1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<DominatorTreeWrapperPass>(); 135 AU.addPreserved<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<GlobalsAAWrapperPass>(); 140 AU.addRequired<TargetLibraryInfoWrapperPass>(); 141 } 142 143 void releaseMemory() override { Impl.releaseMemory(); } 144 }; 145 146 } // end anonymous namespace 147 148 char JumpThreading::ID = 0; 149 150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 151 "Jump Threading", false, false) 152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 156 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 157 "Jump Threading", false, false) 158 159 // Public interface to the Jump Threading pass 160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 161 return new JumpThreading(Threshold); 162 } 163 164 JumpThreadingPass::JumpThreadingPass(int T) { 165 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 166 } 167 168 // Update branch probability information according to conditional 169 // branch probablity. This is usually made possible for cloned branches 170 // in inline instances by the context specific profile in the caller. 171 // For instance, 172 // 173 // [Block PredBB] 174 // [Branch PredBr] 175 // if (t) { 176 // Block A; 177 // } else { 178 // Block B; 179 // } 180 // 181 // [Block BB] 182 // cond = PN([true, %A], [..., %B]); // PHI node 183 // [Branch CondBr] 184 // if (cond) { 185 // ... // P(cond == true) = 1% 186 // } 187 // 188 // Here we know that when block A is taken, cond must be true, which means 189 // P(cond == true | A) = 1 190 // 191 // Given that P(cond == true) = P(cond == true | A) * P(A) + 192 // P(cond == true | B) * P(B) 193 // we get: 194 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 195 // 196 // which gives us: 197 // P(A) is less than P(cond == true), i.e. 198 // P(t == true) <= P(cond == true) 199 // 200 // In other words, if we know P(cond == true) is unlikely, we know 201 // that P(t == true) is also unlikely. 202 // 203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 204 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 205 if (!CondBr) 206 return; 207 208 BranchProbability BP; 209 uint64_t TrueWeight, FalseWeight; 210 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 211 return; 212 213 // Returns the outgoing edge of the dominating predecessor block 214 // that leads to the PhiNode's incoming block: 215 auto GetPredOutEdge = 216 [](BasicBlock *IncomingBB, 217 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 218 auto *PredBB = IncomingBB; 219 auto *SuccBB = PhiBB; 220 while (true) { 221 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 222 if (PredBr && PredBr->isConditional()) 223 return {PredBB, SuccBB}; 224 auto *SinglePredBB = PredBB->getSinglePredecessor(); 225 if (!SinglePredBB) 226 return {nullptr, nullptr}; 227 SuccBB = PredBB; 228 PredBB = SinglePredBB; 229 } 230 }; 231 232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 233 Value *PhiOpnd = PN->getIncomingValue(i); 234 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 235 236 if (!CI || !CI->getType()->isIntegerTy(1)) 237 continue; 238 239 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 240 TrueWeight, TrueWeight + FalseWeight) 241 : BranchProbability::getBranchProbability( 242 FalseWeight, TrueWeight + FalseWeight)); 243 244 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 245 if (!PredOutEdge.first) 246 return; 247 248 BasicBlock *PredBB = PredOutEdge.first; 249 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 250 251 uint64_t PredTrueWeight, PredFalseWeight; 252 // FIXME: We currently only set the profile data when it is missing. 253 // With PGO, this can be used to refine even existing profile data with 254 // context information. This needs to be done after more performance 255 // testing. 256 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 257 continue; 258 259 // We can not infer anything useful when BP >= 50%, because BP is the 260 // upper bound probability value. 261 if (BP >= BranchProbability(50, 100)) 262 continue; 263 264 SmallVector<uint32_t, 2> Weights; 265 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 266 Weights.push_back(BP.getNumerator()); 267 Weights.push_back(BP.getCompl().getNumerator()); 268 } else { 269 Weights.push_back(BP.getCompl().getNumerator()); 270 Weights.push_back(BP.getNumerator()); 271 } 272 PredBr->setMetadata(LLVMContext::MD_prof, 273 MDBuilder(PredBr->getParent()->getContext()) 274 .createBranchWeights(Weights)); 275 } 276 } 277 278 /// runOnFunction - Toplevel algorithm. 279 bool JumpThreading::runOnFunction(Function &F) { 280 if (skipFunction(F)) 281 return false; 282 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 283 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 284 // DT if it's available. 285 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 286 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 287 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 288 DeferredDominance DDT(*DT); 289 std::unique_ptr<BlockFrequencyInfo> BFI; 290 std::unique_ptr<BranchProbabilityInfo> BPI; 291 bool HasProfileData = F.hasProfileData(); 292 if (HasProfileData) { 293 LoopInfo LI{DominatorTree(F)}; 294 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 295 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 296 } 297 298 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData, 299 std::move(BFI), std::move(BPI)); 300 if (PrintLVIAfterJumpThreading) { 301 dbgs() << "LVI for function '" << F.getName() << "':\n"; 302 LVI->printLVI(F, *DT, dbgs()); 303 } 304 return Changed; 305 } 306 307 PreservedAnalyses JumpThreadingPass::run(Function &F, 308 FunctionAnalysisManager &AM) { 309 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 310 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 311 // DT if it's available. 312 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 313 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 314 auto &AA = AM.getResult<AAManager>(F); 315 DeferredDominance DDT(DT); 316 317 std::unique_ptr<BlockFrequencyInfo> BFI; 318 std::unique_ptr<BranchProbabilityInfo> BPI; 319 if (F.hasProfileData()) { 320 LoopInfo LI{DominatorTree(F)}; 321 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 322 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 323 } 324 325 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData, 326 std::move(BFI), std::move(BPI)); 327 328 if (!Changed) 329 return PreservedAnalyses::all(); 330 PreservedAnalyses PA; 331 PA.preserve<GlobalsAA>(); 332 PA.preserve<DominatorTreeAnalysis>(); 333 PA.preserve<LazyValueAnalysis>(); 334 return PA; 335 } 336 337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 338 LazyValueInfo *LVI_, AliasAnalysis *AA_, 339 DeferredDominance *DDT_, bool HasProfileData_, 340 std::unique_ptr<BlockFrequencyInfo> BFI_, 341 std::unique_ptr<BranchProbabilityInfo> BPI_) { 342 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 343 TLI = TLI_; 344 LVI = LVI_; 345 AA = AA_; 346 DDT = DDT_; 347 BFI.reset(); 348 BPI.reset(); 349 // When profile data is available, we need to update edge weights after 350 // successful jump threading, which requires both BPI and BFI being available. 351 HasProfileData = HasProfileData_; 352 auto *GuardDecl = F.getParent()->getFunction( 353 Intrinsic::getName(Intrinsic::experimental_guard)); 354 HasGuards = GuardDecl && !GuardDecl->use_empty(); 355 if (HasProfileData) { 356 BPI = std::move(BPI_); 357 BFI = std::move(BFI_); 358 } 359 360 // Remove unreachable blocks from function as they may result in infinite 361 // loop. We do threading if we found something profitable. Jump threading a 362 // branch can create other opportunities. If these opportunities form a cycle 363 // i.e. if any jump threading is undoing previous threading in the path, then 364 // we will loop forever. We take care of this issue by not jump threading for 365 // back edges. This works for normal cases but not for unreachable blocks as 366 // they may have cycle with no back edge. 367 bool EverChanged = false; 368 EverChanged |= removeUnreachableBlocks(F, LVI, DDT); 369 370 FindLoopHeaders(F); 371 372 bool Changed; 373 do { 374 Changed = false; 375 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 376 BasicBlock *BB = &*I; 377 // Thread all of the branches we can over this block. 378 while (ProcessBlock(BB)) 379 Changed = true; 380 381 ++I; 382 383 // Don't thread branches over a block that's slated for deletion. 384 if (DDT->pendingDeletedBB(BB)) 385 continue; 386 387 // If the block is trivially dead, zap it. This eliminates the successor 388 // edges which simplifies the CFG. 389 if (pred_empty(BB) && 390 BB != &BB->getParent()->getEntryBlock()) { 391 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 392 << "' with terminator: " << *BB->getTerminator() << '\n'); 393 LoopHeaders.erase(BB); 394 LVI->eraseBlock(BB); 395 DeleteDeadBlock(BB, DDT); 396 Changed = true; 397 continue; 398 } 399 400 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 401 402 // Can't thread an unconditional jump, but if the block is "almost 403 // empty", we can replace uses of it with uses of the successor and make 404 // this dead. 405 // We should not eliminate the loop header or latch either, because 406 // eliminating a loop header or latch might later prevent LoopSimplify 407 // from transforming nested loops into simplified form. We will rely on 408 // later passes in backend to clean up empty blocks. 409 if (BI && BI->isUnconditional() && 410 BB != &BB->getParent()->getEntryBlock() && 411 // If the terminator is the only non-phi instruction, try to nuke it. 412 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) && 413 !LoopHeaders.count(BI->getSuccessor(0))) { 414 // FIXME: It is always conservatively correct to drop the info 415 // for a block even if it doesn't get erased. This isn't totally 416 // awesome, but it allows us to use AssertingVH to prevent nasty 417 // dangling pointer issues within LazyValueInfo. 418 LVI->eraseBlock(BB); 419 if (TryToSimplifyUncondBranchFromEmptyBlock(BB, DDT)) 420 Changed = true; 421 } 422 } 423 EverChanged |= Changed; 424 } while (Changed); 425 426 LoopHeaders.clear(); 427 DDT->flush(); 428 return EverChanged; 429 } 430 431 // Replace uses of Cond with ToVal when safe to do so. If all uses are 432 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 433 // because we may incorrectly replace uses when guards/assumes are uses of 434 // of `Cond` and we used the guards/assume to reason about the `Cond` value 435 // at the end of block. RAUW unconditionally replaces all uses 436 // including the guards/assumes themselves and the uses before the 437 // guard/assume. 438 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 439 assert(Cond->getType() == ToVal->getType()); 440 auto *BB = Cond->getParent(); 441 // We can unconditionally replace all uses in non-local blocks (i.e. uses 442 // strictly dominated by BB), since LVI information is true from the 443 // terminator of BB. 444 replaceNonLocalUsesWith(Cond, ToVal); 445 for (Instruction &I : reverse(*BB)) { 446 // Reached the Cond whose uses we are trying to replace, so there are no 447 // more uses. 448 if (&I == Cond) 449 break; 450 // We only replace uses in instructions that are guaranteed to reach the end 451 // of BB, where we know Cond is ToVal. 452 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 453 break; 454 I.replaceUsesOfWith(Cond, ToVal); 455 } 456 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 457 Cond->eraseFromParent(); 458 } 459 460 /// Return the cost of duplicating a piece of this block from first non-phi 461 /// and before StopAt instruction to thread across it. Stop scanning the block 462 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 463 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 464 Instruction *StopAt, 465 unsigned Threshold) { 466 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 467 /// Ignore PHI nodes, these will be flattened when duplication happens. 468 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 469 470 // FIXME: THREADING will delete values that are just used to compute the 471 // branch, so they shouldn't count against the duplication cost. 472 473 unsigned Bonus = 0; 474 if (BB->getTerminator() == StopAt) { 475 // Threading through a switch statement is particularly profitable. If this 476 // block ends in a switch, decrease its cost to make it more likely to 477 // happen. 478 if (isa<SwitchInst>(StopAt)) 479 Bonus = 6; 480 481 // The same holds for indirect branches, but slightly more so. 482 if (isa<IndirectBrInst>(StopAt)) 483 Bonus = 8; 484 } 485 486 // Bump the threshold up so the early exit from the loop doesn't skip the 487 // terminator-based Size adjustment at the end. 488 Threshold += Bonus; 489 490 // Sum up the cost of each instruction until we get to the terminator. Don't 491 // include the terminator because the copy won't include it. 492 unsigned Size = 0; 493 for (; &*I != StopAt; ++I) { 494 495 // Stop scanning the block if we've reached the threshold. 496 if (Size > Threshold) 497 return Size; 498 499 // Debugger intrinsics don't incur code size. 500 if (isa<DbgInfoIntrinsic>(I)) continue; 501 502 // If this is a pointer->pointer bitcast, it is free. 503 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 504 continue; 505 506 // Bail out if this instruction gives back a token type, it is not possible 507 // to duplicate it if it is used outside this BB. 508 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 509 return ~0U; 510 511 // All other instructions count for at least one unit. 512 ++Size; 513 514 // Calls are more expensive. If they are non-intrinsic calls, we model them 515 // as having cost of 4. If they are a non-vector intrinsic, we model them 516 // as having cost of 2 total, and if they are a vector intrinsic, we model 517 // them as having cost 1. 518 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 519 if (CI->cannotDuplicate() || CI->isConvergent()) 520 // Blocks with NoDuplicate are modelled as having infinite cost, so they 521 // are never duplicated. 522 return ~0U; 523 else if (!isa<IntrinsicInst>(CI)) 524 Size += 3; 525 else if (!CI->getType()->isVectorTy()) 526 Size += 1; 527 } 528 } 529 530 return Size > Bonus ? Size - Bonus : 0; 531 } 532 533 /// FindLoopHeaders - We do not want jump threading to turn proper loop 534 /// structures into irreducible loops. Doing this breaks up the loop nesting 535 /// hierarchy and pessimizes later transformations. To prevent this from 536 /// happening, we first have to find the loop headers. Here we approximate this 537 /// by finding targets of backedges in the CFG. 538 /// 539 /// Note that there definitely are cases when we want to allow threading of 540 /// edges across a loop header. For example, threading a jump from outside the 541 /// loop (the preheader) to an exit block of the loop is definitely profitable. 542 /// It is also almost always profitable to thread backedges from within the loop 543 /// to exit blocks, and is often profitable to thread backedges to other blocks 544 /// within the loop (forming a nested loop). This simple analysis is not rich 545 /// enough to track all of these properties and keep it up-to-date as the CFG 546 /// mutates, so we don't allow any of these transformations. 547 void JumpThreadingPass::FindLoopHeaders(Function &F) { 548 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 549 FindFunctionBackedges(F, Edges); 550 551 for (const auto &Edge : Edges) 552 LoopHeaders.insert(Edge.second); 553 } 554 555 /// getKnownConstant - Helper method to determine if we can thread over a 556 /// terminator with the given value as its condition, and if so what value to 557 /// use for that. What kind of value this is depends on whether we want an 558 /// integer or a block address, but an undef is always accepted. 559 /// Returns null if Val is null or not an appropriate constant. 560 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 561 if (!Val) 562 return nullptr; 563 564 // Undef is "known" enough. 565 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 566 return U; 567 568 if (Preference == WantBlockAddress) 569 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 570 571 return dyn_cast<ConstantInt>(Val); 572 } 573 574 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 575 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 576 /// in any of our predecessors. If so, return the known list of value and pred 577 /// BB in the result vector. 578 /// 579 /// This returns true if there were any known values. 580 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 581 Value *V, BasicBlock *BB, PredValueInfo &Result, 582 ConstantPreference Preference, Instruction *CxtI) { 583 // This method walks up use-def chains recursively. Because of this, we could 584 // get into an infinite loop going around loops in the use-def chain. To 585 // prevent this, keep track of what (value, block) pairs we've already visited 586 // and terminate the search if we loop back to them 587 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 588 return false; 589 590 // An RAII help to remove this pair from the recursion set once the recursion 591 // stack pops back out again. 592 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 593 594 // If V is a constant, then it is known in all predecessors. 595 if (Constant *KC = getKnownConstant(V, Preference)) { 596 for (BasicBlock *Pred : predecessors(BB)) 597 Result.push_back(std::make_pair(KC, Pred)); 598 599 return !Result.empty(); 600 } 601 602 // If V is a non-instruction value, or an instruction in a different block, 603 // then it can't be derived from a PHI. 604 Instruction *I = dyn_cast<Instruction>(V); 605 if (!I || I->getParent() != BB) { 606 607 // Okay, if this is a live-in value, see if it has a known value at the end 608 // of any of our predecessors. 609 // 610 // FIXME: This should be an edge property, not a block end property. 611 /// TODO: Per PR2563, we could infer value range information about a 612 /// predecessor based on its terminator. 613 // 614 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 615 // "I" is a non-local compare-with-a-constant instruction. This would be 616 // able to handle value inequalities better, for example if the compare is 617 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 618 // Perhaps getConstantOnEdge should be smart enough to do this? 619 620 for (BasicBlock *P : predecessors(BB)) { 621 // If the value is known by LazyValueInfo to be a constant in a 622 // predecessor, use that information to try to thread this block. 623 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 624 if (Constant *KC = getKnownConstant(PredCst, Preference)) 625 Result.push_back(std::make_pair(KC, P)); 626 } 627 628 return !Result.empty(); 629 } 630 631 /// If I is a PHI node, then we know the incoming values for any constants. 632 if (PHINode *PN = dyn_cast<PHINode>(I)) { 633 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 634 Value *InVal = PN->getIncomingValue(i); 635 if (Constant *KC = getKnownConstant(InVal, Preference)) { 636 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 637 } else { 638 Constant *CI = LVI->getConstantOnEdge(InVal, 639 PN->getIncomingBlock(i), 640 BB, CxtI); 641 if (Constant *KC = getKnownConstant(CI, Preference)) 642 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 643 } 644 } 645 646 return !Result.empty(); 647 } 648 649 // Handle Cast instructions. Only see through Cast when the source operand is 650 // PHI or Cmp and the source type is i1 to save the compilation time. 651 if (CastInst *CI = dyn_cast<CastInst>(I)) { 652 Value *Source = CI->getOperand(0); 653 if (!Source->getType()->isIntegerTy(1)) 654 return false; 655 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 656 return false; 657 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 658 if (Result.empty()) 659 return false; 660 661 // Convert the known values. 662 for (auto &R : Result) 663 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 664 665 return true; 666 } 667 668 // Handle some boolean conditions. 669 if (I->getType()->getPrimitiveSizeInBits() == 1) { 670 assert(Preference == WantInteger && "One-bit non-integer type?"); 671 // X | true -> true 672 // X & false -> false 673 if (I->getOpcode() == Instruction::Or || 674 I->getOpcode() == Instruction::And) { 675 PredValueInfoTy LHSVals, RHSVals; 676 677 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 678 WantInteger, CxtI); 679 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 680 WantInteger, CxtI); 681 682 if (LHSVals.empty() && RHSVals.empty()) 683 return false; 684 685 ConstantInt *InterestingVal; 686 if (I->getOpcode() == Instruction::Or) 687 InterestingVal = ConstantInt::getTrue(I->getContext()); 688 else 689 InterestingVal = ConstantInt::getFalse(I->getContext()); 690 691 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 692 693 // Scan for the sentinel. If we find an undef, force it to the 694 // interesting value: x|undef -> true and x&undef -> false. 695 for (const auto &LHSVal : LHSVals) 696 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 697 Result.emplace_back(InterestingVal, LHSVal.second); 698 LHSKnownBBs.insert(LHSVal.second); 699 } 700 for (const auto &RHSVal : RHSVals) 701 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 702 // If we already inferred a value for this block on the LHS, don't 703 // re-add it. 704 if (!LHSKnownBBs.count(RHSVal.second)) 705 Result.emplace_back(InterestingVal, RHSVal.second); 706 } 707 708 return !Result.empty(); 709 } 710 711 // Handle the NOT form of XOR. 712 if (I->getOpcode() == Instruction::Xor && 713 isa<ConstantInt>(I->getOperand(1)) && 714 cast<ConstantInt>(I->getOperand(1))->isOne()) { 715 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 716 WantInteger, CxtI); 717 if (Result.empty()) 718 return false; 719 720 // Invert the known values. 721 for (auto &R : Result) 722 R.first = ConstantExpr::getNot(R.first); 723 724 return true; 725 } 726 727 // Try to simplify some other binary operator values. 728 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 729 assert(Preference != WantBlockAddress 730 && "A binary operator creating a block address?"); 731 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 732 PredValueInfoTy LHSVals; 733 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 734 WantInteger, CxtI); 735 736 // Try to use constant folding to simplify the binary operator. 737 for (const auto &LHSVal : LHSVals) { 738 Constant *V = LHSVal.first; 739 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 740 741 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 742 Result.push_back(std::make_pair(KC, LHSVal.second)); 743 } 744 } 745 746 return !Result.empty(); 747 } 748 749 // Handle compare with phi operand, where the PHI is defined in this block. 750 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 751 assert(Preference == WantInteger && "Compares only produce integers"); 752 Type *CmpType = Cmp->getType(); 753 Value *CmpLHS = Cmp->getOperand(0); 754 Value *CmpRHS = Cmp->getOperand(1); 755 CmpInst::Predicate Pred = Cmp->getPredicate(); 756 757 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 758 if (PN && PN->getParent() == BB) { 759 const DataLayout &DL = PN->getModule()->getDataLayout(); 760 // We can do this simplification if any comparisons fold to true or false. 761 // See if any do. 762 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 763 BasicBlock *PredBB = PN->getIncomingBlock(i); 764 Value *LHS = PN->getIncomingValue(i); 765 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 766 767 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 768 if (!Res) { 769 if (!isa<Constant>(RHS)) 770 continue; 771 772 LazyValueInfo::Tristate 773 ResT = LVI->getPredicateOnEdge(Pred, LHS, 774 cast<Constant>(RHS), PredBB, BB, 775 CxtI ? CxtI : Cmp); 776 if (ResT == LazyValueInfo::Unknown) 777 continue; 778 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 779 } 780 781 if (Constant *KC = getKnownConstant(Res, WantInteger)) 782 Result.push_back(std::make_pair(KC, PredBB)); 783 } 784 785 return !Result.empty(); 786 } 787 788 // If comparing a live-in value against a constant, see if we know the 789 // live-in value on any predecessors. 790 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 791 Constant *CmpConst = cast<Constant>(CmpRHS); 792 793 if (!isa<Instruction>(CmpLHS) || 794 cast<Instruction>(CmpLHS)->getParent() != BB) { 795 for (BasicBlock *P : predecessors(BB)) { 796 // If the value is known by LazyValueInfo to be a constant in a 797 // predecessor, use that information to try to thread this block. 798 LazyValueInfo::Tristate Res = 799 LVI->getPredicateOnEdge(Pred, CmpLHS, 800 CmpConst, P, BB, CxtI ? CxtI : Cmp); 801 if (Res == LazyValueInfo::Unknown) 802 continue; 803 804 Constant *ResC = ConstantInt::get(CmpType, Res); 805 Result.push_back(std::make_pair(ResC, P)); 806 } 807 808 return !Result.empty(); 809 } 810 811 // InstCombine can fold some forms of constant range checks into 812 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 813 // x as a live-in. 814 { 815 using namespace PatternMatch; 816 817 Value *AddLHS; 818 ConstantInt *AddConst; 819 if (isa<ConstantInt>(CmpConst) && 820 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 821 if (!isa<Instruction>(AddLHS) || 822 cast<Instruction>(AddLHS)->getParent() != BB) { 823 for (BasicBlock *P : predecessors(BB)) { 824 // If the value is known by LazyValueInfo to be a ConstantRange in 825 // a predecessor, use that information to try to thread this 826 // block. 827 ConstantRange CR = LVI->getConstantRangeOnEdge( 828 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 829 // Propagate the range through the addition. 830 CR = CR.add(AddConst->getValue()); 831 832 // Get the range where the compare returns true. 833 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 834 Pred, cast<ConstantInt>(CmpConst)->getValue()); 835 836 Constant *ResC; 837 if (CmpRange.contains(CR)) 838 ResC = ConstantInt::getTrue(CmpType); 839 else if (CmpRange.inverse().contains(CR)) 840 ResC = ConstantInt::getFalse(CmpType); 841 else 842 continue; 843 844 Result.push_back(std::make_pair(ResC, P)); 845 } 846 847 return !Result.empty(); 848 } 849 } 850 } 851 852 // Try to find a constant value for the LHS of a comparison, 853 // and evaluate it statically if we can. 854 PredValueInfoTy LHSVals; 855 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 856 WantInteger, CxtI); 857 858 for (const auto &LHSVal : LHSVals) { 859 Constant *V = LHSVal.first; 860 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 861 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 862 Result.push_back(std::make_pair(KC, LHSVal.second)); 863 } 864 865 return !Result.empty(); 866 } 867 } 868 869 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 870 // Handle select instructions where at least one operand is a known constant 871 // and we can figure out the condition value for any predecessor block. 872 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 873 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 874 PredValueInfoTy Conds; 875 if ((TrueVal || FalseVal) && 876 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 877 WantInteger, CxtI)) { 878 for (auto &C : Conds) { 879 Constant *Cond = C.first; 880 881 // Figure out what value to use for the condition. 882 bool KnownCond; 883 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 884 // A known boolean. 885 KnownCond = CI->isOne(); 886 } else { 887 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 888 // Either operand will do, so be sure to pick the one that's a known 889 // constant. 890 // FIXME: Do this more cleverly if both values are known constants? 891 KnownCond = (TrueVal != nullptr); 892 } 893 894 // See if the select has a known constant value for this predecessor. 895 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 896 Result.push_back(std::make_pair(Val, C.second)); 897 } 898 899 return !Result.empty(); 900 } 901 } 902 903 // If all else fails, see if LVI can figure out a constant value for us. 904 Constant *CI = LVI->getConstant(V, BB, CxtI); 905 if (Constant *KC = getKnownConstant(CI, Preference)) { 906 for (BasicBlock *Pred : predecessors(BB)) 907 Result.push_back(std::make_pair(KC, Pred)); 908 } 909 910 return !Result.empty(); 911 } 912 913 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 914 /// in an undefined jump, decide which block is best to revector to. 915 /// 916 /// Since we can pick an arbitrary destination, we pick the successor with the 917 /// fewest predecessors. This should reduce the in-degree of the others. 918 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 919 TerminatorInst *BBTerm = BB->getTerminator(); 920 unsigned MinSucc = 0; 921 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 922 // Compute the successor with the minimum number of predecessors. 923 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 924 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 925 TestBB = BBTerm->getSuccessor(i); 926 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 927 if (NumPreds < MinNumPreds) { 928 MinSucc = i; 929 MinNumPreds = NumPreds; 930 } 931 } 932 933 return MinSucc; 934 } 935 936 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 937 if (!BB->hasAddressTaken()) return false; 938 939 // If the block has its address taken, it may be a tree of dead constants 940 // hanging off of it. These shouldn't keep the block alive. 941 BlockAddress *BA = BlockAddress::get(BB); 942 BA->removeDeadConstantUsers(); 943 return !BA->use_empty(); 944 } 945 946 /// ProcessBlock - If there are any predecessors whose control can be threaded 947 /// through to a successor, transform them now. 948 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 949 // If the block is trivially dead, just return and let the caller nuke it. 950 // This simplifies other transformations. 951 if (DDT->pendingDeletedBB(BB) || 952 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 953 return false; 954 955 // If this block has a single predecessor, and if that pred has a single 956 // successor, merge the blocks. This encourages recursive jump threading 957 // because now the condition in this block can be threaded through 958 // predecessors of our predecessor block. 959 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 960 const TerminatorInst *TI = SinglePred->getTerminator(); 961 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 962 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 963 // If SinglePred was a loop header, BB becomes one. 964 if (LoopHeaders.erase(SinglePred)) 965 LoopHeaders.insert(BB); 966 967 LVI->eraseBlock(SinglePred); 968 MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT); 969 970 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 971 // BB code within one basic block `BB`), we need to invalidate the LVI 972 // information associated with BB, because the LVI information need not be 973 // true for all of BB after the merge. For example, 974 // Before the merge, LVI info and code is as follows: 975 // SinglePred: <LVI info1 for %p val> 976 // %y = use of %p 977 // call @exit() // need not transfer execution to successor. 978 // assume(%p) // from this point on %p is true 979 // br label %BB 980 // BB: <LVI info2 for %p val, i.e. %p is true> 981 // %x = use of %p 982 // br label exit 983 // 984 // Note that this LVI info for blocks BB and SinglPred is correct for %p 985 // (info2 and info1 respectively). After the merge and the deletion of the 986 // LVI info1 for SinglePred. We have the following code: 987 // BB: <LVI info2 for %p val> 988 // %y = use of %p 989 // call @exit() 990 // assume(%p) 991 // %x = use of %p <-- LVI info2 is correct from here onwards. 992 // br label exit 993 // LVI info2 for BB is incorrect at the beginning of BB. 994 995 // Invalidate LVI information for BB if the LVI is not provably true for 996 // all of BB. 997 if (any_of(*BB, [](Instruction &I) { 998 return !isGuaranteedToTransferExecutionToSuccessor(&I); 999 })) 1000 LVI->eraseBlock(BB); 1001 return true; 1002 } 1003 } 1004 1005 if (TryToUnfoldSelectInCurrBB(BB)) 1006 return true; 1007 1008 // Look if we can propagate guards to predecessors. 1009 if (HasGuards && ProcessGuards(BB)) 1010 return true; 1011 1012 // What kind of constant we're looking for. 1013 ConstantPreference Preference = WantInteger; 1014 1015 // Look to see if the terminator is a conditional branch, switch or indirect 1016 // branch, if not we can't thread it. 1017 Value *Condition; 1018 Instruction *Terminator = BB->getTerminator(); 1019 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1020 // Can't thread an unconditional jump. 1021 if (BI->isUnconditional()) return false; 1022 Condition = BI->getCondition(); 1023 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1024 Condition = SI->getCondition(); 1025 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1026 // Can't thread indirect branch with no successors. 1027 if (IB->getNumSuccessors() == 0) return false; 1028 Condition = IB->getAddress()->stripPointerCasts(); 1029 Preference = WantBlockAddress; 1030 } else { 1031 return false; // Must be an invoke. 1032 } 1033 1034 // Run constant folding to see if we can reduce the condition to a simple 1035 // constant. 1036 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1037 Value *SimpleVal = 1038 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1039 if (SimpleVal) { 1040 I->replaceAllUsesWith(SimpleVal); 1041 if (isInstructionTriviallyDead(I, TLI)) 1042 I->eraseFromParent(); 1043 Condition = SimpleVal; 1044 } 1045 } 1046 1047 // If the terminator is branching on an undef, we can pick any of the 1048 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1049 if (isa<UndefValue>(Condition)) { 1050 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1051 std::vector<DominatorTree::UpdateType> Updates; 1052 1053 // Fold the branch/switch. 1054 TerminatorInst *BBTerm = BB->getTerminator(); 1055 Updates.reserve(BBTerm->getNumSuccessors()); 1056 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1057 if (i == BestSucc) continue; 1058 BasicBlock *Succ = BBTerm->getSuccessor(i); 1059 Succ->removePredecessor(BB, true); 1060 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1061 } 1062 1063 DEBUG(dbgs() << " In block '" << BB->getName() 1064 << "' folding undef terminator: " << *BBTerm << '\n'); 1065 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1066 BBTerm->eraseFromParent(); 1067 DDT->applyUpdates(Updates); 1068 return true; 1069 } 1070 1071 // If the terminator of this block is branching on a constant, simplify the 1072 // terminator to an unconditional branch. This can occur due to threading in 1073 // other blocks. 1074 if (getKnownConstant(Condition, Preference)) { 1075 DEBUG(dbgs() << " In block '" << BB->getName() 1076 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1077 ++NumFolds; 1078 ConstantFoldTerminator(BB, true, nullptr, DDT); 1079 return true; 1080 } 1081 1082 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1083 1084 // All the rest of our checks depend on the condition being an instruction. 1085 if (!CondInst) { 1086 // FIXME: Unify this with code below. 1087 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1088 return true; 1089 return false; 1090 } 1091 1092 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1093 // If we're branching on a conditional, LVI might be able to determine 1094 // it's value at the branch instruction. We only handle comparisons 1095 // against a constant at this time. 1096 // TODO: This should be extended to handle switches as well. 1097 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1098 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1099 if (CondBr && CondConst) { 1100 // We should have returned as soon as we turn a conditional branch to 1101 // unconditional. Because its no longer interesting as far as jump 1102 // threading is concerned. 1103 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1104 1105 LazyValueInfo::Tristate Ret = 1106 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1107 CondConst, CondBr); 1108 if (Ret != LazyValueInfo::Unknown) { 1109 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1110 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1111 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1112 ToRemoveSucc->removePredecessor(BB, true); 1113 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1114 CondBr->eraseFromParent(); 1115 if (CondCmp->use_empty()) 1116 CondCmp->eraseFromParent(); 1117 // We can safely replace *some* uses of the CondInst if it has 1118 // exactly one value as returned by LVI. RAUW is incorrect in the 1119 // presence of guards and assumes, that have the `Cond` as the use. This 1120 // is because we use the guards/assume to reason about the `Cond` value 1121 // at the end of block, but RAUW unconditionally replaces all uses 1122 // including the guards/assumes themselves and the uses before the 1123 // guard/assume. 1124 else if (CondCmp->getParent() == BB) { 1125 auto *CI = Ret == LazyValueInfo::True ? 1126 ConstantInt::getTrue(CondCmp->getType()) : 1127 ConstantInt::getFalse(CondCmp->getType()); 1128 ReplaceFoldableUses(CondCmp, CI); 1129 } 1130 DDT->deleteEdge(BB, ToRemoveSucc); 1131 return true; 1132 } 1133 1134 // We did not manage to simplify this branch, try to see whether 1135 // CondCmp depends on a known phi-select pattern. 1136 if (TryToUnfoldSelect(CondCmp, BB)) 1137 return true; 1138 } 1139 } 1140 1141 // Check for some cases that are worth simplifying. Right now we want to look 1142 // for loads that are used by a switch or by the condition for the branch. If 1143 // we see one, check to see if it's partially redundant. If so, insert a PHI 1144 // which can then be used to thread the values. 1145 Value *SimplifyValue = CondInst; 1146 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1147 if (isa<Constant>(CondCmp->getOperand(1))) 1148 SimplifyValue = CondCmp->getOperand(0); 1149 1150 // TODO: There are other places where load PRE would be profitable, such as 1151 // more complex comparisons. 1152 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1153 if (SimplifyPartiallyRedundantLoad(LoadI)) 1154 return true; 1155 1156 // Before threading, try to propagate profile data backwards: 1157 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1158 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1159 updatePredecessorProfileMetadata(PN, BB); 1160 1161 // Handle a variety of cases where we are branching on something derived from 1162 // a PHI node in the current block. If we can prove that any predecessors 1163 // compute a predictable value based on a PHI node, thread those predecessors. 1164 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1165 return true; 1166 1167 // If this is an otherwise-unfoldable branch on a phi node in the current 1168 // block, see if we can simplify. 1169 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1170 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1171 return ProcessBranchOnPHI(PN); 1172 1173 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1174 if (CondInst->getOpcode() == Instruction::Xor && 1175 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1176 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1177 1178 // Search for a stronger dominating condition that can be used to simplify a 1179 // conditional branch leaving BB. 1180 if (ProcessImpliedCondition(BB)) 1181 return true; 1182 1183 return false; 1184 } 1185 1186 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1187 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1188 if (!BI || !BI->isConditional()) 1189 return false; 1190 1191 Value *Cond = BI->getCondition(); 1192 BasicBlock *CurrentBB = BB; 1193 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1194 unsigned Iter = 0; 1195 1196 auto &DL = BB->getModule()->getDataLayout(); 1197 1198 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1199 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1200 if (!PBI || !PBI->isConditional()) 1201 return false; 1202 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1203 return false; 1204 1205 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1206 Optional<bool> Implication = 1207 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1208 if (Implication) { 1209 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1210 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1211 RemoveSucc->removePredecessor(BB); 1212 BranchInst::Create(KeepSucc, BI); 1213 BI->eraseFromParent(); 1214 DDT->deleteEdge(BB, RemoveSucc); 1215 return true; 1216 } 1217 CurrentBB = CurrentPred; 1218 CurrentPred = CurrentBB->getSinglePredecessor(); 1219 } 1220 1221 return false; 1222 } 1223 1224 /// Return true if Op is an instruction defined in the given block. 1225 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1226 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1227 if (OpInst->getParent() == BB) 1228 return true; 1229 return false; 1230 } 1231 1232 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1233 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1234 /// This is an important optimization that encourages jump threading, and needs 1235 /// to be run interlaced with other jump threading tasks. 1236 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1237 // Don't hack volatile and ordered loads. 1238 if (!LoadI->isUnordered()) return false; 1239 1240 // If the load is defined in a block with exactly one predecessor, it can't be 1241 // partially redundant. 1242 BasicBlock *LoadBB = LoadI->getParent(); 1243 if (LoadBB->getSinglePredecessor()) 1244 return false; 1245 1246 // If the load is defined in an EH pad, it can't be partially redundant, 1247 // because the edges between the invoke and the EH pad cannot have other 1248 // instructions between them. 1249 if (LoadBB->isEHPad()) 1250 return false; 1251 1252 Value *LoadedPtr = LoadI->getOperand(0); 1253 1254 // If the loaded operand is defined in the LoadBB and its not a phi, 1255 // it can't be available in predecessors. 1256 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1257 return false; 1258 1259 // Scan a few instructions up from the load, to see if it is obviously live at 1260 // the entry to its block. 1261 BasicBlock::iterator BBIt(LoadI); 1262 bool IsLoadCSE; 1263 if (Value *AvailableVal = FindAvailableLoadedValue( 1264 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1265 // If the value of the load is locally available within the block, just use 1266 // it. This frequently occurs for reg2mem'd allocas. 1267 1268 if (IsLoadCSE) { 1269 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1270 combineMetadataForCSE(NLoadI, LoadI); 1271 }; 1272 1273 // If the returned value is the load itself, replace with an undef. This can 1274 // only happen in dead loops. 1275 if (AvailableVal == LoadI) 1276 AvailableVal = UndefValue::get(LoadI->getType()); 1277 if (AvailableVal->getType() != LoadI->getType()) 1278 AvailableVal = CastInst::CreateBitOrPointerCast( 1279 AvailableVal, LoadI->getType(), "", LoadI); 1280 LoadI->replaceAllUsesWith(AvailableVal); 1281 LoadI->eraseFromParent(); 1282 return true; 1283 } 1284 1285 // Otherwise, if we scanned the whole block and got to the top of the block, 1286 // we know the block is locally transparent to the load. If not, something 1287 // might clobber its value. 1288 if (BBIt != LoadBB->begin()) 1289 return false; 1290 1291 // If all of the loads and stores that feed the value have the same AA tags, 1292 // then we can propagate them onto any newly inserted loads. 1293 AAMDNodes AATags; 1294 LoadI->getAAMetadata(AATags); 1295 1296 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1297 1298 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1299 1300 AvailablePredsTy AvailablePreds; 1301 BasicBlock *OneUnavailablePred = nullptr; 1302 SmallVector<LoadInst*, 8> CSELoads; 1303 1304 // If we got here, the loaded value is transparent through to the start of the 1305 // block. Check to see if it is available in any of the predecessor blocks. 1306 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1307 // If we already scanned this predecessor, skip it. 1308 if (!PredsScanned.insert(PredBB).second) 1309 continue; 1310 1311 BBIt = PredBB->end(); 1312 unsigned NumScanedInst = 0; 1313 Value *PredAvailable = nullptr; 1314 // NOTE: We don't CSE load that is volatile or anything stronger than 1315 // unordered, that should have been checked when we entered the function. 1316 assert(LoadI->isUnordered() && 1317 "Attempting to CSE volatile or atomic loads"); 1318 // If this is a load on a phi pointer, phi-translate it and search 1319 // for available load/store to the pointer in predecessors. 1320 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1321 PredAvailable = FindAvailablePtrLoadStore( 1322 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1323 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1324 1325 // If PredBB has a single predecessor, continue scanning through the 1326 // single precessor. 1327 BasicBlock *SinglePredBB = PredBB; 1328 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1329 NumScanedInst < DefMaxInstsToScan) { 1330 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1331 if (SinglePredBB) { 1332 BBIt = SinglePredBB->end(); 1333 PredAvailable = FindAvailablePtrLoadStore( 1334 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1335 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1336 &NumScanedInst); 1337 } 1338 } 1339 1340 if (!PredAvailable) { 1341 OneUnavailablePred = PredBB; 1342 continue; 1343 } 1344 1345 if (IsLoadCSE) 1346 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1347 1348 // If so, this load is partially redundant. Remember this info so that we 1349 // can create a PHI node. 1350 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1351 } 1352 1353 // If the loaded value isn't available in any predecessor, it isn't partially 1354 // redundant. 1355 if (AvailablePreds.empty()) return false; 1356 1357 // Okay, the loaded value is available in at least one (and maybe all!) 1358 // predecessors. If the value is unavailable in more than one unique 1359 // predecessor, we want to insert a merge block for those common predecessors. 1360 // This ensures that we only have to insert one reload, thus not increasing 1361 // code size. 1362 BasicBlock *UnavailablePred = nullptr; 1363 1364 // If the value is unavailable in one of predecessors, we will end up 1365 // inserting a new instruction into them. It is only valid if all the 1366 // instructions before LoadI are guaranteed to pass execution to its 1367 // successor, or if LoadI is safe to speculate. 1368 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1369 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1370 // It requires domination tree analysis, so for this simple case it is an 1371 // overkill. 1372 if (PredsScanned.size() != AvailablePreds.size() && 1373 !isSafeToSpeculativelyExecute(LoadI)) 1374 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1375 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1376 return false; 1377 1378 // If there is exactly one predecessor where the value is unavailable, the 1379 // already computed 'OneUnavailablePred' block is it. If it ends in an 1380 // unconditional branch, we know that it isn't a critical edge. 1381 if (PredsScanned.size() == AvailablePreds.size()+1 && 1382 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1383 UnavailablePred = OneUnavailablePred; 1384 } else if (PredsScanned.size() != AvailablePreds.size()) { 1385 // Otherwise, we had multiple unavailable predecessors or we had a critical 1386 // edge from the one. 1387 SmallVector<BasicBlock*, 8> PredsToSplit; 1388 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1389 1390 for (const auto &AvailablePred : AvailablePreds) 1391 AvailablePredSet.insert(AvailablePred.first); 1392 1393 // Add all the unavailable predecessors to the PredsToSplit list. 1394 for (BasicBlock *P : predecessors(LoadBB)) { 1395 // If the predecessor is an indirect goto, we can't split the edge. 1396 if (isa<IndirectBrInst>(P->getTerminator())) 1397 return false; 1398 1399 if (!AvailablePredSet.count(P)) 1400 PredsToSplit.push_back(P); 1401 } 1402 1403 // Split them out to their own block. 1404 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1405 } 1406 1407 // If the value isn't available in all predecessors, then there will be 1408 // exactly one where it isn't available. Insert a load on that edge and add 1409 // it to the AvailablePreds list. 1410 if (UnavailablePred) { 1411 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1412 "Can't handle critical edge here!"); 1413 LoadInst *NewVal = 1414 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1415 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1416 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1417 UnavailablePred->getTerminator()); 1418 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1419 if (AATags) 1420 NewVal->setAAMetadata(AATags); 1421 1422 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1423 } 1424 1425 // Now we know that each predecessor of this block has a value in 1426 // AvailablePreds, sort them for efficient access as we're walking the preds. 1427 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1428 1429 // Create a PHI node at the start of the block for the PRE'd load value. 1430 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1431 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1432 &LoadBB->front()); 1433 PN->takeName(LoadI); 1434 PN->setDebugLoc(LoadI->getDebugLoc()); 1435 1436 // Insert new entries into the PHI for each predecessor. A single block may 1437 // have multiple entries here. 1438 for (pred_iterator PI = PB; PI != PE; ++PI) { 1439 BasicBlock *P = *PI; 1440 AvailablePredsTy::iterator I = 1441 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1442 std::make_pair(P, (Value*)nullptr)); 1443 1444 assert(I != AvailablePreds.end() && I->first == P && 1445 "Didn't find entry for predecessor!"); 1446 1447 // If we have an available predecessor but it requires casting, insert the 1448 // cast in the predecessor and use the cast. Note that we have to update the 1449 // AvailablePreds vector as we go so that all of the PHI entries for this 1450 // predecessor use the same bitcast. 1451 Value *&PredV = I->second; 1452 if (PredV->getType() != LoadI->getType()) 1453 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1454 P->getTerminator()); 1455 1456 PN->addIncoming(PredV, I->first); 1457 } 1458 1459 for (LoadInst *PredLoadI : CSELoads) { 1460 combineMetadataForCSE(PredLoadI, LoadI); 1461 } 1462 1463 LoadI->replaceAllUsesWith(PN); 1464 LoadI->eraseFromParent(); 1465 1466 return true; 1467 } 1468 1469 /// FindMostPopularDest - The specified list contains multiple possible 1470 /// threadable destinations. Pick the one that occurs the most frequently in 1471 /// the list. 1472 static BasicBlock * 1473 FindMostPopularDest(BasicBlock *BB, 1474 const SmallVectorImpl<std::pair<BasicBlock *, 1475 BasicBlock *>> &PredToDestList) { 1476 assert(!PredToDestList.empty()); 1477 1478 // Determine popularity. If there are multiple possible destinations, we 1479 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1480 // blocks with known and real destinations to threading undef. We'll handle 1481 // them later if interesting. 1482 DenseMap<BasicBlock*, unsigned> DestPopularity; 1483 for (const auto &PredToDest : PredToDestList) 1484 if (PredToDest.second) 1485 DestPopularity[PredToDest.second]++; 1486 1487 // Find the most popular dest. 1488 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1489 BasicBlock *MostPopularDest = DPI->first; 1490 unsigned Popularity = DPI->second; 1491 SmallVector<BasicBlock*, 4> SamePopularity; 1492 1493 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1494 // If the popularity of this entry isn't higher than the popularity we've 1495 // seen so far, ignore it. 1496 if (DPI->second < Popularity) 1497 ; // ignore. 1498 else if (DPI->second == Popularity) { 1499 // If it is the same as what we've seen so far, keep track of it. 1500 SamePopularity.push_back(DPI->first); 1501 } else { 1502 // If it is more popular, remember it. 1503 SamePopularity.clear(); 1504 MostPopularDest = DPI->first; 1505 Popularity = DPI->second; 1506 } 1507 } 1508 1509 // Okay, now we know the most popular destination. If there is more than one 1510 // destination, we need to determine one. This is arbitrary, but we need 1511 // to make a deterministic decision. Pick the first one that appears in the 1512 // successor list. 1513 if (!SamePopularity.empty()) { 1514 SamePopularity.push_back(MostPopularDest); 1515 TerminatorInst *TI = BB->getTerminator(); 1516 for (unsigned i = 0; ; ++i) { 1517 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1518 1519 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1520 continue; 1521 1522 MostPopularDest = TI->getSuccessor(i); 1523 break; 1524 } 1525 } 1526 1527 // Okay, we have finally picked the most popular destination. 1528 return MostPopularDest; 1529 } 1530 1531 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1532 ConstantPreference Preference, 1533 Instruction *CxtI) { 1534 // If threading this would thread across a loop header, don't even try to 1535 // thread the edge. 1536 if (LoopHeaders.count(BB)) 1537 return false; 1538 1539 PredValueInfoTy PredValues; 1540 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1541 return false; 1542 1543 assert(!PredValues.empty() && 1544 "ComputeValueKnownInPredecessors returned true with no values"); 1545 1546 DEBUG(dbgs() << "IN BB: " << *BB; 1547 for (const auto &PredValue : PredValues) { 1548 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1549 << *PredValue.first 1550 << " for pred '" << PredValue.second->getName() << "'.\n"; 1551 }); 1552 1553 // Decide what we want to thread through. Convert our list of known values to 1554 // a list of known destinations for each pred. This also discards duplicate 1555 // predecessors and keeps track of the undefined inputs (which are represented 1556 // as a null dest in the PredToDestList). 1557 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1558 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1559 1560 BasicBlock *OnlyDest = nullptr; 1561 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1562 Constant *OnlyVal = nullptr; 1563 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1564 1565 unsigned PredWithKnownDest = 0; 1566 for (const auto &PredValue : PredValues) { 1567 BasicBlock *Pred = PredValue.second; 1568 if (!SeenPreds.insert(Pred).second) 1569 continue; // Duplicate predecessor entry. 1570 1571 Constant *Val = PredValue.first; 1572 1573 BasicBlock *DestBB; 1574 if (isa<UndefValue>(Val)) 1575 DestBB = nullptr; 1576 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1577 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1578 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1579 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1580 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1581 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1582 } else { 1583 assert(isa<IndirectBrInst>(BB->getTerminator()) 1584 && "Unexpected terminator"); 1585 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1586 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1587 } 1588 1589 // If we have exactly one destination, remember it for efficiency below. 1590 if (PredToDestList.empty()) { 1591 OnlyDest = DestBB; 1592 OnlyVal = Val; 1593 } else { 1594 if (OnlyDest != DestBB) 1595 OnlyDest = MultipleDestSentinel; 1596 // It possible we have same destination, but different value, e.g. default 1597 // case in switchinst. 1598 if (Val != OnlyVal) 1599 OnlyVal = MultipleVal; 1600 } 1601 1602 // We know where this predecessor is going. 1603 ++PredWithKnownDest; 1604 1605 // If the predecessor ends with an indirect goto, we can't change its 1606 // destination. 1607 if (isa<IndirectBrInst>(Pred->getTerminator())) 1608 continue; 1609 1610 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1611 } 1612 1613 // If all edges were unthreadable, we fail. 1614 if (PredToDestList.empty()) 1615 return false; 1616 1617 // If all the predecessors go to a single known successor, we want to fold, 1618 // not thread. By doing so, we do not need to duplicate the current block and 1619 // also miss potential opportunities in case we dont/cant duplicate. 1620 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1621 if (PredWithKnownDest == 1622 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1623 bool SeenFirstBranchToOnlyDest = false; 1624 std::vector <DominatorTree::UpdateType> Updates; 1625 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1626 for (BasicBlock *SuccBB : successors(BB)) { 1627 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1628 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1629 } else { 1630 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1631 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1632 } 1633 } 1634 1635 // Finally update the terminator. 1636 TerminatorInst *Term = BB->getTerminator(); 1637 BranchInst::Create(OnlyDest, Term); 1638 Term->eraseFromParent(); 1639 DDT->applyUpdates(Updates); 1640 1641 // If the condition is now dead due to the removal of the old terminator, 1642 // erase it. 1643 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1644 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1645 CondInst->eraseFromParent(); 1646 // We can safely replace *some* uses of the CondInst if it has 1647 // exactly one value as returned by LVI. RAUW is incorrect in the 1648 // presence of guards and assumes, that have the `Cond` as the use. This 1649 // is because we use the guards/assume to reason about the `Cond` value 1650 // at the end of block, but RAUW unconditionally replaces all uses 1651 // including the guards/assumes themselves and the uses before the 1652 // guard/assume. 1653 else if (OnlyVal && OnlyVal != MultipleVal && 1654 CondInst->getParent() == BB) 1655 ReplaceFoldableUses(CondInst, OnlyVal); 1656 } 1657 return true; 1658 } 1659 } 1660 1661 // Determine which is the most common successor. If we have many inputs and 1662 // this block is a switch, we want to start by threading the batch that goes 1663 // to the most popular destination first. If we only know about one 1664 // threadable destination (the common case) we can avoid this. 1665 BasicBlock *MostPopularDest = OnlyDest; 1666 1667 if (MostPopularDest == MultipleDestSentinel) 1668 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1669 1670 // Now that we know what the most popular destination is, factor all 1671 // predecessors that will jump to it into a single predecessor. 1672 SmallVector<BasicBlock*, 16> PredsToFactor; 1673 for (const auto &PredToDest : PredToDestList) 1674 if (PredToDest.second == MostPopularDest) { 1675 BasicBlock *Pred = PredToDest.first; 1676 1677 // This predecessor may be a switch or something else that has multiple 1678 // edges to the block. Factor each of these edges by listing them 1679 // according to # occurrences in PredsToFactor. 1680 for (BasicBlock *Succ : successors(Pred)) 1681 if (Succ == BB) 1682 PredsToFactor.push_back(Pred); 1683 } 1684 1685 // If the threadable edges are branching on an undefined value, we get to pick 1686 // the destination that these predecessors should get to. 1687 if (!MostPopularDest) 1688 MostPopularDest = BB->getTerminator()-> 1689 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1690 1691 // Ok, try to thread it! 1692 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1693 } 1694 1695 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1696 /// a PHI node in the current block. See if there are any simplifications we 1697 /// can do based on inputs to the phi node. 1698 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1699 BasicBlock *BB = PN->getParent(); 1700 1701 // TODO: We could make use of this to do it once for blocks with common PHI 1702 // values. 1703 SmallVector<BasicBlock*, 1> PredBBs; 1704 PredBBs.resize(1); 1705 1706 // If any of the predecessor blocks end in an unconditional branch, we can 1707 // *duplicate* the conditional branch into that block in order to further 1708 // encourage jump threading and to eliminate cases where we have branch on a 1709 // phi of an icmp (branch on icmp is much better). 1710 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1711 BasicBlock *PredBB = PN->getIncomingBlock(i); 1712 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1713 if (PredBr->isUnconditional()) { 1714 PredBBs[0] = PredBB; 1715 // Try to duplicate BB into PredBB. 1716 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1717 return true; 1718 } 1719 } 1720 1721 return false; 1722 } 1723 1724 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1725 /// a xor instruction in the current block. See if there are any 1726 /// simplifications we can do based on inputs to the xor. 1727 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1728 BasicBlock *BB = BO->getParent(); 1729 1730 // If either the LHS or RHS of the xor is a constant, don't do this 1731 // optimization. 1732 if (isa<ConstantInt>(BO->getOperand(0)) || 1733 isa<ConstantInt>(BO->getOperand(1))) 1734 return false; 1735 1736 // If the first instruction in BB isn't a phi, we won't be able to infer 1737 // anything special about any particular predecessor. 1738 if (!isa<PHINode>(BB->front())) 1739 return false; 1740 1741 // If this BB is a landing pad, we won't be able to split the edge into it. 1742 if (BB->isEHPad()) 1743 return false; 1744 1745 // If we have a xor as the branch input to this block, and we know that the 1746 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1747 // the condition into the predecessor and fix that value to true, saving some 1748 // logical ops on that path and encouraging other paths to simplify. 1749 // 1750 // This copies something like this: 1751 // 1752 // BB: 1753 // %X = phi i1 [1], [%X'] 1754 // %Y = icmp eq i32 %A, %B 1755 // %Z = xor i1 %X, %Y 1756 // br i1 %Z, ... 1757 // 1758 // Into: 1759 // BB': 1760 // %Y = icmp ne i32 %A, %B 1761 // br i1 %Y, ... 1762 1763 PredValueInfoTy XorOpValues; 1764 bool isLHS = true; 1765 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1766 WantInteger, BO)) { 1767 assert(XorOpValues.empty()); 1768 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1769 WantInteger, BO)) 1770 return false; 1771 isLHS = false; 1772 } 1773 1774 assert(!XorOpValues.empty() && 1775 "ComputeValueKnownInPredecessors returned true with no values"); 1776 1777 // Scan the information to see which is most popular: true or false. The 1778 // predecessors can be of the set true, false, or undef. 1779 unsigned NumTrue = 0, NumFalse = 0; 1780 for (const auto &XorOpValue : XorOpValues) { 1781 if (isa<UndefValue>(XorOpValue.first)) 1782 // Ignore undefs for the count. 1783 continue; 1784 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1785 ++NumFalse; 1786 else 1787 ++NumTrue; 1788 } 1789 1790 // Determine which value to split on, true, false, or undef if neither. 1791 ConstantInt *SplitVal = nullptr; 1792 if (NumTrue > NumFalse) 1793 SplitVal = ConstantInt::getTrue(BB->getContext()); 1794 else if (NumTrue != 0 || NumFalse != 0) 1795 SplitVal = ConstantInt::getFalse(BB->getContext()); 1796 1797 // Collect all of the blocks that this can be folded into so that we can 1798 // factor this once and clone it once. 1799 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1800 for (const auto &XorOpValue : XorOpValues) { 1801 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1802 continue; 1803 1804 BlocksToFoldInto.push_back(XorOpValue.second); 1805 } 1806 1807 // If we inferred a value for all of the predecessors, then duplication won't 1808 // help us. However, we can just replace the LHS or RHS with the constant. 1809 if (BlocksToFoldInto.size() == 1810 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1811 if (!SplitVal) { 1812 // If all preds provide undef, just nuke the xor, because it is undef too. 1813 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1814 BO->eraseFromParent(); 1815 } else if (SplitVal->isZero()) { 1816 // If all preds provide 0, replace the xor with the other input. 1817 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1818 BO->eraseFromParent(); 1819 } else { 1820 // If all preds provide 1, set the computed value to 1. 1821 BO->setOperand(!isLHS, SplitVal); 1822 } 1823 1824 return true; 1825 } 1826 1827 // Try to duplicate BB into PredBB. 1828 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1829 } 1830 1831 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1832 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1833 /// NewPred using the entries from OldPred (suitably mapped). 1834 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1835 BasicBlock *OldPred, 1836 BasicBlock *NewPred, 1837 DenseMap<Instruction*, Value*> &ValueMap) { 1838 for (PHINode &PN : PHIBB->phis()) { 1839 // Ok, we have a PHI node. Figure out what the incoming value was for the 1840 // DestBlock. 1841 Value *IV = PN.getIncomingValueForBlock(OldPred); 1842 1843 // Remap the value if necessary. 1844 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1845 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1846 if (I != ValueMap.end()) 1847 IV = I->second; 1848 } 1849 1850 PN.addIncoming(IV, NewPred); 1851 } 1852 } 1853 1854 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1855 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1856 /// across BB. Transform the IR to reflect this change. 1857 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1858 const SmallVectorImpl<BasicBlock *> &PredBBs, 1859 BasicBlock *SuccBB) { 1860 // If threading to the same block as we come from, we would infinite loop. 1861 if (SuccBB == BB) { 1862 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1863 << "' - would thread to self!\n"); 1864 return false; 1865 } 1866 1867 // If threading this would thread across a loop header, don't thread the edge. 1868 // See the comments above FindLoopHeaders for justifications and caveats. 1869 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1870 DEBUG({ 1871 bool BBIsHeader = LoopHeaders.count(BB); 1872 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1873 dbgs() << " Not threading across " 1874 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1875 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1876 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1877 }); 1878 return false; 1879 } 1880 1881 unsigned JumpThreadCost = 1882 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1883 if (JumpThreadCost > BBDupThreshold) { 1884 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1885 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1886 return false; 1887 } 1888 1889 // And finally, do it! Start by factoring the predecessors if needed. 1890 BasicBlock *PredBB; 1891 if (PredBBs.size() == 1) 1892 PredBB = PredBBs[0]; 1893 else { 1894 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1895 << " common predecessors.\n"); 1896 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1897 } 1898 1899 // And finally, do it! 1900 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1901 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1902 << ", across block:\n " 1903 << *BB << "\n"); 1904 1905 LVI->threadEdge(PredBB, BB, SuccBB); 1906 1907 // We are going to have to map operands from the original BB block to the new 1908 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1909 // account for entry from PredBB. 1910 DenseMap<Instruction*, Value*> ValueMapping; 1911 1912 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1913 BB->getName()+".thread", 1914 BB->getParent(), BB); 1915 NewBB->moveAfter(PredBB); 1916 1917 // Set the block frequency of NewBB. 1918 if (HasProfileData) { 1919 auto NewBBFreq = 1920 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1921 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1922 } 1923 1924 BasicBlock::iterator BI = BB->begin(); 1925 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1926 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1927 1928 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1929 // mapping and using it to remap operands in the cloned instructions. 1930 for (; !isa<TerminatorInst>(BI); ++BI) { 1931 Instruction *New = BI->clone(); 1932 New->setName(BI->getName()); 1933 NewBB->getInstList().push_back(New); 1934 ValueMapping[&*BI] = New; 1935 1936 // Remap operands to patch up intra-block references. 1937 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1938 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1939 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1940 if (I != ValueMapping.end()) 1941 New->setOperand(i, I->second); 1942 } 1943 } 1944 1945 // We didn't copy the terminator from BB over to NewBB, because there is now 1946 // an unconditional jump to SuccBB. Insert the unconditional jump. 1947 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1948 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1949 1950 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1951 // PHI nodes for NewBB now. 1952 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1953 1954 // If there were values defined in BB that are used outside the block, then we 1955 // now have to update all uses of the value to use either the original value, 1956 // the cloned value, or some PHI derived value. This can require arbitrary 1957 // PHI insertion, of which we are prepared to do, clean these up now. 1958 SSAUpdater SSAUpdate; 1959 SmallVector<Use*, 16> UsesToRename; 1960 for (Instruction &I : *BB) { 1961 // Scan all uses of this instruction to see if it is used outside of its 1962 // block, and if so, record them in UsesToRename. 1963 for (Use &U : I.uses()) { 1964 Instruction *User = cast<Instruction>(U.getUser()); 1965 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1966 if (UserPN->getIncomingBlock(U) == BB) 1967 continue; 1968 } else if (User->getParent() == BB) 1969 continue; 1970 1971 UsesToRename.push_back(&U); 1972 } 1973 1974 // If there are no uses outside the block, we're done with this instruction. 1975 if (UsesToRename.empty()) 1976 continue; 1977 1978 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1979 1980 // We found a use of I outside of BB. Rename all uses of I that are outside 1981 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1982 // with the two values we know. 1983 SSAUpdate.Initialize(I.getType(), I.getName()); 1984 SSAUpdate.AddAvailableValue(BB, &I); 1985 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1986 1987 while (!UsesToRename.empty()) 1988 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1989 DEBUG(dbgs() << "\n"); 1990 } 1991 1992 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1993 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1994 // us to simplify any PHI nodes in BB. 1995 TerminatorInst *PredTerm = PredBB->getTerminator(); 1996 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1997 if (PredTerm->getSuccessor(i) == BB) { 1998 BB->removePredecessor(PredBB, true); 1999 PredTerm->setSuccessor(i, NewBB); 2000 } 2001 2002 DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2003 {DominatorTree::Insert, PredBB, NewBB}, 2004 {DominatorTree::Delete, PredBB, BB}}); 2005 2006 // At this point, the IR is fully up to date and consistent. Do a quick scan 2007 // over the new instructions and zap any that are constants or dead. This 2008 // frequently happens because of phi translation. 2009 SimplifyInstructionsInBlock(NewBB, TLI); 2010 2011 // Update the edge weight from BB to SuccBB, which should be less than before. 2012 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2013 2014 // Threaded an edge! 2015 ++NumThreads; 2016 return true; 2017 } 2018 2019 /// Create a new basic block that will be the predecessor of BB and successor of 2020 /// all blocks in Preds. When profile data is available, update the frequency of 2021 /// this new block. 2022 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2023 ArrayRef<BasicBlock *> Preds, 2024 const char *Suffix) { 2025 SmallVector<BasicBlock *, 2> NewBBs; 2026 2027 // Collect the frequencies of all predecessors of BB, which will be used to 2028 // update the edge weight of the result of splitting predecessors. 2029 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2030 if (HasProfileData) 2031 for (auto Pred : Preds) 2032 FreqMap.insert(std::make_pair( 2033 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2034 2035 // In the case when BB is a LandingPad block we create 2 new predecessors 2036 // instead of just one. 2037 if (BB->isLandingPad()) { 2038 std::string NewName = std::string(Suffix) + ".split-lp"; 2039 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2040 } else { 2041 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2042 } 2043 2044 std::vector<DominatorTree::UpdateType> Updates; 2045 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2046 for (auto NewBB : NewBBs) { 2047 BlockFrequency NewBBFreq(0); 2048 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2049 for (auto Pred : predecessors(NewBB)) { 2050 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2051 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2052 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2053 NewBBFreq += FreqMap.lookup(Pred); 2054 } 2055 if (HasProfileData) // Apply the summed frequency to NewBB. 2056 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2057 } 2058 2059 DDT->applyUpdates(Updates); 2060 return NewBBs[0]; 2061 } 2062 2063 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2064 const TerminatorInst *TI = BB->getTerminator(); 2065 assert(TI->getNumSuccessors() > 1 && "not a split"); 2066 2067 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2068 if (!WeightsNode) 2069 return false; 2070 2071 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2072 if (MDName->getString() != "branch_weights") 2073 return false; 2074 2075 // Ensure there are weights for all of the successors. Note that the first 2076 // operand to the metadata node is a name, not a weight. 2077 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2078 } 2079 2080 /// Update the block frequency of BB and branch weight and the metadata on the 2081 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2082 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2083 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2084 BasicBlock *BB, 2085 BasicBlock *NewBB, 2086 BasicBlock *SuccBB) { 2087 if (!HasProfileData) 2088 return; 2089 2090 assert(BFI && BPI && "BFI & BPI should have been created here"); 2091 2092 // As the edge from PredBB to BB is deleted, we have to update the block 2093 // frequency of BB. 2094 auto BBOrigFreq = BFI->getBlockFreq(BB); 2095 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2096 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2097 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2098 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2099 2100 // Collect updated outgoing edges' frequencies from BB and use them to update 2101 // edge probabilities. 2102 SmallVector<uint64_t, 4> BBSuccFreq; 2103 for (BasicBlock *Succ : successors(BB)) { 2104 auto SuccFreq = (Succ == SuccBB) 2105 ? BB2SuccBBFreq - NewBBFreq 2106 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2107 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2108 } 2109 2110 uint64_t MaxBBSuccFreq = 2111 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2112 2113 SmallVector<BranchProbability, 4> BBSuccProbs; 2114 if (MaxBBSuccFreq == 0) 2115 BBSuccProbs.assign(BBSuccFreq.size(), 2116 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2117 else { 2118 for (uint64_t Freq : BBSuccFreq) 2119 BBSuccProbs.push_back( 2120 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2121 // Normalize edge probabilities so that they sum up to one. 2122 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2123 BBSuccProbs.end()); 2124 } 2125 2126 // Update edge probabilities in BPI. 2127 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2128 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2129 2130 // Update the profile metadata as well. 2131 // 2132 // Don't do this if the profile of the transformed blocks was statically 2133 // estimated. (This could occur despite the function having an entry 2134 // frequency in completely cold parts of the CFG.) 2135 // 2136 // In this case we don't want to suggest to subsequent passes that the 2137 // calculated weights are fully consistent. Consider this graph: 2138 // 2139 // check_1 2140 // 50% / | 2141 // eq_1 | 50% 2142 // \ | 2143 // check_2 2144 // 50% / | 2145 // eq_2 | 50% 2146 // \ | 2147 // check_3 2148 // 50% / | 2149 // eq_3 | 50% 2150 // \ | 2151 // 2152 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2153 // the overall probabilities are inconsistent; the total probability that the 2154 // value is either 1, 2 or 3 is 150%. 2155 // 2156 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2157 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2158 // the loop exit edge. Then based solely on static estimation we would assume 2159 // the loop was extremely hot. 2160 // 2161 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2162 // shouldn't make edges extremely likely or unlikely based solely on static 2163 // estimation. 2164 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2165 SmallVector<uint32_t, 4> Weights; 2166 for (auto Prob : BBSuccProbs) 2167 Weights.push_back(Prob.getNumerator()); 2168 2169 auto TI = BB->getTerminator(); 2170 TI->setMetadata( 2171 LLVMContext::MD_prof, 2172 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2173 } 2174 } 2175 2176 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2177 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2178 /// If we can duplicate the contents of BB up into PredBB do so now, this 2179 /// improves the odds that the branch will be on an analyzable instruction like 2180 /// a compare. 2181 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2182 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2183 assert(!PredBBs.empty() && "Can't handle an empty set"); 2184 2185 // If BB is a loop header, then duplicating this block outside the loop would 2186 // cause us to transform this into an irreducible loop, don't do this. 2187 // See the comments above FindLoopHeaders for justifications and caveats. 2188 if (LoopHeaders.count(BB)) { 2189 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2190 << "' into predecessor block '" << PredBBs[0]->getName() 2191 << "' - it might create an irreducible loop!\n"); 2192 return false; 2193 } 2194 2195 unsigned DuplicationCost = 2196 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2197 if (DuplicationCost > BBDupThreshold) { 2198 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2199 << "' - Cost is too high: " << DuplicationCost << "\n"); 2200 return false; 2201 } 2202 2203 // And finally, do it! Start by factoring the predecessors if needed. 2204 std::vector<DominatorTree::UpdateType> Updates; 2205 BasicBlock *PredBB; 2206 if (PredBBs.size() == 1) 2207 PredBB = PredBBs[0]; 2208 else { 2209 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2210 << " common predecessors.\n"); 2211 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2212 } 2213 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2214 2215 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2216 // of PredBB. 2217 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2218 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2219 << DuplicationCost << " block is:" << *BB << "\n"); 2220 2221 // Unless PredBB ends with an unconditional branch, split the edge so that we 2222 // can just clone the bits from BB into the end of the new PredBB. 2223 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2224 2225 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2226 BasicBlock *OldPredBB = PredBB; 2227 PredBB = SplitEdge(OldPredBB, BB); 2228 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2229 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2230 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2231 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2232 } 2233 2234 // We are going to have to map operands from the original BB block into the 2235 // PredBB block. Evaluate PHI nodes in BB. 2236 DenseMap<Instruction*, Value*> ValueMapping; 2237 2238 BasicBlock::iterator BI = BB->begin(); 2239 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2240 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2241 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2242 // mapping and using it to remap operands in the cloned instructions. 2243 for (; BI != BB->end(); ++BI) { 2244 Instruction *New = BI->clone(); 2245 2246 // Remap operands to patch up intra-block references. 2247 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2248 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2249 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2250 if (I != ValueMapping.end()) 2251 New->setOperand(i, I->second); 2252 } 2253 2254 // If this instruction can be simplified after the operands are updated, 2255 // just use the simplified value instead. This frequently happens due to 2256 // phi translation. 2257 if (Value *IV = SimplifyInstruction( 2258 New, 2259 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2260 ValueMapping[&*BI] = IV; 2261 if (!New->mayHaveSideEffects()) { 2262 New->deleteValue(); 2263 New = nullptr; 2264 } 2265 } else { 2266 ValueMapping[&*BI] = New; 2267 } 2268 if (New) { 2269 // Otherwise, insert the new instruction into the block. 2270 New->setName(BI->getName()); 2271 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2272 // Update Dominance from simplified New instruction operands. 2273 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2274 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2275 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2276 } 2277 } 2278 2279 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2280 // add entries to the PHI nodes for branch from PredBB now. 2281 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2282 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2283 ValueMapping); 2284 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2285 ValueMapping); 2286 2287 // If there were values defined in BB that are used outside the block, then we 2288 // now have to update all uses of the value to use either the original value, 2289 // the cloned value, or some PHI derived value. This can require arbitrary 2290 // PHI insertion, of which we are prepared to do, clean these up now. 2291 SSAUpdater SSAUpdate; 2292 SmallVector<Use*, 16> UsesToRename; 2293 for (Instruction &I : *BB) { 2294 // Scan all uses of this instruction to see if it is used outside of its 2295 // block, and if so, record them in UsesToRename. 2296 for (Use &U : I.uses()) { 2297 Instruction *User = cast<Instruction>(U.getUser()); 2298 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2299 if (UserPN->getIncomingBlock(U) == BB) 2300 continue; 2301 } else if (User->getParent() == BB) 2302 continue; 2303 2304 UsesToRename.push_back(&U); 2305 } 2306 2307 // If there are no uses outside the block, we're done with this instruction. 2308 if (UsesToRename.empty()) 2309 continue; 2310 2311 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2312 2313 // We found a use of I outside of BB. Rename all uses of I that are outside 2314 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2315 // with the two values we know. 2316 SSAUpdate.Initialize(I.getType(), I.getName()); 2317 SSAUpdate.AddAvailableValue(BB, &I); 2318 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2319 2320 while (!UsesToRename.empty()) 2321 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2322 DEBUG(dbgs() << "\n"); 2323 } 2324 2325 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2326 // that we nuked. 2327 BB->removePredecessor(PredBB, true); 2328 2329 // Remove the unconditional branch at the end of the PredBB block. 2330 OldPredBranch->eraseFromParent(); 2331 DDT->applyUpdates(Updates); 2332 2333 ++NumDupes; 2334 return true; 2335 } 2336 2337 /// TryToUnfoldSelect - Look for blocks of the form 2338 /// bb1: 2339 /// %a = select 2340 /// br bb2 2341 /// 2342 /// bb2: 2343 /// %p = phi [%a, %bb1] ... 2344 /// %c = icmp %p 2345 /// br i1 %c 2346 /// 2347 /// And expand the select into a branch structure if one of its arms allows %c 2348 /// to be folded. This later enables threading from bb1 over bb2. 2349 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2350 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2351 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2352 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2353 2354 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2355 CondLHS->getParent() != BB) 2356 return false; 2357 2358 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2359 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2360 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2361 2362 // Look if one of the incoming values is a select in the corresponding 2363 // predecessor. 2364 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2365 continue; 2366 2367 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2368 if (!PredTerm || !PredTerm->isUnconditional()) 2369 continue; 2370 2371 // Now check if one of the select values would allow us to constant fold the 2372 // terminator in BB. We don't do the transform if both sides fold, those 2373 // cases will be threaded in any case. 2374 LazyValueInfo::Tristate LHSFolds = 2375 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2376 CondRHS, Pred, BB, CondCmp); 2377 LazyValueInfo::Tristate RHSFolds = 2378 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2379 CondRHS, Pred, BB, CondCmp); 2380 if ((LHSFolds != LazyValueInfo::Unknown || 2381 RHSFolds != LazyValueInfo::Unknown) && 2382 LHSFolds != RHSFolds) { 2383 // Expand the select. 2384 // 2385 // Pred -- 2386 // | v 2387 // | NewBB 2388 // | | 2389 // |----- 2390 // v 2391 // BB 2392 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2393 BB->getParent(), BB); 2394 // Move the unconditional branch to NewBB. 2395 PredTerm->removeFromParent(); 2396 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2397 // Create a conditional branch and update PHI nodes. 2398 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2399 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2400 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2401 // The select is now dead. 2402 SI->eraseFromParent(); 2403 2404 DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2405 {DominatorTree::Insert, Pred, NewBB}}); 2406 // Update any other PHI nodes in BB. 2407 for (BasicBlock::iterator BI = BB->begin(); 2408 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2409 if (Phi != CondLHS) 2410 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2411 return true; 2412 } 2413 } 2414 return false; 2415 } 2416 2417 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2418 /// same BB in the form 2419 /// bb: 2420 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2421 /// %s = select %p, trueval, falseval 2422 /// 2423 /// or 2424 /// 2425 /// bb: 2426 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2427 /// %c = cmp %p, 0 2428 /// %s = select %c, trueval, falseval 2429 /// 2430 /// And expand the select into a branch structure. This later enables 2431 /// jump-threading over bb in this pass. 2432 /// 2433 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2434 /// select if the associated PHI has at least one constant. If the unfolded 2435 /// select is not jump-threaded, it will be folded again in the later 2436 /// optimizations. 2437 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2438 // If threading this would thread across a loop header, don't thread the edge. 2439 // See the comments above FindLoopHeaders for justifications and caveats. 2440 if (LoopHeaders.count(BB)) 2441 return false; 2442 2443 for (BasicBlock::iterator BI = BB->begin(); 2444 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2445 // Look for a Phi having at least one constant incoming value. 2446 if (llvm::all_of(PN->incoming_values(), 2447 [](Value *V) { return !isa<ConstantInt>(V); })) 2448 continue; 2449 2450 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2451 // Check if SI is in BB and use V as condition. 2452 if (SI->getParent() != BB) 2453 return false; 2454 Value *Cond = SI->getCondition(); 2455 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2456 }; 2457 2458 SelectInst *SI = nullptr; 2459 for (Use &U : PN->uses()) { 2460 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2461 // Look for a ICmp in BB that compares PN with a constant and is the 2462 // condition of a Select. 2463 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2464 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2465 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2466 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2467 SI = SelectI; 2468 break; 2469 } 2470 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2471 // Look for a Select in BB that uses PN as condtion. 2472 if (isUnfoldCandidate(SelectI, U.get())) { 2473 SI = SelectI; 2474 break; 2475 } 2476 } 2477 } 2478 2479 if (!SI) 2480 continue; 2481 // Expand the select. 2482 TerminatorInst *Term = 2483 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2484 BasicBlock *SplitBB = SI->getParent(); 2485 BasicBlock *NewBB = Term->getParent(); 2486 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2487 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2488 NewPN->addIncoming(SI->getFalseValue(), BB); 2489 SI->replaceAllUsesWith(NewPN); 2490 SI->eraseFromParent(); 2491 // NewBB and SplitBB are newly created blocks which require insertion. 2492 std::vector<DominatorTree::UpdateType> Updates; 2493 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2494 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2495 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2496 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2497 // BB's successors were moved to SplitBB, update DDT accordingly. 2498 for (auto *Succ : successors(SplitBB)) { 2499 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2500 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2501 } 2502 DDT->applyUpdates(Updates); 2503 return true; 2504 } 2505 return false; 2506 } 2507 2508 /// Try to propagate a guard from the current BB into one of its predecessors 2509 /// in case if another branch of execution implies that the condition of this 2510 /// guard is always true. Currently we only process the simplest case that 2511 /// looks like: 2512 /// 2513 /// Start: 2514 /// %cond = ... 2515 /// br i1 %cond, label %T1, label %F1 2516 /// T1: 2517 /// br label %Merge 2518 /// F1: 2519 /// br label %Merge 2520 /// Merge: 2521 /// %condGuard = ... 2522 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2523 /// 2524 /// And cond either implies condGuard or !condGuard. In this case all the 2525 /// instructions before the guard can be duplicated in both branches, and the 2526 /// guard is then threaded to one of them. 2527 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2528 using namespace PatternMatch; 2529 2530 // We only want to deal with two predecessors. 2531 BasicBlock *Pred1, *Pred2; 2532 auto PI = pred_begin(BB), PE = pred_end(BB); 2533 if (PI == PE) 2534 return false; 2535 Pred1 = *PI++; 2536 if (PI == PE) 2537 return false; 2538 Pred2 = *PI++; 2539 if (PI != PE) 2540 return false; 2541 if (Pred1 == Pred2) 2542 return false; 2543 2544 // Try to thread one of the guards of the block. 2545 // TODO: Look up deeper than to immediate predecessor? 2546 auto *Parent = Pred1->getSinglePredecessor(); 2547 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2548 return false; 2549 2550 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2551 for (auto &I : *BB) 2552 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2553 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2554 return true; 2555 2556 return false; 2557 } 2558 2559 /// Try to propagate the guard from BB which is the lower block of a diamond 2560 /// to one of its branches, in case if diamond's condition implies guard's 2561 /// condition. 2562 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2563 BranchInst *BI) { 2564 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2565 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2566 Value *GuardCond = Guard->getArgOperand(0); 2567 Value *BranchCond = BI->getCondition(); 2568 BasicBlock *TrueDest = BI->getSuccessor(0); 2569 BasicBlock *FalseDest = BI->getSuccessor(1); 2570 2571 auto &DL = BB->getModule()->getDataLayout(); 2572 bool TrueDestIsSafe = false; 2573 bool FalseDestIsSafe = false; 2574 2575 // True dest is safe if BranchCond => GuardCond. 2576 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2577 if (Impl && *Impl) 2578 TrueDestIsSafe = true; 2579 else { 2580 // False dest is safe if !BranchCond => GuardCond. 2581 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2582 if (Impl && *Impl) 2583 FalseDestIsSafe = true; 2584 } 2585 2586 if (!TrueDestIsSafe && !FalseDestIsSafe) 2587 return false; 2588 2589 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2590 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2591 2592 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2593 Instruction *AfterGuard = Guard->getNextNode(); 2594 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2595 if (Cost > BBDupThreshold) 2596 return false; 2597 // Duplicate all instructions before the guard and the guard itself to the 2598 // branch where implication is not proved. 2599 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2600 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2601 assert(GuardedBlock && "Could not create the guarded block?"); 2602 // Duplicate all instructions before the guard in the unguarded branch. 2603 // Since we have successfully duplicated the guarded block and this block 2604 // has fewer instructions, we expect it to succeed. 2605 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2606 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2607 assert(UnguardedBlock && "Could not create the unguarded block?"); 2608 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2609 << GuardedBlock->getName() << "\n"); 2610 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2611 // PredBB and BB. We need to perform two inserts and one delete for each of 2612 // the above calls to update Dominators. 2613 DDT->applyUpdates( 2614 {// Guarded block split. 2615 {DominatorTree::Delete, PredGuardedBlock, BB}, 2616 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2617 {DominatorTree::Insert, GuardedBlock, BB}, 2618 // Unguarded block split. 2619 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2620 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2621 {DominatorTree::Insert, UnguardedBlock, BB}}); 2622 // Some instructions before the guard may still have uses. For them, we need 2623 // to create Phi nodes merging their copies in both guarded and unguarded 2624 // branches. Those instructions that have no uses can be just removed. 2625 SmallVector<Instruction *, 4> ToRemove; 2626 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2627 if (!isa<PHINode>(&*BI)) 2628 ToRemove.push_back(&*BI); 2629 2630 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2631 assert(InsertionPoint && "Empty block?"); 2632 // Substitute with Phis & remove. 2633 for (auto *Inst : reverse(ToRemove)) { 2634 if (!Inst->use_empty()) { 2635 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2636 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2637 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2638 NewPN->insertBefore(InsertionPoint); 2639 Inst->replaceAllUsesWith(NewPN); 2640 } 2641 Inst->eraseFromParent(); 2642 } 2643 return true; 2644 } 2645