1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<DominatorTreeWrapperPass>();
135       AU.addPreserved<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<LazyValueInfoWrapperPass>();
139       AU.addPreserved<GlobalsAAWrapperPass>();
140       AU.addRequired<TargetLibraryInfoWrapperPass>();
141     }
142 
143     void releaseMemory() override { Impl.releaseMemory(); }
144   };
145 
146 } // end anonymous namespace
147 
148 char JumpThreading::ID = 0;
149 
150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
151                 "Jump Threading", false, false)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
156 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
157                 "Jump Threading", false, false)
158 
159 // Public interface to the Jump Threading pass
160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
161   return new JumpThreading(Threshold);
162 }
163 
164 JumpThreadingPass::JumpThreadingPass(int T) {
165   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
166 }
167 
168 // Update branch probability information according to conditional
169 // branch probability. This is usually made possible for cloned branches
170 // in inline instances by the context specific profile in the caller.
171 // For instance,
172 //
173 //  [Block PredBB]
174 //  [Branch PredBr]
175 //  if (t) {
176 //     Block A;
177 //  } else {
178 //     Block B;
179 //  }
180 //
181 //  [Block BB]
182 //  cond = PN([true, %A], [..., %B]); // PHI node
183 //  [Branch CondBr]
184 //  if (cond) {
185 //    ...  // P(cond == true) = 1%
186 //  }
187 //
188 //  Here we know that when block A is taken, cond must be true, which means
189 //      P(cond == true | A) = 1
190 //
191 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
192 //                               P(cond == true | B) * P(B)
193 //  we get:
194 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
195 //
196 //  which gives us:
197 //     P(A) is less than P(cond == true), i.e.
198 //     P(t == true) <= P(cond == true)
199 //
200 //  In other words, if we know P(cond == true) is unlikely, we know
201 //  that P(t == true) is also unlikely.
202 //
203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
204   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
205   if (!CondBr)
206     return;
207 
208   BranchProbability BP;
209   uint64_t TrueWeight, FalseWeight;
210   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
211     return;
212 
213   // Returns the outgoing edge of the dominating predecessor block
214   // that leads to the PhiNode's incoming block:
215   auto GetPredOutEdge =
216       [](BasicBlock *IncomingBB,
217          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
218     auto *PredBB = IncomingBB;
219     auto *SuccBB = PhiBB;
220     while (true) {
221       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
222       if (PredBr && PredBr->isConditional())
223         return {PredBB, SuccBB};
224       auto *SinglePredBB = PredBB->getSinglePredecessor();
225       if (!SinglePredBB)
226         return {nullptr, nullptr};
227       SuccBB = PredBB;
228       PredBB = SinglePredBB;
229     }
230   };
231 
232   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
233     Value *PhiOpnd = PN->getIncomingValue(i);
234     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
235 
236     if (!CI || !CI->getType()->isIntegerTy(1))
237       continue;
238 
239     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
240                             TrueWeight, TrueWeight + FalseWeight)
241                       : BranchProbability::getBranchProbability(
242                             FalseWeight, TrueWeight + FalseWeight));
243 
244     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
245     if (!PredOutEdge.first)
246       return;
247 
248     BasicBlock *PredBB = PredOutEdge.first;
249     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
250 
251     uint64_t PredTrueWeight, PredFalseWeight;
252     // FIXME: We currently only set the profile data when it is missing.
253     // With PGO, this can be used to refine even existing profile data with
254     // context information. This needs to be done after more performance
255     // testing.
256     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
257       continue;
258 
259     // We can not infer anything useful when BP >= 50%, because BP is the
260     // upper bound probability value.
261     if (BP >= BranchProbability(50, 100))
262       continue;
263 
264     SmallVector<uint32_t, 2> Weights;
265     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
266       Weights.push_back(BP.getNumerator());
267       Weights.push_back(BP.getCompl().getNumerator());
268     } else {
269       Weights.push_back(BP.getCompl().getNumerator());
270       Weights.push_back(BP.getNumerator());
271     }
272     PredBr->setMetadata(LLVMContext::MD_prof,
273                         MDBuilder(PredBr->getParent()->getContext())
274                             .createBranchWeights(Weights));
275   }
276 }
277 
278 /// runOnFunction - Toplevel algorithm.
279 bool JumpThreading::runOnFunction(Function &F) {
280   if (skipFunction(F))
281     return false;
282   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
283   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
284   // DT if it's available.
285   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
286   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
287   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
288   DeferredDominance DDT(*DT);
289   std::unique_ptr<BlockFrequencyInfo> BFI;
290   std::unique_ptr<BranchProbabilityInfo> BPI;
291   bool HasProfileData = F.hasProfileData();
292   if (HasProfileData) {
293     LoopInfo LI{DominatorTree(F)};
294     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
295     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
296   }
297 
298   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
299                               std::move(BFI), std::move(BPI));
300   if (PrintLVIAfterJumpThreading) {
301     dbgs() << "LVI for function '" << F.getName() << "':\n";
302     LVI->printLVI(F, *DT, dbgs());
303   }
304   return Changed;
305 }
306 
307 PreservedAnalyses JumpThreadingPass::run(Function &F,
308                                          FunctionAnalysisManager &AM) {
309   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
310   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
311   // DT if it's available.
312   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
313   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
314   auto &AA = AM.getResult<AAManager>(F);
315   DeferredDominance DDT(DT);
316 
317   std::unique_ptr<BlockFrequencyInfo> BFI;
318   std::unique_ptr<BranchProbabilityInfo> BPI;
319   if (F.hasProfileData()) {
320     LoopInfo LI{DominatorTree(F)};
321     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
322     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
323   }
324 
325   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
326                          std::move(BFI), std::move(BPI));
327 
328   if (!Changed)
329     return PreservedAnalyses::all();
330   PreservedAnalyses PA;
331   PA.preserve<GlobalsAA>();
332   PA.preserve<DominatorTreeAnalysis>();
333   PA.preserve<LazyValueAnalysis>();
334   return PA;
335 }
336 
337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
338                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
339                                 DeferredDominance *DDT_, bool HasProfileData_,
340                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
341                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
342   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
343   TLI = TLI_;
344   LVI = LVI_;
345   AA = AA_;
346   DDT = DDT_;
347   BFI.reset();
348   BPI.reset();
349   // When profile data is available, we need to update edge weights after
350   // successful jump threading, which requires both BPI and BFI being available.
351   HasProfileData = HasProfileData_;
352   auto *GuardDecl = F.getParent()->getFunction(
353       Intrinsic::getName(Intrinsic::experimental_guard));
354   HasGuards = GuardDecl && !GuardDecl->use_empty();
355   if (HasProfileData) {
356     BPI = std::move(BPI_);
357     BFI = std::move(BFI_);
358   }
359 
360   // JumpThreading must not processes blocks unreachable from entry. It's a
361   // waste of compute time and can potentially lead to hangs.
362   SmallPtrSet<BasicBlock *, 16> Unreachable;
363   DominatorTree &DT = DDT->flush();
364   for (auto &BB : F)
365     if (!DT.isReachableFromEntry(&BB))
366       Unreachable.insert(&BB);
367 
368   FindLoopHeaders(F);
369 
370   bool EverChanged = false;
371   bool Changed;
372   do {
373     Changed = false;
374     for (auto &BB : F) {
375       if (Unreachable.count(&BB))
376         continue;
377       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
378         Changed = true;
379       // Stop processing BB if it's the entry or is now deleted. The following
380       // routines attempt to eliminate BB and locating a suitable replacement
381       // for the entry is non-trivial.
382       if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB))
383         continue;
384 
385       if (pred_empty(&BB)) {
386         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
387         // the instructions in it. We must remove BB to prevent invalid IR.
388         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
389                           << "' with terminator: " << *BB.getTerminator()
390                           << '\n');
391         LoopHeaders.erase(&BB);
392         LVI->eraseBlock(&BB);
393         DeleteDeadBlock(&BB, DDT);
394         Changed = true;
395         continue;
396       }
397 
398       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
399       // is "almost empty", we attempt to merge BB with its sole successor.
400       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
401       if (BI && BI->isUnconditional() &&
402           // The terminator must be the only non-phi instruction in BB.
403           BB.getFirstNonPHIOrDbg()->isTerminator() &&
404           // Don't alter Loop headers and latches to ensure another pass can
405           // detect and transform nested loops later.
406           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
407           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) {
408         // BB is valid for cleanup here because we passed in DDT. F remains
409         // BB's parent until a DDT->flush() event.
410         LVI->eraseBlock(&BB);
411         Changed = true;
412       }
413     }
414     EverChanged |= Changed;
415   } while (Changed);
416 
417   LoopHeaders.clear();
418   DDT->flush();
419   LVI->enableDT();
420   return EverChanged;
421 }
422 
423 // Replace uses of Cond with ToVal when safe to do so. If all uses are
424 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
425 // because we may incorrectly replace uses when guards/assumes are uses of
426 // of `Cond` and we used the guards/assume to reason about the `Cond` value
427 // at the end of block. RAUW unconditionally replaces all uses
428 // including the guards/assumes themselves and the uses before the
429 // guard/assume.
430 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
431   assert(Cond->getType() == ToVal->getType());
432   auto *BB = Cond->getParent();
433   // We can unconditionally replace all uses in non-local blocks (i.e. uses
434   // strictly dominated by BB), since LVI information is true from the
435   // terminator of BB.
436   replaceNonLocalUsesWith(Cond, ToVal);
437   for (Instruction &I : reverse(*BB)) {
438     // Reached the Cond whose uses we are trying to replace, so there are no
439     // more uses.
440     if (&I == Cond)
441       break;
442     // We only replace uses in instructions that are guaranteed to reach the end
443     // of BB, where we know Cond is ToVal.
444     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
445       break;
446     I.replaceUsesOfWith(Cond, ToVal);
447   }
448   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
449     Cond->eraseFromParent();
450 }
451 
452 /// Return the cost of duplicating a piece of this block from first non-phi
453 /// and before StopAt instruction to thread across it. Stop scanning the block
454 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
455 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
456                                              Instruction *StopAt,
457                                              unsigned Threshold) {
458   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
459   /// Ignore PHI nodes, these will be flattened when duplication happens.
460   BasicBlock::const_iterator I(BB->getFirstNonPHI());
461 
462   // FIXME: THREADING will delete values that are just used to compute the
463   // branch, so they shouldn't count against the duplication cost.
464 
465   unsigned Bonus = 0;
466   if (BB->getTerminator() == StopAt) {
467     // Threading through a switch statement is particularly profitable.  If this
468     // block ends in a switch, decrease its cost to make it more likely to
469     // happen.
470     if (isa<SwitchInst>(StopAt))
471       Bonus = 6;
472 
473     // The same holds for indirect branches, but slightly more so.
474     if (isa<IndirectBrInst>(StopAt))
475       Bonus = 8;
476   }
477 
478   // Bump the threshold up so the early exit from the loop doesn't skip the
479   // terminator-based Size adjustment at the end.
480   Threshold += Bonus;
481 
482   // Sum up the cost of each instruction until we get to the terminator.  Don't
483   // include the terminator because the copy won't include it.
484   unsigned Size = 0;
485   for (; &*I != StopAt; ++I) {
486 
487     // Stop scanning the block if we've reached the threshold.
488     if (Size > Threshold)
489       return Size;
490 
491     // Debugger intrinsics don't incur code size.
492     if (isa<DbgInfoIntrinsic>(I)) continue;
493 
494     // If this is a pointer->pointer bitcast, it is free.
495     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
496       continue;
497 
498     // Bail out if this instruction gives back a token type, it is not possible
499     // to duplicate it if it is used outside this BB.
500     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
501       return ~0U;
502 
503     // All other instructions count for at least one unit.
504     ++Size;
505 
506     // Calls are more expensive.  If they are non-intrinsic calls, we model them
507     // as having cost of 4.  If they are a non-vector intrinsic, we model them
508     // as having cost of 2 total, and if they are a vector intrinsic, we model
509     // them as having cost 1.
510     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
511       if (CI->cannotDuplicate() || CI->isConvergent())
512         // Blocks with NoDuplicate are modelled as having infinite cost, so they
513         // are never duplicated.
514         return ~0U;
515       else if (!isa<IntrinsicInst>(CI))
516         Size += 3;
517       else if (!CI->getType()->isVectorTy())
518         Size += 1;
519     }
520   }
521 
522   return Size > Bonus ? Size - Bonus : 0;
523 }
524 
525 /// FindLoopHeaders - We do not want jump threading to turn proper loop
526 /// structures into irreducible loops.  Doing this breaks up the loop nesting
527 /// hierarchy and pessimizes later transformations.  To prevent this from
528 /// happening, we first have to find the loop headers.  Here we approximate this
529 /// by finding targets of backedges in the CFG.
530 ///
531 /// Note that there definitely are cases when we want to allow threading of
532 /// edges across a loop header.  For example, threading a jump from outside the
533 /// loop (the preheader) to an exit block of the loop is definitely profitable.
534 /// It is also almost always profitable to thread backedges from within the loop
535 /// to exit blocks, and is often profitable to thread backedges to other blocks
536 /// within the loop (forming a nested loop).  This simple analysis is not rich
537 /// enough to track all of these properties and keep it up-to-date as the CFG
538 /// mutates, so we don't allow any of these transformations.
539 void JumpThreadingPass::FindLoopHeaders(Function &F) {
540   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
541   FindFunctionBackedges(F, Edges);
542 
543   for (const auto &Edge : Edges)
544     LoopHeaders.insert(Edge.second);
545 }
546 
547 /// getKnownConstant - Helper method to determine if we can thread over a
548 /// terminator with the given value as its condition, and if so what value to
549 /// use for that. What kind of value this is depends on whether we want an
550 /// integer or a block address, but an undef is always accepted.
551 /// Returns null if Val is null or not an appropriate constant.
552 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
553   if (!Val)
554     return nullptr;
555 
556   // Undef is "known" enough.
557   if (UndefValue *U = dyn_cast<UndefValue>(Val))
558     return U;
559 
560   if (Preference == WantBlockAddress)
561     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
562 
563   return dyn_cast<ConstantInt>(Val);
564 }
565 
566 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
567 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
568 /// in any of our predecessors.  If so, return the known list of value and pred
569 /// BB in the result vector.
570 ///
571 /// This returns true if there were any known values.
572 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
573     Value *V, BasicBlock *BB, PredValueInfo &Result,
574     ConstantPreference Preference, Instruction *CxtI) {
575   // This method walks up use-def chains recursively.  Because of this, we could
576   // get into an infinite loop going around loops in the use-def chain.  To
577   // prevent this, keep track of what (value, block) pairs we've already visited
578   // and terminate the search if we loop back to them
579   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
580     return false;
581 
582   // An RAII help to remove this pair from the recursion set once the recursion
583   // stack pops back out again.
584   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
585 
586   // If V is a constant, then it is known in all predecessors.
587   if (Constant *KC = getKnownConstant(V, Preference)) {
588     for (BasicBlock *Pred : predecessors(BB))
589       Result.push_back(std::make_pair(KC, Pred));
590 
591     return !Result.empty();
592   }
593 
594   // If V is a non-instruction value, or an instruction in a different block,
595   // then it can't be derived from a PHI.
596   Instruction *I = dyn_cast<Instruction>(V);
597   if (!I || I->getParent() != BB) {
598 
599     // Okay, if this is a live-in value, see if it has a known value at the end
600     // of any of our predecessors.
601     //
602     // FIXME: This should be an edge property, not a block end property.
603     /// TODO: Per PR2563, we could infer value range information about a
604     /// predecessor based on its terminator.
605     //
606     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
607     // "I" is a non-local compare-with-a-constant instruction.  This would be
608     // able to handle value inequalities better, for example if the compare is
609     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
610     // Perhaps getConstantOnEdge should be smart enough to do this?
611 
612     if (DDT->pending())
613       LVI->disableDT();
614     else
615       LVI->enableDT();
616     for (BasicBlock *P : predecessors(BB)) {
617       // If the value is known by LazyValueInfo to be a constant in a
618       // predecessor, use that information to try to thread this block.
619       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
620       if (Constant *KC = getKnownConstant(PredCst, Preference))
621         Result.push_back(std::make_pair(KC, P));
622     }
623 
624     return !Result.empty();
625   }
626 
627   /// If I is a PHI node, then we know the incoming values for any constants.
628   if (PHINode *PN = dyn_cast<PHINode>(I)) {
629     if (DDT->pending())
630       LVI->disableDT();
631     else
632       LVI->enableDT();
633     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
634       Value *InVal = PN->getIncomingValue(i);
635       if (Constant *KC = getKnownConstant(InVal, Preference)) {
636         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
637       } else {
638         Constant *CI = LVI->getConstantOnEdge(InVal,
639                                               PN->getIncomingBlock(i),
640                                               BB, CxtI);
641         if (Constant *KC = getKnownConstant(CI, Preference))
642           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
643       }
644     }
645 
646     return !Result.empty();
647   }
648 
649   // Handle Cast instructions.  Only see through Cast when the source operand is
650   // PHI or Cmp to save the compilation time.
651   if (CastInst *CI = dyn_cast<CastInst>(I)) {
652     Value *Source = CI->getOperand(0);
653     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
654       return false;
655     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
656     if (Result.empty())
657       return false;
658 
659     // Convert the known values.
660     for (auto &R : Result)
661       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
662 
663     return true;
664   }
665 
666   // Handle some boolean conditions.
667   if (I->getType()->getPrimitiveSizeInBits() == 1) {
668     assert(Preference == WantInteger && "One-bit non-integer type?");
669     // X | true -> true
670     // X & false -> false
671     if (I->getOpcode() == Instruction::Or ||
672         I->getOpcode() == Instruction::And) {
673       PredValueInfoTy LHSVals, RHSVals;
674 
675       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
676                                       WantInteger, CxtI);
677       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
678                                       WantInteger, CxtI);
679 
680       if (LHSVals.empty() && RHSVals.empty())
681         return false;
682 
683       ConstantInt *InterestingVal;
684       if (I->getOpcode() == Instruction::Or)
685         InterestingVal = ConstantInt::getTrue(I->getContext());
686       else
687         InterestingVal = ConstantInt::getFalse(I->getContext());
688 
689       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
690 
691       // Scan for the sentinel.  If we find an undef, force it to the
692       // interesting value: x|undef -> true and x&undef -> false.
693       for (const auto &LHSVal : LHSVals)
694         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
695           Result.emplace_back(InterestingVal, LHSVal.second);
696           LHSKnownBBs.insert(LHSVal.second);
697         }
698       for (const auto &RHSVal : RHSVals)
699         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
700           // If we already inferred a value for this block on the LHS, don't
701           // re-add it.
702           if (!LHSKnownBBs.count(RHSVal.second))
703             Result.emplace_back(InterestingVal, RHSVal.second);
704         }
705 
706       return !Result.empty();
707     }
708 
709     // Handle the NOT form of XOR.
710     if (I->getOpcode() == Instruction::Xor &&
711         isa<ConstantInt>(I->getOperand(1)) &&
712         cast<ConstantInt>(I->getOperand(1))->isOne()) {
713       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
714                                       WantInteger, CxtI);
715       if (Result.empty())
716         return false;
717 
718       // Invert the known values.
719       for (auto &R : Result)
720         R.first = ConstantExpr::getNot(R.first);
721 
722       return true;
723     }
724 
725   // Try to simplify some other binary operator values.
726   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
727     assert(Preference != WantBlockAddress
728             && "A binary operator creating a block address?");
729     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
730       PredValueInfoTy LHSVals;
731       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
732                                       WantInteger, CxtI);
733 
734       // Try to use constant folding to simplify the binary operator.
735       for (const auto &LHSVal : LHSVals) {
736         Constant *V = LHSVal.first;
737         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
738 
739         if (Constant *KC = getKnownConstant(Folded, WantInteger))
740           Result.push_back(std::make_pair(KC, LHSVal.second));
741       }
742     }
743 
744     return !Result.empty();
745   }
746 
747   // Handle compare with phi operand, where the PHI is defined in this block.
748   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
749     assert(Preference == WantInteger && "Compares only produce integers");
750     Type *CmpType = Cmp->getType();
751     Value *CmpLHS = Cmp->getOperand(0);
752     Value *CmpRHS = Cmp->getOperand(1);
753     CmpInst::Predicate Pred = Cmp->getPredicate();
754 
755     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
756     if (!PN)
757       PN = dyn_cast<PHINode>(CmpRHS);
758     if (PN && PN->getParent() == BB) {
759       const DataLayout &DL = PN->getModule()->getDataLayout();
760       // We can do this simplification if any comparisons fold to true or false.
761       // See if any do.
762       if (DDT->pending())
763         LVI->disableDT();
764       else
765         LVI->enableDT();
766       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
767         BasicBlock *PredBB = PN->getIncomingBlock(i);
768         Value *LHS, *RHS;
769         if (PN == CmpLHS) {
770           LHS = PN->getIncomingValue(i);
771           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
772         } else {
773           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
774           RHS = PN->getIncomingValue(i);
775         }
776         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
777         if (!Res) {
778           if (!isa<Constant>(RHS))
779             continue;
780 
781           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
782           auto LHSInst = dyn_cast<Instruction>(LHS);
783           if (LHSInst && LHSInst->getParent() == BB)
784             continue;
785 
786           LazyValueInfo::Tristate
787             ResT = LVI->getPredicateOnEdge(Pred, LHS,
788                                            cast<Constant>(RHS), PredBB, BB,
789                                            CxtI ? CxtI : Cmp);
790           if (ResT == LazyValueInfo::Unknown)
791             continue;
792           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
793         }
794 
795         if (Constant *KC = getKnownConstant(Res, WantInteger))
796           Result.push_back(std::make_pair(KC, PredBB));
797       }
798 
799       return !Result.empty();
800     }
801 
802     // If comparing a live-in value against a constant, see if we know the
803     // live-in value on any predecessors.
804     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
805       Constant *CmpConst = cast<Constant>(CmpRHS);
806 
807       if (!isa<Instruction>(CmpLHS) ||
808           cast<Instruction>(CmpLHS)->getParent() != BB) {
809         if (DDT->pending())
810           LVI->disableDT();
811         else
812           LVI->enableDT();
813         for (BasicBlock *P : predecessors(BB)) {
814           // If the value is known by LazyValueInfo to be a constant in a
815           // predecessor, use that information to try to thread this block.
816           LazyValueInfo::Tristate Res =
817             LVI->getPredicateOnEdge(Pred, CmpLHS,
818                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
819           if (Res == LazyValueInfo::Unknown)
820             continue;
821 
822           Constant *ResC = ConstantInt::get(CmpType, Res);
823           Result.push_back(std::make_pair(ResC, P));
824         }
825 
826         return !Result.empty();
827       }
828 
829       // InstCombine can fold some forms of constant range checks into
830       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
831       // x as a live-in.
832       {
833         using namespace PatternMatch;
834 
835         Value *AddLHS;
836         ConstantInt *AddConst;
837         if (isa<ConstantInt>(CmpConst) &&
838             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
839           if (!isa<Instruction>(AddLHS) ||
840               cast<Instruction>(AddLHS)->getParent() != BB) {
841             if (DDT->pending())
842               LVI->disableDT();
843             else
844               LVI->enableDT();
845             for (BasicBlock *P : predecessors(BB)) {
846               // If the value is known by LazyValueInfo to be a ConstantRange in
847               // a predecessor, use that information to try to thread this
848               // block.
849               ConstantRange CR = LVI->getConstantRangeOnEdge(
850                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
851               // Propagate the range through the addition.
852               CR = CR.add(AddConst->getValue());
853 
854               // Get the range where the compare returns true.
855               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
856                   Pred, cast<ConstantInt>(CmpConst)->getValue());
857 
858               Constant *ResC;
859               if (CmpRange.contains(CR))
860                 ResC = ConstantInt::getTrue(CmpType);
861               else if (CmpRange.inverse().contains(CR))
862                 ResC = ConstantInt::getFalse(CmpType);
863               else
864                 continue;
865 
866               Result.push_back(std::make_pair(ResC, P));
867             }
868 
869             return !Result.empty();
870           }
871         }
872       }
873 
874       // Try to find a constant value for the LHS of a comparison,
875       // and evaluate it statically if we can.
876       PredValueInfoTy LHSVals;
877       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
878                                       WantInteger, CxtI);
879 
880       for (const auto &LHSVal : LHSVals) {
881         Constant *V = LHSVal.first;
882         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
883         if (Constant *KC = getKnownConstant(Folded, WantInteger))
884           Result.push_back(std::make_pair(KC, LHSVal.second));
885       }
886 
887       return !Result.empty();
888     }
889   }
890 
891   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
892     // Handle select instructions where at least one operand is a known constant
893     // and we can figure out the condition value for any predecessor block.
894     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
895     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
896     PredValueInfoTy Conds;
897     if ((TrueVal || FalseVal) &&
898         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
899                                         WantInteger, CxtI)) {
900       for (auto &C : Conds) {
901         Constant *Cond = C.first;
902 
903         // Figure out what value to use for the condition.
904         bool KnownCond;
905         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
906           // A known boolean.
907           KnownCond = CI->isOne();
908         } else {
909           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
910           // Either operand will do, so be sure to pick the one that's a known
911           // constant.
912           // FIXME: Do this more cleverly if both values are known constants?
913           KnownCond = (TrueVal != nullptr);
914         }
915 
916         // See if the select has a known constant value for this predecessor.
917         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
918           Result.push_back(std::make_pair(Val, C.second));
919       }
920 
921       return !Result.empty();
922     }
923   }
924 
925   // If all else fails, see if LVI can figure out a constant value for us.
926   if (DDT->pending())
927     LVI->disableDT();
928   else
929     LVI->enableDT();
930   Constant *CI = LVI->getConstant(V, BB, CxtI);
931   if (Constant *KC = getKnownConstant(CI, Preference)) {
932     for (BasicBlock *Pred : predecessors(BB))
933       Result.push_back(std::make_pair(KC, Pred));
934   }
935 
936   return !Result.empty();
937 }
938 
939 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
940 /// in an undefined jump, decide which block is best to revector to.
941 ///
942 /// Since we can pick an arbitrary destination, we pick the successor with the
943 /// fewest predecessors.  This should reduce the in-degree of the others.
944 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
945   TerminatorInst *BBTerm = BB->getTerminator();
946   unsigned MinSucc = 0;
947   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
948   // Compute the successor with the minimum number of predecessors.
949   unsigned MinNumPreds = pred_size(TestBB);
950   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
951     TestBB = BBTerm->getSuccessor(i);
952     unsigned NumPreds = pred_size(TestBB);
953     if (NumPreds < MinNumPreds) {
954       MinSucc = i;
955       MinNumPreds = NumPreds;
956     }
957   }
958 
959   return MinSucc;
960 }
961 
962 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
963   if (!BB->hasAddressTaken()) return false;
964 
965   // If the block has its address taken, it may be a tree of dead constants
966   // hanging off of it.  These shouldn't keep the block alive.
967   BlockAddress *BA = BlockAddress::get(BB);
968   BA->removeDeadConstantUsers();
969   return !BA->use_empty();
970 }
971 
972 /// ProcessBlock - If there are any predecessors whose control can be threaded
973 /// through to a successor, transform them now.
974 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
975   // If the block is trivially dead, just return and let the caller nuke it.
976   // This simplifies other transformations.
977   if (DDT->pendingDeletedBB(BB) ||
978       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
979     return false;
980 
981   // If this block has a single predecessor, and if that pred has a single
982   // successor, merge the blocks.  This encourages recursive jump threading
983   // because now the condition in this block can be threaded through
984   // predecessors of our predecessor block.
985   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
986     const TerminatorInst *TI = SinglePred->getTerminator();
987     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
988         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
989       // If SinglePred was a loop header, BB becomes one.
990       if (LoopHeaders.erase(SinglePred))
991         LoopHeaders.insert(BB);
992 
993       LVI->eraseBlock(SinglePred);
994       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
995 
996       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
997       // BB code within one basic block `BB`), we need to invalidate the LVI
998       // information associated with BB, because the LVI information need not be
999       // true for all of BB after the merge. For example,
1000       // Before the merge, LVI info and code is as follows:
1001       // SinglePred: <LVI info1 for %p val>
1002       // %y = use of %p
1003       // call @exit() // need not transfer execution to successor.
1004       // assume(%p) // from this point on %p is true
1005       // br label %BB
1006       // BB: <LVI info2 for %p val, i.e. %p is true>
1007       // %x = use of %p
1008       // br label exit
1009       //
1010       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1011       // (info2 and info1 respectively). After the merge and the deletion of the
1012       // LVI info1 for SinglePred. We have the following code:
1013       // BB: <LVI info2 for %p val>
1014       // %y = use of %p
1015       // call @exit()
1016       // assume(%p)
1017       // %x = use of %p <-- LVI info2 is correct from here onwards.
1018       // br label exit
1019       // LVI info2 for BB is incorrect at the beginning of BB.
1020 
1021       // Invalidate LVI information for BB if the LVI is not provably true for
1022       // all of BB.
1023       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1024         LVI->eraseBlock(BB);
1025       return true;
1026     }
1027   }
1028 
1029   if (TryToUnfoldSelectInCurrBB(BB))
1030     return true;
1031 
1032   // Look if we can propagate guards to predecessors.
1033   if (HasGuards && ProcessGuards(BB))
1034     return true;
1035 
1036   // What kind of constant we're looking for.
1037   ConstantPreference Preference = WantInteger;
1038 
1039   // Look to see if the terminator is a conditional branch, switch or indirect
1040   // branch, if not we can't thread it.
1041   Value *Condition;
1042   Instruction *Terminator = BB->getTerminator();
1043   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1044     // Can't thread an unconditional jump.
1045     if (BI->isUnconditional()) return false;
1046     Condition = BI->getCondition();
1047   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1048     Condition = SI->getCondition();
1049   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1050     // Can't thread indirect branch with no successors.
1051     if (IB->getNumSuccessors() == 0) return false;
1052     Condition = IB->getAddress()->stripPointerCasts();
1053     Preference = WantBlockAddress;
1054   } else {
1055     return false; // Must be an invoke.
1056   }
1057 
1058   // Run constant folding to see if we can reduce the condition to a simple
1059   // constant.
1060   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1061     Value *SimpleVal =
1062         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1063     if (SimpleVal) {
1064       I->replaceAllUsesWith(SimpleVal);
1065       if (isInstructionTriviallyDead(I, TLI))
1066         I->eraseFromParent();
1067       Condition = SimpleVal;
1068     }
1069   }
1070 
1071   // If the terminator is branching on an undef, we can pick any of the
1072   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1073   if (isa<UndefValue>(Condition)) {
1074     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1075     std::vector<DominatorTree::UpdateType> Updates;
1076 
1077     // Fold the branch/switch.
1078     TerminatorInst *BBTerm = BB->getTerminator();
1079     Updates.reserve(BBTerm->getNumSuccessors());
1080     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1081       if (i == BestSucc) continue;
1082       BasicBlock *Succ = BBTerm->getSuccessor(i);
1083       Succ->removePredecessor(BB, true);
1084       Updates.push_back({DominatorTree::Delete, BB, Succ});
1085     }
1086 
1087     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1088                       << "' folding undef terminator: " << *BBTerm << '\n');
1089     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1090     BBTerm->eraseFromParent();
1091     DDT->applyUpdates(Updates);
1092     return true;
1093   }
1094 
1095   // If the terminator of this block is branching on a constant, simplify the
1096   // terminator to an unconditional branch.  This can occur due to threading in
1097   // other blocks.
1098   if (getKnownConstant(Condition, Preference)) {
1099     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1100                       << "' folding terminator: " << *BB->getTerminator()
1101                       << '\n');
1102     ++NumFolds;
1103     ConstantFoldTerminator(BB, true, nullptr, DDT);
1104     return true;
1105   }
1106 
1107   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1108 
1109   // All the rest of our checks depend on the condition being an instruction.
1110   if (!CondInst) {
1111     // FIXME: Unify this with code below.
1112     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1113       return true;
1114     return false;
1115   }
1116 
1117   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1118     // If we're branching on a conditional, LVI might be able to determine
1119     // it's value at the branch instruction.  We only handle comparisons
1120     // against a constant at this time.
1121     // TODO: This should be extended to handle switches as well.
1122     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1123     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1124     if (CondBr && CondConst) {
1125       // We should have returned as soon as we turn a conditional branch to
1126       // unconditional. Because its no longer interesting as far as jump
1127       // threading is concerned.
1128       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1129 
1130       if (DDT->pending())
1131         LVI->disableDT();
1132       else
1133         LVI->enableDT();
1134       LazyValueInfo::Tristate Ret =
1135         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1136                             CondConst, CondBr);
1137       if (Ret != LazyValueInfo::Unknown) {
1138         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1139         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1140         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1141         ToRemoveSucc->removePredecessor(BB, true);
1142         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1143         CondBr->eraseFromParent();
1144         if (CondCmp->use_empty())
1145           CondCmp->eraseFromParent();
1146         // We can safely replace *some* uses of the CondInst if it has
1147         // exactly one value as returned by LVI. RAUW is incorrect in the
1148         // presence of guards and assumes, that have the `Cond` as the use. This
1149         // is because we use the guards/assume to reason about the `Cond` value
1150         // at the end of block, but RAUW unconditionally replaces all uses
1151         // including the guards/assumes themselves and the uses before the
1152         // guard/assume.
1153         else if (CondCmp->getParent() == BB) {
1154           auto *CI = Ret == LazyValueInfo::True ?
1155             ConstantInt::getTrue(CondCmp->getType()) :
1156             ConstantInt::getFalse(CondCmp->getType());
1157           ReplaceFoldableUses(CondCmp, CI);
1158         }
1159         DDT->deleteEdge(BB, ToRemoveSucc);
1160         return true;
1161       }
1162 
1163       // We did not manage to simplify this branch, try to see whether
1164       // CondCmp depends on a known phi-select pattern.
1165       if (TryToUnfoldSelect(CondCmp, BB))
1166         return true;
1167     }
1168   }
1169 
1170   // Check for some cases that are worth simplifying.  Right now we want to look
1171   // for loads that are used by a switch or by the condition for the branch.  If
1172   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1173   // which can then be used to thread the values.
1174   Value *SimplifyValue = CondInst;
1175   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1176     if (isa<Constant>(CondCmp->getOperand(1)))
1177       SimplifyValue = CondCmp->getOperand(0);
1178 
1179   // TODO: There are other places where load PRE would be profitable, such as
1180   // more complex comparisons.
1181   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1182     if (SimplifyPartiallyRedundantLoad(LoadI))
1183       return true;
1184 
1185   // Before threading, try to propagate profile data backwards:
1186   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1187     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1188       updatePredecessorProfileMetadata(PN, BB);
1189 
1190   // Handle a variety of cases where we are branching on something derived from
1191   // a PHI node in the current block.  If we can prove that any predecessors
1192   // compute a predictable value based on a PHI node, thread those predecessors.
1193   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1194     return true;
1195 
1196   // If this is an otherwise-unfoldable branch on a phi node in the current
1197   // block, see if we can simplify.
1198   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1199     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1200       return ProcessBranchOnPHI(PN);
1201 
1202   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1203   if (CondInst->getOpcode() == Instruction::Xor &&
1204       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1205     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1206 
1207   // Search for a stronger dominating condition that can be used to simplify a
1208   // conditional branch leaving BB.
1209   if (ProcessImpliedCondition(BB))
1210     return true;
1211 
1212   return false;
1213 }
1214 
1215 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1216   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1217   if (!BI || !BI->isConditional())
1218     return false;
1219 
1220   Value *Cond = BI->getCondition();
1221   BasicBlock *CurrentBB = BB;
1222   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1223   unsigned Iter = 0;
1224 
1225   auto &DL = BB->getModule()->getDataLayout();
1226 
1227   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1228     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1229     if (!PBI || !PBI->isConditional())
1230       return false;
1231     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1232       return false;
1233 
1234     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1235     Optional<bool> Implication =
1236         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1237     if (Implication) {
1238       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1239       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1240       RemoveSucc->removePredecessor(BB);
1241       BranchInst::Create(KeepSucc, BI);
1242       BI->eraseFromParent();
1243       DDT->deleteEdge(BB, RemoveSucc);
1244       return true;
1245     }
1246     CurrentBB = CurrentPred;
1247     CurrentPred = CurrentBB->getSinglePredecessor();
1248   }
1249 
1250   return false;
1251 }
1252 
1253 /// Return true if Op is an instruction defined in the given block.
1254 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1255   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1256     if (OpInst->getParent() == BB)
1257       return true;
1258   return false;
1259 }
1260 
1261 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1262 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1263 /// This is an important optimization that encourages jump threading, and needs
1264 /// to be run interlaced with other jump threading tasks.
1265 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1266   // Don't hack volatile and ordered loads.
1267   if (!LoadI->isUnordered()) return false;
1268 
1269   // If the load is defined in a block with exactly one predecessor, it can't be
1270   // partially redundant.
1271   BasicBlock *LoadBB = LoadI->getParent();
1272   if (LoadBB->getSinglePredecessor())
1273     return false;
1274 
1275   // If the load is defined in an EH pad, it can't be partially redundant,
1276   // because the edges between the invoke and the EH pad cannot have other
1277   // instructions between them.
1278   if (LoadBB->isEHPad())
1279     return false;
1280 
1281   Value *LoadedPtr = LoadI->getOperand(0);
1282 
1283   // If the loaded operand is defined in the LoadBB and its not a phi,
1284   // it can't be available in predecessors.
1285   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1286     return false;
1287 
1288   // Scan a few instructions up from the load, to see if it is obviously live at
1289   // the entry to its block.
1290   BasicBlock::iterator BBIt(LoadI);
1291   bool IsLoadCSE;
1292   if (Value *AvailableVal = FindAvailableLoadedValue(
1293           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1294     // If the value of the load is locally available within the block, just use
1295     // it.  This frequently occurs for reg2mem'd allocas.
1296 
1297     if (IsLoadCSE) {
1298       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1299       combineMetadataForCSE(NLoadI, LoadI);
1300     };
1301 
1302     // If the returned value is the load itself, replace with an undef. This can
1303     // only happen in dead loops.
1304     if (AvailableVal == LoadI)
1305       AvailableVal = UndefValue::get(LoadI->getType());
1306     if (AvailableVal->getType() != LoadI->getType())
1307       AvailableVal = CastInst::CreateBitOrPointerCast(
1308           AvailableVal, LoadI->getType(), "", LoadI);
1309     LoadI->replaceAllUsesWith(AvailableVal);
1310     LoadI->eraseFromParent();
1311     return true;
1312   }
1313 
1314   // Otherwise, if we scanned the whole block and got to the top of the block,
1315   // we know the block is locally transparent to the load.  If not, something
1316   // might clobber its value.
1317   if (BBIt != LoadBB->begin())
1318     return false;
1319 
1320   // If all of the loads and stores that feed the value have the same AA tags,
1321   // then we can propagate them onto any newly inserted loads.
1322   AAMDNodes AATags;
1323   LoadI->getAAMetadata(AATags);
1324 
1325   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1326 
1327   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1328 
1329   AvailablePredsTy AvailablePreds;
1330   BasicBlock *OneUnavailablePred = nullptr;
1331   SmallVector<LoadInst*, 8> CSELoads;
1332 
1333   // If we got here, the loaded value is transparent through to the start of the
1334   // block.  Check to see if it is available in any of the predecessor blocks.
1335   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1336     // If we already scanned this predecessor, skip it.
1337     if (!PredsScanned.insert(PredBB).second)
1338       continue;
1339 
1340     BBIt = PredBB->end();
1341     unsigned NumScanedInst = 0;
1342     Value *PredAvailable = nullptr;
1343     // NOTE: We don't CSE load that is volatile or anything stronger than
1344     // unordered, that should have been checked when we entered the function.
1345     assert(LoadI->isUnordered() &&
1346            "Attempting to CSE volatile or atomic loads");
1347     // If this is a load on a phi pointer, phi-translate it and search
1348     // for available load/store to the pointer in predecessors.
1349     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1350     PredAvailable = FindAvailablePtrLoadStore(
1351         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1352         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1353 
1354     // If PredBB has a single predecessor, continue scanning through the
1355     // single predecessor.
1356     BasicBlock *SinglePredBB = PredBB;
1357     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1358            NumScanedInst < DefMaxInstsToScan) {
1359       SinglePredBB = SinglePredBB->getSinglePredecessor();
1360       if (SinglePredBB) {
1361         BBIt = SinglePredBB->end();
1362         PredAvailable = FindAvailablePtrLoadStore(
1363             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1364             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1365             &NumScanedInst);
1366       }
1367     }
1368 
1369     if (!PredAvailable) {
1370       OneUnavailablePred = PredBB;
1371       continue;
1372     }
1373 
1374     if (IsLoadCSE)
1375       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1376 
1377     // If so, this load is partially redundant.  Remember this info so that we
1378     // can create a PHI node.
1379     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1380   }
1381 
1382   // If the loaded value isn't available in any predecessor, it isn't partially
1383   // redundant.
1384   if (AvailablePreds.empty()) return false;
1385 
1386   // Okay, the loaded value is available in at least one (and maybe all!)
1387   // predecessors.  If the value is unavailable in more than one unique
1388   // predecessor, we want to insert a merge block for those common predecessors.
1389   // This ensures that we only have to insert one reload, thus not increasing
1390   // code size.
1391   BasicBlock *UnavailablePred = nullptr;
1392 
1393   // If the value is unavailable in one of predecessors, we will end up
1394   // inserting a new instruction into them. It is only valid if all the
1395   // instructions before LoadI are guaranteed to pass execution to its
1396   // successor, or if LoadI is safe to speculate.
1397   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1398   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1399   // It requires domination tree analysis, so for this simple case it is an
1400   // overkill.
1401   if (PredsScanned.size() != AvailablePreds.size() &&
1402       !isSafeToSpeculativelyExecute(LoadI))
1403     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1404       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1405         return false;
1406 
1407   // If there is exactly one predecessor where the value is unavailable, the
1408   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1409   // unconditional branch, we know that it isn't a critical edge.
1410   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1411       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1412     UnavailablePred = OneUnavailablePred;
1413   } else if (PredsScanned.size() != AvailablePreds.size()) {
1414     // Otherwise, we had multiple unavailable predecessors or we had a critical
1415     // edge from the one.
1416     SmallVector<BasicBlock*, 8> PredsToSplit;
1417     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1418 
1419     for (const auto &AvailablePred : AvailablePreds)
1420       AvailablePredSet.insert(AvailablePred.first);
1421 
1422     // Add all the unavailable predecessors to the PredsToSplit list.
1423     for (BasicBlock *P : predecessors(LoadBB)) {
1424       // If the predecessor is an indirect goto, we can't split the edge.
1425       if (isa<IndirectBrInst>(P->getTerminator()))
1426         return false;
1427 
1428       if (!AvailablePredSet.count(P))
1429         PredsToSplit.push_back(P);
1430     }
1431 
1432     // Split them out to their own block.
1433     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1434   }
1435 
1436   // If the value isn't available in all predecessors, then there will be
1437   // exactly one where it isn't available.  Insert a load on that edge and add
1438   // it to the AvailablePreds list.
1439   if (UnavailablePred) {
1440     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1441            "Can't handle critical edge here!");
1442     LoadInst *NewVal =
1443         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1444                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1445                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1446                      UnavailablePred->getTerminator());
1447     NewVal->setDebugLoc(LoadI->getDebugLoc());
1448     if (AATags)
1449       NewVal->setAAMetadata(AATags);
1450 
1451     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1452   }
1453 
1454   // Now we know that each predecessor of this block has a value in
1455   // AvailablePreds, sort them for efficient access as we're walking the preds.
1456   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1457 
1458   // Create a PHI node at the start of the block for the PRE'd load value.
1459   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1460   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1461                                 &LoadBB->front());
1462   PN->takeName(LoadI);
1463   PN->setDebugLoc(LoadI->getDebugLoc());
1464 
1465   // Insert new entries into the PHI for each predecessor.  A single block may
1466   // have multiple entries here.
1467   for (pred_iterator PI = PB; PI != PE; ++PI) {
1468     BasicBlock *P = *PI;
1469     AvailablePredsTy::iterator I =
1470       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1471                        std::make_pair(P, (Value*)nullptr));
1472 
1473     assert(I != AvailablePreds.end() && I->first == P &&
1474            "Didn't find entry for predecessor!");
1475 
1476     // If we have an available predecessor but it requires casting, insert the
1477     // cast in the predecessor and use the cast. Note that we have to update the
1478     // AvailablePreds vector as we go so that all of the PHI entries for this
1479     // predecessor use the same bitcast.
1480     Value *&PredV = I->second;
1481     if (PredV->getType() != LoadI->getType())
1482       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1483                                                P->getTerminator());
1484 
1485     PN->addIncoming(PredV, I->first);
1486   }
1487 
1488   for (LoadInst *PredLoadI : CSELoads) {
1489     combineMetadataForCSE(PredLoadI, LoadI);
1490   }
1491 
1492   LoadI->replaceAllUsesWith(PN);
1493   LoadI->eraseFromParent();
1494 
1495   return true;
1496 }
1497 
1498 /// FindMostPopularDest - The specified list contains multiple possible
1499 /// threadable destinations.  Pick the one that occurs the most frequently in
1500 /// the list.
1501 static BasicBlock *
1502 FindMostPopularDest(BasicBlock *BB,
1503                     const SmallVectorImpl<std::pair<BasicBlock *,
1504                                           BasicBlock *>> &PredToDestList) {
1505   assert(!PredToDestList.empty());
1506 
1507   // Determine popularity.  If there are multiple possible destinations, we
1508   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1509   // blocks with known and real destinations to threading undef.  We'll handle
1510   // them later if interesting.
1511   DenseMap<BasicBlock*, unsigned> DestPopularity;
1512   for (const auto &PredToDest : PredToDestList)
1513     if (PredToDest.second)
1514       DestPopularity[PredToDest.second]++;
1515 
1516   if (DestPopularity.empty())
1517     return nullptr;
1518 
1519   // Find the most popular dest.
1520   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1521   BasicBlock *MostPopularDest = DPI->first;
1522   unsigned Popularity = DPI->second;
1523   SmallVector<BasicBlock*, 4> SamePopularity;
1524 
1525   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1526     // If the popularity of this entry isn't higher than the popularity we've
1527     // seen so far, ignore it.
1528     if (DPI->second < Popularity)
1529       ; // ignore.
1530     else if (DPI->second == Popularity) {
1531       // If it is the same as what we've seen so far, keep track of it.
1532       SamePopularity.push_back(DPI->first);
1533     } else {
1534       // If it is more popular, remember it.
1535       SamePopularity.clear();
1536       MostPopularDest = DPI->first;
1537       Popularity = DPI->second;
1538     }
1539   }
1540 
1541   // Okay, now we know the most popular destination.  If there is more than one
1542   // destination, we need to determine one.  This is arbitrary, but we need
1543   // to make a deterministic decision.  Pick the first one that appears in the
1544   // successor list.
1545   if (!SamePopularity.empty()) {
1546     SamePopularity.push_back(MostPopularDest);
1547     TerminatorInst *TI = BB->getTerminator();
1548     for (unsigned i = 0; ; ++i) {
1549       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1550 
1551       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1552         continue;
1553 
1554       MostPopularDest = TI->getSuccessor(i);
1555       break;
1556     }
1557   }
1558 
1559   // Okay, we have finally picked the most popular destination.
1560   return MostPopularDest;
1561 }
1562 
1563 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1564                                                ConstantPreference Preference,
1565                                                Instruction *CxtI) {
1566   // If threading this would thread across a loop header, don't even try to
1567   // thread the edge.
1568   if (LoopHeaders.count(BB))
1569     return false;
1570 
1571   PredValueInfoTy PredValues;
1572   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1573     return false;
1574 
1575   assert(!PredValues.empty() &&
1576          "ComputeValueKnownInPredecessors returned true with no values");
1577 
1578   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1579              for (const auto &PredValue : PredValues) {
1580                dbgs() << "  BB '" << BB->getName()
1581                       << "': FOUND condition = " << *PredValue.first
1582                       << " for pred '" << PredValue.second->getName() << "'.\n";
1583   });
1584 
1585   // Decide what we want to thread through.  Convert our list of known values to
1586   // a list of known destinations for each pred.  This also discards duplicate
1587   // predecessors and keeps track of the undefined inputs (which are represented
1588   // as a null dest in the PredToDestList).
1589   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1590   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1591 
1592   BasicBlock *OnlyDest = nullptr;
1593   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1594   Constant *OnlyVal = nullptr;
1595   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1596 
1597   unsigned PredWithKnownDest = 0;
1598   for (const auto &PredValue : PredValues) {
1599     BasicBlock *Pred = PredValue.second;
1600     if (!SeenPreds.insert(Pred).second)
1601       continue;  // Duplicate predecessor entry.
1602 
1603     Constant *Val = PredValue.first;
1604 
1605     BasicBlock *DestBB;
1606     if (isa<UndefValue>(Val))
1607       DestBB = nullptr;
1608     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1609       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1610       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1611     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1612       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1613       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1614     } else {
1615       assert(isa<IndirectBrInst>(BB->getTerminator())
1616               && "Unexpected terminator");
1617       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1618       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1619     }
1620 
1621     // If we have exactly one destination, remember it for efficiency below.
1622     if (PredToDestList.empty()) {
1623       OnlyDest = DestBB;
1624       OnlyVal = Val;
1625     } else {
1626       if (OnlyDest != DestBB)
1627         OnlyDest = MultipleDestSentinel;
1628       // It possible we have same destination, but different value, e.g. default
1629       // case in switchinst.
1630       if (Val != OnlyVal)
1631         OnlyVal = MultipleVal;
1632     }
1633 
1634     // We know where this predecessor is going.
1635     ++PredWithKnownDest;
1636 
1637     // If the predecessor ends with an indirect goto, we can't change its
1638     // destination.
1639     if (isa<IndirectBrInst>(Pred->getTerminator()))
1640       continue;
1641 
1642     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1643   }
1644 
1645   // If all edges were unthreadable, we fail.
1646   if (PredToDestList.empty())
1647     return false;
1648 
1649   // If all the predecessors go to a single known successor, we want to fold,
1650   // not thread. By doing so, we do not need to duplicate the current block and
1651   // also miss potential opportunities in case we dont/cant duplicate.
1652   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1653     if (PredWithKnownDest == (size_t)pred_size(BB)) {
1654       bool SeenFirstBranchToOnlyDest = false;
1655       std::vector <DominatorTree::UpdateType> Updates;
1656       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1657       for (BasicBlock *SuccBB : successors(BB)) {
1658         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1659           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1660         } else {
1661           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1662           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1663         }
1664       }
1665 
1666       // Finally update the terminator.
1667       TerminatorInst *Term = BB->getTerminator();
1668       BranchInst::Create(OnlyDest, Term);
1669       Term->eraseFromParent();
1670       DDT->applyUpdates(Updates);
1671 
1672       // If the condition is now dead due to the removal of the old terminator,
1673       // erase it.
1674       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1675         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1676           CondInst->eraseFromParent();
1677         // We can safely replace *some* uses of the CondInst if it has
1678         // exactly one value as returned by LVI. RAUW is incorrect in the
1679         // presence of guards and assumes, that have the `Cond` as the use. This
1680         // is because we use the guards/assume to reason about the `Cond` value
1681         // at the end of block, but RAUW unconditionally replaces all uses
1682         // including the guards/assumes themselves and the uses before the
1683         // guard/assume.
1684         else if (OnlyVal && OnlyVal != MultipleVal &&
1685                  CondInst->getParent() == BB)
1686           ReplaceFoldableUses(CondInst, OnlyVal);
1687       }
1688       return true;
1689     }
1690   }
1691 
1692   // Determine which is the most common successor.  If we have many inputs and
1693   // this block is a switch, we want to start by threading the batch that goes
1694   // to the most popular destination first.  If we only know about one
1695   // threadable destination (the common case) we can avoid this.
1696   BasicBlock *MostPopularDest = OnlyDest;
1697 
1698   if (MostPopularDest == MultipleDestSentinel) {
1699     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1700     // won't process them, but we might have other destination that are eligible
1701     // and we still want to process.
1702     erase_if(PredToDestList,
1703              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1704                return LoopHeaders.count(PredToDest.second) != 0;
1705              });
1706 
1707     if (PredToDestList.empty())
1708       return false;
1709 
1710     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1711   }
1712 
1713   // Now that we know what the most popular destination is, factor all
1714   // predecessors that will jump to it into a single predecessor.
1715   SmallVector<BasicBlock*, 16> PredsToFactor;
1716   for (const auto &PredToDest : PredToDestList)
1717     if (PredToDest.second == MostPopularDest) {
1718       BasicBlock *Pred = PredToDest.first;
1719 
1720       // This predecessor may be a switch or something else that has multiple
1721       // edges to the block.  Factor each of these edges by listing them
1722       // according to # occurrences in PredsToFactor.
1723       for (BasicBlock *Succ : successors(Pred))
1724         if (Succ == BB)
1725           PredsToFactor.push_back(Pred);
1726     }
1727 
1728   // If the threadable edges are branching on an undefined value, we get to pick
1729   // the destination that these predecessors should get to.
1730   if (!MostPopularDest)
1731     MostPopularDest = BB->getTerminator()->
1732                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1733 
1734   // Ok, try to thread it!
1735   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1736 }
1737 
1738 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1739 /// a PHI node in the current block.  See if there are any simplifications we
1740 /// can do based on inputs to the phi node.
1741 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1742   BasicBlock *BB = PN->getParent();
1743 
1744   // TODO: We could make use of this to do it once for blocks with common PHI
1745   // values.
1746   SmallVector<BasicBlock*, 1> PredBBs;
1747   PredBBs.resize(1);
1748 
1749   // If any of the predecessor blocks end in an unconditional branch, we can
1750   // *duplicate* the conditional branch into that block in order to further
1751   // encourage jump threading and to eliminate cases where we have branch on a
1752   // phi of an icmp (branch on icmp is much better).
1753   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1754     BasicBlock *PredBB = PN->getIncomingBlock(i);
1755     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1756       if (PredBr->isUnconditional()) {
1757         PredBBs[0] = PredBB;
1758         // Try to duplicate BB into PredBB.
1759         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1760           return true;
1761       }
1762   }
1763 
1764   return false;
1765 }
1766 
1767 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1768 /// a xor instruction in the current block.  See if there are any
1769 /// simplifications we can do based on inputs to the xor.
1770 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1771   BasicBlock *BB = BO->getParent();
1772 
1773   // If either the LHS or RHS of the xor is a constant, don't do this
1774   // optimization.
1775   if (isa<ConstantInt>(BO->getOperand(0)) ||
1776       isa<ConstantInt>(BO->getOperand(1)))
1777     return false;
1778 
1779   // If the first instruction in BB isn't a phi, we won't be able to infer
1780   // anything special about any particular predecessor.
1781   if (!isa<PHINode>(BB->front()))
1782     return false;
1783 
1784   // If this BB is a landing pad, we won't be able to split the edge into it.
1785   if (BB->isEHPad())
1786     return false;
1787 
1788   // If we have a xor as the branch input to this block, and we know that the
1789   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1790   // the condition into the predecessor and fix that value to true, saving some
1791   // logical ops on that path and encouraging other paths to simplify.
1792   //
1793   // This copies something like this:
1794   //
1795   //  BB:
1796   //    %X = phi i1 [1],  [%X']
1797   //    %Y = icmp eq i32 %A, %B
1798   //    %Z = xor i1 %X, %Y
1799   //    br i1 %Z, ...
1800   //
1801   // Into:
1802   //  BB':
1803   //    %Y = icmp ne i32 %A, %B
1804   //    br i1 %Y, ...
1805 
1806   PredValueInfoTy XorOpValues;
1807   bool isLHS = true;
1808   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1809                                        WantInteger, BO)) {
1810     assert(XorOpValues.empty());
1811     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1812                                          WantInteger, BO))
1813       return false;
1814     isLHS = false;
1815   }
1816 
1817   assert(!XorOpValues.empty() &&
1818          "ComputeValueKnownInPredecessors returned true with no values");
1819 
1820   // Scan the information to see which is most popular: true or false.  The
1821   // predecessors can be of the set true, false, or undef.
1822   unsigned NumTrue = 0, NumFalse = 0;
1823   for (const auto &XorOpValue : XorOpValues) {
1824     if (isa<UndefValue>(XorOpValue.first))
1825       // Ignore undefs for the count.
1826       continue;
1827     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1828       ++NumFalse;
1829     else
1830       ++NumTrue;
1831   }
1832 
1833   // Determine which value to split on, true, false, or undef if neither.
1834   ConstantInt *SplitVal = nullptr;
1835   if (NumTrue > NumFalse)
1836     SplitVal = ConstantInt::getTrue(BB->getContext());
1837   else if (NumTrue != 0 || NumFalse != 0)
1838     SplitVal = ConstantInt::getFalse(BB->getContext());
1839 
1840   // Collect all of the blocks that this can be folded into so that we can
1841   // factor this once and clone it once.
1842   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1843   for (const auto &XorOpValue : XorOpValues) {
1844     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1845       continue;
1846 
1847     BlocksToFoldInto.push_back(XorOpValue.second);
1848   }
1849 
1850   // If we inferred a value for all of the predecessors, then duplication won't
1851   // help us.  However, we can just replace the LHS or RHS with the constant.
1852   if (BlocksToFoldInto.size() ==
1853       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1854     if (!SplitVal) {
1855       // If all preds provide undef, just nuke the xor, because it is undef too.
1856       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1857       BO->eraseFromParent();
1858     } else if (SplitVal->isZero()) {
1859       // If all preds provide 0, replace the xor with the other input.
1860       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1861       BO->eraseFromParent();
1862     } else {
1863       // If all preds provide 1, set the computed value to 1.
1864       BO->setOperand(!isLHS, SplitVal);
1865     }
1866 
1867     return true;
1868   }
1869 
1870   // Try to duplicate BB into PredBB.
1871   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1872 }
1873 
1874 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1875 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1876 /// NewPred using the entries from OldPred (suitably mapped).
1877 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1878                                             BasicBlock *OldPred,
1879                                             BasicBlock *NewPred,
1880                                      DenseMap<Instruction*, Value*> &ValueMap) {
1881   for (PHINode &PN : PHIBB->phis()) {
1882     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1883     // DestBlock.
1884     Value *IV = PN.getIncomingValueForBlock(OldPred);
1885 
1886     // Remap the value if necessary.
1887     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1888       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1889       if (I != ValueMap.end())
1890         IV = I->second;
1891     }
1892 
1893     PN.addIncoming(IV, NewPred);
1894   }
1895 }
1896 
1897 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1898 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1899 /// across BB.  Transform the IR to reflect this change.
1900 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1901                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1902                                    BasicBlock *SuccBB) {
1903   // If threading to the same block as we come from, we would infinite loop.
1904   if (SuccBB == BB) {
1905     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1906                       << "' - would thread to self!\n");
1907     return false;
1908   }
1909 
1910   // If threading this would thread across a loop header, don't thread the edge.
1911   // See the comments above FindLoopHeaders for justifications and caveats.
1912   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1913     LLVM_DEBUG({
1914       bool BBIsHeader = LoopHeaders.count(BB);
1915       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1916       dbgs() << "  Not threading across "
1917           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1918           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1919           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1920     });
1921     return false;
1922   }
1923 
1924   unsigned JumpThreadCost =
1925       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1926   if (JumpThreadCost > BBDupThreshold) {
1927     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1928                       << "' - Cost is too high: " << JumpThreadCost << "\n");
1929     return false;
1930   }
1931 
1932   // And finally, do it!  Start by factoring the predecessors if needed.
1933   BasicBlock *PredBB;
1934   if (PredBBs.size() == 1)
1935     PredBB = PredBBs[0];
1936   else {
1937     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1938                       << " common predecessors.\n");
1939     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1940   }
1941 
1942   // And finally, do it!
1943   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
1944                     << "' to '" << SuccBB->getName()
1945                     << "' with cost: " << JumpThreadCost
1946                     << ", across block:\n    " << *BB << "\n");
1947 
1948   if (DDT->pending())
1949     LVI->disableDT();
1950   else
1951     LVI->enableDT();
1952   LVI->threadEdge(PredBB, BB, SuccBB);
1953 
1954   // We are going to have to map operands from the original BB block to the new
1955   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1956   // account for entry from PredBB.
1957   DenseMap<Instruction*, Value*> ValueMapping;
1958 
1959   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1960                                          BB->getName()+".thread",
1961                                          BB->getParent(), BB);
1962   NewBB->moveAfter(PredBB);
1963 
1964   // Set the block frequency of NewBB.
1965   if (HasProfileData) {
1966     auto NewBBFreq =
1967         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1968     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1969   }
1970 
1971   BasicBlock::iterator BI = BB->begin();
1972   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1973     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1974 
1975   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1976   // mapping and using it to remap operands in the cloned instructions.
1977   for (; !isa<TerminatorInst>(BI); ++BI) {
1978     Instruction *New = BI->clone();
1979     New->setName(BI->getName());
1980     NewBB->getInstList().push_back(New);
1981     ValueMapping[&*BI] = New;
1982 
1983     // Remap operands to patch up intra-block references.
1984     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1985       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1986         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1987         if (I != ValueMapping.end())
1988           New->setOperand(i, I->second);
1989       }
1990   }
1991 
1992   // We didn't copy the terminator from BB over to NewBB, because there is now
1993   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1994   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1995   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1996 
1997   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1998   // PHI nodes for NewBB now.
1999   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2000 
2001   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2002   // eliminates predecessors from BB, which requires us to simplify any PHI
2003   // nodes in BB.
2004   TerminatorInst *PredTerm = PredBB->getTerminator();
2005   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2006     if (PredTerm->getSuccessor(i) == BB) {
2007       BB->removePredecessor(PredBB, true);
2008       PredTerm->setSuccessor(i, NewBB);
2009     }
2010 
2011   // Enqueue required DT updates.
2012   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2013                      {DominatorTree::Insert, PredBB, NewBB},
2014                      {DominatorTree::Delete, PredBB, BB}});
2015 
2016   // If there were values defined in BB that are used outside the block, then we
2017   // now have to update all uses of the value to use either the original value,
2018   // the cloned value, or some PHI derived value.  This can require arbitrary
2019   // PHI insertion, of which we are prepared to do, clean these up now.
2020   SSAUpdater SSAUpdate;
2021   SmallVector<Use*, 16> UsesToRename;
2022 
2023   for (Instruction &I : *BB) {
2024     // Scan all uses of this instruction to see if their uses are no longer
2025     // dominated by the previous def and if so, record them in UsesToRename.
2026     // Also, skip phi operands from PredBB - we'll remove them anyway.
2027     for (Use &U : I.uses()) {
2028       Instruction *User = cast<Instruction>(U.getUser());
2029       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2030         if (UserPN->getIncomingBlock(U) == BB)
2031           continue;
2032       } else if (User->getParent() == BB)
2033         continue;
2034 
2035       UsesToRename.push_back(&U);
2036     }
2037 
2038     // If there are no uses outside the block, we're done with this instruction.
2039     if (UsesToRename.empty())
2040       continue;
2041     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2042 
2043     // We found a use of I outside of BB.  Rename all uses of I that are outside
2044     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2045     // with the two values we know.
2046     SSAUpdate.Initialize(I.getType(), I.getName());
2047     SSAUpdate.AddAvailableValue(BB, &I);
2048     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2049 
2050     while (!UsesToRename.empty())
2051       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2052     LLVM_DEBUG(dbgs() << "\n");
2053   }
2054 
2055   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2056   // over the new instructions and zap any that are constants or dead.  This
2057   // frequently happens because of phi translation.
2058   SimplifyInstructionsInBlock(NewBB, TLI);
2059 
2060   // Update the edge weight from BB to SuccBB, which should be less than before.
2061   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2062 
2063   // Threaded an edge!
2064   ++NumThreads;
2065   return true;
2066 }
2067 
2068 /// Create a new basic block that will be the predecessor of BB and successor of
2069 /// all blocks in Preds. When profile data is available, update the frequency of
2070 /// this new block.
2071 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2072                                                ArrayRef<BasicBlock *> Preds,
2073                                                const char *Suffix) {
2074   SmallVector<BasicBlock *, 2> NewBBs;
2075 
2076   // Collect the frequencies of all predecessors of BB, which will be used to
2077   // update the edge weight of the result of splitting predecessors.
2078   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2079   if (HasProfileData)
2080     for (auto Pred : Preds)
2081       FreqMap.insert(std::make_pair(
2082           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2083 
2084   // In the case when BB is a LandingPad block we create 2 new predecessors
2085   // instead of just one.
2086   if (BB->isLandingPad()) {
2087     std::string NewName = std::string(Suffix) + ".split-lp";
2088     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2089   } else {
2090     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2091   }
2092 
2093   std::vector<DominatorTree::UpdateType> Updates;
2094   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2095   for (auto NewBB : NewBBs) {
2096     BlockFrequency NewBBFreq(0);
2097     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2098     for (auto Pred : predecessors(NewBB)) {
2099       Updates.push_back({DominatorTree::Delete, Pred, BB});
2100       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2101       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2102         NewBBFreq += FreqMap.lookup(Pred);
2103     }
2104     if (HasProfileData) // Apply the summed frequency to NewBB.
2105       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2106   }
2107 
2108   DDT->applyUpdates(Updates);
2109   return NewBBs[0];
2110 }
2111 
2112 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2113   const TerminatorInst *TI = BB->getTerminator();
2114   assert(TI->getNumSuccessors() > 1 && "not a split");
2115 
2116   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2117   if (!WeightsNode)
2118     return false;
2119 
2120   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2121   if (MDName->getString() != "branch_weights")
2122     return false;
2123 
2124   // Ensure there are weights for all of the successors. Note that the first
2125   // operand to the metadata node is a name, not a weight.
2126   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2127 }
2128 
2129 /// Update the block frequency of BB and branch weight and the metadata on the
2130 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2131 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2132 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2133                                                      BasicBlock *BB,
2134                                                      BasicBlock *NewBB,
2135                                                      BasicBlock *SuccBB) {
2136   if (!HasProfileData)
2137     return;
2138 
2139   assert(BFI && BPI && "BFI & BPI should have been created here");
2140 
2141   // As the edge from PredBB to BB is deleted, we have to update the block
2142   // frequency of BB.
2143   auto BBOrigFreq = BFI->getBlockFreq(BB);
2144   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2145   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2146   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2147   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2148 
2149   // Collect updated outgoing edges' frequencies from BB and use them to update
2150   // edge probabilities.
2151   SmallVector<uint64_t, 4> BBSuccFreq;
2152   for (BasicBlock *Succ : successors(BB)) {
2153     auto SuccFreq = (Succ == SuccBB)
2154                         ? BB2SuccBBFreq - NewBBFreq
2155                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2156     BBSuccFreq.push_back(SuccFreq.getFrequency());
2157   }
2158 
2159   uint64_t MaxBBSuccFreq =
2160       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2161 
2162   SmallVector<BranchProbability, 4> BBSuccProbs;
2163   if (MaxBBSuccFreq == 0)
2164     BBSuccProbs.assign(BBSuccFreq.size(),
2165                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2166   else {
2167     for (uint64_t Freq : BBSuccFreq)
2168       BBSuccProbs.push_back(
2169           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2170     // Normalize edge probabilities so that they sum up to one.
2171     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2172                                               BBSuccProbs.end());
2173   }
2174 
2175   // Update edge probabilities in BPI.
2176   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2177     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2178 
2179   // Update the profile metadata as well.
2180   //
2181   // Don't do this if the profile of the transformed blocks was statically
2182   // estimated.  (This could occur despite the function having an entry
2183   // frequency in completely cold parts of the CFG.)
2184   //
2185   // In this case we don't want to suggest to subsequent passes that the
2186   // calculated weights are fully consistent.  Consider this graph:
2187   //
2188   //                 check_1
2189   //             50% /  |
2190   //             eq_1   | 50%
2191   //                 \  |
2192   //                 check_2
2193   //             50% /  |
2194   //             eq_2   | 50%
2195   //                 \  |
2196   //                 check_3
2197   //             50% /  |
2198   //             eq_3   | 50%
2199   //                 \  |
2200   //
2201   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2202   // the overall probabilities are inconsistent; the total probability that the
2203   // value is either 1, 2 or 3 is 150%.
2204   //
2205   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2206   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2207   // the loop exit edge.  Then based solely on static estimation we would assume
2208   // the loop was extremely hot.
2209   //
2210   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2211   // shouldn't make edges extremely likely or unlikely based solely on static
2212   // estimation.
2213   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2214     SmallVector<uint32_t, 4> Weights;
2215     for (auto Prob : BBSuccProbs)
2216       Weights.push_back(Prob.getNumerator());
2217 
2218     auto TI = BB->getTerminator();
2219     TI->setMetadata(
2220         LLVMContext::MD_prof,
2221         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2222   }
2223 }
2224 
2225 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2226 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2227 /// If we can duplicate the contents of BB up into PredBB do so now, this
2228 /// improves the odds that the branch will be on an analyzable instruction like
2229 /// a compare.
2230 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2231     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2232   assert(!PredBBs.empty() && "Can't handle an empty set");
2233 
2234   // If BB is a loop header, then duplicating this block outside the loop would
2235   // cause us to transform this into an irreducible loop, don't do this.
2236   // See the comments above FindLoopHeaders for justifications and caveats.
2237   if (LoopHeaders.count(BB)) {
2238     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2239                       << "' into predecessor block '" << PredBBs[0]->getName()
2240                       << "' - it might create an irreducible loop!\n");
2241     return false;
2242   }
2243 
2244   unsigned DuplicationCost =
2245       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2246   if (DuplicationCost > BBDupThreshold) {
2247     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2248                       << "' - Cost is too high: " << DuplicationCost << "\n");
2249     return false;
2250   }
2251 
2252   // And finally, do it!  Start by factoring the predecessors if needed.
2253   std::vector<DominatorTree::UpdateType> Updates;
2254   BasicBlock *PredBB;
2255   if (PredBBs.size() == 1)
2256     PredBB = PredBBs[0];
2257   else {
2258     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2259                       << " common predecessors.\n");
2260     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2261   }
2262   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2263 
2264   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2265   // of PredBB.
2266   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2267                     << "' into end of '" << PredBB->getName()
2268                     << "' to eliminate branch on phi.  Cost: "
2269                     << DuplicationCost << " block is:" << *BB << "\n");
2270 
2271   // Unless PredBB ends with an unconditional branch, split the edge so that we
2272   // can just clone the bits from BB into the end of the new PredBB.
2273   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2274 
2275   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2276     BasicBlock *OldPredBB = PredBB;
2277     PredBB = SplitEdge(OldPredBB, BB);
2278     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2279     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2280     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2281     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2282   }
2283 
2284   // We are going to have to map operands from the original BB block into the
2285   // PredBB block.  Evaluate PHI nodes in BB.
2286   DenseMap<Instruction*, Value*> ValueMapping;
2287 
2288   BasicBlock::iterator BI = BB->begin();
2289   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2290     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2291   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2292   // mapping and using it to remap operands in the cloned instructions.
2293   for (; BI != BB->end(); ++BI) {
2294     Instruction *New = BI->clone();
2295 
2296     // Remap operands to patch up intra-block references.
2297     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2298       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2299         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2300         if (I != ValueMapping.end())
2301           New->setOperand(i, I->second);
2302       }
2303 
2304     // If this instruction can be simplified after the operands are updated,
2305     // just use the simplified value instead.  This frequently happens due to
2306     // phi translation.
2307     if (Value *IV = SimplifyInstruction(
2308             New,
2309             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2310       ValueMapping[&*BI] = IV;
2311       if (!New->mayHaveSideEffects()) {
2312         New->deleteValue();
2313         New = nullptr;
2314       }
2315     } else {
2316       ValueMapping[&*BI] = New;
2317     }
2318     if (New) {
2319       // Otherwise, insert the new instruction into the block.
2320       New->setName(BI->getName());
2321       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2322       // Update Dominance from simplified New instruction operands.
2323       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2324         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2325           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2326     }
2327   }
2328 
2329   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2330   // add entries to the PHI nodes for branch from PredBB now.
2331   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2332   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2333                                   ValueMapping);
2334   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2335                                   ValueMapping);
2336 
2337   // If there were values defined in BB that are used outside the block, then we
2338   // now have to update all uses of the value to use either the original value,
2339   // the cloned value, or some PHI derived value.  This can require arbitrary
2340   // PHI insertion, of which we are prepared to do, clean these up now.
2341   SSAUpdater SSAUpdate;
2342   SmallVector<Use*, 16> UsesToRename;
2343   for (Instruction &I : *BB) {
2344     // Scan all uses of this instruction to see if it is used outside of its
2345     // block, and if so, record them in UsesToRename.
2346     for (Use &U : I.uses()) {
2347       Instruction *User = cast<Instruction>(U.getUser());
2348       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2349         if (UserPN->getIncomingBlock(U) == BB)
2350           continue;
2351       } else if (User->getParent() == BB)
2352         continue;
2353 
2354       UsesToRename.push_back(&U);
2355     }
2356 
2357     // If there are no uses outside the block, we're done with this instruction.
2358     if (UsesToRename.empty())
2359       continue;
2360 
2361     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2362 
2363     // We found a use of I outside of BB.  Rename all uses of I that are outside
2364     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2365     // with the two values we know.
2366     SSAUpdate.Initialize(I.getType(), I.getName());
2367     SSAUpdate.AddAvailableValue(BB, &I);
2368     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2369 
2370     while (!UsesToRename.empty())
2371       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2372     LLVM_DEBUG(dbgs() << "\n");
2373   }
2374 
2375   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2376   // that we nuked.
2377   BB->removePredecessor(PredBB, true);
2378 
2379   // Remove the unconditional branch at the end of the PredBB block.
2380   OldPredBranch->eraseFromParent();
2381   DDT->applyUpdates(Updates);
2382 
2383   ++NumDupes;
2384   return true;
2385 }
2386 
2387 /// TryToUnfoldSelect - Look for blocks of the form
2388 /// bb1:
2389 ///   %a = select
2390 ///   br bb2
2391 ///
2392 /// bb2:
2393 ///   %p = phi [%a, %bb1] ...
2394 ///   %c = icmp %p
2395 ///   br i1 %c
2396 ///
2397 /// And expand the select into a branch structure if one of its arms allows %c
2398 /// to be folded. This later enables threading from bb1 over bb2.
2399 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2400   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2401   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2402   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2403 
2404   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2405       CondLHS->getParent() != BB)
2406     return false;
2407 
2408   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2409     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2410     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2411 
2412     // Look if one of the incoming values is a select in the corresponding
2413     // predecessor.
2414     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2415       continue;
2416 
2417     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2418     if (!PredTerm || !PredTerm->isUnconditional())
2419       continue;
2420 
2421     // Now check if one of the select values would allow us to constant fold the
2422     // terminator in BB. We don't do the transform if both sides fold, those
2423     // cases will be threaded in any case.
2424     if (DDT->pending())
2425       LVI->disableDT();
2426     else
2427       LVI->enableDT();
2428     LazyValueInfo::Tristate LHSFolds =
2429         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2430                                 CondRHS, Pred, BB, CondCmp);
2431     LazyValueInfo::Tristate RHSFolds =
2432         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2433                                 CondRHS, Pred, BB, CondCmp);
2434     if ((LHSFolds != LazyValueInfo::Unknown ||
2435          RHSFolds != LazyValueInfo::Unknown) &&
2436         LHSFolds != RHSFolds) {
2437       // Expand the select.
2438       //
2439       // Pred --
2440       //  |    v
2441       //  |  NewBB
2442       //  |    |
2443       //  |-----
2444       //  v
2445       // BB
2446       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2447                                              BB->getParent(), BB);
2448       // Move the unconditional branch to NewBB.
2449       PredTerm->removeFromParent();
2450       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2451       // Create a conditional branch and update PHI nodes.
2452       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2453       CondLHS->setIncomingValue(I, SI->getFalseValue());
2454       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2455       // The select is now dead.
2456       SI->eraseFromParent();
2457 
2458       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2459                          {DominatorTree::Insert, Pred, NewBB}});
2460       // Update any other PHI nodes in BB.
2461       for (BasicBlock::iterator BI = BB->begin();
2462            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2463         if (Phi != CondLHS)
2464           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2465       return true;
2466     }
2467   }
2468   return false;
2469 }
2470 
2471 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2472 /// same BB in the form
2473 /// bb:
2474 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2475 ///   %s = select %p, trueval, falseval
2476 ///
2477 /// or
2478 ///
2479 /// bb:
2480 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2481 ///   %c = cmp %p, 0
2482 ///   %s = select %c, trueval, falseval
2483 ///
2484 /// And expand the select into a branch structure. This later enables
2485 /// jump-threading over bb in this pass.
2486 ///
2487 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2488 /// select if the associated PHI has at least one constant.  If the unfolded
2489 /// select is not jump-threaded, it will be folded again in the later
2490 /// optimizations.
2491 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2492   // If threading this would thread across a loop header, don't thread the edge.
2493   // See the comments above FindLoopHeaders for justifications and caveats.
2494   if (LoopHeaders.count(BB))
2495     return false;
2496 
2497   for (BasicBlock::iterator BI = BB->begin();
2498        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2499     // Look for a Phi having at least one constant incoming value.
2500     if (llvm::all_of(PN->incoming_values(),
2501                      [](Value *V) { return !isa<ConstantInt>(V); }))
2502       continue;
2503 
2504     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2505       // Check if SI is in BB and use V as condition.
2506       if (SI->getParent() != BB)
2507         return false;
2508       Value *Cond = SI->getCondition();
2509       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2510     };
2511 
2512     SelectInst *SI = nullptr;
2513     for (Use &U : PN->uses()) {
2514       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2515         // Look for a ICmp in BB that compares PN with a constant and is the
2516         // condition of a Select.
2517         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2518             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2519           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2520             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2521               SI = SelectI;
2522               break;
2523             }
2524       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2525         // Look for a Select in BB that uses PN as condition.
2526         if (isUnfoldCandidate(SelectI, U.get())) {
2527           SI = SelectI;
2528           break;
2529         }
2530       }
2531     }
2532 
2533     if (!SI)
2534       continue;
2535     // Expand the select.
2536     TerminatorInst *Term =
2537         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2538     BasicBlock *SplitBB = SI->getParent();
2539     BasicBlock *NewBB = Term->getParent();
2540     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2541     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2542     NewPN->addIncoming(SI->getFalseValue(), BB);
2543     SI->replaceAllUsesWith(NewPN);
2544     SI->eraseFromParent();
2545     // NewBB and SplitBB are newly created blocks which require insertion.
2546     std::vector<DominatorTree::UpdateType> Updates;
2547     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2548     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2549     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2550     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2551     // BB's successors were moved to SplitBB, update DDT accordingly.
2552     for (auto *Succ : successors(SplitBB)) {
2553       Updates.push_back({DominatorTree::Delete, BB, Succ});
2554       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2555     }
2556     DDT->applyUpdates(Updates);
2557     return true;
2558   }
2559   return false;
2560 }
2561 
2562 /// Try to propagate a guard from the current BB into one of its predecessors
2563 /// in case if another branch of execution implies that the condition of this
2564 /// guard is always true. Currently we only process the simplest case that
2565 /// looks like:
2566 ///
2567 /// Start:
2568 ///   %cond = ...
2569 ///   br i1 %cond, label %T1, label %F1
2570 /// T1:
2571 ///   br label %Merge
2572 /// F1:
2573 ///   br label %Merge
2574 /// Merge:
2575 ///   %condGuard = ...
2576 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2577 ///
2578 /// And cond either implies condGuard or !condGuard. In this case all the
2579 /// instructions before the guard can be duplicated in both branches, and the
2580 /// guard is then threaded to one of them.
2581 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2582   using namespace PatternMatch;
2583 
2584   // We only want to deal with two predecessors.
2585   BasicBlock *Pred1, *Pred2;
2586   auto PI = pred_begin(BB), PE = pred_end(BB);
2587   if (PI == PE)
2588     return false;
2589   Pred1 = *PI++;
2590   if (PI == PE)
2591     return false;
2592   Pred2 = *PI++;
2593   if (PI != PE)
2594     return false;
2595   if (Pred1 == Pred2)
2596     return false;
2597 
2598   // Try to thread one of the guards of the block.
2599   // TODO: Look up deeper than to immediate predecessor?
2600   auto *Parent = Pred1->getSinglePredecessor();
2601   if (!Parent || Parent != Pred2->getSinglePredecessor())
2602     return false;
2603 
2604   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2605     for (auto &I : *BB)
2606       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2607         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2608           return true;
2609 
2610   return false;
2611 }
2612 
2613 /// Try to propagate the guard from BB which is the lower block of a diamond
2614 /// to one of its branches, in case if diamond's condition implies guard's
2615 /// condition.
2616 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2617                                     BranchInst *BI) {
2618   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2619   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2620   Value *GuardCond = Guard->getArgOperand(0);
2621   Value *BranchCond = BI->getCondition();
2622   BasicBlock *TrueDest = BI->getSuccessor(0);
2623   BasicBlock *FalseDest = BI->getSuccessor(1);
2624 
2625   auto &DL = BB->getModule()->getDataLayout();
2626   bool TrueDestIsSafe = false;
2627   bool FalseDestIsSafe = false;
2628 
2629   // True dest is safe if BranchCond => GuardCond.
2630   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2631   if (Impl && *Impl)
2632     TrueDestIsSafe = true;
2633   else {
2634     // False dest is safe if !BranchCond => GuardCond.
2635     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2636     if (Impl && *Impl)
2637       FalseDestIsSafe = true;
2638   }
2639 
2640   if (!TrueDestIsSafe && !FalseDestIsSafe)
2641     return false;
2642 
2643   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2644   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2645 
2646   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2647   Instruction *AfterGuard = Guard->getNextNode();
2648   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2649   if (Cost > BBDupThreshold)
2650     return false;
2651   // Duplicate all instructions before the guard and the guard itself to the
2652   // branch where implication is not proved.
2653   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2654       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2655   assert(GuardedBlock && "Could not create the guarded block?");
2656   // Duplicate all instructions before the guard in the unguarded branch.
2657   // Since we have successfully duplicated the guarded block and this block
2658   // has fewer instructions, we expect it to succeed.
2659   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2660       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2661   assert(UnguardedBlock && "Could not create the unguarded block?");
2662   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2663                     << GuardedBlock->getName() << "\n");
2664   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2665   // PredBB and BB. We need to perform two inserts and one delete for each of
2666   // the above calls to update Dominators.
2667   DDT->applyUpdates(
2668       {// Guarded block split.
2669        {DominatorTree::Delete, PredGuardedBlock, BB},
2670        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2671        {DominatorTree::Insert, GuardedBlock, BB},
2672        // Unguarded block split.
2673        {DominatorTree::Delete, PredUnguardedBlock, BB},
2674        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2675        {DominatorTree::Insert, UnguardedBlock, BB}});
2676   // Some instructions before the guard may still have uses. For them, we need
2677   // to create Phi nodes merging their copies in both guarded and unguarded
2678   // branches. Those instructions that have no uses can be just removed.
2679   SmallVector<Instruction *, 4> ToRemove;
2680   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2681     if (!isa<PHINode>(&*BI))
2682       ToRemove.push_back(&*BI);
2683 
2684   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2685   assert(InsertionPoint && "Empty block?");
2686   // Substitute with Phis & remove.
2687   for (auto *Inst : reverse(ToRemove)) {
2688     if (!Inst->use_empty()) {
2689       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2690       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2691       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2692       NewPN->insertBefore(InsertionPoint);
2693       Inst->replaceAllUsesWith(NewPN);
2694     }
2695     Inst->eraseFromParent();
2696   }
2697   return true;
2698 }
2699