             getSuccessor(getBestDestForJumpOnUndef(BB));
1813 
1814   // Ok, try to thread it!
1815   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1816 }
1817 
1818 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1819 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1820 /// simplifications we can do based on inputs to the phi node.
1821 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1822   BasicBlock *BB = PN->getParent();
1823 
1824   // TODO: We could make use of this to do it once for blocks with common PHI
1825   // values.
1826   SmallVector<BasicBlock*, 1> PredBBs;
1827   PredBBs.resize(1);
1828 
1829   // If any of the predecessor blocks end in an unconditional branch, we can
1830   // *duplicate* the conditional branch into that block in order to further
1831   // encourage jump threading and to eliminate cases where we have branch on a
1832   // phi of an icmp (branch on icmp is much better).
1833   // This is still beneficial when a frozen phi is used as the branch condition
1834   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1835   // to br(icmp(freeze ...)).
1836   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1837     BasicBlock *PredBB = PN->getIncomingBlock(i);
1838     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1839       if (PredBr->isUnconditional()) {
1840         PredBBs[0] = PredBB;
1841         // Try to duplicate BB into PredBB.
1842         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1843           return true;
1844       }
1845   }
1846 
1847   return false;
1848 }
1849 
1850 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1851 /// a xor instruction in the current block.  See if there are any
1852 /// simplifications we can do based on inputs to the xor.
1853 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1854   BasicBlock *BB = BO->getParent();
1855 
1856   // If either the LHS or RHS of the xor is a constant, don't do this
1857   // optimization.
1858   if (isa<ConstantInt>(BO->getOperand(0)) ||
1859       isa<ConstantInt>(BO->getOperand(1)))
1860     return false;
1861 
1862   // If the first instruction in BB isn't a phi, we won't be able to infer
1863   // anything special about any particular predecessor.
1864   if (!isa<PHINode>(BB->front()))
1865     return false;
1866 
1867   // If this BB is a landing pad, we won't be able to split the edge into it.
1868   if (BB->isEHPad())
1869     return false;
1870 
1871   // If we have a xor as the branch input to this block, and we know that the
1872   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1873   // the condition into the predecessor and fix that value to true, saving some
1874   // logical ops on that path and encouraging other paths to simplify.
1875   //
1876   // This copies something like this:
1877   //
1878   //  BB:
1879   //    %X = phi i1 [1],  [%X']
1880   //    %Y = icmp eq i32 %A, %B
1881   //    %Z = xor i1 %X, %Y
1882   //    br i1 %Z, ...
1883   //
1884   // Into:
1885   //  BB':
1886   //    %Y = icmp ne i32 %A, %B
1887   //    br i1 %Y, ...
1888 
1889   PredValueInfoTy XorOpValues;
1890   bool isLHS = true;
1891   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1892                                        WantInteger, BO)) {
1893     assert(XorOpValues.empty());
1894     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1895                                          WantInteger, BO))
1896       return false;
1897     isLHS = false;
1898   }
1899 
1900   assert(!XorOpValues.empty() &&
1901          "computeValueKnownInPredecessors returned true with no values");
1902 
1903   // Scan the information to see which is most popular: true or false.  The
1904   // predecessors can be of the set true, false, or undef.
1905   unsigned NumTrue = 0, NumFalse = 0;
1906   for (const auto &XorOpValue : XorOpValues) {
1907     if (isa<UndefValue>(XorOpValue.first))
1908       // Ignore undefs for the count.
1909       continue;
1910     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1911       ++NumFalse;
1912     else
1913       ++NumTrue;
1914   }
1915 
1916   // Determine which value to split on, true, false, or undef if neither.
1917   ConstantInt *SplitVal = nullptr;
1918   if (NumTrue > NumFalse)
1919     SplitVal = ConstantInt::getTrue(BB->getContext());
1920   else if (NumTrue != 0 || NumFalse != 0)
1921     SplitVal = ConstantInt::getFalse(BB->getContext());
1922 
1923   // Collect all of the blocks that this can be folded into so that we can
1924   // factor this once and clone it once.
1925   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1926   for (const auto &XorOpValue : XorOpValues) {
1927     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1928       continue;
1929 
1930     BlocksToFoldInto.push_back(XorOpValue.second);
1931   }
1932 
1933   // If we inferred a value for all of the predecessors, then duplication won't
1934   // help us.  However, we can just replace the LHS or RHS with the constant.
1935   if (BlocksToFoldInto.size() ==
1936       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1937     if (!SplitVal) {
1938       // If all preds provide undef, just nuke the xor, because it is undef too.
1939       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1940       BO->eraseFromParent();
1941     } else if (SplitVal->isZero()) {
1942       // If all preds provide 0, replace the xor with the other input.
1943       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1944       BO->eraseFromParent();
1945     } else {
1946       // If all preds provide 1, set the computed value to 1.
1947       BO->setOperand(!isLHS, SplitVal);
1948     }
1949 
1950     return true;
1951   }
1952 
1953   // If any of predecessors end with an indirect goto, we can't change its
1954   // destination. Same for CallBr.
1955   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1956         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1957                isa<CallBrInst>(Pred->getTerminator());
1958       }))
1959     return false;
1960 
1961   // Try to duplicate BB into PredBB.
1962   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1963 }
1964 
1965 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1966 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1967 /// NewPred using the entries from OldPred (suitably mapped).
1968 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1969                                             BasicBlock *OldPred,
1970                                             BasicBlock *NewPred,
1971                                      DenseMap<Instruction*, Value*> &ValueMap) {
1972   for (PHINode &PN : PHIBB->phis()) {
1973     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1974     // DestBlock.
1975     Value *IV = PN.getIncomingValueForBlock(OldPred);
1976 
1977     // Remap the value if necessary.
1978     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1979       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1980       if (I != ValueMap.end())
1981         IV = I->second;
1982     }
1983 
1984     PN.addIncoming(IV, NewPred);
1985   }
1986 }
1987 
1988 /// Merge basic block BB into its sole predecessor if possible.
1989 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1990   BasicBlock *SinglePred = BB->getSinglePredecessor();
1991   if (!SinglePred)
1992     return false;
1993 
1994   const Instruction *TI = SinglePred->getTerminator();
1995   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1996       SinglePred == BB || hasAddressTakenAndUsed(BB))
1997     return false;
1998 
1999   // If SinglePred was a loop header, BB becomes one.
2000   if (LoopHeaders.erase(SinglePred))
2001     LoopHeaders.insert(BB);
2002 
2003   LVI->eraseBlock(SinglePred);
2004   MergeBasicBlockIntoOnlyPred(BB, DTU);
2005 
2006   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
2007   // BB code within one basic block `BB`), we need to invalidate the LVI
2008   // information associated with BB, because the LVI information need not be
2009   // true for all of BB after the merge. For example,
2010   // Before the merge, LVI info and code is as follows:
2011   // SinglePred: <LVI info1 for %p val>
2012   // %y = use of %p
2013   // call @exit() // need not transfer execution to successor.
2014   // assume(%p) // from this point on %p is true
2015   // br label %BB
2016   // BB: <LVI info2 for %p val, i.e. %p is true>
2017   // %x = use of %p
2018   // br label exit
2019   //
2020   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2021   // (info2 and info1 respectively). After the merge and the deletion of the
2022   // LVI info1 for SinglePred. We have the following code:
2023   // BB: <LVI info2 for %p val>
2024   // %y = use of %p
2025   // call @exit()
2026   // assume(%p)
2027   // %x = use of %p <-- LVI info2 is correct from here onwards.
2028   // br label exit
2029   // LVI info2 for BB is incorrect at the beginning of BB.
2030 
2031   // Invalidate LVI information for BB if the LVI is not provably true for
2032   // all of BB.
2033   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2034     LVI->eraseBlock(BB);
2035   return true;
2036 }
2037 
2038 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2039 /// ValueMapping maps old values in BB to new ones in NewBB.
2040 void JumpThreadingPass::updateSSA(
2041     BasicBlock *BB, BasicBlock *NewBB,
2042     DenseMap<Instruction *, Value *> &ValueMapping) {
2043   // If there were values defined in BB that are used outside the block, then we
2044   // now have to update all uses of the value to use either the original value,
2045   // the cloned value, or some PHI derived value.  This can require arbitrary
2046   // PHI insertion, of which we are prepared to do, clean these up now.
2047   SSAUpdater SSAUpdate;
2048   SmallVector<Use *, 16> UsesToRename;
2049 
2050   for (Instruction &I : *BB) {
2051     // Scan all uses of this instruction to see if it is used outside of its
2052     // block, and if so, record them in UsesToRename.
2053     for (Use &U : I.uses()) {
2054       Instruction *User = cast<Instruction>(U.getUser());
2055       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2056         if (UserPN->getIncomingBlock(U) == BB)
2057           continue;
2058       } else if (User->getParent() == BB)
2059         continue;
2060 
2061       UsesToRename.push_back(&U);
2062     }
2063 
2064     // If there are no uses outside the block, we're done with this instruction.
2065     if (UsesToRename.empty())
2066       continue;
2067     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2068 
2069     // We found a use of I outside of BB.  Rename all uses of I that are outside
2070     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2071     // with the two values we know.
2072     SSAUpdate.Initialize(I.getType(), I.getName());
2073     SSAUpdate.AddAvailableValue(BB, &I);
2074     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2075 
2076     while (!UsesToRename.empty())
2077       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2078     LLVM_DEBUG(dbgs() << "\n");
2079   }
2080 }
2081 
2082 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2083 /// arguments that come from PredBB.  Return the map from the variables in the
2084 /// source basic block to the variables in the newly created basic block.
2085 DenseMap<Instruction *, Value *>
2086 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2087                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2088                                      BasicBlock *PredBB) {
2089   // We are going to have to map operands from the source basic block to the new
2090   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2091   // block, evaluate them to account for entry from PredBB.
2092   DenseMap<Instruction *, Value *> ValueMapping;
2093 
2094   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2095   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2096   // might need to rewrite the operand of the cloned phi.
2097   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2098     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2099     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2100     ValueMapping[PN] = NewPN;
2101   }
2102 
2103   // Clone noalias scope declarations in the threaded block. When threading a
2104   // loop exit, we would otherwise end up with two idential scope declarations
2105   // visible at the same time.
2106   SmallVector<MDNode *> NoAliasScopes;
2107   DenseMap<MDNode *, MDNode *> ClonedScopes;
2108   LLVMContext &Context = PredBB->getContext();
2109   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2110   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2111 
2112   // Clone the non-phi instructions of the source basic block into NewBB,
2113   // keeping track of the mapping and using it to remap operands in the cloned
2114   // instructions.
2115   for (; BI != BE; ++BI) {
2116     Instruction *New = BI->clone();
2117     New->setName(BI->getName());
2118     NewBB->getInstList().push_back(New);
2119     ValueMapping[&*BI] = New;
2120     adaptNoAliasScopes(New, ClonedScopes, Context);
2121 
2122     // Remap operands to patch up intra-block references.
2123     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2124       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2125         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2126         if (I != ValueMapping.end())
2127           New->setOperand(i, I->second);
2128       }
2129   }
2130 
2131   return ValueMapping;
2132 }
2133 
2134 /// Attempt to thread through two successive basic blocks.
2135 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2136                                                          Value *Cond) {
2137   // Consider:
2138   //
2139   // PredBB:
2140   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2141   //   %tobool = icmp eq i32 %cond, 0
2142   //   br i1 %tobool, label %BB, label ...
2143   //
2144   // BB:
2145   //   %cmp = icmp eq i32* %var, null
2146   //   br i1 %cmp, label ..., label ...
2147   //
2148   // We don't know the value of %var at BB even if we know which incoming edge
2149   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2150   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2151   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2152 
2153   // Require that BB end with a Branch for simplicity.
2154   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2155   if (!CondBr)
2156     return false;
2157 
2158   // BB must have exactly one predecessor.
2159   BasicBlock *PredBB = BB->getSinglePredecessor();
2160   if (!PredBB)
2161     return false;
2162 
2163   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2164   // unconditional branch, we should be merging PredBB and BB instead. For
2165   // simplicity, we don't deal with a switch.
2166   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2167   if (!PredBBBranch || PredBBBranch->isUnconditional())
2168     return false;
2169 
2170   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2171   // PredBB.
2172   if (PredBB->getSinglePredecessor())
2173     return false;
2174 
2175   // Don't thread through PredBB if it contains a successor edge to itself, in
2176   // which case we would infinite loop.  Suppose we are threading an edge from
2177   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2178   // successor edge to itself.  If we allowed jump threading in this case, we
2179   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2180   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2181   // with another jump threading opportunity from PredBB.thread through PredBB
2182   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2183   // would keep peeling one iteration from PredBB.
2184   if (llvm::is_contained(successors(PredBB), PredBB))
2185     return false;
2186 
2187   // Don't thread across a loop header.
2188   if (LoopHeaders.count(PredBB))
2189     return false;
2190 
2191   // Avoid complication with duplicating EH pads.
2192   if (PredBB->isEHPad())
2193     return false;
2194 
2195   // Find a predecessor that we can thread.  For simplicity, we only consider a
2196   // successor edge out of BB to which we thread exactly one incoming edge into
2197   // PredBB.
2198   unsigned ZeroCount = 0;
2199   unsigned OneCount = 0;
2200   BasicBlock *ZeroPred = nullptr;
2201   BasicBlock *OnePred = nullptr;
2202   for (BasicBlock *P : predecessors(PredBB)) {
2203     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2204             evaluateOnPredecessorEdge(BB, P, Cond))) {
2205       if (CI->isZero()) {
2206         ZeroCount++;
2207         ZeroPred = P;
2208       } else if (CI->isOne()) {
2209         OneCount++;
2210         OnePred = P;
2211       }
2212     }
2213   }
2214 
2215   // Disregard complicated cases where we have to thread multiple edges.
2216   BasicBlock *PredPredBB;
2217   if (ZeroCount == 1) {
2218     PredPredBB = ZeroPred;
2219   } else if (OneCount == 1) {
2220     PredPredBB = OnePred;
2221   } else {
2222     return false;
2223   }
2224 
2225   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2226 
2227   // If threading to the same block as we come from, we would infinite loop.
2228   if (SuccBB == BB) {
2229     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2230                       << "' - would thread to self!\n");
2231     return false;
2232   }
2233 
2234   // If threading this would thread across a loop header, don't thread the edge.
2235   // See the comments above findLoopHeaders for justifications and caveats.
2236   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2237     LLVM_DEBUG({
2238       bool BBIsHeader = LoopHeaders.count(BB);
2239       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2240       dbgs() << "  Not threading across "
2241              << (BBIsHeader ? "loop header BB '" : "block BB '")
2242              << BB->getName() << "' to dest "
2243              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2244              << SuccBB->getName()
2245              << "' - it might create an irreducible loop!\n";
2246     });
2247     return false;
2248   }
2249 
2250   // Compute the cost of duplicating BB and PredBB.
2251   unsigned BBCost = getJumpThreadDuplicationCost(
2252       TTI, BB, BB->getTerminator(), BBDupThreshold);
2253   unsigned PredBBCost = getJumpThreadDuplicationCost(
2254       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2255 
2256   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2257   // individually before checking their sum because getJumpThreadDuplicationCost
2258   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2259   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2260       BBCost + PredBBCost > BBDupThreshold) {
2261     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2262                       << "' - Cost is too high: " << PredBBCost
2263                       << " for PredBB, " << BBCost << "for BB\n");
2264     return false;
2265   }
2266 
2267   // Now we are ready to duplicate PredBB.
2268   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2269   return true;
2270 }
2271 
2272 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2273                                                     BasicBlock *PredBB,
2274                                                     BasicBlock *BB,
2275                                                     BasicBlock *SuccBB) {
2276   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2277                     << BB->getName() << "'\n");
2278 
2279   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2280   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2281 
2282   BasicBlock *NewBB =
2283       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2284                          PredBB->getParent(), PredBB);
2285   NewBB->moveAfter(PredBB);
2286 
2287   // Set the block frequency of NewBB.
2288   if (HasProfileData) {
2289     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2290                      BPI->getEdgeProbability(PredPredBB, PredBB);
2291     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2292   }
2293 
2294   // We are going to have to map operands from the original BB block to the new
2295   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2296   // to account for entry from PredPredBB.
2297   DenseMap<Instruction *, Value *> ValueMapping =
2298       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2299 
2300   // Copy the edge probabilities from PredBB to NewBB.
2301   if (HasProfileData)
2302     BPI->copyEdgeProbabilities(PredBB, NewBB);
2303 
2304   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2305   // This eliminates predecessors from PredPredBB, which requires us to simplify
2306   // any PHI nodes in PredBB.
2307   Instruction *PredPredTerm = PredPredBB->getTerminator();
2308   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2309     if (PredPredTerm->getSuccessor(i) == PredBB) {
2310       PredBB->removePredecessor(PredPredBB, true);
2311       PredPredTerm->setSuccessor(i, NewBB);
2312     }
2313 
2314   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2315                                   ValueMapping);
2316   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2317                                   ValueMapping);
2318 
2319   DTU->applyUpdatesPermissive(
2320       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2321        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2322        {DominatorTree::Insert, PredPredBB, NewBB},
2323        {DominatorTree::Delete, PredPredBB, PredBB}});
2324 
2325   updateSSA(PredBB, NewBB, ValueMapping);
2326 
2327   // Clean up things like PHI nodes with single operands, dead instructions,
2328   // etc.
2329   SimplifyInstructionsInBlock(NewBB, TLI);
2330   SimplifyInstructionsInBlock(PredBB, TLI);
2331 
2332   SmallVector<BasicBlock *, 1> PredsToFactor;
2333   PredsToFactor.push_back(NewBB);
2334   threadEdge(BB, PredsToFactor, SuccBB);
2335 }
2336 
2337 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2338 bool JumpThreadingPass::tryThreadEdge(
2339     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2340     BasicBlock *SuccBB) {
2341   // If threading to the same block as we come from, we would infinite loop.
2342   if (SuccBB == BB) {
2343     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2344                       << "' - would thread to self!\n");
2345     return false;
2346   }
2347 
2348   // If threading this would thread across a loop header, don't thread the edge.
2349   // See the comments above findLoopHeaders for justifications and caveats.
2350   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2351     LLVM_DEBUG({
2352       bool BBIsHeader = LoopHeaders.count(BB);
2353       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2354       dbgs() << "  Not threading across "
2355           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2356           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2357           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2358     });
2359     return false;
2360   }
2361 
2362   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2363       TTI, BB, BB->getTerminator(), BBDupThreshold);
2364   if (JumpThreadCost > BBDupThreshold) {
2365     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2366                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2367     return false;
2368   }
2369 
2370   threadEdge(BB, PredBBs, SuccBB);
2371   return true;
2372 }
2373 
2374 /// threadEdge - We have decided that it is safe and profitable to factor the
2375 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2376 /// across BB.  Transform the IR to reflect this change.
2377 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2378                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2379                                    BasicBlock *SuccBB) {
2380   assert(SuccBB != BB && "Don't create an infinite loop");
2381 
2382   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2383          "Don't thread across loop headers");
2384 
2385   // And finally, do it!  Start by factoring the predecessors if needed.
2386   BasicBlock *PredBB;
2387   if (PredBBs.size() == 1)
2388     PredBB = PredBBs[0];
2389   else {
2390     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2391                       << " common predecessors.\n");
2392     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2393   }
2394 
2395   // And finally, do it!
2396   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2397                     << "' to '" << SuccBB->getName()
2398                     << ", across block:\n    " << *BB << "\n");
2399 
2400   LVI->threadEdge(PredBB, BB, SuccBB);
2401 
2402   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2403                                          BB->getName()+".thread",
2404                                          BB->getParent(), BB);
2405   NewBB->moveAfter(PredBB);
2406 
2407   // Set the block frequency of NewBB.
2408   if (HasProfileData) {
2409     auto NewBBFreq =
2410         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2411     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2412   }
2413 
2414   // Copy all the instructions from BB to NewBB except the terminator.
2415   DenseMap<Instruction *, Value *> ValueMapping =
2416       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2417 
2418   // We didn't copy the terminator from BB over to NewBB, because there is now
2419   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2420   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2421   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2422 
2423   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2424   // PHI nodes for NewBB now.
2425   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2426 
2427   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2428   // eliminates predecessors from BB, which requires us to simplify any PHI
2429   // nodes in BB.
2430   Instruction *PredTerm = PredBB->getTerminator();
2431   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2432     if (PredTerm->getSuccessor(i) == BB) {
2433       BB->removePredecessor(PredBB, true);
2434       PredTerm->setSuccessor(i, NewBB);
2435     }
2436 
2437   // Enqueue required DT updates.
2438   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2439                                {DominatorTree::Insert, PredBB, NewBB},
2440                                {DominatorTree::Delete, PredBB, BB}});
2441 
2442   updateSSA(BB, NewBB, ValueMapping);
2443 
2444   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2445   // over the new instructions and zap any that are constants or dead.  This
2446   // frequently happens because of phi translation.
2447   SimplifyInstructionsInBlock(NewBB, TLI);
2448 
2449   // Update the edge weight from BB to SuccBB, which should be less than before.
2450   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2451 
2452   // Threaded an edge!
2453   ++NumThreads;
2454 }
2455 
2456 /// Create a new basic block that will be the predecessor of BB and successor of
2457 /// all blocks in Preds. When profile data is available, update the frequency of
2458 /// this new block.
2459 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2460                                                ArrayRef<BasicBlock *> Preds,
2461                                                const char *Suffix) {
2462   SmallVector<BasicBlock *, 2> NewBBs;
2463 
2464   // Collect the frequencies of all predecessors of BB, which will be used to
2465   // update the edge weight of the result of splitting predecessors.
2466   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2467   if (HasProfileData)
2468     for (auto Pred : Preds)
2469       FreqMap.insert(std::make_pair(
2470           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2471 
2472   // In the case when BB is a LandingPad block we create 2 new predecessors
2473   // instead of just one.
2474   if (BB->isLandingPad()) {
2475     std::string NewName = std::string(Suffix) + ".split-lp";
2476     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2477   } else {
2478     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2479   }
2480 
2481   std::vector<DominatorTree::UpdateType> Updates;
2482   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2483   for (auto NewBB : NewBBs) {
2484     BlockFrequency NewBBFreq(0);
2485     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2486     for (auto Pred : predecessors(NewBB)) {
2487       Updates.push_back({DominatorTree::Delete, Pred, BB});
2488       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2489       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2490         NewBBFreq += FreqMap.lookup(Pred);
2491     }
2492     if (HasProfileData) // Apply the summed frequency to NewBB.
2493       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2494   }
2495 
2496   DTU->applyUpdatesPermissive(Updates);
2497   return NewBBs[0];
2498 }
2499 
2500 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2501   const Instruction *TI = BB->getTerminator();
2502   assert(TI->getNumSuccessors() > 1 && "not a split");
2503 
2504   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2505   if (!WeightsNode)
2506     return false;
2507 
2508   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2509   if (MDName->getString() != "branch_weights")
2510     return false;
2511 
2512   // Ensure there are weights for all of the successors. Note that the first
2513   // operand to the metadata node is a name, not a weight.
2514   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2515 }
2516 
2517 /// Update the block frequency of BB and branch weight and the metadata on the
2518 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2519 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2520 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2521                                                      BasicBlock *BB,
2522                                                      BasicBlock *NewBB,
2523                                                      BasicBlock *SuccBB) {
2524   if (!HasProfileData)
2525     return;
2526 
2527   assert(BFI && BPI && "BFI & BPI should have been created here");
2528 
2529   // As the edge from PredBB to BB is deleted, we have to update the block
2530   // frequency of BB.
2531   auto BBOrigFreq = BFI->getBlockFreq(BB);
2532   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2533   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2534   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2535   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2536 
2537   // Collect updated outgoing edges' frequencies from BB and use them to update
2538   // edge probabilities.
2539   SmallVector<uint64_t, 4> BBSuccFreq;
2540   for (BasicBlock *Succ : successors(BB)) {
2541     auto SuccFreq = (Succ == SuccBB)
2542                         ? BB2SuccBBFreq - NewBBFreq
2543                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2544     BBSuccFreq.push_back(SuccFreq.getFrequency());
2545   }
2546 
2547   uint64_t MaxBBSuccFreq =
2548       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2549 
2550   SmallVector<BranchProbability, 4> BBSuccProbs;
2551   if (MaxBBSuccFreq == 0)
2552     BBSuccProbs.assign(BBSuccFreq.size(),
2553                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2554   else {
2555     for (uint64_t Freq : BBSuccFreq)
2556       BBSuccProbs.push_back(
2557           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2558     // Normalize edge probabilities so that they sum up to one.
2559     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2560                                               BBSuccProbs.end());
2561   }
2562 
2563   // Update edge probabilities in BPI.
2564   BPI->setEdgeProbability(BB, BBSuccProbs);
2565 
2566   // Update the profile metadata as well.
2567   //
2568   // Don't do this if the profile of the transformed blocks was statically
2569   // estimated.  (This could occur despite the function having an entry
2570   // frequency in completely cold parts of the CFG.)
2571   //
2572   // In this case we don't want to suggest to subsequent passes that the
2573   // calculated weights are fully consistent.  Consider this graph:
2574   //
2575   //                 check_1
2576   //             50% /  |
2577   //             eq_1   | 50%
2578   //                 \  |
2579   //                 check_2
2580   //             50% /  |
2581   //             eq_2   | 50%
2582   //                 \  |
2583   //                 check_3
2584   //             50% /  |
2585   //             eq_3   | 50%
2586   //                 \  |
2587   //
2588   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2589   // the overall probabilities are inconsistent; the total probability that the
2590   // value is either 1, 2 or 3 is 150%.
2591   //
2592   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2593   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2594   // the loop exit edge.  Then based solely on static estimation we would assume
2595   // the loop was extremely hot.
2596   //
2597   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2598   // shouldn't make edges extremely likely or unlikely based solely on static
2599   // estimation.
2600   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2601     SmallVector<uint32_t, 4> Weights;
2602     for (auto Prob : BBSuccProbs)
2603       Weights.push_back(Prob.getNumerator());
2604 
2605     auto TI = BB->getTerminator();
2606     TI->setMetadata(
2607         LLVMContext::MD_prof,
2608         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2609   }
2610 }
2611 
2612 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2613 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2614 /// If we can duplicate the contents of BB up into PredBB do so now, this
2615 /// improves the odds that the branch will be on an analyzable instruction like
2616 /// a compare.
2617 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2618     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2619   assert(!PredBBs.empty() && "Can't handle an empty set");
2620 
2621   // If BB is a loop header, then duplicating this block outside the loop would
2622   // cause us to transform this into an irreducible loop, don't do this.
2623   // See the comments above findLoopHeaders for justifications and caveats.
2624   if (LoopHeaders.count(BB)) {
2625     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2626                       << "' into predecessor block '" << PredBBs[0]->getName()
2627                       << "' - it might create an irreducible loop!\n");
2628     return false;
2629   }
2630 
2631   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2632       TTI, BB, BB->getTerminator(), BBDupThreshold);
2633   if (DuplicationCost > BBDupThreshold) {
2634     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2635                       << "' - Cost is too high: " << DuplicationCost << "\n");
2636     return false;
2637   }
2638 
2639   // And finally, do it!  Start by factoring the predecessors if needed.
2640   std::vector<DominatorTree::UpdateType> Updates;
2641   BasicBlock *PredBB;
2642   if (PredBBs.size() == 1)
2643     PredBB = PredBBs[0];
2644   else {
2645     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2646                       << " common predecessors.\n");
2647     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2648   }
2649   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2650 
2651   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2652   // of PredBB.
2653   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2654                     << "' into end of '" << PredBB->getName()
2655                     << "' to eliminate branch on phi.  Cost: "
2656                     << DuplicationCost << " block is:" << *BB << "\n");
2657 
2658   // Unless PredBB ends with an unconditional branch, split the edge so that we
2659   // can just clone the bits from BB into the end of the new PredBB.
2660   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2661 
2662   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2663     BasicBlock *OldPredBB = PredBB;
2664     PredBB = SplitEdge(OldPredBB, BB);
2665     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2666     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2667     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2668     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2669   }
2670 
2671   // We are going to have to map operands from the original BB block into the
2672   // PredBB block.  Evaluate PHI nodes in BB.
2673   DenseMap<Instruction*, Value*> ValueMapping;
2674 
2675   BasicBlock::iterator BI = BB->begin();
2676   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2677     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2678   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2679   // mapping and using it to remap operands in the cloned instructions.
2680   for (; BI != BB->end(); ++BI) {
2681     Instruction *New = BI->clone();
2682 
2683     // Remap operands to patch up intra-block references.
2684     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2685       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2686         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2687         if (I != ValueMapping.end())
2688           New->setOperand(i, I->second);
2689       }
2690 
2691     // If this instruction can be simplified after the operands are updated,
2692     // just use the simplified value instead.  This frequently happens due to
2693     // phi translation.
2694     if (Value *IV = SimplifyInstruction(
2695             New,
2696             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2697       ValueMapping[&*BI] = IV;
2698       if (!New->mayHaveSideEffects()) {
2699         New->deleteValue();
2700         New = nullptr;
2701       }
2702     } else {
2703       ValueMapping[&*BI] = New;
2704     }
2705     if (New) {
2706       // Otherwise, insert the new instruction into the block.
2707       New->setName(BI->getName());
2708       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2709       // Update Dominance from simplified New instruction operands.
2710       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2711         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2712           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2713     }
2714   }
2715 
2716   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2717   // add entries to the PHI nodes for branch from PredBB now.
2718   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2719   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2720                                   ValueMapping);
2721   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2722                                   ValueMapping);
2723 
2724   updateSSA(BB, PredBB, ValueMapping);
2725 
2726   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2727   // that we nuked.
2728   BB->removePredecessor(PredBB, true);
2729 
2730   // Remove the unconditional branch at the end of the PredBB block.
2731   OldPredBranch->eraseFromParent();
2732   if (HasProfileData)
2733     BPI->copyEdgeProbabilities(BB, PredBB);
2734   DTU->applyUpdatesPermissive(Updates);
2735 
2736   ++NumDupes;
2737   return true;
2738 }
2739 
2740 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2741 // a Select instruction in Pred. BB has other predecessors and SI is used in
2742 // a PHI node in BB. SI has no other use.
2743 // A new basic block, NewBB, is created and SI is converted to compare and
2744 // conditional branch. SI is erased from parent.
2745 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2746                                           SelectInst *SI, PHINode *SIUse,
2747                                           unsigned Idx) {
2748   // Expand the select.
2749   //
2750   // Pred --
2751   //  |    v
2752   //  |  NewBB
2753   //  |    |
2754   //  |-----
2755   //  v
2756   // BB
2757   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2758   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2759                                          BB->getParent(), BB);
2760   // Move the unconditional branch to NewBB.
2761   PredTerm->removeFromParent();
2762   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2763   // Create a conditional branch and update PHI nodes.
2764   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2765   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2766   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2767   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2768 
2769   // The select is now dead.
2770   SI->eraseFromParent();
2771   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2772                                {DominatorTree::Insert, Pred, NewBB}});
2773 
2774   // Update any other PHI nodes in BB.
2775   for (BasicBlock::iterator BI = BB->begin();
2776        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2777     if (Phi != SIUse)
2778       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2779 }
2780 
2781 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2782   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2783 
2784   if (!CondPHI || CondPHI->getParent() != BB)
2785     return false;
2786 
2787   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2788     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2789     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2790 
2791     // The second and third condition can be potentially relaxed. Currently
2792     // the conditions help to simplify the code and allow us to reuse existing
2793     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2794     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2795       continue;
2796 
2797     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2798     if (!PredTerm || !PredTerm->isUnconditional())
2799       continue;
2800 
2801     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2802     return true;
2803   }
2804   return false;
2805 }
2806 
2807 /// tryToUnfoldSelect - Look for blocks of the form
2808 /// bb1:
2809 ///   %a = select
2810 ///   br bb2
2811 ///
2812 /// bb2:
2813 ///   %p = phi [%a, %bb1] ...
2814 ///   %c = icmp %p
2815 ///   br i1 %c
2816 ///
2817 /// And expand the select into a branch structure if one of its arms allows %c
2818 /// to be folded. This later enables threading from bb1 over bb2.
2819 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2820   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2821   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2822   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2823 
2824   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2825       CondLHS->getParent() != BB)
2826     return false;
2827 
2828   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2829     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2830     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2831 
2832     // Look if one of the incoming values is a select in the corresponding
2833     // predecessor.
2834     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2835       continue;
2836 
2837     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2838     if (!PredTerm || !PredTerm->isUnconditional())
2839       continue;
2840 
2841     // Now check if one of the select values would allow us to constant fold the
2842     // terminator in BB. We don't do the transform if both sides fold, those
2843     // cases will be threaded in any case.
2844     LazyValueInfo::Tristate LHSFolds =
2845         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2846                                 CondRHS, Pred, BB, CondCmp);
2847     LazyValueInfo::Tristate RHSFolds =
2848         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2849                                 CondRHS, Pred, BB, CondCmp);
2850     if ((LHSFolds != LazyValueInfo::Unknown ||
2851          RHSFolds != LazyValueInfo::Unknown) &&
2852         LHSFolds != RHSFolds) {
2853       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2854       return true;
2855     }
2856   }
2857   return false;
2858 }
2859 
2860 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2861 /// same BB in the form
2862 /// bb:
2863 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2864 ///   %s = select %p, trueval, falseval
2865 ///
2866 /// or
2867 ///
2868 /// bb:
2869 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2870 ///   %c = cmp %p, 0
2871 ///   %s = select %c, trueval, falseval
2872 ///
2873 /// And expand the select into a branch structure. This later enables
2874 /// jump-threading over bb in this pass.
2875 ///
2876 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2877 /// select if the associated PHI has at least one constant.  If the unfolded
2878 /// select is not jump-threaded, it will be folded again in the later
2879 /// optimizations.
2880 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2881   // This transform would reduce the quality of msan diagnostics.
2882   // Disable this transform under MemorySanitizer.
2883   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2884     return false;
2885 
2886   // If threading this would thread across a loop header, don't thread the edge.
2887   // See the comments above findLoopHeaders for justifications and caveats.
2888   if (LoopHeaders.count(BB))
2889     return false;
2890 
2891   for (BasicBlock::iterator BI = BB->begin();
2892        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2893     // Look for a Phi having at least one constant incoming value.
2894     if (llvm::all_of(PN->incoming_values(),
2895                      [](Value *V) { return !isa<ConstantInt>(V); }))
2896       continue;
2897 
2898     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2899       using namespace PatternMatch;
2900 
2901       // Check if SI is in BB and use V as condition.
2902       if (SI->getParent() != BB)
2903         return false;
2904       Value *Cond = SI->getCondition();
2905       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2906       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2907     };
2908 
2909     SelectInst *SI = nullptr;
2910     for (Use &U : PN->uses()) {
2911       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2912         // Look for a ICmp in BB that compares PN with a constant and is the
2913         // condition of a Select.
2914         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2915             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2916           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2917             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2918               SI = SelectI;
2919               break;
2920             }
2921       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2922         // Look for a Select in BB that uses PN as condition.
2923         if (isUnfoldCandidate(SelectI, U.get())) {
2924           SI = SelectI;
2925           break;
2926         }
2927       }
2928     }
2929 
2930     if (!SI)
2931       continue;
2932     // Expand the select.
2933     Value *Cond = SI->getCondition();
2934     if (InsertFreezeWhenUnfoldingSelect &&
2935         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2936       Cond = new FreezeInst(Cond, "cond.fr", SI);
2937     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2938     BasicBlock *SplitBB = SI->getParent();
2939     BasicBlock *NewBB = Term->getParent();
2940     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2941     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2942     NewPN->addIncoming(SI->getFalseValue(), BB);
2943     SI->replaceAllUsesWith(NewPN);
2944     SI->eraseFromParent();
2945     // NewBB and SplitBB are newly created blocks which require insertion.
2946     std::vector<DominatorTree::UpdateType> Updates;
2947     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2948     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2949     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2950     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2951     // BB's successors were moved to SplitBB, update DTU accordingly.
2952     for (auto *Succ : successors(SplitBB)) {
2953       Updates.push_back({DominatorTree::Delete, BB, Succ});
2954       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2955     }
2956     DTU->applyUpdatesPermissive(Updates);
2957     return true;
2958   }
2959   return false;
2960 }
2961 
2962 /// Try to propagate a guard from the current BB into one of its predecessors
2963 /// in case if another branch of execution implies that the condition of this
2964 /// guard is always true. Currently we only process the simplest case that
2965 /// looks like:
2966 ///
2967 /// Start:
2968 ///   %cond = ...
2969 ///   br i1 %cond, label %T1, label %F1
2970 /// T1:
2971 ///   br label %Merge
2972 /// F1:
2973 ///   br label %Merge
2974 /// Merge:
2975 ///   %condGuard = ...
2976 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2977 ///
2978 /// And cond either implies condGuard or !condGuard. In this case all the
2979 /// instructions before the guard can be duplicated in both branches, and the
2980 /// guard is then threaded to one of them.
2981 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2982   using namespace PatternMatch;
2983 
2984   // We only want to deal with two predecessors.
2985   BasicBlock *Pred1, *Pred2;
2986   auto PI = pred_begin(BB), PE = pred_end(BB);
2987   if (PI == PE)
2988     return false;
2989   Pred1 = *PI++;
2990   if (PI == PE)
2991     return false;
2992   Pred2 = *PI++;
2993   if (PI != PE)
2994     return false;
2995   if (Pred1 == Pred2)
2996     return false;
2997 
2998   // Try to thread one of the guards of the block.
2999   // TODO: Look up deeper than to immediate predecessor?
3000   auto *Parent = Pred1->getSinglePredecessor();
3001   if (!Parent || Parent != Pred2->getSinglePredecessor())
3002     return false;
3003 
3004   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
3005     for (auto &I : *BB)
3006       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
3007         return true;
3008 
3009   return false;
3010 }
3011 
3012 /// Try to propagate the guard from BB which is the lower block of a diamond
3013 /// to one of its branches, in case if diamond's condition implies guard's
3014 /// condition.
3015 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3016                                     BranchInst *BI) {
3017   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3018   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3019   Value *GuardCond = Guard->getArgOperand(0);
3020   Value *BranchCond = BI->getCondition();
3021   BasicBlock *TrueDest = BI->getSuccessor(0);
3022   BasicBlock *FalseDest = BI->getSuccessor(1);
3023 
3024   auto &DL = BB->getModule()->getDataLayout();
3025   bool TrueDestIsSafe = false;
3026   bool FalseDestIsSafe = false;
3027 
3028   // True dest is safe if BranchCond => GuardCond.
3029   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3030   if (Impl && *Impl)
3031     TrueDestIsSafe = true;
3032   else {
3033     // False dest is safe if !BranchCond => GuardCond.
3034     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3035     if (Impl && *Impl)
3036       FalseDestIsSafe = true;
3037   }
3038 
3039   if (!TrueDestIsSafe && !FalseDestIsSafe)
3040     return false;
3041 
3042   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3043   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3044 
3045   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3046   Instruction *AfterGuard = Guard->getNextNode();
3047   unsigned Cost =
3048       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3049   if (Cost > BBDupThreshold)
3050     return false;
3051   // Duplicate all instructions before the guard and the guard itself to the
3052   // branch where implication is not proved.
3053   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3054       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3055   assert(GuardedBlock && "Could not create the guarded block?");
3056   // Duplicate all instructions before the guard in the unguarded branch.
3057   // Since we have successfully duplicated the guarded block and this block
3058   // has fewer instructions, we expect it to succeed.
3059   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3060       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3061   assert(UnguardedBlock && "Could not create the unguarded block?");
3062   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3063                     << GuardedBlock->getName() << "\n");
3064   // Some instructions before the guard may still have uses. For them, we need
3065   // to create Phi nodes merging their copies in both guarded and unguarded
3066   // branches. Those instructions that have no uses can be just removed.
3067   SmallVector<Instruction *, 4> ToRemove;
3068   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3069     if (!isa<PHINode>(&*BI))
3070       ToRemove.push_back(&*BI);
3071 
3072   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3073   assert(InsertionPoint && "Empty block?");
3074   // Substitute with Phis & remove.
3075   for (auto *Inst : reverse(ToRemove)) {
3076     if (!Inst->use_empty()) {
3077       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3078       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3079       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3080       NewPN->insertBefore(InsertionPoint);
3081       Inst->replaceAllUsesWith(NewPN);
3082     }
3083     Inst->eraseFromParent();
3084   }
3085   return true;
3086 }
3087