1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/TargetTransformInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CFG.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/InstrTypes.h"
46 #include "llvm/IR/Instruction.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/PassManager.h"
55 #include "llvm/IR/PatternMatch.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/User.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <memory>
80 #include <utility>
81 
82 using namespace llvm;
83 using namespace jumpthreading;
84 
85 #define DEBUG_TYPE "jump-threading"
86 
87 STATISTIC(NumThreads, "Number of jumps threaded");
88 STATISTIC(NumFolds,   "Number of terminators folded");
89 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
90 
91 static cl::opt<unsigned>
92 BBDuplicateThreshold("jump-threading-threshold",
93           cl::desc("Max block size to duplicate for jump threading"),
94           cl::init(6), cl::Hidden);
95 
96 static cl::opt<unsigned>
97 ImplicationSearchThreshold(
98   "jump-threading-implication-search-threshold",
99   cl::desc("The number of predecessors to search for a stronger "
100            "condition to use to thread over a weaker condition"),
101   cl::init(3), cl::Hidden);
102 
103 static cl::opt<bool> PrintLVIAfterJumpThreading(
104     "print-lvi-after-jump-threading",
105     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
106     cl::Hidden);
107 
108 static cl::opt<bool> JumpThreadingFreezeSelectCond(
109     "jump-threading-freeze-select-cond",
110     cl::desc("Freeze the condition when unfolding select"), cl::init(false),
111     cl::Hidden);
112 
113 static cl::opt<bool> ThreadAcrossLoopHeaders(
114     "jump-threading-across-loop-headers",
115     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
116     cl::init(false), cl::Hidden);
117 
118 
119 namespace {
120 
121   /// This pass performs 'jump threading', which looks at blocks that have
122   /// multiple predecessors and multiple successors.  If one or more of the
123   /// predecessors of the block can be proven to always jump to one of the
124   /// successors, we forward the edge from the predecessor to the successor by
125   /// duplicating the contents of this block.
126   ///
127   /// An example of when this can occur is code like this:
128   ///
129   ///   if () { ...
130   ///     X = 4;
131   ///   }
132   ///   if (X < 3) {
133   ///
134   /// In this case, the unconditional branch at the end of the first if can be
135   /// revectored to the false side of the second if.
136   class JumpThreading : public FunctionPass {
137     JumpThreadingPass Impl;
138 
139   public:
140     static char ID; // Pass identification
141 
142     JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1)
143         : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) {
144       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
145     }
146 
147     bool runOnFunction(Function &F) override;
148 
149     void getAnalysisUsage(AnalysisUsage &AU) const override {
150       AU.addRequired<DominatorTreeWrapperPass>();
151       AU.addPreserved<DominatorTreeWrapperPass>();
152       AU.addRequired<AAResultsWrapperPass>();
153       AU.addRequired<LazyValueInfoWrapperPass>();
154       AU.addPreserved<LazyValueInfoWrapperPass>();
155       AU.addPreserved<GlobalsAAWrapperPass>();
156       AU.addRequired<TargetLibraryInfoWrapperPass>();
157       AU.addRequired<TargetTransformInfoWrapperPass>();
158     }
159 
160     void releaseMemory() override { Impl.releaseMemory(); }
161   };
162 
163 } // end anonymous namespace
164 
165 char JumpThreading::ID = 0;
166 
167 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
168                 "Jump Threading", false, false)
169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
170 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
171 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
173 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
174                 "Jump Threading", false, false)
175 
176 // Public interface to the Jump Threading pass
177 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) {
178   return new JumpThreading(InsertFr, Threshold);
179 }
180 
181 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) {
182   InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr;
183   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
184 }
185 
186 // Update branch probability information according to conditional
187 // branch probability. This is usually made possible for cloned branches
188 // in inline instances by the context specific profile in the caller.
189 // For instance,
190 //
191 //  [Block PredBB]
192 //  [Branch PredBr]
193 //  if (t) {
194 //     Block A;
195 //  } else {
196 //     Block B;
197 //  }
198 //
199 //  [Block BB]
200 //  cond = PN([true, %A], [..., %B]); // PHI node
201 //  [Branch CondBr]
202 //  if (cond) {
203 //    ...  // P(cond == true) = 1%
204 //  }
205 //
206 //  Here we know that when block A is taken, cond must be true, which means
207 //      P(cond == true | A) = 1
208 //
209 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
210 //                               P(cond == true | B) * P(B)
211 //  we get:
212 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
213 //
214 //  which gives us:
215 //     P(A) is less than P(cond == true), i.e.
216 //     P(t == true) <= P(cond == true)
217 //
218 //  In other words, if we know P(cond == true) is unlikely, we know
219 //  that P(t == true) is also unlikely.
220 //
221 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
222   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
223   if (!CondBr)
224     return;
225 
226   uint64_t TrueWeight, FalseWeight;
227   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
228     return;
229 
230   if (TrueWeight + FalseWeight == 0)
231     // Zero branch_weights do not give a hint for getting branch probabilities.
232     // Technically it would result in division by zero denominator, which is
233     // TrueWeight + FalseWeight.
234     return;
235 
236   // Returns the outgoing edge of the dominating predecessor block
237   // that leads to the PhiNode's incoming block:
238   auto GetPredOutEdge =
239       [](BasicBlock *IncomingBB,
240          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
241     auto *PredBB = IncomingBB;
242     auto *SuccBB = PhiBB;
243     SmallPtrSet<BasicBlock *, 16> Visited;
244     while (true) {
245       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
246       if (PredBr && PredBr->isConditional())
247         return {PredBB, SuccBB};
248       Visited.insert(PredBB);
249       auto *SinglePredBB = PredBB->getSinglePredecessor();
250       if (!SinglePredBB)
251         return {nullptr, nullptr};
252 
253       // Stop searching when SinglePredBB has been visited. It means we see
254       // an unreachable loop.
255       if (Visited.count(SinglePredBB))
256         return {nullptr, nullptr};
257 
258       SuccBB = PredBB;
259       PredBB = SinglePredBB;
260     }
261   };
262 
263   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
264     Value *PhiOpnd = PN->getIncomingValue(i);
265     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
266 
267     if (!CI || !CI->getType()->isIntegerTy(1))
268       continue;
269 
270     BranchProbability BP =
271         (CI->isOne() ? BranchProbability::getBranchProbability(
272                            TrueWeight, TrueWeight + FalseWeight)
273                      : BranchProbability::getBranchProbability(
274                            FalseWeight, TrueWeight + FalseWeight));
275 
276     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
277     if (!PredOutEdge.first)
278       return;
279 
280     BasicBlock *PredBB = PredOutEdge.first;
281     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
282     if (!PredBr)
283       return;
284 
285     uint64_t PredTrueWeight, PredFalseWeight;
286     // FIXME: We currently only set the profile data when it is missing.
287     // With PGO, this can be used to refine even existing profile data with
288     // context information. This needs to be done after more performance
289     // testing.
290     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
291       continue;
292 
293     // We can not infer anything useful when BP >= 50%, because BP is the
294     // upper bound probability value.
295     if (BP >= BranchProbability(50, 100))
296       continue;
297 
298     SmallVector<uint32_t, 2> Weights;
299     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
300       Weights.push_back(BP.getNumerator());
301       Weights.push_back(BP.getCompl().getNumerator());
302     } else {
303       Weights.push_back(BP.getCompl().getNumerator());
304       Weights.push_back(BP.getNumerator());
305     }
306     PredBr->setMetadata(LLVMContext::MD_prof,
307                         MDBuilder(PredBr->getParent()->getContext())
308                             .createBranchWeights(Weights));
309   }
310 }
311 
312 /// runOnFunction - Toplevel algorithm.
313 bool JumpThreading::runOnFunction(Function &F) {
314   if (skipFunction(F))
315     return false;
316   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
317   // Jump Threading has no sense for the targets with divergent CF
318   if (TTI->hasBranchDivergence())
319     return false;
320   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
321   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
322   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
323   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
324   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
325   std::unique_ptr<BlockFrequencyInfo> BFI;
326   std::unique_ptr<BranchProbabilityInfo> BPI;
327   if (F.hasProfileData()) {
328     LoopInfo LI{DominatorTree(F)};
329     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
330     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
331   }
332 
333   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(),
334                               std::move(BFI), std::move(BPI));
335   if (PrintLVIAfterJumpThreading) {
336     dbgs() << "LVI for function '" << F.getName() << "':\n";
337     LVI->printLVI(F, DTU.getDomTree(), dbgs());
338   }
339   return Changed;
340 }
341 
342 PreservedAnalyses JumpThreadingPass::run(Function &F,
343                                          FunctionAnalysisManager &AM) {
344   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
345   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
346   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
347   auto &AA = AM.getResult<AAManager>(F);
348   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
349 
350   std::unique_ptr<BlockFrequencyInfo> BFI;
351   std::unique_ptr<BranchProbabilityInfo> BPI;
352   if (F.hasProfileData()) {
353     LoopInfo LI{DominatorTree(F)};
354     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
355     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
356   }
357 
358   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(),
359                          std::move(BFI), std::move(BPI));
360 
361   if (PrintLVIAfterJumpThreading) {
362     dbgs() << "LVI for function '" << F.getName() << "':\n";
363     LVI.printLVI(F, DTU.getDomTree(), dbgs());
364   }
365 
366   if (!Changed)
367     return PreservedAnalyses::all();
368   PreservedAnalyses PA;
369   PA.preserve<GlobalsAA>();
370   PA.preserve<DominatorTreeAnalysis>();
371   PA.preserve<LazyValueAnalysis>();
372   return PA;
373 }
374 
375 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
376                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
377                                 DomTreeUpdater *DTU_, bool HasProfileData_,
378                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
379                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
380   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
381   TLI = TLI_;
382   LVI = LVI_;
383   AA = AA_;
384   DTU = DTU_;
385   BFI.reset();
386   BPI.reset();
387   // When profile data is available, we need to update edge weights after
388   // successful jump threading, which requires both BPI and BFI being available.
389   HasProfileData = HasProfileData_;
390   auto *GuardDecl = F.getParent()->getFunction(
391       Intrinsic::getName(Intrinsic::experimental_guard));
392   HasGuards = GuardDecl && !GuardDecl->use_empty();
393   if (HasProfileData) {
394     BPI = std::move(BPI_);
395     BFI = std::move(BFI_);
396   }
397 
398   // Reduce the number of instructions duplicated when optimizing strictly for
399   // size.
400   if (BBDuplicateThreshold.getNumOccurrences())
401     BBDupThreshold = BBDuplicateThreshold;
402   else if (F.hasFnAttribute(Attribute::MinSize))
403     BBDupThreshold = 3;
404   else
405     BBDupThreshold = DefaultBBDupThreshold;
406 
407   // JumpThreading must not processes blocks unreachable from entry. It's a
408   // waste of compute time and can potentially lead to hangs.
409   SmallPtrSet<BasicBlock *, 16> Unreachable;
410   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
411   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
412   DominatorTree &DT = DTU->getDomTree();
413   for (auto &BB : F)
414     if (!DT.isReachableFromEntry(&BB))
415       Unreachable.insert(&BB);
416 
417   if (!ThreadAcrossLoopHeaders)
418     findLoopHeaders(F);
419 
420   bool EverChanged = false;
421   bool Changed;
422   do {
423     Changed = false;
424     for (auto &BB : F) {
425       if (Unreachable.count(&BB))
426         continue;
427       while (processBlock(&BB)) // Thread all of the branches we can over BB.
428         Changed = true;
429 
430       // Jump threading may have introduced redundant debug values into BB
431       // which should be removed.
432       if (Changed)
433         RemoveRedundantDbgInstrs(&BB);
434 
435       // Stop processing BB if it's the entry or is now deleted. The following
436       // routines attempt to eliminate BB and locating a suitable replacement
437       // for the entry is non-trivial.
438       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
439         continue;
440 
441       if (pred_empty(&BB)) {
442         // When processBlock makes BB unreachable it doesn't bother to fix up
443         // the instructions in it. We must remove BB to prevent invalid IR.
444         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
445                           << "' with terminator: " << *BB.getTerminator()
446                           << '\n');
447         LoopHeaders.erase(&BB);
448         LVI->eraseBlock(&BB);
449         DeleteDeadBlock(&BB, DTU);
450         Changed = true;
451         continue;
452       }
453 
454       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
455       // is "almost empty", we attempt to merge BB with its sole successor.
456       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
457       if (BI && BI->isUnconditional()) {
458         BasicBlock *Succ = BI->getSuccessor(0);
459         if (
460             // The terminator must be the only non-phi instruction in BB.
461             BB.getFirstNonPHIOrDbg()->isTerminator() &&
462             // Don't alter Loop headers and latches to ensure another pass can
463             // detect and transform nested loops later.
464             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
465             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
466           RemoveRedundantDbgInstrs(Succ);
467           // BB is valid for cleanup here because we passed in DTU. F remains
468           // BB's parent until a DTU->getDomTree() event.
469           LVI->eraseBlock(&BB);
470           Changed = true;
471         }
472       }
473     }
474     EverChanged |= Changed;
475   } while (Changed);
476 
477   LoopHeaders.clear();
478   return EverChanged;
479 }
480 
481 // Replace uses of Cond with ToVal when safe to do so. If all uses are
482 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
483 // because we may incorrectly replace uses when guards/assumes are uses of
484 // of `Cond` and we used the guards/assume to reason about the `Cond` value
485 // at the end of block. RAUW unconditionally replaces all uses
486 // including the guards/assumes themselves and the uses before the
487 // guard/assume.
488 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) {
489   assert(Cond->getType() == ToVal->getType());
490   auto *BB = Cond->getParent();
491   // We can unconditionally replace all uses in non-local blocks (i.e. uses
492   // strictly dominated by BB), since LVI information is true from the
493   // terminator of BB.
494   replaceNonLocalUsesWith(Cond, ToVal);
495   for (Instruction &I : reverse(*BB)) {
496     // Reached the Cond whose uses we are trying to replace, so there are no
497     // more uses.
498     if (&I == Cond)
499       break;
500     // We only replace uses in instructions that are guaranteed to reach the end
501     // of BB, where we know Cond is ToVal.
502     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
503       break;
504     I.replaceUsesOfWith(Cond, ToVal);
505   }
506   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
507     Cond->eraseFromParent();
508 }
509 
510 /// Return the cost of duplicating a piece of this block from first non-phi
511 /// and before StopAt instruction to thread across it. Stop scanning the block
512 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
513 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
514                                              Instruction *StopAt,
515                                              unsigned Threshold) {
516   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
517   /// Ignore PHI nodes, these will be flattened when duplication happens.
518   BasicBlock::const_iterator I(BB->getFirstNonPHI());
519 
520   // FIXME: THREADING will delete values that are just used to compute the
521   // branch, so they shouldn't count against the duplication cost.
522 
523   unsigned Bonus = 0;
524   if (BB->getTerminator() == StopAt) {
525     // Threading through a switch statement is particularly profitable.  If this
526     // block ends in a switch, decrease its cost to make it more likely to
527     // happen.
528     if (isa<SwitchInst>(StopAt))
529       Bonus = 6;
530 
531     // The same holds for indirect branches, but slightly more so.
532     if (isa<IndirectBrInst>(StopAt))
533       Bonus = 8;
534   }
535 
536   // Bump the threshold up so the early exit from the loop doesn't skip the
537   // terminator-based Size adjustment at the end.
538   Threshold += Bonus;
539 
540   // Sum up the cost of each instruction until we get to the terminator.  Don't
541   // include the terminator because the copy won't include it.
542   unsigned Size = 0;
543   for (; &*I != StopAt; ++I) {
544 
545     // Stop scanning the block if we've reached the threshold.
546     if (Size > Threshold)
547       return Size;
548 
549     // Debugger intrinsics don't incur code size.
550     if (isa<DbgInfoIntrinsic>(I)) continue;
551 
552     // Pseudo-probes don't incur code size.
553     if (isa<PseudoProbeInst>(I))
554       continue;
555 
556     // If this is a pointer->pointer bitcast, it is free.
557     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
558       continue;
559 
560     // Freeze instruction is free, too.
561     if (isa<FreezeInst>(I))
562       continue;
563 
564     // Bail out if this instruction gives back a token type, it is not possible
565     // to duplicate it if it is used outside this BB.
566     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
567       return ~0U;
568 
569     // All other instructions count for at least one unit.
570     ++Size;
571 
572     // Calls are more expensive.  If they are non-intrinsic calls, we model them
573     // as having cost of 4.  If they are a non-vector intrinsic, we model them
574     // as having cost of 2 total, and if they are a vector intrinsic, we model
575     // them as having cost 1.
576     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
577       if (CI->cannotDuplicate() || CI->isConvergent())
578         // Blocks with NoDuplicate are modelled as having infinite cost, so they
579         // are never duplicated.
580         return ~0U;
581       else if (!isa<IntrinsicInst>(CI))
582         Size += 3;
583       else if (!CI->getType()->isVectorTy())
584         Size += 1;
585     }
586   }
587 
588   return Size > Bonus ? Size - Bonus : 0;
589 }
590 
591 /// findLoopHeaders - We do not want jump threading to turn proper loop
592 /// structures into irreducible loops.  Doing this breaks up the loop nesting
593 /// hierarchy and pessimizes later transformations.  To prevent this from
594 /// happening, we first have to find the loop headers.  Here we approximate this
595 /// by finding targets of backedges in the CFG.
596 ///
597 /// Note that there definitely are cases when we want to allow threading of
598 /// edges across a loop header.  For example, threading a jump from outside the
599 /// loop (the preheader) to an exit block of the loop is definitely profitable.
600 /// It is also almost always profitable to thread backedges from within the loop
601 /// to exit blocks, and is often profitable to thread backedges to other blocks
602 /// within the loop (forming a nested loop).  This simple analysis is not rich
603 /// enough to track all of these properties and keep it up-to-date as the CFG
604 /// mutates, so we don't allow any of these transformations.
605 void JumpThreadingPass::findLoopHeaders(Function &F) {
606   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
607   FindFunctionBackedges(F, Edges);
608 
609   for (const auto &Edge : Edges)
610     LoopHeaders.insert(Edge.second);
611 }
612 
613 /// getKnownConstant - Helper method to determine if we can thread over a
614 /// terminator with the given value as its condition, and if so what value to
615 /// use for that. What kind of value this is depends on whether we want an
616 /// integer or a block address, but an undef is always accepted.
617 /// Returns null if Val is null or not an appropriate constant.
618 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
619   if (!Val)
620     return nullptr;
621 
622   // Undef is "known" enough.
623   if (UndefValue *U = dyn_cast<UndefValue>(Val))
624     return U;
625 
626   if (Preference == WantBlockAddress)
627     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
628 
629   return dyn_cast<ConstantInt>(Val);
630 }
631 
632 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
633 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
634 /// in any of our predecessors.  If so, return the known list of value and pred
635 /// BB in the result vector.
636 ///
637 /// This returns true if there were any known values.
638 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
639     Value *V, BasicBlock *BB, PredValueInfo &Result,
640     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
641     Instruction *CxtI) {
642   // This method walks up use-def chains recursively.  Because of this, we could
643   // get into an infinite loop going around loops in the use-def chain.  To
644   // prevent this, keep track of what (value, block) pairs we've already visited
645   // and terminate the search if we loop back to them
646   if (!RecursionSet.insert(V).second)
647     return false;
648 
649   // If V is a constant, then it is known in all predecessors.
650   if (Constant *KC = getKnownConstant(V, Preference)) {
651     for (BasicBlock *Pred : predecessors(BB))
652       Result.emplace_back(KC, Pred);
653 
654     return !Result.empty();
655   }
656 
657   // If V is a non-instruction value, or an instruction in a different block,
658   // then it can't be derived from a PHI.
659   Instruction *I = dyn_cast<Instruction>(V);
660   if (!I || I->getParent() != BB) {
661 
662     // Okay, if this is a live-in value, see if it has a known value at the end
663     // of any of our predecessors.
664     //
665     // FIXME: This should be an edge property, not a block end property.
666     /// TODO: Per PR2563, we could infer value range information about a
667     /// predecessor based on its terminator.
668     //
669     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
670     // "I" is a non-local compare-with-a-constant instruction.  This would be
671     // able to handle value inequalities better, for example if the compare is
672     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
673     // Perhaps getConstantOnEdge should be smart enough to do this?
674     for (BasicBlock *P : predecessors(BB)) {
675       // If the value is known by LazyValueInfo to be a constant in a
676       // predecessor, use that information to try to thread this block.
677       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
678       if (Constant *KC = getKnownConstant(PredCst, Preference))
679         Result.emplace_back(KC, P);
680     }
681 
682     return !Result.empty();
683   }
684 
685   /// If I is a PHI node, then we know the incoming values for any constants.
686   if (PHINode *PN = dyn_cast<PHINode>(I)) {
687     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
688       Value *InVal = PN->getIncomingValue(i);
689       if (Constant *KC = getKnownConstant(InVal, Preference)) {
690         Result.emplace_back(KC, PN->getIncomingBlock(i));
691       } else {
692         Constant *CI = LVI->getConstantOnEdge(InVal,
693                                               PN->getIncomingBlock(i),
694                                               BB, CxtI);
695         if (Constant *KC = getKnownConstant(CI, Preference))
696           Result.emplace_back(KC, PN->getIncomingBlock(i));
697       }
698     }
699 
700     return !Result.empty();
701   }
702 
703   // Handle Cast instructions.
704   if (CastInst *CI = dyn_cast<CastInst>(I)) {
705     Value *Source = CI->getOperand(0);
706     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
707                                         RecursionSet, CxtI);
708     if (Result.empty())
709       return false;
710 
711     // Convert the known values.
712     for (auto &R : Result)
713       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
714 
715     return true;
716   }
717 
718   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
719     Value *Source = FI->getOperand(0);
720     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
721                                         RecursionSet, CxtI);
722 
723     erase_if(Result, [](auto &Pair) {
724       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
725     });
726 
727     return !Result.empty();
728   }
729 
730   // Handle some boolean conditions.
731   if (I->getType()->getPrimitiveSizeInBits() == 1) {
732     assert(Preference == WantInteger && "One-bit non-integer type?");
733     // X | true -> true
734     // X & false -> false
735     if (I->getOpcode() == Instruction::Or ||
736         I->getOpcode() == Instruction::And) {
737       PredValueInfoTy LHSVals, RHSVals;
738 
739       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
740                                       WantInteger, RecursionSet, CxtI);
741       computeValueKnownInPredecessorsImpl(I->getOperand(1), BB, RHSVals,
742                                           WantInteger, RecursionSet, CxtI);
743 
744       if (LHSVals.empty() && RHSVals.empty())
745         return false;
746 
747       ConstantInt *InterestingVal;
748       if (I->getOpcode() == Instruction::Or)
749         InterestingVal = ConstantInt::getTrue(I->getContext());
750       else
751         InterestingVal = ConstantInt::getFalse(I->getContext());
752 
753       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
754 
755       // Scan for the sentinel.  If we find an undef, force it to the
756       // interesting value: x|undef -> true and x&undef -> false.
757       for (const auto &LHSVal : LHSVals)
758         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
759           Result.emplace_back(InterestingVal, LHSVal.second);
760           LHSKnownBBs.insert(LHSVal.second);
761         }
762       for (const auto &RHSVal : RHSVals)
763         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
764           // If we already inferred a value for this block on the LHS, don't
765           // re-add it.
766           if (!LHSKnownBBs.count(RHSVal.second))
767             Result.emplace_back(InterestingVal, RHSVal.second);
768         }
769 
770       return !Result.empty();
771     }
772 
773     // Handle the NOT form of XOR.
774     if (I->getOpcode() == Instruction::Xor &&
775         isa<ConstantInt>(I->getOperand(1)) &&
776         cast<ConstantInt>(I->getOperand(1))->isOne()) {
777       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
778                                           WantInteger, RecursionSet, CxtI);
779       if (Result.empty())
780         return false;
781 
782       // Invert the known values.
783       for (auto &R : Result)
784         R.first = ConstantExpr::getNot(R.first);
785 
786       return true;
787     }
788 
789   // Try to simplify some other binary operator values.
790   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
791     assert(Preference != WantBlockAddress
792             && "A binary operator creating a block address?");
793     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
794       PredValueInfoTy LHSVals;
795       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
796                                           WantInteger, RecursionSet, CxtI);
797 
798       // Try to use constant folding to simplify the binary operator.
799       for (const auto &LHSVal : LHSVals) {
800         Constant *V = LHSVal.first;
801         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
802 
803         if (Constant *KC = getKnownConstant(Folded, WantInteger))
804           Result.emplace_back(KC, LHSVal.second);
805       }
806     }
807 
808     return !Result.empty();
809   }
810 
811   // Handle compare with phi operand, where the PHI is defined in this block.
812   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
813     assert(Preference == WantInteger && "Compares only produce integers");
814     Type *CmpType = Cmp->getType();
815     Value *CmpLHS = Cmp->getOperand(0);
816     Value *CmpRHS = Cmp->getOperand(1);
817     CmpInst::Predicate Pred = Cmp->getPredicate();
818 
819     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
820     if (!PN)
821       PN = dyn_cast<PHINode>(CmpRHS);
822     if (PN && PN->getParent() == BB) {
823       const DataLayout &DL = PN->getModule()->getDataLayout();
824       // We can do this simplification if any comparisons fold to true or false.
825       // See if any do.
826       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
827         BasicBlock *PredBB = PN->getIncomingBlock(i);
828         Value *LHS, *RHS;
829         if (PN == CmpLHS) {
830           LHS = PN->getIncomingValue(i);
831           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
832         } else {
833           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
834           RHS = PN->getIncomingValue(i);
835         }
836         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
837         if (!Res) {
838           if (!isa<Constant>(RHS))
839             continue;
840 
841           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
842           auto LHSInst = dyn_cast<Instruction>(LHS);
843           if (LHSInst && LHSInst->getParent() == BB)
844             continue;
845 
846           LazyValueInfo::Tristate
847             ResT = LVI->getPredicateOnEdge(Pred, LHS,
848                                            cast<Constant>(RHS), PredBB, BB,
849                                            CxtI ? CxtI : Cmp);
850           if (ResT == LazyValueInfo::Unknown)
851             continue;
852           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
853         }
854 
855         if (Constant *KC = getKnownConstant(Res, WantInteger))
856           Result.emplace_back(KC, PredBB);
857       }
858 
859       return !Result.empty();
860     }
861 
862     // If comparing a live-in value against a constant, see if we know the
863     // live-in value on any predecessors.
864     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
865       Constant *CmpConst = cast<Constant>(CmpRHS);
866 
867       if (!isa<Instruction>(CmpLHS) ||
868           cast<Instruction>(CmpLHS)->getParent() != BB) {
869         for (BasicBlock *P : predecessors(BB)) {
870           // If the value is known by LazyValueInfo to be a constant in a
871           // predecessor, use that information to try to thread this block.
872           LazyValueInfo::Tristate Res =
873             LVI->getPredicateOnEdge(Pred, CmpLHS,
874                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
875           if (Res == LazyValueInfo::Unknown)
876             continue;
877 
878           Constant *ResC = ConstantInt::get(CmpType, Res);
879           Result.emplace_back(ResC, P);
880         }
881 
882         return !Result.empty();
883       }
884 
885       // InstCombine can fold some forms of constant range checks into
886       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
887       // x as a live-in.
888       {
889         using namespace PatternMatch;
890 
891         Value *AddLHS;
892         ConstantInt *AddConst;
893         if (isa<ConstantInt>(CmpConst) &&
894             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
895           if (!isa<Instruction>(AddLHS) ||
896               cast<Instruction>(AddLHS)->getParent() != BB) {
897             for (BasicBlock *P : predecessors(BB)) {
898               // If the value is known by LazyValueInfo to be a ConstantRange in
899               // a predecessor, use that information to try to thread this
900               // block.
901               ConstantRange CR = LVI->getConstantRangeOnEdge(
902                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
903               // Propagate the range through the addition.
904               CR = CR.add(AddConst->getValue());
905 
906               // Get the range where the compare returns true.
907               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
908                   Pred, cast<ConstantInt>(CmpConst)->getValue());
909 
910               Constant *ResC;
911               if (CmpRange.contains(CR))
912                 ResC = ConstantInt::getTrue(CmpType);
913               else if (CmpRange.inverse().contains(CR))
914                 ResC = ConstantInt::getFalse(CmpType);
915               else
916                 continue;
917 
918               Result.emplace_back(ResC, P);
919             }
920 
921             return !Result.empty();
922           }
923         }
924       }
925 
926       // Try to find a constant value for the LHS of a comparison,
927       // and evaluate it statically if we can.
928       PredValueInfoTy LHSVals;
929       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
930                                           WantInteger, RecursionSet, CxtI);
931 
932       for (const auto &LHSVal : LHSVals) {
933         Constant *V = LHSVal.first;
934         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
935         if (Constant *KC = getKnownConstant(Folded, WantInteger))
936           Result.emplace_back(KC, LHSVal.second);
937       }
938 
939       return !Result.empty();
940     }
941   }
942 
943   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
944     // Handle select instructions where at least one operand is a known constant
945     // and we can figure out the condition value for any predecessor block.
946     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
947     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
948     PredValueInfoTy Conds;
949     if ((TrueVal || FalseVal) &&
950         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
951                                             WantInteger, RecursionSet, CxtI)) {
952       for (auto &C : Conds) {
953         Constant *Cond = C.first;
954 
955         // Figure out what value to use for the condition.
956         bool KnownCond;
957         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
958           // A known boolean.
959           KnownCond = CI->isOne();
960         } else {
961           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
962           // Either operand will do, so be sure to pick the one that's a known
963           // constant.
964           // FIXME: Do this more cleverly if both values are known constants?
965           KnownCond = (TrueVal != nullptr);
966         }
967 
968         // See if the select has a known constant value for this predecessor.
969         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
970           Result.emplace_back(Val, C.second);
971       }
972 
973       return !Result.empty();
974     }
975   }
976 
977   // If all else fails, see if LVI can figure out a constant value for us.
978   assert(CxtI->getParent() == BB && "CxtI should be in BB");
979   Constant *CI = LVI->getConstant(V, CxtI);
980   if (Constant *KC = getKnownConstant(CI, Preference)) {
981     for (BasicBlock *Pred : predecessors(BB))
982       Result.emplace_back(KC, Pred);
983   }
984 
985   return !Result.empty();
986 }
987 
988 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
989 /// in an undefined jump, decide which block is best to revector to.
990 ///
991 /// Since we can pick an arbitrary destination, we pick the successor with the
992 /// fewest predecessors.  This should reduce the in-degree of the others.
993 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
994   Instruction *BBTerm = BB->getTerminator();
995   unsigned MinSucc = 0;
996   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
997   // Compute the successor with the minimum number of predecessors.
998   unsigned MinNumPreds = pred_size(TestBB);
999   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1000     TestBB = BBTerm->getSuccessor(i);
1001     unsigned NumPreds = pred_size(TestBB);
1002     if (NumPreds < MinNumPreds) {
1003       MinSucc = i;
1004       MinNumPreds = NumPreds;
1005     }
1006   }
1007 
1008   return MinSucc;
1009 }
1010 
1011 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1012   if (!BB->hasAddressTaken()) return false;
1013 
1014   // If the block has its address taken, it may be a tree of dead constants
1015   // hanging off of it.  These shouldn't keep the block alive.
1016   BlockAddress *BA = BlockAddress::get(BB);
1017   BA->removeDeadConstantUsers();
1018   return !BA->use_empty();
1019 }
1020 
1021 /// processBlock - If there are any predecessors whose control can be threaded
1022 /// through to a successor, transform them now.
1023 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1024   // If the block is trivially dead, just return and let the caller nuke it.
1025   // This simplifies other transformations.
1026   if (DTU->isBBPendingDeletion(BB) ||
1027       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1028     return false;
1029 
1030   // If this block has a single predecessor, and if that pred has a single
1031   // successor, merge the blocks.  This encourages recursive jump threading
1032   // because now the condition in this block can be threaded through
1033   // predecessors of our predecessor block.
1034   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1035     return true;
1036 
1037   if (tryToUnfoldSelectInCurrBB(BB))
1038     return true;
1039 
1040   // Look if we can propagate guards to predecessors.
1041   if (HasGuards && processGuards(BB))
1042     return true;
1043 
1044   // What kind of constant we're looking for.
1045   ConstantPreference Preference = WantInteger;
1046 
1047   // Look to see if the terminator is a conditional branch, switch or indirect
1048   // branch, if not we can't thread it.
1049   Value *Condition;
1050   Instruction *Terminator = BB->getTerminator();
1051   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1052     // Can't thread an unconditional jump.
1053     if (BI->isUnconditional()) return false;
1054     Condition = BI->getCondition();
1055   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1056     Condition = SI->getCondition();
1057   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1058     // Can't thread indirect branch with no successors.
1059     if (IB->getNumSuccessors() == 0) return false;
1060     Condition = IB->getAddress()->stripPointerCasts();
1061     Preference = WantBlockAddress;
1062   } else {
1063     return false; // Must be an invoke or callbr.
1064   }
1065 
1066   // Keep track if we constant folded the condition in this invocation.
1067   bool ConstantFolded = false;
1068 
1069   // Run constant folding to see if we can reduce the condition to a simple
1070   // constant.
1071   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1072     Value *SimpleVal =
1073         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1074     if (SimpleVal) {
1075       I->replaceAllUsesWith(SimpleVal);
1076       if (isInstructionTriviallyDead(I, TLI))
1077         I->eraseFromParent();
1078       Condition = SimpleVal;
1079       ConstantFolded = true;
1080     }
1081   }
1082 
1083   // If the terminator is branching on an undef or freeze undef, we can pick any
1084   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1085   auto *FI = dyn_cast<FreezeInst>(Condition);
1086   if (isa<UndefValue>(Condition) ||
1087       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1088     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1089     std::vector<DominatorTree::UpdateType> Updates;
1090 
1091     // Fold the branch/switch.
1092     Instruction *BBTerm = BB->getTerminator();
1093     Updates.reserve(BBTerm->getNumSuccessors());
1094     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1095       if (i == BestSucc) continue;
1096       BasicBlock *Succ = BBTerm->getSuccessor(i);
1097       Succ->removePredecessor(BB, true);
1098       Updates.push_back({DominatorTree::Delete, BB, Succ});
1099     }
1100 
1101     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1102                       << "' folding undef terminator: " << *BBTerm << '\n');
1103     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1104     BBTerm->eraseFromParent();
1105     DTU->applyUpdatesPermissive(Updates);
1106     if (FI)
1107       FI->eraseFromParent();
1108     return true;
1109   }
1110 
1111   // If the terminator of this block is branching on a constant, simplify the
1112   // terminator to an unconditional branch.  This can occur due to threading in
1113   // other blocks.
1114   if (getKnownConstant(Condition, Preference)) {
1115     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1116                       << "' folding terminator: " << *BB->getTerminator()
1117                       << '\n');
1118     ++NumFolds;
1119     ConstantFoldTerminator(BB, true, nullptr, DTU);
1120     if (HasProfileData)
1121       BPI->eraseBlock(BB);
1122     return true;
1123   }
1124 
1125   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1126 
1127   // All the rest of our checks depend on the condition being an instruction.
1128   if (!CondInst) {
1129     // FIXME: Unify this with code below.
1130     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1131       return true;
1132     return ConstantFolded;
1133   }
1134 
1135   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1136     // If we're branching on a conditional, LVI might be able to determine
1137     // it's value at the branch instruction.  We only handle comparisons
1138     // against a constant at this time.
1139     // TODO: This should be extended to handle switches as well.
1140     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1141     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1142     if (CondBr && CondConst) {
1143       // We should have returned as soon as we turn a conditional branch to
1144       // unconditional. Because its no longer interesting as far as jump
1145       // threading is concerned.
1146       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1147 
1148       LazyValueInfo::Tristate Ret =
1149         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1150                             CondConst, CondBr);
1151       if (Ret != LazyValueInfo::Unknown) {
1152         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1153         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1154         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1155         ToRemoveSucc->removePredecessor(BB, true);
1156         BranchInst *UncondBr =
1157           BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1158         UncondBr->setDebugLoc(CondBr->getDebugLoc());
1159         CondBr->eraseFromParent();
1160         if (CondCmp->use_empty())
1161           CondCmp->eraseFromParent();
1162         // We can safely replace *some* uses of the CondInst if it has
1163         // exactly one value as returned by LVI. RAUW is incorrect in the
1164         // presence of guards and assumes, that have the `Cond` as the use. This
1165         // is because we use the guards/assume to reason about the `Cond` value
1166         // at the end of block, but RAUW unconditionally replaces all uses
1167         // including the guards/assumes themselves and the uses before the
1168         // guard/assume.
1169         else if (CondCmp->getParent() == BB) {
1170           auto *CI = Ret == LazyValueInfo::True ?
1171             ConstantInt::getTrue(CondCmp->getType()) :
1172             ConstantInt::getFalse(CondCmp->getType());
1173           replaceFoldableUses(CondCmp, CI);
1174         }
1175         DTU->applyUpdatesPermissive(
1176             {{DominatorTree::Delete, BB, ToRemoveSucc}});
1177         if (HasProfileData)
1178           BPI->eraseBlock(BB);
1179         return true;
1180       }
1181 
1182       // We did not manage to simplify this branch, try to see whether
1183       // CondCmp depends on a known phi-select pattern.
1184       if (tryToUnfoldSelect(CondCmp, BB))
1185         return true;
1186     }
1187   }
1188 
1189   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1190     if (tryToUnfoldSelect(SI, BB))
1191       return true;
1192 
1193   // Check for some cases that are worth simplifying.  Right now we want to look
1194   // for loads that are used by a switch or by the condition for the branch.  If
1195   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1196   // which can then be used to thread the values.
1197   Value *SimplifyValue = CondInst;
1198 
1199   if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue))
1200     // Look into freeze's operand
1201     SimplifyValue = FI->getOperand(0);
1202 
1203   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1204     if (isa<Constant>(CondCmp->getOperand(1)))
1205       SimplifyValue = CondCmp->getOperand(0);
1206 
1207   // TODO: There are other places where load PRE would be profitable, such as
1208   // more complex comparisons.
1209   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1210     if (simplifyPartiallyRedundantLoad(LoadI))
1211       return true;
1212 
1213   // Before threading, try to propagate profile data backwards:
1214   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1215     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1216       updatePredecessorProfileMetadata(PN, BB);
1217 
1218   // Handle a variety of cases where we are branching on something derived from
1219   // a PHI node in the current block.  If we can prove that any predecessors
1220   // compute a predictable value based on a PHI node, thread those predecessors.
1221   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1222     return true;
1223 
1224   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1225   // the current block, see if we can simplify.
1226   PHINode *PN = dyn_cast<PHINode>(
1227       isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0)
1228                                 : CondInst);
1229 
1230   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1231     return processBranchOnPHI(PN);
1232 
1233   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1234   if (CondInst->getOpcode() == Instruction::Xor &&
1235       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1236     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1237 
1238   // Search for a stronger dominating condition that can be used to simplify a
1239   // conditional branch leaving BB.
1240   if (processImpliedCondition(BB))
1241     return true;
1242 
1243   return false;
1244 }
1245 
1246 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1247   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1248   if (!BI || !BI->isConditional())
1249     return false;
1250 
1251   Value *Cond = BI->getCondition();
1252   BasicBlock *CurrentBB = BB;
1253   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1254   unsigned Iter = 0;
1255 
1256   auto &DL = BB->getModule()->getDataLayout();
1257 
1258   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1259     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1260     if (!PBI || !PBI->isConditional())
1261       return false;
1262     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1263       return false;
1264 
1265     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1266     Optional<bool> Implication =
1267         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1268     if (Implication) {
1269       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1270       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1271       RemoveSucc->removePredecessor(BB);
1272       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1273       UncondBI->setDebugLoc(BI->getDebugLoc());
1274       BI->eraseFromParent();
1275       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1276       if (HasProfileData)
1277         BPI->eraseBlock(BB);
1278       return true;
1279     }
1280     CurrentBB = CurrentPred;
1281     CurrentPred = CurrentBB->getSinglePredecessor();
1282   }
1283 
1284   return false;
1285 }
1286 
1287 /// Return true if Op is an instruction defined in the given block.
1288 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1289   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1290     if (OpInst->getParent() == BB)
1291       return true;
1292   return false;
1293 }
1294 
1295 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1296 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1297 /// This is an important optimization that encourages jump threading, and needs
1298 /// to be run interlaced with other jump threading tasks.
1299 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1300   // Don't hack volatile and ordered loads.
1301   if (!LoadI->isUnordered()) return false;
1302 
1303   // If the load is defined in a block with exactly one predecessor, it can't be
1304   // partially redundant.
1305   BasicBlock *LoadBB = LoadI->getParent();
1306   if (LoadBB->getSinglePredecessor())
1307     return false;
1308 
1309   // If the load is defined in an EH pad, it can't be partially redundant,
1310   // because the edges between the invoke and the EH pad cannot have other
1311   // instructions between them.
1312   if (LoadBB->isEHPad())
1313     return false;
1314 
1315   Value *LoadedPtr = LoadI->getOperand(0);
1316 
1317   // If the loaded operand is defined in the LoadBB and its not a phi,
1318   // it can't be available in predecessors.
1319   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1320     return false;
1321 
1322   // Scan a few instructions up from the load, to see if it is obviously live at
1323   // the entry to its block.
1324   BasicBlock::iterator BBIt(LoadI);
1325   bool IsLoadCSE;
1326   if (Value *AvailableVal = FindAvailableLoadedValue(
1327           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1328     // If the value of the load is locally available within the block, just use
1329     // it.  This frequently occurs for reg2mem'd allocas.
1330 
1331     if (IsLoadCSE) {
1332       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1333       combineMetadataForCSE(NLoadI, LoadI, false);
1334     };
1335 
1336     // If the returned value is the load itself, replace with an undef. This can
1337     // only happen in dead loops.
1338     if (AvailableVal == LoadI)
1339       AvailableVal = UndefValue::get(LoadI->getType());
1340     if (AvailableVal->getType() != LoadI->getType())
1341       AvailableVal = CastInst::CreateBitOrPointerCast(
1342           AvailableVal, LoadI->getType(), "", LoadI);
1343     LoadI->replaceAllUsesWith(AvailableVal);
1344     LoadI->eraseFromParent();
1345     return true;
1346   }
1347 
1348   // Otherwise, if we scanned the whole block and got to the top of the block,
1349   // we know the block is locally transparent to the load.  If not, something
1350   // might clobber its value.
1351   if (BBIt != LoadBB->begin())
1352     return false;
1353 
1354   // If all of the loads and stores that feed the value have the same AA tags,
1355   // then we can propagate them onto any newly inserted loads.
1356   AAMDNodes AATags;
1357   LoadI->getAAMetadata(AATags);
1358 
1359   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1360 
1361   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1362 
1363   AvailablePredsTy AvailablePreds;
1364   BasicBlock *OneUnavailablePred = nullptr;
1365   SmallVector<LoadInst*, 8> CSELoads;
1366 
1367   // If we got here, the loaded value is transparent through to the start of the
1368   // block.  Check to see if it is available in any of the predecessor blocks.
1369   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1370     // If we already scanned this predecessor, skip it.
1371     if (!PredsScanned.insert(PredBB).second)
1372       continue;
1373 
1374     BBIt = PredBB->end();
1375     unsigned NumScanedInst = 0;
1376     Value *PredAvailable = nullptr;
1377     // NOTE: We don't CSE load that is volatile or anything stronger than
1378     // unordered, that should have been checked when we entered the function.
1379     assert(LoadI->isUnordered() &&
1380            "Attempting to CSE volatile or atomic loads");
1381     // If this is a load on a phi pointer, phi-translate it and search
1382     // for available load/store to the pointer in predecessors.
1383     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1384     PredAvailable = FindAvailablePtrLoadStore(
1385         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1386         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1387 
1388     // If PredBB has a single predecessor, continue scanning through the
1389     // single predecessor.
1390     BasicBlock *SinglePredBB = PredBB;
1391     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1392            NumScanedInst < DefMaxInstsToScan) {
1393       SinglePredBB = SinglePredBB->getSinglePredecessor();
1394       if (SinglePredBB) {
1395         BBIt = SinglePredBB->end();
1396         PredAvailable = FindAvailablePtrLoadStore(
1397             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1398             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1399             &NumScanedInst);
1400       }
1401     }
1402 
1403     if (!PredAvailable) {
1404       OneUnavailablePred = PredBB;
1405       continue;
1406     }
1407 
1408     if (IsLoadCSE)
1409       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1410 
1411     // If so, this load is partially redundant.  Remember this info so that we
1412     // can create a PHI node.
1413     AvailablePreds.emplace_back(PredBB, PredAvailable);
1414   }
1415 
1416   // If the loaded value isn't available in any predecessor, it isn't partially
1417   // redundant.
1418   if (AvailablePreds.empty()) return false;
1419 
1420   // Okay, the loaded value is available in at least one (and maybe all!)
1421   // predecessors.  If the value is unavailable in more than one unique
1422   // predecessor, we want to insert a merge block for those common predecessors.
1423   // This ensures that we only have to insert one reload, thus not increasing
1424   // code size.
1425   BasicBlock *UnavailablePred = nullptr;
1426 
1427   // If the value is unavailable in one of predecessors, we will end up
1428   // inserting a new instruction into them. It is only valid if all the
1429   // instructions before LoadI are guaranteed to pass execution to its
1430   // successor, or if LoadI is safe to speculate.
1431   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1432   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1433   // It requires domination tree analysis, so for this simple case it is an
1434   // overkill.
1435   if (PredsScanned.size() != AvailablePreds.size() &&
1436       !isSafeToSpeculativelyExecute(LoadI))
1437     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1438       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1439         return false;
1440 
1441   // If there is exactly one predecessor where the value is unavailable, the
1442   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1443   // unconditional branch, we know that it isn't a critical edge.
1444   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1445       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1446     UnavailablePred = OneUnavailablePred;
1447   } else if (PredsScanned.size() != AvailablePreds.size()) {
1448     // Otherwise, we had multiple unavailable predecessors or we had a critical
1449     // edge from the one.
1450     SmallVector<BasicBlock*, 8> PredsToSplit;
1451     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1452 
1453     for (const auto &AvailablePred : AvailablePreds)
1454       AvailablePredSet.insert(AvailablePred.first);
1455 
1456     // Add all the unavailable predecessors to the PredsToSplit list.
1457     for (BasicBlock *P : predecessors(LoadBB)) {
1458       // If the predecessor is an indirect goto, we can't split the edge.
1459       // Same for CallBr.
1460       if (isa<IndirectBrInst>(P->getTerminator()) ||
1461           isa<CallBrInst>(P->getTerminator()))
1462         return false;
1463 
1464       if (!AvailablePredSet.count(P))
1465         PredsToSplit.push_back(P);
1466     }
1467 
1468     // Split them out to their own block.
1469     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1470   }
1471 
1472   // If the value isn't available in all predecessors, then there will be
1473   // exactly one where it isn't available.  Insert a load on that edge and add
1474   // it to the AvailablePreds list.
1475   if (UnavailablePred) {
1476     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1477            "Can't handle critical edge here!");
1478     LoadInst *NewVal = new LoadInst(
1479         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1480         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1481         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1482         UnavailablePred->getTerminator());
1483     NewVal->setDebugLoc(LoadI->getDebugLoc());
1484     if (AATags)
1485       NewVal->setAAMetadata(AATags);
1486 
1487     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1488   }
1489 
1490   // Now we know that each predecessor of this block has a value in
1491   // AvailablePreds, sort them for efficient access as we're walking the preds.
1492   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1493 
1494   // Create a PHI node at the start of the block for the PRE'd load value.
1495   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1496   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1497                                 &LoadBB->front());
1498   PN->takeName(LoadI);
1499   PN->setDebugLoc(LoadI->getDebugLoc());
1500 
1501   // Insert new entries into the PHI for each predecessor.  A single block may
1502   // have multiple entries here.
1503   for (pred_iterator PI = PB; PI != PE; ++PI) {
1504     BasicBlock *P = *PI;
1505     AvailablePredsTy::iterator I =
1506         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1507 
1508     assert(I != AvailablePreds.end() && I->first == P &&
1509            "Didn't find entry for predecessor!");
1510 
1511     // If we have an available predecessor but it requires casting, insert the
1512     // cast in the predecessor and use the cast. Note that we have to update the
1513     // AvailablePreds vector as we go so that all of the PHI entries for this
1514     // predecessor use the same bitcast.
1515     Value *&PredV = I->second;
1516     if (PredV->getType() != LoadI->getType())
1517       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1518                                                P->getTerminator());
1519 
1520     PN->addIncoming(PredV, I->first);
1521   }
1522 
1523   for (LoadInst *PredLoadI : CSELoads) {
1524     combineMetadataForCSE(PredLoadI, LoadI, true);
1525   }
1526 
1527   LoadI->replaceAllUsesWith(PN);
1528   LoadI->eraseFromParent();
1529 
1530   return true;
1531 }
1532 
1533 /// findMostPopularDest - The specified list contains multiple possible
1534 /// threadable destinations.  Pick the one that occurs the most frequently in
1535 /// the list.
1536 static BasicBlock *
1537 findMostPopularDest(BasicBlock *BB,
1538                     const SmallVectorImpl<std::pair<BasicBlock *,
1539                                           BasicBlock *>> &PredToDestList) {
1540   assert(!PredToDestList.empty());
1541 
1542   // Determine popularity.  If there are multiple possible destinations, we
1543   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1544   // blocks with known and real destinations to threading undef.  We'll handle
1545   // them later if interesting.
1546   MapVector<BasicBlock *, unsigned> DestPopularity;
1547 
1548   // Populate DestPopularity with the successors in the order they appear in the
1549   // successor list.  This way, we ensure determinism by iterating it in the
1550   // same order in std::max_element below.  We map nullptr to 0 so that we can
1551   // return nullptr when PredToDestList contains nullptr only.
1552   DestPopularity[nullptr] = 0;
1553   for (auto *SuccBB : successors(BB))
1554     DestPopularity[SuccBB] = 0;
1555 
1556   for (const auto &PredToDest : PredToDestList)
1557     if (PredToDest.second)
1558       DestPopularity[PredToDest.second]++;
1559 
1560   // Find the most popular dest.
1561   using VT = decltype(DestPopularity)::value_type;
1562   auto MostPopular = std::max_element(
1563       DestPopularity.begin(), DestPopularity.end(),
1564       [](const VT &L, const VT &R) { return L.second < R.second; });
1565 
1566   // Okay, we have finally picked the most popular destination.
1567   return MostPopular->first;
1568 }
1569 
1570 // Try to evaluate the value of V when the control flows from PredPredBB to
1571 // BB->getSinglePredecessor() and then on to BB.
1572 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1573                                                        BasicBlock *PredPredBB,
1574                                                        Value *V) {
1575   BasicBlock *PredBB = BB->getSinglePredecessor();
1576   assert(PredBB && "Expected a single predecessor");
1577 
1578   if (Constant *Cst = dyn_cast<Constant>(V)) {
1579     return Cst;
1580   }
1581 
1582   // Consult LVI if V is not an instruction in BB or PredBB.
1583   Instruction *I = dyn_cast<Instruction>(V);
1584   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1585     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1586   }
1587 
1588   // Look into a PHI argument.
1589   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1590     if (PHI->getParent() == PredBB)
1591       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1592     return nullptr;
1593   }
1594 
1595   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1596   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1597     if (CondCmp->getParent() == BB) {
1598       Constant *Op0 =
1599           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1600       Constant *Op1 =
1601           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1602       if (Op0 && Op1) {
1603         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1604       }
1605     }
1606     return nullptr;
1607   }
1608 
1609   return nullptr;
1610 }
1611 
1612 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1613                                                ConstantPreference Preference,
1614                                                Instruction *CxtI) {
1615   // If threading this would thread across a loop header, don't even try to
1616   // thread the edge.
1617   if (LoopHeaders.count(BB))
1618     return false;
1619 
1620   PredValueInfoTy PredValues;
1621   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1622                                        CxtI)) {
1623     // We don't have known values in predecessors.  See if we can thread through
1624     // BB and its sole predecessor.
1625     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1626   }
1627 
1628   assert(!PredValues.empty() &&
1629          "computeValueKnownInPredecessors returned true with no values");
1630 
1631   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1632              for (const auto &PredValue : PredValues) {
1633                dbgs() << "  BB '" << BB->getName()
1634                       << "': FOUND condition = " << *PredValue.first
1635                       << " for pred '" << PredValue.second->getName() << "'.\n";
1636   });
1637 
1638   // Decide what we want to thread through.  Convert our list of known values to
1639   // a list of known destinations for each pred.  This also discards duplicate
1640   // predecessors and keeps track of the undefined inputs (which are represented
1641   // as a null dest in the PredToDestList).
1642   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1643   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1644 
1645   BasicBlock *OnlyDest = nullptr;
1646   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1647   Constant *OnlyVal = nullptr;
1648   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1649 
1650   for (const auto &PredValue : PredValues) {
1651     BasicBlock *Pred = PredValue.second;
1652     if (!SeenPreds.insert(Pred).second)
1653       continue;  // Duplicate predecessor entry.
1654 
1655     Constant *Val = PredValue.first;
1656 
1657     BasicBlock *DestBB;
1658     if (isa<UndefValue>(Val))
1659       DestBB = nullptr;
1660     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1661       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1662       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1663     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1664       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1665       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1666     } else {
1667       assert(isa<IndirectBrInst>(BB->getTerminator())
1668               && "Unexpected terminator");
1669       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1670       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1671     }
1672 
1673     // If we have exactly one destination, remember it for efficiency below.
1674     if (PredToDestList.empty()) {
1675       OnlyDest = DestBB;
1676       OnlyVal = Val;
1677     } else {
1678       if (OnlyDest != DestBB)
1679         OnlyDest = MultipleDestSentinel;
1680       // It possible we have same destination, but different value, e.g. default
1681       // case in switchinst.
1682       if (Val != OnlyVal)
1683         OnlyVal = MultipleVal;
1684     }
1685 
1686     // If the predecessor ends with an indirect goto, we can't change its
1687     // destination. Same for CallBr.
1688     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1689         isa<CallBrInst>(Pred->getTerminator()))
1690       continue;
1691 
1692     PredToDestList.emplace_back(Pred, DestBB);
1693   }
1694 
1695   // If all edges were unthreadable, we fail.
1696   if (PredToDestList.empty())
1697     return false;
1698 
1699   // If all the predecessors go to a single known successor, we want to fold,
1700   // not thread. By doing so, we do not need to duplicate the current block and
1701   // also miss potential opportunities in case we dont/cant duplicate.
1702   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1703     if (BB->hasNPredecessors(PredToDestList.size())) {
1704       bool SeenFirstBranchToOnlyDest = false;
1705       std::vector <DominatorTree::UpdateType> Updates;
1706       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1707       for (BasicBlock *SuccBB : successors(BB)) {
1708         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1709           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1710         } else {
1711           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1712           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1713         }
1714       }
1715 
1716       // Finally update the terminator.
1717       Instruction *Term = BB->getTerminator();
1718       BranchInst::Create(OnlyDest, Term);
1719       Term->eraseFromParent();
1720       DTU->applyUpdatesPermissive(Updates);
1721       if (HasProfileData)
1722         BPI->eraseBlock(BB);
1723 
1724       // If the condition is now dead due to the removal of the old terminator,
1725       // erase it.
1726       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1727         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1728           CondInst->eraseFromParent();
1729         // We can safely replace *some* uses of the CondInst if it has
1730         // exactly one value as returned by LVI. RAUW is incorrect in the
1731         // presence of guards and assumes, that have the `Cond` as the use. This
1732         // is because we use the guards/assume to reason about the `Cond` value
1733         // at the end of block, but RAUW unconditionally replaces all uses
1734         // including the guards/assumes themselves and the uses before the
1735         // guard/assume.
1736         else if (OnlyVal && OnlyVal != MultipleVal &&
1737                  CondInst->getParent() == BB)
1738           replaceFoldableUses(CondInst, OnlyVal);
1739       }
1740       return true;
1741     }
1742   }
1743 
1744   // Determine which is the most common successor.  If we have many inputs and
1745   // this block is a switch, we want to start by threading the batch that goes
1746   // to the most popular destination first.  If we only know about one
1747   // threadable destination (the common case) we can avoid this.
1748   BasicBlock *MostPopularDest = OnlyDest;
1749 
1750   if (MostPopularDest == MultipleDestSentinel) {
1751     // Remove any loop headers from the Dest list, threadEdge conservatively
1752     // won't process them, but we might have other destination that are eligible
1753     // and we still want to process.
1754     erase_if(PredToDestList,
1755              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1756                return LoopHeaders.count(PredToDest.second) != 0;
1757              });
1758 
1759     if (PredToDestList.empty())
1760       return false;
1761 
1762     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1763   }
1764 
1765   // Now that we know what the most popular destination is, factor all
1766   // predecessors that will jump to it into a single predecessor.
1767   SmallVector<BasicBlock*, 16> PredsToFactor;
1768   for (const auto &PredToDest : PredToDestList)
1769     if (PredToDest.second == MostPopularDest) {
1770       BasicBlock *Pred = PredToDest.first;
1771 
1772       // This predecessor may be a switch or something else that has multiple
1773       // edges to the block.  Factor each of these edges by listing them
1774       // according to # occurrences in PredsToFactor.
1775       for (BasicBlock *Succ : successors(Pred))
1776         if (Succ == BB)
1777           PredsToFactor.push_back(Pred);
1778     }
1779 
1780   // If the threadable edges are branching on an undefined value, we get to pick
1781   // the destination that these predecessors should get to.
1782   if (!MostPopularDest)
1783     MostPopularDest = BB->getTerminator()->
1784                             getSuccessor(getBestDestForJumpOnUndef(BB));
1785 
1786   // Ok, try to thread it!
1787   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1788 }
1789 
1790 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1791 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1792 /// simplifications we can do based on inputs to the phi node.
1793 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1794   BasicBlock *BB = PN->getParent();
1795 
1796   // TODO: We could make use of this to do it once for blocks with common PHI
1797   // values.
1798   SmallVector<BasicBlock*, 1> PredBBs;
1799   PredBBs.resize(1);
1800 
1801   // If any of the predecessor blocks end in an unconditional branch, we can
1802   // *duplicate* the conditional branch into that block in order to further
1803   // encourage jump threading and to eliminate cases where we have branch on a
1804   // phi of an icmp (branch on icmp is much better).
1805   // This is still beneficial when a frozen phi is used as the branch condition
1806   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1807   // to br(icmp(freeze ...)).
1808   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1809     BasicBlock *PredBB = PN->getIncomingBlock(i);
1810     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1811       if (PredBr->isUnconditional()) {
1812         PredBBs[0] = PredBB;
1813         // Try to duplicate BB into PredBB.
1814         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1815           return true;
1816       }
1817   }
1818 
1819   return false;
1820 }
1821 
1822 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1823 /// a xor instruction in the current block.  See if there are any
1824 /// simplifications we can do based on inputs to the xor.
1825 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1826   BasicBlock *BB = BO->getParent();
1827 
1828   // If either the LHS or RHS of the xor is a constant, don't do this
1829   // optimization.
1830   if (isa<ConstantInt>(BO->getOperand(0)) ||
1831       isa<ConstantInt>(BO->getOperand(1)))
1832     return false;
1833 
1834   // If the first instruction in BB isn't a phi, we won't be able to infer
1835   // anything special about any particular predecessor.
1836   if (!isa<PHINode>(BB->front()))
1837     return false;
1838 
1839   // If this BB is a landing pad, we won't be able to split the edge into it.
1840   if (BB->isEHPad())
1841     return false;
1842 
1843   // If we have a xor as the branch input to this block, and we know that the
1844   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1845   // the condition into the predecessor and fix that value to true, saving some
1846   // logical ops on that path and encouraging other paths to simplify.
1847   //
1848   // This copies something like this:
1849   //
1850   //  BB:
1851   //    %X = phi i1 [1],  [%X']
1852   //    %Y = icmp eq i32 %A, %B
1853   //    %Z = xor i1 %X, %Y
1854   //    br i1 %Z, ...
1855   //
1856   // Into:
1857   //  BB':
1858   //    %Y = icmp ne i32 %A, %B
1859   //    br i1 %Y, ...
1860 
1861   PredValueInfoTy XorOpValues;
1862   bool isLHS = true;
1863   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1864                                        WantInteger, BO)) {
1865     assert(XorOpValues.empty());
1866     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1867                                          WantInteger, BO))
1868       return false;
1869     isLHS = false;
1870   }
1871 
1872   assert(!XorOpValues.empty() &&
1873          "computeValueKnownInPredecessors returned true with no values");
1874 
1875   // Scan the information to see which is most popular: true or false.  The
1876   // predecessors can be of the set true, false, or undef.
1877   unsigned NumTrue = 0, NumFalse = 0;
1878   for (const auto &XorOpValue : XorOpValues) {
1879     if (isa<UndefValue>(XorOpValue.first))
1880       // Ignore undefs for the count.
1881       continue;
1882     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1883       ++NumFalse;
1884     else
1885       ++NumTrue;
1886   }
1887 
1888   // Determine which value to split on, true, false, or undef if neither.
1889   ConstantInt *SplitVal = nullptr;
1890   if (NumTrue > NumFalse)
1891     SplitVal = ConstantInt::getTrue(BB->getContext());
1892   else if (NumTrue != 0 || NumFalse != 0)
1893     SplitVal = ConstantInt::getFalse(BB->getContext());
1894 
1895   // Collect all of the blocks that this can be folded into so that we can
1896   // factor this once and clone it once.
1897   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1898   for (const auto &XorOpValue : XorOpValues) {
1899     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1900       continue;
1901 
1902     BlocksToFoldInto.push_back(XorOpValue.second);
1903   }
1904 
1905   // If we inferred a value for all of the predecessors, then duplication won't
1906   // help us.  However, we can just replace the LHS or RHS with the constant.
1907   if (BlocksToFoldInto.size() ==
1908       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1909     if (!SplitVal) {
1910       // If all preds provide undef, just nuke the xor, because it is undef too.
1911       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1912       BO->eraseFromParent();
1913     } else if (SplitVal->isZero()) {
1914       // If all preds provide 0, replace the xor with the other input.
1915       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1916       BO->eraseFromParent();
1917     } else {
1918       // If all preds provide 1, set the computed value to 1.
1919       BO->setOperand(!isLHS, SplitVal);
1920     }
1921 
1922     return true;
1923   }
1924 
1925   // If any of predecessors end with an indirect goto, we can't change its
1926   // destination. Same for CallBr.
1927   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1928         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1929                isa<CallBrInst>(Pred->getTerminator());
1930       }))
1931     return false;
1932 
1933   // Try to duplicate BB into PredBB.
1934   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1935 }
1936 
1937 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1938 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1939 /// NewPred using the entries from OldPred (suitably mapped).
1940 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1941                                             BasicBlock *OldPred,
1942                                             BasicBlock *NewPred,
1943                                      DenseMap<Instruction*, Value*> &ValueMap) {
1944   for (PHINode &PN : PHIBB->phis()) {
1945     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1946     // DestBlock.
1947     Value *IV = PN.getIncomingValueForBlock(OldPred);
1948 
1949     // Remap the value if necessary.
1950     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1951       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1952       if (I != ValueMap.end())
1953         IV = I->second;
1954     }
1955 
1956     PN.addIncoming(IV, NewPred);
1957   }
1958 }
1959 
1960 /// Merge basic block BB into its sole predecessor if possible.
1961 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1962   BasicBlock *SinglePred = BB->getSinglePredecessor();
1963   if (!SinglePred)
1964     return false;
1965 
1966   const Instruction *TI = SinglePred->getTerminator();
1967   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1968       SinglePred == BB || hasAddressTakenAndUsed(BB))
1969     return false;
1970 
1971   // If SinglePred was a loop header, BB becomes one.
1972   if (LoopHeaders.erase(SinglePred))
1973     LoopHeaders.insert(BB);
1974 
1975   LVI->eraseBlock(SinglePred);
1976   MergeBasicBlockIntoOnlyPred(BB, DTU);
1977 
1978   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1979   // BB code within one basic block `BB`), we need to invalidate the LVI
1980   // information associated with BB, because the LVI information need not be
1981   // true for all of BB after the merge. For example,
1982   // Before the merge, LVI info and code is as follows:
1983   // SinglePred: <LVI info1 for %p val>
1984   // %y = use of %p
1985   // call @exit() // need not transfer execution to successor.
1986   // assume(%p) // from this point on %p is true
1987   // br label %BB
1988   // BB: <LVI info2 for %p val, i.e. %p is true>
1989   // %x = use of %p
1990   // br label exit
1991   //
1992   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1993   // (info2 and info1 respectively). After the merge and the deletion of the
1994   // LVI info1 for SinglePred. We have the following code:
1995   // BB: <LVI info2 for %p val>
1996   // %y = use of %p
1997   // call @exit()
1998   // assume(%p)
1999   // %x = use of %p <-- LVI info2 is correct from here onwards.
2000   // br label exit
2001   // LVI info2 for BB is incorrect at the beginning of BB.
2002 
2003   // Invalidate LVI information for BB if the LVI is not provably true for
2004   // all of BB.
2005   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2006     LVI->eraseBlock(BB);
2007   return true;
2008 }
2009 
2010 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2011 /// ValueMapping maps old values in BB to new ones in NewBB.
2012 void JumpThreadingPass::updateSSA(
2013     BasicBlock *BB, BasicBlock *NewBB,
2014     DenseMap<Instruction *, Value *> &ValueMapping) {
2015   // If there were values defined in BB that are used outside the block, then we
2016   // now have to update all uses of the value to use either the original value,
2017   // the cloned value, or some PHI derived value.  This can require arbitrary
2018   // PHI insertion, of which we are prepared to do, clean these up now.
2019   SSAUpdater SSAUpdate;
2020   SmallVector<Use *, 16> UsesToRename;
2021 
2022   for (Instruction &I : *BB) {
2023     // Scan all uses of this instruction to see if it is used outside of its
2024     // block, and if so, record them in UsesToRename.
2025     for (Use &U : I.uses()) {
2026       Instruction *User = cast<Instruction>(U.getUser());
2027       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2028         if (UserPN->getIncomingBlock(U) == BB)
2029           continue;
2030       } else if (User->getParent() == BB)
2031         continue;
2032 
2033       UsesToRename.push_back(&U);
2034     }
2035 
2036     // If there are no uses outside the block, we're done with this instruction.
2037     if (UsesToRename.empty())
2038       continue;
2039     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2040 
2041     // We found a use of I outside of BB.  Rename all uses of I that are outside
2042     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2043     // with the two values we know.
2044     SSAUpdate.Initialize(I.getType(), I.getName());
2045     SSAUpdate.AddAvailableValue(BB, &I);
2046     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2047 
2048     while (!UsesToRename.empty())
2049       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2050     LLVM_DEBUG(dbgs() << "\n");
2051   }
2052 }
2053 
2054 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2055 /// arguments that come from PredBB.  Return the map from the variables in the
2056 /// source basic block to the variables in the newly created basic block.
2057 DenseMap<Instruction *, Value *>
2058 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2059                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2060                                      BasicBlock *PredBB) {
2061   // We are going to have to map operands from the source basic block to the new
2062   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2063   // block, evaluate them to account for entry from PredBB.
2064   DenseMap<Instruction *, Value *> ValueMapping;
2065 
2066   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2067   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2068   // might need to rewrite the operand of the cloned phi.
2069   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2070     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2071     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2072     ValueMapping[PN] = NewPN;
2073   }
2074 
2075   // Clone the non-phi instructions of the source basic block into NewBB,
2076   // keeping track of the mapping and using it to remap operands in the cloned
2077   // instructions.
2078   for (; BI != BE; ++BI) {
2079     Instruction *New = BI->clone();
2080     New->setName(BI->getName());
2081     NewBB->getInstList().push_back(New);
2082     ValueMapping[&*BI] = New;
2083 
2084     // Remap operands to patch up intra-block references.
2085     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2086       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2087         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2088         if (I != ValueMapping.end())
2089           New->setOperand(i, I->second);
2090       }
2091   }
2092 
2093   return ValueMapping;
2094 }
2095 
2096 /// Attempt to thread through two successive basic blocks.
2097 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2098                                                          Value *Cond) {
2099   // Consider:
2100   //
2101   // PredBB:
2102   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2103   //   %tobool = icmp eq i32 %cond, 0
2104   //   br i1 %tobool, label %BB, label ...
2105   //
2106   // BB:
2107   //   %cmp = icmp eq i32* %var, null
2108   //   br i1 %cmp, label ..., label ...
2109   //
2110   // We don't know the value of %var at BB even if we know which incoming edge
2111   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2112   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2113   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2114 
2115   // Require that BB end with a Branch for simplicity.
2116   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2117   if (!CondBr)
2118     return false;
2119 
2120   // BB must have exactly one predecessor.
2121   BasicBlock *PredBB = BB->getSinglePredecessor();
2122   if (!PredBB)
2123     return false;
2124 
2125   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2126   // unconditional branch, we should be merging PredBB and BB instead. For
2127   // simplicity, we don't deal with a switch.
2128   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2129   if (!PredBBBranch || PredBBBranch->isUnconditional())
2130     return false;
2131 
2132   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2133   // PredBB.
2134   if (PredBB->getSinglePredecessor())
2135     return false;
2136 
2137   // Don't thread through PredBB if it contains a successor edge to itself, in
2138   // which case we would infinite loop.  Suppose we are threading an edge from
2139   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2140   // successor edge to itself.  If we allowed jump threading in this case, we
2141   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2142   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2143   // with another jump threading opportunity from PredBB.thread through PredBB
2144   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2145   // would keep peeling one iteration from PredBB.
2146   if (llvm::is_contained(successors(PredBB), PredBB))
2147     return false;
2148 
2149   // Don't thread across a loop header.
2150   if (LoopHeaders.count(PredBB))
2151     return false;
2152 
2153   // Avoid complication with duplicating EH pads.
2154   if (PredBB->isEHPad())
2155     return false;
2156 
2157   // Find a predecessor that we can thread.  For simplicity, we only consider a
2158   // successor edge out of BB to which we thread exactly one incoming edge into
2159   // PredBB.
2160   unsigned ZeroCount = 0;
2161   unsigned OneCount = 0;
2162   BasicBlock *ZeroPred = nullptr;
2163   BasicBlock *OnePred = nullptr;
2164   for (BasicBlock *P : predecessors(PredBB)) {
2165     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2166             evaluateOnPredecessorEdge(BB, P, Cond))) {
2167       if (CI->isZero()) {
2168         ZeroCount++;
2169         ZeroPred = P;
2170       } else if (CI->isOne()) {
2171         OneCount++;
2172         OnePred = P;
2173       }
2174     }
2175   }
2176 
2177   // Disregard complicated cases where we have to thread multiple edges.
2178   BasicBlock *PredPredBB;
2179   if (ZeroCount == 1) {
2180     PredPredBB = ZeroPred;
2181   } else if (OneCount == 1) {
2182     PredPredBB = OnePred;
2183   } else {
2184     return false;
2185   }
2186 
2187   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2188 
2189   // If threading to the same block as we come from, we would infinite loop.
2190   if (SuccBB == BB) {
2191     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2192                       << "' - would thread to self!\n");
2193     return false;
2194   }
2195 
2196   // If threading this would thread across a loop header, don't thread the edge.
2197   // See the comments above findLoopHeaders for justifications and caveats.
2198   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2199     LLVM_DEBUG({
2200       bool BBIsHeader = LoopHeaders.count(BB);
2201       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2202       dbgs() << "  Not threading across "
2203              << (BBIsHeader ? "loop header BB '" : "block BB '")
2204              << BB->getName() << "' to dest "
2205              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2206              << SuccBB->getName()
2207              << "' - it might create an irreducible loop!\n";
2208     });
2209     return false;
2210   }
2211 
2212   // Compute the cost of duplicating BB and PredBB.
2213   unsigned BBCost =
2214       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2215   unsigned PredBBCost = getJumpThreadDuplicationCost(
2216       PredBB, PredBB->getTerminator(), BBDupThreshold);
2217 
2218   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2219   // individually before checking their sum because getJumpThreadDuplicationCost
2220   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2221   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2222       BBCost + PredBBCost > BBDupThreshold) {
2223     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2224                       << "' - Cost is too high: " << PredBBCost
2225                       << " for PredBB, " << BBCost << "for BB\n");
2226     return false;
2227   }
2228 
2229   // Now we are ready to duplicate PredBB.
2230   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2231   return true;
2232 }
2233 
2234 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2235                                                     BasicBlock *PredBB,
2236                                                     BasicBlock *BB,
2237                                                     BasicBlock *SuccBB) {
2238   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2239                     << BB->getName() << "'\n");
2240 
2241   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2242   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2243 
2244   BasicBlock *NewBB =
2245       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2246                          PredBB->getParent(), PredBB);
2247   NewBB->moveAfter(PredBB);
2248 
2249   // Set the block frequency of NewBB.
2250   if (HasProfileData) {
2251     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2252                      BPI->getEdgeProbability(PredPredBB, PredBB);
2253     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2254   }
2255 
2256   // We are going to have to map operands from the original BB block to the new
2257   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2258   // to account for entry from PredPredBB.
2259   DenseMap<Instruction *, Value *> ValueMapping =
2260       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2261 
2262   // Copy the edge probabilities from PredBB to NewBB.
2263   if (HasProfileData)
2264     BPI->copyEdgeProbabilities(PredBB, NewBB);
2265 
2266   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2267   // This eliminates predecessors from PredPredBB, which requires us to simplify
2268   // any PHI nodes in PredBB.
2269   Instruction *PredPredTerm = PredPredBB->getTerminator();
2270   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2271     if (PredPredTerm->getSuccessor(i) == PredBB) {
2272       PredBB->removePredecessor(PredPredBB, true);
2273       PredPredTerm->setSuccessor(i, NewBB);
2274     }
2275 
2276   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2277                                   ValueMapping);
2278   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2279                                   ValueMapping);
2280 
2281   DTU->applyUpdatesPermissive(
2282       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2283        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2284        {DominatorTree::Insert, PredPredBB, NewBB},
2285        {DominatorTree::Delete, PredPredBB, PredBB}});
2286 
2287   updateSSA(PredBB, NewBB, ValueMapping);
2288 
2289   // Clean up things like PHI nodes with single operands, dead instructions,
2290   // etc.
2291   SimplifyInstructionsInBlock(NewBB, TLI);
2292   SimplifyInstructionsInBlock(PredBB, TLI);
2293 
2294   SmallVector<BasicBlock *, 1> PredsToFactor;
2295   PredsToFactor.push_back(NewBB);
2296   threadEdge(BB, PredsToFactor, SuccBB);
2297 }
2298 
2299 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2300 bool JumpThreadingPass::tryThreadEdge(
2301     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2302     BasicBlock *SuccBB) {
2303   // If threading to the same block as we come from, we would infinite loop.
2304   if (SuccBB == BB) {
2305     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2306                       << "' - would thread to self!\n");
2307     return false;
2308   }
2309 
2310   // If threading this would thread across a loop header, don't thread the edge.
2311   // See the comments above findLoopHeaders for justifications and caveats.
2312   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2313     LLVM_DEBUG({
2314       bool BBIsHeader = LoopHeaders.count(BB);
2315       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2316       dbgs() << "  Not threading across "
2317           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2318           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2319           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2320     });
2321     return false;
2322   }
2323 
2324   unsigned JumpThreadCost =
2325       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2326   if (JumpThreadCost > BBDupThreshold) {
2327     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2328                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2329     return false;
2330   }
2331 
2332   threadEdge(BB, PredBBs, SuccBB);
2333   return true;
2334 }
2335 
2336 /// threadEdge - We have decided that it is safe and profitable to factor the
2337 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2338 /// across BB.  Transform the IR to reflect this change.
2339 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2340                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2341                                    BasicBlock *SuccBB) {
2342   assert(SuccBB != BB && "Don't create an infinite loop");
2343 
2344   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2345          "Don't thread across loop headers");
2346 
2347   // And finally, do it!  Start by factoring the predecessors if needed.
2348   BasicBlock *PredBB;
2349   if (PredBBs.size() == 1)
2350     PredBB = PredBBs[0];
2351   else {
2352     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2353                       << " common predecessors.\n");
2354     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2355   }
2356 
2357   // And finally, do it!
2358   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2359                     << "' to '" << SuccBB->getName()
2360                     << ", across block:\n    " << *BB << "\n");
2361 
2362   LVI->threadEdge(PredBB, BB, SuccBB);
2363 
2364   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2365                                          BB->getName()+".thread",
2366                                          BB->getParent(), BB);
2367   NewBB->moveAfter(PredBB);
2368 
2369   // Set the block frequency of NewBB.
2370   if (HasProfileData) {
2371     auto NewBBFreq =
2372         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2373     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2374   }
2375 
2376   // Copy all the instructions from BB to NewBB except the terminator.
2377   DenseMap<Instruction *, Value *> ValueMapping =
2378       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2379 
2380   // We didn't copy the terminator from BB over to NewBB, because there is now
2381   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2382   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2383   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2384 
2385   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2386   // PHI nodes for NewBB now.
2387   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2388 
2389   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2390   // eliminates predecessors from BB, which requires us to simplify any PHI
2391   // nodes in BB.
2392   Instruction *PredTerm = PredBB->getTerminator();
2393   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2394     if (PredTerm->getSuccessor(i) == BB) {
2395       BB->removePredecessor(PredBB, true);
2396       PredTerm->setSuccessor(i, NewBB);
2397     }
2398 
2399   // Enqueue required DT updates.
2400   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2401                                {DominatorTree::Insert, PredBB, NewBB},
2402                                {DominatorTree::Delete, PredBB, BB}});
2403 
2404   updateSSA(BB, NewBB, ValueMapping);
2405 
2406   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2407   // over the new instructions and zap any that are constants or dead.  This
2408   // frequently happens because of phi translation.
2409   SimplifyInstructionsInBlock(NewBB, TLI);
2410 
2411   // Update the edge weight from BB to SuccBB, which should be less than before.
2412   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2413 
2414   // Threaded an edge!
2415   ++NumThreads;
2416 }
2417 
2418 /// Create a new basic block that will be the predecessor of BB and successor of
2419 /// all blocks in Preds. When profile data is available, update the frequency of
2420 /// this new block.
2421 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2422                                                ArrayRef<BasicBlock *> Preds,
2423                                                const char *Suffix) {
2424   SmallVector<BasicBlock *, 2> NewBBs;
2425 
2426   // Collect the frequencies of all predecessors of BB, which will be used to
2427   // update the edge weight of the result of splitting predecessors.
2428   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2429   if (HasProfileData)
2430     for (auto Pred : Preds)
2431       FreqMap.insert(std::make_pair(
2432           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2433 
2434   // In the case when BB is a LandingPad block we create 2 new predecessors
2435   // instead of just one.
2436   if (BB->isLandingPad()) {
2437     std::string NewName = std::string(Suffix) + ".split-lp";
2438     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2439   } else {
2440     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2441   }
2442 
2443   std::vector<DominatorTree::UpdateType> Updates;
2444   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2445   for (auto NewBB : NewBBs) {
2446     BlockFrequency NewBBFreq(0);
2447     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2448     for (auto Pred : predecessors(NewBB)) {
2449       Updates.push_back({DominatorTree::Delete, Pred, BB});
2450       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2451       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2452         NewBBFreq += FreqMap.lookup(Pred);
2453     }
2454     if (HasProfileData) // Apply the summed frequency to NewBB.
2455       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2456   }
2457 
2458   DTU->applyUpdatesPermissive(Updates);
2459   return NewBBs[0];
2460 }
2461 
2462 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2463   const Instruction *TI = BB->getTerminator();
2464   assert(TI->getNumSuccessors() > 1 && "not a split");
2465 
2466   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2467   if (!WeightsNode)
2468     return false;
2469 
2470   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2471   if (MDName->getString() != "branch_weights")
2472     return false;
2473 
2474   // Ensure there are weights for all of the successors. Note that the first
2475   // operand to the metadata node is a name, not a weight.
2476   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2477 }
2478 
2479 /// Update the block frequency of BB and branch weight and the metadata on the
2480 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2481 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2482 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2483                                                      BasicBlock *BB,
2484                                                      BasicBlock *NewBB,
2485                                                      BasicBlock *SuccBB) {
2486   if (!HasProfileData)
2487     return;
2488 
2489   assert(BFI && BPI && "BFI & BPI should have been created here");
2490 
2491   // As the edge from PredBB to BB is deleted, we have to update the block
2492   // frequency of BB.
2493   auto BBOrigFreq = BFI->getBlockFreq(BB);
2494   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2495   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2496   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2497   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2498 
2499   // Collect updated outgoing edges' frequencies from BB and use them to update
2500   // edge probabilities.
2501   SmallVector<uint64_t, 4> BBSuccFreq;
2502   for (BasicBlock *Succ : successors(BB)) {
2503     auto SuccFreq = (Succ == SuccBB)
2504                         ? BB2SuccBBFreq - NewBBFreq
2505                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2506     BBSuccFreq.push_back(SuccFreq.getFrequency());
2507   }
2508 
2509   uint64_t MaxBBSuccFreq =
2510       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2511 
2512   SmallVector<BranchProbability, 4> BBSuccProbs;
2513   if (MaxBBSuccFreq == 0)
2514     BBSuccProbs.assign(BBSuccFreq.size(),
2515                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2516   else {
2517     for (uint64_t Freq : BBSuccFreq)
2518       BBSuccProbs.push_back(
2519           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2520     // Normalize edge probabilities so that they sum up to one.
2521     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2522                                               BBSuccProbs.end());
2523   }
2524 
2525   // Update edge probabilities in BPI.
2526   BPI->setEdgeProbability(BB, BBSuccProbs);
2527 
2528   // Update the profile metadata as well.
2529   //
2530   // Don't do this if the profile of the transformed blocks was statically
2531   // estimated.  (This could occur despite the function having an entry
2532   // frequency in completely cold parts of the CFG.)
2533   //
2534   // In this case we don't want to suggest to subsequent passes that the
2535   // calculated weights are fully consistent.  Consider this graph:
2536   //
2537   //                 check_1
2538   //             50% /  |
2539   //             eq_1   | 50%
2540   //                 \  |
2541   //                 check_2
2542   //             50% /  |
2543   //             eq_2   | 50%
2544   //                 \  |
2545   //                 check_3
2546   //             50% /  |
2547   //             eq_3   | 50%
2548   //                 \  |
2549   //
2550   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2551   // the overall probabilities are inconsistent; the total probability that the
2552   // value is either 1, 2 or 3 is 150%.
2553   //
2554   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2555   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2556   // the loop exit edge.  Then based solely on static estimation we would assume
2557   // the loop was extremely hot.
2558   //
2559   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2560   // shouldn't make edges extremely likely or unlikely based solely on static
2561   // estimation.
2562   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2563     SmallVector<uint32_t, 4> Weights;
2564     for (auto Prob : BBSuccProbs)
2565       Weights.push_back(Prob.getNumerator());
2566 
2567     auto TI = BB->getTerminator();
2568     TI->setMetadata(
2569         LLVMContext::MD_prof,
2570         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2571   }
2572 }
2573 
2574 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2575 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2576 /// If we can duplicate the contents of BB up into PredBB do so now, this
2577 /// improves the odds that the branch will be on an analyzable instruction like
2578 /// a compare.
2579 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2580     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2581   assert(!PredBBs.empty() && "Can't handle an empty set");
2582 
2583   // If BB is a loop header, then duplicating this block outside the loop would
2584   // cause us to transform this into an irreducible loop, don't do this.
2585   // See the comments above findLoopHeaders for justifications and caveats.
2586   if (LoopHeaders.count(BB)) {
2587     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2588                       << "' into predecessor block '" << PredBBs[0]->getName()
2589                       << "' - it might create an irreducible loop!\n");
2590     return false;
2591   }
2592 
2593   unsigned DuplicationCost =
2594       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2595   if (DuplicationCost > BBDupThreshold) {
2596     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2597                       << "' - Cost is too high: " << DuplicationCost << "\n");
2598     return false;
2599   }
2600 
2601   // And finally, do it!  Start by factoring the predecessors if needed.
2602   std::vector<DominatorTree::UpdateType> Updates;
2603   BasicBlock *PredBB;
2604   if (PredBBs.size() == 1)
2605     PredBB = PredBBs[0];
2606   else {
2607     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2608                       << " common predecessors.\n");
2609     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2610   }
2611   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2612 
2613   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2614   // of PredBB.
2615   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2616                     << "' into end of '" << PredBB->getName()
2617                     << "' to eliminate branch on phi.  Cost: "
2618                     << DuplicationCost << " block is:" << *BB << "\n");
2619 
2620   // Unless PredBB ends with an unconditional branch, split the edge so that we
2621   // can just clone the bits from BB into the end of the new PredBB.
2622   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2623 
2624   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2625     BasicBlock *OldPredBB = PredBB;
2626     PredBB = SplitEdge(OldPredBB, BB);
2627     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2628     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2629     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2630     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2631   }
2632 
2633   // We are going to have to map operands from the original BB block into the
2634   // PredBB block.  Evaluate PHI nodes in BB.
2635   DenseMap<Instruction*, Value*> ValueMapping;
2636 
2637   BasicBlock::iterator BI = BB->begin();
2638   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2639     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2640   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2641   // mapping and using it to remap operands in the cloned instructions.
2642   for (; BI != BB->end(); ++BI) {
2643     Instruction *New = BI->clone();
2644 
2645     // Remap operands to patch up intra-block references.
2646     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2647       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2648         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2649         if (I != ValueMapping.end())
2650           New->setOperand(i, I->second);
2651       }
2652 
2653     // If this instruction can be simplified after the operands are updated,
2654     // just use the simplified value instead.  This frequently happens due to
2655     // phi translation.
2656     if (Value *IV = SimplifyInstruction(
2657             New,
2658             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2659       ValueMapping[&*BI] = IV;
2660       if (!New->mayHaveSideEffects()) {
2661         New->deleteValue();
2662         New = nullptr;
2663       }
2664     } else {
2665       ValueMapping[&*BI] = New;
2666     }
2667     if (New) {
2668       // Otherwise, insert the new instruction into the block.
2669       New->setName(BI->getName());
2670       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2671       // Update Dominance from simplified New instruction operands.
2672       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2673         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2674           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2675     }
2676   }
2677 
2678   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2679   // add entries to the PHI nodes for branch from PredBB now.
2680   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2681   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2682                                   ValueMapping);
2683   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2684                                   ValueMapping);
2685 
2686   updateSSA(BB, PredBB, ValueMapping);
2687 
2688   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2689   // that we nuked.
2690   BB->removePredecessor(PredBB, true);
2691 
2692   // Remove the unconditional branch at the end of the PredBB block.
2693   OldPredBranch->eraseFromParent();
2694   if (HasProfileData)
2695     BPI->copyEdgeProbabilities(BB, PredBB);
2696   DTU->applyUpdatesPermissive(Updates);
2697 
2698   ++NumDupes;
2699   return true;
2700 }
2701 
2702 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2703 // a Select instruction in Pred. BB has other predecessors and SI is used in
2704 // a PHI node in BB. SI has no other use.
2705 // A new basic block, NewBB, is created and SI is converted to compare and
2706 // conditional branch. SI is erased from parent.
2707 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2708                                           SelectInst *SI, PHINode *SIUse,
2709                                           unsigned Idx) {
2710   // Expand the select.
2711   //
2712   // Pred --
2713   //  |    v
2714   //  |  NewBB
2715   //  |    |
2716   //  |-----
2717   //  v
2718   // BB
2719   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2720   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2721                                          BB->getParent(), BB);
2722   // Move the unconditional branch to NewBB.
2723   PredTerm->removeFromParent();
2724   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2725   // Create a conditional branch and update PHI nodes.
2726   BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2727   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2728   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2729 
2730   // The select is now dead.
2731   SI->eraseFromParent();
2732   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2733                                {DominatorTree::Insert, Pred, NewBB}});
2734 
2735   // Update any other PHI nodes in BB.
2736   for (BasicBlock::iterator BI = BB->begin();
2737        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2738     if (Phi != SIUse)
2739       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2740 }
2741 
2742 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2743   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2744 
2745   if (!CondPHI || CondPHI->getParent() != BB)
2746     return false;
2747 
2748   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2749     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2750     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2751 
2752     // The second and third condition can be potentially relaxed. Currently
2753     // the conditions help to simplify the code and allow us to reuse existing
2754     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2755     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2756       continue;
2757 
2758     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2759     if (!PredTerm || !PredTerm->isUnconditional())
2760       continue;
2761 
2762     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2763     return true;
2764   }
2765   return false;
2766 }
2767 
2768 /// tryToUnfoldSelect - Look for blocks of the form
2769 /// bb1:
2770 ///   %a = select
2771 ///   br bb2
2772 ///
2773 /// bb2:
2774 ///   %p = phi [%a, %bb1] ...
2775 ///   %c = icmp %p
2776 ///   br i1 %c
2777 ///
2778 /// And expand the select into a branch structure if one of its arms allows %c
2779 /// to be folded. This later enables threading from bb1 over bb2.
2780 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2781   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2782   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2783   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2784 
2785   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2786       CondLHS->getParent() != BB)
2787     return false;
2788 
2789   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2790     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2791     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2792 
2793     // Look if one of the incoming values is a select in the corresponding
2794     // predecessor.
2795     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2796       continue;
2797 
2798     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2799     if (!PredTerm || !PredTerm->isUnconditional())
2800       continue;
2801 
2802     // Now check if one of the select values would allow us to constant fold the
2803     // terminator in BB. We don't do the transform if both sides fold, those
2804     // cases will be threaded in any case.
2805     LazyValueInfo::Tristate LHSFolds =
2806         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2807                                 CondRHS, Pred, BB, CondCmp);
2808     LazyValueInfo::Tristate RHSFolds =
2809         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2810                                 CondRHS, Pred, BB, CondCmp);
2811     if ((LHSFolds != LazyValueInfo::Unknown ||
2812          RHSFolds != LazyValueInfo::Unknown) &&
2813         LHSFolds != RHSFolds) {
2814       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2815       return true;
2816     }
2817   }
2818   return false;
2819 }
2820 
2821 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2822 /// same BB in the form
2823 /// bb:
2824 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2825 ///   %s = select %p, trueval, falseval
2826 ///
2827 /// or
2828 ///
2829 /// bb:
2830 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2831 ///   %c = cmp %p, 0
2832 ///   %s = select %c, trueval, falseval
2833 ///
2834 /// And expand the select into a branch structure. This later enables
2835 /// jump-threading over bb in this pass.
2836 ///
2837 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2838 /// select if the associated PHI has at least one constant.  If the unfolded
2839 /// select is not jump-threaded, it will be folded again in the later
2840 /// optimizations.
2841 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2842   // This transform would reduce the quality of msan diagnostics.
2843   // Disable this transform under MemorySanitizer.
2844   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2845     return false;
2846 
2847   // If threading this would thread across a loop header, don't thread the edge.
2848   // See the comments above findLoopHeaders for justifications and caveats.
2849   if (LoopHeaders.count(BB))
2850     return false;
2851 
2852   for (BasicBlock::iterator BI = BB->begin();
2853        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2854     // Look for a Phi having at least one constant incoming value.
2855     if (llvm::all_of(PN->incoming_values(),
2856                      [](Value *V) { return !isa<ConstantInt>(V); }))
2857       continue;
2858 
2859     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2860       // Check if SI is in BB and use V as condition.
2861       if (SI->getParent() != BB)
2862         return false;
2863       Value *Cond = SI->getCondition();
2864       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2865     };
2866 
2867     SelectInst *SI = nullptr;
2868     for (Use &U : PN->uses()) {
2869       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2870         // Look for a ICmp in BB that compares PN with a constant and is the
2871         // condition of a Select.
2872         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2873             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2874           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2875             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2876               SI = SelectI;
2877               break;
2878             }
2879       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2880         // Look for a Select in BB that uses PN as condition.
2881         if (isUnfoldCandidate(SelectI, U.get())) {
2882           SI = SelectI;
2883           break;
2884         }
2885       }
2886     }
2887 
2888     if (!SI)
2889       continue;
2890     // Expand the select.
2891     Value *Cond = SI->getCondition();
2892     if (InsertFreezeWhenUnfoldingSelect &&
2893         !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI,
2894                                           &DTU->getDomTree()))
2895       Cond = new FreezeInst(Cond, "cond.fr", SI);
2896     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2897     BasicBlock *SplitBB = SI->getParent();
2898     BasicBlock *NewBB = Term->getParent();
2899     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2900     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2901     NewPN->addIncoming(SI->getFalseValue(), BB);
2902     SI->replaceAllUsesWith(NewPN);
2903     SI->eraseFromParent();
2904     // NewBB and SplitBB are newly created blocks which require insertion.
2905     std::vector<DominatorTree::UpdateType> Updates;
2906     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2907     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2908     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2909     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2910     // BB's successors were moved to SplitBB, update DTU accordingly.
2911     for (auto *Succ : successors(SplitBB)) {
2912       Updates.push_back({DominatorTree::Delete, BB, Succ});
2913       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2914     }
2915     DTU->applyUpdatesPermissive(Updates);
2916     return true;
2917   }
2918   return false;
2919 }
2920 
2921 /// Try to propagate a guard from the current BB into one of its predecessors
2922 /// in case if another branch of execution implies that the condition of this
2923 /// guard is always true. Currently we only process the simplest case that
2924 /// looks like:
2925 ///
2926 /// Start:
2927 ///   %cond = ...
2928 ///   br i1 %cond, label %T1, label %F1
2929 /// T1:
2930 ///   br label %Merge
2931 /// F1:
2932 ///   br label %Merge
2933 /// Merge:
2934 ///   %condGuard = ...
2935 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2936 ///
2937 /// And cond either implies condGuard or !condGuard. In this case all the
2938 /// instructions before the guard can be duplicated in both branches, and the
2939 /// guard is then threaded to one of them.
2940 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2941   using namespace PatternMatch;
2942 
2943   // We only want to deal with two predecessors.
2944   BasicBlock *Pred1, *Pred2;
2945   auto PI = pred_begin(BB), PE = pred_end(BB);
2946   if (PI == PE)
2947     return false;
2948   Pred1 = *PI++;
2949   if (PI == PE)
2950     return false;
2951   Pred2 = *PI++;
2952   if (PI != PE)
2953     return false;
2954   if (Pred1 == Pred2)
2955     return false;
2956 
2957   // Try to thread one of the guards of the block.
2958   // TODO: Look up deeper than to immediate predecessor?
2959   auto *Parent = Pred1->getSinglePredecessor();
2960   if (!Parent || Parent != Pred2->getSinglePredecessor())
2961     return false;
2962 
2963   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2964     for (auto &I : *BB)
2965       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2966         return true;
2967 
2968   return false;
2969 }
2970 
2971 /// Try to propagate the guard from BB which is the lower block of a diamond
2972 /// to one of its branches, in case if diamond's condition implies guard's
2973 /// condition.
2974 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2975                                     BranchInst *BI) {
2976   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2977   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2978   Value *GuardCond = Guard->getArgOperand(0);
2979   Value *BranchCond = BI->getCondition();
2980   BasicBlock *TrueDest = BI->getSuccessor(0);
2981   BasicBlock *FalseDest = BI->getSuccessor(1);
2982 
2983   auto &DL = BB->getModule()->getDataLayout();
2984   bool TrueDestIsSafe = false;
2985   bool FalseDestIsSafe = false;
2986 
2987   // True dest is safe if BranchCond => GuardCond.
2988   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2989   if (Impl && *Impl)
2990     TrueDestIsSafe = true;
2991   else {
2992     // False dest is safe if !BranchCond => GuardCond.
2993     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2994     if (Impl && *Impl)
2995       FalseDestIsSafe = true;
2996   }
2997 
2998   if (!TrueDestIsSafe && !FalseDestIsSafe)
2999     return false;
3000 
3001   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3002   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3003 
3004   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3005   Instruction *AfterGuard = Guard->getNextNode();
3006   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
3007   if (Cost > BBDupThreshold)
3008     return false;
3009   // Duplicate all instructions before the guard and the guard itself to the
3010   // branch where implication is not proved.
3011   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3012       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3013   assert(GuardedBlock && "Could not create the guarded block?");
3014   // Duplicate all instructions before the guard in the unguarded branch.
3015   // Since we have successfully duplicated the guarded block and this block
3016   // has fewer instructions, we expect it to succeed.
3017   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3018       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3019   assert(UnguardedBlock && "Could not create the unguarded block?");
3020   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3021                     << GuardedBlock->getName() << "\n");
3022   // Some instructions before the guard may still have uses. For them, we need
3023   // to create Phi nodes merging their copies in both guarded and unguarded
3024   // branches. Those instructions that have no uses can be just removed.
3025   SmallVector<Instruction *, 4> ToRemove;
3026   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3027     if (!isa<PHINode>(&*BI))
3028       ToRemove.push_back(&*BI);
3029 
3030   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3031   assert(InsertionPoint && "Empty block?");
3032   // Substitute with Phis & remove.
3033   for (auto *Inst : reverse(ToRemove)) {
3034     if (!Inst->use_empty()) {
3035       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3036       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3037       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3038       NewPN->insertBefore(InsertionPoint);
3039       Inst->replaceAllUsesWith(NewPN);
3040     }
3041     Inst->eraseFromParent();
3042   }
3043   return true;
3044 }
3045