1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> JumpThreadingFreezeSelectCond(
108     "jump-threading-freeze-select-cond",
109     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
110     cl::Hidden);
111 
112 static cl::opt<bool> ThreadAcrossLoopHeaders(
113     "jump-threading-across-loop-headers",
114     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
115     cl::init(false), cl::Hidden);
116 
117 
118 namespace {
119 
120   /// This pass performs 'jump threading', which looks at blocks that have
121   /// multiple predecessors and multiple successors.  If one or more of the
122   /// predecessors of the block can be proven to always jump to one of the
123   /// successors, we forward the edge from the predecessor to the successor by
124   /// duplicating the contents of this block.
125   ///
126   /// An example of when this can occur is code like this:
127   ///
128   ///   if () { ...
129   ///     X = 4;
130   ///   }
131   ///   if (X < 3) {
132   ///
133   /// In this case, the unconditional branch at the end of the first if can be
134   /// revectored to the false side of the second if.
135   class JumpThreading : public FunctionPass {
136     JumpThreadingPass Impl;
137 
138   public:
139     static char ID; // Pass identification
140 
141     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
142         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
143       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
144     }
145 
146     bool runOnFunction(Function &F) override;
147 
148     void getAnalysisUsage(AnalysisUsage &AU) const override {
149       AU.addRequired<DominatorTreeWrapperPass>();
150       AU.addPreserved<DominatorTreeWrapperPass>();
151       AU.addRequired<AAResultsWrapperPass>();
152       AU.addRequired<LazyValueInfoWrapperPass>();
153       AU.addPreserved<LazyValueInfoWrapperPass>();
154       AU.addPreserved<GlobalsAAWrapperPass>();
155       AU.addRequired<TargetLibraryInfoWrapperPass>();
156       AU.addRequired<TargetTransformInfoWrapperPass>();
157     }
158   };
159 
160 } // end anonymous namespace
161 
162 char JumpThreading::ID = 0;
163 
164 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
165                 "Jump Threading", false, false)
166 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
167 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
168 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
169 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
170 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
171                 "Jump Threading", false, false)
172 
173 // Public interface to the Jump Threading pass
174 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
175   return new JumpThreading(InsertFr, Threshold);
176 }
177 
178 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
179   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
180   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
181 }
182 
183 // Update branch probability information according to conditional
184 // branch probability. This is usually made possible for cloned branches
185 // in inline instances by the context specific profile in the caller.
186 // For instance,
187 //
188 //  [Block PredBB]
189 //  [Branch PredBr]
190 //  if (t) {
191 //     Block A;
192 //  } else {
193 //     Block B;
194 //  }
195 //
196 //  [Block BB]
197 //  cond = PN([true, %A], [..., %B]); // PHI node
198 //  [Branch CondBr]
199 //  if (cond) {
200 //    ...  // P(cond == true) = 1%
201 //  }
202 //
203 //  Here we know that when block A is taken, cond must be true, which means
204 //      P(cond == true | A) = 1
205 //
206 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
207 //                               P(cond == true | B) * P(B)
208 //  we get:
209 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
210 //
211 //  which gives us:
212 //     P(A) is less than P(cond == true), i.e.
213 //     P(t == true) <= P(cond == true)
214 //
215 //  In other words, if we know P(cond == true) is unlikely, we know
216 //  that P(t == true) is also unlikely.
217 //
218 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
219   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
220   if (!CondBr)
221     return;
222 
223   uint64_t TrueWeight, FalseWeight;
224   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
225     return;
226 
227   if (TrueWeight + FalseWeight == 0)
228     // Zero branch_weights do not give a hint for getting branch probabilities.
229     // Technically it would result in division by zero denominator, which is
230     // TrueWeight + FalseWeight.
231     return;
232 
233   // Returns the outgoing edge of the dominating predecessor block
234   // that leads to the PhiNode's incoming block:
235   auto GetPredOutEdge =
236       [](BasicBlock *IncomingBB,
237          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
238     auto *PredBB = IncomingBB;
239     auto *SuccBB = PhiBB;
240     SmallPtrSet<BasicBlock *, 16> Visited;
241     while (true) {
242       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
243       if (PredBr && PredBr->isConditional())
244         return {PredBB, SuccBB};
245       Visited.insert(PredBB);
246       auto *SinglePredBB = PredBB->getSinglePredecessor();
247       if (!SinglePredBB)
248         return {nullptr, nullptr};
249 
250       // Stop searching when SinglePredBB has been visited. It means we see
251       // an unreachable loop.
252       if (Visited.count(SinglePredBB))
253         return {nullptr, nullptr};
254 
255       SuccBB = PredBB;
256       PredBB = SinglePredBB;
257     }
258   };
259 
260   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
261     Value *PhiOpnd = PN->getIncomingValue(i);
262     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
263 
264     if (!CI || !CI->getType()->isIntegerTy(1))
265       continue;
266 
267     BranchProbability BP =
268         (CI->isOne() ? BranchProbability::getBranchProbability(
269                            TrueWeight, TrueWeight + FalseWeight)
270                      : BranchProbability::getBranchProbability(
271                            FalseWeight, TrueWeight + FalseWeight));
272 
273     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
274     if (!PredOutEdge.first)
275       return;
276 
277     BasicBlock *PredBB = PredOutEdge.first;
278     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
279     if (!PredBr)
280       return;
281 
282     uint64_t PredTrueWeight, PredFalseWeight;
283     // FIXME: We currently only set the profile data when it is missing.
284     // With PGO, this can be used to refine even existing profile data with
285     // context information. This needs to be done after more performance
286     // testing.
287     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
288       continue;
289 
290     // We can not infer anything useful when BP >= 50%, because BP is the
291     // upper bound probability value.
292     if (BP >= BranchProbability(50, 100))
293       continue;
294 
295     SmallVector<uint32_t, 2> Weights;
296     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
297       Weights.push_back(BP.getNumerator());
298       Weights.push_back(BP.getCompl().getNumerator());
299     } else {
300       Weights.push_back(BP.getCompl().getNumerator());
301       Weights.push_back(BP.getNumerator());
302     }
303     PredBr->setMetadata(LLVMContext::MD_prof,
304                         MDBuilder(PredBr->getParent()->getContext())
305                             .createBranchWeights(Weights));
306   }
307 }
308 
309 /// runOnFunction - Toplevel algorithm.
310 bool JumpThreading::runOnFunction(Function &F) {
311   if (skipFunction(F))
312     return false;
313   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
314   // Jump Threading has no sense for the targets with divergent CF
315   if (TTI->hasBranchDivergence())
316     return false;
317   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
318   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
319   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
320   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
321   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
322   std::unique_ptr<BlockFrequencyInfo> BFI;
323   std::unique_ptr<BranchProbabilityInfo> BPI;
324   if (F.hasProfileData()) {
325     LoopInfo LI{DominatorTree(F)};
326     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
327     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
328   }
329 
330   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
331                               BFI.get(), BPI.get());
332   if (PrintLVIAfterJumpThreading) {
333     dbgs() << "LVI for function '" << F.getName() << "':\n";
334     LVI->printLVI(F, DTU.getDomTree(), dbgs());
335   }
336   return Changed;
337 }
338 
339 PreservedAnalyses JumpThreadingPass::run(Function &F,
340                                          FunctionAnalysisManager &AM) {
341   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
342   // Jump Threading has no sense for the targets with divergent CF
343   if (TTI.hasBranchDivergence())
344     return PreservedAnalyses::all();
345   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
346   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
347   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
348   auto &AA = AM.getResult<AAManager>(F);
349   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
350 
351   BlockFrequencyInfo *BFI = nullptr;
352   BranchProbabilityInfo *BPI = nullptr;
353   if (F.hasProfileData()) {
354     BFI = &AM.getResult<BlockFrequencyAnalysis>(F);
355     BPI = &AM.getResult<BranchProbabilityAnalysis>(F);
356   }
357 
358   bool Changed =
359       runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(), BFI, BPI);
360 
361   if (PrintLVIAfterJumpThreading) {
362     dbgs() << "LVI for function '" << F.getName() << "':\n";
363     LVI.printLVI(F, DTU.getDomTree(), dbgs());
364   }
365 
366   if (!Changed)
367     return PreservedAnalyses::all();
368   PreservedAnalyses PA;
369   PA.preserve<DominatorTreeAnalysis>();
370   PA.preserve<LazyValueAnalysis>();
371   return PA;
372 }
373 
374 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
375                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
376                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
377                                 bool HasProfileData_, BlockFrequencyInfo *BFI_,
378                                 BranchProbabilityInfo *BPI_) {
379   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
380   TLI = TLI_;
381   TTI = TTI_;
382   LVI = LVI_;
383   AA = AA_;
384   DTU = DTU_;
385   BFI = BFI_;
386   BPI = BPI_;
387   // When profile data is available, we need to update edge weights after
388   // successful jump threading, which requires both BPI and BFI being available.
389   HasProfileData = HasProfileData_;
390   auto *GuardDecl = F.getParent()->getFunction(
391       Intrinsic::getName(Intrinsic::experimental_guard));
392   HasGuards = GuardDecl && !GuardDecl->use_empty();
393   if (HasProfileData) {
394     assert(BFI && "BFI not provided?");
395     assert(BPI && "BPI not provided?");
396   } else {
397     assert(!BFI && "BFI should not be provided?");
398     assert(!BPI && "BPI should not be provided?");
399   }
400 
401   // Reduce the number of instructions duplicated when optimizing strictly for
402   // size.
403   if (BBDuplicateThreshold.getNumOccurrences())
404     BBDupThreshold = BBDuplicateThreshold;
405   else if (F.hasFnAttribute(Attribute::MinSize))
406     BBDupThreshold = 3;
407   else
408     BBDupThreshold = DefaultBBDupThreshold;
409 
410   // JumpThreading must not processes blocks unreachable from entry. It's a
411   // waste of compute time and can potentially lead to hangs.
412   SmallPtrSet<BasicBlock *, 16> Unreachable;
413   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
414   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
415   DominatorTree &DT = DTU->getDomTree();
416   for (auto &BB : F)
417     if (!DT.isReachableFromEntry(&BB))
418       Unreachable.insert(&BB);
419 
420   if (!ThreadAcrossLoopHeaders)
421     findLoopHeaders(F);
422 
423   bool EverChanged = false;
424   bool Changed;
425   do {
426     Changed = false;
427     for (auto &BB : F) {
428       if (Unreachable.count(&BB))
429         continue;
430       while (processBlock(&BB)) // Thread all of the branches we can over BB.
431         Changed = true;
432 
433       // Jump threading may have introduced redundant debug values into BB
434       // which should be removed.
435       if (Changed)
436         RemoveRedundantDbgInstrs(&BB);
437 
438       // Stop processing BB if it's the entry or is now deleted. The following
439       // routines attempt to eliminate BB and locating a suitable replacement
440       // for the entry is non-trivial.
441       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
442         continue;
443 
444       if (pred_empty(&BB)) {
445         // When processBlock makes BB unreachable it doesn't bother to fix up
446         // the instructions in it. We must remove BB to prevent invalid IR.
447         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
448                           << "' with terminator: " << *BB.getTerminator()
449                           << '\n');
450         LoopHeaders.erase(&BB);
451         LVI->eraseBlock(&BB);
452         DeleteDeadBlock(&BB, DTU);
453         Changed = true;
454         continue;
455       }
456 
457       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
458       // is "almost empty", we attempt to merge BB with its sole successor.
459       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
460       if (BI && BI->isUnconditional()) {
461         BasicBlock *Succ = BI->getSuccessor(0);
462         if (
463             // The terminator must be the only non-phi instruction in BB.
464             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
465             // Don't alter Loop headers and latches to ensure another pass can
466             // detect and transform nested loops later.
467             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
468             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
469           RemoveRedundantDbgInstrs(Succ);
470           // BB is valid for cleanup here because we passed in DTU. F remains
471           // BB's parent until a DTU->getDomTree() event.
472           LVI->eraseBlock(&BB);
473           Changed = true;
474         }
475       }
476     }
477     EverChanged |= Changed;
478   } while (Changed);
479 
480   LoopHeaders.clear();
481   return EverChanged;
482 }
483 
484 // Replace uses of Cond with ToVal when safe to do so. If all uses are
485 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
486 // because we may incorrectly replace uses when guards/assumes are uses of
487 // of `Cond` and we used the guards/assume to reason about the `Cond` value
488 // at the end of block. RAUW unconditionally replaces all uses
489 // including the guards/assumes themselves and the uses before the
490 // guard/assume.
491 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
492   assert(Cond->getType() == ToVal->getType());
493   auto *BB = Cond->getParent();
494   // We can unconditionally replace all uses in non-local blocks (i.e. uses
495   // strictly dominated by BB), since LVI information is true from the
496   // terminator of BB.
497   replaceNonLocalUsesWith(Cond, ToVal);
498   for (Instruction &I : reverse(*BB)) {
499     // Reached the Cond whose uses we are trying to replace, so there are no
500     // more uses.
501     if (&I == Cond)
502       break;
503     // We only replace uses in instructions that are guaranteed to reach the end
504     // of BB, where we know Cond is ToVal.
505     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
506       break;
507     I.replaceUsesOfWith(Cond, ToVal);
508   }
509   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
510     Cond->eraseFromParent();
511 }
512 
513 /// Return the cost of duplicating a piece of this block from first non-phi
514 /// and before StopAt instruction to thread across it. Stop scanning the block
515 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
516 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
517                                              BasicBlock *BB,
518                                              Instruction *StopAt,
519                                              unsigned Threshold) {
520   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
521   /// Ignore PHI nodes, these will be flattened when duplication happens.
522   BasicBlock::const_iterator I(BB->getFirstNonPHI());
523 
524   // FIXME: THREADING will delete values that are just used to compute the
525   // branch, so they shouldn't count against the duplication cost.
526 
527   unsigned Bonus = 0;
528   if (BB->getTerminator() == StopAt) {
529     // Threading through a switch statement is particularly profitable.  If this
530     // block ends in a switch, decrease its cost to make it more likely to
531     // happen.
532     if (isa<SwitchInst>(StopAt))
533       Bonus = 6;
534 
535     // The same holds for indirect branches, but slightly more so.
536     if (isa<IndirectBrInst>(StopAt))
537       Bonus = 8;
538   }
539 
540   // Bump the threshold up so the early exit from the loop doesn't skip the
541   // terminator-based Size adjustment at the end.
542   Threshold += Bonus;
543 
544   // Sum up the cost of each instruction until we get to the terminator.  Don't
545   // include the terminator because the copy won't include it.
546   unsigned Size = 0;
547   for (; &*I != StopAt; ++I) {
548 
549     // Stop scanning the block if we've reached the threshold.
550     if (Size > Threshold)
551       return Size;
552 
553     // Bail out if this instruction gives back a token type, it is not possible
554     // to duplicate it if it is used outside this BB.
555     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
556       return ~0U;
557 
558     // Blocks with NoDuplicate are modelled as having infinite cost, so they
559     // are never duplicated.
560     if (const CallInst *CI = dyn_cast<CallInst>(I))
561       if (CI->cannotDuplicate() || CI->isConvergent())
562         return ~0U;
563 
564     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
565             == TargetTransformInfo::TCC_Free)
566       continue;
567 
568     // All other instructions count for at least one unit.
569     ++Size;
570 
571     // Calls are more expensive.  If they are non-intrinsic calls, we model them
572     // as having cost of 4.  If they are a non-vector intrinsic, we model them
573     // as having cost of 2 total, and if they are a vector intrinsic, we model
574     // them as having cost 1.
575     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
576       if (!isa<IntrinsicInst>(CI))
577         Size += 3;
578       else if (!CI->getType()->isVectorTy())
579         Size += 1;
580     }
581   }
582 
583   return Size > Bonus ? Size - Bonus : 0;
584 }
585 
586 /// findLoopHeaders - We do not want jump threading to turn proper loop
587 /// structures into irreducible loops.  Doing this breaks up the loop nesting
588 /// hierarchy and pessimizes later transformations.  To prevent this from
589 /// happening, we first have to find the loop headers.  Here we approximate this
590 /// by finding targets of backedges in the CFG.
591 ///
592 /// Note that there definitely are cases when we want to allow threading of
593 /// edges across a loop header.  For example, threading a jump from outside the
594 /// loop (the preheader) to an exit block of the loop is definitely profitable.
595 /// It is also almost always profitable to thread backedges from within the loop
596 /// to exit blocks, and is often profitable to thread backedges to other blocks
597 /// within the loop (forming a nested loop).  This simple analysis is not rich
598 /// enough to track all of these properties and keep it up-to-date as the CFG
599 /// mutates, so we don't allow any of these transformations.
600 void JumpThreadingPass::findLoopHeaders(Function &F) {
601   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
602   FindFunctionBackedges(F, Edges);
603 
604   for (const auto &Edge : Edges)
605     LoopHeaders.insert(Edge.second);
606 }
607 
608 /// getKnownConstant - Helper method to determine if we can thread over a
609 /// terminator with the given value as its condition, and if so what value to
610 /// use for that. What kind of value this is depends on whether we want an
611 /// integer or a block address, but an undef is always accepted.
612 /// Returns null if Val is null or not an appropriate constant.
613 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
614   if (!Val)
615     return nullptr;
616 
617   // Undef is "known" enough.
618   if (UndefValue *U = dyn_cast<UndefValue>(Val))
619     return U;
620 
621   if (Preference == WantBlockAddress)
622     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
623 
624   return dyn_cast<ConstantInt>(Val);
625 }
626 
627 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
628 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
629 /// in any of our predecessors.  If so, return the known list of value and pred
630 /// BB in the result vector.
631 ///
632 /// This returns true if there were any known values.
633 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
634     Value *V, BasicBlock *BB, PredValueInfo &Result,
635     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
636     Instruction *CxtI) {
637   // This method walks up use-def chains recursively.  Because of this, we could
638   // get into an infinite loop going around loops in the use-def chain.  To
639   // prevent this, keep track of what (value, block) pairs we've already visited
640   // and terminate the search if we loop back to them
641   if (!RecursionSet.insert(V).second)
642     return false;
643 
644   // If V is a constant, then it is known in all predecessors.
645   if (Constant *KC = getKnownConstant(V, Preference)) {
646     for (BasicBlock *Pred : predecessors(BB))
647       Result.emplace_back(KC, Pred);
648 
649     return !Result.empty();
650   }
651 
652   // If V is a non-instruction value, or an instruction in a different block,
653   // then it can't be derived from a PHI.
654   Instruction *I = dyn_cast<Instruction>(V);
655   if (!I || I->getParent() != BB) {
656 
657     // Okay, if this is a live-in value, see if it has a known value at the end
658     // of any of our predecessors.
659     //
660     // FIXME: This should be an edge property, not a block end property.
661     /// TODO: Per PR2563, we could infer value range information about a
662     /// predecessor based on its terminator.
663     //
664     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
665     // "I" is a non-local compare-with-a-constant instruction.  This would be
666     // able to handle value inequalities better, for example if the compare is
667     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
668     // Perhaps getConstantOnEdge should be smart enough to do this?
669     for (BasicBlock *P : predecessors(BB)) {
670       // If the value is known by LazyValueInfo to be a constant in a
671       // predecessor, use that information to try to thread this block.
672       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
673       if (Constant *KC = getKnownConstant(PredCst, Preference))
674         Result.emplace_back(KC, P);
675     }
676 
677     return !Result.empty();
678   }
679 
680   /// If I is a PHI node, then we know the incoming values for any constants.
681   if (PHINode *PN = dyn_cast<PHINode>(I)) {
682     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
683       Value *InVal = PN->getIncomingValue(i);
684       if (Constant *KC = getKnownConstant(InVal, Preference)) {
685         Result.emplace_back(KC, PN->getIncomingBlock(i));
686       } else {
687         Constant *CI = LVI->getConstantOnEdge(InVal,
688                                               PN->getIncomingBlock(i),
689                                               BB, CxtI);
690         if (Constant *KC = getKnownConstant(CI, Preference))
691           Result.emplace_back(KC, PN->getIncomingBlock(i));
692       }
693     }
694 
695     return !Result.empty();
696   }
697 
698   // Handle Cast instructions.
699   if (CastInst *CI = dyn_cast<CastInst>(I)) {
700     Value *Source = CI->getOperand(0);
701     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
702                                         RecursionSet, CxtI);
703     if (Result.empty())
704       return false;
705 
706     // Convert the known values.
707     for (auto &R : Result)
708       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
709 
710     return true;
711   }
712 
713   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
714     Value *Source = FI->getOperand(0);
715     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
716                                         RecursionSet, CxtI);
717 
718     erase_if(Result, [](auto &Pair) {
719       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
720     });
721 
722     return !Result.empty();
723   }
724 
725   // Handle some boolean conditions.
726   if (I->getType()->getPrimitiveSizeInBits() == 1) {
727     using namespace PatternMatch;
728     if (Preference != WantInteger)
729       return false;
730     // X | true -> true
731     // X & false -> false
732     Value *Op0, *Op1;
733     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
734         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
735       PredValueInfoTy LHSVals, RHSVals;
736 
737       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
738                                           RecursionSet, CxtI);
739       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
740                                           RecursionSet, CxtI);
741 
742       if (LHSVals.empty() && RHSVals.empty())
743         return false;
744 
745       ConstantInt *InterestingVal;
746       if (match(I, m_LogicalOr()))
747         InterestingVal = ConstantInt::getTrue(I->getContext());
748       else
749         InterestingVal = ConstantInt::getFalse(I->getContext());
750 
751       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
752 
753       // Scan for the sentinel.  If we find an undef, force it to the
754       // interesting value: x|undef -> true and x&undef -> false.
755       for (const auto &LHSVal : LHSVals)
756         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
757           Result.emplace_back(InterestingVal, LHSVal.second);
758           LHSKnownBBs.insert(LHSVal.second);
759         }
760       for (const auto &RHSVal : RHSVals)
761         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
762           // If we already inferred a value for this block on the LHS, don't
763           // re-add it.
764           if (!LHSKnownBBs.count(RHSVal.second))
765             Result.emplace_back(InterestingVal, RHSVal.second);
766         }
767 
768       return !Result.empty();
769     }
770 
771     // Handle the NOT form of XOR.
772     if (I->getOpcode() == Instruction::Xor &&
773         isa<ConstantInt>(I->getOperand(1)) &&
774         cast<ConstantInt>(I->getOperand(1))->isOne()) {
775       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
776                                           WantInteger, RecursionSet, CxtI);
777       if (Result.empty())
778         return false;
779 
780       // Invert the known values.
781       for (auto &R : Result)
782         R.first = ConstantExpr::getNot(R.first);
783 
784       return true;
785     }
786 
787   // Try to simplify some other binary operator values.
788   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
789     if (Preference != WantInteger)
790       return false;
791     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
792       PredValueInfoTy LHSVals;
793       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
794                                           WantInteger, RecursionSet, CxtI);
795 
796       // Try to use constant folding to simplify the binary operator.
797       for (const auto &LHSVal : LHSVals) {
798         Constant *V = LHSVal.first;
799         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
800 
801         if (Constant *KC = getKnownConstant(Folded, WantInteger))
802           Result.emplace_back(KC, LHSVal.second);
803       }
804     }
805 
806     return !Result.empty();
807   }
808 
809   // Handle compare with phi operand, where the PHI is defined in this block.
810   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
811     if (Preference != WantInteger)
812       return false;
813     Type *CmpType = Cmp->getType();
814     Value *CmpLHS = Cmp->getOperand(0);
815     Value *CmpRHS = Cmp->getOperand(1);
816     CmpInst::Predicate Pred = Cmp->getPredicate();
817 
818     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
819     if (!PN)
820       PN = dyn_cast<PHINode>(CmpRHS);
821     if (PN && PN->getParent() == BB) {
822       const DataLayout &DL = PN->getModule()->getDataLayout();
823       // We can do this simplification if any comparisons fold to true or false.
824       // See if any do.
825       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
826         BasicBlock *PredBB = PN->getIncomingBlock(i);
827         Value *LHS, *RHS;
828         if (PN == CmpLHS) {
829           LHS = PN->getIncomingValue(i);
830           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
831         } else {
832           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
833           RHS = PN->getIncomingValue(i);
834         }
835         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
836         if (!Res) {
837           if (!isa<Constant>(RHS))
838             continue;
839 
840           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
841           auto LHSInst = dyn_cast<Instruction>(LHS);
842           if (LHSInst && LHSInst->getParent() == BB)
843             continue;
844 
845           LazyValueInfo::Tristate
846             ResT = LVI->getPredicateOnEdge(Pred, LHS,
847                                            cast<Constant>(RHS), PredBB, BB,
848                                            CxtI ? CxtI : Cmp);
849           if (ResT == LazyValueInfo::Unknown)
850             continue;
851           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
852         }
853 
854         if (Constant *KC = getKnownConstant(Res, WantInteger))
855           Result.emplace_back(KC, PredBB);
856       }
857 
858       return !Result.empty();
859     }
860 
861     // If comparing a live-in value against a constant, see if we know the
862     // live-in value on any predecessors.
863     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
864       Constant *CmpConst = cast<Constant>(CmpRHS);
865 
866       if (!isa<Instruction>(CmpLHS) ||
867           cast<Instruction>(CmpLHS)->getParent() != BB) {
868         for (BasicBlock *P : predecessors(BB)) {
869           // If the value is known by LazyValueInfo to be a constant in a
870           // predecessor, use that information to try to thread this block.
871           LazyValueInfo::Tristate Res =
872             LVI->getPredicateOnEdge(Pred, CmpLHS,
873                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
874           if (Res == LazyValueInfo::Unknown)
875             continue;
876 
877           Constant *ResC = ConstantInt::get(CmpType, Res);
878           Result.emplace_back(ResC, P);
879         }
880 
881         return !Result.empty();
882       }
883 
884       // InstCombine can fold some forms of constant range checks into
885       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
886       // x as a live-in.
887       {
888         using namespace PatternMatch;
889 
890         Value *AddLHS;
891         ConstantInt *AddConst;
892         if (isa<ConstantInt>(CmpConst) &&
893             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
894           if (!isa<Instruction>(AddLHS) ||
895               cast<Instruction>(AddLHS)->getParent() != BB) {
896             for (BasicBlock *P : predecessors(BB)) {
897               // If the value is known by LazyValueInfo to be a ConstantRange in
898               // a predecessor, use that information to try to thread this
899               // block.
900               ConstantRange CR = LVI->getConstantRangeOnEdge(
901                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
902               // Propagate the range through the addition.
903               CR = CR.add(AddConst->getValue());
904 
905               // Get the range where the compare returns true.
906               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
907                   Pred, cast<ConstantInt>(CmpConst)->getValue());
908 
909               Constant *ResC;
910               if (CmpRange.contains(CR))
911                 ResC = ConstantInt::getTrue(CmpType);
912               else if (CmpRange.inverse().contains(CR))
913                 ResC = ConstantInt::getFalse(CmpType);
914               else
915                 continue;
916 
917               Result.emplace_back(ResC, P);
918             }
919 
920             return !Result.empty();
921           }
922         }
923       }
924 
925       // Try to find a constant value for the LHS of a comparison,
926       // and evaluate it statically if we can.
927       PredValueInfoTy LHSVals;
928       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
929                                           WantInteger, RecursionSet, CxtI);
930 
931       for (const auto &LHSVal : LHSVals) {
932         Constant *V = LHSVal.first;
933         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
934         if (Constant *KC = getKnownConstant(Folded, WantInteger))
935           Result.emplace_back(KC, LHSVal.second);
936       }
937 
938       return !Result.empty();
939     }
940   }
941 
942   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
943     // Handle select instructions where at least one operand is a known constant
944     // and we can figure out the condition value for any predecessor block.
945     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
946     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
947     PredValueInfoTy Conds;
948     if ((TrueVal || FalseVal) &&
949         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
950                                             WantInteger, RecursionSet, CxtI)) {
951       for (auto &C : Conds) {
952         Constant *Cond = C.first;
953 
954         // Figure out what value to use for the condition.
955         bool KnownCond;
956         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
957           // A known boolean.
958           KnownCond = CI->isOne();
959         } else {
960           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
961           // Either operand will do, so be sure to pick the one that's a known
962           // constant.
963           // FIXME: Do this more cleverly if both values are known constants?
964           KnownCond = (TrueVal != nullptr);
965         }
966 
967         // See if the select has a known constant value for this predecessor.
968         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
969           Result.emplace_back(Val, C.second);
970       }
971 
972       return !Result.empty();
973     }
974   }
975 
976   // If all else fails, see if LVI can figure out a constant value for us.
977   assert(CxtI->getParent() == BB && "CxtI should be in BB");
978   Constant *CI = LVI->getConstant(V, CxtI);
979   if (Constant *KC = getKnownConstant(CI, Preference)) {
980     for (BasicBlock *Pred : predecessors(BB))
981       Result.emplace_back(KC, Pred);
982   }
983 
984   return !Result.empty();
985 }
986 
987 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
988 /// in an undefined jump, decide which block is best to revector to.
989 ///
990 /// Since we can pick an arbitrary destination, we pick the successor with the
991 /// fewest predecessors.  This should reduce the in-degree of the others.
992 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
993   Instruction *BBTerm = BB->getTerminator();
994   unsigned MinSucc = 0;
995   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
996   // Compute the successor with the minimum number of predecessors.
997   unsigned MinNumPreds = pred_size(TestBB);
998   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
999     TestBB = BBTerm->getSuccessor(i);
1000     unsigned NumPreds = pred_size(TestBB);
1001     if (NumPreds < MinNumPreds) {
1002       MinSucc = i;
1003       MinNumPreds = NumPreds;
1004     }
1005   }
1006 
1007   return MinSucc;
1008 }
1009 
1010 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1011   if (!BB->hasAddressTaken()) return false;
1012 
1013   // If the block has its address taken, it may be a tree of dead constants
1014   // hanging off of it.  These shouldn't keep the block alive.
1015   BlockAddress *BA = BlockAddress::get(BB);
1016   BA->removeDeadConstantUsers();
1017   return !BA->use_empty();
1018 }
1019 
1020 /// processBlock - If there are any predecessors whose control can be threaded
1021 /// through to a successor, transform them now.
1022 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1023   // If the block is trivially dead, just return and let the caller nuke it.
1024   // This simplifies other transformations.
1025   if (DTU->isBBPendingDeletion(BB) ||
1026       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1027     return false;
1028 
1029   // If this block has a single predecessor, and if that pred has a single
1030   // successor, merge the blocks.  This encourages recursive jump threading
1031   // because now the condition in this block can be threaded through
1032   // predecessors of our predecessor block.
1033   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1034     return true;
1035 
1036   if (tryToUnfoldSelectInCurrBB(BB))
1037     return true;
1038 
1039   // Look if we can propagate guards to predecessors.
1040   if (HasGuards && processGuards(BB))
1041     return true;
1042 
1043   // What kind of constant we're looking for.
1044   ConstantPreference Preference = WantInteger;
1045 
1046   // Look to see if the terminator is a conditional branch, switch or indirect
1047   // branch, if not we can't thread it.
1048   Value *Condition;
1049   Instruction *Terminator = BB->getTerminator();
1050   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1051     // Can't thread an unconditional jump.
1052     if (BI->isUnconditional()) return false;
1053     Condition = BI->getCondition();
1054   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1055     Condition = SI->getCondition();
1056   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1057     // Can't thread indirect branch with no successors.
1058     if (IB->getNumSuccessors() == 0) return false;
1059     Condition = IB->getAddress()->stripPointerCasts();
1060     Preference = WantBlockAddress;
1061   } else {
1062     return false; // Must be an invoke or callbr.
1063   }
1064 
1065   // Keep track if we constant folded the condition in this invocation.
1066   bool ConstantFolded = false;
1067 
1068   // Run constant folding to see if we can reduce the condition to a simple
1069   // constant.
1070   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1071     Value *SimpleVal =
1072         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1073     if (SimpleVal) {
1074       I->replaceAllUsesWith(SimpleVal);
1075       if (isInstructionTriviallyDead(I, TLI))
1076         I->eraseFromParent();
1077       Condition = SimpleVal;
1078       ConstantFolded = true;
1079     }
1080   }
1081 
1082   // If the terminator is branching on an undef or freeze undef, we can pick any
1083   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1084   auto *FI = dyn_cast<FreezeInst>(Condition);
1085   if (isa<UndefValue>(Condition) ||
1086       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1087     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1088     std::vector<DominatorTree::UpdateType> Updates;
1089 
1090     // Fold the branch/switch.
1091     Instruction *BBTerm = BB->getTerminator();
1092     Updates.reserve(BBTerm->getNumSuccessors());
1093     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1094       if (i == BestSucc) continue;
1095       BasicBlock *Succ = BBTerm->getSuccessor(i);
1096       Succ->removePredecessor(BB, true);
1097       Updates.push_back({DominatorTree::Delete, BB, Succ});
1098     }
1099 
1100     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1101                       << "' folding undef terminator: " << *BBTerm << '\n');
1102     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1103     ++NumFolds;
1104     BBTerm->eraseFromParent();
1105     DTU->applyUpdatesPermissive(Updates);
1106     if (FI)
1107       FI->eraseFromParent();
1108     return true;
1109   }
1110 
1111   // If the terminator of this block is branching on a constant, simplify the
1112   // terminator to an unconditional branch.  This can occur due to threading in
1113   // other blocks.
1114   if (getKnownConstant(Condition, Preference)) {
1115     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1116                       << "' folding terminator: " << *BB->getTerminator()
1117                       << '\n');
1118     ++NumFolds;
1119     ConstantFoldTerminator(BB, true, nullptr, DTU);
1120     if (HasProfileData)
1121       BPI->eraseBlock(BB);
1122     return true;
1123   }
1124 
1125   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1126 
1127   // All the rest of our checks depend on the condition being an instruction.
1128   if (!CondInst) {
1129     // FIXME: Unify this with code below.
1130     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1131       return true;
1132     return ConstantFolded;
1133   }
1134 
1135   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1136     // If we're branching on a conditional, LVI might be able to determine
1137     // it's value at the branch instruction.  We only handle comparisons
1138     // against a constant at this time.
1139     // TODO: This should be extended to handle switches as well.
1140     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1141     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1142     if (CondBr && CondConst) {
1143       // We should have returned as soon as we turn a conditional branch to
1144       // unconditional. Because its no longer interesting as far as jump
1145       // threading is concerned.
1146       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1147 
1148       LazyValueInfo::Tristate Ret =
1149           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1150                               CondConst, CondBr, /*UseBlockValue=*/false);
1151       if (Ret != LazyValueInfo::Unknown) {
1152         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1153         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1154         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1155         ToRemoveSucc->removePredecessor(BB, true);
1156         BranchInst *UncondBr =
1157           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1158         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1159         ++NumFolds;
1160         CondBr->eraseFromParent();
1161         if (CondCmp->use_empty())
1162           CondCmp->eraseFromParent();
1163         // We can safely replace *some* uses of the CondInst if it has
1164         // exactly one value as returned by LVI. RAUW is incorrect in the
1165         // presence of guards and assumes, that have the `Cond` as the use. This
1166         // is because we use the guards/assume to reason about the `Cond` value
1167         // at the end of block, but RAUW unconditionally replaces all uses
1168         // including the guards/assumes themselves and the uses before the
1169         // guard/assume.
1170         else if (CondCmp->getParent() == BB) {
1171           auto *CI = Ret == LazyValueInfo::True ?
1172             ConstantInt::getTrue(CondCmp->getType()) :
1173             ConstantInt::getFalse(CondCmp->getType());
1174           replaceFoldableUses(CondCmp, CI);
1175         }
1176         DTU->applyUpdatesPermissive(
1177             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1178         if (HasProfileData)
1179           BPI->eraseBlock(BB);
1180         return true;
1181       }
1182 
1183       // We did not manage to simplify this branch, try to see whether
1184       // CondCmp depends on a known phi-select pattern.
1185       if (tryToUnfoldSelect(CondCmp, BB))
1186         return true;
1187     }
1188   }
1189 
1190   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1191     if (tryToUnfoldSelect(SI, BB))
1192       return true;
1193 
1194   // Check for some cases that are worth simplifying.  Right now we want to look
1195   // for loads that are used by a switch or by the condition for the branch.  If
1196   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1197   // which can then be used to thread the values.
1198   Value *SimplifyValue = CondInst;
1199 
1200   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1201     // Look into freeze's operand
1202     SimplifyValue = FI->getOperand(0);
1203 
1204   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1205     if (isa<Constant>(CondCmp->getOperand(1)))
1206       SimplifyValue = CondCmp->getOperand(0);
1207 
1208   // TODO: There are other places where load PRE would be profitable, such as
1209   // more complex comparisons.
1210   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1211     if (simplifyPartiallyRedundantLoad(LoadI))
1212       return true;
1213 
1214   // Before threading, try to propagate profile data backwards:
1215   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1216     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1217       updatePredecessorProfileMetadata(PN, BB);
1218 
1219   // Handle a variety of cases where we are branching on something derived from
1220   // a PHI node in the current block.  If we can prove that any predecessors
1221   // compute a predictable value based on a PHI node, thread those predecessors.
1222   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1223     return true;
1224 
1225   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1226   // the current block, see if we can simplify.
1227   PHINode *PN = dyn_cast<PHINode>(
1228       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1229                                 : CondInst);
1230 
1231   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1232     return processBranchOnPHI(PN);
1233 
1234   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1235   if (CondInst->getOpcode() == Instruction::Xor &&
1236       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1237     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1238 
1239   // Search for a stronger dominating condition that can be used to simplify a
1240   // conditional branch leaving BB.
1241   if (processImpliedCondition(BB))
1242     return true;
1243 
1244   return false;
1245 }
1246 
1247 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1248   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1249   if (!BI || !BI->isConditional())
1250     return false;
1251 
1252   Value *Cond = BI->getCondition();
1253   BasicBlock *CurrentBB = BB;
1254   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1255   unsigned Iter = 0;
1256 
1257   auto &DL = BB->getModule()->getDataLayout();
1258 
1259   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1260     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1261     if (!PBI || !PBI->isConditional())
1262       return false;
1263     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1264       return false;
1265 
1266     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1267     Optional<bool> Implication =
1268         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1269     if (Implication) {
1270       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1271       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1272       RemoveSucc->removePredecessor(BB);
1273       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1274       UncondBI->setDebugLoc(BI->getDebugLoc());
1275       ++NumFolds;
1276       BI->eraseFromParent();
1277       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1278       if (HasProfileData)
1279         BPI->eraseBlock(BB);
1280       return true;
1281     }
1282     CurrentBB = CurrentPred;
1283     CurrentPred = CurrentBB->getSinglePredecessor();
1284   }
1285 
1286   return false;
1287 }
1288 
1289 /// Return true if Op is an instruction defined in the given block.
1290 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1291   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1292     if (OpInst->getParent() == BB)
1293       return true;
1294   return false;
1295 }
1296 
1297 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1298 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1299 /// This is an important optimization that encourages jump threading, and needs
1300 /// to be run interlaced with other jump threading tasks.
1301 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1302   // Don't hack volatile and ordered loads.
1303   if (!LoadI->isUnordered()) return false;
1304 
1305   // If the load is defined in a block with exactly one predecessor, it can't be
1306   // partially redundant.
1307   BasicBlock *LoadBB = LoadI->getParent();
1308   if (LoadBB->getSinglePredecessor())
1309     return false;
1310 
1311   // If the load is defined in an EH pad, it can't be partially redundant,
1312   // because the edges between the invoke and the EH pad cannot have other
1313   // instructions between them.
1314   if (LoadBB->isEHPad())
1315     return false;
1316 
1317   Value *LoadedPtr = LoadI->getOperand(0);
1318 
1319   // If the loaded operand is defined in the LoadBB and its not a phi,
1320   // it can't be available in predecessors.
1321   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1322     return false;
1323 
1324   // Scan a few instructions up from the load, to see if it is obviously live at
1325   // the entry to its block.
1326   BasicBlock::iterator BBIt(LoadI);
1327   bool IsLoadCSE;
1328   if (Value *AvailableVal = FindAvailableLoadedValue(
1329           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1330     // If the value of the load is locally available within the block, just use
1331     // it.  This frequently occurs for reg2mem'd allocas.
1332 
1333     if (IsLoadCSE) {
1334       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1335       combineMetadataForCSE(NLoadI, LoadI, false);
1336     };
1337 
1338     // If the returned value is the load itself, replace with an undef. This can
1339     // only happen in dead loops.
1340     if (AvailableVal == LoadI)
1341       AvailableVal = UndefValue::get(LoadI->getType());
1342     if (AvailableVal->getType() != LoadI->getType())
1343       AvailableVal = CastInst::CreateBitOrPointerCast(
1344           AvailableVal, LoadI->getType(), "", LoadI);
1345     LoadI->replaceAllUsesWith(AvailableVal);
1346     LoadI->eraseFromParent();
1347     return true;
1348   }
1349 
1350   // Otherwise, if we scanned the whole block and got to the top of the block,
1351   // we know the block is locally transparent to the load.  If not, something
1352   // might clobber its value.
1353   if (BBIt != LoadBB->begin())
1354     return false;
1355 
1356   // If all of the loads and stores that feed the value have the same AA tags,
1357   // then we can propagate them onto any newly inserted loads.
1358   AAMDNodes AATags = LoadI->getAAMetadata();
1359 
1360   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1361 
1362   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1363 
1364   AvailablePredsTy AvailablePreds;
1365   BasicBlock *OneUnavailablePred = nullptr;
1366   SmallVector<LoadInst*, 8> CSELoads;
1367 
1368   // If we got here, the loaded value is transparent through to the start of the
1369   // block.  Check to see if it is available in any of the predecessor blocks.
1370   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1371     // If we already scanned this predecessor, skip it.
1372     if (!PredsScanned.insert(PredBB).second)
1373       continue;
1374 
1375     BBIt = PredBB->end();
1376     unsigned NumScanedInst = 0;
1377     Value *PredAvailable = nullptr;
1378     // NOTE: We don't CSE load that is volatile or anything stronger than
1379     // unordered, that should have been checked when we entered the function.
1380     assert(LoadI->isUnordered() &&
1381            "Attempting to CSE volatile or atomic loads");
1382     // If this is a load on a phi pointer, phi-translate it and search
1383     // for available load/store to the pointer in predecessors.
1384     Type *AccessTy = LoadI->getType();
1385     const auto &DL = LoadI->getModule()->getDataLayout();
1386     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1387                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1388                        AATags);
1389     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1390                                               PredBB, BBIt, DefMaxInstsToScan,
1391                                               AA, &IsLoadCSE, &NumScanedInst);
1392 
1393     // If PredBB has a single predecessor, continue scanning through the
1394     // single predecessor.
1395     BasicBlock *SinglePredBB = PredBB;
1396     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1397            NumScanedInst < DefMaxInstsToScan) {
1398       SinglePredBB = SinglePredBB->getSinglePredecessor();
1399       if (SinglePredBB) {
1400         BBIt = SinglePredBB->end();
1401         PredAvailable = findAvailablePtrLoadStore(
1402             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1403             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1404             &NumScanedInst);
1405       }
1406     }
1407 
1408     if (!PredAvailable) {
1409       OneUnavailablePred = PredBB;
1410       continue;
1411     }
1412 
1413     if (IsLoadCSE)
1414       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1415 
1416     // If so, this load is partially redundant.  Remember this info so that we
1417     // can create a PHI node.
1418     AvailablePreds.emplace_back(PredBB, PredAvailable);
1419   }
1420 
1421   // If the loaded value isn't available in any predecessor, it isn't partially
1422   // redundant.
1423   if (AvailablePreds.empty()) return false;
1424 
1425   // Okay, the loaded value is available in at least one (and maybe all!)
1426   // predecessors.  If the value is unavailable in more than one unique
1427   // predecessor, we want to insert a merge block for those common predecessors.
1428   // This ensures that we only have to insert one reload, thus not increasing
1429   // code size.
1430   BasicBlock *UnavailablePred = nullptr;
1431 
1432   // If the value is unavailable in one of predecessors, we will end up
1433   // inserting a new instruction into them. It is only valid if all the
1434   // instructions before LoadI are guaranteed to pass execution to its
1435   // successor, or if LoadI is safe to speculate.
1436   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1437   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1438   // It requires domination tree analysis, so for this simple case it is an
1439   // overkill.
1440   if (PredsScanned.size() != AvailablePreds.size() &&
1441       !isSafeToSpeculativelyExecute(LoadI))
1442     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1443       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1444         return false;
1445 
1446   // If there is exactly one predecessor where the value is unavailable, the
1447   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1448   // unconditional branch, we know that it isn't a critical edge.
1449   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1450       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1451     UnavailablePred = OneUnavailablePred;
1452   } else if (PredsScanned.size() != AvailablePreds.size()) {
1453     // Otherwise, we had multiple unavailable predecessors or we had a critical
1454     // edge from the one.
1455     SmallVector<BasicBlock*, 8> PredsToSplit;
1456     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1457 
1458     for (const auto &AvailablePred : AvailablePreds)
1459       AvailablePredSet.insert(AvailablePred.first);
1460 
1461     // Add all the unavailable predecessors to the PredsToSplit list.
1462     for (BasicBlock *P : predecessors(LoadBB)) {
1463       // If the predecessor is an indirect goto, we can't split the edge.
1464       // Same for CallBr.
1465       if (isa<IndirectBrInst>(P->getTerminator()) ||
1466           isa<CallBrInst>(P->getTerminator()))
1467         return false;
1468 
1469       if (!AvailablePredSet.count(P))
1470         PredsToSplit.push_back(P);
1471     }
1472 
1473     // Split them out to their own block.
1474     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1475   }
1476 
1477   // If the value isn't available in all predecessors, then there will be
1478   // exactly one where it isn't available.  Insert a load on that edge and add
1479   // it to the AvailablePreds list.
1480   if (UnavailablePred) {
1481     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1482            "Can't handle critical edge here!");
1483     LoadInst *NewVal = new LoadInst(
1484         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1485         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1486         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1487         UnavailablePred->getTerminator());
1488     NewVal->setDebugLoc(LoadI->getDebugLoc());
1489     if (AATags)
1490       NewVal->setAAMetadata(AATags);
1491 
1492     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1493   }
1494 
1495   // Now we know that each predecessor of this block has a value in
1496   // AvailablePreds, sort them for efficient access as we're walking the preds.
1497   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1498 
1499   // Create a PHI node at the start of the block for the PRE'd load value.
1500   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1501   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1502                                 &LoadBB->front());
1503   PN->takeName(LoadI);
1504   PN->setDebugLoc(LoadI->getDebugLoc());
1505 
1506   // Insert new entries into the PHI for each predecessor.  A single block may
1507   // have multiple entries here.
1508   for (pred_iterator PI = PB; PI != PE; ++PI) {
1509     BasicBlock *P = *PI;
1510     AvailablePredsTy::iterator I =
1511         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1512 
1513     assert(I != AvailablePreds.end() && I->first == P &&
1514            "Didn't find entry for predecessor!");
1515 
1516     // If we have an available predecessor but it requires casting, insert the
1517     // cast in the predecessor and use the cast. Note that we have to update the
1518     // AvailablePreds vector as we go so that all of the PHI entries for this
1519     // predecessor use the same bitcast.
1520     Value *&PredV = I->second;
1521     if (PredV->getType() != LoadI->getType())
1522       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1523                                                P->getTerminator());
1524 
1525     PN->addIncoming(PredV, I->first);
1526   }
1527 
1528   for (LoadInst *PredLoadI : CSELoads) {
1529     combineMetadataForCSE(PredLoadI, LoadI, true);
1530   }
1531 
1532   LoadI->replaceAllUsesWith(PN);
1533   LoadI->eraseFromParent();
1534 
1535   return true;
1536 }
1537 
1538 /// findMostPopularDest - The specified list contains multiple possible
1539 /// threadable destinations.  Pick the one that occurs the most frequently in
1540 /// the list.
1541 static BasicBlock *
1542 findMostPopularDest(BasicBlock *BB,
1543                     const SmallVectorImpl<std::pair<BasicBlock *,
1544                                           BasicBlock *>> &PredToDestList) {
1545   assert(!PredToDestList.empty());
1546 
1547   // Determine popularity.  If there are multiple possible destinations, we
1548   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1549   // blocks with known and real destinations to threading undef.  We'll handle
1550   // them later if interesting.
1551   MapVector<BasicBlock *, unsigned> DestPopularity;
1552 
1553   // Populate DestPopularity with the successors in the order they appear in the
1554   // successor list.  This way, we ensure determinism by iterating it in the
1555   // same order in std::max_element below.  We map nullptr to 0 so that we can
1556   // return nullptr when PredToDestList contains nullptr only.
1557   DestPopularity[nullptr] = 0;
1558   for (auto *SuccBB : successors(BB))
1559     DestPopularity[SuccBB] = 0;
1560 
1561   for (const auto &PredToDest : PredToDestList)
1562     if (PredToDest.second)
1563       DestPopularity[PredToDest.second]++;
1564 
1565   // Find the most popular dest.
1566   using VT = decltype(DestPopularity)::value_type;
1567   auto MostPopular = std::max_element(
1568       DestPopularity.begin(), DestPopularity.end(),
1569       [](const VT &L, const VT &R) { return L.second < R.second; });
1570 
1571   // Okay, we have finally picked the most popular destination.
1572   return MostPopular->first;
1573 }
1574 
1575 // Try to evaluate the value of V when the control flows from PredPredBB to
1576 // BB->getSinglePredecessor() and then on to BB.
1577 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1578                                                        BasicBlock *PredPredBB,
1579                                                        Value *V) {
1580   BasicBlock *PredBB = BB->getSinglePredecessor();
1581   assert(PredBB && "Expected a single predecessor");
1582 
1583   if (Constant *Cst = dyn_cast<Constant>(V)) {
1584     return Cst;
1585   }
1586 
1587   // Consult LVI if V is not an instruction in BB or PredBB.
1588   Instruction *I = dyn_cast<Instruction>(V);
1589   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1590     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1591   }
1592 
1593   // Look into a PHI argument.
1594   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1595     if (PHI->getParent() == PredBB)
1596       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1597     return nullptr;
1598   }
1599 
1600   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1601   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1602     if (CondCmp->getParent() == BB) {
1603       Constant *Op0 =
1604           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1605       Constant *Op1 =
1606           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1607       if (Op0 && Op1) {
1608         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1609       }
1610     }
1611     return nullptr;
1612   }
1613 
1614   return nullptr;
1615 }
1616 
1617 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1618                                                ConstantPreference Preference,
1619                                                Instruction *CxtI) {
1620   // If threading this would thread across a loop header, don't even try to
1621   // thread the edge.
1622   if (LoopHeaders.count(BB))
1623     return false;
1624 
1625   PredValueInfoTy PredValues;
1626   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1627                                        CxtI)) {
1628     // We don't have known values in predecessors.  See if we can thread through
1629     // BB and its sole predecessor.
1630     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1631   }
1632 
1633   assert(!PredValues.empty() &&
1634          "computeValueKnownInPredecessors returned true with no values");
1635 
1636   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1637              for (const auto &PredValue : PredValues) {
1638                dbgs() << "  BB '" << BB->getName()
1639                       << "': FOUND condition = " << *PredValue.first
1640                       << " for pred '" << PredValue.second->getName() << "'.\n";
1641   });
1642 
1643   // Decide what we want to thread through.  Convert our list of known values to
1644   // a list of known destinations for each pred.  This also discards duplicate
1645   // predecessors and keeps track of the undefined inputs (which are represented
1646   // as a null dest in the PredToDestList).
1647   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1648   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1649 
1650   BasicBlock *OnlyDest = nullptr;
1651   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1652   Constant *OnlyVal = nullptr;
1653   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1654 
1655   for (const auto &PredValue : PredValues) {
1656     BasicBlock *Pred = PredValue.second;
1657     if (!SeenPreds.insert(Pred).second)
1658       continue;  // Duplicate predecessor entry.
1659 
1660     Constant *Val = PredValue.first;
1661 
1662     BasicBlock *DestBB;
1663     if (isa<UndefValue>(Val))
1664       DestBB = nullptr;
1665     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1666       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1667       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1668     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1669       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1670       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1671     } else {
1672       assert(isa<IndirectBrInst>(BB->getTerminator())
1673               && "Unexpected terminator");
1674       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1675       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1676     }
1677 
1678     // If we have exactly one destination, remember it for efficiency below.
1679     if (PredToDestList.empty()) {
1680       OnlyDest = DestBB;
1681       OnlyVal = Val;
1682     } else {
1683       if (OnlyDest != DestBB)
1684         OnlyDest = MultipleDestSentinel;
1685       // It possible we have same destination, but different value, e.g. default
1686       // case in switchinst.
1687       if (Val != OnlyVal)
1688         OnlyVal = MultipleVal;
1689     }
1690 
1691     // If the predecessor ends with an indirect goto, we can't change its
1692     // destination. Same for CallBr.
1693     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1694         isa<CallBrInst>(Pred->getTerminator()))
1695       continue;
1696 
1697     PredToDestList.emplace_back(Pred, DestBB);
1698   }
1699 
1700   // If all edges were unthreadable, we fail.
1701   if (PredToDestList.empty())
1702     return false;
1703 
1704   // If all the predecessors go to a single known successor, we want to fold,
1705   // not thread. By doing so, we do not need to duplicate the current block and
1706   // also miss potential opportunities in case we dont/cant duplicate.
1707   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1708     if (BB->hasNPredecessors(PredToDestList.size())) {
1709       bool SeenFirstBranchToOnlyDest = false;
1710       std::vector <DominatorTree::UpdateType> Updates;
1711       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1712       for (BasicBlock *SuccBB : successors(BB)) {
1713         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1714           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1715         } else {
1716           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1717           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1718         }
1719       }
1720 
1721       // Finally update the terminator.
1722       Instruction *Term = BB->getTerminator();
1723       BranchInst::Create(OnlyDest, Term);
1724       ++NumFolds;
1725       Term->eraseFromParent();
1726       DTU->applyUpdatesPermissive(Updates);
1727       if (HasProfileData)
1728         BPI->eraseBlock(BB);
1729 
1730       // If the condition is now dead due to the removal of the old terminator,
1731       // erase it.
1732       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1733         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1734           CondInst->eraseFromParent();
1735         // We can safely replace *some* uses of the CondInst if it has
1736         // exactly one value as returned by LVI. RAUW is incorrect in the
1737         // presence of guards and assumes, that have the `Cond` as the use. This
1738         // is because we use the guards/assume to reason about the `Cond` value
1739         // at the end of block, but RAUW unconditionally replaces all uses
1740         // including the guards/assumes themselves and the uses before the
1741         // guard/assume.
1742         else if (OnlyVal && OnlyVal != MultipleVal &&
1743                  CondInst->getParent() == BB)
1744           replaceFoldableUses(CondInst, OnlyVal);
1745       }
1746       return true;
1747     }
1748   }
1749 
1750   // Determine which is the most common successor.  If we have many inputs and
1751   // this block is a switch, we want to start by threading the batch that goes
1752   // to the most popular destination first.  If we only know about one
1753   // threadable destination (the common case) we can avoid this.
1754   BasicBlock *MostPopularDest = OnlyDest;
1755 
1756   if (MostPopularDest == MultipleDestSentinel) {
1757     // Remove any loop headers from the Dest list, threadEdge conservatively
1758     // won't process them, but we might have other destination that are eligible
1759     // and we still want to process.
1760     erase_if(PredToDestList,
1761              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1762                return LoopHeaders.contains(PredToDest.second);
1763              });
1764 
1765     if (PredToDestList.empty())
1766       return false;
1767 
1768     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1769   }
1770 
1771   // Now that we know what the most popular destination is, factor all
1772   // predecessors that will jump to it into a single predecessor.
1773   SmallVector<BasicBlock*, 16> PredsToFactor;
1774   for (const auto &PredToDest : PredToDestList)
1775     if (PredToDest.second == MostPopularDest) {
1776       BasicBlock *Pred = PredToDest.first;
1777 
1778       // This predecessor may be a switch or something else that has multiple
1779       // edges to the block.  Factor each of these edges by listing them
1780       // according to # occurrences in PredsToFactor.
1781       for (BasicBlock *Succ : successors(Pred))
1782         if (Succ == BB)
1783           PredsToFactor.push_back(Pred);
1784     }
1785 
1786   // If the threadable edges are branching on an undefined value, we get to pick
1787   // the destination that these predecessors should get to.
1788   if (!MostPopularDest)
1789     MostPopularDest = BB->getTerminator()->
1790                             getSuccessor(getBestDestForJumpOnUndef(BB));
1791 
1792   // Ok, try to thread it!
1793   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1794 }
1795 
1796 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1797 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1798 /// simplifications we can do based on inputs to the phi node.
1799 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1800   BasicBlock *BB = PN->getParent();
1801 
1802   // TODO: We could make use of this to do it once for blocks with common PHI
1803   // values.
1804   SmallVector<BasicBlock*, 1> PredBBs;
1805   PredBBs.resize(1);
1806 
1807   // If any of the predecessor blocks end in an unconditional branch, we can
1808   // *duplicate* the conditional branch into that block in order to further
1809   // encourage jump threading and to eliminate cases where we have branch on a
1810   // phi of an icmp (branch on icmp is much better).
1811   // This is still beneficial when a frozen phi is used as the branch condition
1812   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1813   // to br(icmp(freeze ...)).
1814   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1815     BasicBlock *PredBB = PN->getIncomingBlock(i);
1816     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1817       if (PredBr->isUnconditional()) {
1818         PredBBs[0] = PredBB;
1819         // Try to duplicate BB into PredBB.
1820         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1821           return true;
1822       }
1823   }
1824 
1825   return false;
1826 }
1827 
1828 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1829 /// a xor instruction in the current block.  See if there are any
1830 /// simplifications we can do based on inputs to the xor.
1831 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1832   BasicBlock *BB = BO->getParent();
1833 
1834   // If either the LHS or RHS of the xor is a constant, don't do this
1835   // optimization.
1836   if (isa<ConstantInt>(BO->getOperand(0)) ||
1837       isa<ConstantInt>(BO->getOperand(1)))
1838     return false;
1839 
1840   // If the first instruction in BB isn't a phi, we won't be able to infer
1841   // anything special about any particular predecessor.
1842   if (!isa<PHINode>(BB->front()))
1843     return false;
1844 
1845   // If this BB is a landing pad, we won't be able to split the edge into it.
1846   if (BB->isEHPad())
1847     return false;
1848 
1849   // If we have a xor as the branch input to this block, and we know that the
1850   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1851   // the condition into the predecessor and fix that value to true, saving some
1852   // logical ops on that path and encouraging other paths to simplify.
1853   //
1854   // This copies something like this:
1855   //
1856   //  BB:
1857   //    %X = phi i1 [1],  [%X']
1858   //    %Y = icmp eq i32 %A, %B
1859   //    %Z = xor i1 %X, %Y
1860   //    br i1 %Z, ...
1861   //
1862   // Into:
1863   //  BB':
1864   //    %Y = icmp ne i32 %A, %B
1865   //    br i1 %Y, ...
1866 
1867   PredValueInfoTy XorOpValues;
1868   bool isLHS = true;
1869   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1870                                        WantInteger, BO)) {
1871     assert(XorOpValues.empty());
1872     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1873                                          WantInteger, BO))
1874       return false;
1875     isLHS = false;
1876   }
1877 
1878   assert(!XorOpValues.empty() &&
1879          "computeValueKnownInPredecessors returned true with no values");
1880 
1881   // Scan the information to see which is most popular: true or false.  The
1882   // predecessors can be of the set true, false, or undef.
1883   unsigned NumTrue = 0, NumFalse = 0;
1884   for (const auto &XorOpValue : XorOpValues) {
1885     if (isa<UndefValue>(XorOpValue.first))
1886       // Ignore undefs for the count.
1887       continue;
1888     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1889       ++NumFalse;
1890     else
1891       ++NumTrue;
1892   }
1893 
1894   // Determine which value to split on, true, false, or undef if neither.
1895   ConstantInt *SplitVal = nullptr;
1896   if (NumTrue > NumFalse)
1897     SplitVal = ConstantInt::getTrue(BB->getContext());
1898   else if (NumTrue != 0 || NumFalse != 0)
1899     SplitVal = ConstantInt::getFalse(BB->getContext());
1900 
1901   // Collect all of the blocks that this can be folded into so that we can
1902   // factor this once and clone it once.
1903   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1904   for (const auto &XorOpValue : XorOpValues) {
1905     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1906       continue;
1907 
1908     BlocksToFoldInto.push_back(XorOpValue.second);
1909   }
1910 
1911   // If we inferred a value for all of the predecessors, then duplication won't
1912   // help us.  However, we can just replace the LHS or RHS with the constant.
1913   if (BlocksToFoldInto.size() ==
1914       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1915     if (!SplitVal) {
1916       // If all preds provide undef, just nuke the xor, because it is undef too.
1917       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1918       BO->eraseFromParent();
1919     } else if (SplitVal->isZero()) {
1920       // If all preds provide 0, replace the xor with the other input.
1921       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1922       BO->eraseFromParent();
1923     } else {
1924       // If all preds provide 1, set the computed value to 1.
1925       BO->setOperand(!isLHS, SplitVal);
1926     }
1927 
1928     return true;
1929   }
1930 
1931   // If any of predecessors end with an indirect goto, we can't change its
1932   // destination. Same for CallBr.
1933   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1934         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1935                isa<CallBrInst>(Pred->getTerminator());
1936       }))
1937     return false;
1938 
1939   // Try to duplicate BB into PredBB.
1940   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1941 }
1942 
1943 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1944 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1945 /// NewPred using the entries from OldPred (suitably mapped).
1946 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1947                                             BasicBlock *OldPred,
1948                                             BasicBlock *NewPred,
1949                                      DenseMap<Instruction*, Value*> &ValueMap) {
1950   for (PHINode &PN : PHIBB->phis()) {
1951     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1952     // DestBlock.
1953     Value *IV = PN.getIncomingValueForBlock(OldPred);
1954 
1955     // Remap the value if necessary.
1956     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1957       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1958       if (I != ValueMap.end())
1959         IV = I->second;
1960     }
1961 
1962     PN.addIncoming(IV, NewPred);
1963   }
1964 }
1965 
1966 /// Merge basic block BB into its sole predecessor if possible.
1967 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1968   BasicBlock *SinglePred = BB->getSinglePredecessor();
1969   if (!SinglePred)
1970     return false;
1971 
1972   const Instruction *TI = SinglePred->getTerminator();
1973   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1974       SinglePred == BB || hasAddressTakenAndUsed(BB))
1975     return false;
1976 
1977   // If SinglePred was a loop header, BB becomes one.
1978   if (LoopHeaders.erase(SinglePred))
1979     LoopHeaders.insert(BB);
1980 
1981   LVI->eraseBlock(SinglePred);
1982   MergeBasicBlockIntoOnlyPred(BB, DTU);
1983 
1984   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1985   // BB code within one basic block `BB`), we need to invalidate the LVI
1986   // information associated with BB, because the LVI information need not be
1987   // true for all of BB after the merge. For example,
1988   // Before the merge, LVI info and code is as follows:
1989   // SinglePred: <LVI info1 for %p val>
1990   // %y = use of %p
1991   // call @exit() // need not transfer execution to successor.
1992   // assume(%p) // from this point on %p is true
1993   // br label %BB
1994   // BB: <LVI info2 for %p val, i.e. %p is true>
1995   // %x = use of %p
1996   // br label exit
1997   //
1998   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1999   // (info2 and info1 respectively). After the merge and the deletion of the
2000   // LVI info1 for SinglePred. We have the following code:
2001   // BB: <LVI info2 for %p val>
2002   // %y = use of %p
2003   // call @exit()
2004   // assume(%p)
2005   // %x = use of %p <-- LVI info2 is correct from here onwards.
2006   // br label exit
2007   // LVI info2 for BB is incorrect at the beginning of BB.
2008 
2009   // Invalidate LVI information for BB if the LVI is not provably true for
2010   // all of BB.
2011   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2012     LVI->eraseBlock(BB);
2013   return true;
2014 }
2015 
2016 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2017 /// ValueMapping maps old values in BB to new ones in NewBB.
2018 void JumpThreadingPass::updateSSA(
2019     BasicBlock *BB, BasicBlock *NewBB,
2020     DenseMap<Instruction *, Value *> &ValueMapping) {
2021   // If there were values defined in BB that are used outside the block, then we
2022   // now have to update all uses of the value to use either the original value,
2023   // the cloned value, or some PHI derived value.  This can require arbitrary
2024   // PHI insertion, of which we are prepared to do, clean these up now.
2025   SSAUpdater SSAUpdate;
2026   SmallVector<Use *, 16> UsesToRename;
2027 
2028   for (Instruction &I : *BB) {
2029     // Scan all uses of this instruction to see if it is used outside of its
2030     // block, and if so, record them in UsesToRename.
2031     for (Use &U : I.uses()) {
2032       Instruction *User = cast<Instruction>(U.getUser());
2033       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2034         if (UserPN->getIncomingBlock(U) == BB)
2035           continue;
2036       } else if (User->getParent() == BB)
2037         continue;
2038 
2039       UsesToRename.push_back(&U);
2040     }
2041 
2042     // If there are no uses outside the block, we're done with this instruction.
2043     if (UsesToRename.empty())
2044       continue;
2045     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2046 
2047     // We found a use of I outside of BB.  Rename all uses of I that are outside
2048     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2049     // with the two values we know.
2050     SSAUpdate.Initialize(I.getType(), I.getName());
2051     SSAUpdate.AddAvailableValue(BB, &I);
2052     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2053 
2054     while (!UsesToRename.empty())
2055       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2056     LLVM_DEBUG(dbgs() << "\n");
2057   }
2058 }
2059 
2060 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2061 /// arguments that come from PredBB.  Return the map from the variables in the
2062 /// source basic block to the variables in the newly created basic block.
2063 DenseMap<Instruction *, Value *>
2064 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2065                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2066                                      BasicBlock *PredBB) {
2067   // We are going to have to map operands from the source basic block to the new
2068   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2069   // block, evaluate them to account for entry from PredBB.
2070   DenseMap<Instruction *, Value *> ValueMapping;
2071 
2072   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2073   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2074   // might need to rewrite the operand of the cloned phi.
2075   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2076     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2077     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2078     ValueMapping[PN] = NewPN;
2079   }
2080 
2081   // Clone noalias scope declarations in the threaded block. When threading a
2082   // loop exit, we would otherwise end up with two idential scope declarations
2083   // visible at the same time.
2084   SmallVector<MDNode *> NoAliasScopes;
2085   DenseMap<MDNode *, MDNode *> ClonedScopes;
2086   LLVMContext &Context = PredBB->getContext();
2087   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2088   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2089 
2090   // Clone the non-phi instructions of the source basic block into NewBB,
2091   // keeping track of the mapping and using it to remap operands in the cloned
2092   // instructions.
2093   for (; BI != BE; ++BI) {
2094     Instruction *New = BI->clone();
2095     New->setName(BI->getName());
2096     NewBB->getInstList().push_back(New);
2097     ValueMapping[&*BI] = New;
2098     adaptNoAliasScopes(New, ClonedScopes, Context);
2099 
2100     // Remap operands to patch up intra-block references.
2101     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2102       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2103         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2104         if (I != ValueMapping.end())
2105           New->setOperand(i, I->second);
2106       }
2107   }
2108 
2109   return ValueMapping;
2110 }
2111 
2112 /// Attempt to thread through two successive basic blocks.
2113 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2114                                                          Value *Cond) {
2115   // Consider:
2116   //
2117   // PredBB:
2118   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2119   //   %tobool = icmp eq i32 %cond, 0
2120   //   br i1 %tobool, label %BB, label ...
2121   //
2122   // BB:
2123   //   %cmp = icmp eq i32* %var, null
2124   //   br i1 %cmp, label ..., label ...
2125   //
2126   // We don't know the value of %var at BB even if we know which incoming edge
2127   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2128   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2129   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2130 
2131   // Require that BB end with a Branch for simplicity.
2132   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2133   if (!CondBr)
2134     return false;
2135 
2136   // BB must have exactly one predecessor.
2137   BasicBlock *PredBB = BB->getSinglePredecessor();
2138   if (!PredBB)
2139     return false;
2140 
2141   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2142   // unconditional branch, we should be merging PredBB and BB instead. For
2143   // simplicity, we don't deal with a switch.
2144   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2145   if (!PredBBBranch || PredBBBranch->isUnconditional())
2146     return false;
2147 
2148   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2149   // PredBB.
2150   if (PredBB->getSinglePredecessor())
2151     return false;
2152 
2153   // Don't thread through PredBB if it contains a successor edge to itself, in
2154   // which case we would infinite loop.  Suppose we are threading an edge from
2155   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2156   // successor edge to itself.  If we allowed jump threading in this case, we
2157   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2158   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2159   // with another jump threading opportunity from PredBB.thread through PredBB
2160   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2161   // would keep peeling one iteration from PredBB.
2162   if (llvm::is_contained(successors(PredBB), PredBB))
2163     return false;
2164 
2165   // Don't thread across a loop header.
2166   if (LoopHeaders.count(PredBB))
2167     return false;
2168 
2169   // Avoid complication with duplicating EH pads.
2170   if (PredBB->isEHPad())
2171     return false;
2172 
2173   // Find a predecessor that we can thread.  For simplicity, we only consider a
2174   // successor edge out of BB to which we thread exactly one incoming edge into
2175   // PredBB.
2176   unsigned ZeroCount = 0;
2177   unsigned OneCount = 0;
2178   BasicBlock *ZeroPred = nullptr;
2179   BasicBlock *OnePred = nullptr;
2180   for (BasicBlock *P : predecessors(PredBB)) {
2181     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2182             evaluateOnPredecessorEdge(BB, P, Cond))) {
2183       if (CI->isZero()) {
2184         ZeroCount++;
2185         ZeroPred = P;
2186       } else if (CI->isOne()) {
2187         OneCount++;
2188         OnePred = P;
2189       }
2190     }
2191   }
2192 
2193   // Disregard complicated cases where we have to thread multiple edges.
2194   BasicBlock *PredPredBB;
2195   if (ZeroCount == 1) {
2196     PredPredBB = ZeroPred;
2197   } else if (OneCount == 1) {
2198     PredPredBB = OnePred;
2199   } else {
2200     return false;
2201   }
2202 
2203   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2204 
2205   // If threading to the same block as we come from, we would infinite loop.
2206   if (SuccBB == BB) {
2207     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2208                       << "' - would thread to self!\n");
2209     return false;
2210   }
2211 
2212   // If threading this would thread across a loop header, don't thread the edge.
2213   // See the comments above findLoopHeaders for justifications and caveats.
2214   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2215     LLVM_DEBUG({
2216       bool BBIsHeader = LoopHeaders.count(BB);
2217       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2218       dbgs() << "  Not threading across "
2219              << (BBIsHeader ? "loop header BB '" : "block BB '")
2220              << BB->getName() << "' to dest "
2221              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2222              << SuccBB->getName()
2223              << "' - it might create an irreducible loop!\n";
2224     });
2225     return false;
2226   }
2227 
2228   // Compute the cost of duplicating BB and PredBB.
2229   unsigned BBCost = getJumpThreadDuplicationCost(
2230       TTI, BB, BB->getTerminator(), BBDupThreshold);
2231   unsigned PredBBCost = getJumpThreadDuplicationCost(
2232       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2233 
2234   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2235   // individually before checking their sum because getJumpThreadDuplicationCost
2236   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2237   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2238       BBCost + PredBBCost > BBDupThreshold) {
2239     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2240                       << "' - Cost is too high: " << PredBBCost
2241                       << " for PredBB, " << BBCost << "for BB\n");
2242     return false;
2243   }
2244 
2245   // Now we are ready to duplicate PredBB.
2246   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2247   return true;
2248 }
2249 
2250 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2251                                                     BasicBlock *PredBB,
2252                                                     BasicBlock *BB,
2253                                                     BasicBlock *SuccBB) {
2254   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2255                     << BB->getName() << "'\n");
2256 
2257   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2258   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2259 
2260   BasicBlock *NewBB =
2261       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2262                          PredBB->getParent(), PredBB);
2263   NewBB->moveAfter(PredBB);
2264 
2265   // Set the block frequency of NewBB.
2266   if (HasProfileData) {
2267     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2268                      BPI->getEdgeProbability(PredPredBB, PredBB);
2269     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2270   }
2271 
2272   // We are going to have to map operands from the original BB block to the new
2273   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2274   // to account for entry from PredPredBB.
2275   DenseMap<Instruction *, Value *> ValueMapping =
2276       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2277 
2278   // Copy the edge probabilities from PredBB to NewBB.
2279   if (HasProfileData)
2280     BPI->copyEdgeProbabilities(PredBB, NewBB);
2281 
2282   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2283   // This eliminates predecessors from PredPredBB, which requires us to simplify
2284   // any PHI nodes in PredBB.
2285   Instruction *PredPredTerm = PredPredBB->getTerminator();
2286   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2287     if (PredPredTerm->getSuccessor(i) == PredBB) {
2288       PredBB->removePredecessor(PredPredBB, true);
2289       PredPredTerm->setSuccessor(i, NewBB);
2290     }
2291 
2292   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2293                                   ValueMapping);
2294   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2295                                   ValueMapping);
2296 
2297   DTU->applyUpdatesPermissive(
2298       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2299        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2300        {DominatorTree::Insert, PredPredBB, NewBB},
2301        {DominatorTree::Delete, PredPredBB, PredBB}});
2302 
2303   updateSSA(PredBB, NewBB, ValueMapping);
2304 
2305   // Clean up things like PHI nodes with single operands, dead instructions,
2306   // etc.
2307   SimplifyInstructionsInBlock(NewBB, TLI);
2308   SimplifyInstructionsInBlock(PredBB, TLI);
2309 
2310   SmallVector<BasicBlock *, 1> PredsToFactor;
2311   PredsToFactor.push_back(NewBB);
2312   threadEdge(BB, PredsToFactor, SuccBB);
2313 }
2314 
2315 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2316 bool JumpThreadingPass::tryThreadEdge(
2317     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2318     BasicBlock *SuccBB) {
2319   // If threading to the same block as we come from, we would infinite loop.
2320   if (SuccBB == BB) {
2321     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2322                       << "' - would thread to self!\n");
2323     return false;
2324   }
2325 
2326   // If threading this would thread across a loop header, don't thread the edge.
2327   // See the comments above findLoopHeaders for justifications and caveats.
2328   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2329     LLVM_DEBUG({
2330       bool BBIsHeader = LoopHeaders.count(BB);
2331       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2332       dbgs() << "  Not threading across "
2333           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2334           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2335           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2336     });
2337     return false;
2338   }
2339 
2340   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2341       TTI, BB, BB->getTerminator(), BBDupThreshold);
2342   if (JumpThreadCost > BBDupThreshold) {
2343     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2344                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2345     return false;
2346   }
2347 
2348   threadEdge(BB, PredBBs, SuccBB);
2349   return true;
2350 }
2351 
2352 /// threadEdge - We have decided that it is safe and profitable to factor the
2353 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2354 /// across BB.  Transform the IR to reflect this change.
2355 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2356                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2357                                    BasicBlock *SuccBB) {
2358   assert(SuccBB != BB && "Don't create an infinite loop");
2359 
2360   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2361          "Don't thread across loop headers");
2362 
2363   // And finally, do it!  Start by factoring the predecessors if needed.
2364   BasicBlock *PredBB;
2365   if (PredBBs.size() == 1)
2366     PredBB = PredBBs[0];
2367   else {
2368     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2369                       << " common predecessors.\n");
2370     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2371   }
2372 
2373   // And finally, do it!
2374   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2375                     << "' to '" << SuccBB->getName()
2376                     << ", across block:\n    " << *BB << "\n");
2377 
2378   LVI->threadEdge(PredBB, BB, SuccBB);
2379 
2380   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2381                                          BB->getName()+".thread",
2382                                          BB->getParent(), BB);
2383   NewBB->moveAfter(PredBB);
2384 
2385   // Set the block frequency of NewBB.
2386   if (HasProfileData) {
2387     auto NewBBFreq =
2388         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2389     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2390   }
2391 
2392   // Copy all the instructions from BB to NewBB except the terminator.
2393   DenseMap<Instruction *, Value *> ValueMapping =
2394       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2395 
2396   // We didn't copy the terminator from BB over to NewBB, because there is now
2397   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2398   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2399   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2400 
2401   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2402   // PHI nodes for NewBB now.
2403   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2404 
2405   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2406   // eliminates predecessors from BB, which requires us to simplify any PHI
2407   // nodes in BB.
2408   Instruction *PredTerm = PredBB->getTerminator();
2409   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2410     if (PredTerm->getSuccessor(i) == BB) {
2411       BB->removePredecessor(PredBB, true);
2412       PredTerm->setSuccessor(i, NewBB);
2413     }
2414 
2415   // Enqueue required DT updates.
2416   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2417                                {DominatorTree::Insert, PredBB, NewBB},
2418                                {DominatorTree::Delete, PredBB, BB}});
2419 
2420   updateSSA(BB, NewBB, ValueMapping);
2421 
2422   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2423   // over the new instructions and zap any that are constants or dead.  This
2424   // frequently happens because of phi translation.
2425   SimplifyInstructionsInBlock(NewBB, TLI);
2426 
2427   // Update the edge weight from BB to SuccBB, which should be less than before.
2428   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2429 
2430   // Threaded an edge!
2431   ++NumThreads;
2432 }
2433 
2434 /// Create a new basic block that will be the predecessor of BB and successor of
2435 /// all blocks in Preds. When profile data is available, update the frequency of
2436 /// this new block.
2437 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2438                                                ArrayRef<BasicBlock *> Preds,
2439                                                const char *Suffix) {
2440   SmallVector<BasicBlock *, 2> NewBBs;
2441 
2442   // Collect the frequencies of all predecessors of BB, which will be used to
2443   // update the edge weight of the result of splitting predecessors.
2444   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2445   if (HasProfileData)
2446     for (auto Pred : Preds)
2447       FreqMap.insert(std::make_pair(
2448           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2449 
2450   // In the case when BB is a LandingPad block we create 2 new predecessors
2451   // instead of just one.
2452   if (BB->isLandingPad()) {
2453     std::string NewName = std::string(Suffix) + ".split-lp";
2454     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2455   } else {
2456     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2457   }
2458 
2459   std::vector<DominatorTree::UpdateType> Updates;
2460   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2461   for (auto NewBB : NewBBs) {
2462     BlockFrequency NewBBFreq(0);
2463     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2464     for (auto Pred : predecessors(NewBB)) {
2465       Updates.push_back({DominatorTree::Delete, Pred, BB});
2466       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2467       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2468         NewBBFreq += FreqMap.lookup(Pred);
2469     }
2470     if (HasProfileData) // Apply the summed frequency to NewBB.
2471       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2472   }
2473 
2474   DTU->applyUpdatesPermissive(Updates);
2475   return NewBBs[0];
2476 }
2477 
2478 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2479   const Instruction *TI = BB->getTerminator();
2480   assert(TI->getNumSuccessors() > 1 && "not a split");
2481 
2482   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2483   if (!WeightsNode)
2484     return false;
2485 
2486   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2487   if (MDName->getString() != "branch_weights")
2488     return false;
2489 
2490   // Ensure there are weights for all of the successors. Note that the first
2491   // operand to the metadata node is a name, not a weight.
2492   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2493 }
2494 
2495 /// Update the block frequency of BB and branch weight and the metadata on the
2496 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2497 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2498 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2499                                                      BasicBlock *BB,
2500                                                      BasicBlock *NewBB,
2501                                                      BasicBlock *SuccBB) {
2502   if (!HasProfileData)
2503     return;
2504 
2505   assert(BFI && BPI && "BFI & BPI should have been created here");
2506 
2507   // As the edge from PredBB to BB is deleted, we have to update the block
2508   // frequency of BB.
2509   auto BBOrigFreq = BFI->getBlockFreq(BB);
2510   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2511   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2512   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2513   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2514 
2515   // Collect updated outgoing edges' frequencies from BB and use them to update
2516   // edge probabilities.
2517   SmallVector<uint64_t, 4> BBSuccFreq;
2518   for (BasicBlock *Succ : successors(BB)) {
2519     auto SuccFreq = (Succ == SuccBB)
2520                         ? BB2SuccBBFreq - NewBBFreq
2521                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2522     BBSuccFreq.push_back(SuccFreq.getFrequency());
2523   }
2524 
2525   uint64_t MaxBBSuccFreq =
2526       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2527 
2528   SmallVector<BranchProbability, 4> BBSuccProbs;
2529   if (MaxBBSuccFreq == 0)
2530     BBSuccProbs.assign(BBSuccFreq.size(),
2531                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2532   else {
2533     for (uint64_t Freq : BBSuccFreq)
2534       BBSuccProbs.push_back(
2535           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2536     // Normalize edge probabilities so that they sum up to one.
2537     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2538                                               BBSuccProbs.end());
2539   }
2540 
2541   // Update edge probabilities in BPI.
2542   BPI->setEdgeProbability(BB, BBSuccProbs);
2543 
2544   // Update the profile metadata as well.
2545   //
2546   // Don't do this if the profile of the transformed blocks was statically
2547   // estimated.  (This could occur despite the function having an entry
2548   // frequency in completely cold parts of the CFG.)
2549   //
2550   // In this case we don't want to suggest to subsequent passes that the
2551   // calculated weights are fully consistent.  Consider this graph:
2552   //
2553   //                 check_1
2554   //             50% /  |
2555   //             eq_1   | 50%
2556   //                 \  |
2557   //                 check_2
2558   //             50% /  |
2559   //             eq_2   | 50%
2560   //                 \  |
2561   //                 check_3
2562   //             50% /  |
2563   //             eq_3   | 50%
2564   //                 \  |
2565   //
2566   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2567   // the overall probabilities are inconsistent; the total probability that the
2568   // value is either 1, 2 or 3 is 150%.
2569   //
2570   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2571   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2572   // the loop exit edge.  Then based solely on static estimation we would assume
2573   // the loop was extremely hot.
2574   //
2575   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2576   // shouldn't make edges extremely likely or unlikely based solely on static
2577   // estimation.
2578   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2579     SmallVector<uint32_t, 4> Weights;
2580     for (auto Prob : BBSuccProbs)
2581       Weights.push_back(Prob.getNumerator());
2582 
2583     auto TI = BB->getTerminator();
2584     TI->setMetadata(
2585         LLVMContext::MD_prof,
2586         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2587   }
2588 }
2589 
2590 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2591 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2592 /// If we can duplicate the contents of BB up into PredBB do so now, this
2593 /// improves the odds that the branch will be on an analyzable instruction like
2594 /// a compare.
2595 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2596     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2597   assert(!PredBBs.empty() && "Can't handle an empty set");
2598 
2599   // If BB is a loop header, then duplicating this block outside the loop would
2600   // cause us to transform this into an irreducible loop, don't do this.
2601   // See the comments above findLoopHeaders for justifications and caveats.
2602   if (LoopHeaders.count(BB)) {
2603     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2604                       << "' into predecessor block '" << PredBBs[0]->getName()
2605                       << "' - it might create an irreducible loop!\n");
2606     return false;
2607   }
2608 
2609   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2610       TTI, BB, BB->getTerminator(), BBDupThreshold);
2611   if (DuplicationCost > BBDupThreshold) {
2612     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2613                       << "' - Cost is too high: " << DuplicationCost << "\n");
2614     return false;
2615   }
2616 
2617   // And finally, do it!  Start by factoring the predecessors if needed.
2618   std::vector<DominatorTree::UpdateType> Updates;
2619   BasicBlock *PredBB;
2620   if (PredBBs.size() == 1)
2621     PredBB = PredBBs[0];
2622   else {
2623     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2624                       << " common predecessors.\n");
2625     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2626   }
2627   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2628 
2629   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2630   // of PredBB.
2631   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2632                     << "' into end of '" << PredBB->getName()
2633                     << "' to eliminate branch on phi.  Cost: "
2634                     << DuplicationCost << " block is:" << *BB << "\n");
2635 
2636   // Unless PredBB ends with an unconditional branch, split the edge so that we
2637   // can just clone the bits from BB into the end of the new PredBB.
2638   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2639 
2640   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2641     BasicBlock *OldPredBB = PredBB;
2642     PredBB = SplitEdge(OldPredBB, BB);
2643     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2644     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2645     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2646     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2647   }
2648 
2649   // We are going to have to map operands from the original BB block into the
2650   // PredBB block.  Evaluate PHI nodes in BB.
2651   DenseMap<Instruction*, Value*> ValueMapping;
2652 
2653   BasicBlock::iterator BI = BB->begin();
2654   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2655     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2656   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2657   // mapping and using it to remap operands in the cloned instructions.
2658   for (; BI != BB->end(); ++BI) {
2659     Instruction *New = BI->clone();
2660 
2661     // Remap operands to patch up intra-block references.
2662     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2663       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2664         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2665         if (I != ValueMapping.end())
2666           New->setOperand(i, I->second);
2667       }
2668 
2669     // If this instruction can be simplified after the operands are updated,
2670     // just use the simplified value instead.  This frequently happens due to
2671     // phi translation.
2672     if (Value *IV = SimplifyInstruction(
2673             New,
2674             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2675       ValueMapping[&*BI] = IV;
2676       if (!New->mayHaveSideEffects()) {
2677         New->deleteValue();
2678         New = nullptr;
2679       }
2680     } else {
2681       ValueMapping[&*BI] = New;
2682     }
2683     if (New) {
2684       // Otherwise, insert the new instruction into the block.
2685       New->setName(BI->getName());
2686       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2687       // Update Dominance from simplified New instruction operands.
2688       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2689         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2690           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2691     }
2692   }
2693 
2694   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2695   // add entries to the PHI nodes for branch from PredBB now.
2696   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2697   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2698                                   ValueMapping);
2699   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2700                                   ValueMapping);
2701 
2702   updateSSA(BB, PredBB, ValueMapping);
2703 
2704   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2705   // that we nuked.
2706   BB->removePredecessor(PredBB, true);
2707 
2708   // Remove the unconditional branch at the end of the PredBB block.
2709   OldPredBranch->eraseFromParent();
2710   if (HasProfileData)
2711     BPI->copyEdgeProbabilities(BB, PredBB);
2712   DTU->applyUpdatesPermissive(Updates);
2713 
2714   ++NumDupes;
2715   return true;
2716 }
2717 
2718 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2719 // a Select instruction in Pred. BB has other predecessors and SI is used in
2720 // a PHI node in BB. SI has no other use.
2721 // A new basic block, NewBB, is created and SI is converted to compare and
2722 // conditional branch. SI is erased from parent.
2723 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2724                                           SelectInst *SI, PHINode *SIUse,
2725                                           unsigned Idx) {
2726   // Expand the select.
2727   //
2728   // Pred --
2729   //  |    v
2730   //  |  NewBB
2731   //  |    |
2732   //  |-----
2733   //  v
2734   // BB
2735   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2736   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2737                                          BB->getParent(), BB);
2738   // Move the unconditional branch to NewBB.
2739   PredTerm->removeFromParent();
2740   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2741   // Create a conditional branch and update PHI nodes.
2742   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2743   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2744   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2745   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2746 
2747   // The select is now dead.
2748   SI->eraseFromParent();
2749   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2750                                {DominatorTree::Insert, Pred, NewBB}});
2751 
2752   // Update any other PHI nodes in BB.
2753   for (BasicBlock::iterator BI = BB->begin();
2754        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2755     if (Phi != SIUse)
2756       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2757 }
2758 
2759 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2760   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2761 
2762   if (!CondPHI || CondPHI->getParent() != BB)
2763     return false;
2764 
2765   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2766     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2767     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2768 
2769     // The second and third condition can be potentially relaxed. Currently
2770     // the conditions help to simplify the code and allow us to reuse existing
2771     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2772     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2773       continue;
2774 
2775     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2776     if (!PredTerm || !PredTerm->isUnconditional())
2777       continue;
2778 
2779     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2780     return true;
2781   }
2782   return false;
2783 }
2784 
2785 /// tryToUnfoldSelect - Look for blocks of the form
2786 /// bb1:
2787 ///   %a = select
2788 ///   br bb2
2789 ///
2790 /// bb2:
2791 ///   %p = phi [%a, %bb1] ...
2792 ///   %c = icmp %p
2793 ///   br i1 %c
2794 ///
2795 /// And expand the select into a branch structure if one of its arms allows %c
2796 /// to be folded. This later enables threading from bb1 over bb2.
2797 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2798   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2799   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2800   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2801 
2802   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2803       CondLHS->getParent() != BB)
2804     return false;
2805 
2806   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2807     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2808     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2809 
2810     // Look if one of the incoming values is a select in the corresponding
2811     // predecessor.
2812     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2813       continue;
2814 
2815     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2816     if (!PredTerm || !PredTerm->isUnconditional())
2817       continue;
2818 
2819     // Now check if one of the select values would allow us to constant fold the
2820     // terminator in BB. We don't do the transform if both sides fold, those
2821     // cases will be threaded in any case.
2822     LazyValueInfo::Tristate LHSFolds =
2823         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2824                                 CondRHS, Pred, BB, CondCmp);
2825     LazyValueInfo::Tristate RHSFolds =
2826         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2827                                 CondRHS, Pred, BB, CondCmp);
2828     if ((LHSFolds != LazyValueInfo::Unknown ||
2829          RHSFolds != LazyValueInfo::Unknown) &&
2830         LHSFolds != RHSFolds) {
2831       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2832       return true;
2833     }
2834   }
2835   return false;
2836 }
2837 
2838 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2839 /// same BB in the form
2840 /// bb:
2841 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2842 ///   %s = select %p, trueval, falseval
2843 ///
2844 /// or
2845 ///
2846 /// bb:
2847 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2848 ///   %c = cmp %p, 0
2849 ///   %s = select %c, trueval, falseval
2850 ///
2851 /// And expand the select into a branch structure. This later enables
2852 /// jump-threading over bb in this pass.
2853 ///
2854 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2855 /// select if the associated PHI has at least one constant.  If the unfolded
2856 /// select is not jump-threaded, it will be folded again in the later
2857 /// optimizations.
2858 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2859   // This transform would reduce the quality of msan diagnostics.
2860   // Disable this transform under MemorySanitizer.
2861   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2862     return false;
2863 
2864   // If threading this would thread across a loop header, don't thread the edge.
2865   // See the comments above findLoopHeaders for justifications and caveats.
2866   if (LoopHeaders.count(BB))
2867     return false;
2868 
2869   for (BasicBlock::iterator BI = BB->begin();
2870        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2871     // Look for a Phi having at least one constant incoming value.
2872     if (llvm::all_of(PN->incoming_values(),
2873                      [](Value *V) { return !isa<ConstantInt>(V); }))
2874       continue;
2875 
2876     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2877       using namespace PatternMatch;
2878 
2879       // Check if SI is in BB and use V as condition.
2880       if (SI->getParent() != BB)
2881         return false;
2882       Value *Cond = SI->getCondition();
2883       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2884       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2885     };
2886 
2887     SelectInst *SI = nullptr;
2888     for (Use &U : PN->uses()) {
2889       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2890         // Look for a ICmp in BB that compares PN with a constant and is the
2891         // condition of a Select.
2892         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2893             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2894           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2895             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2896               SI = SelectI;
2897               break;
2898             }
2899       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2900         // Look for a Select in BB that uses PN as condition.
2901         if (isUnfoldCandidate(SelectI, U.get())) {
2902           SI = SelectI;
2903           break;
2904         }
2905       }
2906     }
2907 
2908     if (!SI)
2909       continue;
2910     // Expand the select.
2911     Value *Cond = SI->getCondition();
2912     if (InsertFreezeWhenUnfoldingSelect &&
2913         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2914                                           &DTU->getDomTree()))
2915       Cond = new FreezeInst(Cond, "cond.fr", SI);
2916     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2917     BasicBlock *SplitBB = SI->getParent();
2918     BasicBlock *NewBB = Term->getParent();
2919     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2920     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2921     NewPN->addIncoming(SI->getFalseValue(), BB);
2922     SI->replaceAllUsesWith(NewPN);
2923     SI->eraseFromParent();
2924     // NewBB and SplitBB are newly created blocks which require insertion.
2925     std::vector<DominatorTree::UpdateType> Updates;
2926     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2927     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2928     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2929     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2930     // BB's successors were moved to SplitBB, update DTU accordingly.
2931     for (auto *Succ : successors(SplitBB)) {
2932       Updates.push_back({DominatorTree::Delete, BB, Succ});
2933       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2934     }
2935     DTU->applyUpdatesPermissive(Updates);
2936     return true;
2937   }
2938   return false;
2939 }
2940 
2941 /// Try to propagate a guard from the current BB into one of its predecessors
2942 /// in case if another branch of execution implies that the condition of this
2943 /// guard is always true. Currently we only process the simplest case that
2944 /// looks like:
2945 ///
2946 /// Start:
2947 ///   %cond = ...
2948 ///   br i1 %cond, label %T1, label %F1
2949 /// T1:
2950 ///   br label %Merge
2951 /// F1:
2952 ///   br label %Merge
2953 /// Merge:
2954 ///   %condGuard = ...
2955 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2956 ///
2957 /// And cond either implies condGuard or !condGuard. In this case all the
2958 /// instructions before the guard can be duplicated in both branches, and the
2959 /// guard is then threaded to one of them.
2960 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2961   using namespace PatternMatch;
2962 
2963   // We only want to deal with two predecessors.
2964   BasicBlock *Pred1, *Pred2;
2965   auto PI = pred_begin(BB), PE = pred_end(BB);
2966   if (PI == PE)
2967     return false;
2968   Pred1 = *PI++;
2969   if (PI == PE)
2970     return false;
2971   Pred2 = *PI++;
2972   if (PI != PE)
2973     return false;
2974   if (Pred1 == Pred2)
2975     return false;
2976 
2977   // Try to thread one of the guards of the block.
2978   // TODO: Look up deeper than to immediate predecessor?
2979   auto *Parent = Pred1->getSinglePredecessor();
2980   if (!Parent || Parent != Pred2->getSinglePredecessor())
2981     return false;
2982 
2983   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2984     for (auto &I : *BB)
2985       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2986         return true;
2987 
2988   return false;
2989 }
2990 
2991 /// Try to propagate the guard from BB which is the lower block of a diamond
2992 /// to one of its branches, in case if diamond's condition implies guard's
2993 /// condition.
2994 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2995                                     BranchInst *BI) {
2996   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2997   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2998   Value *GuardCond = Guard->getArgOperand(0);
2999   Value *BranchCond = BI->getCondition();
3000   BasicBlock *TrueDest = BI->getSuccessor(0);
3001   BasicBlock *FalseDest = BI->getSuccessor(1);
3002 
3003   auto &DL = BB->getModule()->getDataLayout();
3004   bool TrueDestIsSafe = false;
3005   bool FalseDestIsSafe = false;
3006 
3007   // True dest is safe if BranchCond => GuardCond.
3008   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3009   if (Impl && *Impl)
3010     TrueDestIsSafe = true;
3011   else {
3012     // False dest is safe if !BranchCond => GuardCond.
3013     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3014     if (Impl && *Impl)
3015       FalseDestIsSafe = true;
3016   }
3017 
3018   if (!TrueDestIsSafe && !FalseDestIsSafe)
3019     return false;
3020 
3021   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3022   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3023 
3024   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3025   Instruction *AfterGuard = Guard->getNextNode();
3026   unsigned Cost =
3027       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3028   if (Cost > BBDupThreshold)
3029     return false;
3030   // Duplicate all instructions before the guard and the guard itself to the
3031   // branch where implication is not proved.
3032   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3033       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3034   assert(GuardedBlock && "Could not create the guarded block?");
3035   // Duplicate all instructions before the guard in the unguarded branch.
3036   // Since we have successfully duplicated the guarded block and this block
3037   // has fewer instructions, we expect it to succeed.
3038   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3039       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3040   assert(UnguardedBlock && "Could not create the unguarded block?");
3041   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3042                     << GuardedBlock->getName() << "\n");
3043   // Some instructions before the guard may still have uses. For them, we need
3044   // to create Phi nodes merging their copies in both guarded and unguarded
3045   // branches. Those instructions that have no uses can be just removed.
3046   SmallVector<Instruction *, 4> ToRemove;
3047   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3048     if (!isa<PHINode>(&*BI))
3049       ToRemove.push_back(&*BI);
3050 
3051   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3052   assert(InsertionPoint && "Empty block?");
3053   // Substitute with Phis & remove.
3054   for (auto *Inst : reverse(ToRemove)) {
3055     if (!Inst->use_empty()) {
3056       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3057       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3058       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3059       NewPN->insertBefore(InsertionPoint);
3060       Inst->replaceAllUsesWith(NewPN);
3061     }
3062     Inst->eraseFromParent();
3063   }
3064   return true;
3065 }
3066