1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/BlockFrequencyInfo.h" 23 #include "llvm/Analysis/BranchProbabilityInfo.h" 24 #include "llvm/Analysis/CFG.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/DomTreeUpdater.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/LazyValueInfo.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/InitializePasses.h" 59 #include "llvm/Pass.h" 60 #include "llvm/Support/BlockFrequency.h" 61 #include "llvm/Support/BranchProbability.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Debug.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Transforms/Scalar.h" 67 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 68 #include "llvm/Transforms/Utils/Cloning.h" 69 #include "llvm/Transforms/Utils/Local.h" 70 #include "llvm/Transforms/Utils/SSAUpdater.h" 71 #include "llvm/Transforms/Utils/ValueMapper.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstddef> 75 #include <cstdint> 76 #include <iterator> 77 #include <memory> 78 #include <utility> 79 80 using namespace llvm; 81 using namespace jumpthreading; 82 83 #define DEBUG_TYPE "jump-threading" 84 85 STATISTIC(NumThreads, "Number of jumps threaded"); 86 STATISTIC(NumFolds, "Number of terminators folded"); 87 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 88 89 static cl::opt<unsigned> 90 BBDuplicateThreshold("jump-threading-threshold", 91 cl::desc("Max block size to duplicate for jump threading"), 92 cl::init(6), cl::Hidden); 93 94 static cl::opt<unsigned> 95 ImplicationSearchThreshold( 96 "jump-threading-implication-search-threshold", 97 cl::desc("The number of predecessors to search for a stronger " 98 "condition to use to thread over a weaker condition"), 99 cl::init(3), cl::Hidden); 100 101 static cl::opt<bool> PrintLVIAfterJumpThreading( 102 "print-lvi-after-jump-threading", 103 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 104 cl::Hidden); 105 106 static cl::opt<bool> ThreadAcrossLoopHeaders( 107 "jump-threading-across-loop-headers", 108 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 109 cl::init(false), cl::Hidden); 110 111 112 namespace { 113 114 /// This pass performs 'jump threading', which looks at blocks that have 115 /// multiple predecessors and multiple successors. If one or more of the 116 /// predecessors of the block can be proven to always jump to one of the 117 /// successors, we forward the edge from the predecessor to the successor by 118 /// duplicating the contents of this block. 119 /// 120 /// An example of when this can occur is code like this: 121 /// 122 /// if () { ... 123 /// X = 4; 124 /// } 125 /// if (X < 3) { 126 /// 127 /// In this case, the unconditional branch at the end of the first if can be 128 /// revectored to the false side of the second if. 129 class JumpThreading : public FunctionPass { 130 JumpThreadingPass Impl; 131 132 public: 133 static char ID; // Pass identification 134 135 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 136 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 137 } 138 139 bool runOnFunction(Function &F) override; 140 141 void getAnalysisUsage(AnalysisUsage &AU) const override { 142 AU.addRequired<DominatorTreeWrapperPass>(); 143 AU.addPreserved<DominatorTreeWrapperPass>(); 144 AU.addRequired<AAResultsWrapperPass>(); 145 AU.addRequired<LazyValueInfoWrapperPass>(); 146 AU.addPreserved<LazyValueInfoWrapperPass>(); 147 AU.addPreserved<GlobalsAAWrapperPass>(); 148 AU.addRequired<TargetLibraryInfoWrapperPass>(); 149 } 150 151 void releaseMemory() override { Impl.releaseMemory(); } 152 }; 153 154 } // end anonymous namespace 155 156 char JumpThreading::ID = 0; 157 158 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 159 "Jump Threading", false, false) 160 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 161 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 162 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 163 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 164 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 165 "Jump Threading", false, false) 166 167 // Public interface to the Jump Threading pass 168 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 169 return new JumpThreading(Threshold); 170 } 171 172 JumpThreadingPass::JumpThreadingPass(int T) { 173 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 174 } 175 176 // Update branch probability information according to conditional 177 // branch probability. This is usually made possible for cloned branches 178 // in inline instances by the context specific profile in the caller. 179 // For instance, 180 // 181 // [Block PredBB] 182 // [Branch PredBr] 183 // if (t) { 184 // Block A; 185 // } else { 186 // Block B; 187 // } 188 // 189 // [Block BB] 190 // cond = PN([true, %A], [..., %B]); // PHI node 191 // [Branch CondBr] 192 // if (cond) { 193 // ... // P(cond == true) = 1% 194 // } 195 // 196 // Here we know that when block A is taken, cond must be true, which means 197 // P(cond == true | A) = 1 198 // 199 // Given that P(cond == true) = P(cond == true | A) * P(A) + 200 // P(cond == true | B) * P(B) 201 // we get: 202 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 203 // 204 // which gives us: 205 // P(A) is less than P(cond == true), i.e. 206 // P(t == true) <= P(cond == true) 207 // 208 // In other words, if we know P(cond == true) is unlikely, we know 209 // that P(t == true) is also unlikely. 210 // 211 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 212 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 213 if (!CondBr) 214 return; 215 216 BranchProbability BP; 217 uint64_t TrueWeight, FalseWeight; 218 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 219 return; 220 221 // Returns the outgoing edge of the dominating predecessor block 222 // that leads to the PhiNode's incoming block: 223 auto GetPredOutEdge = 224 [](BasicBlock *IncomingBB, 225 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 226 auto *PredBB = IncomingBB; 227 auto *SuccBB = PhiBB; 228 SmallPtrSet<BasicBlock *, 16> Visited; 229 while (true) { 230 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 231 if (PredBr && PredBr->isConditional()) 232 return {PredBB, SuccBB}; 233 Visited.insert(PredBB); 234 auto *SinglePredBB = PredBB->getSinglePredecessor(); 235 if (!SinglePredBB) 236 return {nullptr, nullptr}; 237 238 // Stop searching when SinglePredBB has been visited. It means we see 239 // an unreachable loop. 240 if (Visited.count(SinglePredBB)) 241 return {nullptr, nullptr}; 242 243 SuccBB = PredBB; 244 PredBB = SinglePredBB; 245 } 246 }; 247 248 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 249 Value *PhiOpnd = PN->getIncomingValue(i); 250 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 251 252 if (!CI || !CI->getType()->isIntegerTy(1)) 253 continue; 254 255 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 256 TrueWeight, TrueWeight + FalseWeight) 257 : BranchProbability::getBranchProbability( 258 FalseWeight, TrueWeight + FalseWeight)); 259 260 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 261 if (!PredOutEdge.first) 262 return; 263 264 BasicBlock *PredBB = PredOutEdge.first; 265 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 266 if (!PredBr) 267 return; 268 269 uint64_t PredTrueWeight, PredFalseWeight; 270 // FIXME: We currently only set the profile data when it is missing. 271 // With PGO, this can be used to refine even existing profile data with 272 // context information. This needs to be done after more performance 273 // testing. 274 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 275 continue; 276 277 // We can not infer anything useful when BP >= 50%, because BP is the 278 // upper bound probability value. 279 if (BP >= BranchProbability(50, 100)) 280 continue; 281 282 SmallVector<uint32_t, 2> Weights; 283 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 284 Weights.push_back(BP.getNumerator()); 285 Weights.push_back(BP.getCompl().getNumerator()); 286 } else { 287 Weights.push_back(BP.getCompl().getNumerator()); 288 Weights.push_back(BP.getNumerator()); 289 } 290 PredBr->setMetadata(LLVMContext::MD_prof, 291 MDBuilder(PredBr->getParent()->getContext()) 292 .createBranchWeights(Weights)); 293 } 294 } 295 296 /// runOnFunction - Toplevel algorithm. 297 bool JumpThreading::runOnFunction(Function &F) { 298 if (skipFunction(F)) 299 return false; 300 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 301 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 302 // DT if it's available. 303 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 304 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 305 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 306 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 307 std::unique_ptr<BlockFrequencyInfo> BFI; 308 std::unique_ptr<BranchProbabilityInfo> BPI; 309 bool HasProfileData = F.hasProfileData(); 310 if (HasProfileData) { 311 LoopInfo LI{DominatorTree(F)}; 312 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 313 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 314 } 315 316 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, 317 std::move(BFI), std::move(BPI)); 318 if (PrintLVIAfterJumpThreading) { 319 dbgs() << "LVI for function '" << F.getName() << "':\n"; 320 LVI->printLVI(F, *DT, dbgs()); 321 } 322 return Changed; 323 } 324 325 PreservedAnalyses JumpThreadingPass::run(Function &F, 326 FunctionAnalysisManager &AM) { 327 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 328 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 329 // DT if it's available. 330 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 331 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 332 auto &AA = AM.getResult<AAManager>(F); 333 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 334 335 std::unique_ptr<BlockFrequencyInfo> BFI; 336 std::unique_ptr<BranchProbabilityInfo> BPI; 337 if (F.hasProfileData()) { 338 LoopInfo LI{DominatorTree(F)}; 339 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 340 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 341 } 342 343 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, 344 std::move(BFI), std::move(BPI)); 345 346 if (!Changed) 347 return PreservedAnalyses::all(); 348 PreservedAnalyses PA; 349 PA.preserve<GlobalsAA>(); 350 PA.preserve<DominatorTreeAnalysis>(); 351 PA.preserve<LazyValueAnalysis>(); 352 return PA; 353 } 354 355 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 356 LazyValueInfo *LVI_, AliasAnalysis *AA_, 357 DomTreeUpdater *DTU_, bool HasProfileData_, 358 std::unique_ptr<BlockFrequencyInfo> BFI_, 359 std::unique_ptr<BranchProbabilityInfo> BPI_) { 360 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 361 TLI = TLI_; 362 LVI = LVI_; 363 AA = AA_; 364 DTU = DTU_; 365 BFI.reset(); 366 BPI.reset(); 367 // When profile data is available, we need to update edge weights after 368 // successful jump threading, which requires both BPI and BFI being available. 369 HasProfileData = HasProfileData_; 370 auto *GuardDecl = F.getParent()->getFunction( 371 Intrinsic::getName(Intrinsic::experimental_guard)); 372 HasGuards = GuardDecl && !GuardDecl->use_empty(); 373 if (HasProfileData) { 374 BPI = std::move(BPI_); 375 BFI = std::move(BFI_); 376 } 377 378 // JumpThreading must not processes blocks unreachable from entry. It's a 379 // waste of compute time and can potentially lead to hangs. 380 SmallPtrSet<BasicBlock *, 16> Unreachable; 381 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 382 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 383 DominatorTree &DT = DTU->getDomTree(); 384 for (auto &BB : F) 385 if (!DT.isReachableFromEntry(&BB)) 386 Unreachable.insert(&BB); 387 388 if (!ThreadAcrossLoopHeaders) 389 FindLoopHeaders(F); 390 391 bool EverChanged = false; 392 bool Changed; 393 do { 394 Changed = false; 395 for (auto &BB : F) { 396 if (Unreachable.count(&BB)) 397 continue; 398 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 399 Changed = true; 400 // Stop processing BB if it's the entry or is now deleted. The following 401 // routines attempt to eliminate BB and locating a suitable replacement 402 // for the entry is non-trivial. 403 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 404 continue; 405 406 if (pred_empty(&BB)) { 407 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 408 // the instructions in it. We must remove BB to prevent invalid IR. 409 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 410 << "' with terminator: " << *BB.getTerminator() 411 << '\n'); 412 LoopHeaders.erase(&BB); 413 LVI->eraseBlock(&BB); 414 DeleteDeadBlock(&BB, DTU); 415 Changed = true; 416 continue; 417 } 418 419 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 420 // is "almost empty", we attempt to merge BB with its sole successor. 421 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 422 if (BI && BI->isUnconditional() && 423 // The terminator must be the only non-phi instruction in BB. 424 BB.getFirstNonPHIOrDbg()->isTerminator() && 425 // Don't alter Loop headers and latches to ensure another pass can 426 // detect and transform nested loops later. 427 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 428 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 429 // BB is valid for cleanup here because we passed in DTU. F remains 430 // BB's parent until a DTU->getDomTree() event. 431 LVI->eraseBlock(&BB); 432 Changed = true; 433 } 434 } 435 EverChanged |= Changed; 436 } while (Changed); 437 438 LoopHeaders.clear(); 439 // Flush only the Dominator Tree. 440 DTU->getDomTree(); 441 LVI->enableDT(); 442 return EverChanged; 443 } 444 445 // Replace uses of Cond with ToVal when safe to do so. If all uses are 446 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 447 // because we may incorrectly replace uses when guards/assumes are uses of 448 // of `Cond` and we used the guards/assume to reason about the `Cond` value 449 // at the end of block. RAUW unconditionally replaces all uses 450 // including the guards/assumes themselves and the uses before the 451 // guard/assume. 452 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 453 assert(Cond->getType() == ToVal->getType()); 454 auto *BB = Cond->getParent(); 455 // We can unconditionally replace all uses in non-local blocks (i.e. uses 456 // strictly dominated by BB), since LVI information is true from the 457 // terminator of BB. 458 replaceNonLocalUsesWith(Cond, ToVal); 459 for (Instruction &I : reverse(*BB)) { 460 // Reached the Cond whose uses we are trying to replace, so there are no 461 // more uses. 462 if (&I == Cond) 463 break; 464 // We only replace uses in instructions that are guaranteed to reach the end 465 // of BB, where we know Cond is ToVal. 466 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 467 break; 468 I.replaceUsesOfWith(Cond, ToVal); 469 } 470 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 471 Cond->eraseFromParent(); 472 } 473 474 /// Return the cost of duplicating a piece of this block from first non-phi 475 /// and before StopAt instruction to thread across it. Stop scanning the block 476 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 477 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 478 Instruction *StopAt, 479 unsigned Threshold) { 480 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 481 /// Ignore PHI nodes, these will be flattened when duplication happens. 482 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 483 484 // FIXME: THREADING will delete values that are just used to compute the 485 // branch, so they shouldn't count against the duplication cost. 486 487 unsigned Bonus = 0; 488 if (BB->getTerminator() == StopAt) { 489 // Threading through a switch statement is particularly profitable. If this 490 // block ends in a switch, decrease its cost to make it more likely to 491 // happen. 492 if (isa<SwitchInst>(StopAt)) 493 Bonus = 6; 494 495 // The same holds for indirect branches, but slightly more so. 496 if (isa<IndirectBrInst>(StopAt)) 497 Bonus = 8; 498 } 499 500 // Bump the threshold up so the early exit from the loop doesn't skip the 501 // terminator-based Size adjustment at the end. 502 Threshold += Bonus; 503 504 // Sum up the cost of each instruction until we get to the terminator. Don't 505 // include the terminator because the copy won't include it. 506 unsigned Size = 0; 507 for (; &*I != StopAt; ++I) { 508 509 // Stop scanning the block if we've reached the threshold. 510 if (Size > Threshold) 511 return Size; 512 513 // Debugger intrinsics don't incur code size. 514 if (isa<DbgInfoIntrinsic>(I)) continue; 515 516 // If this is a pointer->pointer bitcast, it is free. 517 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 518 continue; 519 520 // Bail out if this instruction gives back a token type, it is not possible 521 // to duplicate it if it is used outside this BB. 522 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 523 return ~0U; 524 525 // All other instructions count for at least one unit. 526 ++Size; 527 528 // Calls are more expensive. If they are non-intrinsic calls, we model them 529 // as having cost of 4. If they are a non-vector intrinsic, we model them 530 // as having cost of 2 total, and if they are a vector intrinsic, we model 531 // them as having cost 1. 532 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 533 if (CI->cannotDuplicate() || CI->isConvergent()) 534 // Blocks with NoDuplicate are modelled as having infinite cost, so they 535 // are never duplicated. 536 return ~0U; 537 else if (!isa<IntrinsicInst>(CI)) 538 Size += 3; 539 else if (!CI->getType()->isVectorTy()) 540 Size += 1; 541 } 542 } 543 544 return Size > Bonus ? Size - Bonus : 0; 545 } 546 547 /// FindLoopHeaders - We do not want jump threading to turn proper loop 548 /// structures into irreducible loops. Doing this breaks up the loop nesting 549 /// hierarchy and pessimizes later transformations. To prevent this from 550 /// happening, we first have to find the loop headers. Here we approximate this 551 /// by finding targets of backedges in the CFG. 552 /// 553 /// Note that there definitely are cases when we want to allow threading of 554 /// edges across a loop header. For example, threading a jump from outside the 555 /// loop (the preheader) to an exit block of the loop is definitely profitable. 556 /// It is also almost always profitable to thread backedges from within the loop 557 /// to exit blocks, and is often profitable to thread backedges to other blocks 558 /// within the loop (forming a nested loop). This simple analysis is not rich 559 /// enough to track all of these properties and keep it up-to-date as the CFG 560 /// mutates, so we don't allow any of these transformations. 561 void JumpThreadingPass::FindLoopHeaders(Function &F) { 562 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 563 FindFunctionBackedges(F, Edges); 564 565 for (const auto &Edge : Edges) 566 LoopHeaders.insert(Edge.second); 567 } 568 569 /// getKnownConstant - Helper method to determine if we can thread over a 570 /// terminator with the given value as its condition, and if so what value to 571 /// use for that. What kind of value this is depends on whether we want an 572 /// integer or a block address, but an undef is always accepted. 573 /// Returns null if Val is null or not an appropriate constant. 574 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 575 if (!Val) 576 return nullptr; 577 578 // Undef is "known" enough. 579 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 580 return U; 581 582 if (Preference == WantBlockAddress) 583 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 584 585 return dyn_cast<ConstantInt>(Val); 586 } 587 588 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 589 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 590 /// in any of our predecessors. If so, return the known list of value and pred 591 /// BB in the result vector. 592 /// 593 /// This returns true if there were any known values. 594 bool JumpThreadingPass::ComputeValueKnownInPredecessorsImpl( 595 Value *V, BasicBlock *BB, PredValueInfo &Result, 596 ConstantPreference Preference, 597 DenseSet<std::pair<Value *, BasicBlock *>> &RecursionSet, 598 Instruction *CxtI) { 599 // This method walks up use-def chains recursively. Because of this, we could 600 // get into an infinite loop going around loops in the use-def chain. To 601 // prevent this, keep track of what (value, block) pairs we've already visited 602 // and terminate the search if we loop back to them 603 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 604 return false; 605 606 // If V is a constant, then it is known in all predecessors. 607 if (Constant *KC = getKnownConstant(V, Preference)) { 608 for (BasicBlock *Pred : predecessors(BB)) 609 Result.push_back(std::make_pair(KC, Pred)); 610 611 return !Result.empty(); 612 } 613 614 // If V is a non-instruction value, or an instruction in a different block, 615 // then it can't be derived from a PHI. 616 Instruction *I = dyn_cast<Instruction>(V); 617 if (!I || I->getParent() != BB) { 618 619 // Okay, if this is a live-in value, see if it has a known value at the end 620 // of any of our predecessors. 621 // 622 // FIXME: This should be an edge property, not a block end property. 623 /// TODO: Per PR2563, we could infer value range information about a 624 /// predecessor based on its terminator. 625 // 626 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 627 // "I" is a non-local compare-with-a-constant instruction. This would be 628 // able to handle value inequalities better, for example if the compare is 629 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 630 // Perhaps getConstantOnEdge should be smart enough to do this? 631 632 if (DTU->hasPendingDomTreeUpdates()) 633 LVI->disableDT(); 634 else 635 LVI->enableDT(); 636 for (BasicBlock *P : predecessors(BB)) { 637 // If the value is known by LazyValueInfo to be a constant in a 638 // predecessor, use that information to try to thread this block. 639 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 640 if (Constant *KC = getKnownConstant(PredCst, Preference)) 641 Result.push_back(std::make_pair(KC, P)); 642 } 643 644 return !Result.empty(); 645 } 646 647 /// If I is a PHI node, then we know the incoming values for any constants. 648 if (PHINode *PN = dyn_cast<PHINode>(I)) { 649 if (DTU->hasPendingDomTreeUpdates()) 650 LVI->disableDT(); 651 else 652 LVI->enableDT(); 653 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 654 Value *InVal = PN->getIncomingValue(i); 655 if (Constant *KC = getKnownConstant(InVal, Preference)) { 656 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 657 } else { 658 Constant *CI = LVI->getConstantOnEdge(InVal, 659 PN->getIncomingBlock(i), 660 BB, CxtI); 661 if (Constant *KC = getKnownConstant(CI, Preference)) 662 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 663 } 664 } 665 666 return !Result.empty(); 667 } 668 669 // Handle Cast instructions. Only see through Cast when the source operand is 670 // PHI or Cmp to save the compilation time. 671 if (CastInst *CI = dyn_cast<CastInst>(I)) { 672 Value *Source = CI->getOperand(0); 673 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 674 return false; 675 ComputeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 676 RecursionSet, CxtI); 677 if (Result.empty()) 678 return false; 679 680 // Convert the known values. 681 for (auto &R : Result) 682 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 683 684 return true; 685 } 686 687 // Handle some boolean conditions. 688 if (I->getType()->getPrimitiveSizeInBits() == 1) { 689 assert(Preference == WantInteger && "One-bit non-integer type?"); 690 // X | true -> true 691 // X & false -> false 692 if (I->getOpcode() == Instruction::Or || 693 I->getOpcode() == Instruction::And) { 694 PredValueInfoTy LHSVals, RHSVals; 695 696 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 697 WantInteger, RecursionSet, CxtI); 698 ComputeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals, 699 WantInteger, RecursionSet, CxtI); 700 701 if (LHSVals.empty() && RHSVals.empty()) 702 return false; 703 704 ConstantInt *InterestingVal; 705 if (I->getOpcode() == Instruction::Or) 706 InterestingVal = ConstantInt::getTrue(I->getContext()); 707 else 708 InterestingVal = ConstantInt::getFalse(I->getContext()); 709 710 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 711 712 // Scan for the sentinel. If we find an undef, force it to the 713 // interesting value: x|undef -> true and x&undef -> false. 714 for (const auto &LHSVal : LHSVals) 715 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 716 Result.emplace_back(InterestingVal, LHSVal.second); 717 LHSKnownBBs.insert(LHSVal.second); 718 } 719 for (const auto &RHSVal : RHSVals) 720 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 721 // If we already inferred a value for this block on the LHS, don't 722 // re-add it. 723 if (!LHSKnownBBs.count(RHSVal.second)) 724 Result.emplace_back(InterestingVal, RHSVal.second); 725 } 726 727 return !Result.empty(); 728 } 729 730 // Handle the NOT form of XOR. 731 if (I->getOpcode() == Instruction::Xor && 732 isa<ConstantInt>(I->getOperand(1)) && 733 cast<ConstantInt>(I->getOperand(1))->isOne()) { 734 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 735 WantInteger, RecursionSet, CxtI); 736 if (Result.empty()) 737 return false; 738 739 // Invert the known values. 740 for (auto &R : Result) 741 R.first = ConstantExpr::getNot(R.first); 742 743 return true; 744 } 745 746 // Try to simplify some other binary operator values. 747 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 748 assert(Preference != WantBlockAddress 749 && "A binary operator creating a block address?"); 750 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 751 PredValueInfoTy LHSVals; 752 ComputeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 753 WantInteger, RecursionSet, CxtI); 754 755 // Try to use constant folding to simplify the binary operator. 756 for (const auto &LHSVal : LHSVals) { 757 Constant *V = LHSVal.first; 758 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 759 760 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 761 Result.push_back(std::make_pair(KC, LHSVal.second)); 762 } 763 } 764 765 return !Result.empty(); 766 } 767 768 // Handle compare with phi operand, where the PHI is defined in this block. 769 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 770 assert(Preference == WantInteger && "Compares only produce integers"); 771 Type *CmpType = Cmp->getType(); 772 Value *CmpLHS = Cmp->getOperand(0); 773 Value *CmpRHS = Cmp->getOperand(1); 774 CmpInst::Predicate Pred = Cmp->getPredicate(); 775 776 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 777 if (!PN) 778 PN = dyn_cast<PHINode>(CmpRHS); 779 if (PN && PN->getParent() == BB) { 780 const DataLayout &DL = PN->getModule()->getDataLayout(); 781 // We can do this simplification if any comparisons fold to true or false. 782 // See if any do. 783 if (DTU->hasPendingDomTreeUpdates()) 784 LVI->disableDT(); 785 else 786 LVI->enableDT(); 787 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 788 BasicBlock *PredBB = PN->getIncomingBlock(i); 789 Value *LHS, *RHS; 790 if (PN == CmpLHS) { 791 LHS = PN->getIncomingValue(i); 792 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 793 } else { 794 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 795 RHS = PN->getIncomingValue(i); 796 } 797 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 798 if (!Res) { 799 if (!isa<Constant>(RHS)) 800 continue; 801 802 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 803 auto LHSInst = dyn_cast<Instruction>(LHS); 804 if (LHSInst && LHSInst->getParent() == BB) 805 continue; 806 807 LazyValueInfo::Tristate 808 ResT = LVI->getPredicateOnEdge(Pred, LHS, 809 cast<Constant>(RHS), PredBB, BB, 810 CxtI ? CxtI : Cmp); 811 if (ResT == LazyValueInfo::Unknown) 812 continue; 813 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 814 } 815 816 if (Constant *KC = getKnownConstant(Res, WantInteger)) 817 Result.push_back(std::make_pair(KC, PredBB)); 818 } 819 820 return !Result.empty(); 821 } 822 823 // If comparing a live-in value against a constant, see if we know the 824 // live-in value on any predecessors. 825 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 826 Constant *CmpConst = cast<Constant>(CmpRHS); 827 828 if (!isa<Instruction>(CmpLHS) || 829 cast<Instruction>(CmpLHS)->getParent() != BB) { 830 if (DTU->hasPendingDomTreeUpdates()) 831 LVI->disableDT(); 832 else 833 LVI->enableDT(); 834 for (BasicBlock *P : predecessors(BB)) { 835 // If the value is known by LazyValueInfo to be a constant in a 836 // predecessor, use that information to try to thread this block. 837 LazyValueInfo::Tristate Res = 838 LVI->getPredicateOnEdge(Pred, CmpLHS, 839 CmpConst, P, BB, CxtI ? CxtI : Cmp); 840 if (Res == LazyValueInfo::Unknown) 841 continue; 842 843 Constant *ResC = ConstantInt::get(CmpType, Res); 844 Result.push_back(std::make_pair(ResC, P)); 845 } 846 847 return !Result.empty(); 848 } 849 850 // InstCombine can fold some forms of constant range checks into 851 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 852 // x as a live-in. 853 { 854 using namespace PatternMatch; 855 856 Value *AddLHS; 857 ConstantInt *AddConst; 858 if (isa<ConstantInt>(CmpConst) && 859 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 860 if (!isa<Instruction>(AddLHS) || 861 cast<Instruction>(AddLHS)->getParent() != BB) { 862 if (DTU->hasPendingDomTreeUpdates()) 863 LVI->disableDT(); 864 else 865 LVI->enableDT(); 866 for (BasicBlock *P : predecessors(BB)) { 867 // If the value is known by LazyValueInfo to be a ConstantRange in 868 // a predecessor, use that information to try to thread this 869 // block. 870 ConstantRange CR = LVI->getConstantRangeOnEdge( 871 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 872 // Propagate the range through the addition. 873 CR = CR.add(AddConst->getValue()); 874 875 // Get the range where the compare returns true. 876 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 877 Pred, cast<ConstantInt>(CmpConst)->getValue()); 878 879 Constant *ResC; 880 if (CmpRange.contains(CR)) 881 ResC = ConstantInt::getTrue(CmpType); 882 else if (CmpRange.inverse().contains(CR)) 883 ResC = ConstantInt::getFalse(CmpType); 884 else 885 continue; 886 887 Result.push_back(std::make_pair(ResC, P)); 888 } 889 890 return !Result.empty(); 891 } 892 } 893 } 894 895 // Try to find a constant value for the LHS of a comparison, 896 // and evaluate it statically if we can. 897 PredValueInfoTy LHSVals; 898 ComputeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 899 WantInteger, RecursionSet, CxtI); 900 901 for (const auto &LHSVal : LHSVals) { 902 Constant *V = LHSVal.first; 903 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 904 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 905 Result.push_back(std::make_pair(KC, LHSVal.second)); 906 } 907 908 return !Result.empty(); 909 } 910 } 911 912 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 913 // Handle select instructions where at least one operand is a known constant 914 // and we can figure out the condition value for any predecessor block. 915 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 916 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 917 PredValueInfoTy Conds; 918 if ((TrueVal || FalseVal) && 919 ComputeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 920 WantInteger, RecursionSet, CxtI)) { 921 for (auto &C : Conds) { 922 Constant *Cond = C.first; 923 924 // Figure out what value to use for the condition. 925 bool KnownCond; 926 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 927 // A known boolean. 928 KnownCond = CI->isOne(); 929 } else { 930 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 931 // Either operand will do, so be sure to pick the one that's a known 932 // constant. 933 // FIXME: Do this more cleverly if both values are known constants? 934 KnownCond = (TrueVal != nullptr); 935 } 936 937 // See if the select has a known constant value for this predecessor. 938 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 939 Result.push_back(std::make_pair(Val, C.second)); 940 } 941 942 return !Result.empty(); 943 } 944 } 945 946 // If all else fails, see if LVI can figure out a constant value for us. 947 if (DTU->hasPendingDomTreeUpdates()) 948 LVI->disableDT(); 949 else 950 LVI->enableDT(); 951 Constant *CI = LVI->getConstant(V, BB, CxtI); 952 if (Constant *KC = getKnownConstant(CI, Preference)) { 953 for (BasicBlock *Pred : predecessors(BB)) 954 Result.push_back(std::make_pair(KC, Pred)); 955 } 956 957 return !Result.empty(); 958 } 959 960 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 961 /// in an undefined jump, decide which block is best to revector to. 962 /// 963 /// Since we can pick an arbitrary destination, we pick the successor with the 964 /// fewest predecessors. This should reduce the in-degree of the others. 965 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 966 Instruction *BBTerm = BB->getTerminator(); 967 unsigned MinSucc = 0; 968 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 969 // Compute the successor with the minimum number of predecessors. 970 unsigned MinNumPreds = pred_size(TestBB); 971 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 972 TestBB = BBTerm->getSuccessor(i); 973 unsigned NumPreds = pred_size(TestBB); 974 if (NumPreds < MinNumPreds) { 975 MinSucc = i; 976 MinNumPreds = NumPreds; 977 } 978 } 979 980 return MinSucc; 981 } 982 983 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 984 if (!BB->hasAddressTaken()) return false; 985 986 // If the block has its address taken, it may be a tree of dead constants 987 // hanging off of it. These shouldn't keep the block alive. 988 BlockAddress *BA = BlockAddress::get(BB); 989 BA->removeDeadConstantUsers(); 990 return !BA->use_empty(); 991 } 992 993 /// ProcessBlock - If there are any predecessors whose control can be threaded 994 /// through to a successor, transform them now. 995 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 996 // If the block is trivially dead, just return and let the caller nuke it. 997 // This simplifies other transformations. 998 if (DTU->isBBPendingDeletion(BB) || 999 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1000 return false; 1001 1002 // If this block has a single predecessor, and if that pred has a single 1003 // successor, merge the blocks. This encourages recursive jump threading 1004 // because now the condition in this block can be threaded through 1005 // predecessors of our predecessor block. 1006 if (MaybeMergeBasicBlockIntoOnlyPred(BB)) 1007 return true; 1008 1009 if (TryToUnfoldSelectInCurrBB(BB)) 1010 return true; 1011 1012 // Look if we can propagate guards to predecessors. 1013 if (HasGuards && ProcessGuards(BB)) 1014 return true; 1015 1016 // What kind of constant we're looking for. 1017 ConstantPreference Preference = WantInteger; 1018 1019 // Look to see if the terminator is a conditional branch, switch or indirect 1020 // branch, if not we can't thread it. 1021 Value *Condition; 1022 Instruction *Terminator = BB->getTerminator(); 1023 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1024 // Can't thread an unconditional jump. 1025 if (BI->isUnconditional()) return false; 1026 Condition = BI->getCondition(); 1027 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1028 Condition = SI->getCondition(); 1029 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1030 // Can't thread indirect branch with no successors. 1031 if (IB->getNumSuccessors() == 0) return false; 1032 Condition = IB->getAddress()->stripPointerCasts(); 1033 Preference = WantBlockAddress; 1034 } else { 1035 return false; // Must be an invoke or callbr. 1036 } 1037 1038 // Run constant folding to see if we can reduce the condition to a simple 1039 // constant. 1040 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1041 Value *SimpleVal = 1042 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1043 if (SimpleVal) { 1044 I->replaceAllUsesWith(SimpleVal); 1045 if (isInstructionTriviallyDead(I, TLI)) 1046 I->eraseFromParent(); 1047 Condition = SimpleVal; 1048 } 1049 } 1050 1051 // If the terminator is branching on an undef, we can pick any of the 1052 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1053 if (isa<UndefValue>(Condition)) { 1054 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1055 std::vector<DominatorTree::UpdateType> Updates; 1056 1057 // Fold the branch/switch. 1058 Instruction *BBTerm = BB->getTerminator(); 1059 Updates.reserve(BBTerm->getNumSuccessors()); 1060 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1061 if (i == BestSucc) continue; 1062 BasicBlock *Succ = BBTerm->getSuccessor(i); 1063 Succ->removePredecessor(BB, true); 1064 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1065 } 1066 1067 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1068 << "' folding undef terminator: " << *BBTerm << '\n'); 1069 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1070 BBTerm->eraseFromParent(); 1071 DTU->applyUpdatesPermissive(Updates); 1072 return true; 1073 } 1074 1075 // If the terminator of this block is branching on a constant, simplify the 1076 // terminator to an unconditional branch. This can occur due to threading in 1077 // other blocks. 1078 if (getKnownConstant(Condition, Preference)) { 1079 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1080 << "' folding terminator: " << *BB->getTerminator() 1081 << '\n'); 1082 ++NumFolds; 1083 ConstantFoldTerminator(BB, true, nullptr, DTU); 1084 return true; 1085 } 1086 1087 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1088 1089 // All the rest of our checks depend on the condition being an instruction. 1090 if (!CondInst) { 1091 // FIXME: Unify this with code below. 1092 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1093 return true; 1094 return false; 1095 } 1096 1097 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1098 // If we're branching on a conditional, LVI might be able to determine 1099 // it's value at the branch instruction. We only handle comparisons 1100 // against a constant at this time. 1101 // TODO: This should be extended to handle switches as well. 1102 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1103 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1104 if (CondBr && CondConst) { 1105 // We should have returned as soon as we turn a conditional branch to 1106 // unconditional. Because its no longer interesting as far as jump 1107 // threading is concerned. 1108 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1109 1110 if (DTU->hasPendingDomTreeUpdates()) 1111 LVI->disableDT(); 1112 else 1113 LVI->enableDT(); 1114 LazyValueInfo::Tristate Ret = 1115 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1116 CondConst, CondBr); 1117 if (Ret != LazyValueInfo::Unknown) { 1118 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1119 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1120 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1121 ToRemoveSucc->removePredecessor(BB, true); 1122 BranchInst *UncondBr = 1123 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1124 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1125 CondBr->eraseFromParent(); 1126 if (CondCmp->use_empty()) 1127 CondCmp->eraseFromParent(); 1128 // We can safely replace *some* uses of the CondInst if it has 1129 // exactly one value as returned by LVI. RAUW is incorrect in the 1130 // presence of guards and assumes, that have the `Cond` as the use. This 1131 // is because we use the guards/assume to reason about the `Cond` value 1132 // at the end of block, but RAUW unconditionally replaces all uses 1133 // including the guards/assumes themselves and the uses before the 1134 // guard/assume. 1135 else if (CondCmp->getParent() == BB) { 1136 auto *CI = Ret == LazyValueInfo::True ? 1137 ConstantInt::getTrue(CondCmp->getType()) : 1138 ConstantInt::getFalse(CondCmp->getType()); 1139 ReplaceFoldableUses(CondCmp, CI); 1140 } 1141 DTU->applyUpdatesPermissive( 1142 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1143 return true; 1144 } 1145 1146 // We did not manage to simplify this branch, try to see whether 1147 // CondCmp depends on a known phi-select pattern. 1148 if (TryToUnfoldSelect(CondCmp, BB)) 1149 return true; 1150 } 1151 } 1152 1153 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1154 if (TryToUnfoldSelect(SI, BB)) 1155 return true; 1156 1157 // Check for some cases that are worth simplifying. Right now we want to look 1158 // for loads that are used by a switch or by the condition for the branch. If 1159 // we see one, check to see if it's partially redundant. If so, insert a PHI 1160 // which can then be used to thread the values. 1161 Value *SimplifyValue = CondInst; 1162 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1163 if (isa<Constant>(CondCmp->getOperand(1))) 1164 SimplifyValue = CondCmp->getOperand(0); 1165 1166 // TODO: There are other places where load PRE would be profitable, such as 1167 // more complex comparisons. 1168 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1169 if (SimplifyPartiallyRedundantLoad(LoadI)) 1170 return true; 1171 1172 // Before threading, try to propagate profile data backwards: 1173 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1174 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1175 updatePredecessorProfileMetadata(PN, BB); 1176 1177 // Handle a variety of cases where we are branching on something derived from 1178 // a PHI node in the current block. If we can prove that any predecessors 1179 // compute a predictable value based on a PHI node, thread those predecessors. 1180 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1181 return true; 1182 1183 // If this is an otherwise-unfoldable branch on a phi node in the current 1184 // block, see if we can simplify. 1185 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1186 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1187 return ProcessBranchOnPHI(PN); 1188 1189 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1190 if (CondInst->getOpcode() == Instruction::Xor && 1191 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1192 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1193 1194 // Search for a stronger dominating condition that can be used to simplify a 1195 // conditional branch leaving BB. 1196 if (ProcessImpliedCondition(BB)) 1197 return true; 1198 1199 return false; 1200 } 1201 1202 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1203 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1204 if (!BI || !BI->isConditional()) 1205 return false; 1206 1207 Value *Cond = BI->getCondition(); 1208 BasicBlock *CurrentBB = BB; 1209 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1210 unsigned Iter = 0; 1211 1212 auto &DL = BB->getModule()->getDataLayout(); 1213 1214 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1215 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1216 if (!PBI || !PBI->isConditional()) 1217 return false; 1218 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1219 return false; 1220 1221 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1222 Optional<bool> Implication = 1223 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1224 if (Implication) { 1225 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1226 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1227 RemoveSucc->removePredecessor(BB); 1228 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1229 UncondBI->setDebugLoc(BI->getDebugLoc()); 1230 BI->eraseFromParent(); 1231 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1232 return true; 1233 } 1234 CurrentBB = CurrentPred; 1235 CurrentPred = CurrentBB->getSinglePredecessor(); 1236 } 1237 1238 return false; 1239 } 1240 1241 /// Return true if Op is an instruction defined in the given block. 1242 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1243 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1244 if (OpInst->getParent() == BB) 1245 return true; 1246 return false; 1247 } 1248 1249 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1250 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1251 /// This is an important optimization that encourages jump threading, and needs 1252 /// to be run interlaced with other jump threading tasks. 1253 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1254 // Don't hack volatile and ordered loads. 1255 if (!LoadI->isUnordered()) return false; 1256 1257 // If the load is defined in a block with exactly one predecessor, it can't be 1258 // partially redundant. 1259 BasicBlock *LoadBB = LoadI->getParent(); 1260 if (LoadBB->getSinglePredecessor()) 1261 return false; 1262 1263 // If the load is defined in an EH pad, it can't be partially redundant, 1264 // because the edges between the invoke and the EH pad cannot have other 1265 // instructions between them. 1266 if (LoadBB->isEHPad()) 1267 return false; 1268 1269 Value *LoadedPtr = LoadI->getOperand(0); 1270 1271 // If the loaded operand is defined in the LoadBB and its not a phi, 1272 // it can't be available in predecessors. 1273 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1274 return false; 1275 1276 // Scan a few instructions up from the load, to see if it is obviously live at 1277 // the entry to its block. 1278 BasicBlock::iterator BBIt(LoadI); 1279 bool IsLoadCSE; 1280 if (Value *AvailableVal = FindAvailableLoadedValue( 1281 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1282 // If the value of the load is locally available within the block, just use 1283 // it. This frequently occurs for reg2mem'd allocas. 1284 1285 if (IsLoadCSE) { 1286 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1287 combineMetadataForCSE(NLoadI, LoadI, false); 1288 }; 1289 1290 // If the returned value is the load itself, replace with an undef. This can 1291 // only happen in dead loops. 1292 if (AvailableVal == LoadI) 1293 AvailableVal = UndefValue::get(LoadI->getType()); 1294 if (AvailableVal->getType() != LoadI->getType()) 1295 AvailableVal = CastInst::CreateBitOrPointerCast( 1296 AvailableVal, LoadI->getType(), "", LoadI); 1297 LoadI->replaceAllUsesWith(AvailableVal); 1298 LoadI->eraseFromParent(); 1299 return true; 1300 } 1301 1302 // Otherwise, if we scanned the whole block and got to the top of the block, 1303 // we know the block is locally transparent to the load. If not, something 1304 // might clobber its value. 1305 if (BBIt != LoadBB->begin()) 1306 return false; 1307 1308 // If all of the loads and stores that feed the value have the same AA tags, 1309 // then we can propagate them onto any newly inserted loads. 1310 AAMDNodes AATags; 1311 LoadI->getAAMetadata(AATags); 1312 1313 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1314 1315 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1316 1317 AvailablePredsTy AvailablePreds; 1318 BasicBlock *OneUnavailablePred = nullptr; 1319 SmallVector<LoadInst*, 8> CSELoads; 1320 1321 // If we got here, the loaded value is transparent through to the start of the 1322 // block. Check to see if it is available in any of the predecessor blocks. 1323 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1324 // If we already scanned this predecessor, skip it. 1325 if (!PredsScanned.insert(PredBB).second) 1326 continue; 1327 1328 BBIt = PredBB->end(); 1329 unsigned NumScanedInst = 0; 1330 Value *PredAvailable = nullptr; 1331 // NOTE: We don't CSE load that is volatile or anything stronger than 1332 // unordered, that should have been checked when we entered the function. 1333 assert(LoadI->isUnordered() && 1334 "Attempting to CSE volatile or atomic loads"); 1335 // If this is a load on a phi pointer, phi-translate it and search 1336 // for available load/store to the pointer in predecessors. 1337 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1338 PredAvailable = FindAvailablePtrLoadStore( 1339 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1340 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1341 1342 // If PredBB has a single predecessor, continue scanning through the 1343 // single predecessor. 1344 BasicBlock *SinglePredBB = PredBB; 1345 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1346 NumScanedInst < DefMaxInstsToScan) { 1347 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1348 if (SinglePredBB) { 1349 BBIt = SinglePredBB->end(); 1350 PredAvailable = FindAvailablePtrLoadStore( 1351 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1352 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1353 &NumScanedInst); 1354 } 1355 } 1356 1357 if (!PredAvailable) { 1358 OneUnavailablePred = PredBB; 1359 continue; 1360 } 1361 1362 if (IsLoadCSE) 1363 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1364 1365 // If so, this load is partially redundant. Remember this info so that we 1366 // can create a PHI node. 1367 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1368 } 1369 1370 // If the loaded value isn't available in any predecessor, it isn't partially 1371 // redundant. 1372 if (AvailablePreds.empty()) return false; 1373 1374 // Okay, the loaded value is available in at least one (and maybe all!) 1375 // predecessors. If the value is unavailable in more than one unique 1376 // predecessor, we want to insert a merge block for those common predecessors. 1377 // This ensures that we only have to insert one reload, thus not increasing 1378 // code size. 1379 BasicBlock *UnavailablePred = nullptr; 1380 1381 // If the value is unavailable in one of predecessors, we will end up 1382 // inserting a new instruction into them. It is only valid if all the 1383 // instructions before LoadI are guaranteed to pass execution to its 1384 // successor, or if LoadI is safe to speculate. 1385 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1386 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1387 // It requires domination tree analysis, so for this simple case it is an 1388 // overkill. 1389 if (PredsScanned.size() != AvailablePreds.size() && 1390 !isSafeToSpeculativelyExecute(LoadI)) 1391 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1392 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1393 return false; 1394 1395 // If there is exactly one predecessor where the value is unavailable, the 1396 // already computed 'OneUnavailablePred' block is it. If it ends in an 1397 // unconditional branch, we know that it isn't a critical edge. 1398 if (PredsScanned.size() == AvailablePreds.size()+1 && 1399 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1400 UnavailablePred = OneUnavailablePred; 1401 } else if (PredsScanned.size() != AvailablePreds.size()) { 1402 // Otherwise, we had multiple unavailable predecessors or we had a critical 1403 // edge from the one. 1404 SmallVector<BasicBlock*, 8> PredsToSplit; 1405 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1406 1407 for (const auto &AvailablePred : AvailablePreds) 1408 AvailablePredSet.insert(AvailablePred.first); 1409 1410 // Add all the unavailable predecessors to the PredsToSplit list. 1411 for (BasicBlock *P : predecessors(LoadBB)) { 1412 // If the predecessor is an indirect goto, we can't split the edge. 1413 // Same for CallBr. 1414 if (isa<IndirectBrInst>(P->getTerminator()) || 1415 isa<CallBrInst>(P->getTerminator())) 1416 return false; 1417 1418 if (!AvailablePredSet.count(P)) 1419 PredsToSplit.push_back(P); 1420 } 1421 1422 // Split them out to their own block. 1423 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1424 } 1425 1426 // If the value isn't available in all predecessors, then there will be 1427 // exactly one where it isn't available. Insert a load on that edge and add 1428 // it to the AvailablePreds list. 1429 if (UnavailablePred) { 1430 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1431 "Can't handle critical edge here!"); 1432 LoadInst *NewVal = new LoadInst( 1433 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1434 LoadI->getName() + ".pr", false, MaybeAlign(LoadI->getAlignment()), 1435 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1436 UnavailablePred->getTerminator()); 1437 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1438 if (AATags) 1439 NewVal->setAAMetadata(AATags); 1440 1441 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1442 } 1443 1444 // Now we know that each predecessor of this block has a value in 1445 // AvailablePreds, sort them for efficient access as we're walking the preds. 1446 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1447 1448 // Create a PHI node at the start of the block for the PRE'd load value. 1449 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1450 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1451 &LoadBB->front()); 1452 PN->takeName(LoadI); 1453 PN->setDebugLoc(LoadI->getDebugLoc()); 1454 1455 // Insert new entries into the PHI for each predecessor. A single block may 1456 // have multiple entries here. 1457 for (pred_iterator PI = PB; PI != PE; ++PI) { 1458 BasicBlock *P = *PI; 1459 AvailablePredsTy::iterator I = 1460 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1461 1462 assert(I != AvailablePreds.end() && I->first == P && 1463 "Didn't find entry for predecessor!"); 1464 1465 // If we have an available predecessor but it requires casting, insert the 1466 // cast in the predecessor and use the cast. Note that we have to update the 1467 // AvailablePreds vector as we go so that all of the PHI entries for this 1468 // predecessor use the same bitcast. 1469 Value *&PredV = I->second; 1470 if (PredV->getType() != LoadI->getType()) 1471 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1472 P->getTerminator()); 1473 1474 PN->addIncoming(PredV, I->first); 1475 } 1476 1477 for (LoadInst *PredLoadI : CSELoads) { 1478 combineMetadataForCSE(PredLoadI, LoadI, true); 1479 } 1480 1481 LoadI->replaceAllUsesWith(PN); 1482 LoadI->eraseFromParent(); 1483 1484 return true; 1485 } 1486 1487 /// FindMostPopularDest - The specified list contains multiple possible 1488 /// threadable destinations. Pick the one that occurs the most frequently in 1489 /// the list. 1490 static BasicBlock * 1491 FindMostPopularDest(BasicBlock *BB, 1492 const SmallVectorImpl<std::pair<BasicBlock *, 1493 BasicBlock *>> &PredToDestList) { 1494 assert(!PredToDestList.empty()); 1495 1496 // Determine popularity. If there are multiple possible destinations, we 1497 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1498 // blocks with known and real destinations to threading undef. We'll handle 1499 // them later if interesting. 1500 DenseMap<BasicBlock*, unsigned> DestPopularity; 1501 for (const auto &PredToDest : PredToDestList) 1502 if (PredToDest.second) 1503 DestPopularity[PredToDest.second]++; 1504 1505 if (DestPopularity.empty()) 1506 return nullptr; 1507 1508 // Find the most popular dest. 1509 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1510 BasicBlock *MostPopularDest = DPI->first; 1511 unsigned Popularity = DPI->second; 1512 SmallVector<BasicBlock*, 4> SamePopularity; 1513 1514 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1515 // If the popularity of this entry isn't higher than the popularity we've 1516 // seen so far, ignore it. 1517 if (DPI->second < Popularity) 1518 ; // ignore. 1519 else if (DPI->second == Popularity) { 1520 // If it is the same as what we've seen so far, keep track of it. 1521 SamePopularity.push_back(DPI->first); 1522 } else { 1523 // If it is more popular, remember it. 1524 SamePopularity.clear(); 1525 MostPopularDest = DPI->first; 1526 Popularity = DPI->second; 1527 } 1528 } 1529 1530 // Okay, now we know the most popular destination. If there is more than one 1531 // destination, we need to determine one. This is arbitrary, but we need 1532 // to make a deterministic decision. Pick the first one that appears in the 1533 // successor list. 1534 if (!SamePopularity.empty()) { 1535 SamePopularity.push_back(MostPopularDest); 1536 Instruction *TI = BB->getTerminator(); 1537 for (unsigned i = 0; ; ++i) { 1538 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1539 1540 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1541 continue; 1542 1543 MostPopularDest = TI->getSuccessor(i); 1544 break; 1545 } 1546 } 1547 1548 // Okay, we have finally picked the most popular destination. 1549 return MostPopularDest; 1550 } 1551 1552 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1553 ConstantPreference Preference, 1554 Instruction *CxtI) { 1555 // If threading this would thread across a loop header, don't even try to 1556 // thread the edge. 1557 if (LoopHeaders.count(BB)) 1558 return false; 1559 1560 PredValueInfoTy PredValues; 1561 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1562 return false; 1563 1564 assert(!PredValues.empty() && 1565 "ComputeValueKnownInPredecessors returned true with no values"); 1566 1567 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1568 for (const auto &PredValue : PredValues) { 1569 dbgs() << " BB '" << BB->getName() 1570 << "': FOUND condition = " << *PredValue.first 1571 << " for pred '" << PredValue.second->getName() << "'.\n"; 1572 }); 1573 1574 // Decide what we want to thread through. Convert our list of known values to 1575 // a list of known destinations for each pred. This also discards duplicate 1576 // predecessors and keeps track of the undefined inputs (which are represented 1577 // as a null dest in the PredToDestList). 1578 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1579 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1580 1581 BasicBlock *OnlyDest = nullptr; 1582 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1583 Constant *OnlyVal = nullptr; 1584 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1585 1586 for (const auto &PredValue : PredValues) { 1587 BasicBlock *Pred = PredValue.second; 1588 if (!SeenPreds.insert(Pred).second) 1589 continue; // Duplicate predecessor entry. 1590 1591 Constant *Val = PredValue.first; 1592 1593 BasicBlock *DestBB; 1594 if (isa<UndefValue>(Val)) 1595 DestBB = nullptr; 1596 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1597 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1598 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1599 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1600 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1601 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1602 } else { 1603 assert(isa<IndirectBrInst>(BB->getTerminator()) 1604 && "Unexpected terminator"); 1605 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1606 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1607 } 1608 1609 // If we have exactly one destination, remember it for efficiency below. 1610 if (PredToDestList.empty()) { 1611 OnlyDest = DestBB; 1612 OnlyVal = Val; 1613 } else { 1614 if (OnlyDest != DestBB) 1615 OnlyDest = MultipleDestSentinel; 1616 // It possible we have same destination, but different value, e.g. default 1617 // case in switchinst. 1618 if (Val != OnlyVal) 1619 OnlyVal = MultipleVal; 1620 } 1621 1622 // If the predecessor ends with an indirect goto, we can't change its 1623 // destination. Same for CallBr. 1624 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1625 isa<CallBrInst>(Pred->getTerminator())) 1626 continue; 1627 1628 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1629 } 1630 1631 // If all edges were unthreadable, we fail. 1632 if (PredToDestList.empty()) 1633 return false; 1634 1635 // If all the predecessors go to a single known successor, we want to fold, 1636 // not thread. By doing so, we do not need to duplicate the current block and 1637 // also miss potential opportunities in case we dont/cant duplicate. 1638 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1639 if (BB->hasNPredecessors(PredToDestList.size())) { 1640 bool SeenFirstBranchToOnlyDest = false; 1641 std::vector <DominatorTree::UpdateType> Updates; 1642 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1643 for (BasicBlock *SuccBB : successors(BB)) { 1644 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1645 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1646 } else { 1647 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1648 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1649 } 1650 } 1651 1652 // Finally update the terminator. 1653 Instruction *Term = BB->getTerminator(); 1654 BranchInst::Create(OnlyDest, Term); 1655 Term->eraseFromParent(); 1656 DTU->applyUpdatesPermissive(Updates); 1657 1658 // If the condition is now dead due to the removal of the old terminator, 1659 // erase it. 1660 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1661 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1662 CondInst->eraseFromParent(); 1663 // We can safely replace *some* uses of the CondInst if it has 1664 // exactly one value as returned by LVI. RAUW is incorrect in the 1665 // presence of guards and assumes, that have the `Cond` as the use. This 1666 // is because we use the guards/assume to reason about the `Cond` value 1667 // at the end of block, but RAUW unconditionally replaces all uses 1668 // including the guards/assumes themselves and the uses before the 1669 // guard/assume. 1670 else if (OnlyVal && OnlyVal != MultipleVal && 1671 CondInst->getParent() == BB) 1672 ReplaceFoldableUses(CondInst, OnlyVal); 1673 } 1674 return true; 1675 } 1676 } 1677 1678 // Determine which is the most common successor. If we have many inputs and 1679 // this block is a switch, we want to start by threading the batch that goes 1680 // to the most popular destination first. If we only know about one 1681 // threadable destination (the common case) we can avoid this. 1682 BasicBlock *MostPopularDest = OnlyDest; 1683 1684 if (MostPopularDest == MultipleDestSentinel) { 1685 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1686 // won't process them, but we might have other destination that are eligible 1687 // and we still want to process. 1688 erase_if(PredToDestList, 1689 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1690 return LoopHeaders.count(PredToDest.second) != 0; 1691 }); 1692 1693 if (PredToDestList.empty()) 1694 return false; 1695 1696 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1697 } 1698 1699 // Now that we know what the most popular destination is, factor all 1700 // predecessors that will jump to it into a single predecessor. 1701 SmallVector<BasicBlock*, 16> PredsToFactor; 1702 for (const auto &PredToDest : PredToDestList) 1703 if (PredToDest.second == MostPopularDest) { 1704 BasicBlock *Pred = PredToDest.first; 1705 1706 // This predecessor may be a switch or something else that has multiple 1707 // edges to the block. Factor each of these edges by listing them 1708 // according to # occurrences in PredsToFactor. 1709 for (BasicBlock *Succ : successors(Pred)) 1710 if (Succ == BB) 1711 PredsToFactor.push_back(Pred); 1712 } 1713 1714 // If the threadable edges are branching on an undefined value, we get to pick 1715 // the destination that these predecessors should get to. 1716 if (!MostPopularDest) 1717 MostPopularDest = BB->getTerminator()-> 1718 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1719 1720 // Ok, try to thread it! 1721 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1722 } 1723 1724 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1725 /// a PHI node in the current block. See if there are any simplifications we 1726 /// can do based on inputs to the phi node. 1727 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1728 BasicBlock *BB = PN->getParent(); 1729 1730 // TODO: We could make use of this to do it once for blocks with common PHI 1731 // values. 1732 SmallVector<BasicBlock*, 1> PredBBs; 1733 PredBBs.resize(1); 1734 1735 // If any of the predecessor blocks end in an unconditional branch, we can 1736 // *duplicate* the conditional branch into that block in order to further 1737 // encourage jump threading and to eliminate cases where we have branch on a 1738 // phi of an icmp (branch on icmp is much better). 1739 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1740 BasicBlock *PredBB = PN->getIncomingBlock(i); 1741 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1742 if (PredBr->isUnconditional()) { 1743 PredBBs[0] = PredBB; 1744 // Try to duplicate BB into PredBB. 1745 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1746 return true; 1747 } 1748 } 1749 1750 return false; 1751 } 1752 1753 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1754 /// a xor instruction in the current block. See if there are any 1755 /// simplifications we can do based on inputs to the xor. 1756 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1757 BasicBlock *BB = BO->getParent(); 1758 1759 // If either the LHS or RHS of the xor is a constant, don't do this 1760 // optimization. 1761 if (isa<ConstantInt>(BO->getOperand(0)) || 1762 isa<ConstantInt>(BO->getOperand(1))) 1763 return false; 1764 1765 // If the first instruction in BB isn't a phi, we won't be able to infer 1766 // anything special about any particular predecessor. 1767 if (!isa<PHINode>(BB->front())) 1768 return false; 1769 1770 // If this BB is a landing pad, we won't be able to split the edge into it. 1771 if (BB->isEHPad()) 1772 return false; 1773 1774 // If we have a xor as the branch input to this block, and we know that the 1775 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1776 // the condition into the predecessor and fix that value to true, saving some 1777 // logical ops on that path and encouraging other paths to simplify. 1778 // 1779 // This copies something like this: 1780 // 1781 // BB: 1782 // %X = phi i1 [1], [%X'] 1783 // %Y = icmp eq i32 %A, %B 1784 // %Z = xor i1 %X, %Y 1785 // br i1 %Z, ... 1786 // 1787 // Into: 1788 // BB': 1789 // %Y = icmp ne i32 %A, %B 1790 // br i1 %Y, ... 1791 1792 PredValueInfoTy XorOpValues; 1793 bool isLHS = true; 1794 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1795 WantInteger, BO)) { 1796 assert(XorOpValues.empty()); 1797 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1798 WantInteger, BO)) 1799 return false; 1800 isLHS = false; 1801 } 1802 1803 assert(!XorOpValues.empty() && 1804 "ComputeValueKnownInPredecessors returned true with no values"); 1805 1806 // Scan the information to see which is most popular: true or false. The 1807 // predecessors can be of the set true, false, or undef. 1808 unsigned NumTrue = 0, NumFalse = 0; 1809 for (const auto &XorOpValue : XorOpValues) { 1810 if (isa<UndefValue>(XorOpValue.first)) 1811 // Ignore undefs for the count. 1812 continue; 1813 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1814 ++NumFalse; 1815 else 1816 ++NumTrue; 1817 } 1818 1819 // Determine which value to split on, true, false, or undef if neither. 1820 ConstantInt *SplitVal = nullptr; 1821 if (NumTrue > NumFalse) 1822 SplitVal = ConstantInt::getTrue(BB->getContext()); 1823 else if (NumTrue != 0 || NumFalse != 0) 1824 SplitVal = ConstantInt::getFalse(BB->getContext()); 1825 1826 // Collect all of the blocks that this can be folded into so that we can 1827 // factor this once and clone it once. 1828 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1829 for (const auto &XorOpValue : XorOpValues) { 1830 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1831 continue; 1832 1833 BlocksToFoldInto.push_back(XorOpValue.second); 1834 } 1835 1836 // If we inferred a value for all of the predecessors, then duplication won't 1837 // help us. However, we can just replace the LHS or RHS with the constant. 1838 if (BlocksToFoldInto.size() == 1839 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1840 if (!SplitVal) { 1841 // If all preds provide undef, just nuke the xor, because it is undef too. 1842 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1843 BO->eraseFromParent(); 1844 } else if (SplitVal->isZero()) { 1845 // If all preds provide 0, replace the xor with the other input. 1846 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1847 BO->eraseFromParent(); 1848 } else { 1849 // If all preds provide 1, set the computed value to 1. 1850 BO->setOperand(!isLHS, SplitVal); 1851 } 1852 1853 return true; 1854 } 1855 1856 // Try to duplicate BB into PredBB. 1857 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1858 } 1859 1860 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1861 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1862 /// NewPred using the entries from OldPred (suitably mapped). 1863 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1864 BasicBlock *OldPred, 1865 BasicBlock *NewPred, 1866 DenseMap<Instruction*, Value*> &ValueMap) { 1867 for (PHINode &PN : PHIBB->phis()) { 1868 // Ok, we have a PHI node. Figure out what the incoming value was for the 1869 // DestBlock. 1870 Value *IV = PN.getIncomingValueForBlock(OldPred); 1871 1872 // Remap the value if necessary. 1873 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1874 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1875 if (I != ValueMap.end()) 1876 IV = I->second; 1877 } 1878 1879 PN.addIncoming(IV, NewPred); 1880 } 1881 } 1882 1883 /// Merge basic block BB into its sole predecessor if possible. 1884 bool JumpThreadingPass::MaybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1885 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1886 if (!SinglePred) 1887 return false; 1888 1889 const Instruction *TI = SinglePred->getTerminator(); 1890 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1891 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1892 return false; 1893 1894 // If SinglePred was a loop header, BB becomes one. 1895 if (LoopHeaders.erase(SinglePred)) 1896 LoopHeaders.insert(BB); 1897 1898 LVI->eraseBlock(SinglePred); 1899 MergeBasicBlockIntoOnlyPred(BB, DTU); 1900 1901 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1902 // BB code within one basic block `BB`), we need to invalidate the LVI 1903 // information associated with BB, because the LVI information need not be 1904 // true for all of BB after the merge. For example, 1905 // Before the merge, LVI info and code is as follows: 1906 // SinglePred: <LVI info1 for %p val> 1907 // %y = use of %p 1908 // call @exit() // need not transfer execution to successor. 1909 // assume(%p) // from this point on %p is true 1910 // br label %BB 1911 // BB: <LVI info2 for %p val, i.e. %p is true> 1912 // %x = use of %p 1913 // br label exit 1914 // 1915 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1916 // (info2 and info1 respectively). After the merge and the deletion of the 1917 // LVI info1 for SinglePred. We have the following code: 1918 // BB: <LVI info2 for %p val> 1919 // %y = use of %p 1920 // call @exit() 1921 // assume(%p) 1922 // %x = use of %p <-- LVI info2 is correct from here onwards. 1923 // br label exit 1924 // LVI info2 for BB is incorrect at the beginning of BB. 1925 1926 // Invalidate LVI information for BB if the LVI is not provably true for 1927 // all of BB. 1928 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1929 LVI->eraseBlock(BB); 1930 return true; 1931 } 1932 1933 /// Update the SSA form. NewBB contains instructions that are copied from BB. 1934 /// ValueMapping maps old values in BB to new ones in NewBB. 1935 void JumpThreadingPass::UpdateSSA( 1936 BasicBlock *BB, BasicBlock *NewBB, 1937 DenseMap<Instruction *, Value *> &ValueMapping) { 1938 // If there were values defined in BB that are used outside the block, then we 1939 // now have to update all uses of the value to use either the original value, 1940 // the cloned value, or some PHI derived value. This can require arbitrary 1941 // PHI insertion, of which we are prepared to do, clean these up now. 1942 SSAUpdater SSAUpdate; 1943 SmallVector<Use *, 16> UsesToRename; 1944 1945 for (Instruction &I : *BB) { 1946 // Scan all uses of this instruction to see if it is used outside of its 1947 // block, and if so, record them in UsesToRename. 1948 for (Use &U : I.uses()) { 1949 Instruction *User = cast<Instruction>(U.getUser()); 1950 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1951 if (UserPN->getIncomingBlock(U) == BB) 1952 continue; 1953 } else if (User->getParent() == BB) 1954 continue; 1955 1956 UsesToRename.push_back(&U); 1957 } 1958 1959 // If there are no uses outside the block, we're done with this instruction. 1960 if (UsesToRename.empty()) 1961 continue; 1962 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1963 1964 // We found a use of I outside of BB. Rename all uses of I that are outside 1965 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1966 // with the two values we know. 1967 SSAUpdate.Initialize(I.getType(), I.getName()); 1968 SSAUpdate.AddAvailableValue(BB, &I); 1969 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1970 1971 while (!UsesToRename.empty()) 1972 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1973 LLVM_DEBUG(dbgs() << "\n"); 1974 } 1975 } 1976 1977 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 1978 /// arguments that come from PredBB. Return the map from the variables in the 1979 /// source basic block to the variables in the newly created basic block. 1980 DenseMap<Instruction *, Value *> 1981 JumpThreadingPass::CloneInstructions(BasicBlock::iterator BI, 1982 BasicBlock::iterator BE, BasicBlock *NewBB, 1983 BasicBlock *PredBB) { 1984 // We are going to have to map operands from the source basic block to the new 1985 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 1986 // block, evaluate them to account for entry from PredBB. 1987 DenseMap<Instruction *, Value *> ValueMapping; 1988 1989 // Clone the phi nodes of the source basic block into NewBB. The resulting 1990 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 1991 // might need to rewrite the operand of the cloned phi. 1992 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 1993 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 1994 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 1995 ValueMapping[PN] = NewPN; 1996 } 1997 1998 // Clone the non-phi instructions of the source basic block into NewBB, 1999 // keeping track of the mapping and using it to remap operands in the cloned 2000 // instructions. 2001 for (; BI != BE; ++BI) { 2002 Instruction *New = BI->clone(); 2003 New->setName(BI->getName()); 2004 NewBB->getInstList().push_back(New); 2005 ValueMapping[&*BI] = New; 2006 2007 // Remap operands to patch up intra-block references. 2008 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2009 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2010 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2011 if (I != ValueMapping.end()) 2012 New->setOperand(i, I->second); 2013 } 2014 } 2015 2016 return ValueMapping; 2017 } 2018 2019 /// ThreadEdge - We have decided that it is safe and profitable to factor the 2020 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2021 /// across BB. Transform the IR to reflect this change. 2022 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 2023 const SmallVectorImpl<BasicBlock *> &PredBBs, 2024 BasicBlock *SuccBB) { 2025 // If threading to the same block as we come from, we would infinite loop. 2026 if (SuccBB == BB) { 2027 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2028 << "' - would thread to self!\n"); 2029 return false; 2030 } 2031 2032 // If threading this would thread across a loop header, don't thread the edge. 2033 // See the comments above FindLoopHeaders for justifications and caveats. 2034 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2035 LLVM_DEBUG({ 2036 bool BBIsHeader = LoopHeaders.count(BB); 2037 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2038 dbgs() << " Not threading across " 2039 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2040 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2041 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2042 }); 2043 return false; 2044 } 2045 2046 unsigned JumpThreadCost = 2047 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2048 if (JumpThreadCost > BBDupThreshold) { 2049 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2050 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2051 return false; 2052 } 2053 2054 // And finally, do it! Start by factoring the predecessors if needed. 2055 BasicBlock *PredBB; 2056 if (PredBBs.size() == 1) 2057 PredBB = PredBBs[0]; 2058 else { 2059 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2060 << " common predecessors.\n"); 2061 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2062 } 2063 2064 // And finally, do it! 2065 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2066 << "' to '" << SuccBB->getName() 2067 << "' with cost: " << JumpThreadCost 2068 << ", across block:\n " << *BB << "\n"); 2069 2070 if (DTU->hasPendingDomTreeUpdates()) 2071 LVI->disableDT(); 2072 else 2073 LVI->enableDT(); 2074 LVI->threadEdge(PredBB, BB, SuccBB); 2075 2076 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2077 BB->getName()+".thread", 2078 BB->getParent(), BB); 2079 NewBB->moveAfter(PredBB); 2080 2081 // Set the block frequency of NewBB. 2082 if (HasProfileData) { 2083 auto NewBBFreq = 2084 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2085 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2086 } 2087 2088 // Copy all the instructions from BB to NewBB except the terminator. 2089 DenseMap<Instruction *, Value *> ValueMapping = 2090 CloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2091 2092 // We didn't copy the terminator from BB over to NewBB, because there is now 2093 // an unconditional jump to SuccBB. Insert the unconditional jump. 2094 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2095 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2096 2097 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2098 // PHI nodes for NewBB now. 2099 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2100 2101 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2102 // eliminates predecessors from BB, which requires us to simplify any PHI 2103 // nodes in BB. 2104 Instruction *PredTerm = PredBB->getTerminator(); 2105 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2106 if (PredTerm->getSuccessor(i) == BB) { 2107 BB->removePredecessor(PredBB, true); 2108 PredTerm->setSuccessor(i, NewBB); 2109 } 2110 2111 // Enqueue required DT updates. 2112 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2113 {DominatorTree::Insert, PredBB, NewBB}, 2114 {DominatorTree::Delete, PredBB, BB}}); 2115 2116 UpdateSSA(BB, NewBB, ValueMapping); 2117 2118 // At this point, the IR is fully up to date and consistent. Do a quick scan 2119 // over the new instructions and zap any that are constants or dead. This 2120 // frequently happens because of phi translation. 2121 SimplifyInstructionsInBlock(NewBB, TLI); 2122 2123 // Update the edge weight from BB to SuccBB, which should be less than before. 2124 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2125 2126 // Threaded an edge! 2127 ++NumThreads; 2128 return true; 2129 } 2130 2131 /// Create a new basic block that will be the predecessor of BB and successor of 2132 /// all blocks in Preds. When profile data is available, update the frequency of 2133 /// this new block. 2134 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2135 ArrayRef<BasicBlock *> Preds, 2136 const char *Suffix) { 2137 SmallVector<BasicBlock *, 2> NewBBs; 2138 2139 // Collect the frequencies of all predecessors of BB, which will be used to 2140 // update the edge weight of the result of splitting predecessors. 2141 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2142 if (HasProfileData) 2143 for (auto Pred : Preds) 2144 FreqMap.insert(std::make_pair( 2145 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2146 2147 // In the case when BB is a LandingPad block we create 2 new predecessors 2148 // instead of just one. 2149 if (BB->isLandingPad()) { 2150 std::string NewName = std::string(Suffix) + ".split-lp"; 2151 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2152 } else { 2153 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2154 } 2155 2156 std::vector<DominatorTree::UpdateType> Updates; 2157 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2158 for (auto NewBB : NewBBs) { 2159 BlockFrequency NewBBFreq(0); 2160 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2161 for (auto Pred : predecessors(NewBB)) { 2162 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2163 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2164 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2165 NewBBFreq += FreqMap.lookup(Pred); 2166 } 2167 if (HasProfileData) // Apply the summed frequency to NewBB. 2168 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2169 } 2170 2171 DTU->applyUpdatesPermissive(Updates); 2172 return NewBBs[0]; 2173 } 2174 2175 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2176 const Instruction *TI = BB->getTerminator(); 2177 assert(TI->getNumSuccessors() > 1 && "not a split"); 2178 2179 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2180 if (!WeightsNode) 2181 return false; 2182 2183 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2184 if (MDName->getString() != "branch_weights") 2185 return false; 2186 2187 // Ensure there are weights for all of the successors. Note that the first 2188 // operand to the metadata node is a name, not a weight. 2189 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2190 } 2191 2192 /// Update the block frequency of BB and branch weight and the metadata on the 2193 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2194 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2195 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2196 BasicBlock *BB, 2197 BasicBlock *NewBB, 2198 BasicBlock *SuccBB) { 2199 if (!HasProfileData) 2200 return; 2201 2202 assert(BFI && BPI && "BFI & BPI should have been created here"); 2203 2204 // As the edge from PredBB to BB is deleted, we have to update the block 2205 // frequency of BB. 2206 auto BBOrigFreq = BFI->getBlockFreq(BB); 2207 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2208 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2209 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2210 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2211 2212 // Collect updated outgoing edges' frequencies from BB and use them to update 2213 // edge probabilities. 2214 SmallVector<uint64_t, 4> BBSuccFreq; 2215 for (BasicBlock *Succ : successors(BB)) { 2216 auto SuccFreq = (Succ == SuccBB) 2217 ? BB2SuccBBFreq - NewBBFreq 2218 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2219 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2220 } 2221 2222 uint64_t MaxBBSuccFreq = 2223 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2224 2225 SmallVector<BranchProbability, 4> BBSuccProbs; 2226 if (MaxBBSuccFreq == 0) 2227 BBSuccProbs.assign(BBSuccFreq.size(), 2228 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2229 else { 2230 for (uint64_t Freq : BBSuccFreq) 2231 BBSuccProbs.push_back( 2232 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2233 // Normalize edge probabilities so that they sum up to one. 2234 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2235 BBSuccProbs.end()); 2236 } 2237 2238 // Update edge probabilities in BPI. 2239 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2240 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2241 2242 // Update the profile metadata as well. 2243 // 2244 // Don't do this if the profile of the transformed blocks was statically 2245 // estimated. (This could occur despite the function having an entry 2246 // frequency in completely cold parts of the CFG.) 2247 // 2248 // In this case we don't want to suggest to subsequent passes that the 2249 // calculated weights are fully consistent. Consider this graph: 2250 // 2251 // check_1 2252 // 50% / | 2253 // eq_1 | 50% 2254 // \ | 2255 // check_2 2256 // 50% / | 2257 // eq_2 | 50% 2258 // \ | 2259 // check_3 2260 // 50% / | 2261 // eq_3 | 50% 2262 // \ | 2263 // 2264 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2265 // the overall probabilities are inconsistent; the total probability that the 2266 // value is either 1, 2 or 3 is 150%. 2267 // 2268 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2269 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2270 // the loop exit edge. Then based solely on static estimation we would assume 2271 // the loop was extremely hot. 2272 // 2273 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2274 // shouldn't make edges extremely likely or unlikely based solely on static 2275 // estimation. 2276 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2277 SmallVector<uint32_t, 4> Weights; 2278 for (auto Prob : BBSuccProbs) 2279 Weights.push_back(Prob.getNumerator()); 2280 2281 auto TI = BB->getTerminator(); 2282 TI->setMetadata( 2283 LLVMContext::MD_prof, 2284 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2285 } 2286 } 2287 2288 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2289 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2290 /// If we can duplicate the contents of BB up into PredBB do so now, this 2291 /// improves the odds that the branch will be on an analyzable instruction like 2292 /// a compare. 2293 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2294 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2295 assert(!PredBBs.empty() && "Can't handle an empty set"); 2296 2297 // If BB is a loop header, then duplicating this block outside the loop would 2298 // cause us to transform this into an irreducible loop, don't do this. 2299 // See the comments above FindLoopHeaders for justifications and caveats. 2300 if (LoopHeaders.count(BB)) { 2301 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2302 << "' into predecessor block '" << PredBBs[0]->getName() 2303 << "' - it might create an irreducible loop!\n"); 2304 return false; 2305 } 2306 2307 unsigned DuplicationCost = 2308 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2309 if (DuplicationCost > BBDupThreshold) { 2310 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2311 << "' - Cost is too high: " << DuplicationCost << "\n"); 2312 return false; 2313 } 2314 2315 // And finally, do it! Start by factoring the predecessors if needed. 2316 std::vector<DominatorTree::UpdateType> Updates; 2317 BasicBlock *PredBB; 2318 if (PredBBs.size() == 1) 2319 PredBB = PredBBs[0]; 2320 else { 2321 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2322 << " common predecessors.\n"); 2323 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2324 } 2325 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2326 2327 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2328 // of PredBB. 2329 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2330 << "' into end of '" << PredBB->getName() 2331 << "' to eliminate branch on phi. Cost: " 2332 << DuplicationCost << " block is:" << *BB << "\n"); 2333 2334 // Unless PredBB ends with an unconditional branch, split the edge so that we 2335 // can just clone the bits from BB into the end of the new PredBB. 2336 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2337 2338 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2339 BasicBlock *OldPredBB = PredBB; 2340 PredBB = SplitEdge(OldPredBB, BB); 2341 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2342 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2343 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2344 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2345 } 2346 2347 // We are going to have to map operands from the original BB block into the 2348 // PredBB block. Evaluate PHI nodes in BB. 2349 DenseMap<Instruction*, Value*> ValueMapping; 2350 2351 BasicBlock::iterator BI = BB->begin(); 2352 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2353 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2354 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2355 // mapping and using it to remap operands in the cloned instructions. 2356 for (; BI != BB->end(); ++BI) { 2357 Instruction *New = BI->clone(); 2358 2359 // Remap operands to patch up intra-block references. 2360 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2361 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2362 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2363 if (I != ValueMapping.end()) 2364 New->setOperand(i, I->second); 2365 } 2366 2367 // If this instruction can be simplified after the operands are updated, 2368 // just use the simplified value instead. This frequently happens due to 2369 // phi translation. 2370 if (Value *IV = SimplifyInstruction( 2371 New, 2372 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2373 ValueMapping[&*BI] = IV; 2374 if (!New->mayHaveSideEffects()) { 2375 New->deleteValue(); 2376 New = nullptr; 2377 } 2378 } else { 2379 ValueMapping[&*BI] = New; 2380 } 2381 if (New) { 2382 // Otherwise, insert the new instruction into the block. 2383 New->setName(BI->getName()); 2384 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2385 // Update Dominance from simplified New instruction operands. 2386 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2387 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2388 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2389 } 2390 } 2391 2392 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2393 // add entries to the PHI nodes for branch from PredBB now. 2394 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2395 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2396 ValueMapping); 2397 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2398 ValueMapping); 2399 2400 UpdateSSA(BB, PredBB, ValueMapping); 2401 2402 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2403 // that we nuked. 2404 BB->removePredecessor(PredBB, true); 2405 2406 // Remove the unconditional branch at the end of the PredBB block. 2407 OldPredBranch->eraseFromParent(); 2408 DTU->applyUpdatesPermissive(Updates); 2409 2410 ++NumDupes; 2411 return true; 2412 } 2413 2414 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2415 // a Select instruction in Pred. BB has other predecessors and SI is used in 2416 // a PHI node in BB. SI has no other use. 2417 // A new basic block, NewBB, is created and SI is converted to compare and 2418 // conditional branch. SI is erased from parent. 2419 void JumpThreadingPass::UnfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2420 SelectInst *SI, PHINode *SIUse, 2421 unsigned Idx) { 2422 // Expand the select. 2423 // 2424 // Pred -- 2425 // | v 2426 // | NewBB 2427 // | | 2428 // |----- 2429 // v 2430 // BB 2431 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2432 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2433 BB->getParent(), BB); 2434 // Move the unconditional branch to NewBB. 2435 PredTerm->removeFromParent(); 2436 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2437 // Create a conditional branch and update PHI nodes. 2438 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2439 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2440 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2441 2442 // The select is now dead. 2443 SI->eraseFromParent(); 2444 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2445 {DominatorTree::Insert, Pred, NewBB}}); 2446 2447 // Update any other PHI nodes in BB. 2448 for (BasicBlock::iterator BI = BB->begin(); 2449 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2450 if (Phi != SIUse) 2451 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2452 } 2453 2454 bool JumpThreadingPass::TryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2455 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2456 2457 if (!CondPHI || CondPHI->getParent() != BB) 2458 return false; 2459 2460 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2461 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2462 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2463 2464 // The second and third condition can be potentially relaxed. Currently 2465 // the conditions help to simplify the code and allow us to reuse existing 2466 // code, developed for TryToUnfoldSelect(CmpInst *, BasicBlock *) 2467 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2468 continue; 2469 2470 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2471 if (!PredTerm || !PredTerm->isUnconditional()) 2472 continue; 2473 2474 UnfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2475 return true; 2476 } 2477 return false; 2478 } 2479 2480 /// TryToUnfoldSelect - Look for blocks of the form 2481 /// bb1: 2482 /// %a = select 2483 /// br bb2 2484 /// 2485 /// bb2: 2486 /// %p = phi [%a, %bb1] ... 2487 /// %c = icmp %p 2488 /// br i1 %c 2489 /// 2490 /// And expand the select into a branch structure if one of its arms allows %c 2491 /// to be folded. This later enables threading from bb1 over bb2. 2492 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2493 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2494 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2495 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2496 2497 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2498 CondLHS->getParent() != BB) 2499 return false; 2500 2501 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2502 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2503 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2504 2505 // Look if one of the incoming values is a select in the corresponding 2506 // predecessor. 2507 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2508 continue; 2509 2510 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2511 if (!PredTerm || !PredTerm->isUnconditional()) 2512 continue; 2513 2514 // Now check if one of the select values would allow us to constant fold the 2515 // terminator in BB. We don't do the transform if both sides fold, those 2516 // cases will be threaded in any case. 2517 if (DTU->hasPendingDomTreeUpdates()) 2518 LVI->disableDT(); 2519 else 2520 LVI->enableDT(); 2521 LazyValueInfo::Tristate LHSFolds = 2522 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2523 CondRHS, Pred, BB, CondCmp); 2524 LazyValueInfo::Tristate RHSFolds = 2525 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2526 CondRHS, Pred, BB, CondCmp); 2527 if ((LHSFolds != LazyValueInfo::Unknown || 2528 RHSFolds != LazyValueInfo::Unknown) && 2529 LHSFolds != RHSFolds) { 2530 UnfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2531 return true; 2532 } 2533 } 2534 return false; 2535 } 2536 2537 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2538 /// same BB in the form 2539 /// bb: 2540 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2541 /// %s = select %p, trueval, falseval 2542 /// 2543 /// or 2544 /// 2545 /// bb: 2546 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2547 /// %c = cmp %p, 0 2548 /// %s = select %c, trueval, falseval 2549 /// 2550 /// And expand the select into a branch structure. This later enables 2551 /// jump-threading over bb in this pass. 2552 /// 2553 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2554 /// select if the associated PHI has at least one constant. If the unfolded 2555 /// select is not jump-threaded, it will be folded again in the later 2556 /// optimizations. 2557 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2558 // If threading this would thread across a loop header, don't thread the edge. 2559 // See the comments above FindLoopHeaders for justifications and caveats. 2560 if (LoopHeaders.count(BB)) 2561 return false; 2562 2563 for (BasicBlock::iterator BI = BB->begin(); 2564 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2565 // Look for a Phi having at least one constant incoming value. 2566 if (llvm::all_of(PN->incoming_values(), 2567 [](Value *V) { return !isa<ConstantInt>(V); })) 2568 continue; 2569 2570 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2571 // Check if SI is in BB and use V as condition. 2572 if (SI->getParent() != BB) 2573 return false; 2574 Value *Cond = SI->getCondition(); 2575 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2576 }; 2577 2578 SelectInst *SI = nullptr; 2579 for (Use &U : PN->uses()) { 2580 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2581 // Look for a ICmp in BB that compares PN with a constant and is the 2582 // condition of a Select. 2583 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2584 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2585 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2586 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2587 SI = SelectI; 2588 break; 2589 } 2590 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2591 // Look for a Select in BB that uses PN as condition. 2592 if (isUnfoldCandidate(SelectI, U.get())) { 2593 SI = SelectI; 2594 break; 2595 } 2596 } 2597 } 2598 2599 if (!SI) 2600 continue; 2601 // Expand the select. 2602 Instruction *Term = 2603 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2604 BasicBlock *SplitBB = SI->getParent(); 2605 BasicBlock *NewBB = Term->getParent(); 2606 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2607 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2608 NewPN->addIncoming(SI->getFalseValue(), BB); 2609 SI->replaceAllUsesWith(NewPN); 2610 SI->eraseFromParent(); 2611 // NewBB and SplitBB are newly created blocks which require insertion. 2612 std::vector<DominatorTree::UpdateType> Updates; 2613 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2614 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2615 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2616 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2617 // BB's successors were moved to SplitBB, update DTU accordingly. 2618 for (auto *Succ : successors(SplitBB)) { 2619 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2620 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2621 } 2622 DTU->applyUpdatesPermissive(Updates); 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 /// Try to propagate a guard from the current BB into one of its predecessors 2629 /// in case if another branch of execution implies that the condition of this 2630 /// guard is always true. Currently we only process the simplest case that 2631 /// looks like: 2632 /// 2633 /// Start: 2634 /// %cond = ... 2635 /// br i1 %cond, label %T1, label %F1 2636 /// T1: 2637 /// br label %Merge 2638 /// F1: 2639 /// br label %Merge 2640 /// Merge: 2641 /// %condGuard = ... 2642 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2643 /// 2644 /// And cond either implies condGuard or !condGuard. In this case all the 2645 /// instructions before the guard can be duplicated in both branches, and the 2646 /// guard is then threaded to one of them. 2647 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2648 using namespace PatternMatch; 2649 2650 // We only want to deal with two predecessors. 2651 BasicBlock *Pred1, *Pred2; 2652 auto PI = pred_begin(BB), PE = pred_end(BB); 2653 if (PI == PE) 2654 return false; 2655 Pred1 = *PI++; 2656 if (PI == PE) 2657 return false; 2658 Pred2 = *PI++; 2659 if (PI != PE) 2660 return false; 2661 if (Pred1 == Pred2) 2662 return false; 2663 2664 // Try to thread one of the guards of the block. 2665 // TODO: Look up deeper than to immediate predecessor? 2666 auto *Parent = Pred1->getSinglePredecessor(); 2667 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2668 return false; 2669 2670 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2671 for (auto &I : *BB) 2672 if (isGuard(&I) && ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2673 return true; 2674 2675 return false; 2676 } 2677 2678 /// Try to propagate the guard from BB which is the lower block of a diamond 2679 /// to one of its branches, in case if diamond's condition implies guard's 2680 /// condition. 2681 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2682 BranchInst *BI) { 2683 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2684 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2685 Value *GuardCond = Guard->getArgOperand(0); 2686 Value *BranchCond = BI->getCondition(); 2687 BasicBlock *TrueDest = BI->getSuccessor(0); 2688 BasicBlock *FalseDest = BI->getSuccessor(1); 2689 2690 auto &DL = BB->getModule()->getDataLayout(); 2691 bool TrueDestIsSafe = false; 2692 bool FalseDestIsSafe = false; 2693 2694 // True dest is safe if BranchCond => GuardCond. 2695 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2696 if (Impl && *Impl) 2697 TrueDestIsSafe = true; 2698 else { 2699 // False dest is safe if !BranchCond => GuardCond. 2700 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2701 if (Impl && *Impl) 2702 FalseDestIsSafe = true; 2703 } 2704 2705 if (!TrueDestIsSafe && !FalseDestIsSafe) 2706 return false; 2707 2708 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2709 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2710 2711 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2712 Instruction *AfterGuard = Guard->getNextNode(); 2713 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2714 if (Cost > BBDupThreshold) 2715 return false; 2716 // Duplicate all instructions before the guard and the guard itself to the 2717 // branch where implication is not proved. 2718 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2719 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 2720 assert(GuardedBlock && "Could not create the guarded block?"); 2721 // Duplicate all instructions before the guard in the unguarded branch. 2722 // Since we have successfully duplicated the guarded block and this block 2723 // has fewer instructions, we expect it to succeed. 2724 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2725 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 2726 assert(UnguardedBlock && "Could not create the unguarded block?"); 2727 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2728 << GuardedBlock->getName() << "\n"); 2729 // Some instructions before the guard may still have uses. For them, we need 2730 // to create Phi nodes merging their copies in both guarded and unguarded 2731 // branches. Those instructions that have no uses can be just removed. 2732 SmallVector<Instruction *, 4> ToRemove; 2733 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2734 if (!isa<PHINode>(&*BI)) 2735 ToRemove.push_back(&*BI); 2736 2737 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2738 assert(InsertionPoint && "Empty block?"); 2739 // Substitute with Phis & remove. 2740 for (auto *Inst : reverse(ToRemove)) { 2741 if (!Inst->use_empty()) { 2742 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2743 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2744 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2745 NewPN->insertBefore(InsertionPoint); 2746 Inst->replaceAllUsesWith(NewPN); 2747 } 2748 Inst->eraseFromParent(); 2749 } 2750 return true; 2751 } 2752