1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 BBDuplicateThreshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 TargetLibraryInfo *TLI; 82 LazyValueInfo *LVI; 83 #ifdef NDEBUG 84 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 85 #else 86 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 87 #endif 88 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 89 90 unsigned BBDupThreshold; 91 92 // RAII helper for updating the recursion stack. 93 struct RecursionSetRemover { 94 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 95 std::pair<Value*, BasicBlock*> ThePair; 96 97 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 98 std::pair<Value*, BasicBlock*> P) 99 : TheSet(S), ThePair(P) { } 100 101 ~RecursionSetRemover() { 102 TheSet.erase(ThePair); 103 } 104 }; 105 public: 106 static char ID; // Pass identification 107 JumpThreading(int T = -1) : FunctionPass(ID) { 108 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 109 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 110 } 111 112 bool runOnFunction(Function &F) override; 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.addRequired<LazyValueInfo>(); 116 AU.addPreserved<LazyValueInfo>(); 117 AU.addRequired<TargetLibraryInfoWrapperPass>(); 118 } 119 120 void FindLoopHeaders(Function &F); 121 bool ProcessBlock(BasicBlock *BB); 122 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 123 BasicBlock *SuccBB); 124 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 125 const SmallVectorImpl<BasicBlock *> &PredBBs); 126 127 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 128 PredValueInfo &Result, 129 ConstantPreference Preference, 130 Instruction *CxtI = nullptr); 131 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 132 ConstantPreference Preference, 133 Instruction *CxtI = nullptr); 134 135 bool ProcessBranchOnPHI(PHINode *PN); 136 bool ProcessBranchOnXOR(BinaryOperator *BO); 137 138 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 139 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 140 }; 141 } 142 143 char JumpThreading::ID = 0; 144 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 145 "Jump Threading", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 147 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 148 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 149 "Jump Threading", false, false) 150 151 // Public interface to the Jump Threading pass 152 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 153 154 /// runOnFunction - Top level algorithm. 155 /// 156 bool JumpThreading::runOnFunction(Function &F) { 157 if (skipOptnoneFunction(F)) 158 return false; 159 160 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 161 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 162 LVI = &getAnalysis<LazyValueInfo>(); 163 164 // Remove unreachable blocks from function as they may result in infinite 165 // loop. We do threading if we found something profitable. Jump threading a 166 // branch can create other opportunities. If these opportunities form a cycle 167 // i.e. if any jump treading is undoing previous threading in the path, then 168 // we will loop forever. We take care of this issue by not jump threading for 169 // back edges. This works for normal cases but not for unreachable blocks as 170 // they may have cycle with no back edge. 171 removeUnreachableBlocks(F); 172 173 FindLoopHeaders(F); 174 175 bool Changed, EverChanged = false; 176 do { 177 Changed = false; 178 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 179 BasicBlock *BB = I; 180 // Thread all of the branches we can over this block. 181 while (ProcessBlock(BB)) 182 Changed = true; 183 184 ++I; 185 186 // If the block is trivially dead, zap it. This eliminates the successor 187 // edges which simplifies the CFG. 188 if (pred_empty(BB) && 189 BB != &BB->getParent()->getEntryBlock()) { 190 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 191 << "' with terminator: " << *BB->getTerminator() << '\n'); 192 LoopHeaders.erase(BB); 193 LVI->eraseBlock(BB); 194 DeleteDeadBlock(BB); 195 Changed = true; 196 continue; 197 } 198 199 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 200 201 // Can't thread an unconditional jump, but if the block is "almost 202 // empty", we can replace uses of it with uses of the successor and make 203 // this dead. 204 if (BI && BI->isUnconditional() && 205 BB != &BB->getParent()->getEntryBlock() && 206 // If the terminator is the only non-phi instruction, try to nuke it. 207 BB->getFirstNonPHIOrDbg()->isTerminator()) { 208 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 209 // block, we have to make sure it isn't in the LoopHeaders set. We 210 // reinsert afterward if needed. 211 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 212 BasicBlock *Succ = BI->getSuccessor(0); 213 214 // FIXME: It is always conservatively correct to drop the info 215 // for a block even if it doesn't get erased. This isn't totally 216 // awesome, but it allows us to use AssertingVH to prevent nasty 217 // dangling pointer issues within LazyValueInfo. 218 LVI->eraseBlock(BB); 219 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 220 Changed = true; 221 // If we deleted BB and BB was the header of a loop, then the 222 // successor is now the header of the loop. 223 BB = Succ; 224 } 225 226 if (ErasedFromLoopHeaders) 227 LoopHeaders.insert(BB); 228 } 229 } 230 EverChanged |= Changed; 231 } while (Changed); 232 233 LoopHeaders.clear(); 234 return EverChanged; 235 } 236 237 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 238 /// thread across it. Stop scanning the block when passing the threshold. 239 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 240 unsigned Threshold) { 241 /// Ignore PHI nodes, these will be flattened when duplication happens. 242 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 243 244 // FIXME: THREADING will delete values that are just used to compute the 245 // branch, so they shouldn't count against the duplication cost. 246 247 // Sum up the cost of each instruction until we get to the terminator. Don't 248 // include the terminator because the copy won't include it. 249 unsigned Size = 0; 250 for (; !isa<TerminatorInst>(I); ++I) { 251 252 // Stop scanning the block if we've reached the threshold. 253 if (Size > Threshold) 254 return Size; 255 256 // Debugger intrinsics don't incur code size. 257 if (isa<DbgInfoIntrinsic>(I)) continue; 258 259 // If this is a pointer->pointer bitcast, it is free. 260 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 261 continue; 262 263 // All other instructions count for at least one unit. 264 ++Size; 265 266 // Calls are more expensive. If they are non-intrinsic calls, we model them 267 // as having cost of 4. If they are a non-vector intrinsic, we model them 268 // as having cost of 2 total, and if they are a vector intrinsic, we model 269 // them as having cost 1. 270 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 271 if (CI->cannotDuplicate()) 272 // Blocks with NoDuplicate are modelled as having infinite cost, so they 273 // are never duplicated. 274 return ~0U; 275 else if (!isa<IntrinsicInst>(CI)) 276 Size += 3; 277 else if (!CI->getType()->isVectorTy()) 278 Size += 1; 279 } 280 } 281 282 // Threading through a switch statement is particularly profitable. If this 283 // block ends in a switch, decrease its cost to make it more likely to happen. 284 if (isa<SwitchInst>(I)) 285 Size = Size > 6 ? Size-6 : 0; 286 287 // The same holds for indirect branches, but slightly more so. 288 if (isa<IndirectBrInst>(I)) 289 Size = Size > 8 ? Size-8 : 0; 290 291 return Size; 292 } 293 294 /// FindLoopHeaders - We do not want jump threading to turn proper loop 295 /// structures into irreducible loops. Doing this breaks up the loop nesting 296 /// hierarchy and pessimizes later transformations. To prevent this from 297 /// happening, we first have to find the loop headers. Here we approximate this 298 /// by finding targets of backedges in the CFG. 299 /// 300 /// Note that there definitely are cases when we want to allow threading of 301 /// edges across a loop header. For example, threading a jump from outside the 302 /// loop (the preheader) to an exit block of the loop is definitely profitable. 303 /// It is also almost always profitable to thread backedges from within the loop 304 /// to exit blocks, and is often profitable to thread backedges to other blocks 305 /// within the loop (forming a nested loop). This simple analysis is not rich 306 /// enough to track all of these properties and keep it up-to-date as the CFG 307 /// mutates, so we don't allow any of these transformations. 308 /// 309 void JumpThreading::FindLoopHeaders(Function &F) { 310 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 311 FindFunctionBackedges(F, Edges); 312 313 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 314 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 315 } 316 317 /// getKnownConstant - Helper method to determine if we can thread over a 318 /// terminator with the given value as its condition, and if so what value to 319 /// use for that. What kind of value this is depends on whether we want an 320 /// integer or a block address, but an undef is always accepted. 321 /// Returns null if Val is null or not an appropriate constant. 322 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 323 if (!Val) 324 return nullptr; 325 326 // Undef is "known" enough. 327 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 328 return U; 329 330 if (Preference == WantBlockAddress) 331 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 332 333 return dyn_cast<ConstantInt>(Val); 334 } 335 336 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 337 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 338 /// in any of our predecessors. If so, return the known list of value and pred 339 /// BB in the result vector. 340 /// 341 /// This returns true if there were any known values. 342 /// 343 bool JumpThreading:: 344 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 345 ConstantPreference Preference, 346 Instruction *CxtI) { 347 // This method walks up use-def chains recursively. Because of this, we could 348 // get into an infinite loop going around loops in the use-def chain. To 349 // prevent this, keep track of what (value, block) pairs we've already visited 350 // and terminate the search if we loop back to them 351 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 352 return false; 353 354 // An RAII help to remove this pair from the recursion set once the recursion 355 // stack pops back out again. 356 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 357 358 // If V is a constant, then it is known in all predecessors. 359 if (Constant *KC = getKnownConstant(V, Preference)) { 360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 361 Result.push_back(std::make_pair(KC, *PI)); 362 363 return true; 364 } 365 366 // If V is a non-instruction value, or an instruction in a different block, 367 // then it can't be derived from a PHI. 368 Instruction *I = dyn_cast<Instruction>(V); 369 if (!I || I->getParent() != BB) { 370 371 // Okay, if this is a live-in value, see if it has a known value at the end 372 // of any of our predecessors. 373 // 374 // FIXME: This should be an edge property, not a block end property. 375 /// TODO: Per PR2563, we could infer value range information about a 376 /// predecessor based on its terminator. 377 // 378 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 379 // "I" is a non-local compare-with-a-constant instruction. This would be 380 // able to handle value inequalities better, for example if the compare is 381 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 382 // Perhaps getConstantOnEdge should be smart enough to do this? 383 384 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 385 BasicBlock *P = *PI; 386 // If the value is known by LazyValueInfo to be a constant in a 387 // predecessor, use that information to try to thread this block. 388 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 389 if (Constant *KC = getKnownConstant(PredCst, Preference)) 390 Result.push_back(std::make_pair(KC, P)); 391 } 392 393 return !Result.empty(); 394 } 395 396 /// If I is a PHI node, then we know the incoming values for any constants. 397 if (PHINode *PN = dyn_cast<PHINode>(I)) { 398 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 399 Value *InVal = PN->getIncomingValue(i); 400 if (Constant *KC = getKnownConstant(InVal, Preference)) { 401 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 402 } else { 403 Constant *CI = LVI->getConstantOnEdge(InVal, 404 PN->getIncomingBlock(i), 405 BB, CxtI); 406 if (Constant *KC = getKnownConstant(CI, Preference)) 407 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 408 } 409 } 410 411 return !Result.empty(); 412 } 413 414 PredValueInfoTy LHSVals, RHSVals; 415 416 // Handle some boolean conditions. 417 if (I->getType()->getPrimitiveSizeInBits() == 1) { 418 assert(Preference == WantInteger && "One-bit non-integer type?"); 419 // X | true -> true 420 // X & false -> false 421 if (I->getOpcode() == Instruction::Or || 422 I->getOpcode() == Instruction::And) { 423 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 424 WantInteger, CxtI); 425 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 426 WantInteger, CxtI); 427 428 if (LHSVals.empty() && RHSVals.empty()) 429 return false; 430 431 ConstantInt *InterestingVal; 432 if (I->getOpcode() == Instruction::Or) 433 InterestingVal = ConstantInt::getTrue(I->getContext()); 434 else 435 InterestingVal = ConstantInt::getFalse(I->getContext()); 436 437 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 438 439 // Scan for the sentinel. If we find an undef, force it to the 440 // interesting value: x|undef -> true and x&undef -> false. 441 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 442 if (LHSVals[i].first == InterestingVal || 443 isa<UndefValue>(LHSVals[i].first)) { 444 Result.push_back(LHSVals[i]); 445 Result.back().first = InterestingVal; 446 LHSKnownBBs.insert(LHSVals[i].second); 447 } 448 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 449 if (RHSVals[i].first == InterestingVal || 450 isa<UndefValue>(RHSVals[i].first)) { 451 // If we already inferred a value for this block on the LHS, don't 452 // re-add it. 453 if (!LHSKnownBBs.count(RHSVals[i].second)) { 454 Result.push_back(RHSVals[i]); 455 Result.back().first = InterestingVal; 456 } 457 } 458 459 return !Result.empty(); 460 } 461 462 // Handle the NOT form of XOR. 463 if (I->getOpcode() == Instruction::Xor && 464 isa<ConstantInt>(I->getOperand(1)) && 465 cast<ConstantInt>(I->getOperand(1))->isOne()) { 466 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 467 WantInteger, CxtI); 468 if (Result.empty()) 469 return false; 470 471 // Invert the known values. 472 for (unsigned i = 0, e = Result.size(); i != e; ++i) 473 Result[i].first = ConstantExpr::getNot(Result[i].first); 474 475 return true; 476 } 477 478 // Try to simplify some other binary operator values. 479 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 480 assert(Preference != WantBlockAddress 481 && "A binary operator creating a block address?"); 482 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 483 PredValueInfoTy LHSVals; 484 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 485 WantInteger, CxtI); 486 487 // Try to use constant folding to simplify the binary operator. 488 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 489 Constant *V = LHSVals[i].first; 490 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 491 492 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 493 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 494 } 495 } 496 497 return !Result.empty(); 498 } 499 500 // Handle compare with phi operand, where the PHI is defined in this block. 501 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 502 assert(Preference == WantInteger && "Compares only produce integers"); 503 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 504 if (PN && PN->getParent() == BB) { 505 const DataLayout &DL = PN->getModule()->getDataLayout(); 506 // We can do this simplification if any comparisons fold to true or false. 507 // See if any do. 508 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 509 BasicBlock *PredBB = PN->getIncomingBlock(i); 510 Value *LHS = PN->getIncomingValue(i); 511 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 512 513 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 514 if (!Res) { 515 if (!isa<Constant>(RHS)) 516 continue; 517 518 LazyValueInfo::Tristate 519 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 520 cast<Constant>(RHS), PredBB, BB, 521 CxtI ? CxtI : Cmp); 522 if (ResT == LazyValueInfo::Unknown) 523 continue; 524 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 525 } 526 527 if (Constant *KC = getKnownConstant(Res, WantInteger)) 528 Result.push_back(std::make_pair(KC, PredBB)); 529 } 530 531 return !Result.empty(); 532 } 533 534 // If comparing a live-in value against a constant, see if we know the 535 // live-in value on any predecessors. 536 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 537 if (!isa<Instruction>(Cmp->getOperand(0)) || 538 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 539 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 540 541 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 542 BasicBlock *P = *PI; 543 // If the value is known by LazyValueInfo to be a constant in a 544 // predecessor, use that information to try to thread this block. 545 LazyValueInfo::Tristate Res = 546 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 547 RHSCst, P, BB, CxtI ? CxtI : Cmp); 548 if (Res == LazyValueInfo::Unknown) 549 continue; 550 551 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 552 Result.push_back(std::make_pair(ResC, P)); 553 } 554 555 return !Result.empty(); 556 } 557 558 // Try to find a constant value for the LHS of a comparison, 559 // and evaluate it statically if we can. 560 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 561 PredValueInfoTy LHSVals; 562 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 563 WantInteger, CxtI); 564 565 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 566 Constant *V = LHSVals[i].first; 567 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 568 V, CmpConst); 569 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 570 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 571 } 572 573 return !Result.empty(); 574 } 575 } 576 } 577 578 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 579 // Handle select instructions where at least one operand is a known constant 580 // and we can figure out the condition value for any predecessor block. 581 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 582 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 583 PredValueInfoTy Conds; 584 if ((TrueVal || FalseVal) && 585 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 586 WantInteger, CxtI)) { 587 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 588 Constant *Cond = Conds[i].first; 589 590 // Figure out what value to use for the condition. 591 bool KnownCond; 592 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 593 // A known boolean. 594 KnownCond = CI->isOne(); 595 } else { 596 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 597 // Either operand will do, so be sure to pick the one that's a known 598 // constant. 599 // FIXME: Do this more cleverly if both values are known constants? 600 KnownCond = (TrueVal != nullptr); 601 } 602 603 // See if the select has a known constant value for this predecessor. 604 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 605 Result.push_back(std::make_pair(Val, Conds[i].second)); 606 } 607 608 return !Result.empty(); 609 } 610 } 611 612 // If all else fails, see if LVI can figure out a constant value for us. 613 Constant *CI = LVI->getConstant(V, BB, CxtI); 614 if (Constant *KC = getKnownConstant(CI, Preference)) { 615 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 616 Result.push_back(std::make_pair(KC, *PI)); 617 } 618 619 return !Result.empty(); 620 } 621 622 623 624 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 625 /// in an undefined jump, decide which block is best to revector to. 626 /// 627 /// Since we can pick an arbitrary destination, we pick the successor with the 628 /// fewest predecessors. This should reduce the in-degree of the others. 629 /// 630 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 631 TerminatorInst *BBTerm = BB->getTerminator(); 632 unsigned MinSucc = 0; 633 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 634 // Compute the successor with the minimum number of predecessors. 635 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 636 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 637 TestBB = BBTerm->getSuccessor(i); 638 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 639 if (NumPreds < MinNumPreds) { 640 MinSucc = i; 641 MinNumPreds = NumPreds; 642 } 643 } 644 645 return MinSucc; 646 } 647 648 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 649 if (!BB->hasAddressTaken()) return false; 650 651 // If the block has its address taken, it may be a tree of dead constants 652 // hanging off of it. These shouldn't keep the block alive. 653 BlockAddress *BA = BlockAddress::get(BB); 654 BA->removeDeadConstantUsers(); 655 return !BA->use_empty(); 656 } 657 658 /// ProcessBlock - If there are any predecessors whose control can be threaded 659 /// through to a successor, transform them now. 660 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 661 // If the block is trivially dead, just return and let the caller nuke it. 662 // This simplifies other transformations. 663 if (pred_empty(BB) && 664 BB != &BB->getParent()->getEntryBlock()) 665 return false; 666 667 // If this block has a single predecessor, and if that pred has a single 668 // successor, merge the blocks. This encourages recursive jump threading 669 // because now the condition in this block can be threaded through 670 // predecessors of our predecessor block. 671 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 672 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 673 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 674 // If SinglePred was a loop header, BB becomes one. 675 if (LoopHeaders.erase(SinglePred)) 676 LoopHeaders.insert(BB); 677 678 LVI->eraseBlock(SinglePred); 679 MergeBasicBlockIntoOnlyPred(BB); 680 681 return true; 682 } 683 } 684 685 // What kind of constant we're looking for. 686 ConstantPreference Preference = WantInteger; 687 688 // Look to see if the terminator is a conditional branch, switch or indirect 689 // branch, if not we can't thread it. 690 Value *Condition; 691 Instruction *Terminator = BB->getTerminator(); 692 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 693 // Can't thread an unconditional jump. 694 if (BI->isUnconditional()) return false; 695 Condition = BI->getCondition(); 696 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 697 Condition = SI->getCondition(); 698 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 699 // Can't thread indirect branch with no successors. 700 if (IB->getNumSuccessors() == 0) return false; 701 Condition = IB->getAddress()->stripPointerCasts(); 702 Preference = WantBlockAddress; 703 } else { 704 return false; // Must be an invoke. 705 } 706 707 // Run constant folding to see if we can reduce the condition to a simple 708 // constant. 709 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 710 Value *SimpleVal = 711 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 712 if (SimpleVal) { 713 I->replaceAllUsesWith(SimpleVal); 714 I->eraseFromParent(); 715 Condition = SimpleVal; 716 } 717 } 718 719 // If the terminator is branching on an undef, we can pick any of the 720 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 721 if (isa<UndefValue>(Condition)) { 722 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 723 724 // Fold the branch/switch. 725 TerminatorInst *BBTerm = BB->getTerminator(); 726 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 727 if (i == BestSucc) continue; 728 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 729 } 730 731 DEBUG(dbgs() << " In block '" << BB->getName() 732 << "' folding undef terminator: " << *BBTerm << '\n'); 733 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 734 BBTerm->eraseFromParent(); 735 return true; 736 } 737 738 // If the terminator of this block is branching on a constant, simplify the 739 // terminator to an unconditional branch. This can occur due to threading in 740 // other blocks. 741 if (getKnownConstant(Condition, Preference)) { 742 DEBUG(dbgs() << " In block '" << BB->getName() 743 << "' folding terminator: " << *BB->getTerminator() << '\n'); 744 ++NumFolds; 745 ConstantFoldTerminator(BB, true); 746 return true; 747 } 748 749 Instruction *CondInst = dyn_cast<Instruction>(Condition); 750 751 // All the rest of our checks depend on the condition being an instruction. 752 if (!CondInst) { 753 // FIXME: Unify this with code below. 754 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 755 return true; 756 return false; 757 } 758 759 760 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 761 // For a comparison where the LHS is outside this block, it's possible 762 // that we've branched on it before. Used LVI to see if we can simplify 763 // the branch based on that. 764 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 765 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 766 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 767 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 768 (!isa<Instruction>(CondCmp->getOperand(0)) || 769 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 770 // For predecessor edge, determine if the comparison is true or false 771 // on that edge. If they're all true or all false, we can simplify the 772 // branch. 773 // FIXME: We could handle mixed true/false by duplicating code. 774 LazyValueInfo::Tristate Baseline = 775 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 776 CondConst, *PI, BB, CondCmp); 777 if (Baseline != LazyValueInfo::Unknown) { 778 // Check that all remaining incoming values match the first one. 779 while (++PI != PE) { 780 LazyValueInfo::Tristate Ret = 781 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 782 CondCmp->getOperand(0), CondConst, *PI, BB, 783 CondCmp); 784 if (Ret != Baseline) break; 785 } 786 787 // If we terminated early, then one of the values didn't match. 788 if (PI == PE) { 789 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 790 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 791 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 792 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 793 CondBr->eraseFromParent(); 794 if (CondCmp->use_empty()) 795 CondCmp->eraseFromParent(); 796 else if (CondCmp->getParent() == BB) { 797 // If the fact we just learned is true for all uses of the 798 // condition, replace it with a constant value 799 auto *CI = Baseline == LazyValueInfo::True ? 800 ConstantInt::getTrue(CondCmp->getType()) : 801 ConstantInt::getFalse(CondCmp->getType()); 802 CondCmp->replaceAllUsesWith(CI); 803 CondCmp->eraseFromParent(); 804 } 805 return true; 806 } 807 } 808 809 } else if (CondBr && CondConst && CondBr->isConditional()) { 810 // There might be an invariant in the same block with the conditional 811 // that can determine the predicate. 812 813 LazyValueInfo::Tristate Ret = 814 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 815 CondConst, CondCmp); 816 if (Ret != LazyValueInfo::Unknown) { 817 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 818 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 819 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 820 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 821 CondBr->eraseFromParent(); 822 return true; 823 } 824 } 825 826 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 827 return true; 828 } 829 830 // Check for some cases that are worth simplifying. Right now we want to look 831 // for loads that are used by a switch or by the condition for the branch. If 832 // we see one, check to see if it's partially redundant. If so, insert a PHI 833 // which can then be used to thread the values. 834 // 835 Value *SimplifyValue = CondInst; 836 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 837 if (isa<Constant>(CondCmp->getOperand(1))) 838 SimplifyValue = CondCmp->getOperand(0); 839 840 // TODO: There are other places where load PRE would be profitable, such as 841 // more complex comparisons. 842 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 843 if (SimplifyPartiallyRedundantLoad(LI)) 844 return true; 845 846 847 // Handle a variety of cases where we are branching on something derived from 848 // a PHI node in the current block. If we can prove that any predecessors 849 // compute a predictable value based on a PHI node, thread those predecessors. 850 // 851 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 852 return true; 853 854 // If this is an otherwise-unfoldable branch on a phi node in the current 855 // block, see if we can simplify. 856 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 857 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 858 return ProcessBranchOnPHI(PN); 859 860 861 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 862 if (CondInst->getOpcode() == Instruction::Xor && 863 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 864 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 865 866 867 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 868 // "(X == 4)", thread through this block. 869 870 return false; 871 } 872 873 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 874 /// load instruction, eliminate it by replacing it with a PHI node. This is an 875 /// important optimization that encourages jump threading, and needs to be run 876 /// interlaced with other jump threading tasks. 877 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 878 // Don't hack volatile/atomic loads. 879 if (!LI->isSimple()) return false; 880 881 // If the load is defined in a block with exactly one predecessor, it can't be 882 // partially redundant. 883 BasicBlock *LoadBB = LI->getParent(); 884 if (LoadBB->getSinglePredecessor()) 885 return false; 886 887 // If the load is defined in a landing pad, it can't be partially redundant, 888 // because the edges between the invoke and the landing pad cannot have other 889 // instructions between them. 890 if (LoadBB->isLandingPad()) 891 return false; 892 893 Value *LoadedPtr = LI->getOperand(0); 894 895 // If the loaded operand is defined in the LoadBB, it can't be available. 896 // TODO: Could do simple PHI translation, that would be fun :) 897 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 898 if (PtrOp->getParent() == LoadBB) 899 return false; 900 901 // Scan a few instructions up from the load, to see if it is obviously live at 902 // the entry to its block. 903 BasicBlock::iterator BBIt = LI; 904 905 if (Value *AvailableVal = 906 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 907 // If the value if the load is locally available within the block, just use 908 // it. This frequently occurs for reg2mem'd allocas. 909 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 910 911 // If the returned value is the load itself, replace with an undef. This can 912 // only happen in dead loops. 913 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 914 if (AvailableVal->getType() != LI->getType()) 915 AvailableVal = 916 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 917 LI->replaceAllUsesWith(AvailableVal); 918 LI->eraseFromParent(); 919 return true; 920 } 921 922 // Otherwise, if we scanned the whole block and got to the top of the block, 923 // we know the block is locally transparent to the load. If not, something 924 // might clobber its value. 925 if (BBIt != LoadBB->begin()) 926 return false; 927 928 // If all of the loads and stores that feed the value have the same AA tags, 929 // then we can propagate them onto any newly inserted loads. 930 AAMDNodes AATags; 931 LI->getAAMetadata(AATags); 932 933 SmallPtrSet<BasicBlock*, 8> PredsScanned; 934 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 935 AvailablePredsTy AvailablePreds; 936 BasicBlock *OneUnavailablePred = nullptr; 937 938 // If we got here, the loaded value is transparent through to the start of the 939 // block. Check to see if it is available in any of the predecessor blocks. 940 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 941 PI != PE; ++PI) { 942 BasicBlock *PredBB = *PI; 943 944 // If we already scanned this predecessor, skip it. 945 if (!PredsScanned.insert(PredBB).second) 946 continue; 947 948 // Scan the predecessor to see if the value is available in the pred. 949 BBIt = PredBB->end(); 950 AAMDNodes ThisAATags; 951 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 952 nullptr, &ThisAATags); 953 if (!PredAvailable) { 954 OneUnavailablePred = PredBB; 955 continue; 956 } 957 958 // If AA tags disagree or are not present, forget about them. 959 if (AATags != ThisAATags) AATags = AAMDNodes(); 960 961 // If so, this load is partially redundant. Remember this info so that we 962 // can create a PHI node. 963 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 964 } 965 966 // If the loaded value isn't available in any predecessor, it isn't partially 967 // redundant. 968 if (AvailablePreds.empty()) return false; 969 970 // Okay, the loaded value is available in at least one (and maybe all!) 971 // predecessors. If the value is unavailable in more than one unique 972 // predecessor, we want to insert a merge block for those common predecessors. 973 // This ensures that we only have to insert one reload, thus not increasing 974 // code size. 975 BasicBlock *UnavailablePred = nullptr; 976 977 // If there is exactly one predecessor where the value is unavailable, the 978 // already computed 'OneUnavailablePred' block is it. If it ends in an 979 // unconditional branch, we know that it isn't a critical edge. 980 if (PredsScanned.size() == AvailablePreds.size()+1 && 981 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 982 UnavailablePred = OneUnavailablePred; 983 } else if (PredsScanned.size() != AvailablePreds.size()) { 984 // Otherwise, we had multiple unavailable predecessors or we had a critical 985 // edge from the one. 986 SmallVector<BasicBlock*, 8> PredsToSplit; 987 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 988 989 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 990 AvailablePredSet.insert(AvailablePreds[i].first); 991 992 // Add all the unavailable predecessors to the PredsToSplit list. 993 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 994 PI != PE; ++PI) { 995 BasicBlock *P = *PI; 996 // If the predecessor is an indirect goto, we can't split the edge. 997 if (isa<IndirectBrInst>(P->getTerminator())) 998 return false; 999 1000 if (!AvailablePredSet.count(P)) 1001 PredsToSplit.push_back(P); 1002 } 1003 1004 // Split them out to their own block. 1005 UnavailablePred = 1006 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split"); 1007 } 1008 1009 // If the value isn't available in all predecessors, then there will be 1010 // exactly one where it isn't available. Insert a load on that edge and add 1011 // it to the AvailablePreds list. 1012 if (UnavailablePred) { 1013 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1014 "Can't handle critical edge here!"); 1015 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1016 LI->getAlignment(), 1017 UnavailablePred->getTerminator()); 1018 NewVal->setDebugLoc(LI->getDebugLoc()); 1019 if (AATags) 1020 NewVal->setAAMetadata(AATags); 1021 1022 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1023 } 1024 1025 // Now we know that each predecessor of this block has a value in 1026 // AvailablePreds, sort them for efficient access as we're walking the preds. 1027 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1028 1029 // Create a PHI node at the start of the block for the PRE'd load value. 1030 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1031 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1032 LoadBB->begin()); 1033 PN->takeName(LI); 1034 PN->setDebugLoc(LI->getDebugLoc()); 1035 1036 // Insert new entries into the PHI for each predecessor. A single block may 1037 // have multiple entries here. 1038 for (pred_iterator PI = PB; PI != PE; ++PI) { 1039 BasicBlock *P = *PI; 1040 AvailablePredsTy::iterator I = 1041 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1042 std::make_pair(P, (Value*)nullptr)); 1043 1044 assert(I != AvailablePreds.end() && I->first == P && 1045 "Didn't find entry for predecessor!"); 1046 1047 // If we have an available predecessor but it requires casting, insert the 1048 // cast in the predecessor and use the cast. Note that we have to update the 1049 // AvailablePreds vector as we go so that all of the PHI entries for this 1050 // predecessor use the same bitcast. 1051 Value *&PredV = I->second; 1052 if (PredV->getType() != LI->getType()) 1053 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1054 P->getTerminator()); 1055 1056 PN->addIncoming(PredV, I->first); 1057 } 1058 1059 //cerr << "PRE: " << *LI << *PN << "\n"; 1060 1061 LI->replaceAllUsesWith(PN); 1062 LI->eraseFromParent(); 1063 1064 return true; 1065 } 1066 1067 /// FindMostPopularDest - The specified list contains multiple possible 1068 /// threadable destinations. Pick the one that occurs the most frequently in 1069 /// the list. 1070 static BasicBlock * 1071 FindMostPopularDest(BasicBlock *BB, 1072 const SmallVectorImpl<std::pair<BasicBlock*, 1073 BasicBlock*> > &PredToDestList) { 1074 assert(!PredToDestList.empty()); 1075 1076 // Determine popularity. If there are multiple possible destinations, we 1077 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1078 // blocks with known and real destinations to threading undef. We'll handle 1079 // them later if interesting. 1080 DenseMap<BasicBlock*, unsigned> DestPopularity; 1081 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1082 if (PredToDestList[i].second) 1083 DestPopularity[PredToDestList[i].second]++; 1084 1085 // Find the most popular dest. 1086 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1087 BasicBlock *MostPopularDest = DPI->first; 1088 unsigned Popularity = DPI->second; 1089 SmallVector<BasicBlock*, 4> SamePopularity; 1090 1091 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1092 // If the popularity of this entry isn't higher than the popularity we've 1093 // seen so far, ignore it. 1094 if (DPI->second < Popularity) 1095 ; // ignore. 1096 else if (DPI->second == Popularity) { 1097 // If it is the same as what we've seen so far, keep track of it. 1098 SamePopularity.push_back(DPI->first); 1099 } else { 1100 // If it is more popular, remember it. 1101 SamePopularity.clear(); 1102 MostPopularDest = DPI->first; 1103 Popularity = DPI->second; 1104 } 1105 } 1106 1107 // Okay, now we know the most popular destination. If there is more than one 1108 // destination, we need to determine one. This is arbitrary, but we need 1109 // to make a deterministic decision. Pick the first one that appears in the 1110 // successor list. 1111 if (!SamePopularity.empty()) { 1112 SamePopularity.push_back(MostPopularDest); 1113 TerminatorInst *TI = BB->getTerminator(); 1114 for (unsigned i = 0; ; ++i) { 1115 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1116 1117 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1118 TI->getSuccessor(i)) == SamePopularity.end()) 1119 continue; 1120 1121 MostPopularDest = TI->getSuccessor(i); 1122 break; 1123 } 1124 } 1125 1126 // Okay, we have finally picked the most popular destination. 1127 return MostPopularDest; 1128 } 1129 1130 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1131 ConstantPreference Preference, 1132 Instruction *CxtI) { 1133 // If threading this would thread across a loop header, don't even try to 1134 // thread the edge. 1135 if (LoopHeaders.count(BB)) 1136 return false; 1137 1138 PredValueInfoTy PredValues; 1139 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1140 return false; 1141 1142 assert(!PredValues.empty() && 1143 "ComputeValueKnownInPredecessors returned true with no values"); 1144 1145 DEBUG(dbgs() << "IN BB: " << *BB; 1146 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1147 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1148 << *PredValues[i].first 1149 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1150 }); 1151 1152 // Decide what we want to thread through. Convert our list of known values to 1153 // a list of known destinations for each pred. This also discards duplicate 1154 // predecessors and keeps track of the undefined inputs (which are represented 1155 // as a null dest in the PredToDestList). 1156 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1157 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1158 1159 BasicBlock *OnlyDest = nullptr; 1160 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1161 1162 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1163 BasicBlock *Pred = PredValues[i].second; 1164 if (!SeenPreds.insert(Pred).second) 1165 continue; // Duplicate predecessor entry. 1166 1167 // If the predecessor ends with an indirect goto, we can't change its 1168 // destination. 1169 if (isa<IndirectBrInst>(Pred->getTerminator())) 1170 continue; 1171 1172 Constant *Val = PredValues[i].first; 1173 1174 BasicBlock *DestBB; 1175 if (isa<UndefValue>(Val)) 1176 DestBB = nullptr; 1177 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1178 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1179 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1180 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1181 } else { 1182 assert(isa<IndirectBrInst>(BB->getTerminator()) 1183 && "Unexpected terminator"); 1184 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1185 } 1186 1187 // If we have exactly one destination, remember it for efficiency below. 1188 if (PredToDestList.empty()) 1189 OnlyDest = DestBB; 1190 else if (OnlyDest != DestBB) 1191 OnlyDest = MultipleDestSentinel; 1192 1193 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1194 } 1195 1196 // If all edges were unthreadable, we fail. 1197 if (PredToDestList.empty()) 1198 return false; 1199 1200 // Determine which is the most common successor. If we have many inputs and 1201 // this block is a switch, we want to start by threading the batch that goes 1202 // to the most popular destination first. If we only know about one 1203 // threadable destination (the common case) we can avoid this. 1204 BasicBlock *MostPopularDest = OnlyDest; 1205 1206 if (MostPopularDest == MultipleDestSentinel) 1207 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1208 1209 // Now that we know what the most popular destination is, factor all 1210 // predecessors that will jump to it into a single predecessor. 1211 SmallVector<BasicBlock*, 16> PredsToFactor; 1212 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1213 if (PredToDestList[i].second == MostPopularDest) { 1214 BasicBlock *Pred = PredToDestList[i].first; 1215 1216 // This predecessor may be a switch or something else that has multiple 1217 // edges to the block. Factor each of these edges by listing them 1218 // according to # occurrences in PredsToFactor. 1219 TerminatorInst *PredTI = Pred->getTerminator(); 1220 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1221 if (PredTI->getSuccessor(i) == BB) 1222 PredsToFactor.push_back(Pred); 1223 } 1224 1225 // If the threadable edges are branching on an undefined value, we get to pick 1226 // the destination that these predecessors should get to. 1227 if (!MostPopularDest) 1228 MostPopularDest = BB->getTerminator()-> 1229 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1230 1231 // Ok, try to thread it! 1232 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1233 } 1234 1235 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1236 /// a PHI node in the current block. See if there are any simplifications we 1237 /// can do based on inputs to the phi node. 1238 /// 1239 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1240 BasicBlock *BB = PN->getParent(); 1241 1242 // TODO: We could make use of this to do it once for blocks with common PHI 1243 // values. 1244 SmallVector<BasicBlock*, 1> PredBBs; 1245 PredBBs.resize(1); 1246 1247 // If any of the predecessor blocks end in an unconditional branch, we can 1248 // *duplicate* the conditional branch into that block in order to further 1249 // encourage jump threading and to eliminate cases where we have branch on a 1250 // phi of an icmp (branch on icmp is much better). 1251 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1252 BasicBlock *PredBB = PN->getIncomingBlock(i); 1253 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1254 if (PredBr->isUnconditional()) { 1255 PredBBs[0] = PredBB; 1256 // Try to duplicate BB into PredBB. 1257 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1258 return true; 1259 } 1260 } 1261 1262 return false; 1263 } 1264 1265 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1266 /// a xor instruction in the current block. See if there are any 1267 /// simplifications we can do based on inputs to the xor. 1268 /// 1269 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1270 BasicBlock *BB = BO->getParent(); 1271 1272 // If either the LHS or RHS of the xor is a constant, don't do this 1273 // optimization. 1274 if (isa<ConstantInt>(BO->getOperand(0)) || 1275 isa<ConstantInt>(BO->getOperand(1))) 1276 return false; 1277 1278 // If the first instruction in BB isn't a phi, we won't be able to infer 1279 // anything special about any particular predecessor. 1280 if (!isa<PHINode>(BB->front())) 1281 return false; 1282 1283 // If we have a xor as the branch input to this block, and we know that the 1284 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1285 // the condition into the predecessor and fix that value to true, saving some 1286 // logical ops on that path and encouraging other paths to simplify. 1287 // 1288 // This copies something like this: 1289 // 1290 // BB: 1291 // %X = phi i1 [1], [%X'] 1292 // %Y = icmp eq i32 %A, %B 1293 // %Z = xor i1 %X, %Y 1294 // br i1 %Z, ... 1295 // 1296 // Into: 1297 // BB': 1298 // %Y = icmp ne i32 %A, %B 1299 // br i1 %Z, ... 1300 1301 PredValueInfoTy XorOpValues; 1302 bool isLHS = true; 1303 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1304 WantInteger, BO)) { 1305 assert(XorOpValues.empty()); 1306 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1307 WantInteger, BO)) 1308 return false; 1309 isLHS = false; 1310 } 1311 1312 assert(!XorOpValues.empty() && 1313 "ComputeValueKnownInPredecessors returned true with no values"); 1314 1315 // Scan the information to see which is most popular: true or false. The 1316 // predecessors can be of the set true, false, or undef. 1317 unsigned NumTrue = 0, NumFalse = 0; 1318 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1319 if (isa<UndefValue>(XorOpValues[i].first)) 1320 // Ignore undefs for the count. 1321 continue; 1322 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1323 ++NumFalse; 1324 else 1325 ++NumTrue; 1326 } 1327 1328 // Determine which value to split on, true, false, or undef if neither. 1329 ConstantInt *SplitVal = nullptr; 1330 if (NumTrue > NumFalse) 1331 SplitVal = ConstantInt::getTrue(BB->getContext()); 1332 else if (NumTrue != 0 || NumFalse != 0) 1333 SplitVal = ConstantInt::getFalse(BB->getContext()); 1334 1335 // Collect all of the blocks that this can be folded into so that we can 1336 // factor this once and clone it once. 1337 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1338 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1339 if (XorOpValues[i].first != SplitVal && 1340 !isa<UndefValue>(XorOpValues[i].first)) 1341 continue; 1342 1343 BlocksToFoldInto.push_back(XorOpValues[i].second); 1344 } 1345 1346 // If we inferred a value for all of the predecessors, then duplication won't 1347 // help us. However, we can just replace the LHS or RHS with the constant. 1348 if (BlocksToFoldInto.size() == 1349 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1350 if (!SplitVal) { 1351 // If all preds provide undef, just nuke the xor, because it is undef too. 1352 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1353 BO->eraseFromParent(); 1354 } else if (SplitVal->isZero()) { 1355 // If all preds provide 0, replace the xor with the other input. 1356 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1357 BO->eraseFromParent(); 1358 } else { 1359 // If all preds provide 1, set the computed value to 1. 1360 BO->setOperand(!isLHS, SplitVal); 1361 } 1362 1363 return true; 1364 } 1365 1366 // Try to duplicate BB into PredBB. 1367 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1368 } 1369 1370 1371 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1372 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1373 /// NewPred using the entries from OldPred (suitably mapped). 1374 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1375 BasicBlock *OldPred, 1376 BasicBlock *NewPred, 1377 DenseMap<Instruction*, Value*> &ValueMap) { 1378 for (BasicBlock::iterator PNI = PHIBB->begin(); 1379 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1380 // Ok, we have a PHI node. Figure out what the incoming value was for the 1381 // DestBlock. 1382 Value *IV = PN->getIncomingValueForBlock(OldPred); 1383 1384 // Remap the value if necessary. 1385 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1386 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1387 if (I != ValueMap.end()) 1388 IV = I->second; 1389 } 1390 1391 PN->addIncoming(IV, NewPred); 1392 } 1393 } 1394 1395 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1396 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1397 /// across BB. Transform the IR to reflect this change. 1398 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1399 const SmallVectorImpl<BasicBlock*> &PredBBs, 1400 BasicBlock *SuccBB) { 1401 // If threading to the same block as we come from, we would infinite loop. 1402 if (SuccBB == BB) { 1403 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1404 << "' - would thread to self!\n"); 1405 return false; 1406 } 1407 1408 // If threading this would thread across a loop header, don't thread the edge. 1409 // See the comments above FindLoopHeaders for justifications and caveats. 1410 if (LoopHeaders.count(BB)) { 1411 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1412 << "' to dest BB '" << SuccBB->getName() 1413 << "' - it might create an irreducible loop!\n"); 1414 return false; 1415 } 1416 1417 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1418 if (JumpThreadCost > BBDupThreshold) { 1419 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1420 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1421 return false; 1422 } 1423 1424 // And finally, do it! Start by factoring the predecessors is needed. 1425 BasicBlock *PredBB; 1426 if (PredBBs.size() == 1) 1427 PredBB = PredBBs[0]; 1428 else { 1429 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1430 << " common predecessors.\n"); 1431 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1432 } 1433 1434 // And finally, do it! 1435 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1436 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1437 << ", across block:\n " 1438 << *BB << "\n"); 1439 1440 LVI->threadEdge(PredBB, BB, SuccBB); 1441 1442 // We are going to have to map operands from the original BB block to the new 1443 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1444 // account for entry from PredBB. 1445 DenseMap<Instruction*, Value*> ValueMapping; 1446 1447 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1448 BB->getName()+".thread", 1449 BB->getParent(), BB); 1450 NewBB->moveAfter(PredBB); 1451 1452 BasicBlock::iterator BI = BB->begin(); 1453 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1454 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1455 1456 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1457 // mapping and using it to remap operands in the cloned instructions. 1458 for (; !isa<TerminatorInst>(BI); ++BI) { 1459 Instruction *New = BI->clone(); 1460 New->setName(BI->getName()); 1461 NewBB->getInstList().push_back(New); 1462 ValueMapping[BI] = New; 1463 1464 // Remap operands to patch up intra-block references. 1465 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1466 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1467 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1468 if (I != ValueMapping.end()) 1469 New->setOperand(i, I->second); 1470 } 1471 } 1472 1473 // We didn't copy the terminator from BB over to NewBB, because there is now 1474 // an unconditional jump to SuccBB. Insert the unconditional jump. 1475 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1476 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1477 1478 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1479 // PHI nodes for NewBB now. 1480 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1481 1482 // If there were values defined in BB that are used outside the block, then we 1483 // now have to update all uses of the value to use either the original value, 1484 // the cloned value, or some PHI derived value. This can require arbitrary 1485 // PHI insertion, of which we are prepared to do, clean these up now. 1486 SSAUpdater SSAUpdate; 1487 SmallVector<Use*, 16> UsesToRename; 1488 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1489 // Scan all uses of this instruction to see if it is used outside of its 1490 // block, and if so, record them in UsesToRename. 1491 for (Use &U : I->uses()) { 1492 Instruction *User = cast<Instruction>(U.getUser()); 1493 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1494 if (UserPN->getIncomingBlock(U) == BB) 1495 continue; 1496 } else if (User->getParent() == BB) 1497 continue; 1498 1499 UsesToRename.push_back(&U); 1500 } 1501 1502 // If there are no uses outside the block, we're done with this instruction. 1503 if (UsesToRename.empty()) 1504 continue; 1505 1506 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1507 1508 // We found a use of I outside of BB. Rename all uses of I that are outside 1509 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1510 // with the two values we know. 1511 SSAUpdate.Initialize(I->getType(), I->getName()); 1512 SSAUpdate.AddAvailableValue(BB, I); 1513 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1514 1515 while (!UsesToRename.empty()) 1516 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1517 DEBUG(dbgs() << "\n"); 1518 } 1519 1520 1521 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1522 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1523 // us to simplify any PHI nodes in BB. 1524 TerminatorInst *PredTerm = PredBB->getTerminator(); 1525 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1526 if (PredTerm->getSuccessor(i) == BB) { 1527 BB->removePredecessor(PredBB, true); 1528 PredTerm->setSuccessor(i, NewBB); 1529 } 1530 1531 // At this point, the IR is fully up to date and consistent. Do a quick scan 1532 // over the new instructions and zap any that are constants or dead. This 1533 // frequently happens because of phi translation. 1534 SimplifyInstructionsInBlock(NewBB, TLI); 1535 1536 // Threaded an edge! 1537 ++NumThreads; 1538 return true; 1539 } 1540 1541 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1542 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1543 /// If we can duplicate the contents of BB up into PredBB do so now, this 1544 /// improves the odds that the branch will be on an analyzable instruction like 1545 /// a compare. 1546 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1547 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1548 assert(!PredBBs.empty() && "Can't handle an empty set"); 1549 1550 // If BB is a loop header, then duplicating this block outside the loop would 1551 // cause us to transform this into an irreducible loop, don't do this. 1552 // See the comments above FindLoopHeaders for justifications and caveats. 1553 if (LoopHeaders.count(BB)) { 1554 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1555 << "' into predecessor block '" << PredBBs[0]->getName() 1556 << "' - it might create an irreducible loop!\n"); 1557 return false; 1558 } 1559 1560 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1561 if (DuplicationCost > BBDupThreshold) { 1562 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1563 << "' - Cost is too high: " << DuplicationCost << "\n"); 1564 return false; 1565 } 1566 1567 // And finally, do it! Start by factoring the predecessors is needed. 1568 BasicBlock *PredBB; 1569 if (PredBBs.size() == 1) 1570 PredBB = PredBBs[0]; 1571 else { 1572 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1573 << " common predecessors.\n"); 1574 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1575 } 1576 1577 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1578 // of PredBB. 1579 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1580 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1581 << DuplicationCost << " block is:" << *BB << "\n"); 1582 1583 // Unless PredBB ends with an unconditional branch, split the edge so that we 1584 // can just clone the bits from BB into the end of the new PredBB. 1585 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1586 1587 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1588 PredBB = SplitEdge(PredBB, BB); 1589 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1590 } 1591 1592 // We are going to have to map operands from the original BB block into the 1593 // PredBB block. Evaluate PHI nodes in BB. 1594 DenseMap<Instruction*, Value*> ValueMapping; 1595 1596 BasicBlock::iterator BI = BB->begin(); 1597 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1598 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1599 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1600 // mapping and using it to remap operands in the cloned instructions. 1601 for (; BI != BB->end(); ++BI) { 1602 Instruction *New = BI->clone(); 1603 1604 // Remap operands to patch up intra-block references. 1605 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1606 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1607 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1608 if (I != ValueMapping.end()) 1609 New->setOperand(i, I->second); 1610 } 1611 1612 // If this instruction can be simplified after the operands are updated, 1613 // just use the simplified value instead. This frequently happens due to 1614 // phi translation. 1615 if (Value *IV = 1616 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1617 delete New; 1618 ValueMapping[BI] = IV; 1619 } else { 1620 // Otherwise, insert the new instruction into the block. 1621 New->setName(BI->getName()); 1622 PredBB->getInstList().insert(OldPredBranch, New); 1623 ValueMapping[BI] = New; 1624 } 1625 } 1626 1627 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1628 // add entries to the PHI nodes for branch from PredBB now. 1629 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1630 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1631 ValueMapping); 1632 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1633 ValueMapping); 1634 1635 // If there were values defined in BB that are used outside the block, then we 1636 // now have to update all uses of the value to use either the original value, 1637 // the cloned value, or some PHI derived value. This can require arbitrary 1638 // PHI insertion, of which we are prepared to do, clean these up now. 1639 SSAUpdater SSAUpdate; 1640 SmallVector<Use*, 16> UsesToRename; 1641 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1642 // Scan all uses of this instruction to see if it is used outside of its 1643 // block, and if so, record them in UsesToRename. 1644 for (Use &U : I->uses()) { 1645 Instruction *User = cast<Instruction>(U.getUser()); 1646 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1647 if (UserPN->getIncomingBlock(U) == BB) 1648 continue; 1649 } else if (User->getParent() == BB) 1650 continue; 1651 1652 UsesToRename.push_back(&U); 1653 } 1654 1655 // If there are no uses outside the block, we're done with this instruction. 1656 if (UsesToRename.empty()) 1657 continue; 1658 1659 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1660 1661 // We found a use of I outside of BB. Rename all uses of I that are outside 1662 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1663 // with the two values we know. 1664 SSAUpdate.Initialize(I->getType(), I->getName()); 1665 SSAUpdate.AddAvailableValue(BB, I); 1666 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1667 1668 while (!UsesToRename.empty()) 1669 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1670 DEBUG(dbgs() << "\n"); 1671 } 1672 1673 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1674 // that we nuked. 1675 BB->removePredecessor(PredBB, true); 1676 1677 // Remove the unconditional branch at the end of the PredBB block. 1678 OldPredBranch->eraseFromParent(); 1679 1680 ++NumDupes; 1681 return true; 1682 } 1683 1684 /// TryToUnfoldSelect - Look for blocks of the form 1685 /// bb1: 1686 /// %a = select 1687 /// br bb 1688 /// 1689 /// bb2: 1690 /// %p = phi [%a, %bb] ... 1691 /// %c = icmp %p 1692 /// br i1 %c 1693 /// 1694 /// And expand the select into a branch structure if one of its arms allows %c 1695 /// to be folded. This later enables threading from bb1 over bb2. 1696 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1697 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1698 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1699 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1700 1701 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1702 CondLHS->getParent() != BB) 1703 return false; 1704 1705 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1706 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1707 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1708 1709 // Look if one of the incoming values is a select in the corresponding 1710 // predecessor. 1711 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1712 continue; 1713 1714 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1715 if (!PredTerm || !PredTerm->isUnconditional()) 1716 continue; 1717 1718 // Now check if one of the select values would allow us to constant fold the 1719 // terminator in BB. We don't do the transform if both sides fold, those 1720 // cases will be threaded in any case. 1721 LazyValueInfo::Tristate LHSFolds = 1722 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1723 CondRHS, Pred, BB, CondCmp); 1724 LazyValueInfo::Tristate RHSFolds = 1725 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1726 CondRHS, Pred, BB, CondCmp); 1727 if ((LHSFolds != LazyValueInfo::Unknown || 1728 RHSFolds != LazyValueInfo::Unknown) && 1729 LHSFolds != RHSFolds) { 1730 // Expand the select. 1731 // 1732 // Pred -- 1733 // | v 1734 // | NewBB 1735 // | | 1736 // |----- 1737 // v 1738 // BB 1739 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1740 BB->getParent(), BB); 1741 // Move the unconditional branch to NewBB. 1742 PredTerm->removeFromParent(); 1743 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1744 // Create a conditional branch and update PHI nodes. 1745 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1746 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1747 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1748 // The select is now dead. 1749 SI->eraseFromParent(); 1750 1751 // Update any other PHI nodes in BB. 1752 for (BasicBlock::iterator BI = BB->begin(); 1753 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1754 if (Phi != CondLHS) 1755 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1756 return true; 1757 } 1758 } 1759 return false; 1760 } 1761