1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Jump Threading pass.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Transforms/Scalar/JumpThreading.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/DomTreeUpdater.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/LazyValueInfo.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/TargetTransformInfo.h"
37 #include "llvm/Analysis/ValueTracking.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/PatternMatch.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/InitializePasses.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/BlockFrequency.h"
63 #include "llvm/Support/BranchProbability.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/SSAUpdater.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstdint>
77 #include <iterator>
78 #include <memory>
79 #include <utility>
80 
81 using namespace llvm;
82 using namespace jumpthreading;
83 
84 #define DEBUG_TYPE "jump-threading"
85 
86 STATISTIC(NumThreads, "Number of jumps threaded");
87 STATISTIC(NumFolds,   "Number of terminators folded");
88 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
89 
90 static cl::opt<unsigned>
91 BBDuplicateThreshold("jump-threading-threshold",
92           cl::desc("Max block size to duplicate for jump threading"),
93           cl::init(6), cl::Hidden);
94 
95 static cl::opt<unsigned>
96 ImplicationSearchThreshold(
97   "jump-threading-implication-search-threshold",
98   cl::desc("The number of predecessors to search for a stronger "
99            "condition to use to thread over a weaker condition"),
100   cl::init(3), cl::Hidden);
101 
102 static cl::opt<bool> PrintLVIAfterJumpThreading(
103     "print-lvi-after-jump-threading",
104     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
105     cl::Hidden);
106 
107 static cl::opt<bool> ThreadAcrossLoopHeaders(
108     "jump-threading-across-loop-headers",
109     cl::desc("Allow JumpThreading to thread across loop headers, for testing"),
110     cl::init(false), cl::Hidden);
111 
112 
113 namespace {
114 
115   /// This pass performs 'jump threading', which looks at blocks that have
116   /// multiple predecessors and multiple successors.  If one or more of the
117   /// predecessors of the block can be proven to always jump to one of the
118   /// successors, we forward the edge from the predecessor to the successor by
119   /// duplicating the contents of this block.
120   ///
121   /// An example of when this can occur is code like this:
122   ///
123   ///   if () { ...
124   ///     X = 4;
125   ///   }
126   ///   if (X < 3) {
127   ///
128   /// In this case, the unconditional branch at the end of the first if can be
129   /// revectored to the false side of the second if.
130   class JumpThreading : public FunctionPass {
131     JumpThreadingPass Impl;
132 
133   public:
134     static char ID; // Pass identification
135 
136     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
137       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
138     }
139 
140     bool runOnFunction(Function &F) override;
141 
142     void getAnalysisUsage(AnalysisUsage &AU) const override {
143       AU.addRequired<DominatorTreeWrapperPass>();
144       AU.addPreserved<DominatorTreeWrapperPass>();
145       AU.addRequired<AAResultsWrapperPass>();
146       AU.addRequired<LazyValueInfoWrapperPass>();
147       AU.addPreserved<LazyValueInfoWrapperPass>();
148       AU.addPreserved<GlobalsAAWrapperPass>();
149       AU.addRequired<TargetLibraryInfoWrapperPass>();
150       AU.addRequired<TargetTransformInfoWrapperPass>();
151     }
152 
153     void releaseMemory() override { Impl.releaseMemory(); }
154   };
155 
156 } // end anonymous namespace
157 
158 char JumpThreading::ID = 0;
159 
160 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
161                 "Jump Threading", false, false)
162 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
163 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
164 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
165 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
166 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
167                 "Jump Threading", false, false)
168 
169 // Public interface to the Jump Threading pass
170 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
171   return new JumpThreading(Threshold);
172 }
173 
174 JumpThreadingPass::JumpThreadingPass(int T) {
175   DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
176 }
177 
178 // Update branch probability information according to conditional
179 // branch probability. This is usually made possible for cloned branches
180 // in inline instances by the context specific profile in the caller.
181 // For instance,
182 //
183 //  [Block PredBB]
184 //  [Branch PredBr]
185 //  if (t) {
186 //     Block A;
187 //  } else {
188 //     Block B;
189 //  }
190 //
191 //  [Block BB]
192 //  cond = PN([true, %A], [..., %B]); // PHI node
193 //  [Branch CondBr]
194 //  if (cond) {
195 //    ...  // P(cond == true) = 1%
196 //  }
197 //
198 //  Here we know that when block A is taken, cond must be true, which means
199 //      P(cond == true | A) = 1
200 //
201 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
202 //                               P(cond == true | B) * P(B)
203 //  we get:
204 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
205 //
206 //  which gives us:
207 //     P(A) is less than P(cond == true), i.e.
208 //     P(t == true) <= P(cond == true)
209 //
210 //  In other words, if we know P(cond == true) is unlikely, we know
211 //  that P(t == true) is also unlikely.
212 //
213 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
214   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
215   if (!CondBr)
216     return;
217 
218   uint64_t TrueWeight, FalseWeight;
219   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
220     return;
221 
222   if (TrueWeight + FalseWeight == 0)
223     // Zero branch_weights do not give a hint for getting branch probabilities.
224     // Technically it would result in division by zero denominator, which is
225     // TrueWeight + FalseWeight.
226     return;
227 
228   // Returns the outgoing edge of the dominating predecessor block
229   // that leads to the PhiNode's incoming block:
230   auto GetPredOutEdge =
231       [](BasicBlock *IncomingBB,
232          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
233     auto *PredBB = IncomingBB;
234     auto *SuccBB = PhiBB;
235     SmallPtrSet<BasicBlock *, 16> Visited;
236     while (true) {
237       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
238       if (PredBr && PredBr->isConditional())
239         return {PredBB, SuccBB};
240       Visited.insert(PredBB);
241       auto *SinglePredBB = PredBB->getSinglePredecessor();
242       if (!SinglePredBB)
243         return {nullptr, nullptr};
244 
245       // Stop searching when SinglePredBB has been visited. It means we see
246       // an unreachable loop.
247       if (Visited.count(SinglePredBB))
248         return {nullptr, nullptr};
249 
250       SuccBB = PredBB;
251       PredBB = SinglePredBB;
252     }
253   };
254 
255   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
256     Value *PhiOpnd = PN->getIncomingValue(i);
257     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
258 
259     if (!CI || !CI->getType()->isIntegerTy(1))
260       continue;
261 
262     BranchProbability BP =
263         (CI->isOne() ? BranchProbability::getBranchProbability(
264                            TrueWeight, TrueWeight + FalseWeight)
265                      : BranchProbability::getBranchProbability(
266                            FalseWeight, TrueWeight + FalseWeight));
267 
268     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
269     if (!PredOutEdge.first)
270       return;
271 
272     BasicBlock *PredBB = PredOutEdge.first;
273     BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
274     if (!PredBr)
275       return;
276 
277     uint64_t PredTrueWeight, PredFalseWeight;
278     // FIXME: We currently only set the profile data when it is missing.
279     // With PGO, this can be used to refine even existing profile data with
280     // context information. This needs to be done after more performance
281     // testing.
282     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
283       continue;
284 
285     // We can not infer anything useful when BP >= 50%, because BP is the
286     // upper bound probability value.
287     if (BP >= BranchProbability(50, 100))
288       continue;
289 
290     SmallVector<uint32_t, 2> Weights;
291     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
292       Weights.push_back(BP.getNumerator());
293       Weights.push_back(BP.getCompl().getNumerator());
294     } else {
295       Weights.push_back(BP.getCompl().getNumerator());
296       Weights.push_back(BP.getNumerator());
297     }
298     PredBr->setMetadata(LLVMContext::MD_prof,
299                         MDBuilder(PredBr->getParent()->getContext())
300                             .createBranchWeights(Weights));
301   }
302 }
303 
304 /// runOnFunction - Toplevel algorithm.
305 bool JumpThreading::runOnFunction(Function &F) {
306   if (skipFunction(F))
307     return false;
308   auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
309   // Jump Threading has no sense for the targets with divergent CF
310   if (TTI->hasBranchDivergence())
311     return false;
312   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
313   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
314   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
315   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
316   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
317   std::unique_ptr<BlockFrequencyInfo> BFI;
318   std::unique_ptr<BranchProbabilityInfo> BPI;
319   if (F.hasProfileData()) {
320     LoopInfo LI{*DT};
321     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
322     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
323   }
324 
325   bool Changed = Impl.runImpl(F, TLI, TTI, LVI, AA, &DTU, F.hasProfileData(),
326                               std::move(BFI), std::move(BPI));
327   if (PrintLVIAfterJumpThreading) {
328     dbgs() << "LVI for function '" << F.getName() << "':\n";
329     LVI->printLVI(F, DTU.getDomTree(), dbgs());
330   }
331   return Changed;
332 }
333 
334 PreservedAnalyses JumpThreadingPass::run(Function &F,
335                                          FunctionAnalysisManager &AM) {
336   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
337   // Jump Threading has no sense for the targets with divergent CF
338   if (TTI.hasBranchDivergence())
339     return PreservedAnalyses::all();
340   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
341   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
342   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
343   auto &AA = AM.getResult<AAManager>(F);
344   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
345 
346   std::unique_ptr<BlockFrequencyInfo> BFI;
347   std::unique_ptr<BranchProbabilityInfo> BPI;
348   if (F.hasProfileData()) {
349     LoopInfo LI{DominatorTree(F)};
350     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
351     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
352   }
353 
354   bool Changed = runImpl(F, &TLI, &TTI, &LVI, &AA, &DTU, F.hasProfileData(),
355                          std::move(BFI), std::move(BPI));
356 
357   if (PrintLVIAfterJumpThreading) {
358     dbgs() << "LVI for function '" << F.getName() << "':\n";
359     LVI.printLVI(F, DTU.getDomTree(), dbgs());
360   }
361 
362   if (!Changed)
363     return PreservedAnalyses::all();
364   PreservedAnalyses PA;
365   PA.preserve<DominatorTreeAnalysis>();
366   PA.preserve<LazyValueAnalysis>();
367   return PA;
368 }
369 
370 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
371                                 TargetTransformInfo *TTI_, LazyValueInfo *LVI_,
372                                 AliasAnalysis *AA_, DomTreeUpdater *DTU_,
373                                 bool HasProfileData_,
374                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
375                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
376   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
377   TLI = TLI_;
378   TTI = TTI_;
379   LVI = LVI_;
380   AA = AA_;
381   DTU = DTU_;
382   BFI.reset();
383   BPI.reset();
384   // When profile data is available, we need to update edge weights after
385   // successful jump threading, which requires both BPI and BFI being available.
386   HasProfileData = HasProfileData_;
387   auto *GuardDecl = F.getParent()->getFunction(
388       Intrinsic::getName(Intrinsic::experimental_guard));
389   HasGuards = GuardDecl && !GuardDecl->use_empty();
390   if (HasProfileData) {
391     BPI = std::move(BPI_);
392     BFI = std::move(BFI_);
393   }
394 
395   // Reduce the number of instructions duplicated when optimizing strictly for
396   // size.
397   if (BBDuplicateThreshold.getNumOccurrences())
398     BBDupThreshold = BBDuplicateThreshold;
399   else if (F.hasFnAttribute(Attribute::MinSize))
400     BBDupThreshold = 3;
401   else
402     BBDupThreshold = DefaultBBDupThreshold;
403 
404   // JumpThreading must not processes blocks unreachable from entry. It's a
405   // waste of compute time and can potentially lead to hangs.
406   SmallPtrSet<BasicBlock *, 16> Unreachable;
407   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
408   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
409   DominatorTree &DT = DTU->getDomTree();
410   for (auto &BB : F)
411     if (!DT.isReachableFromEntry(&BB))
412       Unreachable.insert(&BB);
413 
414   if (!ThreadAcrossLoopHeaders)
415     findLoopHeaders(F);
416 
417   bool EverChanged = false;
418   bool Changed;
419   do {
420     Changed = false;
421     for (auto &BB : F) {
422       if (Unreachable.count(&BB))
423         continue;
424       while (processBlock(&BB)) // Thread all of the branches we can over BB.
425         Changed = true;
426 
427       // Jump threading may have introduced redundant debug values into BB
428       // which should be removed.
429       if (Changed)
430         RemoveRedundantDbgInstrs(&BB);
431 
432       // Stop processing BB if it's the entry or is now deleted. The following
433       // routines attempt to eliminate BB and locating a suitable replacement
434       // for the entry is non-trivial.
435       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
436         continue;
437 
438       if (pred_empty(&BB)) {
439         // When processBlock makes BB unreachable it doesn't bother to fix up
440         // the instructions in it. We must remove BB to prevent invalid IR.
441         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
442                           << "' with terminator: " << *BB.getTerminator()
443                           << '\n');
444         LoopHeaders.erase(&BB);
445         LVI->eraseBlock(&BB);
446         DeleteDeadBlock(&BB, DTU);
447         Changed = true;
448         continue;
449       }
450 
451       // processBlock doesn't thread BBs with unconditional TIs. However, if BB
452       // is "almost empty", we attempt to merge BB with its sole successor.
453       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
454       if (BI && BI->isUnconditional()) {
455         BasicBlock *Succ = BI->getSuccessor(0);
456         if (
457             // The terminator must be the only non-phi instruction in BB.
458             BB.getFirstNonPHIOrDbg(true)->isTerminator() &&
459             // Don't alter Loop headers and latches to ensure another pass can
460             // detect and transform nested loops later.
461             !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) &&
462             TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
463           RemoveRedundantDbgInstrs(Succ);
464           // BB is valid for cleanup here because we passed in DTU. F remains
465           // BB's parent until a DTU->getDomTree() event.
466           LVI->eraseBlock(&BB);
467           Changed = true;
468         }
469       }
470     }
471     EverChanged |= Changed;
472   } while (Changed);
473 
474   LoopHeaders.clear();
475   return EverChanged;
476 }
477 
478 // Replace uses of Cond with ToVal when safe to do so. If all uses are
479 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
480 // because we may incorrectly replace uses when guards/assumes are uses of
481 // of `Cond` and we used the guards/assume to reason about the `Cond` value
482 // at the end of block. RAUW unconditionally replaces all uses
483 // including the guards/assumes themselves and the uses before the
484 // guard/assume.
485 static bool replaceFoldableUses(Instruction *Cond, Value *ToVal,
486                                 BasicBlock *KnownAtEndOfBB) {
487   bool Changed = false;
488   assert(Cond->getType() == ToVal->getType());
489   // We can unconditionally replace all uses in non-local blocks (i.e. uses
490   // strictly dominated by BB), since LVI information is true from the
491   // terminator of BB.
492   if (Cond->getParent() == KnownAtEndOfBB)
493     Changed |= replaceNonLocalUsesWith(Cond, ToVal);
494   for (Instruction &I : reverse(*KnownAtEndOfBB)) {
495     // Reached the Cond whose uses we are trying to replace, so there are no
496     // more uses.
497     if (&I == Cond)
498       break;
499     // We only replace uses in instructions that are guaranteed to reach the end
500     // of BB, where we know Cond is ToVal.
501     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
502       break;
503     Changed |= I.replaceUsesOfWith(Cond, ToVal);
504   }
505   if (Cond->use_empty() && !Cond->mayHaveSideEffects()) {
506     Cond->eraseFromParent();
507     Changed = true;
508   }
509   return Changed;
510 }
511 
512 /// Return the cost of duplicating a piece of this block from first non-phi
513 /// and before StopAt instruction to thread across it. Stop scanning the block
514 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
515 static unsigned getJumpThreadDuplicationCost(const TargetTransformInfo *TTI,
516                                              BasicBlock *BB,
517                                              Instruction *StopAt,
518                                              unsigned Threshold) {
519   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
520   /// Ignore PHI nodes, these will be flattened when duplication happens.
521   BasicBlock::const_iterator I(BB->getFirstNonPHI());
522 
523   // FIXME: THREADING will delete values that are just used to compute the
524   // branch, so they shouldn't count against the duplication cost.
525 
526   unsigned Bonus = 0;
527   if (BB->getTerminator() == StopAt) {
528     // Threading through a switch statement is particularly profitable.  If this
529     // block ends in a switch, decrease its cost to make it more likely to
530     // happen.
531     if (isa<SwitchInst>(StopAt))
532       Bonus = 6;
533 
534     // The same holds for indirect branches, but slightly more so.
535     if (isa<IndirectBrInst>(StopAt))
536       Bonus = 8;
537   }
538 
539   // Bump the threshold up so the early exit from the loop doesn't skip the
540   // terminator-based Size adjustment at the end.
541   Threshold += Bonus;
542 
543   // Sum up the cost of each instruction until we get to the terminator.  Don't
544   // include the terminator because the copy won't include it.
545   unsigned Size = 0;
546   for (; &*I != StopAt; ++I) {
547 
548     // Stop scanning the block if we've reached the threshold.
549     if (Size > Threshold)
550       return Size;
551 
552     // Bail out if this instruction gives back a token type, it is not possible
553     // to duplicate it if it is used outside this BB.
554     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
555       return ~0U;
556 
557     // Blocks with NoDuplicate are modelled as having infinite cost, so they
558     // are never duplicated.
559     if (const CallInst *CI = dyn_cast<CallInst>(I))
560       if (CI->cannotDuplicate() || CI->isConvergent())
561         return ~0U;
562 
563     if (TTI->getUserCost(&*I, TargetTransformInfo::TCK_SizeAndLatency)
564             == TargetTransformInfo::TCC_Free)
565       continue;
566 
567     // All other instructions count for at least one unit.
568     ++Size;
569 
570     // Calls are more expensive.  If they are non-intrinsic calls, we model them
571     // as having cost of 4.  If they are a non-vector intrinsic, we model them
572     // as having cost of 2 total, and if they are a vector intrinsic, we model
573     // them as having cost 1.
574     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
575       if (!isa<IntrinsicInst>(CI))
576         Size += 3;
577       else if (!CI->getType()->isVectorTy())
578         Size += 1;
579     }
580   }
581 
582   return Size > Bonus ? Size - Bonus : 0;
583 }
584 
585 /// findLoopHeaders - We do not want jump threading to turn proper loop
586 /// structures into irreducible loops.  Doing this breaks up the loop nesting
587 /// hierarchy and pessimizes later transformations.  To prevent this from
588 /// happening, we first have to find the loop headers.  Here we approximate this
589 /// by finding targets of backedges in the CFG.
590 ///
591 /// Note that there definitely are cases when we want to allow threading of
592 /// edges across a loop header.  For example, threading a jump from outside the
593 /// loop (the preheader) to an exit block of the loop is definitely profitable.
594 /// It is also almost always profitable to thread backedges from within the loop
595 /// to exit blocks, and is often profitable to thread backedges to other blocks
596 /// within the loop (forming a nested loop).  This simple analysis is not rich
597 /// enough to track all of these properties and keep it up-to-date as the CFG
598 /// mutates, so we don't allow any of these transformations.
599 void JumpThreadingPass::findLoopHeaders(Function &F) {
600   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
601   FindFunctionBackedges(F, Edges);
602 
603   for (const auto &Edge : Edges)
604     LoopHeaders.insert(Edge.second);
605 }
606 
607 /// getKnownConstant - Helper method to determine if we can thread over a
608 /// terminator with the given value as its condition, and if so what value to
609 /// use for that. What kind of value this is depends on whether we want an
610 /// integer or a block address, but an undef is always accepted.
611 /// Returns null if Val is null or not an appropriate constant.
612 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
613   if (!Val)
614     return nullptr;
615 
616   // Undef is "known" enough.
617   if (UndefValue *U = dyn_cast<UndefValue>(Val))
618     return U;
619 
620   if (Preference == WantBlockAddress)
621     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
622 
623   return dyn_cast<ConstantInt>(Val);
624 }
625 
626 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see
627 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
628 /// in any of our predecessors.  If so, return the known list of value and pred
629 /// BB in the result vector.
630 ///
631 /// This returns true if there were any known values.
632 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl(
633     Value *V, BasicBlock *BB, PredValueInfo &Result,
634     ConstantPreference Preference, DenseSet<Value *> &RecursionSet,
635     Instruction *CxtI) {
636   // This method walks up use-def chains recursively.  Because of this, we could
637   // get into an infinite loop going around loops in the use-def chain.  To
638   // prevent this, keep track of what (value, block) pairs we've already visited
639   // and terminate the search if we loop back to them
640   if (!RecursionSet.insert(V).second)
641     return false;
642 
643   // If V is a constant, then it is known in all predecessors.
644   if (Constant *KC = getKnownConstant(V, Preference)) {
645     for (BasicBlock *Pred : predecessors(BB))
646       Result.emplace_back(KC, Pred);
647 
648     return !Result.empty();
649   }
650 
651   // If V is a non-instruction value, or an instruction in a different block,
652   // then it can't be derived from a PHI.
653   Instruction *I = dyn_cast<Instruction>(V);
654   if (!I || I->getParent() != BB) {
655 
656     // Okay, if this is a live-in value, see if it has a known value at the end
657     // of any of our predecessors.
658     //
659     // FIXME: This should be an edge property, not a block end property.
660     /// TODO: Per PR2563, we could infer value range information about a
661     /// predecessor based on its terminator.
662     //
663     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
664     // "I" is a non-local compare-with-a-constant instruction.  This would be
665     // able to handle value inequalities better, for example if the compare is
666     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
667     // Perhaps getConstantOnEdge should be smart enough to do this?
668     for (BasicBlock *P : predecessors(BB)) {
669       // If the value is known by LazyValueInfo to be a constant in a
670       // predecessor, use that information to try to thread this block.
671       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
672       if (Constant *KC = getKnownConstant(PredCst, Preference))
673         Result.emplace_back(KC, P);
674     }
675 
676     return !Result.empty();
677   }
678 
679   /// If I is a PHI node, then we know the incoming values for any constants.
680   if (PHINode *PN = dyn_cast<PHINode>(I)) {
681     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
682       Value *InVal = PN->getIncomingValue(i);
683       if (Constant *KC = getKnownConstant(InVal, Preference)) {
684         Result.emplace_back(KC, PN->getIncomingBlock(i));
685       } else {
686         Constant *CI = LVI->getConstantOnEdge(InVal,
687                                               PN->getIncomingBlock(i),
688                                               BB, CxtI);
689         if (Constant *KC = getKnownConstant(CI, Preference))
690           Result.emplace_back(KC, PN->getIncomingBlock(i));
691       }
692     }
693 
694     return !Result.empty();
695   }
696 
697   // Handle Cast instructions.
698   if (CastInst *CI = dyn_cast<CastInst>(I)) {
699     Value *Source = CI->getOperand(0);
700     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
701                                         RecursionSet, CxtI);
702     if (Result.empty())
703       return false;
704 
705     // Convert the known values.
706     for (auto &R : Result)
707       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
708 
709     return true;
710   }
711 
712   if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) {
713     Value *Source = FI->getOperand(0);
714     computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference,
715                                         RecursionSet, CxtI);
716 
717     erase_if(Result, [](auto &Pair) {
718       return !isGuaranteedNotToBeUndefOrPoison(Pair.first);
719     });
720 
721     return !Result.empty();
722   }
723 
724   // Handle some boolean conditions.
725   if (I->getType()->getPrimitiveSizeInBits() == 1) {
726     using namespace PatternMatch;
727     if (Preference != WantInteger)
728       return false;
729     // X | true -> true
730     // X & false -> false
731     Value *Op0, *Op1;
732     if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) ||
733         match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
734       PredValueInfoTy LHSVals, RHSVals;
735 
736       computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger,
737                                           RecursionSet, CxtI);
738       computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger,
739                                           RecursionSet, CxtI);
740 
741       if (LHSVals.empty() && RHSVals.empty())
742         return false;
743 
744       ConstantInt *InterestingVal;
745       if (match(I, m_LogicalOr()))
746         InterestingVal = ConstantInt::getTrue(I->getContext());
747       else
748         InterestingVal = ConstantInt::getFalse(I->getContext());
749 
750       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
751 
752       // Scan for the sentinel.  If we find an undef, force it to the
753       // interesting value: x|undef -> true and x&undef -> false.
754       for (const auto &LHSVal : LHSVals)
755         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
756           Result.emplace_back(InterestingVal, LHSVal.second);
757           LHSKnownBBs.insert(LHSVal.second);
758         }
759       for (const auto &RHSVal : RHSVals)
760         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
761           // If we already inferred a value for this block on the LHS, don't
762           // re-add it.
763           if (!LHSKnownBBs.count(RHSVal.second))
764             Result.emplace_back(InterestingVal, RHSVal.second);
765         }
766 
767       return !Result.empty();
768     }
769 
770     // Handle the NOT form of XOR.
771     if (I->getOpcode() == Instruction::Xor &&
772         isa<ConstantInt>(I->getOperand(1)) &&
773         cast<ConstantInt>(I->getOperand(1))->isOne()) {
774       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result,
775                                           WantInteger, RecursionSet, CxtI);
776       if (Result.empty())
777         return false;
778 
779       // Invert the known values.
780       for (auto &R : Result)
781         R.first = ConstantExpr::getNot(R.first);
782 
783       return true;
784     }
785 
786   // Try to simplify some other binary operator values.
787   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
788     if (Preference != WantInteger)
789       return false;
790     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
791       PredValueInfoTy LHSVals;
792       computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals,
793                                           WantInteger, RecursionSet, CxtI);
794 
795       // Try to use constant folding to simplify the binary operator.
796       for (const auto &LHSVal : LHSVals) {
797         Constant *V = LHSVal.first;
798         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
799 
800         if (Constant *KC = getKnownConstant(Folded, WantInteger))
801           Result.emplace_back(KC, LHSVal.second);
802       }
803     }
804 
805     return !Result.empty();
806   }
807 
808   // Handle compare with phi operand, where the PHI is defined in this block.
809   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
810     if (Preference != WantInteger)
811       return false;
812     Type *CmpType = Cmp->getType();
813     Value *CmpLHS = Cmp->getOperand(0);
814     Value *CmpRHS = Cmp->getOperand(1);
815     CmpInst::Predicate Pred = Cmp->getPredicate();
816 
817     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
818     if (!PN)
819       PN = dyn_cast<PHINode>(CmpRHS);
820     if (PN && PN->getParent() == BB) {
821       const DataLayout &DL = PN->getModule()->getDataLayout();
822       // We can do this simplification if any comparisons fold to true or false.
823       // See if any do.
824       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
825         BasicBlock *PredBB = PN->getIncomingBlock(i);
826         Value *LHS, *RHS;
827         if (PN == CmpLHS) {
828           LHS = PN->getIncomingValue(i);
829           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
830         } else {
831           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
832           RHS = PN->getIncomingValue(i);
833         }
834         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
835         if (!Res) {
836           if (!isa<Constant>(RHS))
837             continue;
838 
839           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
840           auto LHSInst = dyn_cast<Instruction>(LHS);
841           if (LHSInst && LHSInst->getParent() == BB)
842             continue;
843 
844           LazyValueInfo::Tristate
845             ResT = LVI->getPredicateOnEdge(Pred, LHS,
846                                            cast<Constant>(RHS), PredBB, BB,
847                                            CxtI ? CxtI : Cmp);
848           if (ResT == LazyValueInfo::Unknown)
849             continue;
850           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
851         }
852 
853         if (Constant *KC = getKnownConstant(Res, WantInteger))
854           Result.emplace_back(KC, PredBB);
855       }
856 
857       return !Result.empty();
858     }
859 
860     // If comparing a live-in value against a constant, see if we know the
861     // live-in value on any predecessors.
862     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
863       Constant *CmpConst = cast<Constant>(CmpRHS);
864 
865       if (!isa<Instruction>(CmpLHS) ||
866           cast<Instruction>(CmpLHS)->getParent() != BB) {
867         for (BasicBlock *P : predecessors(BB)) {
868           // If the value is known by LazyValueInfo to be a constant in a
869           // predecessor, use that information to try to thread this block.
870           LazyValueInfo::Tristate Res =
871             LVI->getPredicateOnEdge(Pred, CmpLHS,
872                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
873           if (Res == LazyValueInfo::Unknown)
874             continue;
875 
876           Constant *ResC = ConstantInt::get(CmpType, Res);
877           Result.emplace_back(ResC, P);
878         }
879 
880         return !Result.empty();
881       }
882 
883       // InstCombine can fold some forms of constant range checks into
884       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
885       // x as a live-in.
886       {
887         using namespace PatternMatch;
888 
889         Value *AddLHS;
890         ConstantInt *AddConst;
891         if (isa<ConstantInt>(CmpConst) &&
892             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
893           if (!isa<Instruction>(AddLHS) ||
894               cast<Instruction>(AddLHS)->getParent() != BB) {
895             for (BasicBlock *P : predecessors(BB)) {
896               // If the value is known by LazyValueInfo to be a ConstantRange in
897               // a predecessor, use that information to try to thread this
898               // block.
899               ConstantRange CR = LVI->getConstantRangeOnEdge(
900                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
901               // Propagate the range through the addition.
902               CR = CR.add(AddConst->getValue());
903 
904               // Get the range where the compare returns true.
905               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
906                   Pred, cast<ConstantInt>(CmpConst)->getValue());
907 
908               Constant *ResC;
909               if (CmpRange.contains(CR))
910                 ResC = ConstantInt::getTrue(CmpType);
911               else if (CmpRange.inverse().contains(CR))
912                 ResC = ConstantInt::getFalse(CmpType);
913               else
914                 continue;
915 
916               Result.emplace_back(ResC, P);
917             }
918 
919             return !Result.empty();
920           }
921         }
922       }
923 
924       // Try to find a constant value for the LHS of a comparison,
925       // and evaluate it statically if we can.
926       PredValueInfoTy LHSVals;
927       computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals,
928                                           WantInteger, RecursionSet, CxtI);
929 
930       for (const auto &LHSVal : LHSVals) {
931         Constant *V = LHSVal.first;
932         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
933         if (Constant *KC = getKnownConstant(Folded, WantInteger))
934           Result.emplace_back(KC, LHSVal.second);
935       }
936 
937       return !Result.empty();
938     }
939   }
940 
941   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
942     // Handle select instructions where at least one operand is a known constant
943     // and we can figure out the condition value for any predecessor block.
944     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
945     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
946     PredValueInfoTy Conds;
947     if ((TrueVal || FalseVal) &&
948         computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds,
949                                             WantInteger, RecursionSet, CxtI)) {
950       for (auto &C : Conds) {
951         Constant *Cond = C.first;
952 
953         // Figure out what value to use for the condition.
954         bool KnownCond;
955         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
956           // A known boolean.
957           KnownCond = CI->isOne();
958         } else {
959           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
960           // Either operand will do, so be sure to pick the one that's a known
961           // constant.
962           // FIXME: Do this more cleverly if both values are known constants?
963           KnownCond = (TrueVal != nullptr);
964         }
965 
966         // See if the select has a known constant value for this predecessor.
967         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
968           Result.emplace_back(Val, C.second);
969       }
970 
971       return !Result.empty();
972     }
973   }
974 
975   // If all else fails, see if LVI can figure out a constant value for us.
976   assert(CxtI->getParent() == BB && "CxtI should be in BB");
977   Constant *CI = LVI->getConstant(V, CxtI);
978   if (Constant *KC = getKnownConstant(CI, Preference)) {
979     for (BasicBlock *Pred : predecessors(BB))
980       Result.emplace_back(KC, Pred);
981   }
982 
983   return !Result.empty();
984 }
985 
986 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
987 /// in an undefined jump, decide which block is best to revector to.
988 ///
989 /// Since we can pick an arbitrary destination, we pick the successor with the
990 /// fewest predecessors.  This should reduce the in-degree of the others.
991 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) {
992   Instruction *BBTerm = BB->getTerminator();
993   unsigned MinSucc = 0;
994   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
995   // Compute the successor with the minimum number of predecessors.
996   unsigned MinNumPreds = pred_size(TestBB);
997   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
998     TestBB = BBTerm->getSuccessor(i);
999     unsigned NumPreds = pred_size(TestBB);
1000     if (NumPreds < MinNumPreds) {
1001       MinSucc = i;
1002       MinNumPreds = NumPreds;
1003     }
1004   }
1005 
1006   return MinSucc;
1007 }
1008 
1009 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
1010   if (!BB->hasAddressTaken()) return false;
1011 
1012   // If the block has its address taken, it may be a tree of dead constants
1013   // hanging off of it.  These shouldn't keep the block alive.
1014   BlockAddress *BA = BlockAddress::get(BB);
1015   BA->removeDeadConstantUsers();
1016   return !BA->use_empty();
1017 }
1018 
1019 /// processBlock - If there are any predecessors whose control can be threaded
1020 /// through to a successor, transform them now.
1021 bool JumpThreadingPass::processBlock(BasicBlock *BB) {
1022   // If the block is trivially dead, just return and let the caller nuke it.
1023   // This simplifies other transformations.
1024   if (DTU->isBBPendingDeletion(BB) ||
1025       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
1026     return false;
1027 
1028   // If this block has a single predecessor, and if that pred has a single
1029   // successor, merge the blocks.  This encourages recursive jump threading
1030   // because now the condition in this block can be threaded through
1031   // predecessors of our predecessor block.
1032   if (maybeMergeBasicBlockIntoOnlyPred(BB))
1033     return true;
1034 
1035   if (tryToUnfoldSelectInCurrBB(BB))
1036     return true;
1037 
1038   // Look if we can propagate guards to predecessors.
1039   if (HasGuards && processGuards(BB))
1040     return true;
1041 
1042   // What kind of constant we're looking for.
1043   ConstantPreference Preference = WantInteger;
1044 
1045   // Look to see if the terminator is a conditional branch, switch or indirect
1046   // branch, if not we can't thread it.
1047   Value *Condition;
1048   Instruction *Terminator = BB->getTerminator();
1049   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1050     // Can't thread an unconditional jump.
1051     if (BI->isUnconditional()) return false;
1052     Condition = BI->getCondition();
1053   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1054     Condition = SI->getCondition();
1055   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1056     // Can't thread indirect branch with no successors.
1057     if (IB->getNumSuccessors() == 0) return false;
1058     Condition = IB->getAddress()->stripPointerCasts();
1059     Preference = WantBlockAddress;
1060   } else {
1061     return false; // Must be an invoke or callbr.
1062   }
1063 
1064   // Keep track if we constant folded the condition in this invocation.
1065   bool ConstantFolded = false;
1066 
1067   // Run constant folding to see if we can reduce the condition to a simple
1068   // constant.
1069   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1070     Value *SimpleVal =
1071         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1072     if (SimpleVal) {
1073       I->replaceAllUsesWith(SimpleVal);
1074       if (isInstructionTriviallyDead(I, TLI))
1075         I->eraseFromParent();
1076       Condition = SimpleVal;
1077       ConstantFolded = true;
1078     }
1079   }
1080 
1081   // If the terminator is branching on an undef or freeze undef, we can pick any
1082   // of the successors to branch to.  Let getBestDestForJumpOnUndef decide.
1083   auto *FI = dyn_cast<FreezeInst>(Condition);
1084   if (isa<UndefValue>(Condition) ||
1085       (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) {
1086     unsigned BestSucc = getBestDestForJumpOnUndef(BB);
1087     std::vector<DominatorTree::UpdateType> Updates;
1088 
1089     // Fold the branch/switch.
1090     Instruction *BBTerm = BB->getTerminator();
1091     Updates.reserve(BBTerm->getNumSuccessors());
1092     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1093       if (i == BestSucc) continue;
1094       BasicBlock *Succ = BBTerm->getSuccessor(i);
1095       Succ->removePredecessor(BB, true);
1096       Updates.push_back({DominatorTree::Delete, BB, Succ});
1097     }
1098 
1099     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1100                       << "' folding undef terminator: " << *BBTerm << '\n');
1101     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1102     ++NumFolds;
1103     BBTerm->eraseFromParent();
1104     DTU->applyUpdatesPermissive(Updates);
1105     if (FI)
1106       FI->eraseFromParent();
1107     return true;
1108   }
1109 
1110   // If the terminator of this block is branching on a constant, simplify the
1111   // terminator to an unconditional branch.  This can occur due to threading in
1112   // other blocks.
1113   if (getKnownConstant(Condition, Preference)) {
1114     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1115                       << "' folding terminator: " << *BB->getTerminator()
1116                       << '\n');
1117     ++NumFolds;
1118     ConstantFoldTerminator(BB, true, nullptr, DTU);
1119     if (HasProfileData)
1120       BPI->eraseBlock(BB);
1121     return true;
1122   }
1123 
1124   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1125 
1126   // All the rest of our checks depend on the condition being an instruction.
1127   if (!CondInst) {
1128     // FIXME: Unify this with code below.
1129     if (processThreadableEdges(Condition, BB, Preference, Terminator))
1130       return true;
1131     return ConstantFolded;
1132   }
1133 
1134   // Some of the following optimization can safely work on the unfrozen cond.
1135   Value *CondWithoutFreeze = CondInst;
1136   if (auto *FI = dyn_cast<FreezeInst>(CondInst))
1137     CondWithoutFreeze = FI->getOperand(0);
1138 
1139   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondWithoutFreeze)) {
1140     // If we're branching on a conditional, LVI might be able to determine
1141     // it's value at the branch instruction.  We only handle comparisons
1142     // against a constant at this time.
1143     if (Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1))) {
1144       LazyValueInfo::Tristate Ret =
1145           LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1146                               CondConst, BB->getTerminator(),
1147                               /*UseBlockValue=*/false);
1148       if (Ret != LazyValueInfo::Unknown) {
1149         // We can safely replace *some* uses of the CondInst if it has
1150         // exactly one value as returned by LVI. RAUW is incorrect in the
1151         // presence of guards and assumes, that have the `Cond` as the use. This
1152         // is because we use the guards/assume to reason about the `Cond` value
1153         // at the end of block, but RAUW unconditionally replaces all uses
1154         // including the guards/assumes themselves and the uses before the
1155         // guard/assume.
1156         auto *CI = Ret == LazyValueInfo::True ?
1157           ConstantInt::getTrue(CondCmp->getType()) :
1158           ConstantInt::getFalse(CondCmp->getType());
1159         if (replaceFoldableUses(CondCmp, CI, BB))
1160           return true;
1161       }
1162 
1163       // We did not manage to simplify this branch, try to see whether
1164       // CondCmp depends on a known phi-select pattern.
1165       if (tryToUnfoldSelect(CondCmp, BB))
1166         return true;
1167     }
1168   }
1169 
1170   if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
1171     if (tryToUnfoldSelect(SI, BB))
1172       return true;
1173 
1174   // Check for some cases that are worth simplifying.  Right now we want to look
1175   // for loads that are used by a switch or by the condition for the branch.  If
1176   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1177   // which can then be used to thread the values.
1178   Value *SimplifyValue = CondWithoutFreeze;
1179 
1180   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1181     if (isa<Constant>(CondCmp->getOperand(1)))
1182       SimplifyValue = CondCmp->getOperand(0);
1183 
1184   // TODO: There are other places where load PRE would be profitable, such as
1185   // more complex comparisons.
1186   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1187     if (simplifyPartiallyRedundantLoad(LoadI))
1188       return true;
1189 
1190   // Before threading, try to propagate profile data backwards:
1191   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1192     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1193       updatePredecessorProfileMetadata(PN, BB);
1194 
1195   // Handle a variety of cases where we are branching on something derived from
1196   // a PHI node in the current block.  If we can prove that any predecessors
1197   // compute a predictable value based on a PHI node, thread those predecessors.
1198   if (processThreadableEdges(CondInst, BB, Preference, Terminator))
1199     return true;
1200 
1201   // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in
1202   // the current block, see if we can simplify.
1203   PHINode *PN = dyn_cast<PHINode>(CondWithoutFreeze);
1204   if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1205     return processBranchOnPHI(PN);
1206 
1207   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1208   if (CondInst->getOpcode() == Instruction::Xor &&
1209       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1210     return processBranchOnXOR(cast<BinaryOperator>(CondInst));
1211 
1212   // Search for a stronger dominating condition that can be used to simplify a
1213   // conditional branch leaving BB.
1214   if (processImpliedCondition(BB))
1215     return true;
1216 
1217   return false;
1218 }
1219 
1220 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) {
1221   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1222   if (!BI || !BI->isConditional())
1223     return false;
1224 
1225   Value *Cond = BI->getCondition();
1226   // Assuming that predecessor's branch was taken, if pred's branch condition
1227   // (V) implies Cond, Cond can be either true, undef, or poison. In this case,
1228   // freeze(Cond) is either true or a nondeterministic value.
1229   // If freeze(Cond) has only one use, we can freely fold freeze(Cond) to true
1230   // without affecting other instructions.
1231   auto *FICond = dyn_cast<FreezeInst>(Cond);
1232   if (FICond && FICond->hasOneUse())
1233     Cond = FICond->getOperand(0);
1234   else
1235     FICond = nullptr;
1236 
1237   BasicBlock *CurrentBB = BB;
1238   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1239   unsigned Iter = 0;
1240 
1241   auto &DL = BB->getModule()->getDataLayout();
1242 
1243   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1244     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1245     if (!PBI || !PBI->isConditional())
1246       return false;
1247     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1248       return false;
1249 
1250     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1251     Optional<bool> Implication =
1252         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1253 
1254     // If the branch condition of BB (which is Cond) and CurrentPred are
1255     // exactly the same freeze instruction, Cond can be folded into CondIsTrue.
1256     if (!Implication && FICond && isa<FreezeInst>(PBI->getCondition())) {
1257       if (cast<FreezeInst>(PBI->getCondition())->getOperand(0) ==
1258           FICond->getOperand(0))
1259         Implication = CondIsTrue;
1260     }
1261 
1262     if (Implication) {
1263       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1264       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1265       RemoveSucc->removePredecessor(BB);
1266       BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI);
1267       UncondBI->setDebugLoc(BI->getDebugLoc());
1268       ++NumFolds;
1269       BI->eraseFromParent();
1270       if (FICond)
1271         FICond->eraseFromParent();
1272 
1273       DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}});
1274       if (HasProfileData)
1275         BPI->eraseBlock(BB);
1276       return true;
1277     }
1278     CurrentBB = CurrentPred;
1279     CurrentPred = CurrentBB->getSinglePredecessor();
1280   }
1281 
1282   return false;
1283 }
1284 
1285 /// Return true if Op is an instruction defined in the given block.
1286 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1287   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1288     if (OpInst->getParent() == BB)
1289       return true;
1290   return false;
1291 }
1292 
1293 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1294 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1295 /// This is an important optimization that encourages jump threading, and needs
1296 /// to be run interlaced with other jump threading tasks.
1297 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1298   // Don't hack volatile and ordered loads.
1299   if (!LoadI->isUnordered()) return false;
1300 
1301   // If the load is defined in a block with exactly one predecessor, it can't be
1302   // partially redundant.
1303   BasicBlock *LoadBB = LoadI->getParent();
1304   if (LoadBB->getSinglePredecessor())
1305     return false;
1306 
1307   // If the load is defined in an EH pad, it can't be partially redundant,
1308   // because the edges between the invoke and the EH pad cannot have other
1309   // instructions between them.
1310   if (LoadBB->isEHPad())
1311     return false;
1312 
1313   Value *LoadedPtr = LoadI->getOperand(0);
1314 
1315   // If the loaded operand is defined in the LoadBB and its not a phi,
1316   // it can't be available in predecessors.
1317   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1318     return false;
1319 
1320   // Scan a few instructions up from the load, to see if it is obviously live at
1321   // the entry to its block.
1322   BasicBlock::iterator BBIt(LoadI);
1323   bool IsLoadCSE;
1324   if (Value *AvailableVal = FindAvailableLoadedValue(
1325           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1326     // If the value of the load is locally available within the block, just use
1327     // it.  This frequently occurs for reg2mem'd allocas.
1328 
1329     if (IsLoadCSE) {
1330       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1331       combineMetadataForCSE(NLoadI, LoadI, false);
1332     };
1333 
1334     // If the returned value is the load itself, replace with an undef. This can
1335     // only happen in dead loops.
1336     if (AvailableVal == LoadI)
1337       AvailableVal = UndefValue::get(LoadI->getType());
1338     if (AvailableVal->getType() != LoadI->getType())
1339       AvailableVal = CastInst::CreateBitOrPointerCast(
1340           AvailableVal, LoadI->getType(), "", LoadI);
1341     LoadI->replaceAllUsesWith(AvailableVal);
1342     LoadI->eraseFromParent();
1343     return true;
1344   }
1345 
1346   // Otherwise, if we scanned the whole block and got to the top of the block,
1347   // we know the block is locally transparent to the load.  If not, something
1348   // might clobber its value.
1349   if (BBIt != LoadBB->begin())
1350     return false;
1351 
1352   // If all of the loads and stores that feed the value have the same AA tags,
1353   // then we can propagate them onto any newly inserted loads.
1354   AAMDNodes AATags = LoadI->getAAMetadata();
1355 
1356   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1357 
1358   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1359 
1360   AvailablePredsTy AvailablePreds;
1361   BasicBlock *OneUnavailablePred = nullptr;
1362   SmallVector<LoadInst*, 8> CSELoads;
1363 
1364   // If we got here, the loaded value is transparent through to the start of the
1365   // block.  Check to see if it is available in any of the predecessor blocks.
1366   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1367     // If we already scanned this predecessor, skip it.
1368     if (!PredsScanned.insert(PredBB).second)
1369       continue;
1370 
1371     BBIt = PredBB->end();
1372     unsigned NumScanedInst = 0;
1373     Value *PredAvailable = nullptr;
1374     // NOTE: We don't CSE load that is volatile or anything stronger than
1375     // unordered, that should have been checked when we entered the function.
1376     assert(LoadI->isUnordered() &&
1377            "Attempting to CSE volatile or atomic loads");
1378     // If this is a load on a phi pointer, phi-translate it and search
1379     // for available load/store to the pointer in predecessors.
1380     Type *AccessTy = LoadI->getType();
1381     const auto &DL = LoadI->getModule()->getDataLayout();
1382     MemoryLocation Loc(LoadedPtr->DoPHITranslation(LoadBB, PredBB),
1383                        LocationSize::precise(DL.getTypeStoreSize(AccessTy)),
1384                        AATags);
1385     PredAvailable = findAvailablePtrLoadStore(Loc, AccessTy, LoadI->isAtomic(),
1386                                               PredBB, BBIt, DefMaxInstsToScan,
1387                                               AA, &IsLoadCSE, &NumScanedInst);
1388 
1389     // If PredBB has a single predecessor, continue scanning through the
1390     // single predecessor.
1391     BasicBlock *SinglePredBB = PredBB;
1392     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1393            NumScanedInst < DefMaxInstsToScan) {
1394       SinglePredBB = SinglePredBB->getSinglePredecessor();
1395       if (SinglePredBB) {
1396         BBIt = SinglePredBB->end();
1397         PredAvailable = findAvailablePtrLoadStore(
1398             Loc, AccessTy, LoadI->isAtomic(), SinglePredBB, BBIt,
1399             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1400             &NumScanedInst);
1401       }
1402     }
1403 
1404     if (!PredAvailable) {
1405       OneUnavailablePred = PredBB;
1406       continue;
1407     }
1408 
1409     if (IsLoadCSE)
1410       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1411 
1412     // If so, this load is partially redundant.  Remember this info so that we
1413     // can create a PHI node.
1414     AvailablePreds.emplace_back(PredBB, PredAvailable);
1415   }
1416 
1417   // If the loaded value isn't available in any predecessor, it isn't partially
1418   // redundant.
1419   if (AvailablePreds.empty()) return false;
1420 
1421   // Okay, the loaded value is available in at least one (and maybe all!)
1422   // predecessors.  If the value is unavailable in more than one unique
1423   // predecessor, we want to insert a merge block for those common predecessors.
1424   // This ensures that we only have to insert one reload, thus not increasing
1425   // code size.
1426   BasicBlock *UnavailablePred = nullptr;
1427 
1428   // If the value is unavailable in one of predecessors, we will end up
1429   // inserting a new instruction into them. It is only valid if all the
1430   // instructions before LoadI are guaranteed to pass execution to its
1431   // successor, or if LoadI is safe to speculate.
1432   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1433   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1434   // It requires domination tree analysis, so for this simple case it is an
1435   // overkill.
1436   if (PredsScanned.size() != AvailablePreds.size() &&
1437       !isSafeToSpeculativelyExecute(LoadI))
1438     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1439       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1440         return false;
1441 
1442   // If there is exactly one predecessor where the value is unavailable, the
1443   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1444   // unconditional branch, we know that it isn't a critical edge.
1445   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1446       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1447     UnavailablePred = OneUnavailablePred;
1448   } else if (PredsScanned.size() != AvailablePreds.size()) {
1449     // Otherwise, we had multiple unavailable predecessors or we had a critical
1450     // edge from the one.
1451     SmallVector<BasicBlock*, 8> PredsToSplit;
1452     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1453 
1454     for (const auto &AvailablePred : AvailablePreds)
1455       AvailablePredSet.insert(AvailablePred.first);
1456 
1457     // Add all the unavailable predecessors to the PredsToSplit list.
1458     for (BasicBlock *P : predecessors(LoadBB)) {
1459       // If the predecessor is an indirect goto, we can't split the edge.
1460       // Same for CallBr.
1461       if (isa<IndirectBrInst>(P->getTerminator()) ||
1462           isa<CallBrInst>(P->getTerminator()))
1463         return false;
1464 
1465       if (!AvailablePredSet.count(P))
1466         PredsToSplit.push_back(P);
1467     }
1468 
1469     // Split them out to their own block.
1470     UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1471   }
1472 
1473   // If the value isn't available in all predecessors, then there will be
1474   // exactly one where it isn't available.  Insert a load on that edge and add
1475   // it to the AvailablePreds list.
1476   if (UnavailablePred) {
1477     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1478            "Can't handle critical edge here!");
1479     LoadInst *NewVal = new LoadInst(
1480         LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1481         LoadI->getName() + ".pr", false, LoadI->getAlign(),
1482         LoadI->getOrdering(), LoadI->getSyncScopeID(),
1483         UnavailablePred->getTerminator());
1484     NewVal->setDebugLoc(LoadI->getDebugLoc());
1485     if (AATags)
1486       NewVal->setAAMetadata(AATags);
1487 
1488     AvailablePreds.emplace_back(UnavailablePred, NewVal);
1489   }
1490 
1491   // Now we know that each predecessor of this block has a value in
1492   // AvailablePreds, sort them for efficient access as we're walking the preds.
1493   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1494 
1495   // Create a PHI node at the start of the block for the PRE'd load value.
1496   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1497   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1498                                 &LoadBB->front());
1499   PN->takeName(LoadI);
1500   PN->setDebugLoc(LoadI->getDebugLoc());
1501 
1502   // Insert new entries into the PHI for each predecessor.  A single block may
1503   // have multiple entries here.
1504   for (pred_iterator PI = PB; PI != PE; ++PI) {
1505     BasicBlock *P = *PI;
1506     AvailablePredsTy::iterator I =
1507         llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr));
1508 
1509     assert(I != AvailablePreds.end() && I->first == P &&
1510            "Didn't find entry for predecessor!");
1511 
1512     // If we have an available predecessor but it requires casting, insert the
1513     // cast in the predecessor and use the cast. Note that we have to update the
1514     // AvailablePreds vector as we go so that all of the PHI entries for this
1515     // predecessor use the same bitcast.
1516     Value *&PredV = I->second;
1517     if (PredV->getType() != LoadI->getType())
1518       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1519                                                P->getTerminator());
1520 
1521     PN->addIncoming(PredV, I->first);
1522   }
1523 
1524   for (LoadInst *PredLoadI : CSELoads) {
1525     combineMetadataForCSE(PredLoadI, LoadI, true);
1526   }
1527 
1528   LoadI->replaceAllUsesWith(PN);
1529   LoadI->eraseFromParent();
1530 
1531   return true;
1532 }
1533 
1534 /// findMostPopularDest - The specified list contains multiple possible
1535 /// threadable destinations.  Pick the one that occurs the most frequently in
1536 /// the list.
1537 static BasicBlock *
1538 findMostPopularDest(BasicBlock *BB,
1539                     const SmallVectorImpl<std::pair<BasicBlock *,
1540                                           BasicBlock *>> &PredToDestList) {
1541   assert(!PredToDestList.empty());
1542 
1543   // Determine popularity.  If there are multiple possible destinations, we
1544   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1545   // blocks with known and real destinations to threading undef.  We'll handle
1546   // them later if interesting.
1547   MapVector<BasicBlock *, unsigned> DestPopularity;
1548 
1549   // Populate DestPopularity with the successors in the order they appear in the
1550   // successor list.  This way, we ensure determinism by iterating it in the
1551   // same order in std::max_element below.  We map nullptr to 0 so that we can
1552   // return nullptr when PredToDestList contains nullptr only.
1553   DestPopularity[nullptr] = 0;
1554   for (auto *SuccBB : successors(BB))
1555     DestPopularity[SuccBB] = 0;
1556 
1557   for (const auto &PredToDest : PredToDestList)
1558     if (PredToDest.second)
1559       DestPopularity[PredToDest.second]++;
1560 
1561   // Find the most popular dest.
1562   using VT = decltype(DestPopularity)::value_type;
1563   auto MostPopular = std::max_element(
1564       DestPopularity.begin(), DestPopularity.end(),
1565       [](const VT &L, const VT &R) { return L.second < R.second; });
1566 
1567   // Okay, we have finally picked the most popular destination.
1568   return MostPopular->first;
1569 }
1570 
1571 // Try to evaluate the value of V when the control flows from PredPredBB to
1572 // BB->getSinglePredecessor() and then on to BB.
1573 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB,
1574                                                        BasicBlock *PredPredBB,
1575                                                        Value *V) {
1576   BasicBlock *PredBB = BB->getSinglePredecessor();
1577   assert(PredBB && "Expected a single predecessor");
1578 
1579   if (Constant *Cst = dyn_cast<Constant>(V)) {
1580     return Cst;
1581   }
1582 
1583   // Consult LVI if V is not an instruction in BB or PredBB.
1584   Instruction *I = dyn_cast<Instruction>(V);
1585   if (!I || (I->getParent() != BB && I->getParent() != PredBB)) {
1586     return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr);
1587   }
1588 
1589   // Look into a PHI argument.
1590   if (PHINode *PHI = dyn_cast<PHINode>(V)) {
1591     if (PHI->getParent() == PredBB)
1592       return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB));
1593     return nullptr;
1594   }
1595 
1596   // If we have a CmpInst, try to fold it for each incoming edge into PredBB.
1597   if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) {
1598     if (CondCmp->getParent() == BB) {
1599       Constant *Op0 =
1600           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0));
1601       Constant *Op1 =
1602           evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1));
1603       if (Op0 && Op1) {
1604         return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1);
1605       }
1606     }
1607     return nullptr;
1608   }
1609 
1610   return nullptr;
1611 }
1612 
1613 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB,
1614                                                ConstantPreference Preference,
1615                                                Instruction *CxtI) {
1616   // If threading this would thread across a loop header, don't even try to
1617   // thread the edge.
1618   if (LoopHeaders.count(BB))
1619     return false;
1620 
1621   PredValueInfoTy PredValues;
1622   if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference,
1623                                        CxtI)) {
1624     // We don't have known values in predecessors.  See if we can thread through
1625     // BB and its sole predecessor.
1626     return maybethreadThroughTwoBasicBlocks(BB, Cond);
1627   }
1628 
1629   assert(!PredValues.empty() &&
1630          "computeValueKnownInPredecessors returned true with no values");
1631 
1632   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1633              for (const auto &PredValue : PredValues) {
1634                dbgs() << "  BB '" << BB->getName()
1635                       << "': FOUND condition = " << *PredValue.first
1636                       << " for pred '" << PredValue.second->getName() << "'.\n";
1637   });
1638 
1639   // Decide what we want to thread through.  Convert our list of known values to
1640   // a list of known destinations for each pred.  This also discards duplicate
1641   // predecessors and keeps track of the undefined inputs (which are represented
1642   // as a null dest in the PredToDestList).
1643   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1644   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1645 
1646   BasicBlock *OnlyDest = nullptr;
1647   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1648   Constant *OnlyVal = nullptr;
1649   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1650 
1651   for (const auto &PredValue : PredValues) {
1652     BasicBlock *Pred = PredValue.second;
1653     if (!SeenPreds.insert(Pred).second)
1654       continue;  // Duplicate predecessor entry.
1655 
1656     Constant *Val = PredValue.first;
1657 
1658     BasicBlock *DestBB;
1659     if (isa<UndefValue>(Val))
1660       DestBB = nullptr;
1661     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1662       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1663       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1664     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1665       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1666       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1667     } else {
1668       assert(isa<IndirectBrInst>(BB->getTerminator())
1669               && "Unexpected terminator");
1670       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1671       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1672     }
1673 
1674     // If we have exactly one destination, remember it for efficiency below.
1675     if (PredToDestList.empty()) {
1676       OnlyDest = DestBB;
1677       OnlyVal = Val;
1678     } else {
1679       if (OnlyDest != DestBB)
1680         OnlyDest = MultipleDestSentinel;
1681       // It possible we have same destination, but different value, e.g. default
1682       // case in switchinst.
1683       if (Val != OnlyVal)
1684         OnlyVal = MultipleVal;
1685     }
1686 
1687     // If the predecessor ends with an indirect goto, we can't change its
1688     // destination. Same for CallBr.
1689     if (isa<IndirectBrInst>(Pred->getTerminator()) ||
1690         isa<CallBrInst>(Pred->getTerminator()))
1691       continue;
1692 
1693     PredToDestList.emplace_back(Pred, DestBB);
1694   }
1695 
1696   // If all edges were unthreadable, we fail.
1697   if (PredToDestList.empty())
1698     return false;
1699 
1700   // If all the predecessors go to a single known successor, we want to fold,
1701   // not thread. By doing so, we do not need to duplicate the current block and
1702   // also miss potential opportunities in case we dont/cant duplicate.
1703   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1704     if (BB->hasNPredecessors(PredToDestList.size())) {
1705       bool SeenFirstBranchToOnlyDest = false;
1706       std::vector <DominatorTree::UpdateType> Updates;
1707       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1708       for (BasicBlock *SuccBB : successors(BB)) {
1709         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1710           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1711         } else {
1712           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1713           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1714         }
1715       }
1716 
1717       // Finally update the terminator.
1718       Instruction *Term = BB->getTerminator();
1719       BranchInst::Create(OnlyDest, Term);
1720       ++NumFolds;
1721       Term->eraseFromParent();
1722       DTU->applyUpdatesPermissive(Updates);
1723       if (HasProfileData)
1724         BPI->eraseBlock(BB);
1725 
1726       // If the condition is now dead due to the removal of the old terminator,
1727       // erase it.
1728       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1729         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1730           CondInst->eraseFromParent();
1731         // We can safely replace *some* uses of the CondInst if it has
1732         // exactly one value as returned by LVI. RAUW is incorrect in the
1733         // presence of guards and assumes, that have the `Cond` as the use. This
1734         // is because we use the guards/assume to reason about the `Cond` value
1735         // at the end of block, but RAUW unconditionally replaces all uses
1736         // including the guards/assumes themselves and the uses before the
1737         // guard/assume.
1738         else if (OnlyVal && OnlyVal != MultipleVal)
1739           replaceFoldableUses(CondInst, OnlyVal, BB);
1740       }
1741       return true;
1742     }
1743   }
1744 
1745   // Determine which is the most common successor.  If we have many inputs and
1746   // this block is a switch, we want to start by threading the batch that goes
1747   // to the most popular destination first.  If we only know about one
1748   // threadable destination (the common case) we can avoid this.
1749   BasicBlock *MostPopularDest = OnlyDest;
1750 
1751   if (MostPopularDest == MultipleDestSentinel) {
1752     // Remove any loop headers from the Dest list, threadEdge conservatively
1753     // won't process them, but we might have other destination that are eligible
1754     // and we still want to process.
1755     erase_if(PredToDestList,
1756              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1757                return LoopHeaders.contains(PredToDest.second);
1758              });
1759 
1760     if (PredToDestList.empty())
1761       return false;
1762 
1763     MostPopularDest = findMostPopularDest(BB, PredToDestList);
1764   }
1765 
1766   // Now that we know what the most popular destination is, factor all
1767   // predecessors that will jump to it into a single predecessor.
1768   SmallVector<BasicBlock*, 16> PredsToFactor;
1769   for (const auto &PredToDest : PredToDestList)
1770     if (PredToDest.second == MostPopularDest) {
1771       BasicBlock *Pred = PredToDest.first;
1772 
1773       // This predecessor may be a switch or something else that has multiple
1774       // edges to the block.  Factor each of these edges by listing them
1775       // according to # occurrences in PredsToFactor.
1776       for (BasicBlock *Succ : successors(Pred))
1777         if (Succ == BB)
1778           PredsToFactor.push_back(Pred);
1779     }
1780 
1781   // If the threadable edges are branching on an undefined value, we get to pick
1782   // the destination that these predecessors should get to.
1783   if (!MostPopularDest)
1784     MostPopularDest = BB->getTerminator()->
1785                             getSuccessor(getBestDestForJumpOnUndef(BB));
1786 
1787   // Ok, try to thread it!
1788   return tryThreadEdge(BB, PredsToFactor, MostPopularDest);
1789 }
1790 
1791 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on
1792 /// a PHI node (or freeze PHI) in the current block.  See if there are any
1793 /// simplifications we can do based on inputs to the phi node.
1794 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) {
1795   BasicBlock *BB = PN->getParent();
1796 
1797   // TODO: We could make use of this to do it once for blocks with common PHI
1798   // values.
1799   SmallVector<BasicBlock*, 1> PredBBs;
1800   PredBBs.resize(1);
1801 
1802   // If any of the predecessor blocks end in an unconditional branch, we can
1803   // *duplicate* the conditional branch into that block in order to further
1804   // encourage jump threading and to eliminate cases where we have branch on a
1805   // phi of an icmp (branch on icmp is much better).
1806   // This is still beneficial when a frozen phi is used as the branch condition
1807   // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp))
1808   // to br(icmp(freeze ...)).
1809   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1810     BasicBlock *PredBB = PN->getIncomingBlock(i);
1811     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1812       if (PredBr->isUnconditional()) {
1813         PredBBs[0] = PredBB;
1814         // Try to duplicate BB into PredBB.
1815         if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1816           return true;
1817       }
1818   }
1819 
1820   return false;
1821 }
1822 
1823 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on
1824 /// a xor instruction in the current block.  See if there are any
1825 /// simplifications we can do based on inputs to the xor.
1826 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) {
1827   BasicBlock *BB = BO->getParent();
1828 
1829   // If either the LHS or RHS of the xor is a constant, don't do this
1830   // optimization.
1831   if (isa<ConstantInt>(BO->getOperand(0)) ||
1832       isa<ConstantInt>(BO->getOperand(1)))
1833     return false;
1834 
1835   // If the first instruction in BB isn't a phi, we won't be able to infer
1836   // anything special about any particular predecessor.
1837   if (!isa<PHINode>(BB->front()))
1838     return false;
1839 
1840   // If this BB is a landing pad, we won't be able to split the edge into it.
1841   if (BB->isEHPad())
1842     return false;
1843 
1844   // If we have a xor as the branch input to this block, and we know that the
1845   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1846   // the condition into the predecessor and fix that value to true, saving some
1847   // logical ops on that path and encouraging other paths to simplify.
1848   //
1849   // This copies something like this:
1850   //
1851   //  BB:
1852   //    %X = phi i1 [1],  [%X']
1853   //    %Y = icmp eq i32 %A, %B
1854   //    %Z = xor i1 %X, %Y
1855   //    br i1 %Z, ...
1856   //
1857   // Into:
1858   //  BB':
1859   //    %Y = icmp ne i32 %A, %B
1860   //    br i1 %Y, ...
1861 
1862   PredValueInfoTy XorOpValues;
1863   bool isLHS = true;
1864   if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1865                                        WantInteger, BO)) {
1866     assert(XorOpValues.empty());
1867     if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1868                                          WantInteger, BO))
1869       return false;
1870     isLHS = false;
1871   }
1872 
1873   assert(!XorOpValues.empty() &&
1874          "computeValueKnownInPredecessors returned true with no values");
1875 
1876   // Scan the information to see which is most popular: true or false.  The
1877   // predecessors can be of the set true, false, or undef.
1878   unsigned NumTrue = 0, NumFalse = 0;
1879   for (const auto &XorOpValue : XorOpValues) {
1880     if (isa<UndefValue>(XorOpValue.first))
1881       // Ignore undefs for the count.
1882       continue;
1883     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1884       ++NumFalse;
1885     else
1886       ++NumTrue;
1887   }
1888 
1889   // Determine which value to split on, true, false, or undef if neither.
1890   ConstantInt *SplitVal = nullptr;
1891   if (NumTrue > NumFalse)
1892     SplitVal = ConstantInt::getTrue(BB->getContext());
1893   else if (NumTrue != 0 || NumFalse != 0)
1894     SplitVal = ConstantInt::getFalse(BB->getContext());
1895 
1896   // Collect all of the blocks that this can be folded into so that we can
1897   // factor this once and clone it once.
1898   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1899   for (const auto &XorOpValue : XorOpValues) {
1900     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1901       continue;
1902 
1903     BlocksToFoldInto.push_back(XorOpValue.second);
1904   }
1905 
1906   // If we inferred a value for all of the predecessors, then duplication won't
1907   // help us.  However, we can just replace the LHS or RHS with the constant.
1908   if (BlocksToFoldInto.size() ==
1909       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1910     if (!SplitVal) {
1911       // If all preds provide undef, just nuke the xor, because it is undef too.
1912       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1913       BO->eraseFromParent();
1914     } else if (SplitVal->isZero()) {
1915       // If all preds provide 0, replace the xor with the other input.
1916       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1917       BO->eraseFromParent();
1918     } else {
1919       // If all preds provide 1, set the computed value to 1.
1920       BO->setOperand(!isLHS, SplitVal);
1921     }
1922 
1923     return true;
1924   }
1925 
1926   // If any of predecessors end with an indirect goto, we can't change its
1927   // destination. Same for CallBr.
1928   if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) {
1929         return isa<IndirectBrInst>(Pred->getTerminator()) ||
1930                isa<CallBrInst>(Pred->getTerminator());
1931       }))
1932     return false;
1933 
1934   // Try to duplicate BB into PredBB.
1935   return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1936 }
1937 
1938 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1939 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1940 /// NewPred using the entries from OldPred (suitably mapped).
1941 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1942                                             BasicBlock *OldPred,
1943                                             BasicBlock *NewPred,
1944                                      DenseMap<Instruction*, Value*> &ValueMap) {
1945   for (PHINode &PN : PHIBB->phis()) {
1946     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1947     // DestBlock.
1948     Value *IV = PN.getIncomingValueForBlock(OldPred);
1949 
1950     // Remap the value if necessary.
1951     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1952       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1953       if (I != ValueMap.end())
1954         IV = I->second;
1955     }
1956 
1957     PN.addIncoming(IV, NewPred);
1958   }
1959 }
1960 
1961 /// Merge basic block BB into its sole predecessor if possible.
1962 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) {
1963   BasicBlock *SinglePred = BB->getSinglePredecessor();
1964   if (!SinglePred)
1965     return false;
1966 
1967   const Instruction *TI = SinglePred->getTerminator();
1968   if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 ||
1969       SinglePred == BB || hasAddressTakenAndUsed(BB))
1970     return false;
1971 
1972   // If SinglePred was a loop header, BB becomes one.
1973   if (LoopHeaders.erase(SinglePred))
1974     LoopHeaders.insert(BB);
1975 
1976   LVI->eraseBlock(SinglePred);
1977   MergeBasicBlockIntoOnlyPred(BB, DTU);
1978 
1979   // Now that BB is merged into SinglePred (i.e. SinglePred code followed by
1980   // BB code within one basic block `BB`), we need to invalidate the LVI
1981   // information associated with BB, because the LVI information need not be
1982   // true for all of BB after the merge. For example,
1983   // Before the merge, LVI info and code is as follows:
1984   // SinglePred: <LVI info1 for %p val>
1985   // %y = use of %p
1986   // call @exit() // need not transfer execution to successor.
1987   // assume(%p) // from this point on %p is true
1988   // br label %BB
1989   // BB: <LVI info2 for %p val, i.e. %p is true>
1990   // %x = use of %p
1991   // br label exit
1992   //
1993   // Note that this LVI info for blocks BB and SinglPred is correct for %p
1994   // (info2 and info1 respectively). After the merge and the deletion of the
1995   // LVI info1 for SinglePred. We have the following code:
1996   // BB: <LVI info2 for %p val>
1997   // %y = use of %p
1998   // call @exit()
1999   // assume(%p)
2000   // %x = use of %p <-- LVI info2 is correct from here onwards.
2001   // br label exit
2002   // LVI info2 for BB is incorrect at the beginning of BB.
2003 
2004   // Invalidate LVI information for BB if the LVI is not provably true for
2005   // all of BB.
2006   if (!isGuaranteedToTransferExecutionToSuccessor(BB))
2007     LVI->eraseBlock(BB);
2008   return true;
2009 }
2010 
2011 /// Update the SSA form.  NewBB contains instructions that are copied from BB.
2012 /// ValueMapping maps old values in BB to new ones in NewBB.
2013 void JumpThreadingPass::updateSSA(
2014     BasicBlock *BB, BasicBlock *NewBB,
2015     DenseMap<Instruction *, Value *> &ValueMapping) {
2016   // If there were values defined in BB that are used outside the block, then we
2017   // now have to update all uses of the value to use either the original value,
2018   // the cloned value, or some PHI derived value.  This can require arbitrary
2019   // PHI insertion, of which we are prepared to do, clean these up now.
2020   SSAUpdater SSAUpdate;
2021   SmallVector<Use *, 16> UsesToRename;
2022 
2023   for (Instruction &I : *BB) {
2024     // Scan all uses of this instruction to see if it is used outside of its
2025     // block, and if so, record them in UsesToRename.
2026     for (Use &U : I.uses()) {
2027       Instruction *User = cast<Instruction>(U.getUser());
2028       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2029         if (UserPN->getIncomingBlock(U) == BB)
2030           continue;
2031       } else if (User->getParent() == BB)
2032         continue;
2033 
2034       UsesToRename.push_back(&U);
2035     }
2036 
2037     // If there are no uses outside the block, we're done with this instruction.
2038     if (UsesToRename.empty())
2039       continue;
2040     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2041 
2042     // We found a use of I outside of BB.  Rename all uses of I that are outside
2043     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2044     // with the two values we know.
2045     SSAUpdate.Initialize(I.getType(), I.getName());
2046     SSAUpdate.AddAvailableValue(BB, &I);
2047     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2048 
2049     while (!UsesToRename.empty())
2050       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2051     LLVM_DEBUG(dbgs() << "\n");
2052   }
2053 }
2054 
2055 /// Clone instructions in range [BI, BE) to NewBB.  For PHI nodes, we only clone
2056 /// arguments that come from PredBB.  Return the map from the variables in the
2057 /// source basic block to the variables in the newly created basic block.
2058 DenseMap<Instruction *, Value *>
2059 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI,
2060                                      BasicBlock::iterator BE, BasicBlock *NewBB,
2061                                      BasicBlock *PredBB) {
2062   // We are going to have to map operands from the source basic block to the new
2063   // copy of the block 'NewBB'.  If there are PHI nodes in the source basic
2064   // block, evaluate them to account for entry from PredBB.
2065   DenseMap<Instruction *, Value *> ValueMapping;
2066 
2067   // Clone the phi nodes of the source basic block into NewBB.  The resulting
2068   // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater
2069   // might need to rewrite the operand of the cloned phi.
2070   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2071     PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB);
2072     NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB);
2073     ValueMapping[PN] = NewPN;
2074   }
2075 
2076   // Clone noalias scope declarations in the threaded block. When threading a
2077   // loop exit, we would otherwise end up with two idential scope declarations
2078   // visible at the same time.
2079   SmallVector<MDNode *> NoAliasScopes;
2080   DenseMap<MDNode *, MDNode *> ClonedScopes;
2081   LLVMContext &Context = PredBB->getContext();
2082   identifyNoAliasScopesToClone(BI, BE, NoAliasScopes);
2083   cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context);
2084 
2085   // Clone the non-phi instructions of the source basic block into NewBB,
2086   // keeping track of the mapping and using it to remap operands in the cloned
2087   // instructions.
2088   for (; BI != BE; ++BI) {
2089     Instruction *New = BI->clone();
2090     New->setName(BI->getName());
2091     NewBB->getInstList().push_back(New);
2092     ValueMapping[&*BI] = New;
2093     adaptNoAliasScopes(New, ClonedScopes, Context);
2094 
2095     // Remap operands to patch up intra-block references.
2096     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2097       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2098         DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst);
2099         if (I != ValueMapping.end())
2100           New->setOperand(i, I->second);
2101       }
2102   }
2103 
2104   return ValueMapping;
2105 }
2106 
2107 /// Attempt to thread through two successive basic blocks.
2108 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB,
2109                                                          Value *Cond) {
2110   // Consider:
2111   //
2112   // PredBB:
2113   //   %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ]
2114   //   %tobool = icmp eq i32 %cond, 0
2115   //   br i1 %tobool, label %BB, label ...
2116   //
2117   // BB:
2118   //   %cmp = icmp eq i32* %var, null
2119   //   br i1 %cmp, label ..., label ...
2120   //
2121   // We don't know the value of %var at BB even if we know which incoming edge
2122   // we take to BB.  However, once we duplicate PredBB for each of its incoming
2123   // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of
2124   // PredBB.  Then we can thread edges PredBB1->BB and PredBB2->BB through BB.
2125 
2126   // Require that BB end with a Branch for simplicity.
2127   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2128   if (!CondBr)
2129     return false;
2130 
2131   // BB must have exactly one predecessor.
2132   BasicBlock *PredBB = BB->getSinglePredecessor();
2133   if (!PredBB)
2134     return false;
2135 
2136   // Require that PredBB end with a conditional Branch. If PredBB ends with an
2137   // unconditional branch, we should be merging PredBB and BB instead. For
2138   // simplicity, we don't deal with a switch.
2139   BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2140   if (!PredBBBranch || PredBBBranch->isUnconditional())
2141     return false;
2142 
2143   // If PredBB has exactly one incoming edge, we don't gain anything by copying
2144   // PredBB.
2145   if (PredBB->getSinglePredecessor())
2146     return false;
2147 
2148   // Don't thread through PredBB if it contains a successor edge to itself, in
2149   // which case we would infinite loop.  Suppose we are threading an edge from
2150   // PredPredBB through PredBB and BB to SuccBB with PredBB containing a
2151   // successor edge to itself.  If we allowed jump threading in this case, we
2152   // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread.  Since
2153   // PredBB.thread has a successor edge to PredBB, we would immediately come up
2154   // with another jump threading opportunity from PredBB.thread through PredBB
2155   // and BB to SuccBB.  This jump threading would repeatedly occur.  That is, we
2156   // would keep peeling one iteration from PredBB.
2157   if (llvm::is_contained(successors(PredBB), PredBB))
2158     return false;
2159 
2160   // Don't thread across a loop header.
2161   if (LoopHeaders.count(PredBB))
2162     return false;
2163 
2164   // Avoid complication with duplicating EH pads.
2165   if (PredBB->isEHPad())
2166     return false;
2167 
2168   // Find a predecessor that we can thread.  For simplicity, we only consider a
2169   // successor edge out of BB to which we thread exactly one incoming edge into
2170   // PredBB.
2171   unsigned ZeroCount = 0;
2172   unsigned OneCount = 0;
2173   BasicBlock *ZeroPred = nullptr;
2174   BasicBlock *OnePred = nullptr;
2175   for (BasicBlock *P : predecessors(PredBB)) {
2176     if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(
2177             evaluateOnPredecessorEdge(BB, P, Cond))) {
2178       if (CI->isZero()) {
2179         ZeroCount++;
2180         ZeroPred = P;
2181       } else if (CI->isOne()) {
2182         OneCount++;
2183         OnePred = P;
2184       }
2185     }
2186   }
2187 
2188   // Disregard complicated cases where we have to thread multiple edges.
2189   BasicBlock *PredPredBB;
2190   if (ZeroCount == 1) {
2191     PredPredBB = ZeroPred;
2192   } else if (OneCount == 1) {
2193     PredPredBB = OnePred;
2194   } else {
2195     return false;
2196   }
2197 
2198   BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred);
2199 
2200   // If threading to the same block as we come from, we would infinite loop.
2201   if (SuccBB == BB) {
2202     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2203                       << "' - would thread to self!\n");
2204     return false;
2205   }
2206 
2207   // If threading this would thread across a loop header, don't thread the edge.
2208   // See the comments above findLoopHeaders for justifications and caveats.
2209   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2210     LLVM_DEBUG({
2211       bool BBIsHeader = LoopHeaders.count(BB);
2212       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2213       dbgs() << "  Not threading across "
2214              << (BBIsHeader ? "loop header BB '" : "block BB '")
2215              << BB->getName() << "' to dest "
2216              << (SuccIsHeader ? "loop header BB '" : "block BB '")
2217              << SuccBB->getName()
2218              << "' - it might create an irreducible loop!\n";
2219     });
2220     return false;
2221   }
2222 
2223   // Compute the cost of duplicating BB and PredBB.
2224   unsigned BBCost = getJumpThreadDuplicationCost(
2225       TTI, BB, BB->getTerminator(), BBDupThreshold);
2226   unsigned PredBBCost = getJumpThreadDuplicationCost(
2227       TTI, PredBB, PredBB->getTerminator(), BBDupThreshold);
2228 
2229   // Give up if costs are too high.  We need to check BBCost and PredBBCost
2230   // individually before checking their sum because getJumpThreadDuplicationCost
2231   // return (unsigned)~0 for those basic blocks that cannot be duplicated.
2232   if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold ||
2233       BBCost + PredBBCost > BBDupThreshold) {
2234     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2235                       << "' - Cost is too high: " << PredBBCost
2236                       << " for PredBB, " << BBCost << "for BB\n");
2237     return false;
2238   }
2239 
2240   // Now we are ready to duplicate PredBB.
2241   threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB);
2242   return true;
2243 }
2244 
2245 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB,
2246                                                     BasicBlock *PredBB,
2247                                                     BasicBlock *BB,
2248                                                     BasicBlock *SuccBB) {
2249   LLVM_DEBUG(dbgs() << "  Threading through '" << PredBB->getName() << "' and '"
2250                     << BB->getName() << "'\n");
2251 
2252   BranchInst *CondBr = cast<BranchInst>(BB->getTerminator());
2253   BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator());
2254 
2255   BasicBlock *NewBB =
2256       BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread",
2257                          PredBB->getParent(), PredBB);
2258   NewBB->moveAfter(PredBB);
2259 
2260   // Set the block frequency of NewBB.
2261   if (HasProfileData) {
2262     auto NewBBFreq = BFI->getBlockFreq(PredPredBB) *
2263                      BPI->getEdgeProbability(PredPredBB, PredBB);
2264     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2265   }
2266 
2267   // We are going to have to map operands from the original BB block to the new
2268   // copy of the block 'NewBB'.  If there are PHI nodes in PredBB, evaluate them
2269   // to account for entry from PredPredBB.
2270   DenseMap<Instruction *, Value *> ValueMapping =
2271       cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB);
2272 
2273   // Copy the edge probabilities from PredBB to NewBB.
2274   if (HasProfileData)
2275     BPI->copyEdgeProbabilities(PredBB, NewBB);
2276 
2277   // Update the terminator of PredPredBB to jump to NewBB instead of PredBB.
2278   // This eliminates predecessors from PredPredBB, which requires us to simplify
2279   // any PHI nodes in PredBB.
2280   Instruction *PredPredTerm = PredPredBB->getTerminator();
2281   for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i)
2282     if (PredPredTerm->getSuccessor(i) == PredBB) {
2283       PredBB->removePredecessor(PredPredBB, true);
2284       PredPredTerm->setSuccessor(i, NewBB);
2285     }
2286 
2287   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB,
2288                                   ValueMapping);
2289   addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB,
2290                                   ValueMapping);
2291 
2292   DTU->applyUpdatesPermissive(
2293       {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)},
2294        {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)},
2295        {DominatorTree::Insert, PredPredBB, NewBB},
2296        {DominatorTree::Delete, PredPredBB, PredBB}});
2297 
2298   updateSSA(PredBB, NewBB, ValueMapping);
2299 
2300   // Clean up things like PHI nodes with single operands, dead instructions,
2301   // etc.
2302   SimplifyInstructionsInBlock(NewBB, TLI);
2303   SimplifyInstructionsInBlock(PredBB, TLI);
2304 
2305   SmallVector<BasicBlock *, 1> PredsToFactor;
2306   PredsToFactor.push_back(NewBB);
2307   threadEdge(BB, PredsToFactor, SuccBB);
2308 }
2309 
2310 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so.
2311 bool JumpThreadingPass::tryThreadEdge(
2312     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs,
2313     BasicBlock *SuccBB) {
2314   // If threading to the same block as we come from, we would infinite loop.
2315   if (SuccBB == BB) {
2316     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
2317                       << "' - would thread to self!\n");
2318     return false;
2319   }
2320 
2321   // If threading this would thread across a loop header, don't thread the edge.
2322   // See the comments above findLoopHeaders for justifications and caveats.
2323   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
2324     LLVM_DEBUG({
2325       bool BBIsHeader = LoopHeaders.count(BB);
2326       bool SuccIsHeader = LoopHeaders.count(SuccBB);
2327       dbgs() << "  Not threading across "
2328           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
2329           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
2330           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
2331     });
2332     return false;
2333   }
2334 
2335   unsigned JumpThreadCost = getJumpThreadDuplicationCost(
2336       TTI, BB, BB->getTerminator(), BBDupThreshold);
2337   if (JumpThreadCost > BBDupThreshold) {
2338     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
2339                       << "' - Cost is too high: " << JumpThreadCost << "\n");
2340     return false;
2341   }
2342 
2343   threadEdge(BB, PredBBs, SuccBB);
2344   return true;
2345 }
2346 
2347 /// threadEdge - We have decided that it is safe and profitable to factor the
2348 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
2349 /// across BB.  Transform the IR to reflect this change.
2350 void JumpThreadingPass::threadEdge(BasicBlock *BB,
2351                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
2352                                    BasicBlock *SuccBB) {
2353   assert(SuccBB != BB && "Don't create an infinite loop");
2354 
2355   assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) &&
2356          "Don't thread across loop headers");
2357 
2358   // And finally, do it!  Start by factoring the predecessors if needed.
2359   BasicBlock *PredBB;
2360   if (PredBBs.size() == 1)
2361     PredBB = PredBBs[0];
2362   else {
2363     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2364                       << " common predecessors.\n");
2365     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2366   }
2367 
2368   // And finally, do it!
2369   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
2370                     << "' to '" << SuccBB->getName()
2371                     << ", across block:\n    " << *BB << "\n");
2372 
2373   LVI->threadEdge(PredBB, BB, SuccBB);
2374 
2375   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
2376                                          BB->getName()+".thread",
2377                                          BB->getParent(), BB);
2378   NewBB->moveAfter(PredBB);
2379 
2380   // Set the block frequency of NewBB.
2381   if (HasProfileData) {
2382     auto NewBBFreq =
2383         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
2384     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2385   }
2386 
2387   // Copy all the instructions from BB to NewBB except the terminator.
2388   DenseMap<Instruction *, Value *> ValueMapping =
2389       cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB);
2390 
2391   // We didn't copy the terminator from BB over to NewBB, because there is now
2392   // an unconditional jump to SuccBB.  Insert the unconditional jump.
2393   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
2394   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2395 
2396   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2397   // PHI nodes for NewBB now.
2398   addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2399 
2400   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2401   // eliminates predecessors from BB, which requires us to simplify any PHI
2402   // nodes in BB.
2403   Instruction *PredTerm = PredBB->getTerminator();
2404   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2405     if (PredTerm->getSuccessor(i) == BB) {
2406       BB->removePredecessor(PredBB, true);
2407       PredTerm->setSuccessor(i, NewBB);
2408     }
2409 
2410   // Enqueue required DT updates.
2411   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB},
2412                                {DominatorTree::Insert, PredBB, NewBB},
2413                                {DominatorTree::Delete, PredBB, BB}});
2414 
2415   updateSSA(BB, NewBB, ValueMapping);
2416 
2417   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2418   // over the new instructions and zap any that are constants or dead.  This
2419   // frequently happens because of phi translation.
2420   SimplifyInstructionsInBlock(NewBB, TLI);
2421 
2422   // Update the edge weight from BB to SuccBB, which should be less than before.
2423   updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2424 
2425   // Threaded an edge!
2426   ++NumThreads;
2427 }
2428 
2429 /// Create a new basic block that will be the predecessor of BB and successor of
2430 /// all blocks in Preds. When profile data is available, update the frequency of
2431 /// this new block.
2432 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB,
2433                                                ArrayRef<BasicBlock *> Preds,
2434                                                const char *Suffix) {
2435   SmallVector<BasicBlock *, 2> NewBBs;
2436 
2437   // Collect the frequencies of all predecessors of BB, which will be used to
2438   // update the edge weight of the result of splitting predecessors.
2439   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2440   if (HasProfileData)
2441     for (auto Pred : Preds)
2442       FreqMap.insert(std::make_pair(
2443           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2444 
2445   // In the case when BB is a LandingPad block we create 2 new predecessors
2446   // instead of just one.
2447   if (BB->isLandingPad()) {
2448     std::string NewName = std::string(Suffix) + ".split-lp";
2449     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2450   } else {
2451     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2452   }
2453 
2454   std::vector<DominatorTree::UpdateType> Updates;
2455   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2456   for (auto NewBB : NewBBs) {
2457     BlockFrequency NewBBFreq(0);
2458     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2459     for (auto Pred : predecessors(NewBB)) {
2460       Updates.push_back({DominatorTree::Delete, Pred, BB});
2461       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2462       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2463         NewBBFreq += FreqMap.lookup(Pred);
2464     }
2465     if (HasProfileData) // Apply the summed frequency to NewBB.
2466       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2467   }
2468 
2469   DTU->applyUpdatesPermissive(Updates);
2470   return NewBBs[0];
2471 }
2472 
2473 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2474   const Instruction *TI = BB->getTerminator();
2475   assert(TI->getNumSuccessors() > 1 && "not a split");
2476 
2477   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2478   if (!WeightsNode)
2479     return false;
2480 
2481   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2482   if (MDName->getString() != "branch_weights")
2483     return false;
2484 
2485   // Ensure there are weights for all of the successors. Note that the first
2486   // operand to the metadata node is a name, not a weight.
2487   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2488 }
2489 
2490 /// Update the block frequency of BB and branch weight and the metadata on the
2491 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2492 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2493 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2494                                                      BasicBlock *BB,
2495                                                      BasicBlock *NewBB,
2496                                                      BasicBlock *SuccBB) {
2497   if (!HasProfileData)
2498     return;
2499 
2500   assert(BFI && BPI && "BFI & BPI should have been created here");
2501 
2502   // As the edge from PredBB to BB is deleted, we have to update the block
2503   // frequency of BB.
2504   auto BBOrigFreq = BFI->getBlockFreq(BB);
2505   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2506   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2507   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2508   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2509 
2510   // Collect updated outgoing edges' frequencies from BB and use them to update
2511   // edge probabilities.
2512   SmallVector<uint64_t, 4> BBSuccFreq;
2513   for (BasicBlock *Succ : successors(BB)) {
2514     auto SuccFreq = (Succ == SuccBB)
2515                         ? BB2SuccBBFreq - NewBBFreq
2516                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2517     BBSuccFreq.push_back(SuccFreq.getFrequency());
2518   }
2519 
2520   uint64_t MaxBBSuccFreq =
2521       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2522 
2523   SmallVector<BranchProbability, 4> BBSuccProbs;
2524   if (MaxBBSuccFreq == 0)
2525     BBSuccProbs.assign(BBSuccFreq.size(),
2526                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2527   else {
2528     for (uint64_t Freq : BBSuccFreq)
2529       BBSuccProbs.push_back(
2530           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2531     // Normalize edge probabilities so that they sum up to one.
2532     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2533                                               BBSuccProbs.end());
2534   }
2535 
2536   // Update edge probabilities in BPI.
2537   BPI->setEdgeProbability(BB, BBSuccProbs);
2538 
2539   // Update the profile metadata as well.
2540   //
2541   // Don't do this if the profile of the transformed blocks was statically
2542   // estimated.  (This could occur despite the function having an entry
2543   // frequency in completely cold parts of the CFG.)
2544   //
2545   // In this case we don't want to suggest to subsequent passes that the
2546   // calculated weights are fully consistent.  Consider this graph:
2547   //
2548   //                 check_1
2549   //             50% /  |
2550   //             eq_1   | 50%
2551   //                 \  |
2552   //                 check_2
2553   //             50% /  |
2554   //             eq_2   | 50%
2555   //                 \  |
2556   //                 check_3
2557   //             50% /  |
2558   //             eq_3   | 50%
2559   //                 \  |
2560   //
2561   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2562   // the overall probabilities are inconsistent; the total probability that the
2563   // value is either 1, 2 or 3 is 150%.
2564   //
2565   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2566   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2567   // the loop exit edge.  Then based solely on static estimation we would assume
2568   // the loop was extremely hot.
2569   //
2570   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2571   // shouldn't make edges extremely likely or unlikely based solely on static
2572   // estimation.
2573   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2574     SmallVector<uint32_t, 4> Weights;
2575     for (auto Prob : BBSuccProbs)
2576       Weights.push_back(Prob.getNumerator());
2577 
2578     auto TI = BB->getTerminator();
2579     TI->setMetadata(
2580         LLVMContext::MD_prof,
2581         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2582   }
2583 }
2584 
2585 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2586 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2587 /// If we can duplicate the contents of BB up into PredBB do so now, this
2588 /// improves the odds that the branch will be on an analyzable instruction like
2589 /// a compare.
2590 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred(
2591     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2592   assert(!PredBBs.empty() && "Can't handle an empty set");
2593 
2594   // If BB is a loop header, then duplicating this block outside the loop would
2595   // cause us to transform this into an irreducible loop, don't do this.
2596   // See the comments above findLoopHeaders for justifications and caveats.
2597   if (LoopHeaders.count(BB)) {
2598     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2599                       << "' into predecessor block '" << PredBBs[0]->getName()
2600                       << "' - it might create an irreducible loop!\n");
2601     return false;
2602   }
2603 
2604   unsigned DuplicationCost = getJumpThreadDuplicationCost(
2605       TTI, BB, BB->getTerminator(), BBDupThreshold);
2606   if (DuplicationCost > BBDupThreshold) {
2607     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2608                       << "' - Cost is too high: " << DuplicationCost << "\n");
2609     return false;
2610   }
2611 
2612   // And finally, do it!  Start by factoring the predecessors if needed.
2613   std::vector<DominatorTree::UpdateType> Updates;
2614   BasicBlock *PredBB;
2615   if (PredBBs.size() == 1)
2616     PredBB = PredBBs[0];
2617   else {
2618     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2619                       << " common predecessors.\n");
2620     PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm");
2621   }
2622   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2623 
2624   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2625   // of PredBB.
2626   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2627                     << "' into end of '" << PredBB->getName()
2628                     << "' to eliminate branch on phi.  Cost: "
2629                     << DuplicationCost << " block is:" << *BB << "\n");
2630 
2631   // Unless PredBB ends with an unconditional branch, split the edge so that we
2632   // can just clone the bits from BB into the end of the new PredBB.
2633   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2634 
2635   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2636     BasicBlock *OldPredBB = PredBB;
2637     PredBB = SplitEdge(OldPredBB, BB);
2638     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2639     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2640     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2641     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2642   }
2643 
2644   // We are going to have to map operands from the original BB block into the
2645   // PredBB block.  Evaluate PHI nodes in BB.
2646   DenseMap<Instruction*, Value*> ValueMapping;
2647 
2648   BasicBlock::iterator BI = BB->begin();
2649   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2650     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2651   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2652   // mapping and using it to remap operands in the cloned instructions.
2653   for (; BI != BB->end(); ++BI) {
2654     Instruction *New = BI->clone();
2655 
2656     // Remap operands to patch up intra-block references.
2657     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2658       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2659         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2660         if (I != ValueMapping.end())
2661           New->setOperand(i, I->second);
2662       }
2663 
2664     // If this instruction can be simplified after the operands are updated,
2665     // just use the simplified value instead.  This frequently happens due to
2666     // phi translation.
2667     if (Value *IV = SimplifyInstruction(
2668             New,
2669             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2670       ValueMapping[&*BI] = IV;
2671       if (!New->mayHaveSideEffects()) {
2672         New->deleteValue();
2673         New = nullptr;
2674       }
2675     } else {
2676       ValueMapping[&*BI] = New;
2677     }
2678     if (New) {
2679       // Otherwise, insert the new instruction into the block.
2680       New->setName(BI->getName());
2681       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2682       // Update Dominance from simplified New instruction operands.
2683       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2684         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2685           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2686     }
2687   }
2688 
2689   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2690   // add entries to the PHI nodes for branch from PredBB now.
2691   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2692   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2693                                   ValueMapping);
2694   addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2695                                   ValueMapping);
2696 
2697   updateSSA(BB, PredBB, ValueMapping);
2698 
2699   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2700   // that we nuked.
2701   BB->removePredecessor(PredBB, true);
2702 
2703   // Remove the unconditional branch at the end of the PredBB block.
2704   OldPredBranch->eraseFromParent();
2705   if (HasProfileData)
2706     BPI->copyEdgeProbabilities(BB, PredBB);
2707   DTU->applyUpdatesPermissive(Updates);
2708 
2709   ++NumDupes;
2710   return true;
2711 }
2712 
2713 // Pred is a predecessor of BB with an unconditional branch to BB. SI is
2714 // a Select instruction in Pred. BB has other predecessors and SI is used in
2715 // a PHI node in BB. SI has no other use.
2716 // A new basic block, NewBB, is created and SI is converted to compare and
2717 // conditional branch. SI is erased from parent.
2718 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB,
2719                                           SelectInst *SI, PHINode *SIUse,
2720                                           unsigned Idx) {
2721   // Expand the select.
2722   //
2723   // Pred --
2724   //  |    v
2725   //  |  NewBB
2726   //  |    |
2727   //  |-----
2728   //  v
2729   // BB
2730   BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator());
2731   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2732                                          BB->getParent(), BB);
2733   // Move the unconditional branch to NewBB.
2734   PredTerm->removeFromParent();
2735   NewBB->getInstList().insert(NewBB->end(), PredTerm);
2736   // Create a conditional branch and update PHI nodes.
2737   auto *BI = BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2738   BI->applyMergedLocation(PredTerm->getDebugLoc(), SI->getDebugLoc());
2739   SIUse->setIncomingValue(Idx, SI->getFalseValue());
2740   SIUse->addIncoming(SI->getTrueValue(), NewBB);
2741 
2742   // The select is now dead.
2743   SI->eraseFromParent();
2744   DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB},
2745                                {DominatorTree::Insert, Pred, NewBB}});
2746 
2747   // Update any other PHI nodes in BB.
2748   for (BasicBlock::iterator BI = BB->begin();
2749        PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2750     if (Phi != SIUse)
2751       Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2752 }
2753 
2754 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) {
2755   PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition());
2756 
2757   if (!CondPHI || CondPHI->getParent() != BB)
2758     return false;
2759 
2760   for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) {
2761     BasicBlock *Pred = CondPHI->getIncomingBlock(I);
2762     SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I));
2763 
2764     // The second and third condition can be potentially relaxed. Currently
2765     // the conditions help to simplify the code and allow us to reuse existing
2766     // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *)
2767     if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse())
2768       continue;
2769 
2770     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2771     if (!PredTerm || !PredTerm->isUnconditional())
2772       continue;
2773 
2774     unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I);
2775     return true;
2776   }
2777   return false;
2778 }
2779 
2780 /// tryToUnfoldSelect - Look for blocks of the form
2781 /// bb1:
2782 ///   %a = select
2783 ///   br bb2
2784 ///
2785 /// bb2:
2786 ///   %p = phi [%a, %bb1] ...
2787 ///   %c = icmp %p
2788 ///   br i1 %c
2789 ///
2790 /// And expand the select into a branch structure if one of its arms allows %c
2791 /// to be folded. This later enables threading from bb1 over bb2.
2792 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2793   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2794   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2795   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2796 
2797   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2798       CondLHS->getParent() != BB)
2799     return false;
2800 
2801   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2802     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2803     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2804 
2805     // Look if one of the incoming values is a select in the corresponding
2806     // predecessor.
2807     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2808       continue;
2809 
2810     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2811     if (!PredTerm || !PredTerm->isUnconditional())
2812       continue;
2813 
2814     // Now check if one of the select values would allow us to constant fold the
2815     // terminator in BB. We don't do the transform if both sides fold, those
2816     // cases will be threaded in any case.
2817     LazyValueInfo::Tristate LHSFolds =
2818         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2819                                 CondRHS, Pred, BB, CondCmp);
2820     LazyValueInfo::Tristate RHSFolds =
2821         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2822                                 CondRHS, Pred, BB, CondCmp);
2823     if ((LHSFolds != LazyValueInfo::Unknown ||
2824          RHSFolds != LazyValueInfo::Unknown) &&
2825         LHSFolds != RHSFolds) {
2826       unfoldSelectInstr(Pred, BB, SI, CondLHS, I);
2827       return true;
2828     }
2829   }
2830   return false;
2831 }
2832 
2833 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2834 /// same BB in the form
2835 /// bb:
2836 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2837 ///   %s = select %p, trueval, falseval
2838 ///
2839 /// or
2840 ///
2841 /// bb:
2842 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2843 ///   %c = cmp %p, 0
2844 ///   %s = select %c, trueval, falseval
2845 ///
2846 /// And expand the select into a branch structure. This later enables
2847 /// jump-threading over bb in this pass.
2848 ///
2849 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2850 /// select if the associated PHI has at least one constant.  If the unfolded
2851 /// select is not jump-threaded, it will be folded again in the later
2852 /// optimizations.
2853 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2854   // This transform would reduce the quality of msan diagnostics.
2855   // Disable this transform under MemorySanitizer.
2856   if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory))
2857     return false;
2858 
2859   // If threading this would thread across a loop header, don't thread the edge.
2860   // See the comments above findLoopHeaders for justifications and caveats.
2861   if (LoopHeaders.count(BB))
2862     return false;
2863 
2864   for (BasicBlock::iterator BI = BB->begin();
2865        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2866     // Look for a Phi having at least one constant incoming value.
2867     if (llvm::all_of(PN->incoming_values(),
2868                      [](Value *V) { return !isa<ConstantInt>(V); }))
2869       continue;
2870 
2871     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2872       using namespace PatternMatch;
2873 
2874       // Check if SI is in BB and use V as condition.
2875       if (SI->getParent() != BB)
2876         return false;
2877       Value *Cond = SI->getCondition();
2878       bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr()));
2879       return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr;
2880     };
2881 
2882     SelectInst *SI = nullptr;
2883     for (Use &U : PN->uses()) {
2884       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2885         // Look for a ICmp in BB that compares PN with a constant and is the
2886         // condition of a Select.
2887         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2888             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2889           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2890             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2891               SI = SelectI;
2892               break;
2893             }
2894       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2895         // Look for a Select in BB that uses PN as condition.
2896         if (isUnfoldCandidate(SelectI, U.get())) {
2897           SI = SelectI;
2898           break;
2899         }
2900       }
2901     }
2902 
2903     if (!SI)
2904       continue;
2905     // Expand the select.
2906     Value *Cond = SI->getCondition();
2907     if (!isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI))
2908       Cond = new FreezeInst(Cond, "cond.fr", SI);
2909     Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false);
2910     BasicBlock *SplitBB = SI->getParent();
2911     BasicBlock *NewBB = Term->getParent();
2912     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2913     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2914     NewPN->addIncoming(SI->getFalseValue(), BB);
2915     SI->replaceAllUsesWith(NewPN);
2916     SI->eraseFromParent();
2917     // NewBB and SplitBB are newly created blocks which require insertion.
2918     std::vector<DominatorTree::UpdateType> Updates;
2919     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2920     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2921     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2922     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2923     // BB's successors were moved to SplitBB, update DTU accordingly.
2924     for (auto *Succ : successors(SplitBB)) {
2925       Updates.push_back({DominatorTree::Delete, BB, Succ});
2926       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2927     }
2928     DTU->applyUpdatesPermissive(Updates);
2929     return true;
2930   }
2931   return false;
2932 }
2933 
2934 /// Try to propagate a guard from the current BB into one of its predecessors
2935 /// in case if another branch of execution implies that the condition of this
2936 /// guard is always true. Currently we only process the simplest case that
2937 /// looks like:
2938 ///
2939 /// Start:
2940 ///   %cond = ...
2941 ///   br i1 %cond, label %T1, label %F1
2942 /// T1:
2943 ///   br label %Merge
2944 /// F1:
2945 ///   br label %Merge
2946 /// Merge:
2947 ///   %condGuard = ...
2948 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2949 ///
2950 /// And cond either implies condGuard or !condGuard. In this case all the
2951 /// instructions before the guard can be duplicated in both branches, and the
2952 /// guard is then threaded to one of them.
2953 bool JumpThreadingPass::processGuards(BasicBlock *BB) {
2954   using namespace PatternMatch;
2955 
2956   // We only want to deal with two predecessors.
2957   BasicBlock *Pred1, *Pred2;
2958   auto PI = pred_begin(BB), PE = pred_end(BB);
2959   if (PI == PE)
2960     return false;
2961   Pred1 = *PI++;
2962   if (PI == PE)
2963     return false;
2964   Pred2 = *PI++;
2965   if (PI != PE)
2966     return false;
2967   if (Pred1 == Pred2)
2968     return false;
2969 
2970   // Try to thread one of the guards of the block.
2971   // TODO: Look up deeper than to immediate predecessor?
2972   auto *Parent = Pred1->getSinglePredecessor();
2973   if (!Parent || Parent != Pred2->getSinglePredecessor())
2974     return false;
2975 
2976   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2977     for (auto &I : *BB)
2978       if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI))
2979         return true;
2980 
2981   return false;
2982 }
2983 
2984 /// Try to propagate the guard from BB which is the lower block of a diamond
2985 /// to one of its branches, in case if diamond's condition implies guard's
2986 /// condition.
2987 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2988                                     BranchInst *BI) {
2989   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2990   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2991   Value *GuardCond = Guard->getArgOperand(0);
2992   Value *BranchCond = BI->getCondition();
2993   BasicBlock *TrueDest = BI->getSuccessor(0);
2994   BasicBlock *FalseDest = BI->getSuccessor(1);
2995 
2996   auto &DL = BB->getModule()->getDataLayout();
2997   bool TrueDestIsSafe = false;
2998   bool FalseDestIsSafe = false;
2999 
3000   // True dest is safe if BranchCond => GuardCond.
3001   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
3002   if (Impl && *Impl)
3003     TrueDestIsSafe = true;
3004   else {
3005     // False dest is safe if !BranchCond => GuardCond.
3006     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
3007     if (Impl && *Impl)
3008       FalseDestIsSafe = true;
3009   }
3010 
3011   if (!TrueDestIsSafe && !FalseDestIsSafe)
3012     return false;
3013 
3014   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
3015   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
3016 
3017   ValueToValueMapTy UnguardedMapping, GuardedMapping;
3018   Instruction *AfterGuard = Guard->getNextNode();
3019   unsigned Cost =
3020       getJumpThreadDuplicationCost(TTI, BB, AfterGuard, BBDupThreshold);
3021   if (Cost > BBDupThreshold)
3022     return false;
3023   // Duplicate all instructions before the guard and the guard itself to the
3024   // branch where implication is not proved.
3025   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
3026       BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU);
3027   assert(GuardedBlock && "Could not create the guarded block?");
3028   // Duplicate all instructions before the guard in the unguarded branch.
3029   // Since we have successfully duplicated the guarded block and this block
3030   // has fewer instructions, we expect it to succeed.
3031   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
3032       BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU);
3033   assert(UnguardedBlock && "Could not create the unguarded block?");
3034   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
3035                     << GuardedBlock->getName() << "\n");
3036   // Some instructions before the guard may still have uses. For them, we need
3037   // to create Phi nodes merging their copies in both guarded and unguarded
3038   // branches. Those instructions that have no uses can be just removed.
3039   SmallVector<Instruction *, 4> ToRemove;
3040   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
3041     if (!isa<PHINode>(&*BI))
3042       ToRemove.push_back(&*BI);
3043 
3044   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
3045   assert(InsertionPoint && "Empty block?");
3046   // Substitute with Phis & remove.
3047   for (auto *Inst : reverse(ToRemove)) {
3048     if (!Inst->use_empty()) {
3049       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
3050       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
3051       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
3052       NewPN->insertBefore(InsertionPoint);
3053       Inst->replaceAllUsesWith(NewPN);
3054     }
3055     Inst->eraseFromParent();
3056   }
3057   return true;
3058 }
3059