1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/PassManager.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Cloning.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/SSAUpdater.h" 73 #include "llvm/Transforms/Utils/ValueMapper.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <memory> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace jumpthreading; 84 85 #define DEBUG_TYPE "jump-threading" 86 87 STATISTIC(NumThreads, "Number of jumps threaded"); 88 STATISTIC(NumFolds, "Number of terminators folded"); 89 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 90 91 static cl::opt<unsigned> 92 BBDuplicateThreshold("jump-threading-threshold", 93 cl::desc("Max block size to duplicate for jump threading"), 94 cl::init(6), cl::Hidden); 95 96 static cl::opt<unsigned> 97 ImplicationSearchThreshold( 98 "jump-threading-implication-search-threshold", 99 cl::desc("The number of predecessors to search for a stronger " 100 "condition to use to thread over a weaker condition"), 101 cl::init(3), cl::Hidden); 102 103 static cl::opt<bool> PrintLVIAfterJumpThreading( 104 "print-lvi-after-jump-threading", 105 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 106 cl::Hidden); 107 108 static cl::opt<bool> JumpThreadingFreezeSelectCond( 109 "jump-threading-freeze-select-cond", 110 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 111 cl::Hidden); 112 113 static cl::opt<bool> ThreadAcrossLoopHeaders( 114 "jump-threading-across-loop-headers", 115 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 116 cl::init(false), cl::Hidden); 117 118 119 namespace { 120 121 /// This pass performs 'jump threading', which looks at blocks that have 122 /// multiple predecessors and multiple successors. If one or more of the 123 /// predecessors of the block can be proven to always jump to one of the 124 /// successors, we forward the edge from the predecessor to the successor by 125 /// duplicating the contents of this block. 126 /// 127 /// An example of when this can occur is code like this: 128 /// 129 /// if () { ... 130 /// X = 4; 131 /// } 132 /// if (X < 3) { 133 /// 134 /// In this case, the unconditional branch at the end of the first if can be 135 /// revectored to the false side of the second if. 136 class JumpThreading : public FunctionPass { 137 JumpThreadingPass Impl; 138 139 public: 140 static char ID; // Pass identification 141 142 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 143 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 144 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 145 } 146 147 bool runOnFunction(Function &F) override; 148 149 void getAnalysisUsage(AnalysisUsage &AU) const override { 150 AU.addRequired<DominatorTreeWrapperPass>(); 151 AU.addPreserved<DominatorTreeWrapperPass>(); 152 AU.addRequired<AAResultsWrapperPass>(); 153 AU.addRequired<LazyValueInfoWrapperPass>(); 154 AU.addPreserved<LazyValueInfoWrapperPass>(); 155 AU.addPreserved<GlobalsAAWrapperPass>(); 156 AU.addRequired<TargetLibraryInfoWrapperPass>(); 157 AU.addRequired<TargetTransformInfoWrapperPass>(); 158 } 159 160 void releaseMemory() override { Impl.releaseMemory(); } 161 }; 162 163 } // end anonymous namespace 164 165 char JumpThreading::ID = 0; 166 167 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 168 "Jump Threading", false, false) 169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 173 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 174 "Jump Threading", false, false) 175 176 // Public interface to the Jump Threading pass 177 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 178 return new JumpThreading(InsertFr, Threshold); 179 } 180 181 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 182 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 183 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 184 } 185 186 // Update branch probability information according to conditional 187 // branch probability. This is usually made possible for cloned branches 188 // in inline instances by the context specific profile in the caller. 189 // For instance, 190 // 191 // [Block PredBB] 192 // [Branch PredBr] 193 // if (t) { 194 // Block A; 195 // } else { 196 // Block B; 197 // } 198 // 199 // [Block BB] 200 // cond = PN([true, %A], [..., %B]); // PHI node 201 // [Branch CondBr] 202 // if (cond) { 203 // ... // P(cond == true) = 1% 204 // } 205 // 206 // Here we know that when block A is taken, cond must be true, which means 207 // P(cond == true | A) = 1 208 // 209 // Given that P(cond == true) = P(cond == true | A) * P(A) + 210 // P(cond == true | B) * P(B) 211 // we get: 212 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 213 // 214 // which gives us: 215 // P(A) is less than P(cond == true), i.e. 216 // P(t == true) <= P(cond == true) 217 // 218 // In other words, if we know P(cond == true) is unlikely, we know 219 // that P(t == true) is also unlikely. 220 // 221 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 222 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 223 if (!CondBr) 224 return; 225 226 uint64_t TrueWeight, FalseWeight; 227 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 228 return; 229 230 if (TrueWeight + FalseWeight == 0) 231 // Zero branch_weights do not give a hint for getting branch probabilities. 232 // Technically it would result in division by zero denominator, which is 233 // TrueWeight + FalseWeight. 234 return; 235 236 // Returns the outgoing edge of the dominating predecessor block 237 // that leads to the PhiNode's incoming block: 238 auto GetPredOutEdge = 239 [](BasicBlock *IncomingBB, 240 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 241 auto *PredBB = IncomingBB; 242 auto *SuccBB = PhiBB; 243 SmallPtrSet<BasicBlock *, 16> Visited; 244 while (true) { 245 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 246 if (PredBr && PredBr->isConditional()) 247 return {PredBB, SuccBB}; 248 Visited.insert(PredBB); 249 auto *SinglePredBB = PredBB->getSinglePredecessor(); 250 if (!SinglePredBB) 251 return {nullptr, nullptr}; 252 253 // Stop searching when SinglePredBB has been visited. It means we see 254 // an unreachable loop. 255 if (Visited.count(SinglePredBB)) 256 return {nullptr, nullptr}; 257 258 SuccBB = PredBB; 259 PredBB = SinglePredBB; 260 } 261 }; 262 263 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 264 Value *PhiOpnd = PN->getIncomingValue(i); 265 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 266 267 if (!CI || !CI->getType()->isIntegerTy(1)) 268 continue; 269 270 BranchProbability BP = 271 (CI->isOne() ? BranchProbability::getBranchProbability( 272 TrueWeight, TrueWeight + FalseWeight) 273 : BranchProbability::getBranchProbability( 274 FalseWeight, TrueWeight + FalseWeight)); 275 276 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 277 if (!PredOutEdge.first) 278 return; 279 280 BasicBlock *PredBB = PredOutEdge.first; 281 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 282 if (!PredBr) 283 return; 284 285 uint64_t PredTrueWeight, PredFalseWeight; 286 // FIXME: We currently only set the profile data when it is missing. 287 // With PGO, this can be used to refine even existing profile data with 288 // context information. This needs to be done after more performance 289 // testing. 290 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 291 continue; 292 293 // We can not infer anything useful when BP >= 50%, because BP is the 294 // upper bound probability value. 295 if (BP >= BranchProbability(50, 100)) 296 continue; 297 298 SmallVector<uint32_t, 2> Weights; 299 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 300 Weights.push_back(BP.getNumerator()); 301 Weights.push_back(BP.getCompl().getNumerator()); 302 } else { 303 Weights.push_back(BP.getCompl().getNumerator()); 304 Weights.push_back(BP.getNumerator()); 305 } 306 PredBr->setMetadata(LLVMContext::MD_prof, 307 MDBuilder(PredBr->getParent()->getContext()) 308 .createBranchWeights(Weights)); 309 } 310 } 311 312 /// runOnFunction - Toplevel algorithm. 313 bool JumpThreading::runOnFunction(Function &F) { 314 if (skipFunction(F)) 315 return false; 316 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 317 // Jump Threading has no sense for the targets with divergent CF 318 if (TTI->hasBranchDivergence()) 319 return false; 320 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 321 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 322 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 323 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 324 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 325 std::unique_ptr<BlockFrequencyInfo> BFI; 326 std::unique_ptr<BranchProbabilityInfo> BPI; 327 if (F.hasProfileData()) { 328 LoopInfo LI{DominatorTree(F)}; 329 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 330 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 331 } 332 333 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 334 std::move(BFI), std::move(BPI)); 335 if (PrintLVIAfterJumpThreading) { 336 dbgs() << "LVI for function '" << F.getName() << "':\n"; 337 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 338 } 339 return Changed; 340 } 341 342 PreservedAnalyses JumpThreadingPass::run(Function &F, 343 FunctionAnalysisManager &AM) { 344 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 345 // Jump Threading has no sense for the targets with divergent CF 346 if (TTI.hasBranchDivergence()) 347 return PreservedAnalyses::all(); 348 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 349 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 350 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 351 auto &AA = AM.getResult<AAManager>(F); 352 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 353 354 std::unique_ptr<BlockFrequencyInfo> BFI; 355 std::unique_ptr<BranchProbabilityInfo> BPI; 356 if (F.hasProfileData()) { 357 LoopInfo LI{DominatorTree(F)}; 358 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 359 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 360 } 361 362 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 363 std::move(BFI), std::move(BPI)); 364 365 if (PrintLVIAfterJumpThreading) { 366 dbgs() << "LVI for function '" << F.getName() << "':\n"; 367 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 368 } 369 370 if (!Changed) 371 return PreservedAnalyses::all(); 372 PreservedAnalyses PA; 373 PA.preserve<GlobalsAA>(); 374 PA.preserve<DominatorTreeAnalysis>(); 375 PA.preserve<LazyValueAnalysis>(); 376 return PA; 377 } 378 379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 380 LazyValueInfo *LVI_, AliasAnalysis *AA_, 381 DomTreeUpdater *DTU_, bool HasProfileData_, 382 std::unique_ptr<BlockFrequencyInfo> BFI_, 383 std::unique_ptr<BranchProbabilityInfo> BPI_) { 384 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 385 TLI = TLI_; 386 LVI = LVI_; 387 AA = AA_; 388 DTU = DTU_; 389 BFI.reset(); 390 BPI.reset(); 391 // When profile data is available, we need to update edge weights after 392 // successful jump threading, which requires both BPI and BFI being available. 393 HasProfileData = HasProfileData_; 394 auto *GuardDecl = F.getParent()->getFunction( 395 Intrinsic::getName(Intrinsic::experimental_guard)); 396 HasGuards = GuardDecl && !GuardDecl->use_empty(); 397 if (HasProfileData) { 398 BPI = std::move(BPI_); 399 BFI = std::move(BFI_); 400 } 401 402 // Reduce the number of instructions duplicated when optimizing strictly for 403 // size. 404 if (BBDuplicateThreshold.getNumOccurrences()) 405 BBDupThreshold = BBDuplicateThreshold; 406 else if (F.hasFnAttribute(Attribute::MinSize)) 407 BBDupThreshold = 3; 408 else 409 BBDupThreshold = DefaultBBDupThreshold; 410 411 // JumpThreading must not processes blocks unreachable from entry. It's a 412 // waste of compute time and can potentially lead to hangs. 413 SmallPtrSet<BasicBlock *, 16> Unreachable; 414 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 416 DominatorTree &DT = DTU->getDomTree(); 417 for (auto &BB : F) 418 if (!DT.isReachableFromEntry(&BB)) 419 Unreachable.insert(&BB); 420 421 if (!ThreadAcrossLoopHeaders) 422 findLoopHeaders(F); 423 424 bool EverChanged = false; 425 bool Changed; 426 do { 427 Changed = false; 428 for (auto &BB : F) { 429 if (Unreachable.count(&BB)) 430 continue; 431 while (processBlock(&BB)) // Thread all of the branches we can over BB. 432 Changed = true; 433 434 // Jump threading may have introduced redundant debug values into BB 435 // which should be removed. 436 // Remove redundant pseudo probes as well. 437 if (Changed) 438 RemoveRedundantDbgInstrs(&BB, true); 439 440 // Stop processing BB if it's the entry or is now deleted. The following 441 // routines attempt to eliminate BB and locating a suitable replacement 442 // for the entry is non-trivial. 443 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 444 continue; 445 446 if (pred_empty(&BB)) { 447 // When processBlock makes BB unreachable it doesn't bother to fix up 448 // the instructions in it. We must remove BB to prevent invalid IR. 449 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 450 << "' with terminator: " << *BB.getTerminator() 451 << '\n'); 452 LoopHeaders.erase(&BB); 453 LVI->eraseBlock(&BB); 454 DeleteDeadBlock(&BB, DTU); 455 Changed = true; 456 continue; 457 } 458 459 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 460 // is "almost empty", we attempt to merge BB with its sole successor. 461 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 462 if (BI && BI->isUnconditional()) { 463 BasicBlock *Succ = BI->getSuccessor(0); 464 if ( 465 // The terminator must be the only non-phi instruction in BB. 466 BB.getFirstNonPHIOrDbg(true)->isTerminator() && 467 // Don't alter Loop headers and latches to ensure another pass can 468 // detect and transform nested loops later. 469 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 470 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 471 RemoveRedundantDbgInstrs(Succ, true); 472 // BB is valid for cleanup here because we passed in DTU. F remains 473 // BB's parent until a DTU->getDomTree() event. 474 LVI->eraseBlock(&BB); 475 Changed = true; 476 } 477 } 478 } 479 EverChanged |= Changed; 480 } while (Changed); 481 482 LoopHeaders.clear(); 483 return EverChanged; 484 } 485 486 // Replace uses of Cond with ToVal when safe to do so. If all uses are 487 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 488 // because we may incorrectly replace uses when guards/assumes are uses of 489 // of `Cond` and we used the guards/assume to reason about the `Cond` value 490 // at the end of block. RAUW unconditionally replaces all uses 491 // including the guards/assumes themselves and the uses before the 492 // guard/assume. 493 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 494 assert(Cond->getType() == ToVal->getType()); 495 auto *BB = Cond->getParent(); 496 // We can unconditionally replace all uses in non-local blocks (i.e. uses 497 // strictly dominated by BB), since LVI information is true from the 498 // terminator of BB. 499 replaceNonLocalUsesWith(Cond, ToVal); 500 for (Instruction &I : reverse(*BB)) { 501 // Reached the Cond whose uses we are trying to replace, so there are no 502 // more uses. 503 if (&I == Cond) 504 break; 505 // We only replace uses in instructions that are guaranteed to reach the end 506 // of BB, where we know Cond is ToVal. 507 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 508 break; 509 I.replaceUsesOfWith(Cond, ToVal); 510 } 511 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 512 Cond->eraseFromParent(); 513 } 514 515 /// Return the cost of duplicating a piece of this block from first non-phi 516 /// and before StopAt instruction to thread across it. Stop scanning the block 517 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 518 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 519 Instruction *StopAt, 520 unsigned Threshold) { 521 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 522 /// Ignore PHI nodes, these will be flattened when duplication happens. 523 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 524 525 // FIXME: THREADING will delete values that are just used to compute the 526 // branch, so they shouldn't count against the duplication cost. 527 528 unsigned Bonus = 0; 529 if (BB->getTerminator() == StopAt) { 530 // Threading through a switch statement is particularly profitable. If this 531 // block ends in a switch, decrease its cost to make it more likely to 532 // happen. 533 if (isa<SwitchInst>(StopAt)) 534 Bonus = 6; 535 536 // The same holds for indirect branches, but slightly more so. 537 if (isa<IndirectBrInst>(StopAt)) 538 Bonus = 8; 539 } 540 541 // Bump the threshold up so the early exit from the loop doesn't skip the 542 // terminator-based Size adjustment at the end. 543 Threshold += Bonus; 544 545 // Sum up the cost of each instruction until we get to the terminator. Don't 546 // include the terminator because the copy won't include it. 547 unsigned Size = 0; 548 for (; &*I != StopAt; ++I) { 549 550 // Stop scanning the block if we've reached the threshold. 551 if (Size > Threshold) 552 return Size; 553 554 // Debugger intrinsics don't incur code size. 555 if (isa<DbgInfoIntrinsic>(I)) continue; 556 557 // Pseudo-probes don't incur code size. 558 if (isa<PseudoProbeInst>(I)) 559 continue; 560 561 // If this is a pointer->pointer bitcast, it is free. 562 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 563 continue; 564 565 // Freeze instruction is free, too. 566 if (isa<FreezeInst>(I)) 567 continue; 568 569 // Bail out if this instruction gives back a token type, it is not possible 570 // to duplicate it if it is used outside this BB. 571 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 572 return ~0U; 573 574 // All other instructions count for at least one unit. 575 ++Size; 576 577 // Calls are more expensive. If they are non-intrinsic calls, we model them 578 // as having cost of 4. If they are a non-vector intrinsic, we model them 579 // as having cost of 2 total, and if they are a vector intrinsic, we model 580 // them as having cost 1. 581 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 582 if (CI->cannotDuplicate() || CI->isConvergent()) 583 // Blocks with NoDuplicate are modelled as having infinite cost, so they 584 // are never duplicated. 585 return ~0U; 586 else if (!isa<IntrinsicInst>(CI)) 587 Size += 3; 588 else if (!CI->getType()->isVectorTy()) 589 Size += 1; 590 } 591 } 592 593 return Size > Bonus ? Size - Bonus : 0; 594 } 595 596 /// findLoopHeaders - We do not want jump threading to turn proper loop 597 /// structures into irreducible loops. Doing this breaks up the loop nesting 598 /// hierarchy and pessimizes later transformations. To prevent this from 599 /// happening, we first have to find the loop headers. Here we approximate this 600 /// by finding targets of backedges in the CFG. 601 /// 602 /// Note that there definitely are cases when we want to allow threading of 603 /// edges across a loop header. For example, threading a jump from outside the 604 /// loop (the preheader) to an exit block of the loop is definitely profitable. 605 /// It is also almost always profitable to thread backedges from within the loop 606 /// to exit blocks, and is often profitable to thread backedges to other blocks 607 /// within the loop (forming a nested loop). This simple analysis is not rich 608 /// enough to track all of these properties and keep it up-to-date as the CFG 609 /// mutates, so we don't allow any of these transformations. 610 void JumpThreadingPass::findLoopHeaders(Function &F) { 611 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 612 FindFunctionBackedges(F, Edges); 613 614 for (const auto &Edge : Edges) 615 LoopHeaders.insert(Edge.second); 616 } 617 618 /// getKnownConstant - Helper method to determine if we can thread over a 619 /// terminator with the given value as its condition, and if so what value to 620 /// use for that. What kind of value this is depends on whether we want an 621 /// integer or a block address, but an undef is always accepted. 622 /// Returns null if Val is null or not an appropriate constant. 623 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 624 if (!Val) 625 return nullptr; 626 627 // Undef is "known" enough. 628 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 629 return U; 630 631 if (Preference == WantBlockAddress) 632 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 633 634 return dyn_cast<ConstantInt>(Val); 635 } 636 637 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 638 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 639 /// in any of our predecessors. If so, return the known list of value and pred 640 /// BB in the result vector. 641 /// 642 /// This returns true if there were any known values. 643 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 644 Value *V, BasicBlock *BB, PredValueInfo &Result, 645 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 646 Instruction *CxtI) { 647 // This method walks up use-def chains recursively. Because of this, we could 648 // get into an infinite loop going around loops in the use-def chain. To 649 // prevent this, keep track of what (value, block) pairs we've already visited 650 // and terminate the search if we loop back to them 651 if (!RecursionSet.insert(V).second) 652 return false; 653 654 // If V is a constant, then it is known in all predecessors. 655 if (Constant *KC = getKnownConstant(V, Preference)) { 656 for (BasicBlock *Pred : predecessors(BB)) 657 Result.emplace_back(KC, Pred); 658 659 return !Result.empty(); 660 } 661 662 // If V is a non-instruction value, or an instruction in a different block, 663 // then it can't be derived from a PHI. 664 Instruction *I = dyn_cast<Instruction>(V); 665 if (!I || I->getParent() != BB) { 666 667 // Okay, if this is a live-in value, see if it has a known value at the end 668 // of any of our predecessors. 669 // 670 // FIXME: This should be an edge property, not a block end property. 671 /// TODO: Per PR2563, we could infer value range information about a 672 /// predecessor based on its terminator. 673 // 674 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 675 // "I" is a non-local compare-with-a-constant instruction. This would be 676 // able to handle value inequalities better, for example if the compare is 677 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 678 // Perhaps getConstantOnEdge should be smart enough to do this? 679 for (BasicBlock *P : predecessors(BB)) { 680 // If the value is known by LazyValueInfo to be a constant in a 681 // predecessor, use that information to try to thread this block. 682 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 683 if (Constant *KC = getKnownConstant(PredCst, Preference)) 684 Result.emplace_back(KC, P); 685 } 686 687 return !Result.empty(); 688 } 689 690 /// If I is a PHI node, then we know the incoming values for any constants. 691 if (PHINode *PN = dyn_cast<PHINode>(I)) { 692 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 693 Value *InVal = PN->getIncomingValue(i); 694 if (Constant *KC = getKnownConstant(InVal, Preference)) { 695 Result.emplace_back(KC, PN->getIncomingBlock(i)); 696 } else { 697 Constant *CI = LVI->getConstantOnEdge(InVal, 698 PN->getIncomingBlock(i), 699 BB, CxtI); 700 if (Constant *KC = getKnownConstant(CI, Preference)) 701 Result.emplace_back(KC, PN->getIncomingBlock(i)); 702 } 703 } 704 705 return !Result.empty(); 706 } 707 708 // Handle Cast instructions. 709 if (CastInst *CI = dyn_cast<CastInst>(I)) { 710 Value *Source = CI->getOperand(0); 711 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 712 RecursionSet, CxtI); 713 if (Result.empty()) 714 return false; 715 716 // Convert the known values. 717 for (auto &R : Result) 718 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 719 720 return true; 721 } 722 723 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 724 Value *Source = FI->getOperand(0); 725 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 726 RecursionSet, CxtI); 727 728 erase_if(Result, [](auto &Pair) { 729 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 730 }); 731 732 return !Result.empty(); 733 } 734 735 // Handle some boolean conditions. 736 if (I->getType()->getPrimitiveSizeInBits() == 1) { 737 using namespace PatternMatch; 738 739 assert(Preference == WantInteger && "One-bit non-integer type?"); 740 // X | true -> true 741 // X & false -> false 742 Value *Op0, *Op1; 743 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 744 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 745 PredValueInfoTy LHSVals, RHSVals; 746 747 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 748 RecursionSet, CxtI); 749 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 750 RecursionSet, CxtI); 751 752 if (LHSVals.empty() && RHSVals.empty()) 753 return false; 754 755 ConstantInt *InterestingVal; 756 if (match(I, m_LogicalOr())) 757 InterestingVal = ConstantInt::getTrue(I->getContext()); 758 else 759 InterestingVal = ConstantInt::getFalse(I->getContext()); 760 761 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 762 763 // Scan for the sentinel. If we find an undef, force it to the 764 // interesting value: x|undef -> true and x&undef -> false. 765 for (const auto &LHSVal : LHSVals) 766 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 767 Result.emplace_back(InterestingVal, LHSVal.second); 768 LHSKnownBBs.insert(LHSVal.second); 769 } 770 for (const auto &RHSVal : RHSVals) 771 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 772 // If we already inferred a value for this block on the LHS, don't 773 // re-add it. 774 if (!LHSKnownBBs.count(RHSVal.second)) 775 Result.emplace_back(InterestingVal, RHSVal.second); 776 } 777 778 return !Result.empty(); 779 } 780 781 // Handle the NOT form of XOR. 782 if (I->getOpcode() == Instruction::Xor && 783 isa<ConstantInt>(I->getOperand(1)) && 784 cast<ConstantInt>(I->getOperand(1))->isOne()) { 785 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 786 WantInteger, RecursionSet, CxtI); 787 if (Result.empty()) 788 return false; 789 790 // Invert the known values. 791 for (auto &R : Result) 792 R.first = ConstantExpr::getNot(R.first); 793 794 return true; 795 } 796 797 // Try to simplify some other binary operator values. 798 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 799 assert(Preference != WantBlockAddress 800 && "A binary operator creating a block address?"); 801 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 802 PredValueInfoTy LHSVals; 803 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 804 WantInteger, RecursionSet, CxtI); 805 806 // Try to use constant folding to simplify the binary operator. 807 for (const auto &LHSVal : LHSVals) { 808 Constant *V = LHSVal.first; 809 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 810 811 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 812 Result.emplace_back(KC, LHSVal.second); 813 } 814 } 815 816 return !Result.empty(); 817 } 818 819 // Handle compare with phi operand, where the PHI is defined in this block. 820 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 821 assert(Preference == WantInteger && "Compares only produce integers"); 822 Type *CmpType = Cmp->getType(); 823 Value *CmpLHS = Cmp->getOperand(0); 824 Value *CmpRHS = Cmp->getOperand(1); 825 CmpInst::Predicate Pred = Cmp->getPredicate(); 826 827 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 828 if (!PN) 829 PN = dyn_cast<PHINode>(CmpRHS); 830 if (PN && PN->getParent() == BB) { 831 const DataLayout &DL = PN->getModule()->getDataLayout(); 832 // We can do this simplification if any comparisons fold to true or false. 833 // See if any do. 834 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 835 BasicBlock *PredBB = PN->getIncomingBlock(i); 836 Value *LHS, *RHS; 837 if (PN == CmpLHS) { 838 LHS = PN->getIncomingValue(i); 839 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 840 } else { 841 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 842 RHS = PN->getIncomingValue(i); 843 } 844 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 845 if (!Res) { 846 if (!isa<Constant>(RHS)) 847 continue; 848 849 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 850 auto LHSInst = dyn_cast<Instruction>(LHS); 851 if (LHSInst && LHSInst->getParent() == BB) 852 continue; 853 854 LazyValueInfo::Tristate 855 ResT = LVI->getPredicateOnEdge(Pred, LHS, 856 cast<Constant>(RHS), PredBB, BB, 857 CxtI ? CxtI : Cmp); 858 if (ResT == LazyValueInfo::Unknown) 859 continue; 860 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 861 } 862 863 if (Constant *KC = getKnownConstant(Res, WantInteger)) 864 Result.emplace_back(KC, PredBB); 865 } 866 867 return !Result.empty(); 868 } 869 870 // If comparing a live-in value against a constant, see if we know the 871 // live-in value on any predecessors. 872 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 873 Constant *CmpConst = cast<Constant>(CmpRHS); 874 875 if (!isa<Instruction>(CmpLHS) || 876 cast<Instruction>(CmpLHS)->getParent() != BB) { 877 for (BasicBlock *P : predecessors(BB)) { 878 // If the value is known by LazyValueInfo to be a constant in a 879 // predecessor, use that information to try to thread this block. 880 LazyValueInfo::Tristate Res = 881 LVI->getPredicateOnEdge(Pred, CmpLHS, 882 CmpConst, P, BB, CxtI ? CxtI : Cmp); 883 if (Res == LazyValueInfo::Unknown) 884 continue; 885 886 Constant *ResC = ConstantInt::get(CmpType, Res); 887 Result.emplace_back(ResC, P); 888 } 889 890 return !Result.empty(); 891 } 892 893 // InstCombine can fold some forms of constant range checks into 894 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 895 // x as a live-in. 896 { 897 using namespace PatternMatch; 898 899 Value *AddLHS; 900 ConstantInt *AddConst; 901 if (isa<ConstantInt>(CmpConst) && 902 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 903 if (!isa<Instruction>(AddLHS) || 904 cast<Instruction>(AddLHS)->getParent() != BB) { 905 for (BasicBlock *P : predecessors(BB)) { 906 // If the value is known by LazyValueInfo to be a ConstantRange in 907 // a predecessor, use that information to try to thread this 908 // block. 909 ConstantRange CR = LVI->getConstantRangeOnEdge( 910 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 911 // Propagate the range through the addition. 912 CR = CR.add(AddConst->getValue()); 913 914 // Get the range where the compare returns true. 915 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 916 Pred, cast<ConstantInt>(CmpConst)->getValue()); 917 918 Constant *ResC; 919 if (CmpRange.contains(CR)) 920 ResC = ConstantInt::getTrue(CmpType); 921 else if (CmpRange.inverse().contains(CR)) 922 ResC = ConstantInt::getFalse(CmpType); 923 else 924 continue; 925 926 Result.emplace_back(ResC, P); 927 } 928 929 return !Result.empty(); 930 } 931 } 932 } 933 934 // Try to find a constant value for the LHS of a comparison, 935 // and evaluate it statically if we can. 936 PredValueInfoTy LHSVals; 937 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 938 WantInteger, RecursionSet, CxtI); 939 940 for (const auto &LHSVal : LHSVals) { 941 Constant *V = LHSVal.first; 942 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 943 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 944 Result.emplace_back(KC, LHSVal.second); 945 } 946 947 return !Result.empty(); 948 } 949 } 950 951 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 952 // Handle select instructions where at least one operand is a known constant 953 // and we can figure out the condition value for any predecessor block. 954 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 955 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 956 PredValueInfoTy Conds; 957 if ((TrueVal || FalseVal) && 958 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 959 WantInteger, RecursionSet, CxtI)) { 960 for (auto &C : Conds) { 961 Constant *Cond = C.first; 962 963 // Figure out what value to use for the condition. 964 bool KnownCond; 965 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 966 // A known boolean. 967 KnownCond = CI->isOne(); 968 } else { 969 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 970 // Either operand will do, so be sure to pick the one that's a known 971 // constant. 972 // FIXME: Do this more cleverly if both values are known constants? 973 KnownCond = (TrueVal != nullptr); 974 } 975 976 // See if the select has a known constant value for this predecessor. 977 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 978 Result.emplace_back(Val, C.second); 979 } 980 981 return !Result.empty(); 982 } 983 } 984 985 // If all else fails, see if LVI can figure out a constant value for us. 986 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 987 Constant *CI = LVI->getConstant(V, CxtI); 988 if (Constant *KC = getKnownConstant(CI, Preference)) { 989 for (BasicBlock *Pred : predecessors(BB)) 990 Result.emplace_back(KC, Pred); 991 } 992 993 return !Result.empty(); 994 } 995 996 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 997 /// in an undefined jump, decide which block is best to revector to. 998 /// 999 /// Since we can pick an arbitrary destination, we pick the successor with the 1000 /// fewest predecessors. This should reduce the in-degree of the others. 1001 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 1002 Instruction *BBTerm = BB->getTerminator(); 1003 unsigned MinSucc = 0; 1004 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 1005 // Compute the successor with the minimum number of predecessors. 1006 unsigned MinNumPreds = pred_size(TestBB); 1007 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1008 TestBB = BBTerm->getSuccessor(i); 1009 unsigned NumPreds = pred_size(TestBB); 1010 if (NumPreds < MinNumPreds) { 1011 MinSucc = i; 1012 MinNumPreds = NumPreds; 1013 } 1014 } 1015 1016 return MinSucc; 1017 } 1018 1019 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1020 if (!BB->hasAddressTaken()) return false; 1021 1022 // If the block has its address taken, it may be a tree of dead constants 1023 // hanging off of it. These shouldn't keep the block alive. 1024 BlockAddress *BA = BlockAddress::get(BB); 1025 BA->removeDeadConstantUsers(); 1026 return !BA->use_empty(); 1027 } 1028 1029 /// processBlock - If there are any predecessors whose control can be threaded 1030 /// through to a successor, transform them now. 1031 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1032 // If the block is trivially dead, just return and let the caller nuke it. 1033 // This simplifies other transformations. 1034 if (DTU->isBBPendingDeletion(BB) || 1035 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1036 return false; 1037 1038 // If this block has a single predecessor, and if that pred has a single 1039 // successor, merge the blocks. This encourages recursive jump threading 1040 // because now the condition in this block can be threaded through 1041 // predecessors of our predecessor block. 1042 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1043 return true; 1044 1045 if (tryToUnfoldSelectInCurrBB(BB)) 1046 return true; 1047 1048 // Look if we can propagate guards to predecessors. 1049 if (HasGuards && processGuards(BB)) 1050 return true; 1051 1052 // What kind of constant we're looking for. 1053 ConstantPreference Preference = WantInteger; 1054 1055 // Look to see if the terminator is a conditional branch, switch or indirect 1056 // branch, if not we can't thread it. 1057 Value *Condition; 1058 Instruction *Terminator = BB->getTerminator(); 1059 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1060 // Can't thread an unconditional jump. 1061 if (BI->isUnconditional()) return false; 1062 Condition = BI->getCondition(); 1063 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1064 Condition = SI->getCondition(); 1065 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1066 // Can't thread indirect branch with no successors. 1067 if (IB->getNumSuccessors() == 0) return false; 1068 Condition = IB->getAddress()->stripPointerCasts(); 1069 Preference = WantBlockAddress; 1070 } else { 1071 return false; // Must be an invoke or callbr. 1072 } 1073 1074 // Keep track if we constant folded the condition in this invocation. 1075 bool ConstantFolded = false; 1076 1077 // Run constant folding to see if we can reduce the condition to a simple 1078 // constant. 1079 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1080 Value *SimpleVal = 1081 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1082 if (SimpleVal) { 1083 I->replaceAllUsesWith(SimpleVal); 1084 if (isInstructionTriviallyDead(I, TLI)) 1085 I->eraseFromParent(); 1086 Condition = SimpleVal; 1087 ConstantFolded = true; 1088 } 1089 } 1090 1091 // If the terminator is branching on an undef or freeze undef, we can pick any 1092 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1093 auto *FI = dyn_cast<FreezeInst>(Condition); 1094 if (isa<UndefValue>(Condition) || 1095 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1096 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1097 std::vector<DominatorTree::UpdateType> Updates; 1098 1099 // Fold the branch/switch. 1100 Instruction *BBTerm = BB->getTerminator(); 1101 Updates.reserve(BBTerm->getNumSuccessors()); 1102 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1103 if (i == BestSucc) continue; 1104 BasicBlock *Succ = BBTerm->getSuccessor(i); 1105 Succ->removePredecessor(BB, true); 1106 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1107 } 1108 1109 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1110 << "' folding undef terminator: " << *BBTerm << '\n'); 1111 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1112 BBTerm->eraseFromParent(); 1113 DTU->applyUpdatesPermissive(Updates); 1114 if (FI) 1115 FI->eraseFromParent(); 1116 return true; 1117 } 1118 1119 // If the terminator of this block is branching on a constant, simplify the 1120 // terminator to an unconditional branch. This can occur due to threading in 1121 // other blocks. 1122 if (getKnownConstant(Condition, Preference)) { 1123 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1124 << "' folding terminator: " << *BB->getTerminator() 1125 << '\n'); 1126 ++NumFolds; 1127 ConstantFoldTerminator(BB, true, nullptr, DTU); 1128 if (HasProfileData) 1129 BPI->eraseBlock(BB); 1130 return true; 1131 } 1132 1133 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1134 1135 // All the rest of our checks depend on the condition being an instruction. 1136 if (!CondInst) { 1137 // FIXME: Unify this with code below. 1138 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1139 return true; 1140 return ConstantFolded; 1141 } 1142 1143 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1144 // If we're branching on a conditional, LVI might be able to determine 1145 // it's value at the branch instruction. We only handle comparisons 1146 // against a constant at this time. 1147 // TODO: This should be extended to handle switches as well. 1148 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1149 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1150 if (CondBr && CondConst) { 1151 // We should have returned as soon as we turn a conditional branch to 1152 // unconditional. Because its no longer interesting as far as jump 1153 // threading is concerned. 1154 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1155 1156 LazyValueInfo::Tristate Ret = 1157 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1158 CondConst, CondBr); 1159 if (Ret != LazyValueInfo::Unknown) { 1160 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1161 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1162 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1163 ToRemoveSucc->removePredecessor(BB, true); 1164 BranchInst *UncondBr = 1165 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1166 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1167 CondBr->eraseFromParent(); 1168 if (CondCmp->use_empty()) 1169 CondCmp->eraseFromParent(); 1170 // We can safely replace *some* uses of the CondInst if it has 1171 // exactly one value as returned by LVI. RAUW is incorrect in the 1172 // presence of guards and assumes, that have the `Cond` as the use. This 1173 // is because we use the guards/assume to reason about the `Cond` value 1174 // at the end of block, but RAUW unconditionally replaces all uses 1175 // including the guards/assumes themselves and the uses before the 1176 // guard/assume. 1177 else if (CondCmp->getParent() == BB) { 1178 auto *CI = Ret == LazyValueInfo::True ? 1179 ConstantInt::getTrue(CondCmp->getType()) : 1180 ConstantInt::getFalse(CondCmp->getType()); 1181 replaceFoldableUses(CondCmp, CI); 1182 } 1183 DTU->applyUpdatesPermissive( 1184 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1185 if (HasProfileData) 1186 BPI->eraseBlock(BB); 1187 return true; 1188 } 1189 1190 // We did not manage to simplify this branch, try to see whether 1191 // CondCmp depends on a known phi-select pattern. 1192 if (tryToUnfoldSelect(CondCmp, BB)) 1193 return true; 1194 } 1195 } 1196 1197 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1198 if (tryToUnfoldSelect(SI, BB)) 1199 return true; 1200 1201 // Check for some cases that are worth simplifying. Right now we want to look 1202 // for loads that are used by a switch or by the condition for the branch. If 1203 // we see one, check to see if it's partially redundant. If so, insert a PHI 1204 // which can then be used to thread the values. 1205 Value *SimplifyValue = CondInst; 1206 1207 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1208 // Look into freeze's operand 1209 SimplifyValue = FI->getOperand(0); 1210 1211 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1212 if (isa<Constant>(CondCmp->getOperand(1))) 1213 SimplifyValue = CondCmp->getOperand(0); 1214 1215 // TODO: There are other places where load PRE would be profitable, such as 1216 // more complex comparisons. 1217 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1218 if (simplifyPartiallyRedundantLoad(LoadI)) 1219 return true; 1220 1221 // Before threading, try to propagate profile data backwards: 1222 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1223 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1224 updatePredecessorProfileMetadata(PN, BB); 1225 1226 // Handle a variety of cases where we are branching on something derived from 1227 // a PHI node in the current block. If we can prove that any predecessors 1228 // compute a predictable value based on a PHI node, thread those predecessors. 1229 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1230 return true; 1231 1232 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1233 // the current block, see if we can simplify. 1234 PHINode *PN = dyn_cast<PHINode>( 1235 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1236 : CondInst); 1237 1238 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1239 return processBranchOnPHI(PN); 1240 1241 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1242 if (CondInst->getOpcode() == Instruction::Xor && 1243 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1244 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1245 1246 // Search for a stronger dominating condition that can be used to simplify a 1247 // conditional branch leaving BB. 1248 if (processImpliedCondition(BB)) 1249 return true; 1250 1251 return false; 1252 } 1253 1254 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1255 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1256 if (!BI || !BI->isConditional()) 1257 return false; 1258 1259 Value *Cond = BI->getCondition(); 1260 BasicBlock *CurrentBB = BB; 1261 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1262 unsigned Iter = 0; 1263 1264 auto &DL = BB->getModule()->getDataLayout(); 1265 1266 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1267 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1268 if (!PBI || !PBI->isConditional()) 1269 return false; 1270 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1271 return false; 1272 1273 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1274 Optional<bool> Implication = 1275 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1276 if (Implication) { 1277 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1278 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1279 RemoveSucc->removePredecessor(BB); 1280 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1281 UncondBI->setDebugLoc(BI->getDebugLoc()); 1282 BI->eraseFromParent(); 1283 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1284 if (HasProfileData) 1285 BPI->eraseBlock(BB); 1286 return true; 1287 } 1288 CurrentBB = CurrentPred; 1289 CurrentPred = CurrentBB->getSinglePredecessor(); 1290 } 1291 1292 return false; 1293 } 1294 1295 /// Return true if Op is an instruction defined in the given block. 1296 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1297 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1298 if (OpInst->getParent() == BB) 1299 return true; 1300 return false; 1301 } 1302 1303 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1304 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1305 /// This is an important optimization that encourages jump threading, and needs 1306 /// to be run interlaced with other jump threading tasks. 1307 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1308 // Don't hack volatile and ordered loads. 1309 if (!LoadI->isUnordered()) return false; 1310 1311 // If the load is defined in a block with exactly one predecessor, it can't be 1312 // partially redundant. 1313 BasicBlock *LoadBB = LoadI->getParent(); 1314 if (LoadBB->getSinglePredecessor()) 1315 return false; 1316 1317 // If the load is defined in an EH pad, it can't be partially redundant, 1318 // because the edges between the invoke and the EH pad cannot have other 1319 // instructions between them. 1320 if (LoadBB->isEHPad()) 1321 return false; 1322 1323 Value *LoadedPtr = LoadI->getOperand(0); 1324 1325 // If the loaded operand is defined in the LoadBB and its not a phi, 1326 // it can't be available in predecessors. 1327 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1328 return false; 1329 1330 // Scan a few instructions up from the load, to see if it is obviously live at 1331 // the entry to its block. 1332 BasicBlock::iterator BBIt(LoadI); 1333 bool IsLoadCSE; 1334 if (Value *AvailableVal = FindAvailableLoadedValue( 1335 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1336 // If the value of the load is locally available within the block, just use 1337 // it. This frequently occurs for reg2mem'd allocas. 1338 1339 if (IsLoadCSE) { 1340 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1341 combineMetadataForCSE(NLoadI, LoadI, false); 1342 }; 1343 1344 // If the returned value is the load itself, replace with an undef. This can 1345 // only happen in dead loops. 1346 if (AvailableVal == LoadI) 1347 AvailableVal = UndefValue::get(LoadI->getType()); 1348 if (AvailableVal->getType() != LoadI->getType()) 1349 AvailableVal = CastInst::CreateBitOrPointerCast( 1350 AvailableVal, LoadI->getType(), "", LoadI); 1351 LoadI->replaceAllUsesWith(AvailableVal); 1352 LoadI->eraseFromParent(); 1353 return true; 1354 } 1355 1356 // Otherwise, if we scanned the whole block and got to the top of the block, 1357 // we know the block is locally transparent to the load. If not, something 1358 // might clobber its value. 1359 if (BBIt != LoadBB->begin()) 1360 return false; 1361 1362 // If all of the loads and stores that feed the value have the same AA tags, 1363 // then we can propagate them onto any newly inserted loads. 1364 AAMDNodes AATags; 1365 LoadI->getAAMetadata(AATags); 1366 1367 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1368 1369 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1370 1371 AvailablePredsTy AvailablePreds; 1372 BasicBlock *OneUnavailablePred = nullptr; 1373 SmallVector<LoadInst*, 8> CSELoads; 1374 1375 // If we got here, the loaded value is transparent through to the start of the 1376 // block. Check to see if it is available in any of the predecessor blocks. 1377 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1378 // If we already scanned this predecessor, skip it. 1379 if (!PredsScanned.insert(PredBB).second) 1380 continue; 1381 1382 BBIt = PredBB->end(); 1383 unsigned NumScanedInst = 0; 1384 Value *PredAvailable = nullptr; 1385 // NOTE: We don't CSE load that is volatile or anything stronger than 1386 // unordered, that should have been checked when we entered the function. 1387 assert(LoadI->isUnordered() && 1388 "Attempting to CSE volatile or atomic loads"); 1389 // If this is a load on a phi pointer, phi-translate it and search 1390 // for available load/store to the pointer in predecessors. 1391 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1392 PredAvailable = FindAvailablePtrLoadStore( 1393 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1394 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1395 1396 // If PredBB has a single predecessor, continue scanning through the 1397 // single predecessor. 1398 BasicBlock *SinglePredBB = PredBB; 1399 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1400 NumScanedInst < DefMaxInstsToScan) { 1401 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1402 if (SinglePredBB) { 1403 BBIt = SinglePredBB->end(); 1404 PredAvailable = FindAvailablePtrLoadStore( 1405 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1406 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1407 &NumScanedInst); 1408 } 1409 } 1410 1411 if (!PredAvailable) { 1412 OneUnavailablePred = PredBB; 1413 continue; 1414 } 1415 1416 if (IsLoadCSE) 1417 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1418 1419 // If so, this load is partially redundant. Remember this info so that we 1420 // can create a PHI node. 1421 AvailablePreds.emplace_back(PredBB, PredAvailable); 1422 } 1423 1424 // If the loaded value isn't available in any predecessor, it isn't partially 1425 // redundant. 1426 if (AvailablePreds.empty()) return false; 1427 1428 // Okay, the loaded value is available in at least one (and maybe all!) 1429 // predecessors. If the value is unavailable in more than one unique 1430 // predecessor, we want to insert a merge block for those common predecessors. 1431 // This ensures that we only have to insert one reload, thus not increasing 1432 // code size. 1433 BasicBlock *UnavailablePred = nullptr; 1434 1435 // If the value is unavailable in one of predecessors, we will end up 1436 // inserting a new instruction into them. It is only valid if all the 1437 // instructions before LoadI are guaranteed to pass execution to its 1438 // successor, or if LoadI is safe to speculate. 1439 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1440 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1441 // It requires domination tree analysis, so for this simple case it is an 1442 // overkill. 1443 if (PredsScanned.size() != AvailablePreds.size() && 1444 !isSafeToSpeculativelyExecute(LoadI)) 1445 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1446 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1447 return false; 1448 1449 // If there is exactly one predecessor where the value is unavailable, the 1450 // already computed 'OneUnavailablePred' block is it. If it ends in an 1451 // unconditional branch, we know that it isn't a critical edge. 1452 if (PredsScanned.size() == AvailablePreds.size()+1 && 1453 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1454 UnavailablePred = OneUnavailablePred; 1455 } else if (PredsScanned.size() != AvailablePreds.size()) { 1456 // Otherwise, we had multiple unavailable predecessors or we had a critical 1457 // edge from the one. 1458 SmallVector<BasicBlock*, 8> PredsToSplit; 1459 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1460 1461 for (const auto &AvailablePred : AvailablePreds) 1462 AvailablePredSet.insert(AvailablePred.first); 1463 1464 // Add all the unavailable predecessors to the PredsToSplit list. 1465 for (BasicBlock *P : predecessors(LoadBB)) { 1466 // If the predecessor is an indirect goto, we can't split the edge. 1467 // Same for CallBr. 1468 if (isa<IndirectBrInst>(P->getTerminator()) || 1469 isa<CallBrInst>(P->getTerminator())) 1470 return false; 1471 1472 if (!AvailablePredSet.count(P)) 1473 PredsToSplit.push_back(P); 1474 } 1475 1476 // Split them out to their own block. 1477 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1478 } 1479 1480 // If the value isn't available in all predecessors, then there will be 1481 // exactly one where it isn't available. Insert a load on that edge and add 1482 // it to the AvailablePreds list. 1483 if (UnavailablePred) { 1484 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1485 "Can't handle critical edge here!"); 1486 LoadInst *NewVal = new LoadInst( 1487 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1488 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1489 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1490 UnavailablePred->getTerminator()); 1491 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1492 if (AATags) 1493 NewVal->setAAMetadata(AATags); 1494 1495 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1496 } 1497 1498 // Now we know that each predecessor of this block has a value in 1499 // AvailablePreds, sort them for efficient access as we're walking the preds. 1500 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1501 1502 // Create a PHI node at the start of the block for the PRE'd load value. 1503 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1504 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1505 &LoadBB->front()); 1506 PN->takeName(LoadI); 1507 PN->setDebugLoc(LoadI->getDebugLoc()); 1508 1509 // Insert new entries into the PHI for each predecessor. A single block may 1510 // have multiple entries here. 1511 for (pred_iterator PI = PB; PI != PE; ++PI) { 1512 BasicBlock *P = *PI; 1513 AvailablePredsTy::iterator I = 1514 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1515 1516 assert(I != AvailablePreds.end() && I->first == P && 1517 "Didn't find entry for predecessor!"); 1518 1519 // If we have an available predecessor but it requires casting, insert the 1520 // cast in the predecessor and use the cast. Note that we have to update the 1521 // AvailablePreds vector as we go so that all of the PHI entries for this 1522 // predecessor use the same bitcast. 1523 Value *&PredV = I->second; 1524 if (PredV->getType() != LoadI->getType()) 1525 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1526 P->getTerminator()); 1527 1528 PN->addIncoming(PredV, I->first); 1529 } 1530 1531 for (LoadInst *PredLoadI : CSELoads) { 1532 combineMetadataForCSE(PredLoadI, LoadI, true); 1533 } 1534 1535 LoadI->replaceAllUsesWith(PN); 1536 LoadI->eraseFromParent(); 1537 1538 return true; 1539 } 1540 1541 /// findMostPopularDest - The specified list contains multiple possible 1542 /// threadable destinations. Pick the one that occurs the most frequently in 1543 /// the list. 1544 static BasicBlock * 1545 findMostPopularDest(BasicBlock *BB, 1546 const SmallVectorImpl<std::pair<BasicBlock *, 1547 BasicBlock *>> &PredToDestList) { 1548 assert(!PredToDestList.empty()); 1549 1550 // Determine popularity. If there are multiple possible destinations, we 1551 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1552 // blocks with known and real destinations to threading undef. We'll handle 1553 // them later if interesting. 1554 MapVector<BasicBlock *, unsigned> DestPopularity; 1555 1556 // Populate DestPopularity with the successors in the order they appear in the 1557 // successor list. This way, we ensure determinism by iterating it in the 1558 // same order in std::max_element below. We map nullptr to 0 so that we can 1559 // return nullptr when PredToDestList contains nullptr only. 1560 DestPopularity[nullptr] = 0; 1561 for (auto *SuccBB : successors(BB)) 1562 DestPopularity[SuccBB] = 0; 1563 1564 for (const auto &PredToDest : PredToDestList) 1565 if (PredToDest.second) 1566 DestPopularity[PredToDest.second]++; 1567 1568 // Find the most popular dest. 1569 using VT = decltype(DestPopularity)::value_type; 1570 auto MostPopular = std::max_element( 1571 DestPopularity.begin(), DestPopularity.end(), 1572 [](const VT &L, const VT &R) { return L.second < R.second; }); 1573 1574 // Okay, we have finally picked the most popular destination. 1575 return MostPopular->first; 1576 } 1577 1578 // Try to evaluate the value of V when the control flows from PredPredBB to 1579 // BB->getSinglePredecessor() and then on to BB. 1580 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1581 BasicBlock *PredPredBB, 1582 Value *V) { 1583 BasicBlock *PredBB = BB->getSinglePredecessor(); 1584 assert(PredBB && "Expected a single predecessor"); 1585 1586 if (Constant *Cst = dyn_cast<Constant>(V)) { 1587 return Cst; 1588 } 1589 1590 // Consult LVI if V is not an instruction in BB or PredBB. 1591 Instruction *I = dyn_cast<Instruction>(V); 1592 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1593 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1594 } 1595 1596 // Look into a PHI argument. 1597 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1598 if (PHI->getParent() == PredBB) 1599 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1600 return nullptr; 1601 } 1602 1603 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1604 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1605 if (CondCmp->getParent() == BB) { 1606 Constant *Op0 = 1607 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1608 Constant *Op1 = 1609 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1610 if (Op0 && Op1) { 1611 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1612 } 1613 } 1614 return nullptr; 1615 } 1616 1617 return nullptr; 1618 } 1619 1620 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1621 ConstantPreference Preference, 1622 Instruction *CxtI) { 1623 // If threading this would thread across a loop header, don't even try to 1624 // thread the edge. 1625 if (LoopHeaders.count(BB)) 1626 return false; 1627 1628 PredValueInfoTy PredValues; 1629 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1630 CxtI)) { 1631 // We don't have known values in predecessors. See if we can thread through 1632 // BB and its sole predecessor. 1633 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1634 } 1635 1636 assert(!PredValues.empty() && 1637 "computeValueKnownInPredecessors returned true with no values"); 1638 1639 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1640 for (const auto &PredValue : PredValues) { 1641 dbgs() << " BB '" << BB->getName() 1642 << "': FOUND condition = " << *PredValue.first 1643 << " for pred '" << PredValue.second->getName() << "'.\n"; 1644 }); 1645 1646 // Decide what we want to thread through. Convert our list of known values to 1647 // a list of known destinations for each pred. This also discards duplicate 1648 // predecessors and keeps track of the undefined inputs (which are represented 1649 // as a null dest in the PredToDestList). 1650 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1651 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1652 1653 BasicBlock *OnlyDest = nullptr; 1654 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1655 Constant *OnlyVal = nullptr; 1656 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1657 1658 for (const auto &PredValue : PredValues) { 1659 BasicBlock *Pred = PredValue.second; 1660 if (!SeenPreds.insert(Pred).second) 1661 continue; // Duplicate predecessor entry. 1662 1663 Constant *Val = PredValue.first; 1664 1665 BasicBlock *DestBB; 1666 if (isa<UndefValue>(Val)) 1667 DestBB = nullptr; 1668 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1669 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1670 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1671 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1672 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1673 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1674 } else { 1675 assert(isa<IndirectBrInst>(BB->getTerminator()) 1676 && "Unexpected terminator"); 1677 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1678 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1679 } 1680 1681 // If we have exactly one destination, remember it for efficiency below. 1682 if (PredToDestList.empty()) { 1683 OnlyDest = DestBB; 1684 OnlyVal = Val; 1685 } else { 1686 if (OnlyDest != DestBB) 1687 OnlyDest = MultipleDestSentinel; 1688 // It possible we have same destination, but different value, e.g. default 1689 // case in switchinst. 1690 if (Val != OnlyVal) 1691 OnlyVal = MultipleVal; 1692 } 1693 1694 // If the predecessor ends with an indirect goto, we can't change its 1695 // destination. Same for CallBr. 1696 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1697 isa<CallBrInst>(Pred->getTerminator())) 1698 continue; 1699 1700 PredToDestList.emplace_back(Pred, DestBB); 1701 } 1702 1703 // If all edges were unthreadable, we fail. 1704 if (PredToDestList.empty()) 1705 return false; 1706 1707 // If all the predecessors go to a single known successor, we want to fold, 1708 // not thread. By doing so, we do not need to duplicate the current block and 1709 // also miss potential opportunities in case we dont/cant duplicate. 1710 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1711 if (BB->hasNPredecessors(PredToDestList.size())) { 1712 bool SeenFirstBranchToOnlyDest = false; 1713 std::vector <DominatorTree::UpdateType> Updates; 1714 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1715 for (BasicBlock *SuccBB : successors(BB)) { 1716 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1717 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1718 } else { 1719 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1720 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1721 } 1722 } 1723 1724 // Finally update the terminator. 1725 Instruction *Term = BB->getTerminator(); 1726 BranchInst::Create(OnlyDest, Term); 1727 Term->eraseFromParent(); 1728 DTU->applyUpdatesPermissive(Updates); 1729 if (HasProfileData) 1730 BPI->eraseBlock(BB); 1731 1732 // If the condition is now dead due to the removal of the old terminator, 1733 // erase it. 1734 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1735 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1736 CondInst->eraseFromParent(); 1737 // We can safely replace *some* uses of the CondInst if it has 1738 // exactly one value as returned by LVI. RAUW is incorrect in the 1739 // presence of guards and assumes, that have the `Cond` as the use. This 1740 // is because we use the guards/assume to reason about the `Cond` value 1741 // at the end of block, but RAUW unconditionally replaces all uses 1742 // including the guards/assumes themselves and the uses before the 1743 // guard/assume. 1744 else if (OnlyVal && OnlyVal != MultipleVal && 1745 CondInst->getParent() == BB) 1746 replaceFoldableUses(CondInst, OnlyVal); 1747 } 1748 return true; 1749 } 1750 } 1751 1752 // Determine which is the most common successor. If we have many inputs and 1753 // this block is a switch, we want to start by threading the batch that goes 1754 // to the most popular destination first. If we only know about one 1755 // threadable destination (the common case) we can avoid this. 1756 BasicBlock *MostPopularDest = OnlyDest; 1757 1758 if (MostPopularDest == MultipleDestSentinel) { 1759 // Remove any loop headers from the Dest list, threadEdge conservatively 1760 // won't process them, but we might have other destination that are eligible 1761 // and we still want to process. 1762 erase_if(PredToDestList, 1763 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1764 return LoopHeaders.contains(PredToDest.second); 1765 }); 1766 1767 if (PredToDestList.empty()) 1768 return false; 1769 1770 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1771 } 1772 1773 // Now that we know what the most popular destination is, factor all 1774 // predecessors that will jump to it into a single predecessor. 1775 SmallVector<BasicBlock*, 16> PredsToFactor; 1776 for (const auto &PredToDest : PredToDestList) 1777 if (PredToDest.second == MostPopularDest) { 1778 BasicBlock *Pred = PredToDest.first; 1779 1780 // This predecessor may be a switch or something else that has multiple 1781 // edges to the block. Factor each of these edges by listing them 1782 // according to # occurrences in PredsToFactor. 1783 for (BasicBlock *Succ : successors(Pred)) 1784 if (Succ == BB) 1785 PredsToFactor.push_back(Pred); 1786 } 1787 1788 // If the threadable edges are branching on an undefined value, we get to pick 1789 // the destination that these predecessors should get to. 1790 if (!MostPopularDest) 1791 MostPopularDest = BB->getTerminator()-> 1792 getSuccessor(getBestDestForJumpOnUndef(BB)); 1793 1794 // Ok, try to thread it! 1795 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1796 } 1797 1798 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1799 /// a PHI node (or freeze PHI) in the current block. See if there are any 1800 /// simplifications we can do based on inputs to the phi node. 1801 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1802 BasicBlock *BB = PN->getParent(); 1803 1804 // TODO: We could make use of this to do it once for blocks with common PHI 1805 // values. 1806 SmallVector<BasicBlock*, 1> PredBBs; 1807 PredBBs.resize(1); 1808 1809 // If any of the predecessor blocks end in an unconditional branch, we can 1810 // *duplicate* the conditional branch into that block in order to further 1811 // encourage jump threading and to eliminate cases where we have branch on a 1812 // phi of an icmp (branch on icmp is much better). 1813 // This is still beneficial when a frozen phi is used as the branch condition 1814 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1815 // to br(icmp(freeze ...)). 1816 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1817 BasicBlock *PredBB = PN->getIncomingBlock(i); 1818 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1819 if (PredBr->isUnconditional()) { 1820 PredBBs[0] = PredBB; 1821 // Try to duplicate BB into PredBB. 1822 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1823 return true; 1824 } 1825 } 1826 1827 return false; 1828 } 1829 1830 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1831 /// a xor instruction in the current block. See if there are any 1832 /// simplifications we can do based on inputs to the xor. 1833 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1834 BasicBlock *BB = BO->getParent(); 1835 1836 // If either the LHS or RHS of the xor is a constant, don't do this 1837 // optimization. 1838 if (isa<ConstantInt>(BO->getOperand(0)) || 1839 isa<ConstantInt>(BO->getOperand(1))) 1840 return false; 1841 1842 // If the first instruction in BB isn't a phi, we won't be able to infer 1843 // anything special about any particular predecessor. 1844 if (!isa<PHINode>(BB->front())) 1845 return false; 1846 1847 // If this BB is a landing pad, we won't be able to split the edge into it. 1848 if (BB->isEHPad()) 1849 return false; 1850 1851 // If we have a xor as the branch input to this block, and we know that the 1852 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1853 // the condition into the predecessor and fix that value to true, saving some 1854 // logical ops on that path and encouraging other paths to simplify. 1855 // 1856 // This copies something like this: 1857 // 1858 // BB: 1859 // %X = phi i1 [1], [%X'] 1860 // %Y = icmp eq i32 %A, %B 1861 // %Z = xor i1 %X, %Y 1862 // br i1 %Z, ... 1863 // 1864 // Into: 1865 // BB': 1866 // %Y = icmp ne i32 %A, %B 1867 // br i1 %Y, ... 1868 1869 PredValueInfoTy XorOpValues; 1870 bool isLHS = true; 1871 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1872 WantInteger, BO)) { 1873 assert(XorOpValues.empty()); 1874 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1875 WantInteger, BO)) 1876 return false; 1877 isLHS = false; 1878 } 1879 1880 assert(!XorOpValues.empty() && 1881 "computeValueKnownInPredecessors returned true with no values"); 1882 1883 // Scan the information to see which is most popular: true or false. The 1884 // predecessors can be of the set true, false, or undef. 1885 unsigned NumTrue = 0, NumFalse = 0; 1886 for (const auto &XorOpValue : XorOpValues) { 1887 if (isa<UndefValue>(XorOpValue.first)) 1888 // Ignore undefs for the count. 1889 continue; 1890 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1891 ++NumFalse; 1892 else 1893 ++NumTrue; 1894 } 1895 1896 // Determine which value to split on, true, false, or undef if neither. 1897 ConstantInt *SplitVal = nullptr; 1898 if (NumTrue > NumFalse) 1899 SplitVal = ConstantInt::getTrue(BB->getContext()); 1900 else if (NumTrue != 0 || NumFalse != 0) 1901 SplitVal = ConstantInt::getFalse(BB->getContext()); 1902 1903 // Collect all of the blocks that this can be folded into so that we can 1904 // factor this once and clone it once. 1905 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1906 for (const auto &XorOpValue : XorOpValues) { 1907 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1908 continue; 1909 1910 BlocksToFoldInto.push_back(XorOpValue.second); 1911 } 1912 1913 // If we inferred a value for all of the predecessors, then duplication won't 1914 // help us. However, we can just replace the LHS or RHS with the constant. 1915 if (BlocksToFoldInto.size() == 1916 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1917 if (!SplitVal) { 1918 // If all preds provide undef, just nuke the xor, because it is undef too. 1919 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1920 BO->eraseFromParent(); 1921 } else if (SplitVal->isZero()) { 1922 // If all preds provide 0, replace the xor with the other input. 1923 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1924 BO->eraseFromParent(); 1925 } else { 1926 // If all preds provide 1, set the computed value to 1. 1927 BO->setOperand(!isLHS, SplitVal); 1928 } 1929 1930 return true; 1931 } 1932 1933 // If any of predecessors end with an indirect goto, we can't change its 1934 // destination. Same for CallBr. 1935 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1936 return isa<IndirectBrInst>(Pred->getTerminator()) || 1937 isa<CallBrInst>(Pred->getTerminator()); 1938 })) 1939 return false; 1940 1941 // Try to duplicate BB into PredBB. 1942 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1943 } 1944 1945 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1946 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1947 /// NewPred using the entries from OldPred (suitably mapped). 1948 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1949 BasicBlock *OldPred, 1950 BasicBlock *NewPred, 1951 DenseMap<Instruction*, Value*> &ValueMap) { 1952 for (PHINode &PN : PHIBB->phis()) { 1953 // Ok, we have a PHI node. Figure out what the incoming value was for the 1954 // DestBlock. 1955 Value *IV = PN.getIncomingValueForBlock(OldPred); 1956 1957 // Remap the value if necessary. 1958 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1959 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1960 if (I != ValueMap.end()) 1961 IV = I->second; 1962 } 1963 1964 PN.addIncoming(IV, NewPred); 1965 } 1966 } 1967 1968 /// Merge basic block BB into its sole predecessor if possible. 1969 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1970 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1971 if (!SinglePred) 1972 return false; 1973 1974 const Instruction *TI = SinglePred->getTerminator(); 1975 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1976 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1977 return false; 1978 1979 // If SinglePred was a loop header, BB becomes one. 1980 if (LoopHeaders.erase(SinglePred)) 1981 LoopHeaders.insert(BB); 1982 1983 LVI->eraseBlock(SinglePred); 1984 MergeBasicBlockIntoOnlyPred(BB, DTU); 1985 1986 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1987 // BB code within one basic block `BB`), we need to invalidate the LVI 1988 // information associated with BB, because the LVI information need not be 1989 // true for all of BB after the merge. For example, 1990 // Before the merge, LVI info and code is as follows: 1991 // SinglePred: <LVI info1 for %p val> 1992 // %y = use of %p 1993 // call @exit() // need not transfer execution to successor. 1994 // assume(%p) // from this point on %p is true 1995 // br label %BB 1996 // BB: <LVI info2 for %p val, i.e. %p is true> 1997 // %x = use of %p 1998 // br label exit 1999 // 2000 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2001 // (info2 and info1 respectively). After the merge and the deletion of the 2002 // LVI info1 for SinglePred. We have the following code: 2003 // BB: <LVI info2 for %p val> 2004 // %y = use of %p 2005 // call @exit() 2006 // assume(%p) 2007 // %x = use of %p <-- LVI info2 is correct from here onwards. 2008 // br label exit 2009 // LVI info2 for BB is incorrect at the beginning of BB. 2010 2011 // Invalidate LVI information for BB if the LVI is not provably true for 2012 // all of BB. 2013 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2014 LVI->eraseBlock(BB); 2015 return true; 2016 } 2017 2018 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2019 /// ValueMapping maps old values in BB to new ones in NewBB. 2020 void JumpThreadingPass::updateSSA( 2021 BasicBlock *BB, BasicBlock *NewBB, 2022 DenseMap<Instruction *, Value *> &ValueMapping) { 2023 // If there were values defined in BB that are used outside the block, then we 2024 // now have to update all uses of the value to use either the original value, 2025 // the cloned value, or some PHI derived value. This can require arbitrary 2026 // PHI insertion, of which we are prepared to do, clean these up now. 2027 SSAUpdater SSAUpdate; 2028 SmallVector<Use *, 16> UsesToRename; 2029 2030 for (Instruction &I : *BB) { 2031 // Scan all uses of this instruction to see if it is used outside of its 2032 // block, and if so, record them in UsesToRename. 2033 for (Use &U : I.uses()) { 2034 Instruction *User = cast<Instruction>(U.getUser()); 2035 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2036 if (UserPN->getIncomingBlock(U) == BB) 2037 continue; 2038 } else if (User->getParent() == BB) 2039 continue; 2040 2041 UsesToRename.push_back(&U); 2042 } 2043 2044 // If there are no uses outside the block, we're done with this instruction. 2045 if (UsesToRename.empty()) 2046 continue; 2047 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2048 2049 // We found a use of I outside of BB. Rename all uses of I that are outside 2050 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2051 // with the two values we know. 2052 SSAUpdate.Initialize(I.getType(), I.getName()); 2053 SSAUpdate.AddAvailableValue(BB, &I); 2054 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2055 2056 while (!UsesToRename.empty()) 2057 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2058 LLVM_DEBUG(dbgs() << "\n"); 2059 } 2060 } 2061 2062 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2063 /// arguments that come from PredBB. Return the map from the variables in the 2064 /// source basic block to the variables in the newly created basic block. 2065 DenseMap<Instruction *, Value *> 2066 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2067 BasicBlock::iterator BE, BasicBlock *NewBB, 2068 BasicBlock *PredBB) { 2069 // We are going to have to map operands from the source basic block to the new 2070 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2071 // block, evaluate them to account for entry from PredBB. 2072 DenseMap<Instruction *, Value *> ValueMapping; 2073 2074 // Clone the phi nodes of the source basic block into NewBB. The resulting 2075 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2076 // might need to rewrite the operand of the cloned phi. 2077 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2078 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2079 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2080 ValueMapping[PN] = NewPN; 2081 } 2082 2083 // Clone noalias scope declarations in the threaded block. When threading a 2084 // loop exit, we would otherwise end up with two idential scope declarations 2085 // visible at the same time. 2086 SmallVector<MDNode *> NoAliasScopes; 2087 DenseMap<MDNode *, MDNode *> ClonedScopes; 2088 LLVMContext &Context = PredBB->getContext(); 2089 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2090 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2091 2092 // Clone the non-phi instructions of the source basic block into NewBB, 2093 // keeping track of the mapping and using it to remap operands in the cloned 2094 // instructions. 2095 for (; BI != BE; ++BI) { 2096 Instruction *New = BI->clone(); 2097 New->setName(BI->getName()); 2098 NewBB->getInstList().push_back(New); 2099 ValueMapping[&*BI] = New; 2100 adaptNoAliasScopes(New, ClonedScopes, Context); 2101 2102 // Remap operands to patch up intra-block references. 2103 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2104 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2105 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2106 if (I != ValueMapping.end()) 2107 New->setOperand(i, I->second); 2108 } 2109 } 2110 2111 return ValueMapping; 2112 } 2113 2114 /// Attempt to thread through two successive basic blocks. 2115 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2116 Value *Cond) { 2117 // Consider: 2118 // 2119 // PredBB: 2120 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2121 // %tobool = icmp eq i32 %cond, 0 2122 // br i1 %tobool, label %BB, label ... 2123 // 2124 // BB: 2125 // %cmp = icmp eq i32* %var, null 2126 // br i1 %cmp, label ..., label ... 2127 // 2128 // We don't know the value of %var at BB even if we know which incoming edge 2129 // we take to BB. However, once we duplicate PredBB for each of its incoming 2130 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2131 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2132 2133 // Require that BB end with a Branch for simplicity. 2134 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2135 if (!CondBr) 2136 return false; 2137 2138 // BB must have exactly one predecessor. 2139 BasicBlock *PredBB = BB->getSinglePredecessor(); 2140 if (!PredBB) 2141 return false; 2142 2143 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2144 // unconditional branch, we should be merging PredBB and BB instead. For 2145 // simplicity, we don't deal with a switch. 2146 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2147 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2148 return false; 2149 2150 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2151 // PredBB. 2152 if (PredBB->getSinglePredecessor()) 2153 return false; 2154 2155 // Don't thread through PredBB if it contains a successor edge to itself, in 2156 // which case we would infinite loop. Suppose we are threading an edge from 2157 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2158 // successor edge to itself. If we allowed jump threading in this case, we 2159 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2160 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2161 // with another jump threading opportunity from PredBB.thread through PredBB 2162 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2163 // would keep peeling one iteration from PredBB. 2164 if (llvm::is_contained(successors(PredBB), PredBB)) 2165 return false; 2166 2167 // Don't thread across a loop header. 2168 if (LoopHeaders.count(PredBB)) 2169 return false; 2170 2171 // Avoid complication with duplicating EH pads. 2172 if (PredBB->isEHPad()) 2173 return false; 2174 2175 // Find a predecessor that we can thread. For simplicity, we only consider a 2176 // successor edge out of BB to which we thread exactly one incoming edge into 2177 // PredBB. 2178 unsigned ZeroCount = 0; 2179 unsigned OneCount = 0; 2180 BasicBlock *ZeroPred = nullptr; 2181 BasicBlock *OnePred = nullptr; 2182 for (BasicBlock *P : predecessors(PredBB)) { 2183 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2184 evaluateOnPredecessorEdge(BB, P, Cond))) { 2185 if (CI->isZero()) { 2186 ZeroCount++; 2187 ZeroPred = P; 2188 } else if (CI->isOne()) { 2189 OneCount++; 2190 OnePred = P; 2191 } 2192 } 2193 } 2194 2195 // Disregard complicated cases where we have to thread multiple edges. 2196 BasicBlock *PredPredBB; 2197 if (ZeroCount == 1) { 2198 PredPredBB = ZeroPred; 2199 } else if (OneCount == 1) { 2200 PredPredBB = OnePred; 2201 } else { 2202 return false; 2203 } 2204 2205 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2206 2207 // If threading to the same block as we come from, we would infinite loop. 2208 if (SuccBB == BB) { 2209 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2210 << "' - would thread to self!\n"); 2211 return false; 2212 } 2213 2214 // If threading this would thread across a loop header, don't thread the edge. 2215 // See the comments above findLoopHeaders for justifications and caveats. 2216 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2217 LLVM_DEBUG({ 2218 bool BBIsHeader = LoopHeaders.count(BB); 2219 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2220 dbgs() << " Not threading across " 2221 << (BBIsHeader ? "loop header BB '" : "block BB '") 2222 << BB->getName() << "' to dest " 2223 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2224 << SuccBB->getName() 2225 << "' - it might create an irreducible loop!\n"; 2226 }); 2227 return false; 2228 } 2229 2230 // Compute the cost of duplicating BB and PredBB. 2231 unsigned BBCost = 2232 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2233 unsigned PredBBCost = getJumpThreadDuplicationCost( 2234 PredBB, PredBB->getTerminator(), BBDupThreshold); 2235 2236 // Give up if costs are too high. We need to check BBCost and PredBBCost 2237 // individually before checking their sum because getJumpThreadDuplicationCost 2238 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2239 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2240 BBCost + PredBBCost > BBDupThreshold) { 2241 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2242 << "' - Cost is too high: " << PredBBCost 2243 << " for PredBB, " << BBCost << "for BB\n"); 2244 return false; 2245 } 2246 2247 // Now we are ready to duplicate PredBB. 2248 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2249 return true; 2250 } 2251 2252 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2253 BasicBlock *PredBB, 2254 BasicBlock *BB, 2255 BasicBlock *SuccBB) { 2256 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2257 << BB->getName() << "'\n"); 2258 2259 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2260 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2261 2262 BasicBlock *NewBB = 2263 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2264 PredBB->getParent(), PredBB); 2265 NewBB->moveAfter(PredBB); 2266 2267 // Set the block frequency of NewBB. 2268 if (HasProfileData) { 2269 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2270 BPI->getEdgeProbability(PredPredBB, PredBB); 2271 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2272 } 2273 2274 // We are going to have to map operands from the original BB block to the new 2275 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2276 // to account for entry from PredPredBB. 2277 DenseMap<Instruction *, Value *> ValueMapping = 2278 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2279 2280 // Copy the edge probabilities from PredBB to NewBB. 2281 if (HasProfileData) 2282 BPI->copyEdgeProbabilities(PredBB, NewBB); 2283 2284 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2285 // This eliminates predecessors from PredPredBB, which requires us to simplify 2286 // any PHI nodes in PredBB. 2287 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2288 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2289 if (PredPredTerm->getSuccessor(i) == PredBB) { 2290 PredBB->removePredecessor(PredPredBB, true); 2291 PredPredTerm->setSuccessor(i, NewBB); 2292 } 2293 2294 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2295 ValueMapping); 2296 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2297 ValueMapping); 2298 2299 DTU->applyUpdatesPermissive( 2300 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2301 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2302 {DominatorTree::Insert, PredPredBB, NewBB}, 2303 {DominatorTree::Delete, PredPredBB, PredBB}}); 2304 2305 updateSSA(PredBB, NewBB, ValueMapping); 2306 2307 // Clean up things like PHI nodes with single operands, dead instructions, 2308 // etc. 2309 SimplifyInstructionsInBlock(NewBB, TLI); 2310 SimplifyInstructionsInBlock(PredBB, TLI); 2311 2312 SmallVector<BasicBlock *, 1> PredsToFactor; 2313 PredsToFactor.push_back(NewBB); 2314 threadEdge(BB, PredsToFactor, SuccBB); 2315 } 2316 2317 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2318 bool JumpThreadingPass::tryThreadEdge( 2319 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2320 BasicBlock *SuccBB) { 2321 // If threading to the same block as we come from, we would infinite loop. 2322 if (SuccBB == BB) { 2323 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2324 << "' - would thread to self!\n"); 2325 return false; 2326 } 2327 2328 // If threading this would thread across a loop header, don't thread the edge. 2329 // See the comments above findLoopHeaders for justifications and caveats. 2330 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2331 LLVM_DEBUG({ 2332 bool BBIsHeader = LoopHeaders.count(BB); 2333 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2334 dbgs() << " Not threading across " 2335 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2336 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2337 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2338 }); 2339 return false; 2340 } 2341 2342 unsigned JumpThreadCost = 2343 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2344 if (JumpThreadCost > BBDupThreshold) { 2345 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2346 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2347 return false; 2348 } 2349 2350 threadEdge(BB, PredBBs, SuccBB); 2351 return true; 2352 } 2353 2354 /// threadEdge - We have decided that it is safe and profitable to factor the 2355 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2356 /// across BB. Transform the IR to reflect this change. 2357 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2358 const SmallVectorImpl<BasicBlock *> &PredBBs, 2359 BasicBlock *SuccBB) { 2360 assert(SuccBB != BB && "Don't create an infinite loop"); 2361 2362 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2363 "Don't thread across loop headers"); 2364 2365 // And finally, do it! Start by factoring the predecessors if needed. 2366 BasicBlock *PredBB; 2367 if (PredBBs.size() == 1) 2368 PredBB = PredBBs[0]; 2369 else { 2370 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2371 << " common predecessors.\n"); 2372 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2373 } 2374 2375 // And finally, do it! 2376 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2377 << "' to '" << SuccBB->getName() 2378 << ", across block:\n " << *BB << "\n"); 2379 2380 LVI->threadEdge(PredBB, BB, SuccBB); 2381 2382 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2383 BB->getName()+".thread", 2384 BB->getParent(), BB); 2385 NewBB->moveAfter(PredBB); 2386 2387 // Set the block frequency of NewBB. 2388 if (HasProfileData) { 2389 auto NewBBFreq = 2390 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2391 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2392 } 2393 2394 // Copy all the instructions from BB to NewBB except the terminator. 2395 DenseMap<Instruction *, Value *> ValueMapping = 2396 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2397 2398 // We didn't copy the terminator from BB over to NewBB, because there is now 2399 // an unconditional jump to SuccBB. Insert the unconditional jump. 2400 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2401 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2402 2403 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2404 // PHI nodes for NewBB now. 2405 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2406 2407 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2408 // eliminates predecessors from BB, which requires us to simplify any PHI 2409 // nodes in BB. 2410 Instruction *PredTerm = PredBB->getTerminator(); 2411 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2412 if (PredTerm->getSuccessor(i) == BB) { 2413 BB->removePredecessor(PredBB, true); 2414 PredTerm->setSuccessor(i, NewBB); 2415 } 2416 2417 // Enqueue required DT updates. 2418 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2419 {DominatorTree::Insert, PredBB, NewBB}, 2420 {DominatorTree::Delete, PredBB, BB}}); 2421 2422 updateSSA(BB, NewBB, ValueMapping); 2423 2424 // At this point, the IR is fully up to date and consistent. Do a quick scan 2425 // over the new instructions and zap any that are constants or dead. This 2426 // frequently happens because of phi translation. 2427 SimplifyInstructionsInBlock(NewBB, TLI); 2428 2429 // Update the edge weight from BB to SuccBB, which should be less than before. 2430 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2431 2432 // Threaded an edge! 2433 ++NumThreads; 2434 } 2435 2436 /// Create a new basic block that will be the predecessor of BB and successor of 2437 /// all blocks in Preds. When profile data is available, update the frequency of 2438 /// this new block. 2439 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2440 ArrayRef<BasicBlock *> Preds, 2441 const char *Suffix) { 2442 SmallVector<BasicBlock *, 2> NewBBs; 2443 2444 // Collect the frequencies of all predecessors of BB, which will be used to 2445 // update the edge weight of the result of splitting predecessors. 2446 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2447 if (HasProfileData) 2448 for (auto Pred : Preds) 2449 FreqMap.insert(std::make_pair( 2450 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2451 2452 // In the case when BB is a LandingPad block we create 2 new predecessors 2453 // instead of just one. 2454 if (BB->isLandingPad()) { 2455 std::string NewName = std::string(Suffix) + ".split-lp"; 2456 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2457 } else { 2458 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2459 } 2460 2461 std::vector<DominatorTree::UpdateType> Updates; 2462 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2463 for (auto NewBB : NewBBs) { 2464 BlockFrequency NewBBFreq(0); 2465 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2466 for (auto Pred : predecessors(NewBB)) { 2467 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2468 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2469 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2470 NewBBFreq += FreqMap.lookup(Pred); 2471 } 2472 if (HasProfileData) // Apply the summed frequency to NewBB. 2473 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2474 } 2475 2476 DTU->applyUpdatesPermissive(Updates); 2477 return NewBBs[0]; 2478 } 2479 2480 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2481 const Instruction *TI = BB->getTerminator(); 2482 assert(TI->getNumSuccessors() > 1 && "not a split"); 2483 2484 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2485 if (!WeightsNode) 2486 return false; 2487 2488 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2489 if (MDName->getString() != "branch_weights") 2490 return false; 2491 2492 // Ensure there are weights for all of the successors. Note that the first 2493 // operand to the metadata node is a name, not a weight. 2494 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2495 } 2496 2497 /// Update the block frequency of BB and branch weight and the metadata on the 2498 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2499 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2500 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2501 BasicBlock *BB, 2502 BasicBlock *NewBB, 2503 BasicBlock *SuccBB) { 2504 if (!HasProfileData) 2505 return; 2506 2507 assert(BFI && BPI && "BFI & BPI should have been created here"); 2508 2509 // As the edge from PredBB to BB is deleted, we have to update the block 2510 // frequency of BB. 2511 auto BBOrigFreq = BFI->getBlockFreq(BB); 2512 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2513 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2514 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2515 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2516 2517 // Collect updated outgoing edges' frequencies from BB and use them to update 2518 // edge probabilities. 2519 SmallVector<uint64_t, 4> BBSuccFreq; 2520 for (BasicBlock *Succ : successors(BB)) { 2521 auto SuccFreq = (Succ == SuccBB) 2522 ? BB2SuccBBFreq - NewBBFreq 2523 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2524 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2525 } 2526 2527 uint64_t MaxBBSuccFreq = 2528 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2529 2530 SmallVector<BranchProbability, 4> BBSuccProbs; 2531 if (MaxBBSuccFreq == 0) 2532 BBSuccProbs.assign(BBSuccFreq.size(), 2533 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2534 else { 2535 for (uint64_t Freq : BBSuccFreq) 2536 BBSuccProbs.push_back( 2537 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2538 // Normalize edge probabilities so that they sum up to one. 2539 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2540 BBSuccProbs.end()); 2541 } 2542 2543 // Update edge probabilities in BPI. 2544 BPI->setEdgeProbability(BB, BBSuccProbs); 2545 2546 // Update the profile metadata as well. 2547 // 2548 // Don't do this if the profile of the transformed blocks was statically 2549 // estimated. (This could occur despite the function having an entry 2550 // frequency in completely cold parts of the CFG.) 2551 // 2552 // In this case we don't want to suggest to subsequent passes that the 2553 // calculated weights are fully consistent. Consider this graph: 2554 // 2555 // check_1 2556 // 50% / | 2557 // eq_1 | 50% 2558 // \ | 2559 // check_2 2560 // 50% / | 2561 // eq_2 | 50% 2562 // \ | 2563 // check_3 2564 // 50% / | 2565 // eq_3 | 50% 2566 // \ | 2567 // 2568 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2569 // the overall probabilities are inconsistent; the total probability that the 2570 // value is either 1, 2 or 3 is 150%. 2571 // 2572 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2573 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2574 // the loop exit edge. Then based solely on static estimation we would assume 2575 // the loop was extremely hot. 2576 // 2577 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2578 // shouldn't make edges extremely likely or unlikely based solely on static 2579 // estimation. 2580 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2581 SmallVector<uint32_t, 4> Weights; 2582 for (auto Prob : BBSuccProbs) 2583 Weights.push_back(Prob.getNumerator()); 2584 2585 auto TI = BB->getTerminator(); 2586 TI->setMetadata( 2587 LLVMContext::MD_prof, 2588 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2589 } 2590 } 2591 2592 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2593 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2594 /// If we can duplicate the contents of BB up into PredBB do so now, this 2595 /// improves the odds that the branch will be on an analyzable instruction like 2596 /// a compare. 2597 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2598 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2599 assert(!PredBBs.empty() && "Can't handle an empty set"); 2600 2601 // If BB is a loop header, then duplicating this block outside the loop would 2602 // cause us to transform this into an irreducible loop, don't do this. 2603 // See the comments above findLoopHeaders for justifications and caveats. 2604 if (LoopHeaders.count(BB)) { 2605 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2606 << "' into predecessor block '" << PredBBs[0]->getName() 2607 << "' - it might create an irreducible loop!\n"); 2608 return false; 2609 } 2610 2611 unsigned DuplicationCost = 2612 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2613 if (DuplicationCost > BBDupThreshold) { 2614 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2615 << "' - Cost is too high: " << DuplicationCost << "\n"); 2616 return false; 2617 } 2618 2619 // And finally, do it! Start by factoring the predecessors if needed. 2620 std::vector<DominatorTree::UpdateType> Updates; 2621 BasicBlock *PredBB; 2622 if (PredBBs.size() == 1) 2623 PredBB = PredBBs[0]; 2624 else { 2625 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2626 << " common predecessors.\n"); 2627 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2628 } 2629 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2630 2631 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2632 // of PredBB. 2633 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2634 << "' into end of '" << PredBB->getName() 2635 << "' to eliminate branch on phi. Cost: " 2636 << DuplicationCost << " block is:" << *BB << "\n"); 2637 2638 // Unless PredBB ends with an unconditional branch, split the edge so that we 2639 // can just clone the bits from BB into the end of the new PredBB. 2640 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2641 2642 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2643 BasicBlock *OldPredBB = PredBB; 2644 PredBB = SplitEdge(OldPredBB, BB); 2645 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2646 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2647 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2648 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2649 } 2650 2651 // We are going to have to map operands from the original BB block into the 2652 // PredBB block. Evaluate PHI nodes in BB. 2653 DenseMap<Instruction*, Value*> ValueMapping; 2654 2655 BasicBlock::iterator BI = BB->begin(); 2656 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2657 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2658 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2659 // mapping and using it to remap operands in the cloned instructions. 2660 for (; BI != BB->end(); ++BI) { 2661 Instruction *New = BI->clone(); 2662 2663 // Remap operands to patch up intra-block references. 2664 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2665 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2666 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2667 if (I != ValueMapping.end()) 2668 New->setOperand(i, I->second); 2669 } 2670 2671 // If this instruction can be simplified after the operands are updated, 2672 // just use the simplified value instead. This frequently happens due to 2673 // phi translation. 2674 if (Value *IV = SimplifyInstruction( 2675 New, 2676 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2677 ValueMapping[&*BI] = IV; 2678 if (!New->mayHaveSideEffects()) { 2679 New->deleteValue(); 2680 New = nullptr; 2681 } 2682 } else { 2683 ValueMapping[&*BI] = New; 2684 } 2685 if (New) { 2686 // Otherwise, insert the new instruction into the block. 2687 New->setName(BI->getName()); 2688 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2689 // Update Dominance from simplified New instruction operands. 2690 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2691 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2692 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2693 } 2694 } 2695 2696 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2697 // add entries to the PHI nodes for branch from PredBB now. 2698 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2699 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2700 ValueMapping); 2701 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2702 ValueMapping); 2703 2704 updateSSA(BB, PredBB, ValueMapping); 2705 2706 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2707 // that we nuked. 2708 BB->removePredecessor(PredBB, true); 2709 2710 // Remove the unconditional branch at the end of the PredBB block. 2711 OldPredBranch->eraseFromParent(); 2712 if (HasProfileData) 2713 BPI->copyEdgeProbabilities(BB, PredBB); 2714 DTU->applyUpdatesPermissive(Updates); 2715 2716 ++NumDupes; 2717 return true; 2718 } 2719 2720 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2721 // a Select instruction in Pred. BB has other predecessors and SI is used in 2722 // a PHI node in BB. SI has no other use. 2723 // A new basic block, NewBB, is created and SI is converted to compare and 2724 // conditional branch. SI is erased from parent. 2725 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2726 SelectInst *SI, PHINode *SIUse, 2727 unsigned Idx) { 2728 // Expand the select. 2729 // 2730 // Pred -- 2731 // | v 2732 // | NewBB 2733 // | | 2734 // |----- 2735 // v 2736 // BB 2737 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2738 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2739 BB->getParent(), BB); 2740 // Move the unconditional branch to NewBB. 2741 PredTerm->removeFromParent(); 2742 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2743 // Create a conditional branch and update PHI nodes. 2744 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2745 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2746 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2747 2748 // The select is now dead. 2749 SI->eraseFromParent(); 2750 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2751 {DominatorTree::Insert, Pred, NewBB}}); 2752 2753 // Update any other PHI nodes in BB. 2754 for (BasicBlock::iterator BI = BB->begin(); 2755 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2756 if (Phi != SIUse) 2757 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2758 } 2759 2760 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2761 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2762 2763 if (!CondPHI || CondPHI->getParent() != BB) 2764 return false; 2765 2766 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2767 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2768 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2769 2770 // The second and third condition can be potentially relaxed. Currently 2771 // the conditions help to simplify the code and allow us to reuse existing 2772 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2773 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2774 continue; 2775 2776 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2777 if (!PredTerm || !PredTerm->isUnconditional()) 2778 continue; 2779 2780 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2781 return true; 2782 } 2783 return false; 2784 } 2785 2786 /// tryToUnfoldSelect - Look for blocks of the form 2787 /// bb1: 2788 /// %a = select 2789 /// br bb2 2790 /// 2791 /// bb2: 2792 /// %p = phi [%a, %bb1] ... 2793 /// %c = icmp %p 2794 /// br i1 %c 2795 /// 2796 /// And expand the select into a branch structure if one of its arms allows %c 2797 /// to be folded. This later enables threading from bb1 over bb2. 2798 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2799 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2800 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2801 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2802 2803 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2804 CondLHS->getParent() != BB) 2805 return false; 2806 2807 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2808 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2809 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2810 2811 // Look if one of the incoming values is a select in the corresponding 2812 // predecessor. 2813 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2814 continue; 2815 2816 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2817 if (!PredTerm || !PredTerm->isUnconditional()) 2818 continue; 2819 2820 // Now check if one of the select values would allow us to constant fold the 2821 // terminator in BB. We don't do the transform if both sides fold, those 2822 // cases will be threaded in any case. 2823 LazyValueInfo::Tristate LHSFolds = 2824 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2825 CondRHS, Pred, BB, CondCmp); 2826 LazyValueInfo::Tristate RHSFolds = 2827 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2828 CondRHS, Pred, BB, CondCmp); 2829 if ((LHSFolds != LazyValueInfo::Unknown || 2830 RHSFolds != LazyValueInfo::Unknown) && 2831 LHSFolds != RHSFolds) { 2832 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2833 return true; 2834 } 2835 } 2836 return false; 2837 } 2838 2839 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2840 /// same BB in the form 2841 /// bb: 2842 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2843 /// %s = select %p, trueval, falseval 2844 /// 2845 /// or 2846 /// 2847 /// bb: 2848 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2849 /// %c = cmp %p, 0 2850 /// %s = select %c, trueval, falseval 2851 /// 2852 /// And expand the select into a branch structure. This later enables 2853 /// jump-threading over bb in this pass. 2854 /// 2855 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2856 /// select if the associated PHI has at least one constant. If the unfolded 2857 /// select is not jump-threaded, it will be folded again in the later 2858 /// optimizations. 2859 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2860 // This transform would reduce the quality of msan diagnostics. 2861 // Disable this transform under MemorySanitizer. 2862 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2863 return false; 2864 2865 // If threading this would thread across a loop header, don't thread the edge. 2866 // See the comments above findLoopHeaders for justifications and caveats. 2867 if (LoopHeaders.count(BB)) 2868 return false; 2869 2870 for (BasicBlock::iterator BI = BB->begin(); 2871 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2872 // Look for a Phi having at least one constant incoming value. 2873 if (llvm::all_of(PN->incoming_values(), 2874 [](Value *V) { return !isa<ConstantInt>(V); })) 2875 continue; 2876 2877 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2878 using namespace PatternMatch; 2879 2880 // Check if SI is in BB and use V as condition. 2881 if (SI->getParent() != BB) 2882 return false; 2883 Value *Cond = SI->getCondition(); 2884 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2885 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2886 }; 2887 2888 SelectInst *SI = nullptr; 2889 for (Use &U : PN->uses()) { 2890 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2891 // Look for a ICmp in BB that compares PN with a constant and is the 2892 // condition of a Select. 2893 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2894 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2895 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2896 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2897 SI = SelectI; 2898 break; 2899 } 2900 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2901 // Look for a Select in BB that uses PN as condition. 2902 if (isUnfoldCandidate(SelectI, U.get())) { 2903 SI = SelectI; 2904 break; 2905 } 2906 } 2907 } 2908 2909 if (!SI) 2910 continue; 2911 // Expand the select. 2912 Value *Cond = SI->getCondition(); 2913 if (InsertFreezeWhenUnfoldingSelect && 2914 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2915 &DTU->getDomTree())) 2916 Cond = new FreezeInst(Cond, "cond.fr", SI); 2917 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2918 BasicBlock *SplitBB = SI->getParent(); 2919 BasicBlock *NewBB = Term->getParent(); 2920 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2921 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2922 NewPN->addIncoming(SI->getFalseValue(), BB); 2923 SI->replaceAllUsesWith(NewPN); 2924 SI->eraseFromParent(); 2925 // NewBB and SplitBB are newly created blocks which require insertion. 2926 std::vector<DominatorTree::UpdateType> Updates; 2927 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2928 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2929 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2930 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2931 // BB's successors were moved to SplitBB, update DTU accordingly. 2932 for (auto *Succ : successors(SplitBB)) { 2933 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2934 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2935 } 2936 DTU->applyUpdatesPermissive(Updates); 2937 return true; 2938 } 2939 return false; 2940 } 2941 2942 /// Try to propagate a guard from the current BB into one of its predecessors 2943 /// in case if another branch of execution implies that the condition of this 2944 /// guard is always true. Currently we only process the simplest case that 2945 /// looks like: 2946 /// 2947 /// Start: 2948 /// %cond = ... 2949 /// br i1 %cond, label %T1, label %F1 2950 /// T1: 2951 /// br label %Merge 2952 /// F1: 2953 /// br label %Merge 2954 /// Merge: 2955 /// %condGuard = ... 2956 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2957 /// 2958 /// And cond either implies condGuard or !condGuard. In this case all the 2959 /// instructions before the guard can be duplicated in both branches, and the 2960 /// guard is then threaded to one of them. 2961 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2962 using namespace PatternMatch; 2963 2964 // We only want to deal with two predecessors. 2965 BasicBlock *Pred1, *Pred2; 2966 auto PI = pred_begin(BB), PE = pred_end(BB); 2967 if (PI == PE) 2968 return false; 2969 Pred1 = *PI++; 2970 if (PI == PE) 2971 return false; 2972 Pred2 = *PI++; 2973 if (PI != PE) 2974 return false; 2975 if (Pred1 == Pred2) 2976 return false; 2977 2978 // Try to thread one of the guards of the block. 2979 // TODO: Look up deeper than to immediate predecessor? 2980 auto *Parent = Pred1->getSinglePredecessor(); 2981 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2982 return false; 2983 2984 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2985 for (auto &I : *BB) 2986 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2987 return true; 2988 2989 return false; 2990 } 2991 2992 /// Try to propagate the guard from BB which is the lower block of a diamond 2993 /// to one of its branches, in case if diamond's condition implies guard's 2994 /// condition. 2995 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2996 BranchInst *BI) { 2997 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2998 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2999 Value *GuardCond = Guard->getArgOperand(0); 3000 Value *BranchCond = BI->getCondition(); 3001 BasicBlock *TrueDest = BI->getSuccessor(0); 3002 BasicBlock *FalseDest = BI->getSuccessor(1); 3003 3004 auto &DL = BB->getModule()->getDataLayout(); 3005 bool TrueDestIsSafe = false; 3006 bool FalseDestIsSafe = false; 3007 3008 // True dest is safe if BranchCond => GuardCond. 3009 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3010 if (Impl && *Impl) 3011 TrueDestIsSafe = true; 3012 else { 3013 // False dest is safe if !BranchCond => GuardCond. 3014 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3015 if (Impl && *Impl) 3016 FalseDestIsSafe = true; 3017 } 3018 3019 if (!TrueDestIsSafe && !FalseDestIsSafe) 3020 return false; 3021 3022 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3023 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3024 3025 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3026 Instruction *AfterGuard = Guard->getNextNode(); 3027 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 3028 if (Cost > BBDupThreshold) 3029 return false; 3030 // Duplicate all instructions before the guard and the guard itself to the 3031 // branch where implication is not proved. 3032 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3033 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3034 assert(GuardedBlock && "Could not create the guarded block?"); 3035 // Duplicate all instructions before the guard in the unguarded branch. 3036 // Since we have successfully duplicated the guarded block and this block 3037 // has fewer instructions, we expect it to succeed. 3038 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3039 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3040 assert(UnguardedBlock && "Could not create the unguarded block?"); 3041 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3042 << GuardedBlock->getName() << "\n"); 3043 // Some instructions before the guard may still have uses. For them, we need 3044 // to create Phi nodes merging their copies in both guarded and unguarded 3045 // branches. Those instructions that have no uses can be just removed. 3046 SmallVector<Instruction *, 4> ToRemove; 3047 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3048 if (!isa<PHINode>(&*BI)) 3049 ToRemove.push_back(&*BI); 3050 3051 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3052 assert(InsertionPoint && "Empty block?"); 3053 // Substitute with Phis & remove. 3054 for (auto *Inst : reverse(ToRemove)) { 3055 if (!Inst->use_empty()) { 3056 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3057 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3058 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3059 NewPN->insertBefore(InsertionPoint); 3060 Inst->replaceAllUsesWith(NewPN); 3061 } 3062 Inst->eraseFromParent(); 3063 } 3064 return true; 3065 } 3066