1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/BlockFrequency.h"
64 #include "llvm/Support/BranchProbability.h"
65 #include "llvm/Support/Casting.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
71 #include "llvm/Transforms/Utils/Cloning.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include "llvm/Transforms/Utils/SSAUpdater.h"
74 #include "llvm/Transforms/Utils/ValueMapper.h"
75 #include <algorithm>
76 #include <cassert>
77 #include <cstddef>
78 #include <cstdint>
79 #include <iterator>
80 #include <memory>
81 #include <utility>
82 
83 using namespace llvm;
84 using namespace jumpthreading;
85 
86 #define DEBUG_TYPE "jump-threading"
87 
88 STATISTIC(NumThreads, "Number of jumps threaded");
89 STATISTIC(NumFolds,   "Number of terminators folded");
90 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
91 
92 static cl::opt<unsigned>
93 BBDuplicateThreshold("jump-threading-threshold",
94           cl::desc("Max block size to duplicate for jump threading"),
95           cl::init(6), cl::Hidden);
96 
97 static cl::opt<unsigned>
98 ImplicationSearchThreshold(
99   "jump-threading-implication-search-threshold",
100   cl::desc("The number of predecessors to search for a stronger "
101            "condition to use to thread over a weaker condition"),
102   cl::init(3), cl::Hidden);
103 
104 static cl::opt<bool> PrintLVIAfterJumpThreading(
105     "print-lvi-after-jump-threading",
106     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
107     cl::Hidden);
108 
109 static cl::opt<bool> JumpThreadingFreezeSelectCond(
110     "jump-threading-freeze-select-cond",
111     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
112     cl::Hidden);
113 
114 static cl::opt<bool> ThreadAcrossLoopHeaders(
115     "jump-threading-across-loop-headers",
116     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
117     cl::init(false), cl::Hidden);
118 
119 
120 namespace {
121 
122   /// This pass performs 'jump threading', which looks at blocks that have
123   /// multiple predecessors and multiple successors.  If one or more of the
124   /// predecessors of the block can be proven to always jump to one of the
125   /// successors, we forward the edge from the predecessor to the successor by
126   /// duplicating the contents of this block.
127   ///
128   /// An example of when this can occur is code like this:
129   ///
130   ///   if () { ...
131   ///     X = 4;
132   ///   }
133   ///   if (X < 3) {
134   ///
135   /// In this case, the unconditional branch at the end of the first if can be
136   /// revectored to the false side of the second if.
137   class JumpThreading : public FunctionPass {
138     JumpThreadingPass Impl;
139 
140   public:
141     static char ID; // Pass identification
142 
143     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
144         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
145       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
146     }
147 
148     bool runOnFunction(Function &F) override;
149 
150     void getAnalysisUsage(AnalysisUsage &AU) const override {
151       AU.addRequired<DominatorTreeWrapperPass>();
152       AU.addPreserved<DominatorTreeWrapperPass>();
153       AU.addRequired<AAResultsWrapperPass>();
154       AU.addRequired<LazyValueInfoWrapperPass>();
155       AU.addPreserved<LazyValueInfoWrapperPass>();
156       AU.addPreserved<GlobalsAAWrapperPass>();
157       AU.addRequired<TargetLibraryInfoWrapperPass>();
158       AU.addRequired<TargetTransformInfoWrapperPass>();
159     }
160 
161     void releaseMemory() override { Impl.releaseMemory(); }
162   };
163 
164 } // end anonymous namespace
165 
166 char JumpThreading::ID = 0;
167 
168 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
169                 "Jump Threading", false, false)
170 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
173 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
174 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
175                 "Jump Threading", false, false)
176 
177 // Public interface to the Jump Threading pass
178 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
179   return new JumpThreading(InsertFr, Threshold);
180 }
181 
182 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
183   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
184   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
185 }
186 
187 // Update branch probability information according to conditional
188 // branch probability. This is usually made possible for cloned branches
189 // in inline instances by the context specific profile in the caller.
190 // For instance,
191 //
192 //  [Block PredBB]
193 //  [Branch PredBr]
194 //  if (t) {
195 //     Block A;
196 //  } else {
197 //     Block B;
198 //  }
199 //
200 //  [Block BB]
201 //  cond = PN([true, %A], [..., %B]); // PHI node
202 //  [Branch CondBr]
203 //  if (cond) {
204 //    ...  // P(cond == true) = 1%
205 //  }
206 //
207 //  Here we know that when block A is taken, cond must be true, which means
208 //      P(cond == true | A) = 1
209 //
210 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
211 //                               P(cond == true | B) * P(B)
212 //  we get:
213 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
214 //
215 //  which gives us:
216 //     P(A) is less than P(cond == true), i.e.
217 //     P(t == true) <= P(cond == true)
218 //
219 //  In other words, if we know P(cond == true) is unlikely, we know
220 //  that P(t == true) is also unlikely.
221 //
222 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
223   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
224   if (!CondBr)
225     return;
226 
227   uint64_t TrueWeight, FalseWeight;
228   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
229     return;
230 
231   if (TrueWeight + FalseWeight == 0)
232     // Zero branch_weights do not give a hint for getting branch probabilities.
233     // Technically it would result in division by zero denominator, which is
234     // TrueWeight + FalseWeight.
235     return;
236 
237   // Returns the outgoing edge of the dominating predecessor block
238   // that leads to the PhiNode's incoming block:
239   auto GetPredOutEdge =
240       [](BasicBlock *IncomingBB,
241          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
242     auto *PredBB = IncomingBB;
243     auto *SuccBB = PhiBB;
244     SmallPtrSet<BasicBlock *, 16> Visited;
245     while (true) {
246       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
247       if (PredBr && PredBr->isConditional())
248         return {PredBB, SuccBB};
249       Visited.insert(PredBB);
250       auto *SinglePredBB = PredBB->getSinglePredecessor();
251       if (!SinglePredBB)
252         return {nullptr, nullptr};
253 
254       // Stop searching when SinglePredBB has been visited. It means we see
255       // an unreachable loop.
256       if (Visited.count(SinglePredBB))
257         return {nullptr, nullptr};
258 
259       SuccBB = PredBB;
260       PredBB = SinglePredBB;
261     }
262   };
263 
264   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
265     Value *PhiOpnd = PN->getIncomingValue(i);
266     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
267 
268     if (!CI || !CI->getType()->isIntegerTy(1))
269       continue;
270 
271     BranchProbability BP =
272         (CI->isOne() ? BranchProbability::getBranchProbability(
273                            TrueWeight, TrueWeight + FalseWeight)
274                      : BranchProbability::getBranchProbability(
275                            FalseWeight, TrueWeight + FalseWeight));
276 
277     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
278     if (!PredOutEdge.first)
279       return;
280 
281     BasicBlock *PredBB = PredOutEdge.first;
282     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
283     if (!PredBr)
284       return;
285 
286     uint64_t PredTrueWeight, PredFalseWeight;
287     // FIXME: We currently only set the profile data when it is missing.
288     // With PGO, this can be used to refine even existing profile data with
289     // context information. This needs to be done after more performance
290     // testing.
291     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
292       continue;
293 
294     // We can not infer anything useful when BP >= 50%, because BP is the
295     // upper bound probability value.
296     if (BP >= BranchProbability(50, 100))
297       continue;
298 
299     SmallVector<uint32_t, 2> Weights;
300     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
301       Weights.push_back(BP.getNumerator());
302       Weights.push_back(BP.getCompl().getNumerator());
303     } else {
304       Weights.push_back(BP.getCompl().getNumerator());
305       Weights.push_back(BP.getNumerator());
306     }
307     PredBr->setMetadata(LLVMContext::MD_prof,
308                         MDBuilder(PredBr->getParent()->getContext())
309                             .createBranchWeights(Weights));
310   }
311 }
312 
313 /// runOnFunction - Toplevel algorithm.
314 bool JumpThreading::runOnFunction(Function &F) {
315   if (skipFunction(F))
316     return false;
317   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
318   // Jump Threading has no sense for the targets with divergent CF
319   if (TTI->hasBranchDivergence())
320     return false;
321   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
322   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
323   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
324   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
325   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
326   std::unique_ptr<BlockFrequencyInfo> BFI;
327   std::unique_ptr<BranchProbabilityInfo> BPI;
328   if (F.hasProfileData()) {
329     LoopInfo LI{DominatorTree(F)};
330     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
331     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
332   }
333 
334   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
335                               std::move(BFI), std::move(BPI));
336   if (PrintLVIAfterJumpThreading) {
337     dbgs() << "LVI for function '" << F.getName() << "':\n";
338     LVI->printLVI(F, DTU.getDomTree(), dbgs());
339   }
340   return Changed;
341 }
342 
343 PreservedAnalyses JumpThreadingPass::run(Function &F,
344                                          FunctionAnalysisManager &AM) {
345   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
346   // Jump Threading has no sense for the targets with divergent CF
347   if (TTI.hasBranchDivergence())
348     return PreservedAnalyses::all();
349   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
350   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
351   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
352   auto &AA = AM.getResult<AAManager>(F);
353   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
354 
355   std::unique_ptr<BlockFrequencyInfo> BFI;
356   std::unique_ptr<BranchProbabilityInfo> BPI;
357   if (F.hasProfileData()) {
358     LoopInfo LI{DominatorTree(F)};
359     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
360     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
361   }
362 
363   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
364                          std::move(BFI), std::move(BPI));
365 
366   if (PrintLVIAfterJumpThreading) {
367     dbgs() << "LVI for function '" << F.getName() << "':\n";
368     LVI.printLVI(F, DTU.getDomTree(), dbgs());
369   }
370 
371   if (!Changed)
372     return PreservedAnalyses::all();
373   PreservedAnalyses PA;
374   PA.preserve<GlobalsAA>();
375   PA.preserve<DominatorTreeAnalysis>();
376   PA.preserve<LazyValueAnalysis>();
377   return PA;
378 }
379 
380 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
381                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
382                                 DomTreeUpdater *DTU_, bool HasProfileData_,
383                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
384                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
385   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
386   TLI = TLI_;
387   LVI = LVI_;
388   AA = AA_;
389   DTU = DTU_;
390   BFI.reset();
391   BPI.reset();
392   // When profile data is available, we need to update edge weights after
393   // successful jump threading, which requires both BPI and BFI being available.
394   HasProfileData = HasProfileData_;
395   auto *GuardDecl = F.getParent()->getFunction(
396       Intrinsic::getName(Intrinsic::experimental_guard));
397   HasGuards = GuardDecl && !GuardDecl->use_empty();
398   if (HasProfileData) {
399     BPI = std::move(BPI_);
400     BFI = std::move(BFI_);
401   }
402 
403   // Reduce the number of instructions duplicated when optimizing strictly for
404   // size.
405   if (BBDuplicateThreshold.getNumOccurrences())
406     BBDupThreshold = BBDuplicateThreshold;
407   else if (F.hasFnAttribute(Attribute::MinSize))
408     BBDupThreshold = 3;
409   else
410     BBDupThreshold = DefaultBBDupThreshold;
411 
412   // JumpThreading must not processes blocks unreachable from entry. It's a
413   // waste of compute time and can potentially lead to hangs.
414   SmallPtrSet<BasicBlock *, 16> Unreachable;
415   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
416   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
417   DominatorTree &DT = DTU->getDomTree();
418   for (auto &BB : F)
419     if (!DT.isReachableFromEntry(&BB))
420       Unreachable.insert(&BB);
421 
422   if (!ThreadAcrossLoopHeaders)
423     findLoopHeaders(F);
424 
425   bool EverChanged = false;
426   bool Changed;
427   do {
428     Changed = false;
429     for (auto &BB : F) {
430       if (Unreachable.count(&BB))
431         continue;
432       while (processBlock(&BB)) // Thread all of the branches we can over BB.
433         Changed = true;
434 
435       // Jump threading may have introduced redundant debug values into BB
436       // which should be removed.
437       // Remove redundant pseudo probes as well.
438       if (Changed)
439         RemoveRedundantDbgInstrs(&BB, true);
440 
441       // Stop processing BB if it's the entry or is now deleted. The following
442       // routines attempt to eliminate BB and locating a suitable replacement
443       // for the entry is non-trivial.
444       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
445         continue;
446 
447       if (pred_empty(&BB)) {
448         // When processBlock makes BB unreachable it doesn't bother to fix up
449         // the instructions in it. We must remove BB to prevent invalid IR.
450         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
451                           << "' with terminator: " << *BB.getTerminator()
452                           << '\n');
453         LoopHeaders.erase(&BB);
454         LVI->eraseBlock(&BB);
455         DeleteDeadBlock(&BB, DTU);
456         Changed = true;
457         continue;
458       }
459 
460       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
461       // is "almost empty", we attempt to merge BB with its sole successor.
462       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
463       if (BI && BI->isUnconditional()) {
464         BasicBlock *Succ = BI->getSuccessor(0);
465         if (
466             // The terminator must be the only non-phi instruction in BB.
467             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
468             // Don't alter Loop headers and latches to ensure another pass can
469             // detect and transform nested loops later.
470             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
471             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
472           RemoveRedundantDbgInstrs(Succ, true);
473           // BB is valid for cleanup here because we passed in DTU. F remains
474           // BB's parent until a DTU->getDomTree() event.
475           LVI->eraseBlock(&BB);
476           Changed = true;
477         }
478       }
479     }
480     EverChanged |= Changed;
481   } while (Changed);
482 
483   LoopHeaders.clear();
484   return EverChanged;
485 }
486 
487 // Replace uses of Cond with ToVal when safe to do so. If all uses are
488 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
489 // because we may incorrectly replace uses when guards/assumes are uses of
490 // of `Cond` and we used the guards/assume to reason about the `Cond` value
491 // at the end of block. RAUW unconditionally replaces all uses
492 // including the guards/assumes themselves and the uses before the
493 // guard/assume.
494 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
495   assert(Cond->getType() == ToVal->getType());
496   auto *BB = Cond->getParent();
497   // We can unconditionally replace all uses in non-local blocks (i.e. uses
498   // strictly dominated by BB), since LVI information is true from the
499   // terminator of BB.
500   replaceNonLocalUsesWith(Cond, ToVal);
501   for (Instruction &I : reverse(*BB)) {
502     // Reached the Cond whose uses we are trying to replace, so there are no
503     // more uses.
504     if (&I == Cond)
505       break;
506     // We only replace uses in instructions that are guaranteed to reach the end
507     // of BB, where we know Cond is ToVal.
508     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
509       break;
510     I.replaceUsesOfWith(Cond, ToVal);
511   }
512   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
513     Cond->eraseFromParent();
514 }
515 
516 /// Return the cost of duplicating a piece of this block from first non-phi
517 /// and before StopAt instruction to thread across it. Stop scanning the block
518 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
519 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
520                                              Instruction *StopAt,
521                                              unsigned Threshold) {
522   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
523   /// Ignore PHI nodes, these will be flattened when duplication happens.
524   BasicBlock::const_iterator I(BB->getFirstNonPHI());
525 
526   // FIXME: THREADING will delete values that are just used to compute the
527   // branch, so they shouldn't count against the duplication cost.
528 
529   unsigned Bonus = 0;
530   if (BB->getTerminator() == StopAt) {
531     // Threading through a switch statement is particularly profitable.  If this
532     // block ends in a switch, decrease its cost to make it more likely to
533     // happen.
534     if (isa<SwitchInst>(StopAt))
535       Bonus = 6;
536 
537     // The same holds for indirect branches, but slightly more so.
538     if (isa<IndirectBrInst>(StopAt))
539       Bonus = 8;
540   }
541 
542   // Bump the threshold up so the early exit from the loop doesn't skip the
543   // terminator-based Size adjustment at the end.
544   Threshold += Bonus;
545 
546   // Sum up the cost of each instruction until we get to the terminator.  Don't
547   // include the terminator because the copy won't include it.
548   unsigned Size = 0;
549   for (; &*I != StopAt; ++I) {
550 
551     // Stop scanning the block if we've reached the threshold.
552     if (Size > Threshold)
553       return Size;
554 
555     // Debugger intrinsics don't incur code size.
556     if (isa<DbgInfoIntrinsic>(I)) continue;
557 
558     // Pseudo-probes don't incur code size.
559     if (isa<PseudoProbeInst>(I))
560       continue;
561 
562     // If this is a pointer->pointer bitcast, it is free.
563     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
564       continue;
565 
566     // Freeze instruction is free, too.
567     if (isa<FreezeInst>(I))
568       continue;
569 
570     // Bail out if this instruction gives back a token type, it is not possible
571     // to duplicate it if it is used outside this BB.
572     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
573       return ~0U;
574 
575     // All other instructions count for at least one unit.
576     ++Size;
577 
578     // Calls are more expensive.  If they are non-intrinsic calls, we model them
579     // as having cost of 4.  If they are a non-vector intrinsic, we model them
580     // as having cost of 2 total, and if they are a vector intrinsic, we model
581     // them as having cost 1.
582     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
583       if (CI->cannotDuplicate() || CI->isConvergent())
584         // Blocks with NoDuplicate are modelled as having infinite cost, so they
585         // are never duplicated.
586         return ~0U;
587       else if (!isa<IntrinsicInst>(CI))
588         Size += 3;
589       else if (!CI->getType()->isVectorTy())
590         Size += 1;
591     }
592   }
593 
594   return Size > Bonus ? Size - Bonus : 0;
595 }
596 
597 /// findLoopHeaders - We do not want jump threading to turn proper loop
598 /// structures into irreducible loops.  Doing this breaks up the loop nesting
599 /// hierarchy and pessimizes later transformations.  To prevent this from
600 /// happening, we first have to find the loop headers.  Here we approximate this
601 /// by finding targets of backedges in the CFG.
602 ///
603 /// Note that there definitely are cases when we want to allow threading of
604 /// edges across a loop header.  For example, threading a jump from outside the
605 /// loop (the preheader) to an exit block of the loop is definitely profitable.
606 /// It is also almost always profitable to thread backedges from within the loop
607 /// to exit blocks, and is often profitable to thread backedges to other blocks
608 /// within the loop (forming a nested loop).  This simple analysis is not rich
609 /// enough to track all of these properties and keep it up-to-date as the CFG
610 /// mutates, so we don't allow any of these transformations.
611 void JumpThreadingPass::findLoopHeaders(Function &F) {
612   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
613   FindFunctionBackedges(F, Edges);
614 
615   for (const auto &Edge : Edges)
616     LoopHeaders.insert(Edge.second);
617 }
618 
619 /// getKnownConstant - Helper method to determine if we can thread over a
620 /// terminator with the given value as its condition, and if so what value to
621 /// use for that. What kind of value this is depends on whether we want an
622 /// integer or a block address, but an undef is always accepted.
623 /// Returns null if Val is null or not an appropriate constant.
624 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
625   if (!Val)
626     return nullptr;
627 
628   // Undef is "known" enough.
629   if (UndefValue *U = dyn_cast<UndefValue>(Val))
630     return U;
631 
632   if (Preference == WantBlockAddress)
633     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
634 
635   return dyn_cast<ConstantInt>(Val);
636 }
637 
638 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
639 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
640 /// in any of our predecessors.  If so, return the known list of value and pred
641 /// BB in the result vector.
642 ///
643 /// This returns true if there were any known values.
644 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
645     Value *V, BasicBlock *BB, PredValueInfo &Result,
646     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
647     Instruction *CxtI) {
648   // This method walks up use-def chains recursively.  Because of this, we could
649   // get into an infinite loop going around loops in the use-def chain.  To
650   // prevent this, keep track of what (value, block) pairs we've already visited
651   // and terminate the search if we loop back to them
652   if (!RecursionSet.insert(V).second)
653     return false;
654 
655   // If V is a constant, then it is known in all predecessors.
656   if (Constant *KC = getKnownConstant(V, Preference)) {
657     for (BasicBlock *Pred : predecessors(BB))
658       Result.emplace_back(KC, Pred);
659 
660     return !Result.empty();
661   }
662 
663   // If V is a non-instruction value, or an instruction in a different block,
664   // then it can't be derived from a PHI.
665   Instruction *I = dyn_cast<Instruction>(V);
666   if (!I || I->getParent() != BB) {
667 
668     // Okay, if this is a live-in value, see if it has a known value at the end
669     // of any of our predecessors.
670     //
671     // FIXME: This should be an edge property, not a block end property.
672     /// TODO: Per PR2563, we could infer value range information about a
673     /// predecessor based on its terminator.
674     //
675     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
676     // "I" is a non-local compare-with-a-constant instruction.  This would be
677     // able to handle value inequalities better, for example if the compare is
678     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
679     // Perhaps getConstantOnEdge should be smart enough to do this?
680     for (BasicBlock *P : predecessors(BB)) {
681       // If the value is known by LazyValueInfo to be a constant in a
682       // predecessor, use that information to try to thread this block.
683       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
684       if (Constant *KC = getKnownConstant(PredCst, Preference))
685         Result.emplace_back(KC, P);
686     }
687 
688     return !Result.empty();
689   }
690 
691   /// If I is a PHI node, then we know the incoming values for any constants.
692   if (PHINode *PN = dyn_cast<PHINode>(I)) {
693     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
694       Value *InVal = PN->getIncomingValue(i);
695       if (Constant *KC = getKnownConstant(InVal, Preference)) {
696         Result.emplace_back(KC, PN->getIncomingBlock(i));
697       } else {
698         Constant *CI = LVI->getConstantOnEdge(InVal,
699                                               PN->getIncomingBlock(i),
700                                               BB, CxtI);
701         if (Constant *KC = getKnownConstant(CI, Preference))
702           Result.emplace_back(KC, PN->getIncomingBlock(i));
703       }
704     }
705 
706     return !Result.empty();
707   }
708 
709   // Handle Cast instructions.
710   if (CastInst *CI = dyn_cast<CastInst>(I)) {
711     Value *Source = CI->getOperand(0);
712     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
713                                         RecursionSet, CxtI);
714     if (Result.empty())
715       return false;
716 
717     // Convert the known values.
718     for (auto &R : Result)
719       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
720 
721     return true;
722   }
723 
724   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
725     Value *Source = FI->getOperand(0);
726     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
727                                         RecursionSet, CxtI);
728 
729     erase_if(Result, [](auto &Pair) {
730       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
731     });
732 
733     return !Result.empty();
734   }
735 
736   // Handle some boolean conditions.
737   if (I->getType()->getPrimitiveSizeInBits() == 1) {
738     using namespace PatternMatch;
739 
740     assert(Preference == WantInteger && "One-bit non-integer type?");
741     // X | true -> true
742     // X & false -> false
743     Value *Op0, *Op1;
744     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
745         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
746       PredValueInfoTy LHSVals, RHSVals;
747 
748       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
749                                           RecursionSet, CxtI);
750       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
751                                           RecursionSet, CxtI);
752 
753       if (LHSVals.empty() && RHSVals.empty())
754         return false;
755 
756       ConstantInt *InterestingVal;
757       if (match(I, m_LogicalOr()))
758         InterestingVal = ConstantInt::getTrue(I->getContext());
759       else
760         InterestingVal = ConstantInt::getFalse(I->getContext());
761 
762       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
763 
764       // Scan for the sentinel.  If we find an undef, force it to the
765       // interesting value: x|undef -> true and x&undef -> false.
766       for (const auto &LHSVal : LHSVals)
767         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
768           Result.emplace_back(InterestingVal, LHSVal.second);
769           LHSKnownBBs.insert(LHSVal.second);
770         }
771       for (const auto &RHSVal : RHSVals)
772         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
773           // If we already inferred a value for this block on the LHS, don't
774           // re-add it.
775           if (!LHSKnownBBs.count(RHSVal.second))
776             Result.emplace_back(InterestingVal, RHSVal.second);
777         }
778 
779       return !Result.empty();
780     }
781 
782     // Handle the NOT form of XOR.
783     if (I->getOpcode() == Instruction::Xor &&
784         isa<ConstantInt>(I->getOperand(1)) &&
785         cast<ConstantInt>(I->getOperand(1))->isOne()) {
786       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
787                                           WantInteger, RecursionSet, CxtI);
788       if (Result.empty())
789         return false;
790 
791       // Invert the known values.
792       for (auto &R : Result)
793         R.first = ConstantExpr::getNot(R.first);
794 
795       return true;
796     }
797 
798   // Try to simplify some other binary operator values.
799   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
800     assert(Preference != WantBlockAddress
801             && "A binary operator creating a block address?");
802     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
803       PredValueInfoTy LHSVals;
804       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
805                                           WantInteger, RecursionSet, CxtI);
806 
807       // Try to use constant folding to simplify the binary operator.
808       for (const auto &LHSVal : LHSVals) {
809         Constant *V = LHSVal.first;
810         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
811 
812         if (Constant *KC = getKnownConstant(Folded, WantInteger))
813           Result.emplace_back(KC, LHSVal.second);
814       }
815     }
816 
817     return !Result.empty();
818   }
819 
820   // Handle compare with phi operand, where the PHI is defined in this block.
821   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
822     assert(Preference == WantInteger && "Compares only produce integers");
823     Type *CmpType = Cmp->getType();
824     Value *CmpLHS = Cmp->getOperand(0);
825     Value *CmpRHS = Cmp->getOperand(1);
826     CmpInst::Predicate Pred = Cmp->getPredicate();
827 
828     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
829     if (!PN)
830       PN = dyn_cast<PHINode>(CmpRHS);
831     if (PN && PN->getParent() == BB) {
832       const DataLayout &DL = PN->getModule()->getDataLayout();
833       // We can do this simplification if any comparisons fold to true or false.
834       // See if any do.
835       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
836         BasicBlock *PredBB = PN->getIncomingBlock(i);
837         Value *LHS, *RHS;
838         if (PN == CmpLHS) {
839           LHS = PN->getIncomingValue(i);
840           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
841         } else {
842           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
843           RHS = PN->getIncomingValue(i);
844         }
845         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
846         if (!Res) {
847           if (!isa<Constant>(RHS))
848             continue;
849 
850           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
851           auto LHSInst = dyn_cast<Instruction>(LHS);
852           if (LHSInst && LHSInst->getParent() == BB)
853             continue;
854 
855           LazyValueInfo::Tristate
856             ResT = LVI->getPredicateOnEdge(Pred, LHS,
857                                            cast<Constant>(RHS), PredBB, BB,
858                                            CxtI ? CxtI : Cmp);
859           if (ResT == LazyValueInfo::Unknown)
860             continue;
861           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
862         }
863 
864         if (Constant *KC = getKnownConstant(Res, WantInteger))
865           Result.emplace_back(KC, PredBB);
866       }
867 
868       return !Result.empty();
869     }
870 
871     // If comparing a live-in value against a constant, see if we know the
872     // live-in value on any predecessors.
873     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
874       Constant *CmpConst = cast<Constant>(CmpRHS);
875 
876       if (!isa<Instruction>(CmpLHS) ||
877           cast<Instruction>(CmpLHS)->getParent() != BB) {
878         for (BasicBlock *P : predecessors(BB)) {
879           // If the value is known by LazyValueInfo to be a constant in a
880           // predecessor, use that information to try to thread this block.
881           LazyValueInfo::Tristate Res =
882             LVI->getPredicateOnEdge(Pred, CmpLHS,
883                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
884           if (Res == LazyValueInfo::Unknown)
885             continue;
886 
887           Constant *ResC = ConstantInt::get(CmpType, Res);
888           Result.emplace_back(ResC, P);
889         }
890 
891         return !Result.empty();
892       }
893 
894       // InstCombine can fold some forms of constant range checks into
895       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
896       // x as a live-in.
897       {
898         using namespace PatternMatch;
899 
900         Value *AddLHS;
901         ConstantInt *AddConst;
902         if (isa<ConstantInt>(CmpConst) &&
903             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
904           if (!isa<Instruction>(AddLHS) ||
905               cast<Instruction>(AddLHS)->getParent() != BB) {
906             for (BasicBlock *P : predecessors(BB)) {
907               // If the value is known by LazyValueInfo to be a ConstantRange in
908               // a predecessor, use that information to try to thread this
909               // block.
910               ConstantRange CR = LVI->getConstantRangeOnEdge(
911                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
912               // Propagate the range through the addition.
913               CR = CR.add(AddConst->getValue());
914 
915               // Get the range where the compare returns true.
916               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
917                   Pred, cast<ConstantInt>(CmpConst)->getValue());
918 
919               Constant *ResC;
920               if (CmpRange.contains(CR))
921                 ResC = ConstantInt::getTrue(CmpType);
922               else if (CmpRange.inverse().contains(CR))
923                 ResC = ConstantInt::getFalse(CmpType);
924               else
925                 continue;
926 
927               Result.emplace_back(ResC, P);
928             }
929 
930             return !Result.empty();
931           }
932         }
933       }
934 
935       // Try to find a constant value for the LHS of a comparison,
936       // and evaluate it statically if we can.
937       PredValueInfoTy LHSVals;
938       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
939                                           WantInteger, RecursionSet, CxtI);
940 
941       for (const auto &LHSVal : LHSVals) {
942         Constant *V = LHSVal.first;
943         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
944         if (Constant *KC = getKnownConstant(Folded, WantInteger))
945           Result.emplace_back(KC, LHSVal.second);
946       }
947 
948       return !Result.empty();
949     }
950   }
951 
952   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
953     // Handle select instructions where at least one operand is a known constant
954     // and we can figure out the condition value for any predecessor block.
955     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
956     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
957     PredValueInfoTy Conds;
958     if ((TrueVal || FalseVal) &&
959         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
960                                             WantInteger, RecursionSet, CxtI)) {
961       for (auto &C : Conds) {
962         Constant *Cond = C.first;
963 
964         // Figure out what value to use for the condition.
965         bool KnownCond;
966         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
967           // A known boolean.
968           KnownCond = CI->isOne();
969         } else {
970           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
971           // Either operand will do, so be sure to pick the one that's a known
972           // constant.
973           // FIXME: Do this more cleverly if both values are known constants?
974           KnownCond = (TrueVal != nullptr);
975         }
976 
977         // See if the select has a known constant value for this predecessor.
978         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
979           Result.emplace_back(Val, C.second);
980       }
981 
982       return !Result.empty();
983     }
984   }
985 
986   // If all else fails, see if LVI can figure out a constant value for us.
987   assert(CxtI->getParent() == BB && "CxtI should be in BB");
988   Constant *CI = LVI->getConstant(V, CxtI);
989   if (Constant *KC = getKnownConstant(CI, Preference)) {
990     for (BasicBlock *Pred : predecessors(BB))
991       Result.emplace_back(KC, Pred);
992   }
993 
994   return !Result.empty();
995 }
996 
997 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
998 /// in an undefined jump, decide which block is best to revector to.
999 ///
1000 /// Since we can pick an arbitrary destination, we pick the successor with the
1001 /// fewest predecessors.  This should reduce the in-degree of the others.
1002 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
1003   Instruction *BBTerm = BB->getTerminator();
1004   unsigned MinSucc = 0;
1005   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
1006   // Compute the successor with the minimum number of predecessors.
1007   unsigned MinNumPreds = pred_size(TestBB);
1008   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1009     TestBB = BBTerm->getSuccessor(i);
1010     unsigned NumPreds = pred_size(TestBB);
1011     if (NumPreds < MinNumPreds) {
1012       MinSucc = i;
1013       MinNumPreds = NumPreds;
1014     }
1015   }
1016 
1017   return MinSucc;
1018 }
1019 
1020 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1021   if (!BB->hasAddressTaken()) return false;
1022 
1023   // If the block has its address taken, it may be a tree of dead constants
1024   // hanging off of it.  These shouldn't keep the block alive.
1025   BlockAddress *BA = BlockAddress::get(BB);
1026   BA->removeDeadConstantUsers();
1027   return !BA->use_empty();
1028 }
1029 
1030 /// processBlock - If there are any predecessors whose control can be threaded
1031 /// through to a successor, transform them now.
1032 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1033   // If the block is trivially dead, just return and let the caller nuke it.
1034   // This simplifies other transformations.
1035   if (DTU->isBBPendingDeletion(BB) ||
1036       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1037     return false;
1038 
1039   // If this block has a single predecessor, and if that pred has a single
1040   // successor, merge the blocks.  This encourages recursive jump threading
1041   // because now the condition in this block can be threaded through
1042   // predecessors of our predecessor block.
1043   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1044     return true;
1045 
1046   if (tryToUnfoldSelectInCurrBB(BB))
1047     return true;
1048 
1049   // Look if we can propagate guards to predecessors.
1050   if (HasGuards && processGuards(BB))
1051     return true;
1052 
1053   // What kind of constant we're looking for.
1054   ConstantPreference Preference = WantInteger;
1055 
1056   // Look to see if the terminator is a conditional branch, switch or indirect
1057   // branch, if not we can't thread it.
1058   Value *Condition;
1059   Instruction *Terminator = BB->getTerminator();
1060   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1061     // Can't thread an unconditional jump.
1062     if (BI->isUnconditional()) return false;
1063     Condition = BI->getCondition();
1064   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1065     Condition = SI->getCondition();
1066   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1067     // Can't thread indirect branch with no successors.
1068     if (IB->getNumSuccessors() == 0) return false;
1069     Condition = IB->getAddress()->stripPointerCasts();
1070     Preference = WantBlockAddress;
1071   } else {
1072     return false; // Must be an invoke or callbr.
1073   }
1074 
1075   // Keep track if we constant folded the condition in this invocation.
1076   bool ConstantFolded = false;
1077 
1078   // Run constant folding to see if we can reduce the condition to a simple
1079   // constant.
1080   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1081     Value *SimpleVal =
1082         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1083     if (SimpleVal) {
1084       I->replaceAllUsesWith(SimpleVal);
1085       if (isInstructionTriviallyDead(I, TLI))
1086         I->eraseFromParent();
1087       Condition = SimpleVal;
1088       ConstantFolded = true;
1089     }
1090   }
1091 
1092   // If the terminator is branching on an undef or freeze undef, we can pick any
1093   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1094   auto *FI = dyn_cast<FreezeInst>(Condition);
1095   if (isa<UndefValue>(Condition) ||
1096       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1097     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1098     std::vector<DominatorTree::UpdateType> Updates;
1099 
1100     // Fold the branch/switch.
1101     Instruction *BBTerm = BB->getTerminator();
1102     Updates.reserve(BBTerm->getNumSuccessors());
1103     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1104       if (i == BestSucc) continue;
1105       BasicBlock *Succ = BBTerm->getSuccessor(i);
1106       Succ->removePredecessor(BB, true);
1107       Updates.push_back({DominatorTree::Delete, BB, Succ});
1108     }
1109 
1110     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1111                       << "' folding undef terminator: " << *BBTerm << '\n');
1112     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1113     BBTerm->eraseFromParent();
1114     DTU->applyUpdatesPermissive(Updates);
1115     if (FI)
1116       FI->eraseFromParent();
1117     return true;
1118   }
1119 
1120   // If the terminator of this block is branching on a constant, simplify the
1121   // terminator to an unconditional branch.  This can occur due to threading in
1122   // other blocks.
1123   if (getKnownConstant(Condition, Preference)) {
1124     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1125                       << "' folding terminator: " << *BB->getTerminator()
1126                       << '\n');
1127     ++NumFolds;
1128     ConstantFoldTerminator(BB, true, nullptr, DTU);
1129     if (HasProfileData)
1130       BPI->eraseBlock(BB);
1131     return true;
1132   }
1133 
1134   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1135 
1136   // All the rest of our checks depend on the condition being an instruction.
1137   if (!CondInst) {
1138     // FIXME: Unify this with code below.
1139     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1140       return true;
1141     return ConstantFolded;
1142   }
1143 
1144   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1145     // If we're branching on a conditional, LVI might be able to determine
1146     // it's value at the branch instruction.  We only handle comparisons
1147     // against a constant at this time.
1148     // TODO: This should be extended to handle switches as well.
1149     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1150     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1151     if (CondBr && CondConst) {
1152       // We should have returned as soon as we turn a conditional branch to
1153       // unconditional. Because its no longer interesting as far as jump
1154       // threading is concerned.
1155       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1156 
1157       LazyValueInfo::Tristate Ret =
1158         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1159                             CondConst, CondBr);
1160       if (Ret != LazyValueInfo::Unknown) {
1161         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1162         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1163         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1164         ToRemoveSucc->removePredecessor(BB, true);
1165         BranchInst *UncondBr =
1166           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1167         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1168         CondBr->eraseFromParent();
1169         if (CondCmp->use_empty())
1170           CondCmp->eraseFromParent();
1171         // We can safely replace *some* uses of the CondInst if it has
1172         // exactly one value as returned by LVI. RAUW is incorrect in the
1173         // presence of guards and assumes, that have the `Cond` as the use. This
1174         // is because we use the guards/assume to reason about the `Cond` value
1175         // at the end of block, but RAUW unconditionally replaces all uses
1176         // including the guards/assumes themselves and the uses before the
1177         // guard/assume.
1178         else if (CondCmp->getParent() == BB) {
1179           auto *CI = Ret == LazyValueInfo::True ?
1180             ConstantInt::getTrue(CondCmp->getType()) :
1181             ConstantInt::getFalse(CondCmp->getType());
1182           replaceFoldableUses(CondCmp, CI);
1183         }
1184         DTU->applyUpdatesPermissive(
1185             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1186         if (HasProfileData)
1187           BPI->eraseBlock(BB);
1188         return true;
1189       }
1190 
1191       // We did not manage to simplify this branch, try to see whether
1192       // CondCmp depends on a known phi-select pattern.
1193       if (tryToUnfoldSelect(CondCmp, BB))
1194         return true;
1195     }
1196   }
1197 
1198   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1199     if (tryToUnfoldSelect(SI, BB))
1200       return true;
1201 
1202   // Check for some cases that are worth simplifying.  Right now we want to look
1203   // for loads that are used by a switch or by the condition for the branch.  If
1204   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1205   // which can then be used to thread the values.
1206   Value *SimplifyValue = CondInst;
1207 
1208   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1209     // Look into freeze's operand
1210     SimplifyValue = FI->getOperand(0);
1211 
1212   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1213     if (isa<Constant>(CondCmp->getOperand(1)))
1214       SimplifyValue = CondCmp->getOperand(0);
1215 
1216   // TODO: There are other places where load PRE would be profitable, such as
1217   // more complex comparisons.
1218   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1219     if (simplifyPartiallyRedundantLoad(LoadI))
1220       return true;
1221 
1222   // Before threading, try to propagate profile data backwards:
1223   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1224     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1225       updatePredecessorProfileMetadata(PN, BB);
1226 
1227   // Handle a variety of cases where we are branching on something derived from
1228   // a PHI node in the current block.  If we can prove that any predecessors
1229   // compute a predictable value based on a PHI node, thread those predecessors.
1230   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1231     return true;
1232 
1233   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1234   // the current block, see if we can simplify.
1235   PHINode *PN = dyn_cast<PHINode>(
1236       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1237                                 : CondInst);
1238 
1239   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1240     return processBranchOnPHI(PN);
1241 
1242   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1243   if (CondInst->getOpcode() == Instruction::Xor &&
1244       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1245     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1246 
1247   // Search for a stronger dominating condition that can be used to simplify a
1248   // conditional branch leaving BB.
1249   if (processImpliedCondition(BB))
1250     return true;
1251 
1252   return false;
1253 }
1254 
1255 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1256   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1257   if (!BI || !BI->isConditional())
1258     return false;
1259 
1260   Value *Cond = BI->getCondition();
1261   BasicBlock *CurrentBB = BB;
1262   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1263   unsigned Iter = 0;
1264 
1265   auto &DL = BB->getModule()->getDataLayout();
1266 
1267   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1268     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1269     if (!PBI || !PBI->isConditional())
1270       return false;
1271     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1272       return false;
1273 
1274     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1275     Optional<bool> Implication =
1276         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1277     if (Implication) {
1278       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1279       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1280       RemoveSucc->removePredecessor(BB);
1281       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1282       UncondBI->setDebugLoc(BI->getDebugLoc());
1283       BI->eraseFromParent();
1284       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1285       if (HasProfileData)
1286         BPI->eraseBlock(BB);
1287       return true;
1288     }
1289     CurrentBB = CurrentPred;
1290     CurrentPred = CurrentBB->getSinglePredecessor();
1291   }
1292 
1293   return false;
1294 }
1295 
1296 /// Return true if Op is an instruction defined in the given block.
1297 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1298   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1299     if (OpInst->getParent() == BB)
1300       return true;
1301   return false;
1302 }
1303 
1304 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1305 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1306 /// This is an important optimization that encourages jump threading, and needs
1307 /// to be run interlaced with other jump threading tasks.
1308 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1309   // Don't hack volatile and ordered loads.
1310   if (!LoadI->isUnordered()) return false;
1311 
1312   // If the load is defined in a block with exactly one predecessor, it can't be
1313   // partially redundant.
1314   BasicBlock *LoadBB = LoadI->getParent();
1315   if (LoadBB->getSinglePredecessor())
1316     return false;
1317 
1318   // If the load is defined in an EH pad, it can't be partially redundant,
1319   // because the edges between the invoke and the EH pad cannot have other
1320   // instructions between them.
1321   if (LoadBB->isEHPad())
1322     return false;
1323 
1324   Value *LoadedPtr = LoadI->getOperand(0);
1325 
1326   // If the loaded operand is defined in the LoadBB and its not a phi,
1327   // it can't be available in predecessors.
1328   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1329     return false;
1330 
1331   // Scan a few instructions up from the load, to see if it is obviously live at
1332   // the entry to its block.
1333   BasicBlock::iterator BBIt(LoadI);
1334   bool IsLoadCSE;
1335   if (Value *AvailableVal = FindAvailableLoadedValue(
1336           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1337     // If the value of the load is locally available within the block, just use
1338     // it.  This frequently occurs for reg2mem'd allocas.
1339 
1340     if (IsLoadCSE) {
1341       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1342       combineMetadataForCSE(NLoadI, LoadI, false);
1343     };
1344 
1345     // If the returned value is the load itself, replace with an undef. This can
1346     // only happen in dead loops.
1347     if (AvailableVal == LoadI)
1348       AvailableVal = UndefValue::get(LoadI->getType());
1349     if (AvailableVal->getType() != LoadI->getType())
1350       AvailableVal = CastInst::CreateBitOrPointerCast(
1351           AvailableVal, LoadI->getType(), "", LoadI);
1352     LoadI->replaceAllUsesWith(AvailableVal);
1353     LoadI->eraseFromParent();
1354     return true;
1355   }
1356 
1357   // Otherwise, if we scanned the whole block and got to the top of the block,
1358   // we know the block is locally transparent to the load.  If not, something
1359   // might clobber its value.
1360   if (BBIt != LoadBB->begin())
1361     return false;
1362 
1363   // If all of the loads and stores that feed the value have the same AA tags,
1364   // then we can propagate them onto any newly inserted loads.
1365   AAMDNodes AATags;
1366   LoadI->getAAMetadata(AATags);
1367 
1368   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1369 
1370   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1371 
1372   AvailablePredsTy AvailablePreds;
1373   BasicBlock *OneUnavailablePred = nullptr;
1374   SmallVector<LoadInst*, 8> CSELoads;
1375 
1376   // If we got here, the loaded value is transparent through to the start of the
1377   // block.  Check to see if it is available in any of the predecessor blocks.
1378   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1379     // If we already scanned this predecessor, skip it.
1380     if (!PredsScanned.insert(PredBB).second)
1381       continue;
1382 
1383     BBIt = PredBB->end();
1384     unsigned NumScanedInst = 0;
1385     Value *PredAvailable = nullptr;
1386     // NOTE: We don't CSE load that is volatile or anything stronger than
1387     // unordered, that should have been checked when we entered the function.
1388     assert(LoadI->isUnordered() &&
1389            "Attempting to CSE volatile or atomic loads");
1390     // If this is a load on a phi pointer, phi-translate it and search
1391     // for available load/store to the pointer in predecessors.
1392     Type *AccessTy = LoadI->getType();
1393     const auto &DL = LoadI->getModule()->getDataLayout();
1394     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1395                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1396                        AATags);
1397     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1398                                               PredBB, BBIt, DefMaxInstsToScan,
1399                                               AA, &IsLoadCSE, &NumScanedInst);
1400 
1401     // If PredBB has a single predecessor, continue scanning through the
1402     // single predecessor.
1403     BasicBlock *SinglePredBB = PredBB;
1404     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1405            NumScanedInst < DefMaxInstsToScan) {
1406       SinglePredBB = SinglePredBB->getSinglePredecessor();
1407       if (SinglePredBB) {
1408         BBIt = SinglePredBB->end();
1409         PredAvailable = findAvailablePtrLoadStore(
1410             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1411             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1412             &NumScanedInst);
1413       }
1414     }
1415 
1416     if (!PredAvailable) {
1417       OneUnavailablePred = PredBB;
1418       continue;
1419     }
1420 
1421     if (IsLoadCSE)
1422       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1423 
1424     // If so, this load is partially redundant.  Remember this info so that we
1425     // can create a PHI node.
1426     AvailablePreds.emplace_back(PredBB, PredAvailable);
1427   }
1428 
1429   // If the loaded value isn't available in any predecessor, it isn't partially
1430   // redundant.
1431   if (AvailablePreds.empty()) return false;
1432 
1433   // Okay, the loaded value is available in at least one (and maybe all!)
1434   // predecessors.  If the value is unavailable in more than one unique
1435   // predecessor, we want to insert a merge block for those common predecessors.
1436   // This ensures that we only have to insert one reload, thus not increasing
1437   // code size.
1438   BasicBlock *UnavailablePred = nullptr;
1439 
1440   // If the value is unavailable in one of predecessors, we will end up
1441   // inserting a new instruction into them. It is only valid if all the
1442   // instructions before LoadI are guaranteed to pass execution to its
1443   // successor, or if LoadI is safe to speculate.
1444   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1445   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1446   // It requires domination tree analysis, so for this simple case it is an
1447   // overkill.
1448   if (PredsScanned.size() != AvailablePreds.size() &&
1449       !isSafeToSpeculativelyExecute(LoadI))
1450     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1451       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1452         return false;
1453 
1454   // If there is exactly one predecessor where the value is unavailable, the
1455   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1456   // unconditional branch, we know that it isn't a critical edge.
1457   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1458       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1459     UnavailablePred = OneUnavailablePred;
1460   } else if (PredsScanned.size() != AvailablePreds.size()) {
1461     // Otherwise, we had multiple unavailable predecessors or we had a critical
1462     // edge from the one.
1463     SmallVector<BasicBlock*, 8> PredsToSplit;
1464     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1465 
1466     for (const auto &AvailablePred : AvailablePreds)
1467       AvailablePredSet.insert(AvailablePred.first);
1468 
1469     // Add all the unavailable predecessors to the PredsToSplit list.
1470     for (BasicBlock *P : predecessors(LoadBB)) {
1471       // If the predecessor is an indirect goto, we can't split the edge.
1472       // Same for CallBr.
1473       if (isa<IndirectBrInst>(P->getTerminator()) ||
1474           isa<CallBrInst>(P->getTerminator()))
1475         return false;
1476 
1477       if (!AvailablePredSet.count(P))
1478         PredsToSplit.push_back(P);
1479     }
1480 
1481     // Split them out to their own block.
1482     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1483   }
1484 
1485   // If the value isn't available in all predecessors, then there will be
1486   // exactly one where it isn't available.  Insert a load on that edge and add
1487   // it to the AvailablePreds list.
1488   if (UnavailablePred) {
1489     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1490            "Can't handle critical edge here!");
1491     LoadInst *NewVal = new LoadInst(
1492         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1493         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1494         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1495         UnavailablePred->getTerminator());
1496     NewVal->setDebugLoc(LoadI->getDebugLoc());
1497     if (AATags)
1498       NewVal->setAAMetadata(AATags);
1499 
1500     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1501   }
1502 
1503   // Now we know that each predecessor of this block has a value in
1504   // AvailablePreds, sort them for efficient access as we're walking the preds.
1505   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1506 
1507   // Create a PHI node at the start of the block for the PRE'd load value.
1508   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1509   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1510                                 &LoadBB->front());
1511   PN->takeName(LoadI);
1512   PN->setDebugLoc(LoadI->getDebugLoc());
1513 
1514   // Insert new entries into the PHI for each predecessor.  A single block may
1515   // have multiple entries here.
1516   for (pred_iterator PI = PB; PI != PE; ++PI) {
1517     BasicBlock *P = *PI;
1518     AvailablePredsTy::iterator I =
1519         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1520 
1521     assert(I != AvailablePreds.end() && I->first == P &&
1522            "Didn't find entry for predecessor!");
1523 
1524     // If we have an available predecessor but it requires casting, insert the
1525     // cast in the predecessor and use the cast. Note that we have to update the
1526     // AvailablePreds vector as we go so that all of the PHI entries for this
1527     // predecessor use the same bitcast.
1528     Value *&PredV = I->second;
1529     if (PredV->getType() != LoadI->getType())
1530       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1531                                                P->getTerminator());
1532 
1533     PN->addIncoming(PredV, I->first);
1534   }
1535 
1536   for (LoadInst *PredLoadI : CSELoads) {
1537     combineMetadataForCSE(PredLoadI, LoadI, true);
1538   }
1539 
1540   LoadI->replaceAllUsesWith(PN);
1541   LoadI->eraseFromParent();
1542 
1543   return true;
1544 }
1545 
1546 /// findMostPopularDest - The specified list contains multiple possible
1547 /// threadable destinations.  Pick the one that occurs the most frequently in
1548 /// the list.
1549 static BasicBlock *
1550 findMostPopularDest(BasicBlock *BB,
1551                     const SmallVectorImpl<std::pair<BasicBlock *,
1552                                           BasicBlock *>> &PredToDestList) {
1553   assert(!PredToDestList.empty());
1554 
1555   // Determine popularity.  If there are multiple possible destinations, we
1556   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1557   // blocks with known and real destinations to threading undef.  We'll handle
1558   // them later if interesting.
1559   MapVector<BasicBlock *, unsigned> DestPopularity;
1560 
1561   // Populate DestPopularity with the successors in the order they appear in the
1562   // successor list.  This way, we ensure determinism by iterating it in the
1563   // same order in std::max_element below.  We map nullptr to 0 so that we can
1564   // return nullptr when PredToDestList contains nullptr only.
1565   DestPopularity[nullptr] = 0;
1566   for (auto *SuccBB : successors(BB))
1567     DestPopularity[SuccBB] = 0;
1568 
1569   for (const auto &PredToDest : PredToDestList)
1570     if (PredToDest.second)
1571       DestPopularity[PredToDest.second]++;
1572 
1573   // Find the most popular dest.
1574   using VT = decltype(DestPopularity)::value_type;
1575   auto MostPopular = std::max_element(
1576       DestPopularity.begin(), DestPopularity.end(),
1577       [](const VT &L, const VT &R) { return L.second < R.second; });
1578 
1579   // Okay, we have finally picked the most popular destination.
1580   return MostPopular->first;
1581 }
1582 
1583 // Try to evaluate the value of V when the control flows from PredPredBB to
1584 // BB->getSinglePredecessor() and then on to BB.
1585 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1586                                                        BasicBlock *PredPredBB,
1587                                                        Value *V) {
1588   BasicBlock *PredBB = BB->getSinglePredecessor();
1589   assert(PredBB && "Expected a single predecessor");
1590 
1591   if (Constant *Cst = dyn_cast<Constant>(V)) {
1592     return Cst;
1593   }
1594 
1595   // Consult LVI if V is not an instruction in BB or PredBB.
1596   Instruction *I = dyn_cast<Instruction>(V);
1597   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1598     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1599   }
1600 
1601   // Look into a PHI argument.
1602   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1603     if (PHI->getParent() == PredBB)
1604       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1605     return nullptr;
1606   }
1607 
1608   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1609   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1610     if (CondCmp->getParent() == BB) {
1611       Constant *Op0 =
1612           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1613       Constant *Op1 =
1614           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1615       if (Op0 && Op1) {
1616         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1617       }
1618     }
1619     return nullptr;
1620   }
1621 
1622   return nullptr;
1623 }
1624 
1625 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1626                                                ConstantPreference Preference,
1627                                                Instruction *CxtI) {
1628   // If threading this would thread across a loop header, don't even try to
1629   // thread the edge.
1630   if (LoopHeaders.count(BB))
1631     return false;
1632 
1633   PredValueInfoTy PredValues;
1634   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1635                                        CxtI)) {
1636     // We don't have known values in predecessors.  See if we can thread through
1637     // BB and its sole predecessor.
1638     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1639   }
1640 
1641   assert(!PredValues.empty() &&
1642          "computeValueKnownInPredecessors returned true with no values");
1643 
1644   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1645              for (const auto &PredValue : PredValues) {
1646                dbgs() << "  BB '" << BB->getName()
1647                       << "': FOUND condition = " << *PredValue.first
1648                       << " for pred '" << PredValue.second->getName() << "'.\n";
1649   });
1650 
1651   // Decide what we want to thread through.  Convert our list of known values to
1652   // a list of known destinations for each pred.  This also discards duplicate
1653   // predecessors and keeps track of the undefined inputs (which are represented
1654   // as a null dest in the PredToDestList).
1655   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1656   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1657 
1658   BasicBlock *OnlyDest = nullptr;
1659   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1660   Constant *OnlyVal = nullptr;
1661   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1662 
1663   for (const auto &PredValue : PredValues) {
1664     BasicBlock *Pred = PredValue.second;
1665     if (!SeenPreds.insert(Pred).second)
1666       continue;  // Duplicate predecessor entry.
1667 
1668     Constant *Val = PredValue.first;
1669 
1670     BasicBlock *DestBB;
1671     if (isa<UndefValue>(Val))
1672       DestBB = nullptr;
1673     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1674       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1675       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1676     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1677       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1678       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1679     } else {
1680       assert(isa<IndirectBrInst>(BB->getTerminator())
1681               && "Unexpected terminator");
1682       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1683       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1684     }
1685 
1686     // If we have exactly one destination, remember it for efficiency below.
1687     if (PredToDestList.empty()) {
1688       OnlyDest = DestBB;
1689       OnlyVal = Val;
1690     } else {
1691       if (OnlyDest != DestBB)
1692         OnlyDest = MultipleDestSentinel;
1693       // It possible we have same destination, but different value, e.g. default
1694       // case in switchinst.
1695       if (Val != OnlyVal)
1696         OnlyVal = MultipleVal;
1697     }
1698 
1699     // If the predecessor ends with an indirect goto, we can't change its
1700     // destination. Same for CallBr.
1701     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1702         isa<CallBrInst>(Pred->getTerminator()))
1703       continue;
1704 
1705     PredToDestList.emplace_back(Pred, DestBB);
1706   }
1707 
1708   // If all edges were unthreadable, we fail.
1709   if (PredToDestList.empty())
1710     return false;
1711 
1712   // If all the predecessors go to a single known successor, we want to fold,
1713   // not thread. By doing so, we do not need to duplicate the current block and
1714   // also miss potential opportunities in case we dont/cant duplicate.
1715   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1716     if (BB->hasNPredecessors(PredToDestList.size())) {
1717       bool SeenFirstBranchToOnlyDest = false;
1718       std::vector <DominatorTree::UpdateType> Updates;
1719       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1720       for (BasicBlock *SuccBB : successors(BB)) {
1721         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1722           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1723         } else {
1724           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1725           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1726         }
1727       }
1728 
1729       // Finally update the terminator.
1730       Instruction *Term = BB->getTerminator();
1731       BranchInst::Create(OnlyDest, Term);
1732       Term->eraseFromParent();
1733       DTU->applyUpdatesPermissive(Updates);
1734       if (HasProfileData)
1735         BPI->eraseBlock(BB);
1736 
1737       // If the condition is now dead due to the removal of the old terminator,
1738       // erase it.
1739       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1740         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1741           CondInst->eraseFromParent();
1742         // We can safely replace *some* uses of the CondInst if it has
1743         // exactly one value as returned by LVI. RAUW is incorrect in the
1744         // presence of guards and assumes, that have the `Cond` as the use. This
1745         // is because we use the guards/assume to reason about the `Cond` value
1746         // at the end of block, but RAUW unconditionally replaces all uses
1747         // including the guards/assumes themselves and the uses before the
1748         // guard/assume.
1749         else if (OnlyVal && OnlyVal != MultipleVal &&
1750                  CondInst->getParent() == BB)
1751           replaceFoldableUses(CondInst, OnlyVal);
1752       }
1753       return true;
1754     }
1755   }
1756 
1757   // Determine which is the most common successor.  If we have many inputs and
1758   // this block is a switch, we want to start by threading the batch that goes
1759   // to the most popular destination first.  If we only know about one
1760   // threadable destination (the common case) we can avoid this.
1761   BasicBlock *MostPopularDest = OnlyDest;
1762 
1763   if (MostPopularDest == MultipleDestSentinel) {
1764     // Remove any loop headers from the Dest list, threadEdge conservatively
1765     // won't process them, but we might have other destination that are eligible
1766     // and we still want to process.
1767     erase_if(PredToDestList,
1768              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1769                return LoopHeaders.contains(PredToDest.second);
1770              });
1771 
1772     if (PredToDestList.empty())
1773       return false;
1774 
1775     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1776   }
1777 
1778   // Now that we know what the most popular destination is, factor all
1779   // predecessors that will jump to it into a single predecessor.
1780   SmallVector<BasicBlock*, 16> PredsToFactor;
1781   for (const auto &PredToDest : PredToDestList)
1782     if (PredToDest.second == MostPopularDest) {
1783       BasicBlock *Pred = PredToDest.first;
1784 
1785       // This predecessor may be a switch or something else that has multiple
1786       // edges to the block.  Factor each of these edges by listing them
1787       // according to # occurrences in PredsToFactor.
1788       for (BasicBlock *Succ : successors(Pred))
1789         if (Succ == BB)
1790           PredsToFactor.push_back(Pred);
1791     }
1792 
1793   // If the threadable edges are branching on an undefined value, we get to pick
1794   // the destination that these predecessors should get to.
1795   if (!MostPopularDest)
1796     MostPopularDest = BB->getTerminator()->
1797                             getSuccessor(getBestDestForJumpOnUndef(BB));
1798 
1799   // Ok, try to thread it!
1800   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1801 }
1802 
1803 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1804 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1805 /// simplifications we can do based on inputs to the phi node.
1806 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1807   BasicBlock *BB = PN->getParent();
1808 
1809   // TODO: We could make use of this to do it once for blocks with common PHI
1810   // values.
1811   SmallVector<BasicBlock*, 1> PredBBs;
1812   PredBBs.resize(1);
1813 
1814   // If any of the predecessor blocks end in an unconditional branch, we can
1815   // *duplicate* the conditional branch into that block in order to further
1816   // encourage jump threading and to eliminate cases where we have branch on a
1817   // phi of an icmp (branch on icmp is much better).
1818   // This is still beneficial when a frozen phi is used as the branch condition
1819   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1820   // to br(icmp(freeze ...)).
1821   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1822     BasicBlock *PredBB = PN->getIncomingBlock(i);
1823     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1824       if (PredBr->isUnconditional()) {
1825         PredBBs[0] = PredBB;
1826         // Try to duplicate BB into PredBB.
1827         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1828           return true;
1829       }
1830   }
1831 
1832   return false;
1833 }
1834 
1835 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1836 /// a xor instruction in the current block.  See if there are any
1837 /// simplifications we can do based on inputs to the xor.
1838 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1839   BasicBlock *BB = BO->getParent();
1840 
1841   // If either the LHS or RHS of the xor is a constant, don't do this
1842   // optimization.
1843   if (isa<ConstantInt>(BO->getOperand(0)) ||
1844       isa<ConstantInt>(BO->getOperand(1)))
1845     return false;
1846 
1847   // If the first instruction in BB isn't a phi, we won't be able to infer
1848   // anything special about any particular predecessor.
1849   if (!isa<PHINode>(BB->front()))
1850     return false;
1851 
1852   // If this BB is a landing pad, we won't be able to split the edge into it.
1853   if (BB->isEHPad())
1854     return false;
1855 
1856   // If we have a xor as the branch input to this block, and we know that the
1857   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1858   // the condition into the predecessor and fix that value to true, saving some
1859   // logical ops on that path and encouraging other paths to simplify.
1860   //
1861   // This copies something like this:
1862   //
1863   //  BB:
1864   //    %X = phi i1 [1],  [%X']
1865   //    %Y = icmp eq i32 %A, %B
1866   //    %Z = xor i1 %X, %Y
1867   //    br i1 %Z, ...
1868   //
1869   // Into:
1870   //  BB':
1871   //    %Y = icmp ne i32 %A, %B
1872   //    br i1 %Y, ...
1873 
1874   PredValueInfoTy XorOpValues;
1875   bool isLHS = true;
1876   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1877                                        WantInteger, BO)) {
1878     assert(XorOpValues.empty());
1879     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1880                                          WantInteger, BO))
1881       return false;
1882     isLHS = false;
1883   }
1884 
1885   assert(!XorOpValues.empty() &&
1886          "computeValueKnownInPredecessors returned true with no values");
1887 
1888   // Scan the information to see which is most popular: true or false.  The
1889   // predecessors can be of the set true, false, or undef.
1890   unsigned NumTrue = 0, NumFalse = 0;
1891   for (const auto &XorOpValue : XorOpValues) {
1892     if (isa<UndefValue>(XorOpValue.first))
1893       // Ignore undefs for the count.
1894       continue;
1895     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1896       ++NumFalse;
1897     else
1898       ++NumTrue;
1899   }
1900 
1901   // Determine which value to split on, true, false, or undef if neither.
1902   ConstantInt *SplitVal = nullptr;
1903   if (NumTrue > NumFalse)
1904     SplitVal = ConstantInt::getTrue(BB->getContext());
1905   else if (NumTrue != 0 || NumFalse != 0)
1906     SplitVal = ConstantInt::getFalse(BB->getContext());
1907 
1908   // Collect all of the blocks that this can be folded into so that we can
1909   // factor this once and clone it once.
1910   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1911   for (const auto &XorOpValue : XorOpValues) {
1912     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1913       continue;
1914 
1915     BlocksToFoldInto.push_back(XorOpValue.second);
1916   }
1917 
1918   // If we inferred a value for all of the predecessors, then duplication won't
1919   // help us.  However, we can just replace the LHS or RHS with the constant.
1920   if (BlocksToFoldInto.size() ==
1921       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1922     if (!SplitVal) {
1923       // If all preds provide undef, just nuke the xor, because it is undef too.
1924       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1925       BO->eraseFromParent();
1926     } else if (SplitVal->isZero()) {
1927       // If all preds provide 0, replace the xor with the other input.
1928       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1929       BO->eraseFromParent();
1930     } else {
1931       // If all preds provide 1, set the computed value to 1.
1932       BO->setOperand(!isLHS, SplitVal);
1933     }
1934 
1935     return true;
1936   }
1937 
1938   // If any of predecessors end with an indirect goto, we can't change its
1939   // destination. Same for CallBr.
1940   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1941         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1942                isa<CallBrInst>(Pred->getTerminator());
1943       }))
1944     return false;
1945 
1946   // Try to duplicate BB into PredBB.
1947   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1948 }
1949 
1950 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1951 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1952 /// NewPred using the entries from OldPred (suitably mapped).
1953 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1954                                             BasicBlock *OldPred,
1955                                             BasicBlock *NewPred,
1956                                      DenseMap<Instruction*, Value*> &ValueMap) {
1957   for (PHINode &PN : PHIBB->phis()) {
1958     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1959     // DestBlock.
1960     Value *IV = PN.getIncomingValueForBlock(OldPred);
1961 
1962     // Remap the value if necessary.
1963     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1964       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1965       if (I != ValueMap.end())
1966         IV = I->second;
1967     }
1968 
1969     PN.addIncoming(IV, NewPred);
1970   }
1971 }
1972 
1973 /// Merge basic block BB into its sole predecessor if possible.
1974 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1975   BasicBlock *SinglePred = BB->getSinglePredecessor();
1976   if (!SinglePred)
1977     return false;
1978 
1979   const Instruction *TI = SinglePred->getTerminator();
1980   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1981       SinglePred == BB || hasAddressTakenAndUsed(BB))
1982     return false;
1983 
1984   // If SinglePred was a loop header, BB becomes one.
1985   if (LoopHeaders.erase(SinglePred))
1986     LoopHeaders.insert(BB);
1987 
1988   LVI->eraseBlock(SinglePred);
1989   MergeBasicBlockIntoOnlyPred(BB, DTU);
1990 
1991   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1992   // BB code within one basic block `BB`), we need to invalidate the LVI
1993   // information associated with BB, because the LVI information need not be
1994   // true for all of BB after the merge. For example,
1995   // Before the merge, LVI info and code is as follows:
1996   // SinglePred: <LVI info1 for %p val>
1997   // %y = use of %p
1998   // call @exit() // need not transfer execution to successor.
1999   // assume(%p) // from this point on %p is true
2000   // br label %BB
2001   // BB: <LVI info2 for %p val, i.e. %p is true>
2002   // %x = use of %p
2003   // br label exit
2004   //
2005   // Note that this LVI info for blocks BB and SinglPred is correct for %p
2006   // (info2 and info1 respectively). After the merge and the deletion of the
2007   // LVI info1 for SinglePred. We have the following code:
2008   // BB: <LVI info2 for %p val>
2009   // %y = use of %p
2010   // call @exit()
2011   // assume(%p)
2012   // %x = use of %p <-- LVI info2 is correct from here onwards.
2013   // br label exit
2014   // LVI info2 for BB is incorrect at the beginning of BB.
2015 
2016   // Invalidate LVI information for BB if the LVI is not provably true for
2017   // all of BB.
2018   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2019     LVI->eraseBlock(BB);
2020   return true;
2021 }
2022 
2023 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2024 /// ValueMapping maps old values in BB to new ones in NewBB.
2025 void JumpThreadingPass::updateSSA(
2026     BasicBlock *BB, BasicBlock *NewBB,
2027     DenseMap<Instruction *, Value *> &ValueMapping) {
2028   // If there were values defined in BB that are used outside the block, then we
2029   // now have to update all uses of the value to use either the original value,
2030   // the cloned value, or some PHI derived value.  This can require arbitrary
2031   // PHI insertion, of which we are prepared to do, clean these up now.
2032   SSAUpdater SSAUpdate;
2033   SmallVector<Use *, 16> UsesToRename;
2034 
2035   for (Instruction &I : *BB) {
2036     // Scan all uses of this instruction to see if it is used outside of its
2037     // block, and if so, record them in UsesToRename.
2038     for (Use &U : I.uses()) {
2039       Instruction *User = cast<Instruction>(U.getUser());
2040       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2041         if (UserPN->getIncomingBlock(U) == BB)
2042           continue;
2043       } else if (User->getParent() == BB)
2044         continue;
2045 
2046       UsesToRename.push_back(&U);
2047     }
2048 
2049     // If there are no uses outside the block, we're done with this instruction.
2050     if (UsesToRename.empty())
2051       continue;
2052     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2053 
2054     // We found a use of I outside of BB.  Rename all uses of I that are outside
2055     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2056     // with the two values we know.
2057     SSAUpdate.Initialize(I.getType(), I.getName());
2058     SSAUpdate.AddAvailableValue(BB, &I);
2059     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2060 
2061     while (!UsesToRename.empty())
2062       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2063     LLVM_DEBUG(dbgs() << "\n");
2064   }
2065 }
2066 
2067 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2068 /// arguments that come from PredBB.  Return the map from the variables in the
2069 /// source basic block to the variables in the newly created basic block.
2070 DenseMap<Instruction *, Value *>
2071 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2072                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2073                                      BasicBlock *PredBB) {
2074   // We are going to have to map operands from the source basic block to the new
2075   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2076   // block, evaluate them to account for entry from PredBB.
2077   DenseMap<Instruction *, Value *> ValueMapping;
2078 
2079   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2080   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2081   // might need to rewrite the operand of the cloned phi.
2082   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2083     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2084     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2085     ValueMapping[PN] = NewPN;
2086   }
2087 
2088   // Clone noalias scope declarations in the threaded block. When threading a
2089   // loop exit, we would otherwise end up with two idential scope declarations
2090   // visible at the same time.
2091   SmallVector<MDNode *> NoAliasScopes;
2092   DenseMap<MDNode *, MDNode *> ClonedScopes;
2093   LLVMContext &Context = PredBB->getContext();
2094   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2095   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2096 
2097   // Clone the non-phi instructions of the source basic block into NewBB,
2098   // keeping track of the mapping and using it to remap operands in the cloned
2099   // instructions.
2100   for (; BI != BE; ++BI) {
2101     Instruction *New = BI->clone();
2102     New->setName(BI->getName());
2103     NewBB->getInstList().push_back(New);
2104     ValueMapping[&*BI] = New;
2105     adaptNoAliasScopes(New, ClonedScopes, Context);
2106 
2107     // Remap operands to patch up intra-block references.
2108     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2109       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2110         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2111         if (I != ValueMapping.end())
2112           New->setOperand(i, I->second);
2113       }
2114   }
2115 
2116   return ValueMapping;
2117 }
2118 
2119 /// Attempt to thread through two successive basic blocks.
2120 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2121                                                          Value *Cond) {
2122   // Consider:
2123   //
2124   // PredBB:
2125   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2126   //   %tobool = icmp eq i32 %cond, 0
2127   //   br i1 %tobool, label %BB, label ...
2128   //
2129   // BB:
2130   //   %cmp = icmp eq i32* %var, null
2131   //   br i1 %cmp, label ..., label ...
2132   //
2133   // We don't know the value of %var at BB even if we know which incoming edge
2134   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2135   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2136   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2137 
2138   // Require that BB end with a Branch for simplicity.
2139   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2140   if (!CondBr)
2141     return false;
2142 
2143   // BB must have exactly one predecessor.
2144   BasicBlock *PredBB = BB->getSinglePredecessor();
2145   if (!PredBB)
2146     return false;
2147 
2148   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2149   // unconditional branch, we should be merging PredBB and BB instead. For
2150   // simplicity, we don't deal with a switch.
2151   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2152   if (!PredBBBranch || PredBBBranch->isUnconditional())
2153     return false;
2154 
2155   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2156   // PredBB.
2157   if (PredBB->getSinglePredecessor())
2158     return false;
2159 
2160   // Don't thread through PredBB if it contains a successor edge to itself, in
2161   // which case we would infinite loop.  Suppose we are threading an edge from
2162   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2163   // successor edge to itself.  If we allowed jump threading in this case, we
2164   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2165   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2166   // with another jump threading opportunity from PredBB.thread through PredBB
2167   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2168   // would keep peeling one iteration from PredBB.
2169   if (llvm::is_contained(successors(PredBB), PredBB))
2170     return false;
2171 
2172   // Don't thread across a loop header.
2173   if (LoopHeaders.count(PredBB))
2174     return false;
2175 
2176   // Avoid complication with duplicating EH pads.
2177   if (PredBB->isEHPad())
2178     return false;
2179 
2180   // Find a predecessor that we can thread.  For simplicity, we only consider a
2181   // successor edge out of BB to which we thread exactly one incoming edge into
2182   // PredBB.
2183   unsigned ZeroCount = 0;
2184   unsigned OneCount = 0;
2185   BasicBlock *ZeroPred = nullptr;
2186   BasicBlock *OnePred = nullptr;
2187   for (BasicBlock *P : predecessors(PredBB)) {
2188     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2189             evaluateOnPredecessorEdge(BB, P, Cond))) {
2190       if (CI->isZero()) {
2191         ZeroCount++;
2192         ZeroPred = P;
2193       } else if (CI->isOne()) {
2194         OneCount++;
2195         OnePred = P;
2196       }
2197     }
2198   }
2199 
2200   // Disregard complicated cases where we have to thread multiple edges.
2201   BasicBlock *PredPredBB;
2202   if (ZeroCount == 1) {
2203     PredPredBB = ZeroPred;
2204   } else if (OneCount == 1) {
2205     PredPredBB = OnePred;
2206   } else {
2207     return false;
2208   }
2209 
2210   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2211 
2212   // If threading to the same block as we come from, we would infinite loop.
2213   if (SuccBB == BB) {
2214     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2215                       << "' - would thread to self!\n");
2216     return false;
2217   }
2218 
2219   // If threading this would thread across a loop header, don't thread the edge.
2220   // See the comments above findLoopHeaders for justifications and caveats.
2221   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2222     LLVM_DEBUG({
2223       bool BBIsHeader = LoopHeaders.count(BB);
2224       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2225       dbgs() << "  Not threading across "
2226              << (BBIsHeader ? "loop header BB '" : "block BB '")
2227              << BB->getName() << "' to dest "
2228              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2229              << SuccBB->getName()
2230              << "' - it might create an irreducible loop!\n";
2231     });
2232     return false;
2233   }
2234 
2235   // Compute the cost of duplicating BB and PredBB.
2236   unsigned BBCost =
2237       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2238   unsigned PredBBCost = getJumpThreadDuplicationCost(
2239       PredBB, PredBB->getTerminator(), BBDupThreshold);
2240 
2241   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2242   // individually before checking their sum because getJumpThreadDuplicationCost
2243   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2244   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2245       BBCost + PredBBCost > BBDupThreshold) {
2246     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2247                       << "' - Cost is too high: " << PredBBCost
2248                       << " for PredBB, " << BBCost << "for BB\n");
2249     return false;
2250   }
2251 
2252   // Now we are ready to duplicate PredBB.
2253   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2254   return true;
2255 }
2256 
2257 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2258                                                     BasicBlock *PredBB,
2259                                                     BasicBlock *BB,
2260                                                     BasicBlock *SuccBB) {
2261   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2262                     << BB->getName() << "'\n");
2263 
2264   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2265   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2266 
2267   BasicBlock *NewBB =
2268       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2269                          PredBB->getParent(), PredBB);
2270   NewBB->moveAfter(PredBB);
2271 
2272   // Set the block frequency of NewBB.
2273   if (HasProfileData) {
2274     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2275                      BPI->getEdgeProbability(PredPredBB, PredBB);
2276     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2277   }
2278 
2279   // We are going to have to map operands from the original BB block to the new
2280   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2281   // to account for entry from PredPredBB.
2282   DenseMap<Instruction *, Value *> ValueMapping =
2283       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2284 
2285   // Copy the edge probabilities from PredBB to NewBB.
2286   if (HasProfileData)
2287     BPI->copyEdgeProbabilities(PredBB, NewBB);
2288 
2289   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2290   // This eliminates predecessors from PredPredBB, which requires us to simplify
2291   // any PHI nodes in PredBB.
2292   Instruction *PredPredTerm = PredPredBB->getTerminator();
2293   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2294     if (PredPredTerm->getSuccessor(i) == PredBB) {
2295       PredBB->removePredecessor(PredPredBB, true);
2296       PredPredTerm->setSuccessor(i, NewBB);
2297     }
2298 
2299   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2300                                   ValueMapping);
2301   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2302                                   ValueMapping);
2303 
2304   DTU->applyUpdatesPermissive(
2305       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2306        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2307        {DominatorTree::Insert, PredPredBB, NewBB},
2308        {DominatorTree::Delete, PredPredBB, PredBB}});
2309 
2310   updateSSA(PredBB, NewBB, ValueMapping);
2311 
2312   // Clean up things like PHI nodes with single operands, dead instructions,
2313   // etc.
2314   SimplifyInstructionsInBlock(NewBB, TLI);
2315   SimplifyInstructionsInBlock(PredBB, TLI);
2316 
2317   SmallVector<BasicBlock *, 1> PredsToFactor;
2318   PredsToFactor.push_back(NewBB);
2319   threadEdge(BB, PredsToFactor, SuccBB);
2320 }
2321 
2322 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2323 bool JumpThreadingPass::tryThreadEdge(
2324     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2325     BasicBlock *SuccBB) {
2326   // If threading to the same block as we come from, we would infinite loop.
2327   if (SuccBB == BB) {
2328     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2329                       << "' - would thread to self!\n");
2330     return false;
2331   }
2332 
2333   // If threading this would thread across a loop header, don't thread the edge.
2334   // See the comments above findLoopHeaders for justifications and caveats.
2335   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2336     LLVM_DEBUG({
2337       bool BBIsHeader = LoopHeaders.count(BB);
2338       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2339       dbgs() << "  Not threading across "
2340           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2341           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2342           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2343     });
2344     return false;
2345   }
2346 
2347   unsigned JumpThreadCost =
2348       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2349   if (JumpThreadCost > BBDupThreshold) {
2350     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2351                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2352     return false;
2353   }
2354 
2355   threadEdge(BB, PredBBs, SuccBB);
2356   return true;
2357 }
2358 
2359 /// threadEdge - We have decided that it is safe and profitable to factor the
2360 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2361 /// across BB.  Transform the IR to reflect this change.
2362 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2363                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2364                                    BasicBlock *SuccBB) {
2365   assert(SuccBB != BB && "Don't create an infinite loop");
2366 
2367   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2368          "Don't thread across loop headers");
2369 
2370   // And finally, do it!  Start by factoring the predecessors if needed.
2371   BasicBlock *PredBB;
2372   if (PredBBs.size() == 1)
2373     PredBB = PredBBs[0];
2374   else {
2375     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2376                       << " common predecessors.\n");
2377     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2378   }
2379 
2380   // And finally, do it!
2381   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2382                     << "' to '" << SuccBB->getName()
2383                     << ", across block:\n    " << *BB << "\n");
2384 
2385   LVI->threadEdge(PredBB, BB, SuccBB);
2386 
2387   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2388                                          BB->getName()+".thread",
2389                                          BB->getParent(), BB);
2390   NewBB->moveAfter(PredBB);
2391 
2392   // Set the block frequency of NewBB.
2393   if (HasProfileData) {
2394     auto NewBBFreq =
2395         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2396     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2397   }
2398 
2399   // Copy all the instructions from BB to NewBB except the terminator.
2400   DenseMap<Instruction *, Value *> ValueMapping =
2401       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2402 
2403   // We didn't copy the terminator from BB over to NewBB, because there is now
2404   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2405   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2406   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2407 
2408   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2409   // PHI nodes for NewBB now.
2410   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2411 
2412   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2413   // eliminates predecessors from BB, which requires us to simplify any PHI
2414   // nodes in BB.
2415   Instruction *PredTerm = PredBB->getTerminator();
2416   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2417     if (PredTerm->getSuccessor(i) == BB) {
2418       BB->removePredecessor(PredBB, true);
2419       PredTerm->setSuccessor(i, NewBB);
2420     }
2421 
2422   // Enqueue required DT updates.
2423   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2424                                {DominatorTree::Insert, PredBB, NewBB},
2425                                {DominatorTree::Delete, PredBB, BB}});
2426 
2427   updateSSA(BB, NewBB, ValueMapping);
2428 
2429   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2430   // over the new instructions and zap any that are constants or dead.  This
2431   // frequently happens because of phi translation.
2432   SimplifyInstructionsInBlock(NewBB, TLI);
2433 
2434   // Update the edge weight from BB to SuccBB, which should be less than before.
2435   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2436 
2437   // Threaded an edge!
2438   ++NumThreads;
2439 }
2440 
2441 /// Create a new basic block that will be the predecessor of BB and successor of
2442 /// all blocks in Preds. When profile data is available, update the frequency of
2443 /// this new block.
2444 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2445                                                ArrayRef<BasicBlock *> Preds,
2446                                                const char *Suffix) {
2447   SmallVector<BasicBlock *, 2> NewBBs;
2448 
2449   // Collect the frequencies of all predecessors of BB, which will be used to
2450   // update the edge weight of the result of splitting predecessors.
2451   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2452   if (HasProfileData)
2453     for (auto Pred : Preds)
2454       FreqMap.insert(std::make_pair(
2455           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2456 
2457   // In the case when BB is a LandingPad block we create 2 new predecessors
2458   // instead of just one.
2459   if (BB->isLandingPad()) {
2460     std::string NewName = std::string(Suffix) + ".split-lp";
2461     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2462   } else {
2463     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2464   }
2465 
2466   std::vector<DominatorTree::UpdateType> Updates;
2467   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2468   for (auto NewBB : NewBBs) {
2469     BlockFrequency NewBBFreq(0);
2470     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2471     for (auto Pred : predecessors(NewBB)) {
2472       Updates.push_back({DominatorTree::Delete, Pred, BB});
2473       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2474       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2475         NewBBFreq += FreqMap.lookup(Pred);
2476     }
2477     if (HasProfileData) // Apply the summed frequency to NewBB.
2478       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2479   }
2480 
2481   DTU->applyUpdatesPermissive(Updates);
2482   return NewBBs[0];
2483 }
2484 
2485 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2486   const Instruction *TI = BB->getTerminator();
2487   assert(TI->getNumSuccessors() > 1 && "not a split");
2488 
2489   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2490   if (!WeightsNode)
2491     return false;
2492 
2493   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2494   if (MDName->getString() != "branch_weights")
2495     return false;
2496 
2497   // Ensure there are weights for all of the successors. Note that the first
2498   // operand to the metadata node is a name, not a weight.
2499   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2500 }
2501 
2502 /// Update the block frequency of BB and branch weight and the metadata on the
2503 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2504 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2505 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2506                                                      BasicBlock *BB,
2507                                                      BasicBlock *NewBB,
2508                                                      BasicBlock *SuccBB) {
2509   if (!HasProfileData)
2510     return;
2511 
2512   assert(BFI && BPI && "BFI & BPI should have been created here");
2513 
2514   // As the edge from PredBB to BB is deleted, we have to update the block
2515   // frequency of BB.
2516   auto BBOrigFreq = BFI->getBlockFreq(BB);
2517   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2518   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2519   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2520   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2521 
2522   // Collect updated outgoing edges' frequencies from BB and use them to update
2523   // edge probabilities.
2524   SmallVector<uint64_t, 4> BBSuccFreq;
2525   for (BasicBlock *Succ : successors(BB)) {
2526     auto SuccFreq = (Succ == SuccBB)
2527                         ? BB2SuccBBFreq - NewBBFreq
2528                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2529     BBSuccFreq.push_back(SuccFreq.getFrequency());
2530   }
2531 
2532   uint64_t MaxBBSuccFreq =
2533       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2534 
2535   SmallVector<BranchProbability, 4> BBSuccProbs;
2536   if (MaxBBSuccFreq == 0)
2537     BBSuccProbs.assign(BBSuccFreq.size(),
2538                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2539   else {
2540     for (uint64_t Freq : BBSuccFreq)
2541       BBSuccProbs.push_back(
2542           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2543     // Normalize edge probabilities so that they sum up to one.
2544     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2545                                               BBSuccProbs.end());
2546   }
2547 
2548   // Update edge probabilities in BPI.
2549   BPI->setEdgeProbability(BB, BBSuccProbs);
2550 
2551   // Update the profile metadata as well.
2552   //
2553   // Don't do this if the profile of the transformed blocks was statically
2554   // estimated.  (This could occur despite the function having an entry
2555   // frequency in completely cold parts of the CFG.)
2556   //
2557   // In this case we don't want to suggest to subsequent passes that the
2558   // calculated weights are fully consistent.  Consider this graph:
2559   //
2560   //                 check_1
2561   //             50% /  |
2562   //             eq_1   | 50%
2563   //                 \  |
2564   //                 check_2
2565   //             50% /  |
2566   //             eq_2   | 50%
2567   //                 \  |
2568   //                 check_3
2569   //             50% /  |
2570   //             eq_3   | 50%
2571   //                 \  |
2572   //
2573   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2574   // the overall probabilities are inconsistent; the total probability that the
2575   // value is either 1, 2 or 3 is 150%.
2576   //
2577   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2578   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2579   // the loop exit edge.  Then based solely on static estimation we would assume
2580   // the loop was extremely hot.
2581   //
2582   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2583   // shouldn't make edges extremely likely or unlikely based solely on static
2584   // estimation.
2585   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2586     SmallVector<uint32_t, 4> Weights;
2587     for (auto Prob : BBSuccProbs)
2588       Weights.push_back(Prob.getNumerator());
2589 
2590     auto TI = BB->getTerminator();
2591     TI->setMetadata(
2592         LLVMContext::MD_prof,
2593         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2594   }
2595 }
2596 
2597 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2598 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2599 /// If we can duplicate the contents of BB up into PredBB do so now, this
2600 /// improves the odds that the branch will be on an analyzable instruction like
2601 /// a compare.
2602 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2603     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2604   assert(!PredBBs.empty() && "Can't handle an empty set");
2605 
2606   // If BB is a loop header, then duplicating this block outside the loop would
2607   // cause us to transform this into an irreducible loop, don't do this.
2608   // See the comments above findLoopHeaders for justifications and caveats.
2609   if (LoopHeaders.count(BB)) {
2610     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2611                       << "' into predecessor block '" << PredBBs[0]->getName()
2612                       << "' - it might create an irreducible loop!\n");
2613     return false;
2614   }
2615 
2616   unsigned DuplicationCost =
2617       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2618   if (DuplicationCost > BBDupThreshold) {
2619     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2620                       << "' - Cost is too high: " << DuplicationCost << "\n");
2621     return false;
2622   }
2623 
2624   // And finally, do it!  Start by factoring the predecessors if needed.
2625   std::vector<DominatorTree::UpdateType> Updates;
2626   BasicBlock *PredBB;
2627   if (PredBBs.size() == 1)
2628     PredBB = PredBBs[0];
2629   else {
2630     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2631                       << " common predecessors.\n");
2632     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2633   }
2634   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2635 
2636   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2637   // of PredBB.
2638   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2639                     << "' into end of '" << PredBB->getName()
2640                     << "' to eliminate branch on phi.  Cost: "
2641                     << DuplicationCost << " block is:" << *BB << "\n");
2642 
2643   // Unless PredBB ends with an unconditional branch, split the edge so that we
2644   // can just clone the bits from BB into the end of the new PredBB.
2645   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2646 
2647   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2648     BasicBlock *OldPredBB = PredBB;
2649     PredBB = SplitEdge(OldPredBB, BB);
2650     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2651     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2652     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2653     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2654   }
2655 
2656   // We are going to have to map operands from the original BB block into the
2657   // PredBB block.  Evaluate PHI nodes in BB.
2658   DenseMap<Instruction*, Value*> ValueMapping;
2659 
2660   BasicBlock::iterator BI = BB->begin();
2661   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2662     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2663   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2664   // mapping and using it to remap operands in the cloned instructions.
2665   for (; BI != BB->end(); ++BI) {
2666     Instruction *New = BI->clone();
2667 
2668     // Remap operands to patch up intra-block references.
2669     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2670       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2671         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2672         if (I != ValueMapping.end())
2673           New->setOperand(i, I->second);
2674       }
2675 
2676     // If this instruction can be simplified after the operands are updated,
2677     // just use the simplified value instead.  This frequently happens due to
2678     // phi translation.
2679     if (Value *IV = SimplifyInstruction(
2680             New,
2681             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2682       ValueMapping[&*BI] = IV;
2683       if (!New->mayHaveSideEffects()) {
2684         New->deleteValue();
2685         New = nullptr;
2686       }
2687     } else {
2688       ValueMapping[&*BI] = New;
2689     }
2690     if (New) {
2691       // Otherwise, insert the new instruction into the block.
2692       New->setName(BI->getName());
2693       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2694       // Update Dominance from simplified New instruction operands.
2695       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2696         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2697           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2698     }
2699   }
2700 
2701   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2702   // add entries to the PHI nodes for branch from PredBB now.
2703   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2704   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2705                                   ValueMapping);
2706   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2707                                   ValueMapping);
2708 
2709   updateSSA(BB, PredBB, ValueMapping);
2710 
2711   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2712   // that we nuked.
2713   BB->removePredecessor(PredBB, true);
2714 
2715   // Remove the unconditional branch at the end of the PredBB block.
2716   OldPredBranch->eraseFromParent();
2717   if (HasProfileData)
2718     BPI->copyEdgeProbabilities(BB, PredBB);
2719   DTU->applyUpdatesPermissive(Updates);
2720 
2721   ++NumDupes;
2722   return true;
2723 }
2724 
2725 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2726 // a Select instruction in Pred. BB has other predecessors and SI is used in
2727 // a PHI node in BB. SI has no other use.
2728 // A new basic block, NewBB, is created and SI is converted to compare and
2729 // conditional branch. SI is erased from parent.
2730 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2731                                           SelectInst *SI, PHINode *SIUse,
2732                                           unsigned Idx) {
2733   // Expand the select.
2734   //
2735   // Pred --
2736   //  |    v
2737   //  |  NewBB
2738   //  |    |
2739   //  |-----
2740   //  v
2741   // BB
2742   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2743   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2744                                          BB->getParent(), BB);
2745   // Move the unconditional branch to NewBB.
2746   PredTerm->removeFromParent();
2747   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2748   // Create a conditional branch and update PHI nodes.
2749   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2750   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2751   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2752 
2753   // The select is now dead.
2754   SI->eraseFromParent();
2755   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2756                                {DominatorTree::Insert, Pred, NewBB}});
2757 
2758   // Update any other PHI nodes in BB.
2759   for (BasicBlock::iterator BI = BB->begin();
2760        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2761     if (Phi != SIUse)
2762       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2763 }
2764 
2765 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2766   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2767 
2768   if (!CondPHI || CondPHI->getParent() != BB)
2769     return false;
2770 
2771   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2772     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2773     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2774 
2775     // The second and third condition can be potentially relaxed. Currently
2776     // the conditions help to simplify the code and allow us to reuse existing
2777     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2778     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2779       continue;
2780 
2781     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2782     if (!PredTerm || !PredTerm->isUnconditional())
2783       continue;
2784 
2785     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2786     return true;
2787   }
2788   return false;
2789 }
2790 
2791 /// tryToUnfoldSelect - Look for blocks of the form
2792 /// bb1:
2793 ///   %a = select
2794 ///   br bb2
2795 ///
2796 /// bb2:
2797 ///   %p = phi [%a, %bb1] ...
2798 ///   %c = icmp %p
2799 ///   br i1 %c
2800 ///
2801 /// And expand the select into a branch structure if one of its arms allows %c
2802 /// to be folded. This later enables threading from bb1 over bb2.
2803 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2804   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2805   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2806   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2807 
2808   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2809       CondLHS->getParent() != BB)
2810     return false;
2811 
2812   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2813     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2814     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2815 
2816     // Look if one of the incoming values is a select in the corresponding
2817     // predecessor.
2818     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2819       continue;
2820 
2821     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2822     if (!PredTerm || !PredTerm->isUnconditional())
2823       continue;
2824 
2825     // Now check if one of the select values would allow us to constant fold the
2826     // terminator in BB. We don't do the transform if both sides fold, those
2827     // cases will be threaded in any case.
2828     LazyValueInfo::Tristate LHSFolds =
2829         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2830                                 CondRHS, Pred, BB, CondCmp);
2831     LazyValueInfo::Tristate RHSFolds =
2832         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2833                                 CondRHS, Pred, BB, CondCmp);
2834     if ((LHSFolds != LazyValueInfo::Unknown ||
2835          RHSFolds != LazyValueInfo::Unknown) &&
2836         LHSFolds != RHSFolds) {
2837       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2838       return true;
2839     }
2840   }
2841   return false;
2842 }
2843 
2844 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2845 /// same BB in the form
2846 /// bb:
2847 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2848 ///   %s = select %p, trueval, falseval
2849 ///
2850 /// or
2851 ///
2852 /// bb:
2853 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2854 ///   %c = cmp %p, 0
2855 ///   %s = select %c, trueval, falseval
2856 ///
2857 /// And expand the select into a branch structure. This later enables
2858 /// jump-threading over bb in this pass.
2859 ///
2860 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2861 /// select if the associated PHI has at least one constant.  If the unfolded
2862 /// select is not jump-threaded, it will be folded again in the later
2863 /// optimizations.
2864 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2865   // This transform would reduce the quality of msan diagnostics.
2866   // Disable this transform under MemorySanitizer.
2867   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2868     return false;
2869 
2870   // If threading this would thread across a loop header, don't thread the edge.
2871   // See the comments above findLoopHeaders for justifications and caveats.
2872   if (LoopHeaders.count(BB))
2873     return false;
2874 
2875   for (BasicBlock::iterator BI = BB->begin();
2876        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2877     // Look for a Phi having at least one constant incoming value.
2878     if (llvm::all_of(PN->incoming_values(),
2879                      [](Value *V) { return !isa<ConstantInt>(V); }))
2880       continue;
2881 
2882     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2883       using namespace PatternMatch;
2884 
2885       // Check if SI is in BB and use V as condition.
2886       if (SI->getParent() != BB)
2887         return false;
2888       Value *Cond = SI->getCondition();
2889       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2890       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2891     };
2892 
2893     SelectInst *SI = nullptr;
2894     for (Use &U : PN->uses()) {
2895       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2896         // Look for a ICmp in BB that compares PN with a constant and is the
2897         // condition of a Select.
2898         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2899             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2900           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2901             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2902               SI = SelectI;
2903               break;
2904             }
2905       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2906         // Look for a Select in BB that uses PN as condition.
2907         if (isUnfoldCandidate(SelectI, U.get())) {
2908           SI = SelectI;
2909           break;
2910         }
2911       }
2912     }
2913 
2914     if (!SI)
2915       continue;
2916     // Expand the select.
2917     Value *Cond = SI->getCondition();
2918     if (InsertFreezeWhenUnfoldingSelect &&
2919         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2920                                           &DTU->getDomTree()))
2921       Cond = new FreezeInst(Cond, "cond.fr", SI);
2922     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2923     BasicBlock *SplitBB = SI->getParent();
2924     BasicBlock *NewBB = Term->getParent();
2925     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2926     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2927     NewPN->addIncoming(SI->getFalseValue(), BB);
2928     SI->replaceAllUsesWith(NewPN);
2929     SI->eraseFromParent();
2930     // NewBB and SplitBB are newly created blocks which require insertion.
2931     std::vector<DominatorTree::UpdateType> Updates;
2932     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2933     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2934     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2935     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2936     // BB's successors were moved to SplitBB, update DTU accordingly.
2937     for (auto *Succ : successors(SplitBB)) {
2938       Updates.push_back({DominatorTree::Delete, BB, Succ});
2939       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2940     }
2941     DTU->applyUpdatesPermissive(Updates);
2942     return true;
2943   }
2944   return false;
2945 }
2946 
2947 /// Try to propagate a guard from the current BB into one of its predecessors
2948 /// in case if another branch of execution implies that the condition of this
2949 /// guard is always true. Currently we only process the simplest case that
2950 /// looks like:
2951 ///
2952 /// Start:
2953 ///   %cond = ...
2954 ///   br i1 %cond, label %T1, label %F1
2955 /// T1:
2956 ///   br label %Merge
2957 /// F1:
2958 ///   br label %Merge
2959 /// Merge:
2960 ///   %condGuard = ...
2961 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2962 ///
2963 /// And cond either implies condGuard or !condGuard. In this case all the
2964 /// instructions before the guard can be duplicated in both branches, and the
2965 /// guard is then threaded to one of them.
2966 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2967   using namespace PatternMatch;
2968 
2969   // We only want to deal with two predecessors.
2970   BasicBlock *Pred1, *Pred2;
2971   auto PI = pred_begin(BB), PE = pred_end(BB);
2972   if (PI == PE)
2973     return false;
2974   Pred1 = *PI++;
2975   if (PI == PE)
2976     return false;
2977   Pred2 = *PI++;
2978   if (PI != PE)
2979     return false;
2980   if (Pred1 == Pred2)
2981     return false;
2982 
2983   // Try to thread one of the guards of the block.
2984   // TODO: Look up deeper than to immediate predecessor?
2985   auto *Parent = Pred1->getSinglePredecessor();
2986   if (!Parent || Parent != Pred2->getSinglePredecessor())
2987     return false;
2988 
2989   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2990     for (auto &I : *BB)
2991       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2992         return true;
2993 
2994   return false;
2995 }
2996 
2997 /// Try to propagate the guard from BB which is the lower block of a diamond
2998 /// to one of its branches, in case if diamond's condition implies guard's
2999 /// condition.
3000 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
3001                                     BranchInst *BI) {
3002   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
3003   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
3004   Value *GuardCond = Guard->getArgOperand(0);
3005   Value *BranchCond = BI->getCondition();
3006   BasicBlock *TrueDest = BI->getSuccessor(0);
3007   BasicBlock *FalseDest = BI->getSuccessor(1);
3008 
3009   auto &DL = BB->getModule()->getDataLayout();
3010   bool TrueDestIsSafe = false;
3011   bool FalseDestIsSafe = false;
3012 
3013   // True dest is safe if BranchCond => GuardCond.
3014   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3015   if (Impl && *Impl)
3016     TrueDestIsSafe = true;
3017   else {
3018     // False dest is safe if !BranchCond => GuardCond.
3019     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3020     if (Impl && *Impl)
3021       FalseDestIsSafe = true;
3022   }
3023 
3024   if (!TrueDestIsSafe && !FalseDestIsSafe)
3025     return false;
3026 
3027   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3028   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3029 
3030   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3031   Instruction *AfterGuard = Guard->getNextNode();
3032   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
3033   if (Cost > BBDupThreshold)
3034     return false;
3035   // Duplicate all instructions before the guard and the guard itself to the
3036   // branch where implication is not proved.
3037   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3038       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3039   assert(GuardedBlock && "Could not create the guarded block?");
3040   // Duplicate all instructions before the guard in the unguarded branch.
3041   // Since we have successfully duplicated the guarded block and this block
3042   // has fewer instructions, we expect it to succeed.
3043   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3044       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3045   assert(UnguardedBlock && "Could not create the unguarded block?");
3046   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3047                     << GuardedBlock->getName() << "\n");
3048   // Some instructions before the guard may still have uses. For them, we need
3049   // to create Phi nodes merging their copies in both guarded and unguarded
3050   // branches. Those instructions that have no uses can be just removed.
3051   SmallVector<Instruction *, 4> ToRemove;
3052   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3053     if (!isa<PHINode>(&*BI))
3054       ToRemove.push_back(&*BI);
3055 
3056   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3057   assert(InsertionPoint && "Empty block?");
3058   // Substitute with Phis & remove.
3059   for (auto *Inst : reverse(ToRemove)) {
3060     if (!Inst->use_empty()) {
3061       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3062       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3063       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3064       NewPN->insertBefore(InsertionPoint);
3065       Inst->replaceAllUsesWith(NewPN);
3066     }
3067     Inst->eraseFromParent();
3068   }
3069   return true;
3070 }
3071