1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/Dominators.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/PassManager.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/Pass.h"
58 #include "llvm/Support/BlockFrequency.h"
59 #include "llvm/Support/BranchProbability.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Scalar.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<DominatorTreeWrapperPass>();
135       AU.addPreserved<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<LazyValueInfoWrapperPass>();
139       AU.addPreserved<GlobalsAAWrapperPass>();
140       AU.addRequired<TargetLibraryInfoWrapperPass>();
141     }
142 
143     void releaseMemory() override { Impl.releaseMemory(); }
144   };
145 
146 } // end anonymous namespace
147 
148 char JumpThreading::ID = 0;
149 
150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
151                 "Jump Threading", false, false)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
156 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
157                 "Jump Threading", false, false)
158 
159 // Public interface to the Jump Threading pass
160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
161   return new JumpThreading(Threshold);
162 }
163 
164 JumpThreadingPass::JumpThreadingPass(int T) {
165   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
166 }
167 
168 // Update branch probability information according to conditional
169 // branch probablity. This is usually made possible for cloned branches
170 // in inline instances by the context specific profile in the caller.
171 // For instance,
172 //
173 //  [Block PredBB]
174 //  [Branch PredBr]
175 //  if (t) {
176 //     Block A;
177 //  } else {
178 //     Block B;
179 //  }
180 //
181 //  [Block BB]
182 //  cond = PN([true, %A], [..., %B]); // PHI node
183 //  [Branch CondBr]
184 //  if (cond) {
185 //    ...  // P(cond == true) = 1%
186 //  }
187 //
188 //  Here we know that when block A is taken, cond must be true, which means
189 //      P(cond == true | A) = 1
190 //
191 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
192 //                               P(cond == true | B) * P(B)
193 //  we get
194 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
195 //
196 //  which gives us:
197 //     P(A) <= P(c == true), i.e.
198 //     P(t == true) <= P(cond == true)
199 //
200 //  In other words, if we know P(cond == true), we know that P(t == true)
201 //  can not be greater than 1%.
202 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
203   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
204   if (!CondBr)
205     return;
206 
207   BranchProbability BP;
208   uint64_t TrueWeight, FalseWeight;
209   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
210     return;
211 
212   // Returns the outgoing edge of the dominating predecessor block
213   // that leads to the PhiNode's incoming block:
214   auto GetPredOutEdge =
215       [](BasicBlock *IncomingBB,
216          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
217     auto *PredBB = IncomingBB;
218     auto *SuccBB = PhiBB;
219     while (true) {
220       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
221       if (PredBr && PredBr->isConditional())
222         return {PredBB, SuccBB};
223       auto *SinglePredBB = PredBB->getSinglePredecessor();
224       if (!SinglePredBB)
225         return {nullptr, nullptr};
226       SuccBB = PredBB;
227       PredBB = SinglePredBB;
228     }
229   };
230 
231   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
232     Value *PhiOpnd = PN->getIncomingValue(i);
233     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
234 
235     if (!CI || !CI->getType()->isIntegerTy(1))
236       continue;
237 
238     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
239                             TrueWeight, TrueWeight + FalseWeight)
240                       : BranchProbability::getBranchProbability(
241                             FalseWeight, TrueWeight + FalseWeight));
242 
243     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
244     if (!PredOutEdge.first)
245       return;
246 
247     BasicBlock *PredBB = PredOutEdge.first;
248     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
249 
250     uint64_t PredTrueWeight, PredFalseWeight;
251     // FIXME: We currently only set the profile data when it is missing.
252     // With PGO, this can be used to refine even existing profile data with
253     // context information. This needs to be done after more performance
254     // testing.
255     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
256       continue;
257 
258     // We can not infer anything useful when BP >= 50%, because BP is the
259     // upper bound probability value.
260     if (BP >= BranchProbability(50, 100))
261       continue;
262 
263     SmallVector<uint32_t, 2> Weights;
264     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
265       Weights.push_back(BP.getNumerator());
266       Weights.push_back(BP.getCompl().getNumerator());
267     } else {
268       Weights.push_back(BP.getCompl().getNumerator());
269       Weights.push_back(BP.getNumerator());
270     }
271     PredBr->setMetadata(LLVMContext::MD_prof,
272                         MDBuilder(PredBr->getParent()->getContext())
273                             .createBranchWeights(Weights));
274   }
275 }
276 
277 /// runOnFunction - Toplevel algorithm.
278 bool JumpThreading::runOnFunction(Function &F) {
279   if (skipFunction(F))
280     return false;
281   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
282   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
283   // DT if it's available.
284   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
285   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
286   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
287   std::unique_ptr<BlockFrequencyInfo> BFI;
288   std::unique_ptr<BranchProbabilityInfo> BPI;
289   bool HasProfileData = F.getEntryCount().hasValue();
290   if (HasProfileData) {
291     LoopInfo LI{DominatorTree(F)};
292     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
293     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
294   }
295 
296   bool Changed = Impl.runImpl(F, TLI, LVI, AA, DT, HasProfileData,
297                               std::move(BFI), std::move(BPI));
298   if (PrintLVIAfterJumpThreading) {
299     dbgs() << "LVI for function '" << F.getName() << "':\n";
300     LVI->printLVI(F, *DT, dbgs());
301   }
302   return Changed;
303 }
304 
305 PreservedAnalyses JumpThreadingPass::run(Function &F,
306                                          FunctionAnalysisManager &AM) {
307   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
308   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
309   // DT if it's available.
310   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
311   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
312   auto &AA = AM.getResult<AAManager>(F);
313 
314   std::unique_ptr<BlockFrequencyInfo> BFI;
315   std::unique_ptr<BranchProbabilityInfo> BPI;
316   bool HasProfileData = F.getEntryCount().hasValue();
317   if (HasProfileData) {
318     LoopInfo LI{DominatorTree(F)};
319     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
320     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
321   }
322 
323   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DT, HasProfileData,
324                          std::move(BFI), std::move(BPI));
325 
326   if (!Changed)
327     return PreservedAnalyses::all();
328   PreservedAnalyses PA;
329   PA.preserve<GlobalsAA>();
330   PA.preserve<DominatorTreeAnalysis>();
331   PA.preserve<LazyValueAnalysis>();
332   return PA;
333 }
334 
335 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
336                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
337                                 DominatorTree *DT_, bool HasProfileData_,
338                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
339                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
340   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
341   TLI = TLI_;
342   LVI = LVI_;
343   AA = AA_;
344   DT = DT_;
345   BFI.reset();
346   BPI.reset();
347   // When profile data is available, we need to update edge weights after
348   // successful jump threading, which requires both BPI and BFI being available.
349   HasProfileData = HasProfileData_;
350   auto *GuardDecl = F.getParent()->getFunction(
351       Intrinsic::getName(Intrinsic::experimental_guard));
352   HasGuards = GuardDecl && !GuardDecl->use_empty();
353   if (HasProfileData) {
354     BPI = std::move(BPI_);
355     BFI = std::move(BFI_);
356   }
357 
358   // Remove unreachable blocks from function as they may result in infinite
359   // loop. We do threading if we found something profitable. Jump threading a
360   // branch can create other opportunities. If these opportunities form a cycle
361   // i.e. if any jump threading is undoing previous threading in the path, then
362   // we will loop forever. We take care of this issue by not jump threading for
363   // back edges. This works for normal cases but not for unreachable blocks as
364   // they may have cycle with no back edge.
365   bool EverChanged = false;
366   EverChanged |= removeUnreachableBlocks(F, LVI, DT);
367   FindLoopHeaders(F);
368 
369   bool Changed;
370   do {
371     Changed = false;
372     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
373       BasicBlock *BB = &*I;
374       // Thread all of the branches we can over this block.
375       while (ProcessBlock(BB))
376         Changed = true;
377 
378       ++I;
379 
380       // If the block is trivially dead, zap it.  This eliminates the successor
381       // edges which simplifies the CFG.
382       if (pred_empty(BB) &&
383           BB != &BB->getParent()->getEntryBlock()) {
384         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
385               << "' with terminator: " << *BB->getTerminator() << '\n');
386         LoopHeaders.erase(BB);
387         LVI->eraseBlock(BB);
388         DeleteDeadBlock(BB);
389         Changed = true;
390         continue;
391       }
392 
393       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
394 
395       // Can't thread an unconditional jump, but if the block is "almost
396       // empty", we can replace uses of it with uses of the successor and make
397       // this dead.
398       // We should not eliminate the loop header or latch either, because
399       // eliminating a loop header or latch might later prevent LoopSimplify
400       // from transforming nested loops into simplified form. We will rely on
401       // later passes in backend to clean up empty blocks.
402       if (BI && BI->isUnconditional() &&
403           BB != &BB->getParent()->getEntryBlock() &&
404           // If the terminator is the only non-phi instruction, try to nuke it.
405           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) &&
406           !LoopHeaders.count(BI->getSuccessor(0))) {
407         // FIXME: It is always conservatively correct to drop the info
408         // for a block even if it doesn't get erased.  This isn't totally
409         // awesome, but it allows us to use AssertingVH to prevent nasty
410         // dangling pointer issues within LazyValueInfo.
411         LVI->eraseBlock(BB);
412         if (TryToSimplifyUncondBranchFromEmptyBlock(BB, DT))
413           Changed = true;
414       }
415     }
416     EverChanged |= Changed;
417   } while (Changed);
418 
419   LoopHeaders.clear();
420   return EverChanged;
421 }
422 
423 // Replace uses of Cond with ToVal when safe to do so. If all uses are
424 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
425 // because we may incorrectly replace uses when guards/assumes are uses of
426 // of `Cond` and we used the guards/assume to reason about the `Cond` value
427 // at the end of block. RAUW unconditionally replaces all uses
428 // including the guards/assumes themselves and the uses before the
429 // guard/assume.
430 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
431   assert(Cond->getType() == ToVal->getType());
432   auto *BB = Cond->getParent();
433   // We can unconditionally replace all uses in non-local blocks (i.e. uses
434   // strictly dominated by BB), since LVI information is true from the
435   // terminator of BB.
436   replaceNonLocalUsesWith(Cond, ToVal);
437   for (Instruction &I : reverse(*BB)) {
438     // Reached the Cond whose uses we are trying to replace, so there are no
439     // more uses.
440     if (&I == Cond)
441       break;
442     // We only replace uses in instructions that are guaranteed to reach the end
443     // of BB, where we know Cond is ToVal.
444     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
445       break;
446     I.replaceUsesOfWith(Cond, ToVal);
447   }
448   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
449     Cond->eraseFromParent();
450 }
451 
452 /// Return the cost of duplicating a piece of this block from first non-phi
453 /// and before StopAt instruction to thread across it. Stop scanning the block
454 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
455 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
456                                              Instruction *StopAt,
457                                              unsigned Threshold) {
458   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
459   /// Ignore PHI nodes, these will be flattened when duplication happens.
460   BasicBlock::const_iterator I(BB->getFirstNonPHI());
461 
462   // FIXME: THREADING will delete values that are just used to compute the
463   // branch, so they shouldn't count against the duplication cost.
464 
465   unsigned Bonus = 0;
466   if (BB->getTerminator() == StopAt) {
467     // Threading through a switch statement is particularly profitable.  If this
468     // block ends in a switch, decrease its cost to make it more likely to
469     // happen.
470     if (isa<SwitchInst>(StopAt))
471       Bonus = 6;
472 
473     // The same holds for indirect branches, but slightly more so.
474     if (isa<IndirectBrInst>(StopAt))
475       Bonus = 8;
476   }
477 
478   // Bump the threshold up so the early exit from the loop doesn't skip the
479   // terminator-based Size adjustment at the end.
480   Threshold += Bonus;
481 
482   // Sum up the cost of each instruction until we get to the terminator.  Don't
483   // include the terminator because the copy won't include it.
484   unsigned Size = 0;
485   for (; &*I != StopAt; ++I) {
486 
487     // Stop scanning the block if we've reached the threshold.
488     if (Size > Threshold)
489       return Size;
490 
491     // Debugger intrinsics don't incur code size.
492     if (isa<DbgInfoIntrinsic>(I)) continue;
493 
494     // If this is a pointer->pointer bitcast, it is free.
495     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
496       continue;
497 
498     // Bail out if this instruction gives back a token type, it is not possible
499     // to duplicate it if it is used outside this BB.
500     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
501       return ~0U;
502 
503     // All other instructions count for at least one unit.
504     ++Size;
505 
506     // Calls are more expensive.  If they are non-intrinsic calls, we model them
507     // as having cost of 4.  If they are a non-vector intrinsic, we model them
508     // as having cost of 2 total, and if they are a vector intrinsic, we model
509     // them as having cost 1.
510     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
511       if (CI->cannotDuplicate() || CI->isConvergent())
512         // Blocks with NoDuplicate are modelled as having infinite cost, so they
513         // are never duplicated.
514         return ~0U;
515       else if (!isa<IntrinsicInst>(CI))
516         Size += 3;
517       else if (!CI->getType()->isVectorTy())
518         Size += 1;
519     }
520   }
521 
522   return Size > Bonus ? Size - Bonus : 0;
523 }
524 
525 /// FindLoopHeaders - We do not want jump threading to turn proper loop
526 /// structures into irreducible loops.  Doing this breaks up the loop nesting
527 /// hierarchy and pessimizes later transformations.  To prevent this from
528 /// happening, we first have to find the loop headers.  Here we approximate this
529 /// by finding targets of backedges in the CFG.
530 ///
531 /// Note that there definitely are cases when we want to allow threading of
532 /// edges across a loop header.  For example, threading a jump from outside the
533 /// loop (the preheader) to an exit block of the loop is definitely profitable.
534 /// It is also almost always profitable to thread backedges from within the loop
535 /// to exit blocks, and is often profitable to thread backedges to other blocks
536 /// within the loop (forming a nested loop).  This simple analysis is not rich
537 /// enough to track all of these properties and keep it up-to-date as the CFG
538 /// mutates, so we don't allow any of these transformations.
539 void JumpThreadingPass::FindLoopHeaders(Function &F) {
540   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
541   FindFunctionBackedges(F, Edges);
542 
543   for (const auto &Edge : Edges)
544     LoopHeaders.insert(Edge.second);
545 }
546 
547 /// getKnownConstant - Helper method to determine if we can thread over a
548 /// terminator with the given value as its condition, and if so what value to
549 /// use for that. What kind of value this is depends on whether we want an
550 /// integer or a block address, but an undef is always accepted.
551 /// Returns null if Val is null or not an appropriate constant.
552 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
553   if (!Val)
554     return nullptr;
555 
556   // Undef is "known" enough.
557   if (UndefValue *U = dyn_cast<UndefValue>(Val))
558     return U;
559 
560   if (Preference == WantBlockAddress)
561     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
562 
563   return dyn_cast<ConstantInt>(Val);
564 }
565 
566 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
567 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
568 /// in any of our predecessors.  If so, return the known list of value and pred
569 /// BB in the result vector.
570 ///
571 /// This returns true if there were any known values.
572 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
573     Value *V, BasicBlock *BB, PredValueInfo &Result,
574     ConstantPreference Preference, Instruction *CxtI) {
575   // This method walks up use-def chains recursively.  Because of this, we could
576   // get into an infinite loop going around loops in the use-def chain.  To
577   // prevent this, keep track of what (value, block) pairs we've already visited
578   // and terminate the search if we loop back to them
579   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
580     return false;
581 
582   // An RAII help to remove this pair from the recursion set once the recursion
583   // stack pops back out again.
584   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
585 
586   // If V is a constant, then it is known in all predecessors.
587   if (Constant *KC = getKnownConstant(V, Preference)) {
588     for (BasicBlock *Pred : predecessors(BB))
589       Result.push_back(std::make_pair(KC, Pred));
590 
591     return !Result.empty();
592   }
593 
594   // If V is a non-instruction value, or an instruction in a different block,
595   // then it can't be derived from a PHI.
596   Instruction *I = dyn_cast<Instruction>(V);
597   if (!I || I->getParent() != BB) {
598 
599     // Okay, if this is a live-in value, see if it has a known value at the end
600     // of any of our predecessors.
601     //
602     // FIXME: This should be an edge property, not a block end property.
603     /// TODO: Per PR2563, we could infer value range information about a
604     /// predecessor based on its terminator.
605     //
606     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
607     // "I" is a non-local compare-with-a-constant instruction.  This would be
608     // able to handle value inequalities better, for example if the compare is
609     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
610     // Perhaps getConstantOnEdge should be smart enough to do this?
611 
612     for (BasicBlock *P : predecessors(BB)) {
613       // If the value is known by LazyValueInfo to be a constant in a
614       // predecessor, use that information to try to thread this block.
615       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
616       if (Constant *KC = getKnownConstant(PredCst, Preference))
617         Result.push_back(std::make_pair(KC, P));
618     }
619 
620     return !Result.empty();
621   }
622 
623   /// If I is a PHI node, then we know the incoming values for any constants.
624   if (PHINode *PN = dyn_cast<PHINode>(I)) {
625     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
626       Value *InVal = PN->getIncomingValue(i);
627       if (Constant *KC = getKnownConstant(InVal, Preference)) {
628         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
629       } else {
630         Constant *CI = LVI->getConstantOnEdge(InVal,
631                                               PN->getIncomingBlock(i),
632                                               BB, CxtI);
633         if (Constant *KC = getKnownConstant(CI, Preference))
634           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
635       }
636     }
637 
638     return !Result.empty();
639   }
640 
641   // Handle Cast instructions.  Only see through Cast when the source operand is
642   // PHI or Cmp and the source type is i1 to save the compilation time.
643   if (CastInst *CI = dyn_cast<CastInst>(I)) {
644     Value *Source = CI->getOperand(0);
645     if (!Source->getType()->isIntegerTy(1))
646       return false;
647     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
648       return false;
649     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
650     if (Result.empty())
651       return false;
652 
653     // Convert the known values.
654     for (auto &R : Result)
655       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
656 
657     return true;
658   }
659 
660   PredValueInfoTy LHSVals, RHSVals;
661 
662   // Handle some boolean conditions.
663   if (I->getType()->getPrimitiveSizeInBits() == 1) {
664     assert(Preference == WantInteger && "One-bit non-integer type?");
665     // X | true -> true
666     // X & false -> false
667     if (I->getOpcode() == Instruction::Or ||
668         I->getOpcode() == Instruction::And) {
669       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
670                                       WantInteger, CxtI);
671       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
672                                       WantInteger, CxtI);
673 
674       if (LHSVals.empty() && RHSVals.empty())
675         return false;
676 
677       ConstantInt *InterestingVal;
678       if (I->getOpcode() == Instruction::Or)
679         InterestingVal = ConstantInt::getTrue(I->getContext());
680       else
681         InterestingVal = ConstantInt::getFalse(I->getContext());
682 
683       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
684 
685       // Scan for the sentinel.  If we find an undef, force it to the
686       // interesting value: x|undef -> true and x&undef -> false.
687       for (const auto &LHSVal : LHSVals)
688         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
689           Result.emplace_back(InterestingVal, LHSVal.second);
690           LHSKnownBBs.insert(LHSVal.second);
691         }
692       for (const auto &RHSVal : RHSVals)
693         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
694           // If we already inferred a value for this block on the LHS, don't
695           // re-add it.
696           if (!LHSKnownBBs.count(RHSVal.second))
697             Result.emplace_back(InterestingVal, RHSVal.second);
698         }
699 
700       return !Result.empty();
701     }
702 
703     // Handle the NOT form of XOR.
704     if (I->getOpcode() == Instruction::Xor &&
705         isa<ConstantInt>(I->getOperand(1)) &&
706         cast<ConstantInt>(I->getOperand(1))->isOne()) {
707       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
708                                       WantInteger, CxtI);
709       if (Result.empty())
710         return false;
711 
712       // Invert the known values.
713       for (auto &R : Result)
714         R.first = ConstantExpr::getNot(R.first);
715 
716       return true;
717     }
718 
719   // Try to simplify some other binary operator values.
720   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
721     assert(Preference != WantBlockAddress
722             && "A binary operator creating a block address?");
723     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
724       PredValueInfoTy LHSVals;
725       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
726                                       WantInteger, CxtI);
727 
728       // Try to use constant folding to simplify the binary operator.
729       for (const auto &LHSVal : LHSVals) {
730         Constant *V = LHSVal.first;
731         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
732 
733         if (Constant *KC = getKnownConstant(Folded, WantInteger))
734           Result.push_back(std::make_pair(KC, LHSVal.second));
735       }
736     }
737 
738     return !Result.empty();
739   }
740 
741   // Handle compare with phi operand, where the PHI is defined in this block.
742   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
743     assert(Preference == WantInteger && "Compares only produce integers");
744     Type *CmpType = Cmp->getType();
745     Value *CmpLHS = Cmp->getOperand(0);
746     Value *CmpRHS = Cmp->getOperand(1);
747     CmpInst::Predicate Pred = Cmp->getPredicate();
748 
749     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
750     if (PN && PN->getParent() == BB) {
751       const DataLayout &DL = PN->getModule()->getDataLayout();
752       // We can do this simplification if any comparisons fold to true or false.
753       // See if any do.
754       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
755         BasicBlock *PredBB = PN->getIncomingBlock(i);
756         Value *LHS = PN->getIncomingValue(i);
757         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
758 
759         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
760         if (!Res) {
761           if (!isa<Constant>(RHS))
762             continue;
763 
764           LazyValueInfo::Tristate
765             ResT = LVI->getPredicateOnEdge(Pred, LHS,
766                                            cast<Constant>(RHS), PredBB, BB,
767                                            CxtI ? CxtI : Cmp);
768           if (ResT == LazyValueInfo::Unknown)
769             continue;
770           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
771         }
772 
773         if (Constant *KC = getKnownConstant(Res, WantInteger))
774           Result.push_back(std::make_pair(KC, PredBB));
775       }
776 
777       return !Result.empty();
778     }
779 
780     // If comparing a live-in value against a constant, see if we know the
781     // live-in value on any predecessors.
782     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
783       Constant *CmpConst = cast<Constant>(CmpRHS);
784 
785       if (!isa<Instruction>(CmpLHS) ||
786           cast<Instruction>(CmpLHS)->getParent() != BB) {
787         for (BasicBlock *P : predecessors(BB)) {
788           // If the value is known by LazyValueInfo to be a constant in a
789           // predecessor, use that information to try to thread this block.
790           LazyValueInfo::Tristate Res =
791             LVI->getPredicateOnEdge(Pred, CmpLHS,
792                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
793           if (Res == LazyValueInfo::Unknown)
794             continue;
795 
796           Constant *ResC = ConstantInt::get(CmpType, Res);
797           Result.push_back(std::make_pair(ResC, P));
798         }
799 
800         return !Result.empty();
801       }
802 
803       // InstCombine can fold some forms of constant range checks into
804       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
805       // x as a live-in.
806       {
807         using namespace PatternMatch;
808 
809         Value *AddLHS;
810         ConstantInt *AddConst;
811         if (isa<ConstantInt>(CmpConst) &&
812             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
813           if (!isa<Instruction>(AddLHS) ||
814               cast<Instruction>(AddLHS)->getParent() != BB) {
815             for (BasicBlock *P : predecessors(BB)) {
816               // If the value is known by LazyValueInfo to be a ConstantRange in
817               // a predecessor, use that information to try to thread this
818               // block.
819               ConstantRange CR = LVI->getConstantRangeOnEdge(
820                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
821               // Propagate the range through the addition.
822               CR = CR.add(AddConst->getValue());
823 
824               // Get the range where the compare returns true.
825               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
826                   Pred, cast<ConstantInt>(CmpConst)->getValue());
827 
828               Constant *ResC;
829               if (CmpRange.contains(CR))
830                 ResC = ConstantInt::getTrue(CmpType);
831               else if (CmpRange.inverse().contains(CR))
832                 ResC = ConstantInt::getFalse(CmpType);
833               else
834                 continue;
835 
836               Result.push_back(std::make_pair(ResC, P));
837             }
838 
839             return !Result.empty();
840           }
841         }
842       }
843 
844       // Try to find a constant value for the LHS of a comparison,
845       // and evaluate it statically if we can.
846       PredValueInfoTy LHSVals;
847       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
848                                       WantInteger, CxtI);
849 
850       for (const auto &LHSVal : LHSVals) {
851         Constant *V = LHSVal.first;
852         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
853         if (Constant *KC = getKnownConstant(Folded, WantInteger))
854           Result.push_back(std::make_pair(KC, LHSVal.second));
855       }
856 
857       return !Result.empty();
858     }
859   }
860 
861   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
862     // Handle select instructions where at least one operand is a known constant
863     // and we can figure out the condition value for any predecessor block.
864     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
865     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
866     PredValueInfoTy Conds;
867     if ((TrueVal || FalseVal) &&
868         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
869                                         WantInteger, CxtI)) {
870       for (auto &C : Conds) {
871         Constant *Cond = C.first;
872 
873         // Figure out what value to use for the condition.
874         bool KnownCond;
875         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
876           // A known boolean.
877           KnownCond = CI->isOne();
878         } else {
879           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
880           // Either operand will do, so be sure to pick the one that's a known
881           // constant.
882           // FIXME: Do this more cleverly if both values are known constants?
883           KnownCond = (TrueVal != nullptr);
884         }
885 
886         // See if the select has a known constant value for this predecessor.
887         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
888           Result.push_back(std::make_pair(Val, C.second));
889       }
890 
891       return !Result.empty();
892     }
893   }
894 
895   // If all else fails, see if LVI can figure out a constant value for us.
896   Constant *CI = LVI->getConstant(V, BB, CxtI);
897   if (Constant *KC = getKnownConstant(CI, Preference)) {
898     for (BasicBlock *Pred : predecessors(BB))
899       Result.push_back(std::make_pair(KC, Pred));
900   }
901 
902   return !Result.empty();
903 }
904 
905 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
906 /// in an undefined jump, decide which block is best to revector to.
907 ///
908 /// Since we can pick an arbitrary destination, we pick the successor with the
909 /// fewest predecessors.  This should reduce the in-degree of the others.
910 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
911   TerminatorInst *BBTerm = BB->getTerminator();
912   unsigned MinSucc = 0;
913   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
914   // Compute the successor with the minimum number of predecessors.
915   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
916   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
917     TestBB = BBTerm->getSuccessor(i);
918     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
919     if (NumPreds < MinNumPreds) {
920       MinSucc = i;
921       MinNumPreds = NumPreds;
922     }
923   }
924 
925   return MinSucc;
926 }
927 
928 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
929   if (!BB->hasAddressTaken()) return false;
930 
931   // If the block has its address taken, it may be a tree of dead constants
932   // hanging off of it.  These shouldn't keep the block alive.
933   BlockAddress *BA = BlockAddress::get(BB);
934   BA->removeDeadConstantUsers();
935   return !BA->use_empty();
936 }
937 
938 /// ProcessBlock - If there are any predecessors whose control can be threaded
939 /// through to a successor, transform them now.
940 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
941   // If the block is trivially dead, just return and let the caller nuke it.
942   // This simplifies other transformations.
943   if (pred_empty(BB) &&
944       BB != &BB->getParent()->getEntryBlock())
945     return false;
946 
947   // If this block has a single predecessor, and if that pred has a single
948   // successor, merge the blocks.  This encourages recursive jump threading
949   // because now the condition in this block can be threaded through
950   // predecessors of our predecessor block.
951   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
952     const TerminatorInst *TI = SinglePred->getTerminator();
953     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
954         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
955       // If SinglePred was a loop header, BB becomes one.
956       if (LoopHeaders.erase(SinglePred))
957         LoopHeaders.insert(BB);
958 
959       LVI->eraseBlock(SinglePred);
960       MergeBasicBlockIntoOnlyPred(BB, DT);
961 
962       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
963       // BB code within one basic block `BB`), we need to invalidate the LVI
964       // information associated with BB, because the LVI information need not be
965       // true for all of BB after the merge. For example,
966       // Before the merge, LVI info and code is as follows:
967       // SinglePred: <LVI info1 for %p val>
968       // %y = use of %p
969       // call @exit() // need not transfer execution to successor.
970       // assume(%p) // from this point on %p is true
971       // br label %BB
972       // BB: <LVI info2 for %p val, i.e. %p is true>
973       // %x = use of %p
974       // br label exit
975       //
976       // Note that this LVI info for blocks BB and SinglPred is correct for %p
977       // (info2 and info1 respectively). After the merge and the deletion of the
978       // LVI info1 for SinglePred. We have the following code:
979       // BB: <LVI info2 for %p val>
980       // %y = use of %p
981       // call @exit()
982       // assume(%p)
983       // %x = use of %p <-- LVI info2 is correct from here onwards.
984       // br label exit
985       // LVI info2 for BB is incorrect at the beginning of BB.
986 
987       // Invalidate LVI information for BB if the LVI is not provably true for
988       // all of BB.
989       if (any_of(*BB, [](Instruction &I) {
990             return !isGuaranteedToTransferExecutionToSuccessor(&I);
991           }))
992         LVI->eraseBlock(BB);
993       return true;
994     }
995   }
996 
997   if (TryToUnfoldSelectInCurrBB(BB))
998     return true;
999 
1000   // Look if we can propagate guards to predecessors.
1001   if (HasGuards && ProcessGuards(BB))
1002     return true;
1003 
1004   // What kind of constant we're looking for.
1005   ConstantPreference Preference = WantInteger;
1006 
1007   // Look to see if the terminator is a conditional branch, switch or indirect
1008   // branch, if not we can't thread it.
1009   Value *Condition;
1010   Instruction *Terminator = BB->getTerminator();
1011   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1012     // Can't thread an unconditional jump.
1013     if (BI->isUnconditional()) return false;
1014     Condition = BI->getCondition();
1015   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1016     Condition = SI->getCondition();
1017   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1018     // Can't thread indirect branch with no successors.
1019     if (IB->getNumSuccessors() == 0) return false;
1020     Condition = IB->getAddress()->stripPointerCasts();
1021     Preference = WantBlockAddress;
1022   } else {
1023     return false; // Must be an invoke.
1024   }
1025 
1026   // Run constant folding to see if we can reduce the condition to a simple
1027   // constant.
1028   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1029     Value *SimpleVal =
1030         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1031     if (SimpleVal) {
1032       I->replaceAllUsesWith(SimpleVal);
1033       if (isInstructionTriviallyDead(I, TLI))
1034         I->eraseFromParent();
1035       Condition = SimpleVal;
1036     }
1037   }
1038 
1039   // If the terminator is branching on an undef, we can pick any of the
1040   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1041   if (isa<UndefValue>(Condition)) {
1042     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1043     std::vector<DominatorTree::UpdateType> Updates;
1044 
1045     // Fold the branch/switch.
1046     TerminatorInst *BBTerm = BB->getTerminator();
1047     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1048       if (i == BestSucc) continue;
1049       BasicBlock *Succ = BBTerm->getSuccessor(i);
1050       Succ->removePredecessor(BB, true);
1051       if (Succ == BB)
1052         continue;
1053       DominatorTree::UpdateType UT = {DominatorTree::Delete, BB, Succ};
1054       // Make sure to remove a DT edge exactly once and not an edge to itself.
1055       if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end())
1056         Updates.push_back(UT);
1057     }
1058 
1059     DEBUG(dbgs() << "  In block '" << BB->getName()
1060           << "' folding undef terminator: " << *BBTerm << '\n');
1061     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1062     BBTerm->eraseFromParent();
1063     DT->applyUpdates(Updates);
1064     return true;
1065   }
1066 
1067   // If the terminator of this block is branching on a constant, simplify the
1068   // terminator to an unconditional branch.  This can occur due to threading in
1069   // other blocks.
1070   if (getKnownConstant(Condition, Preference)) {
1071     DEBUG(dbgs() << "  In block '" << BB->getName()
1072           << "' folding terminator: " << *BB->getTerminator() << '\n');
1073     ++NumFolds;
1074     ConstantFoldTerminator(BB, true, nullptr, DT);
1075     return true;
1076   }
1077 
1078   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1079 
1080   // All the rest of our checks depend on the condition being an instruction.
1081   if (!CondInst) {
1082     // FIXME: Unify this with code below.
1083     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1084       return true;
1085     return false;
1086   }
1087 
1088   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1089     // If we're branching on a conditional, LVI might be able to determine
1090     // it's value at the branch instruction.  We only handle comparisons
1091     // against a constant at this time.
1092     // TODO: This should be extended to handle switches as well.
1093     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1094     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1095     if (CondBr && CondConst) {
1096       // We should have returned as soon as we turn a conditional branch to
1097       // unconditional. Because its no longer interesting as far as jump
1098       // threading is concerned.
1099       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1100 
1101       LazyValueInfo::Tristate Ret =
1102         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1103                             CondConst, CondBr);
1104       if (Ret != LazyValueInfo::Unknown) {
1105         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1106         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1107         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1108         ToRemoveSucc->removePredecessor(BB, true);
1109         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1110         CondBr->eraseFromParent();
1111         if (BB != ToRemoveSucc)
1112           DT->deleteEdge(BB, ToRemoveSucc);
1113         if (CondCmp->use_empty())
1114           CondCmp->eraseFromParent();
1115         // We can safely replace *some* uses of the CondInst if it has
1116         // exactly one value as returned by LVI. RAUW is incorrect in the
1117         // presence of guards and assumes, that have the `Cond` as the use. This
1118         // is because we use the guards/assume to reason about the `Cond` value
1119         // at the end of block, but RAUW unconditionally replaces all uses
1120         // including the guards/assumes themselves and the uses before the
1121         // guard/assume.
1122         else if (CondCmp->getParent() == BB) {
1123           auto *CI = Ret == LazyValueInfo::True ?
1124             ConstantInt::getTrue(CondCmp->getType()) :
1125             ConstantInt::getFalse(CondCmp->getType());
1126           ReplaceFoldableUses(CondCmp, CI);
1127         }
1128         return true;
1129       }
1130 
1131       // We did not manage to simplify this branch, try to see whether
1132       // CondCmp depends on a known phi-select pattern.
1133       if (TryToUnfoldSelect(CondCmp, BB))
1134         return true;
1135     }
1136   }
1137 
1138   // Check for some cases that are worth simplifying.  Right now we want to look
1139   // for loads that are used by a switch or by the condition for the branch.  If
1140   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1141   // which can then be used to thread the values.
1142   Value *SimplifyValue = CondInst;
1143   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1144     if (isa<Constant>(CondCmp->getOperand(1)))
1145       SimplifyValue = CondCmp->getOperand(0);
1146 
1147   // TODO: There are other places where load PRE would be profitable, such as
1148   // more complex comparisons.
1149   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
1150     if (SimplifyPartiallyRedundantLoad(LI))
1151       return true;
1152 
1153   // Before threading, try to propagate profile data backwards:
1154   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1155     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1156       updatePredecessorProfileMetadata(PN, BB);
1157 
1158   // Handle a variety of cases where we are branching on something derived from
1159   // a PHI node in the current block.  If we can prove that any predecessors
1160   // compute a predictable value based on a PHI node, thread those predecessors.
1161   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1162     return true;
1163 
1164   // If this is an otherwise-unfoldable branch on a phi node in the current
1165   // block, see if we can simplify.
1166   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1167     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1168       return ProcessBranchOnPHI(PN);
1169 
1170   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1171   if (CondInst->getOpcode() == Instruction::Xor &&
1172       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1173     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1174 
1175   // Search for a stronger dominating condition that can be used to simplify a
1176   // conditional branch leaving BB.
1177   if (ProcessImpliedCondition(BB))
1178     return true;
1179 
1180   return false;
1181 }
1182 
1183 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1184   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1185   if (!BI || !BI->isConditional())
1186     return false;
1187 
1188   Value *Cond = BI->getCondition();
1189   BasicBlock *CurrentBB = BB;
1190   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1191   unsigned Iter = 0;
1192 
1193   auto &DL = BB->getModule()->getDataLayout();
1194 
1195   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1196     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1197     if (!PBI || !PBI->isConditional())
1198       return false;
1199     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1200       return false;
1201 
1202     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1203     Optional<bool> Implication =
1204         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1205     if (Implication) {
1206       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1207       RemoveSucc->removePredecessor(BB);
1208       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
1209       BI->eraseFromParent();
1210       if (BB != RemoveSucc)
1211         DT->deleteEdge(BB, RemoveSucc);
1212       return true;
1213     }
1214     CurrentBB = CurrentPred;
1215     CurrentPred = CurrentBB->getSinglePredecessor();
1216   }
1217 
1218   return false;
1219 }
1220 
1221 /// Return true if Op is an instruction defined in the given block.
1222 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1223   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1224     if (OpInst->getParent() == BB)
1225       return true;
1226   return false;
1227 }
1228 
1229 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
1230 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
1231 /// important optimization that encourages jump threading, and needs to be run
1232 /// interlaced with other jump threading tasks.
1233 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
1234   // Don't hack volatile and ordered loads.
1235   if (!LI->isUnordered()) return false;
1236 
1237   // If the load is defined in a block with exactly one predecessor, it can't be
1238   // partially redundant.
1239   BasicBlock *LoadBB = LI->getParent();
1240   if (LoadBB->getSinglePredecessor())
1241     return false;
1242 
1243   // If the load is defined in an EH pad, it can't be partially redundant,
1244   // because the edges between the invoke and the EH pad cannot have other
1245   // instructions between them.
1246   if (LoadBB->isEHPad())
1247     return false;
1248 
1249   Value *LoadedPtr = LI->getOperand(0);
1250 
1251   // If the loaded operand is defined in the LoadBB and its not a phi,
1252   // it can't be available in predecessors.
1253   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1254     return false;
1255 
1256   // Scan a few instructions up from the load, to see if it is obviously live at
1257   // the entry to its block.
1258   BasicBlock::iterator BBIt(LI);
1259   bool IsLoadCSE;
1260   if (Value *AvailableVal = FindAvailableLoadedValue(
1261           LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1262     // If the value of the load is locally available within the block, just use
1263     // it.  This frequently occurs for reg2mem'd allocas.
1264 
1265     if (IsLoadCSE) {
1266       LoadInst *NLI = cast<LoadInst>(AvailableVal);
1267       combineMetadataForCSE(NLI, LI);
1268     };
1269 
1270     // If the returned value is the load itself, replace with an undef. This can
1271     // only happen in dead loops.
1272     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
1273     if (AvailableVal->getType() != LI->getType())
1274       AvailableVal =
1275           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
1276     LI->replaceAllUsesWith(AvailableVal);
1277     LI->eraseFromParent();
1278     return true;
1279   }
1280 
1281   // Otherwise, if we scanned the whole block and got to the top of the block,
1282   // we know the block is locally transparent to the load.  If not, something
1283   // might clobber its value.
1284   if (BBIt != LoadBB->begin())
1285     return false;
1286 
1287   // If all of the loads and stores that feed the value have the same AA tags,
1288   // then we can propagate them onto any newly inserted loads.
1289   AAMDNodes AATags;
1290   LI->getAAMetadata(AATags);
1291 
1292   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1293 
1294   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1295 
1296   AvailablePredsTy AvailablePreds;
1297   BasicBlock *OneUnavailablePred = nullptr;
1298   SmallVector<LoadInst*, 8> CSELoads;
1299 
1300   // If we got here, the loaded value is transparent through to the start of the
1301   // block.  Check to see if it is available in any of the predecessor blocks.
1302   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1303     // If we already scanned this predecessor, skip it.
1304     if (!PredsScanned.insert(PredBB).second)
1305       continue;
1306 
1307     BBIt = PredBB->end();
1308     unsigned NumScanedInst = 0;
1309     Value *PredAvailable = nullptr;
1310     // NOTE: We don't CSE load that is volatile or anything stronger than
1311     // unordered, that should have been checked when we entered the function.
1312     assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads");
1313     // If this is a load on a phi pointer, phi-translate it and search
1314     // for available load/store to the pointer in predecessors.
1315     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1316     PredAvailable = FindAvailablePtrLoadStore(
1317         Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1318         AA, &IsLoadCSE, &NumScanedInst);
1319 
1320     // If PredBB has a single predecessor, continue scanning through the
1321     // single precessor.
1322     BasicBlock *SinglePredBB = PredBB;
1323     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1324            NumScanedInst < DefMaxInstsToScan) {
1325       SinglePredBB = SinglePredBB->getSinglePredecessor();
1326       if (SinglePredBB) {
1327         BBIt = SinglePredBB->end();
1328         PredAvailable = FindAvailablePtrLoadStore(
1329             Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt,
1330             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1331             &NumScanedInst);
1332       }
1333     }
1334 
1335     if (!PredAvailable) {
1336       OneUnavailablePred = PredBB;
1337       continue;
1338     }
1339 
1340     if (IsLoadCSE)
1341       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1342 
1343     // If so, this load is partially redundant.  Remember this info so that we
1344     // can create a PHI node.
1345     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1346   }
1347 
1348   // If the loaded value isn't available in any predecessor, it isn't partially
1349   // redundant.
1350   if (AvailablePreds.empty()) return false;
1351 
1352   // Okay, the loaded value is available in at least one (and maybe all!)
1353   // predecessors.  If the value is unavailable in more than one unique
1354   // predecessor, we want to insert a merge block for those common predecessors.
1355   // This ensures that we only have to insert one reload, thus not increasing
1356   // code size.
1357   BasicBlock *UnavailablePred = nullptr;
1358 
1359   // If there is exactly one predecessor where the value is unavailable, the
1360   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1361   // unconditional branch, we know that it isn't a critical edge.
1362   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1363       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1364     UnavailablePred = OneUnavailablePred;
1365   } else if (PredsScanned.size() != AvailablePreds.size()) {
1366     // Otherwise, we had multiple unavailable predecessors or we had a critical
1367     // edge from the one.
1368     SmallVector<BasicBlock*, 8> PredsToSplit;
1369     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1370 
1371     for (const auto &AvailablePred : AvailablePreds)
1372       AvailablePredSet.insert(AvailablePred.first);
1373 
1374     // Add all the unavailable predecessors to the PredsToSplit list.
1375     for (BasicBlock *P : predecessors(LoadBB)) {
1376       // If the predecessor is an indirect goto, we can't split the edge.
1377       if (isa<IndirectBrInst>(P->getTerminator()))
1378         return false;
1379 
1380       if (!AvailablePredSet.count(P))
1381         PredsToSplit.push_back(P);
1382     }
1383 
1384     // Split them out to their own block.
1385     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1386   }
1387 
1388   // If the value isn't available in all predecessors, then there will be
1389   // exactly one where it isn't available.  Insert a load on that edge and add
1390   // it to the AvailablePreds list.
1391   if (UnavailablePred) {
1392     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1393            "Can't handle critical edge here!");
1394     LoadInst *NewVal = new LoadInst(
1395         LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1396         LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(),
1397         LI->getSyncScopeID(), UnavailablePred->getTerminator());
1398     NewVal->setDebugLoc(LI->getDebugLoc());
1399     if (AATags)
1400       NewVal->setAAMetadata(AATags);
1401 
1402     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1403   }
1404 
1405   // Now we know that each predecessor of this block has a value in
1406   // AvailablePreds, sort them for efficient access as we're walking the preds.
1407   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1408 
1409   // Create a PHI node at the start of the block for the PRE'd load value.
1410   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1411   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1412                                 &LoadBB->front());
1413   PN->takeName(LI);
1414   PN->setDebugLoc(LI->getDebugLoc());
1415 
1416   // Insert new entries into the PHI for each predecessor.  A single block may
1417   // have multiple entries here.
1418   for (pred_iterator PI = PB; PI != PE; ++PI) {
1419     BasicBlock *P = *PI;
1420     AvailablePredsTy::iterator I =
1421       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1422                        std::make_pair(P, (Value*)nullptr));
1423 
1424     assert(I != AvailablePreds.end() && I->first == P &&
1425            "Didn't find entry for predecessor!");
1426 
1427     // If we have an available predecessor but it requires casting, insert the
1428     // cast in the predecessor and use the cast. Note that we have to update the
1429     // AvailablePreds vector as we go so that all of the PHI entries for this
1430     // predecessor use the same bitcast.
1431     Value *&PredV = I->second;
1432     if (PredV->getType() != LI->getType())
1433       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1434                                                P->getTerminator());
1435 
1436     PN->addIncoming(PredV, I->first);
1437   }
1438 
1439   for (LoadInst *PredLI : CSELoads) {
1440     combineMetadataForCSE(PredLI, LI);
1441   }
1442 
1443   LI->replaceAllUsesWith(PN);
1444   LI->eraseFromParent();
1445 
1446   return true;
1447 }
1448 
1449 /// FindMostPopularDest - The specified list contains multiple possible
1450 /// threadable destinations.  Pick the one that occurs the most frequently in
1451 /// the list.
1452 static BasicBlock *
1453 FindMostPopularDest(BasicBlock *BB,
1454                     const SmallVectorImpl<std::pair<BasicBlock *,
1455                                           BasicBlock *>> &PredToDestList) {
1456   assert(!PredToDestList.empty());
1457 
1458   // Determine popularity.  If there are multiple possible destinations, we
1459   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1460   // blocks with known and real destinations to threading undef.  We'll handle
1461   // them later if interesting.
1462   DenseMap<BasicBlock*, unsigned> DestPopularity;
1463   for (const auto &PredToDest : PredToDestList)
1464     if (PredToDest.second)
1465       DestPopularity[PredToDest.second]++;
1466 
1467   // Find the most popular dest.
1468   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1469   BasicBlock *MostPopularDest = DPI->first;
1470   unsigned Popularity = DPI->second;
1471   SmallVector<BasicBlock*, 4> SamePopularity;
1472 
1473   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1474     // If the popularity of this entry isn't higher than the popularity we've
1475     // seen so far, ignore it.
1476     if (DPI->second < Popularity)
1477       ; // ignore.
1478     else if (DPI->second == Popularity) {
1479       // If it is the same as what we've seen so far, keep track of it.
1480       SamePopularity.push_back(DPI->first);
1481     } else {
1482       // If it is more popular, remember it.
1483       SamePopularity.clear();
1484       MostPopularDest = DPI->first;
1485       Popularity = DPI->second;
1486     }
1487   }
1488 
1489   // Okay, now we know the most popular destination.  If there is more than one
1490   // destination, we need to determine one.  This is arbitrary, but we need
1491   // to make a deterministic decision.  Pick the first one that appears in the
1492   // successor list.
1493   if (!SamePopularity.empty()) {
1494     SamePopularity.push_back(MostPopularDest);
1495     TerminatorInst *TI = BB->getTerminator();
1496     for (unsigned i = 0; ; ++i) {
1497       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1498 
1499       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1500         continue;
1501 
1502       MostPopularDest = TI->getSuccessor(i);
1503       break;
1504     }
1505   }
1506 
1507   // Okay, we have finally picked the most popular destination.
1508   return MostPopularDest;
1509 }
1510 
1511 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1512                                                ConstantPreference Preference,
1513                                                Instruction *CxtI) {
1514   // If threading this would thread across a loop header, don't even try to
1515   // thread the edge.
1516   if (LoopHeaders.count(BB))
1517     return false;
1518 
1519   PredValueInfoTy PredValues;
1520   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1521     return false;
1522 
1523   assert(!PredValues.empty() &&
1524          "ComputeValueKnownInPredecessors returned true with no values");
1525 
1526   DEBUG(dbgs() << "IN BB: " << *BB;
1527         for (const auto &PredValue : PredValues) {
1528           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1529             << *PredValue.first
1530             << " for pred '" << PredValue.second->getName() << "'.\n";
1531         });
1532 
1533   // Decide what we want to thread through.  Convert our list of known values to
1534   // a list of known destinations for each pred.  This also discards duplicate
1535   // predecessors and keeps track of the undefined inputs (which are represented
1536   // as a null dest in the PredToDestList).
1537   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1538   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1539 
1540   BasicBlock *OnlyDest = nullptr;
1541   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1542   Constant *OnlyVal = nullptr;
1543   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1544 
1545   unsigned PredWithKnownDest = 0;
1546   for (const auto &PredValue : PredValues) {
1547     BasicBlock *Pred = PredValue.second;
1548     if (!SeenPreds.insert(Pred).second)
1549       continue;  // Duplicate predecessor entry.
1550 
1551     Constant *Val = PredValue.first;
1552 
1553     BasicBlock *DestBB;
1554     if (isa<UndefValue>(Val))
1555       DestBB = nullptr;
1556     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1557       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1558       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1559     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1560       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1561       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1562     } else {
1563       assert(isa<IndirectBrInst>(BB->getTerminator())
1564               && "Unexpected terminator");
1565       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1566       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1567     }
1568 
1569     // If we have exactly one destination, remember it for efficiency below.
1570     if (PredToDestList.empty()) {
1571       OnlyDest = DestBB;
1572       OnlyVal = Val;
1573     } else {
1574       if (OnlyDest != DestBB)
1575         OnlyDest = MultipleDestSentinel;
1576       // It possible we have same destination, but different value, e.g. default
1577       // case in switchinst.
1578       if (Val != OnlyVal)
1579         OnlyVal = MultipleVal;
1580     }
1581 
1582     // We know where this predecessor is going.
1583     ++PredWithKnownDest;
1584 
1585     // If the predecessor ends with an indirect goto, we can't change its
1586     // destination.
1587     if (isa<IndirectBrInst>(Pred->getTerminator()))
1588       continue;
1589 
1590     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1591   }
1592 
1593   // If all edges were unthreadable, we fail.
1594   if (PredToDestList.empty())
1595     return false;
1596 
1597   // If all the predecessors go to a single known successor, we want to fold,
1598   // not thread. By doing so, we do not need to duplicate the current block and
1599   // also miss potential opportunities in case we dont/cant duplicate.
1600   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1601     if (PredWithKnownDest ==
1602         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1603       std::vector<DominatorTree::UpdateType> Updates;
1604       bool SeenFirstBranchToOnlyDest = false;
1605       for (BasicBlock *SuccBB : successors(BB)) {
1606         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1607           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1608         } else {
1609           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1610           if (SuccBB != OnlyDest && SuccBB != BB) {
1611             DominatorTree::UpdateType UT = {DominatorTree::Delete, BB, SuccBB};
1612             // Make sure to remove a DT edge exactly once.
1613             if (std::find(Updates.begin(), Updates.end(), UT) == Updates.end())
1614               Updates.push_back(UT);
1615           }
1616         }
1617       }
1618 
1619       // Finally update the terminator.
1620       TerminatorInst *Term = BB->getTerminator();
1621       BranchInst::Create(OnlyDest, Term);
1622       Term->eraseFromParent();
1623       DT->applyUpdates(Updates);
1624 
1625       // If the condition is now dead due to the removal of the old terminator,
1626       // erase it.
1627       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1628         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1629           CondInst->eraseFromParent();
1630         // We can safely replace *some* uses of the CondInst if it has
1631         // exactly one value as returned by LVI. RAUW is incorrect in the
1632         // presence of guards and assumes, that have the `Cond` as the use. This
1633         // is because we use the guards/assume to reason about the `Cond` value
1634         // at the end of block, but RAUW unconditionally replaces all uses
1635         // including the guards/assumes themselves and the uses before the
1636         // guard/assume.
1637         else if (OnlyVal && OnlyVal != MultipleVal &&
1638                  CondInst->getParent() == BB)
1639           ReplaceFoldableUses(CondInst, OnlyVal);
1640       }
1641       return true;
1642     }
1643   }
1644 
1645   // Determine which is the most common successor.  If we have many inputs and
1646   // this block is a switch, we want to start by threading the batch that goes
1647   // to the most popular destination first.  If we only know about one
1648   // threadable destination (the common case) we can avoid this.
1649   BasicBlock *MostPopularDest = OnlyDest;
1650 
1651   if (MostPopularDest == MultipleDestSentinel)
1652     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1653 
1654   // Now that we know what the most popular destination is, factor all
1655   // predecessors that will jump to it into a single predecessor.
1656   SmallVector<BasicBlock*, 16> PredsToFactor;
1657   for (const auto &PredToDest : PredToDestList)
1658     if (PredToDest.second == MostPopularDest) {
1659       BasicBlock *Pred = PredToDest.first;
1660 
1661       // This predecessor may be a switch or something else that has multiple
1662       // edges to the block.  Factor each of these edges by listing them
1663       // according to # occurrences in PredsToFactor.
1664       for (BasicBlock *Succ : successors(Pred))
1665         if (Succ == BB)
1666           PredsToFactor.push_back(Pred);
1667     }
1668 
1669   // If the threadable edges are branching on an undefined value, we get to pick
1670   // the destination that these predecessors should get to.
1671   if (!MostPopularDest)
1672     MostPopularDest = BB->getTerminator()->
1673                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1674 
1675   // Ok, try to thread it!
1676   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1677 }
1678 
1679 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1680 /// a PHI node in the current block.  See if there are any simplifications we
1681 /// can do based on inputs to the phi node.
1682 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1683   BasicBlock *BB = PN->getParent();
1684 
1685   // TODO: We could make use of this to do it once for blocks with common PHI
1686   // values.
1687   SmallVector<BasicBlock*, 1> PredBBs;
1688   PredBBs.resize(1);
1689 
1690   // If any of the predecessor blocks end in an unconditional branch, we can
1691   // *duplicate* the conditional branch into that block in order to further
1692   // encourage jump threading and to eliminate cases where we have branch on a
1693   // phi of an icmp (branch on icmp is much better).
1694   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1695     BasicBlock *PredBB = PN->getIncomingBlock(i);
1696     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1697       if (PredBr->isUnconditional()) {
1698         PredBBs[0] = PredBB;
1699         // Try to duplicate BB into PredBB.
1700         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1701           return true;
1702       }
1703   }
1704 
1705   return false;
1706 }
1707 
1708 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1709 /// a xor instruction in the current block.  See if there are any
1710 /// simplifications we can do based on inputs to the xor.
1711 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1712   BasicBlock *BB = BO->getParent();
1713 
1714   // If either the LHS or RHS of the xor is a constant, don't do this
1715   // optimization.
1716   if (isa<ConstantInt>(BO->getOperand(0)) ||
1717       isa<ConstantInt>(BO->getOperand(1)))
1718     return false;
1719 
1720   // If the first instruction in BB isn't a phi, we won't be able to infer
1721   // anything special about any particular predecessor.
1722   if (!isa<PHINode>(BB->front()))
1723     return false;
1724 
1725   // If this BB is a landing pad, we won't be able to split the edge into it.
1726   if (BB->isEHPad())
1727     return false;
1728 
1729   // If we have a xor as the branch input to this block, and we know that the
1730   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1731   // the condition into the predecessor and fix that value to true, saving some
1732   // logical ops on that path and encouraging other paths to simplify.
1733   //
1734   // This copies something like this:
1735   //
1736   //  BB:
1737   //    %X = phi i1 [1],  [%X']
1738   //    %Y = icmp eq i32 %A, %B
1739   //    %Z = xor i1 %X, %Y
1740   //    br i1 %Z, ...
1741   //
1742   // Into:
1743   //  BB':
1744   //    %Y = icmp ne i32 %A, %B
1745   //    br i1 %Y, ...
1746 
1747   PredValueInfoTy XorOpValues;
1748   bool isLHS = true;
1749   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1750                                        WantInteger, BO)) {
1751     assert(XorOpValues.empty());
1752     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1753                                          WantInteger, BO))
1754       return false;
1755     isLHS = false;
1756   }
1757 
1758   assert(!XorOpValues.empty() &&
1759          "ComputeValueKnownInPredecessors returned true with no values");
1760 
1761   // Scan the information to see which is most popular: true or false.  The
1762   // predecessors can be of the set true, false, or undef.
1763   unsigned NumTrue = 0, NumFalse = 0;
1764   for (const auto &XorOpValue : XorOpValues) {
1765     if (isa<UndefValue>(XorOpValue.first))
1766       // Ignore undefs for the count.
1767       continue;
1768     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1769       ++NumFalse;
1770     else
1771       ++NumTrue;
1772   }
1773 
1774   // Determine which value to split on, true, false, or undef if neither.
1775   ConstantInt *SplitVal = nullptr;
1776   if (NumTrue > NumFalse)
1777     SplitVal = ConstantInt::getTrue(BB->getContext());
1778   else if (NumTrue != 0 || NumFalse != 0)
1779     SplitVal = ConstantInt::getFalse(BB->getContext());
1780 
1781   // Collect all of the blocks that this can be folded into so that we can
1782   // factor this once and clone it once.
1783   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1784   for (const auto &XorOpValue : XorOpValues) {
1785     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1786       continue;
1787 
1788     BlocksToFoldInto.push_back(XorOpValue.second);
1789   }
1790 
1791   // If we inferred a value for all of the predecessors, then duplication won't
1792   // help us.  However, we can just replace the LHS or RHS with the constant.
1793   if (BlocksToFoldInto.size() ==
1794       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1795     if (!SplitVal) {
1796       // If all preds provide undef, just nuke the xor, because it is undef too.
1797       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1798       BO->eraseFromParent();
1799     } else if (SplitVal->isZero()) {
1800       // If all preds provide 0, replace the xor with the other input.
1801       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1802       BO->eraseFromParent();
1803     } else {
1804       // If all preds provide 1, set the computed value to 1.
1805       BO->setOperand(!isLHS, SplitVal);
1806     }
1807 
1808     return true;
1809   }
1810 
1811   // Try to duplicate BB into PredBB.
1812   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1813 }
1814 
1815 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1816 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1817 /// NewPred using the entries from OldPred (suitably mapped).
1818 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1819                                             BasicBlock *OldPred,
1820                                             BasicBlock *NewPred,
1821                                      DenseMap<Instruction*, Value*> &ValueMap) {
1822   for (BasicBlock::iterator PNI = PHIBB->begin();
1823        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1824     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1825     // DestBlock.
1826     Value *IV = PN->getIncomingValueForBlock(OldPred);
1827 
1828     // Remap the value if necessary.
1829     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1830       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1831       if (I != ValueMap.end())
1832         IV = I->second;
1833     }
1834 
1835     PN->addIncoming(IV, NewPred);
1836   }
1837 }
1838 
1839 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1840 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1841 /// across BB.  Transform the IR to reflect this change.
1842 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1843                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1844                                    BasicBlock *SuccBB) {
1845   // If threading to the same block as we come from, we would infinite loop.
1846   if (SuccBB == BB) {
1847     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1848           << "' - would thread to self!\n");
1849     return false;
1850   }
1851 
1852   // If threading this would thread across a loop header, don't thread the edge.
1853   // See the comments above FindLoopHeaders for justifications and caveats.
1854   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1855     DEBUG({
1856       bool BBIsHeader = LoopHeaders.count(BB);
1857       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1858       dbgs() << "  Not threading across "
1859           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1860           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1861           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1862     });
1863     return false;
1864   }
1865 
1866   unsigned JumpThreadCost =
1867       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1868   if (JumpThreadCost > BBDupThreshold) {
1869     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1870           << "' - Cost is too high: " << JumpThreadCost << "\n");
1871     return false;
1872   }
1873 
1874   // And finally, do it!  Start by factoring the predecessors if needed.
1875   BasicBlock *PredBB;
1876   if (PredBBs.size() == 1)
1877     PredBB = PredBBs[0];
1878   else {
1879     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1880           << " common predecessors.\n");
1881     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1882   }
1883 
1884   // And finally, do it!
1885   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1886         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1887         << ", across block:\n    "
1888         << *BB << "\n");
1889 
1890   LVI->threadEdge(PredBB, BB, SuccBB);
1891 
1892   // We are going to have to map operands from the original BB block to the new
1893   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1894   // account for entry from PredBB.
1895   DenseMap<Instruction*, Value*> ValueMapping;
1896 
1897   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1898                                          BB->getName()+".thread",
1899                                          BB->getParent(), BB);
1900   NewBB->moveAfter(PredBB);
1901 
1902   // Set the block frequency of NewBB.
1903   if (HasProfileData) {
1904     auto NewBBFreq =
1905         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1906     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1907   }
1908 
1909   BasicBlock::iterator BI = BB->begin();
1910   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1911     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1912 
1913   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1914   // mapping and using it to remap operands in the cloned instructions.
1915   for (; !isa<TerminatorInst>(BI); ++BI) {
1916     Instruction *New = BI->clone();
1917     New->setName(BI->getName());
1918     NewBB->getInstList().push_back(New);
1919     ValueMapping[&*BI] = New;
1920 
1921     // Remap operands to patch up intra-block references.
1922     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1923       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1924         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1925         if (I != ValueMapping.end())
1926           New->setOperand(i, I->second);
1927       }
1928   }
1929 
1930   // We didn't copy the terminator from BB over to NewBB, because there is now
1931   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1932   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1933   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1934 
1935   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1936   // PHI nodes for NewBB now.
1937   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1938 
1939   // If there were values defined in BB that are used outside the block, then we
1940   // now have to update all uses of the value to use either the original value,
1941   // the cloned value, or some PHI derived value.  This can require arbitrary
1942   // PHI insertion, of which we are prepared to do, clean these up now.
1943   SSAUpdater SSAUpdate;
1944   SmallVector<Use*, 16> UsesToRename;
1945   for (Instruction &I : *BB) {
1946     // Scan all uses of this instruction to see if it is used outside of its
1947     // block, and if so, record them in UsesToRename.
1948     for (Use &U : I.uses()) {
1949       Instruction *User = cast<Instruction>(U.getUser());
1950       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1951         if (UserPN->getIncomingBlock(U) == BB)
1952           continue;
1953       } else if (User->getParent() == BB)
1954         continue;
1955 
1956       UsesToRename.push_back(&U);
1957     }
1958     // If there are no uses outside the block, we're done with this instruction.
1959     if (UsesToRename.empty())
1960       continue;
1961 
1962     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1963 
1964     // We found a use of I outside of BB.  Rename all uses of I that are outside
1965     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1966     // with the two values we know.
1967     SSAUpdate.Initialize(I.getType(), I.getName());
1968     SSAUpdate.AddAvailableValue(BB, &I);
1969     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1970 
1971     while (!UsesToRename.empty())
1972       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1973     DEBUG(dbgs() << "\n");
1974   }
1975 
1976   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1977   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1978   // us to simplify any PHI nodes in BB.
1979   TerminatorInst *PredTerm = PredBB->getTerminator();
1980   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1981     if (PredTerm->getSuccessor(i) == BB) {
1982       BB->removePredecessor(PredBB, true);
1983       PredTerm->setSuccessor(i, NewBB);
1984     }
1985 
1986   DT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
1987                     {DominatorTree::Insert, PredBB, NewBB},
1988                     {DominatorTree::Delete, PredBB, BB}});
1989 
1990   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1991   // over the new instructions and zap any that are constants or dead.  This
1992   // frequently happens because of phi translation.
1993   SimplifyInstructionsInBlock(NewBB, TLI);
1994 
1995   // Update the edge weight from BB to SuccBB, which should be less than before.
1996   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1997 
1998   // Threaded an edge!
1999   ++NumThreads;
2000   return true;
2001 }
2002 
2003 /// Create a new basic block that will be the predecessor of BB and successor of
2004 /// all blocks in Preds. When profile data is available, update the frequency of
2005 /// this new block.
2006 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2007                                                ArrayRef<BasicBlock *> Preds,
2008                                                const char *Suffix) {
2009   // Collect the frequencies of all predecessors of BB, which will be used to
2010   // update the edge weight on BB->SuccBB.
2011   BlockFrequency PredBBFreq(0);
2012   if (HasProfileData)
2013     for (auto Pred : Preds)
2014       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
2015 
2016   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix, DT);
2017 
2018   // Set the block frequency of the newly created PredBB, which is the sum of
2019   // frequencies of Preds.
2020   if (HasProfileData)
2021     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
2022   return PredBB;
2023 }
2024 
2025 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2026   const TerminatorInst *TI = BB->getTerminator();
2027   assert(TI->getNumSuccessors() > 1 && "not a split");
2028 
2029   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2030   if (!WeightsNode)
2031     return false;
2032 
2033   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2034   if (MDName->getString() != "branch_weights")
2035     return false;
2036 
2037   // Ensure there are weights for all of the successors. Note that the first
2038   // operand to the metadata node is a name, not a weight.
2039   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2040 }
2041 
2042 /// Update the block frequency of BB and branch weight and the metadata on the
2043 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2044 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2045 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2046                                                      BasicBlock *BB,
2047                                                      BasicBlock *NewBB,
2048                                                      BasicBlock *SuccBB) {
2049   if (!HasProfileData)
2050     return;
2051 
2052   assert(BFI && BPI && "BFI & BPI should have been created here");
2053 
2054   // As the edge from PredBB to BB is deleted, we have to update the block
2055   // frequency of BB.
2056   auto BBOrigFreq = BFI->getBlockFreq(BB);
2057   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2058   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2059   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2060   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2061 
2062   // Collect updated outgoing edges' frequencies from BB and use them to update
2063   // edge probabilities.
2064   SmallVector<uint64_t, 4> BBSuccFreq;
2065   for (BasicBlock *Succ : successors(BB)) {
2066     auto SuccFreq = (Succ == SuccBB)
2067                         ? BB2SuccBBFreq - NewBBFreq
2068                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2069     BBSuccFreq.push_back(SuccFreq.getFrequency());
2070   }
2071 
2072   uint64_t MaxBBSuccFreq =
2073       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2074 
2075   SmallVector<BranchProbability, 4> BBSuccProbs;
2076   if (MaxBBSuccFreq == 0)
2077     BBSuccProbs.assign(BBSuccFreq.size(),
2078                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2079   else {
2080     for (uint64_t Freq : BBSuccFreq)
2081       BBSuccProbs.push_back(
2082           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2083     // Normalize edge probabilities so that they sum up to one.
2084     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2085                                               BBSuccProbs.end());
2086   }
2087 
2088   // Update edge probabilities in BPI.
2089   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2090     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2091 
2092   // Update the profile metadata as well.
2093   //
2094   // Don't do this if the profile of the transformed blocks was statically
2095   // estimated.  (This could occur despite the function having an entry
2096   // frequency in completely cold parts of the CFG.)
2097   //
2098   // In this case we don't want to suggest to subsequent passes that the
2099   // calculated weights are fully consistent.  Consider this graph:
2100   //
2101   //                 check_1
2102   //             50% /  |
2103   //             eq_1   | 50%
2104   //                 \  |
2105   //                 check_2
2106   //             50% /  |
2107   //             eq_2   | 50%
2108   //                 \  |
2109   //                 check_3
2110   //             50% /  |
2111   //             eq_3   | 50%
2112   //                 \  |
2113   //
2114   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2115   // the overall probabilities are inconsistent; the total probability that the
2116   // value is either 1, 2 or 3 is 150%.
2117   //
2118   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2119   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2120   // the loop exit edge.  Then based solely on static estimation we would assume
2121   // the loop was extremely hot.
2122   //
2123   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2124   // shouldn't make edges extremely likely or unlikely based solely on static
2125   // estimation.
2126   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2127     SmallVector<uint32_t, 4> Weights;
2128     for (auto Prob : BBSuccProbs)
2129       Weights.push_back(Prob.getNumerator());
2130 
2131     auto TI = BB->getTerminator();
2132     TI->setMetadata(
2133         LLVMContext::MD_prof,
2134         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2135   }
2136 }
2137 
2138 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2139 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2140 /// If we can duplicate the contents of BB up into PredBB do so now, this
2141 /// improves the odds that the branch will be on an analyzable instruction like
2142 /// a compare.
2143 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2144     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2145   assert(!PredBBs.empty() && "Can't handle an empty set");
2146 
2147   // If BB is a loop header, then duplicating this block outside the loop would
2148   // cause us to transform this into an irreducible loop, don't do this.
2149   // See the comments above FindLoopHeaders for justifications and caveats.
2150   if (LoopHeaders.count(BB)) {
2151     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2152           << "' into predecessor block '" << PredBBs[0]->getName()
2153           << "' - it might create an irreducible loop!\n");
2154     return false;
2155   }
2156 
2157   unsigned DuplicationCost =
2158       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2159   if (DuplicationCost > BBDupThreshold) {
2160     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2161           << "' - Cost is too high: " << DuplicationCost << "\n");
2162     return false;
2163   }
2164 
2165   // And finally, do it!  Start by factoring the predecessors if needed.
2166   BasicBlock *PredBB;
2167   if (PredBBs.size() == 1)
2168     PredBB = PredBBs[0];
2169   else {
2170     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2171           << " common predecessors.\n");
2172     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2173   }
2174 
2175   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2176   // of PredBB.
2177   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2178         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2179         << DuplicationCost << " block is:" << *BB << "\n");
2180 
2181   // Unless PredBB ends with an unconditional branch, split the edge so that we
2182   // can just clone the bits from BB into the end of the new PredBB.
2183   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2184 
2185   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2186     PredBB = SplitEdge(PredBB, BB, DT);
2187     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2188   }
2189 
2190   // We are going to have to map operands from the original BB block into the
2191   // PredBB block.  Evaluate PHI nodes in BB.
2192   DenseMap<Instruction*, Value*> ValueMapping;
2193 
2194   BasicBlock::iterator BI = BB->begin();
2195   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2196     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2197   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2198   // mapping and using it to remap operands in the cloned instructions.
2199   for (; BI != BB->end(); ++BI) {
2200     Instruction *New = BI->clone();
2201 
2202     // Remap operands to patch up intra-block references.
2203     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2204       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2205         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2206         if (I != ValueMapping.end())
2207           New->setOperand(i, I->second);
2208       }
2209 
2210     // If this instruction can be simplified after the operands are updated,
2211     // just use the simplified value instead.  This frequently happens due to
2212     // phi translation.
2213     if (Value *IV = SimplifyInstruction(
2214             New,
2215             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2216       ValueMapping[&*BI] = IV;
2217       if (!New->mayHaveSideEffects()) {
2218         New->deleteValue();
2219         New = nullptr;
2220       }
2221     } else {
2222       ValueMapping[&*BI] = New;
2223     }
2224     if (New) {
2225       // Otherwise, insert the new instruction into the block.
2226       New->setName(BI->getName());
2227       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2228     }
2229   }
2230 
2231   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2232   // add entries to the PHI nodes for branch from PredBB now.
2233   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2234   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2235                                   ValueMapping);
2236   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2237                                   ValueMapping);
2238 
2239   // If there were values defined in BB that are used outside the block, then we
2240   // now have to update all uses of the value to use either the original value,
2241   // the cloned value, or some PHI derived value.  This can require arbitrary
2242   // PHI insertion, of which we are prepared to do, clean these up now.
2243   SSAUpdater SSAUpdate;
2244   SmallVector<Use*, 16> UsesToRename;
2245   for (Instruction &I : *BB) {
2246     // Scan all uses of this instruction to see if it is used outside of its
2247     // block, and if so, record them in UsesToRename.
2248     for (Use &U : I.uses()) {
2249       Instruction *User = cast<Instruction>(U.getUser());
2250       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2251         if (UserPN->getIncomingBlock(U) == BB)
2252           continue;
2253       } else if (User->getParent() == BB)
2254         continue;
2255 
2256       UsesToRename.push_back(&U);
2257     }
2258 
2259     // If there are no uses outside the block, we're done with this instruction.
2260     if (UsesToRename.empty())
2261       continue;
2262 
2263     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2264 
2265     // We found a use of I outside of BB.  Rename all uses of I that are outside
2266     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2267     // with the two values we know.
2268     SSAUpdate.Initialize(I.getType(), I.getName());
2269     SSAUpdate.AddAvailableValue(BB, &I);
2270     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2271 
2272     while (!UsesToRename.empty())
2273       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2274     DEBUG(dbgs() << "\n");
2275   }
2276 
2277   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2278   // that we nuked.
2279   BB->removePredecessor(PredBB, true);
2280 
2281   // Remove the unconditional branch at the end of the PredBB block.
2282   OldPredBranch->eraseFromParent();
2283   if (BB != PredBB)
2284     DT->deleteEdge(PredBB, BB);
2285 
2286   ++NumDupes;
2287   return true;
2288 }
2289 
2290 /// TryToUnfoldSelect - Look for blocks of the form
2291 /// bb1:
2292 ///   %a = select
2293 ///   br bb2
2294 ///
2295 /// bb2:
2296 ///   %p = phi [%a, %bb1] ...
2297 ///   %c = icmp %p
2298 ///   br i1 %c
2299 ///
2300 /// And expand the select into a branch structure if one of its arms allows %c
2301 /// to be folded. This later enables threading from bb1 over bb2.
2302 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2303   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2304   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2305   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2306 
2307   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2308       CondLHS->getParent() != BB)
2309     return false;
2310 
2311   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2312     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2313     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2314 
2315     // Look if one of the incoming values is a select in the corresponding
2316     // predecessor.
2317     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2318       continue;
2319 
2320     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2321     if (!PredTerm || !PredTerm->isUnconditional())
2322       continue;
2323 
2324     // Now check if one of the select values would allow us to constant fold the
2325     // terminator in BB. We don't do the transform if both sides fold, those
2326     // cases will be threaded in any case.
2327     LazyValueInfo::Tristate LHSFolds =
2328         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2329                                 CondRHS, Pred, BB, CondCmp);
2330     LazyValueInfo::Tristate RHSFolds =
2331         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2332                                 CondRHS, Pred, BB, CondCmp);
2333     if ((LHSFolds != LazyValueInfo::Unknown ||
2334          RHSFolds != LazyValueInfo::Unknown) &&
2335         LHSFolds != RHSFolds) {
2336       // Expand the select.
2337       //
2338       // Pred --
2339       //  |    v
2340       //  |  NewBB
2341       //  |    |
2342       //  |-----
2343       //  v
2344       // BB
2345       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2346                                              BB->getParent(), BB);
2347       // Move the unconditional branch to NewBB.
2348       PredTerm->removeFromParent();
2349       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2350       DT->insertEdge(NewBB, BB);
2351       // Create a conditional branch and update PHI nodes.
2352       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2353       CondLHS->setIncomingValue(I, SI->getFalseValue());
2354       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2355       // The select is now dead.
2356       SI->eraseFromParent();
2357 
2358       DT->insertEdge(Pred, NewBB);
2359       // Update any other PHI nodes in BB.
2360       for (BasicBlock::iterator BI = BB->begin();
2361            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2362         if (Phi != CondLHS)
2363           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2364       return true;
2365     }
2366   }
2367   return false;
2368 }
2369 
2370 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2371 /// same BB in the form
2372 /// bb:
2373 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2374 ///   %s = select %p, trueval, falseval
2375 ///
2376 /// or
2377 ///
2378 /// bb:
2379 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2380 ///   %c = cmp %p, 0
2381 ///   %s = select %c, trueval, falseval
2382 ///
2383 /// And expand the select into a branch structure. This later enables
2384 /// jump-threading over bb in this pass.
2385 ///
2386 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2387 /// select if the associated PHI has at least one constant.  If the unfolded
2388 /// select is not jump-threaded, it will be folded again in the later
2389 /// optimizations.
2390 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2391   // If threading this would thread across a loop header, don't thread the edge.
2392   // See the comments above FindLoopHeaders for justifications and caveats.
2393   if (LoopHeaders.count(BB))
2394     return false;
2395 
2396   for (BasicBlock::iterator BI = BB->begin();
2397        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2398     // Look for a Phi having at least one constant incoming value.
2399     if (llvm::all_of(PN->incoming_values(),
2400                      [](Value *V) { return !isa<ConstantInt>(V); }))
2401       continue;
2402 
2403     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2404       // Check if SI is in BB and use V as condition.
2405       if (SI->getParent() != BB)
2406         return false;
2407       Value *Cond = SI->getCondition();
2408       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2409     };
2410 
2411     SelectInst *SI = nullptr;
2412     for (Use &U : PN->uses()) {
2413       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2414         // Look for a ICmp in BB that compares PN with a constant and is the
2415         // condition of a Select.
2416         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2417             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2418           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2419             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2420               SI = SelectI;
2421               break;
2422             }
2423       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2424         // Look for a Select in BB that uses PN as condtion.
2425         if (isUnfoldCandidate(SelectI, U.get())) {
2426           SI = SelectI;
2427           break;
2428         }
2429       }
2430     }
2431 
2432     if (!SI)
2433       continue;
2434     // Expand the select.
2435     TerminatorInst *Term =
2436         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false, nullptr, DT);
2437     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2438     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2439     NewPN->addIncoming(SI->getFalseValue(), BB);
2440     SI->replaceAllUsesWith(NewPN);
2441     SI->eraseFromParent();
2442     return true;
2443   }
2444   return false;
2445 }
2446 
2447 /// Try to propagate a guard from the current BB into one of its predecessors
2448 /// in case if another branch of execution implies that the condition of this
2449 /// guard is always true. Currently we only process the simplest case that
2450 /// looks like:
2451 ///
2452 /// Start:
2453 ///   %cond = ...
2454 ///   br i1 %cond, label %T1, label %F1
2455 /// T1:
2456 ///   br label %Merge
2457 /// F1:
2458 ///   br label %Merge
2459 /// Merge:
2460 ///   %condGuard = ...
2461 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2462 ///
2463 /// And cond either implies condGuard or !condGuard. In this case all the
2464 /// instructions before the guard can be duplicated in both branches, and the
2465 /// guard is then threaded to one of them.
2466 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2467   using namespace PatternMatch;
2468 
2469   // We only want to deal with two predecessors.
2470   BasicBlock *Pred1, *Pred2;
2471   auto PI = pred_begin(BB), PE = pred_end(BB);
2472   if (PI == PE)
2473     return false;
2474   Pred1 = *PI++;
2475   if (PI == PE)
2476     return false;
2477   Pred2 = *PI++;
2478   if (PI != PE)
2479     return false;
2480   if (Pred1 == Pred2)
2481     return false;
2482 
2483   // Try to thread one of the guards of the block.
2484   // TODO: Look up deeper than to immediate predecessor?
2485   auto *Parent = Pred1->getSinglePredecessor();
2486   if (!Parent || Parent != Pred2->getSinglePredecessor())
2487     return false;
2488 
2489   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2490     for (auto &I : *BB)
2491       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2492         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2493           return true;
2494 
2495   return false;
2496 }
2497 
2498 /// Try to propagate the guard from BB which is the lower block of a diamond
2499 /// to one of its branches, in case if diamond's condition implies guard's
2500 /// condition.
2501 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2502                                     BranchInst *BI) {
2503   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2504   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2505   Value *GuardCond = Guard->getArgOperand(0);
2506   Value *BranchCond = BI->getCondition();
2507   BasicBlock *TrueDest = BI->getSuccessor(0);
2508   BasicBlock *FalseDest = BI->getSuccessor(1);
2509 
2510   auto &DL = BB->getModule()->getDataLayout();
2511   bool TrueDestIsSafe = false;
2512   bool FalseDestIsSafe = false;
2513 
2514   // True dest is safe if BranchCond => GuardCond.
2515   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2516   if (Impl && *Impl)
2517     TrueDestIsSafe = true;
2518   else {
2519     // False dest is safe if !BranchCond => GuardCond.
2520     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2521     if (Impl && *Impl)
2522       FalseDestIsSafe = true;
2523   }
2524 
2525   if (!TrueDestIsSafe && !FalseDestIsSafe)
2526     return false;
2527 
2528   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2529   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2530 
2531   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2532   Instruction *AfterGuard = Guard->getNextNode();
2533   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2534   if (Cost > BBDupThreshold)
2535     return false;
2536   // Duplicate all instructions before the guard and the guard itself to the
2537   // branch where implication is not proved.
2538   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2539       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2540   assert(GuardedBlock && "Could not create the guarded block?");
2541   // Duplicate all instructions before the guard in the unguarded branch.
2542   // Since we have successfully duplicated the guarded block and this block
2543   // has fewer instructions, we expect it to succeed.
2544   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2545       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2546   assert(UnguardedBlock && "Could not create the unguarded block?");
2547   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2548                << GuardedBlock->getName() << "\n");
2549   // DuplicateInstructionsInSplitBetween inserts a new block, BB.split, between
2550   // PredBB and BB. We need to perform two inserts and one delete in DT for each
2551   // of the above calls.
2552   DT->applyUpdates({// Guarded block split.
2553                     {DominatorTree::Delete, PredGuardedBlock, BB},
2554                     {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2555                     {DominatorTree::Insert, GuardedBlock, BB},
2556                     // Unguarded block split.
2557                     {DominatorTree::Delete, PredUnguardedBlock, BB},
2558                     {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2559                     {DominatorTree::Insert, UnguardedBlock, BB}});
2560 
2561   // Some instructions before the guard may still have uses. For them, we need
2562   // to create Phi nodes merging their copies in both guarded and unguarded
2563   // branches. Those instructions that have no uses can be just removed.
2564   SmallVector<Instruction *, 4> ToRemove;
2565   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2566     if (!isa<PHINode>(&*BI))
2567       ToRemove.push_back(&*BI);
2568 
2569   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2570   assert(InsertionPoint && "Empty block?");
2571   // Substitute with Phis & remove.
2572   for (auto *Inst : reverse(ToRemove)) {
2573     if (!Inst->use_empty()) {
2574       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2575       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2576       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2577       NewPN->insertBefore(InsertionPoint);
2578       Inst->replaceAllUsesWith(NewPN);
2579     }
2580     Inst->eraseFromParent();
2581   }
2582   return true;
2583 }
2584