1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/SSAUpdater.h" 44 #include <algorithm> 45 #include <memory> 46 using namespace llvm; 47 using namespace jumpthreading; 48 49 #define DEBUG_TYPE "jump-threading" 50 51 STATISTIC(NumThreads, "Number of jumps threaded"); 52 STATISTIC(NumFolds, "Number of terminators folded"); 53 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 54 55 static cl::opt<unsigned> 56 BBDuplicateThreshold("jump-threading-threshold", 57 cl::desc("Max block size to duplicate for jump threading"), 58 cl::init(6), cl::Hidden); 59 60 static cl::opt<unsigned> 61 ImplicationSearchThreshold( 62 "jump-threading-implication-search-threshold", 63 cl::desc("The number of predecessors to search for a stronger " 64 "condition to use to thread over a weaker condition"), 65 cl::init(3), cl::Hidden); 66 67 static cl::opt<bool> PrintLVIAfterJumpThreading( 68 "print-lvi-after-jump-threading", 69 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 70 cl::Hidden); 71 72 namespace { 73 /// This pass performs 'jump threading', which looks at blocks that have 74 /// multiple predecessors and multiple successors. If one or more of the 75 /// predecessors of the block can be proven to always jump to one of the 76 /// successors, we forward the edge from the predecessor to the successor by 77 /// duplicating the contents of this block. 78 /// 79 /// An example of when this can occur is code like this: 80 /// 81 /// if () { ... 82 /// X = 4; 83 /// } 84 /// if (X < 3) { 85 /// 86 /// In this case, the unconditional branch at the end of the first if can be 87 /// revectored to the false side of the second if. 88 /// 89 class JumpThreading : public FunctionPass { 90 JumpThreadingPass Impl; 91 92 public: 93 static char ID; // Pass identification 94 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 95 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 96 } 97 98 bool runOnFunction(Function &F) override; 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 if (PrintLVIAfterJumpThreading) 102 AU.addRequired<DominatorTreeWrapperPass>(); 103 AU.addRequired<AAResultsWrapperPass>(); 104 AU.addRequired<LazyValueInfoWrapperPass>(); 105 AU.addPreserved<GlobalsAAWrapperPass>(); 106 AU.addRequired<TargetLibraryInfoWrapperPass>(); 107 } 108 109 void releaseMemory() override { Impl.releaseMemory(); } 110 }; 111 } 112 113 char JumpThreading::ID = 0; 114 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 115 "Jump Threading", false, false) 116 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 118 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 119 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 120 "Jump Threading", false, false) 121 122 // Public interface to the Jump Threading pass 123 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 124 125 JumpThreadingPass::JumpThreadingPass(int T) { 126 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 127 } 128 129 /// runOnFunction - Top level algorithm. 130 /// 131 bool JumpThreading::runOnFunction(Function &F) { 132 if (skipFunction(F)) 133 return false; 134 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 135 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 136 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 137 std::unique_ptr<BlockFrequencyInfo> BFI; 138 std::unique_ptr<BranchProbabilityInfo> BPI; 139 bool HasProfileData = F.getEntryCount().hasValue(); 140 if (HasProfileData) { 141 LoopInfo LI{DominatorTree(F)}; 142 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 143 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 144 } 145 146 bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI), 147 std::move(BPI)); 148 if (PrintLVIAfterJumpThreading) { 149 dbgs() << "LVI for function '" << F.getName() << "':\n"; 150 LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 151 dbgs()); 152 } 153 return Changed; 154 } 155 156 PreservedAnalyses JumpThreadingPass::run(Function &F, 157 FunctionAnalysisManager &AM) { 158 159 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 160 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 161 auto &AA = AM.getResult<AAManager>(F); 162 163 std::unique_ptr<BlockFrequencyInfo> BFI; 164 std::unique_ptr<BranchProbabilityInfo> BPI; 165 bool HasProfileData = F.getEntryCount().hasValue(); 166 if (HasProfileData) { 167 LoopInfo LI{DominatorTree(F)}; 168 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 169 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 170 } 171 172 bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI), 173 std::move(BPI)); 174 175 if (!Changed) 176 return PreservedAnalyses::all(); 177 PreservedAnalyses PA; 178 PA.preserve<GlobalsAA>(); 179 return PA; 180 } 181 182 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 183 LazyValueInfo *LVI_, AliasAnalysis *AA_, 184 bool HasProfileData_, 185 std::unique_ptr<BlockFrequencyInfo> BFI_, 186 std::unique_ptr<BranchProbabilityInfo> BPI_) { 187 188 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 189 TLI = TLI_; 190 LVI = LVI_; 191 AA = AA_; 192 BFI.reset(); 193 BPI.reset(); 194 // When profile data is available, we need to update edge weights after 195 // successful jump threading, which requires both BPI and BFI being available. 196 HasProfileData = HasProfileData_; 197 auto *GuardDecl = F.getParent()->getFunction( 198 Intrinsic::getName(Intrinsic::experimental_guard)); 199 HasGuards = GuardDecl && !GuardDecl->use_empty(); 200 if (HasProfileData) { 201 BPI = std::move(BPI_); 202 BFI = std::move(BFI_); 203 } 204 205 // Remove unreachable blocks from function as they may result in infinite 206 // loop. We do threading if we found something profitable. Jump threading a 207 // branch can create other opportunities. If these opportunities form a cycle 208 // i.e. if any jump threading is undoing previous threading in the path, then 209 // we will loop forever. We take care of this issue by not jump threading for 210 // back edges. This works for normal cases but not for unreachable blocks as 211 // they may have cycle with no back edge. 212 bool EverChanged = false; 213 EverChanged |= removeUnreachableBlocks(F, LVI); 214 215 FindLoopHeaders(F); 216 217 bool Changed; 218 do { 219 Changed = false; 220 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 221 BasicBlock *BB = &*I; 222 // Thread all of the branches we can over this block. 223 while (ProcessBlock(BB)) 224 Changed = true; 225 226 ++I; 227 228 // If the block is trivially dead, zap it. This eliminates the successor 229 // edges which simplifies the CFG. 230 if (pred_empty(BB) && 231 BB != &BB->getParent()->getEntryBlock()) { 232 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 233 << "' with terminator: " << *BB->getTerminator() << '\n'); 234 LoopHeaders.erase(BB); 235 LVI->eraseBlock(BB); 236 DeleteDeadBlock(BB); 237 Changed = true; 238 continue; 239 } 240 241 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 242 243 // Can't thread an unconditional jump, but if the block is "almost 244 // empty", we can replace uses of it with uses of the successor and make 245 // this dead. 246 // We should not eliminate the loop header or latch either, because 247 // eliminating a loop header or latch might later prevent LoopSimplify 248 // from transforming nested loops into simplified form. We will rely on 249 // later passes in backend to clean up empty blocks. 250 if (BI && BI->isUnconditional() && 251 BB != &BB->getParent()->getEntryBlock() && 252 // If the terminator is the only non-phi instruction, try to nuke it. 253 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) && 254 !LoopHeaders.count(BI->getSuccessor(0))) { 255 // FIXME: It is always conservatively correct to drop the info 256 // for a block even if it doesn't get erased. This isn't totally 257 // awesome, but it allows us to use AssertingVH to prevent nasty 258 // dangling pointer issues within LazyValueInfo. 259 LVI->eraseBlock(BB); 260 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 261 Changed = true; 262 } 263 } 264 EverChanged |= Changed; 265 } while (Changed); 266 267 LoopHeaders.clear(); 268 return EverChanged; 269 } 270 271 // Replace uses of Cond with ToVal when safe to do so. If all uses are 272 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 273 // because we may incorrectly replace uses when guards/assumes are uses of 274 // of `Cond` and we used the guards/assume to reason about the `Cond` value 275 // at the end of block. RAUW unconditionally replaces all uses 276 // including the guards/assumes themselves and the uses before the 277 // guard/assume. 278 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 279 assert(Cond->getType() == ToVal->getType()); 280 auto *BB = Cond->getParent(); 281 // We can unconditionally replace all uses in non-local blocks (i.e. uses 282 // strictly dominated by BB), since LVI information is true from the 283 // terminator of BB. 284 replaceNonLocalUsesWith(Cond, ToVal); 285 for (Instruction &I : reverse(*BB)) { 286 // Reached the Cond whose uses we are trying to replace, so there are no 287 // more uses. 288 if (&I == Cond) 289 break; 290 // We only replace uses in instructions that are guaranteed to reach the end 291 // of BB, where we know Cond is ToVal. 292 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 293 break; 294 I.replaceUsesOfWith(Cond, ToVal); 295 } 296 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 297 Cond->eraseFromParent(); 298 } 299 300 /// Return the cost of duplicating a piece of this block from first non-phi 301 /// and before StopAt instruction to thread across it. Stop scanning the block 302 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 303 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 304 Instruction *StopAt, 305 unsigned Threshold) { 306 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 307 /// Ignore PHI nodes, these will be flattened when duplication happens. 308 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 309 310 // FIXME: THREADING will delete values that are just used to compute the 311 // branch, so they shouldn't count against the duplication cost. 312 313 unsigned Bonus = 0; 314 if (BB->getTerminator() == StopAt) { 315 // Threading through a switch statement is particularly profitable. If this 316 // block ends in a switch, decrease its cost to make it more likely to 317 // happen. 318 if (isa<SwitchInst>(StopAt)) 319 Bonus = 6; 320 321 // The same holds for indirect branches, but slightly more so. 322 if (isa<IndirectBrInst>(StopAt)) 323 Bonus = 8; 324 } 325 326 // Bump the threshold up so the early exit from the loop doesn't skip the 327 // terminator-based Size adjustment at the end. 328 Threshold += Bonus; 329 330 // Sum up the cost of each instruction until we get to the terminator. Don't 331 // include the terminator because the copy won't include it. 332 unsigned Size = 0; 333 for (; &*I != StopAt; ++I) { 334 335 // Stop scanning the block if we've reached the threshold. 336 if (Size > Threshold) 337 return Size; 338 339 // Debugger intrinsics don't incur code size. 340 if (isa<DbgInfoIntrinsic>(I)) continue; 341 342 // If this is a pointer->pointer bitcast, it is free. 343 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 344 continue; 345 346 // Bail out if this instruction gives back a token type, it is not possible 347 // to duplicate it if it is used outside this BB. 348 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 349 return ~0U; 350 351 // All other instructions count for at least one unit. 352 ++Size; 353 354 // Calls are more expensive. If they are non-intrinsic calls, we model them 355 // as having cost of 4. If they are a non-vector intrinsic, we model them 356 // as having cost of 2 total, and if they are a vector intrinsic, we model 357 // them as having cost 1. 358 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 359 if (CI->cannotDuplicate() || CI->isConvergent()) 360 // Blocks with NoDuplicate are modelled as having infinite cost, so they 361 // are never duplicated. 362 return ~0U; 363 else if (!isa<IntrinsicInst>(CI)) 364 Size += 3; 365 else if (!CI->getType()->isVectorTy()) 366 Size += 1; 367 } 368 } 369 370 return Size > Bonus ? Size - Bonus : 0; 371 } 372 373 /// FindLoopHeaders - We do not want jump threading to turn proper loop 374 /// structures into irreducible loops. Doing this breaks up the loop nesting 375 /// hierarchy and pessimizes later transformations. To prevent this from 376 /// happening, we first have to find the loop headers. Here we approximate this 377 /// by finding targets of backedges in the CFG. 378 /// 379 /// Note that there definitely are cases when we want to allow threading of 380 /// edges across a loop header. For example, threading a jump from outside the 381 /// loop (the preheader) to an exit block of the loop is definitely profitable. 382 /// It is also almost always profitable to thread backedges from within the loop 383 /// to exit blocks, and is often profitable to thread backedges to other blocks 384 /// within the loop (forming a nested loop). This simple analysis is not rich 385 /// enough to track all of these properties and keep it up-to-date as the CFG 386 /// mutates, so we don't allow any of these transformations. 387 /// 388 void JumpThreadingPass::FindLoopHeaders(Function &F) { 389 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 390 FindFunctionBackedges(F, Edges); 391 392 for (const auto &Edge : Edges) 393 LoopHeaders.insert(Edge.second); 394 } 395 396 /// getKnownConstant - Helper method to determine if we can thread over a 397 /// terminator with the given value as its condition, and if so what value to 398 /// use for that. What kind of value this is depends on whether we want an 399 /// integer or a block address, but an undef is always accepted. 400 /// Returns null if Val is null or not an appropriate constant. 401 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 402 if (!Val) 403 return nullptr; 404 405 // Undef is "known" enough. 406 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 407 return U; 408 409 if (Preference == WantBlockAddress) 410 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 411 412 return dyn_cast<ConstantInt>(Val); 413 } 414 415 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 416 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 417 /// in any of our predecessors. If so, return the known list of value and pred 418 /// BB in the result vector. 419 /// 420 /// This returns true if there were any known values. 421 /// 422 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 423 Value *V, BasicBlock *BB, PredValueInfo &Result, 424 ConstantPreference Preference, Instruction *CxtI) { 425 // This method walks up use-def chains recursively. Because of this, we could 426 // get into an infinite loop going around loops in the use-def chain. To 427 // prevent this, keep track of what (value, block) pairs we've already visited 428 // and terminate the search if we loop back to them 429 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 430 return false; 431 432 // An RAII help to remove this pair from the recursion set once the recursion 433 // stack pops back out again. 434 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 435 436 // If V is a constant, then it is known in all predecessors. 437 if (Constant *KC = getKnownConstant(V, Preference)) { 438 for (BasicBlock *Pred : predecessors(BB)) 439 Result.push_back(std::make_pair(KC, Pred)); 440 441 return !Result.empty(); 442 } 443 444 // If V is a non-instruction value, or an instruction in a different block, 445 // then it can't be derived from a PHI. 446 Instruction *I = dyn_cast<Instruction>(V); 447 if (!I || I->getParent() != BB) { 448 449 // Okay, if this is a live-in value, see if it has a known value at the end 450 // of any of our predecessors. 451 // 452 // FIXME: This should be an edge property, not a block end property. 453 /// TODO: Per PR2563, we could infer value range information about a 454 /// predecessor based on its terminator. 455 // 456 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 457 // "I" is a non-local compare-with-a-constant instruction. This would be 458 // able to handle value inequalities better, for example if the compare is 459 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 460 // Perhaps getConstantOnEdge should be smart enough to do this? 461 462 for (BasicBlock *P : predecessors(BB)) { 463 // If the value is known by LazyValueInfo to be a constant in a 464 // predecessor, use that information to try to thread this block. 465 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 466 if (Constant *KC = getKnownConstant(PredCst, Preference)) 467 Result.push_back(std::make_pair(KC, P)); 468 } 469 470 return !Result.empty(); 471 } 472 473 /// If I is a PHI node, then we know the incoming values for any constants. 474 if (PHINode *PN = dyn_cast<PHINode>(I)) { 475 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 476 Value *InVal = PN->getIncomingValue(i); 477 if (Constant *KC = getKnownConstant(InVal, Preference)) { 478 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 479 } else { 480 Constant *CI = LVI->getConstantOnEdge(InVal, 481 PN->getIncomingBlock(i), 482 BB, CxtI); 483 if (Constant *KC = getKnownConstant(CI, Preference)) 484 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 485 } 486 } 487 488 return !Result.empty(); 489 } 490 491 // Handle Cast instructions. Only see through Cast when the source operand is 492 // PHI or Cmp and the source type is i1 to save the compilation time. 493 if (CastInst *CI = dyn_cast<CastInst>(I)) { 494 Value *Source = CI->getOperand(0); 495 if (!Source->getType()->isIntegerTy(1)) 496 return false; 497 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 498 return false; 499 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 500 if (Result.empty()) 501 return false; 502 503 // Convert the known values. 504 for (auto &R : Result) 505 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 506 507 return true; 508 } 509 510 PredValueInfoTy LHSVals, RHSVals; 511 512 // Handle some boolean conditions. 513 if (I->getType()->getPrimitiveSizeInBits() == 1) { 514 assert(Preference == WantInteger && "One-bit non-integer type?"); 515 // X | true -> true 516 // X & false -> false 517 if (I->getOpcode() == Instruction::Or || 518 I->getOpcode() == Instruction::And) { 519 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 520 WantInteger, CxtI); 521 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 522 WantInteger, CxtI); 523 524 if (LHSVals.empty() && RHSVals.empty()) 525 return false; 526 527 ConstantInt *InterestingVal; 528 if (I->getOpcode() == Instruction::Or) 529 InterestingVal = ConstantInt::getTrue(I->getContext()); 530 else 531 InterestingVal = ConstantInt::getFalse(I->getContext()); 532 533 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 534 535 // Scan for the sentinel. If we find an undef, force it to the 536 // interesting value: x|undef -> true and x&undef -> false. 537 for (const auto &LHSVal : LHSVals) 538 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 539 Result.emplace_back(InterestingVal, LHSVal.second); 540 LHSKnownBBs.insert(LHSVal.second); 541 } 542 for (const auto &RHSVal : RHSVals) 543 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 544 // If we already inferred a value for this block on the LHS, don't 545 // re-add it. 546 if (!LHSKnownBBs.count(RHSVal.second)) 547 Result.emplace_back(InterestingVal, RHSVal.second); 548 } 549 550 return !Result.empty(); 551 } 552 553 // Handle the NOT form of XOR. 554 if (I->getOpcode() == Instruction::Xor && 555 isa<ConstantInt>(I->getOperand(1)) && 556 cast<ConstantInt>(I->getOperand(1))->isOne()) { 557 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 558 WantInteger, CxtI); 559 if (Result.empty()) 560 return false; 561 562 // Invert the known values. 563 for (auto &R : Result) 564 R.first = ConstantExpr::getNot(R.first); 565 566 return true; 567 } 568 569 // Try to simplify some other binary operator values. 570 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 571 assert(Preference != WantBlockAddress 572 && "A binary operator creating a block address?"); 573 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 574 PredValueInfoTy LHSVals; 575 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 576 WantInteger, CxtI); 577 578 // Try to use constant folding to simplify the binary operator. 579 for (const auto &LHSVal : LHSVals) { 580 Constant *V = LHSVal.first; 581 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 582 583 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 584 Result.push_back(std::make_pair(KC, LHSVal.second)); 585 } 586 } 587 588 return !Result.empty(); 589 } 590 591 // Handle compare with phi operand, where the PHI is defined in this block. 592 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 593 assert(Preference == WantInteger && "Compares only produce integers"); 594 Type *CmpType = Cmp->getType(); 595 Value *CmpLHS = Cmp->getOperand(0); 596 Value *CmpRHS = Cmp->getOperand(1); 597 CmpInst::Predicate Pred = Cmp->getPredicate(); 598 599 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 600 if (PN && PN->getParent() == BB) { 601 const DataLayout &DL = PN->getModule()->getDataLayout(); 602 // We can do this simplification if any comparisons fold to true or false. 603 // See if any do. 604 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 605 BasicBlock *PredBB = PN->getIncomingBlock(i); 606 Value *LHS = PN->getIncomingValue(i); 607 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 608 609 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 610 if (!Res) { 611 if (!isa<Constant>(RHS)) 612 continue; 613 614 LazyValueInfo::Tristate 615 ResT = LVI->getPredicateOnEdge(Pred, LHS, 616 cast<Constant>(RHS), PredBB, BB, 617 CxtI ? CxtI : Cmp); 618 if (ResT == LazyValueInfo::Unknown) 619 continue; 620 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 621 } 622 623 if (Constant *KC = getKnownConstant(Res, WantInteger)) 624 Result.push_back(std::make_pair(KC, PredBB)); 625 } 626 627 return !Result.empty(); 628 } 629 630 // If comparing a live-in value against a constant, see if we know the 631 // live-in value on any predecessors. 632 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 633 Constant *CmpConst = cast<Constant>(CmpRHS); 634 635 if (!isa<Instruction>(CmpLHS) || 636 cast<Instruction>(CmpLHS)->getParent() != BB) { 637 for (BasicBlock *P : predecessors(BB)) { 638 // If the value is known by LazyValueInfo to be a constant in a 639 // predecessor, use that information to try to thread this block. 640 LazyValueInfo::Tristate Res = 641 LVI->getPredicateOnEdge(Pred, CmpLHS, 642 CmpConst, P, BB, CxtI ? CxtI : Cmp); 643 if (Res == LazyValueInfo::Unknown) 644 continue; 645 646 Constant *ResC = ConstantInt::get(CmpType, Res); 647 Result.push_back(std::make_pair(ResC, P)); 648 } 649 650 return !Result.empty(); 651 } 652 653 // InstCombine can fold some forms of constant range checks into 654 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 655 // x as a live-in. 656 { 657 using namespace PatternMatch; 658 Value *AddLHS; 659 ConstantInt *AddConst; 660 if (isa<ConstantInt>(CmpConst) && 661 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 662 if (!isa<Instruction>(AddLHS) || 663 cast<Instruction>(AddLHS)->getParent() != BB) { 664 for (BasicBlock *P : predecessors(BB)) { 665 // If the value is known by LazyValueInfo to be a ConstantRange in 666 // a predecessor, use that information to try to thread this 667 // block. 668 ConstantRange CR = LVI->getConstantRangeOnEdge( 669 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 670 // Propagate the range through the addition. 671 CR = CR.add(AddConst->getValue()); 672 673 // Get the range where the compare returns true. 674 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 675 Pred, cast<ConstantInt>(CmpConst)->getValue()); 676 677 Constant *ResC; 678 if (CmpRange.contains(CR)) 679 ResC = ConstantInt::getTrue(CmpType); 680 else if (CmpRange.inverse().contains(CR)) 681 ResC = ConstantInt::getFalse(CmpType); 682 else 683 continue; 684 685 Result.push_back(std::make_pair(ResC, P)); 686 } 687 688 return !Result.empty(); 689 } 690 } 691 } 692 693 // Try to find a constant value for the LHS of a comparison, 694 // and evaluate it statically if we can. 695 PredValueInfoTy LHSVals; 696 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 697 WantInteger, CxtI); 698 699 for (const auto &LHSVal : LHSVals) { 700 Constant *V = LHSVal.first; 701 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 702 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 703 Result.push_back(std::make_pair(KC, LHSVal.second)); 704 } 705 706 return !Result.empty(); 707 } 708 } 709 710 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 711 // Handle select instructions where at least one operand is a known constant 712 // and we can figure out the condition value for any predecessor block. 713 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 714 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 715 PredValueInfoTy Conds; 716 if ((TrueVal || FalseVal) && 717 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 718 WantInteger, CxtI)) { 719 for (auto &C : Conds) { 720 Constant *Cond = C.first; 721 722 // Figure out what value to use for the condition. 723 bool KnownCond; 724 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 725 // A known boolean. 726 KnownCond = CI->isOne(); 727 } else { 728 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 729 // Either operand will do, so be sure to pick the one that's a known 730 // constant. 731 // FIXME: Do this more cleverly if both values are known constants? 732 KnownCond = (TrueVal != nullptr); 733 } 734 735 // See if the select has a known constant value for this predecessor. 736 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 737 Result.push_back(std::make_pair(Val, C.second)); 738 } 739 740 return !Result.empty(); 741 } 742 } 743 744 // If all else fails, see if LVI can figure out a constant value for us. 745 Constant *CI = LVI->getConstant(V, BB, CxtI); 746 if (Constant *KC = getKnownConstant(CI, Preference)) { 747 for (BasicBlock *Pred : predecessors(BB)) 748 Result.push_back(std::make_pair(KC, Pred)); 749 } 750 751 return !Result.empty(); 752 } 753 754 755 756 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 757 /// in an undefined jump, decide which block is best to revector to. 758 /// 759 /// Since we can pick an arbitrary destination, we pick the successor with the 760 /// fewest predecessors. This should reduce the in-degree of the others. 761 /// 762 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 763 TerminatorInst *BBTerm = BB->getTerminator(); 764 unsigned MinSucc = 0; 765 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 766 // Compute the successor with the minimum number of predecessors. 767 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 768 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 769 TestBB = BBTerm->getSuccessor(i); 770 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 771 if (NumPreds < MinNumPreds) { 772 MinSucc = i; 773 MinNumPreds = NumPreds; 774 } 775 } 776 777 return MinSucc; 778 } 779 780 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 781 if (!BB->hasAddressTaken()) return false; 782 783 // If the block has its address taken, it may be a tree of dead constants 784 // hanging off of it. These shouldn't keep the block alive. 785 BlockAddress *BA = BlockAddress::get(BB); 786 BA->removeDeadConstantUsers(); 787 return !BA->use_empty(); 788 } 789 790 /// ProcessBlock - If there are any predecessors whose control can be threaded 791 /// through to a successor, transform them now. 792 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 793 // If the block is trivially dead, just return and let the caller nuke it. 794 // This simplifies other transformations. 795 if (pred_empty(BB) && 796 BB != &BB->getParent()->getEntryBlock()) 797 return false; 798 799 // If this block has a single predecessor, and if that pred has a single 800 // successor, merge the blocks. This encourages recursive jump threading 801 // because now the condition in this block can be threaded through 802 // predecessors of our predecessor block. 803 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 804 const TerminatorInst *TI = SinglePred->getTerminator(); 805 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 806 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 807 // If SinglePred was a loop header, BB becomes one. 808 if (LoopHeaders.erase(SinglePred)) 809 LoopHeaders.insert(BB); 810 811 LVI->eraseBlock(SinglePred); 812 MergeBasicBlockIntoOnlyPred(BB); 813 814 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 815 // BB code within one basic block `BB`), we need to invalidate the LVI 816 // information associated with BB, because the LVI information need not be 817 // true for all of BB after the merge. For example, 818 // Before the merge, LVI info and code is as follows: 819 // SinglePred: <LVI info1 for %p val> 820 // %y = use of %p 821 // call @exit() // need not transfer execution to successor. 822 // assume(%p) // from this point on %p is true 823 // br label %BB 824 // BB: <LVI info2 for %p val, i.e. %p is true> 825 // %x = use of %p 826 // br label exit 827 // 828 // Note that this LVI info for blocks BB and SinglPred is correct for %p 829 // (info2 and info1 respectively). After the merge and the deletion of the 830 // LVI info1 for SinglePred. We have the following code: 831 // BB: <LVI info2 for %p val> 832 // %y = use of %p 833 // call @exit() 834 // assume(%p) 835 // %x = use of %p <-- LVI info2 is correct from here onwards. 836 // br label exit 837 // LVI info2 for BB is incorrect at the beginning of BB. 838 839 // Invalidate LVI information for BB if the LVI is not provably true for 840 // all of BB. 841 if (any_of(*BB, [](Instruction &I) { 842 return !isGuaranteedToTransferExecutionToSuccessor(&I); 843 })) 844 LVI->eraseBlock(BB); 845 return true; 846 } 847 } 848 849 if (TryToUnfoldSelectInCurrBB(BB)) 850 return true; 851 852 // Look if we can propagate guards to predecessors. 853 if (HasGuards && ProcessGuards(BB)) 854 return true; 855 856 // What kind of constant we're looking for. 857 ConstantPreference Preference = WantInteger; 858 859 // Look to see if the terminator is a conditional branch, switch or indirect 860 // branch, if not we can't thread it. 861 Value *Condition; 862 Instruction *Terminator = BB->getTerminator(); 863 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 864 // Can't thread an unconditional jump. 865 if (BI->isUnconditional()) return false; 866 Condition = BI->getCondition(); 867 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 868 Condition = SI->getCondition(); 869 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 870 // Can't thread indirect branch with no successors. 871 if (IB->getNumSuccessors() == 0) return false; 872 Condition = IB->getAddress()->stripPointerCasts(); 873 Preference = WantBlockAddress; 874 } else { 875 return false; // Must be an invoke. 876 } 877 878 // Run constant folding to see if we can reduce the condition to a simple 879 // constant. 880 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 881 Value *SimpleVal = 882 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 883 if (SimpleVal) { 884 I->replaceAllUsesWith(SimpleVal); 885 if (isInstructionTriviallyDead(I, TLI)) 886 I->eraseFromParent(); 887 Condition = SimpleVal; 888 } 889 } 890 891 // If the terminator is branching on an undef, we can pick any of the 892 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 893 if (isa<UndefValue>(Condition)) { 894 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 895 896 // Fold the branch/switch. 897 TerminatorInst *BBTerm = BB->getTerminator(); 898 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 899 if (i == BestSucc) continue; 900 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 901 } 902 903 DEBUG(dbgs() << " In block '" << BB->getName() 904 << "' folding undef terminator: " << *BBTerm << '\n'); 905 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 906 BBTerm->eraseFromParent(); 907 return true; 908 } 909 910 // If the terminator of this block is branching on a constant, simplify the 911 // terminator to an unconditional branch. This can occur due to threading in 912 // other blocks. 913 if (getKnownConstant(Condition, Preference)) { 914 DEBUG(dbgs() << " In block '" << BB->getName() 915 << "' folding terminator: " << *BB->getTerminator() << '\n'); 916 ++NumFolds; 917 ConstantFoldTerminator(BB, true); 918 return true; 919 } 920 921 Instruction *CondInst = dyn_cast<Instruction>(Condition); 922 923 // All the rest of our checks depend on the condition being an instruction. 924 if (!CondInst) { 925 // FIXME: Unify this with code below. 926 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 927 return true; 928 return false; 929 } 930 931 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 932 // If we're branching on a conditional, LVI might be able to determine 933 // it's value at the branch instruction. We only handle comparisons 934 // against a constant at this time. 935 // TODO: This should be extended to handle switches as well. 936 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 937 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 938 if (CondBr && CondConst) { 939 // We should have returned as soon as we turn a conditional branch to 940 // unconditional. Because its no longer interesting as far as jump 941 // threading is concerned. 942 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 943 944 LazyValueInfo::Tristate Ret = 945 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 946 CondConst, CondBr); 947 if (Ret != LazyValueInfo::Unknown) { 948 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 949 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 950 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 951 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 952 CondBr->eraseFromParent(); 953 if (CondCmp->use_empty()) 954 CondCmp->eraseFromParent(); 955 // We can safely replace *some* uses of the CondInst if it has 956 // exactly one value as returned by LVI. RAUW is incorrect in the 957 // presence of guards and assumes, that have the `Cond` as the use. This 958 // is because we use the guards/assume to reason about the `Cond` value 959 // at the end of block, but RAUW unconditionally replaces all uses 960 // including the guards/assumes themselves and the uses before the 961 // guard/assume. 962 else if (CondCmp->getParent() == BB) { 963 auto *CI = Ret == LazyValueInfo::True ? 964 ConstantInt::getTrue(CondCmp->getType()) : 965 ConstantInt::getFalse(CondCmp->getType()); 966 ReplaceFoldableUses(CondCmp, CI); 967 } 968 return true; 969 } 970 971 // We did not manage to simplify this branch, try to see whether 972 // CondCmp depends on a known phi-select pattern. 973 if (TryToUnfoldSelect(CondCmp, BB)) 974 return true; 975 } 976 } 977 978 // Check for some cases that are worth simplifying. Right now we want to look 979 // for loads that are used by a switch or by the condition for the branch. If 980 // we see one, check to see if it's partially redundant. If so, insert a PHI 981 // which can then be used to thread the values. 982 // 983 Value *SimplifyValue = CondInst; 984 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 985 if (isa<Constant>(CondCmp->getOperand(1))) 986 SimplifyValue = CondCmp->getOperand(0); 987 988 // TODO: There are other places where load PRE would be profitable, such as 989 // more complex comparisons. 990 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 991 if (SimplifyPartiallyRedundantLoad(LI)) 992 return true; 993 994 // Handle a variety of cases where we are branching on something derived from 995 // a PHI node in the current block. If we can prove that any predecessors 996 // compute a predictable value based on a PHI node, thread those predecessors. 997 // 998 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 999 return true; 1000 1001 // If this is an otherwise-unfoldable branch on a phi node in the current 1002 // block, see if we can simplify. 1003 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1004 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1005 return ProcessBranchOnPHI(PN); 1006 1007 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1008 if (CondInst->getOpcode() == Instruction::Xor && 1009 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1010 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1011 1012 // Search for a stronger dominating condition that can be used to simplify a 1013 // conditional branch leaving BB. 1014 if (ProcessImpliedCondition(BB)) 1015 return true; 1016 1017 return false; 1018 } 1019 1020 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1021 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1022 if (!BI || !BI->isConditional()) 1023 return false; 1024 1025 Value *Cond = BI->getCondition(); 1026 BasicBlock *CurrentBB = BB; 1027 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1028 unsigned Iter = 0; 1029 1030 auto &DL = BB->getModule()->getDataLayout(); 1031 1032 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1033 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1034 if (!PBI || !PBI->isConditional()) 1035 return false; 1036 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1037 return false; 1038 1039 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1040 Optional<bool> Implication = 1041 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1042 if (Implication) { 1043 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 1044 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 1045 BI->eraseFromParent(); 1046 return true; 1047 } 1048 CurrentBB = CurrentPred; 1049 CurrentPred = CurrentBB->getSinglePredecessor(); 1050 } 1051 1052 return false; 1053 } 1054 1055 /// Return true if Op is an instruction defined in the given block. 1056 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1057 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1058 if (OpInst->getParent() == BB) 1059 return true; 1060 return false; 1061 } 1062 1063 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 1064 /// load instruction, eliminate it by replacing it with a PHI node. This is an 1065 /// important optimization that encourages jump threading, and needs to be run 1066 /// interlaced with other jump threading tasks. 1067 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 1068 // Don't hack volatile and ordered loads. 1069 if (!LI->isUnordered()) return false; 1070 1071 // If the load is defined in a block with exactly one predecessor, it can't be 1072 // partially redundant. 1073 BasicBlock *LoadBB = LI->getParent(); 1074 if (LoadBB->getSinglePredecessor()) 1075 return false; 1076 1077 // If the load is defined in an EH pad, it can't be partially redundant, 1078 // because the edges between the invoke and the EH pad cannot have other 1079 // instructions between them. 1080 if (LoadBB->isEHPad()) 1081 return false; 1082 1083 Value *LoadedPtr = LI->getOperand(0); 1084 1085 // If the loaded operand is defined in the LoadBB and its not a phi, 1086 // it can't be available in predecessors. 1087 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1088 return false; 1089 1090 // Scan a few instructions up from the load, to see if it is obviously live at 1091 // the entry to its block. 1092 BasicBlock::iterator BBIt(LI); 1093 bool IsLoadCSE; 1094 if (Value *AvailableVal = FindAvailableLoadedValue( 1095 LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1096 // If the value of the load is locally available within the block, just use 1097 // it. This frequently occurs for reg2mem'd allocas. 1098 1099 if (IsLoadCSE) { 1100 LoadInst *NLI = cast<LoadInst>(AvailableVal); 1101 combineMetadataForCSE(NLI, LI); 1102 }; 1103 1104 // If the returned value is the load itself, replace with an undef. This can 1105 // only happen in dead loops. 1106 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 1107 if (AvailableVal->getType() != LI->getType()) 1108 AvailableVal = 1109 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 1110 LI->replaceAllUsesWith(AvailableVal); 1111 LI->eraseFromParent(); 1112 return true; 1113 } 1114 1115 // Otherwise, if we scanned the whole block and got to the top of the block, 1116 // we know the block is locally transparent to the load. If not, something 1117 // might clobber its value. 1118 if (BBIt != LoadBB->begin()) 1119 return false; 1120 1121 // If all of the loads and stores that feed the value have the same AA tags, 1122 // then we can propagate them onto any newly inserted loads. 1123 AAMDNodes AATags; 1124 LI->getAAMetadata(AATags); 1125 1126 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1127 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 1128 AvailablePredsTy AvailablePreds; 1129 BasicBlock *OneUnavailablePred = nullptr; 1130 SmallVector<LoadInst*, 8> CSELoads; 1131 1132 // If we got here, the loaded value is transparent through to the start of the 1133 // block. Check to see if it is available in any of the predecessor blocks. 1134 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1135 // If we already scanned this predecessor, skip it. 1136 if (!PredsScanned.insert(PredBB).second) 1137 continue; 1138 1139 BBIt = PredBB->end(); 1140 unsigned NumScanedInst = 0; 1141 Value *PredAvailable = nullptr; 1142 // NOTE: We don't CSE load that is volatile or anything stronger than 1143 // unordered, that should have been checked when we entered the function. 1144 assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads"); 1145 // If this is a load on a phi pointer, phi-translate it and search 1146 // for available load/store to the pointer in predecessors. 1147 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1148 PredAvailable = FindAvailablePtrLoadStore( 1149 Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1150 AA, &IsLoadCSE, &NumScanedInst); 1151 1152 // If PredBB has a single predecessor, continue scanning through the 1153 // single precessor. 1154 BasicBlock *SinglePredBB = PredBB; 1155 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1156 NumScanedInst < DefMaxInstsToScan) { 1157 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1158 if (SinglePredBB) { 1159 BBIt = SinglePredBB->end(); 1160 PredAvailable = FindAvailablePtrLoadStore( 1161 Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt, 1162 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1163 &NumScanedInst); 1164 } 1165 } 1166 1167 if (!PredAvailable) { 1168 OneUnavailablePred = PredBB; 1169 continue; 1170 } 1171 1172 if (IsLoadCSE) 1173 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1174 1175 // If so, this load is partially redundant. Remember this info so that we 1176 // can create a PHI node. 1177 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1178 } 1179 1180 // If the loaded value isn't available in any predecessor, it isn't partially 1181 // redundant. 1182 if (AvailablePreds.empty()) return false; 1183 1184 // Okay, the loaded value is available in at least one (and maybe all!) 1185 // predecessors. If the value is unavailable in more than one unique 1186 // predecessor, we want to insert a merge block for those common predecessors. 1187 // This ensures that we only have to insert one reload, thus not increasing 1188 // code size. 1189 BasicBlock *UnavailablePred = nullptr; 1190 1191 // If there is exactly one predecessor where the value is unavailable, the 1192 // already computed 'OneUnavailablePred' block is it. If it ends in an 1193 // unconditional branch, we know that it isn't a critical edge. 1194 if (PredsScanned.size() == AvailablePreds.size()+1 && 1195 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1196 UnavailablePred = OneUnavailablePred; 1197 } else if (PredsScanned.size() != AvailablePreds.size()) { 1198 // Otherwise, we had multiple unavailable predecessors or we had a critical 1199 // edge from the one. 1200 SmallVector<BasicBlock*, 8> PredsToSplit; 1201 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1202 1203 for (const auto &AvailablePred : AvailablePreds) 1204 AvailablePredSet.insert(AvailablePred.first); 1205 1206 // Add all the unavailable predecessors to the PredsToSplit list. 1207 for (BasicBlock *P : predecessors(LoadBB)) { 1208 // If the predecessor is an indirect goto, we can't split the edge. 1209 if (isa<IndirectBrInst>(P->getTerminator())) 1210 return false; 1211 1212 if (!AvailablePredSet.count(P)) 1213 PredsToSplit.push_back(P); 1214 } 1215 1216 // Split them out to their own block. 1217 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1218 } 1219 1220 // If the value isn't available in all predecessors, then there will be 1221 // exactly one where it isn't available. Insert a load on that edge and add 1222 // it to the AvailablePreds list. 1223 if (UnavailablePred) { 1224 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1225 "Can't handle critical edge here!"); 1226 LoadInst *NewVal = new LoadInst( 1227 LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1228 LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(), 1229 LI->getSyncScopeID(), UnavailablePred->getTerminator()); 1230 NewVal->setDebugLoc(LI->getDebugLoc()); 1231 if (AATags) 1232 NewVal->setAAMetadata(AATags); 1233 1234 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1235 } 1236 1237 // Now we know that each predecessor of this block has a value in 1238 // AvailablePreds, sort them for efficient access as we're walking the preds. 1239 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1240 1241 // Create a PHI node at the start of the block for the PRE'd load value. 1242 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1243 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1244 &LoadBB->front()); 1245 PN->takeName(LI); 1246 PN->setDebugLoc(LI->getDebugLoc()); 1247 1248 // Insert new entries into the PHI for each predecessor. A single block may 1249 // have multiple entries here. 1250 for (pred_iterator PI = PB; PI != PE; ++PI) { 1251 BasicBlock *P = *PI; 1252 AvailablePredsTy::iterator I = 1253 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1254 std::make_pair(P, (Value*)nullptr)); 1255 1256 assert(I != AvailablePreds.end() && I->first == P && 1257 "Didn't find entry for predecessor!"); 1258 1259 // If we have an available predecessor but it requires casting, insert the 1260 // cast in the predecessor and use the cast. Note that we have to update the 1261 // AvailablePreds vector as we go so that all of the PHI entries for this 1262 // predecessor use the same bitcast. 1263 Value *&PredV = I->second; 1264 if (PredV->getType() != LI->getType()) 1265 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1266 P->getTerminator()); 1267 1268 PN->addIncoming(PredV, I->first); 1269 } 1270 1271 for (LoadInst *PredLI : CSELoads) { 1272 combineMetadataForCSE(PredLI, LI); 1273 } 1274 1275 LI->replaceAllUsesWith(PN); 1276 LI->eraseFromParent(); 1277 1278 return true; 1279 } 1280 1281 /// FindMostPopularDest - The specified list contains multiple possible 1282 /// threadable destinations. Pick the one that occurs the most frequently in 1283 /// the list. 1284 static BasicBlock * 1285 FindMostPopularDest(BasicBlock *BB, 1286 const SmallVectorImpl<std::pair<BasicBlock*, 1287 BasicBlock*> > &PredToDestList) { 1288 assert(!PredToDestList.empty()); 1289 1290 // Determine popularity. If there are multiple possible destinations, we 1291 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1292 // blocks with known and real destinations to threading undef. We'll handle 1293 // them later if interesting. 1294 DenseMap<BasicBlock*, unsigned> DestPopularity; 1295 for (const auto &PredToDest : PredToDestList) 1296 if (PredToDest.second) 1297 DestPopularity[PredToDest.second]++; 1298 1299 // Find the most popular dest. 1300 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1301 BasicBlock *MostPopularDest = DPI->first; 1302 unsigned Popularity = DPI->second; 1303 SmallVector<BasicBlock*, 4> SamePopularity; 1304 1305 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1306 // If the popularity of this entry isn't higher than the popularity we've 1307 // seen so far, ignore it. 1308 if (DPI->second < Popularity) 1309 ; // ignore. 1310 else if (DPI->second == Popularity) { 1311 // If it is the same as what we've seen so far, keep track of it. 1312 SamePopularity.push_back(DPI->first); 1313 } else { 1314 // If it is more popular, remember it. 1315 SamePopularity.clear(); 1316 MostPopularDest = DPI->first; 1317 Popularity = DPI->second; 1318 } 1319 } 1320 1321 // Okay, now we know the most popular destination. If there is more than one 1322 // destination, we need to determine one. This is arbitrary, but we need 1323 // to make a deterministic decision. Pick the first one that appears in the 1324 // successor list. 1325 if (!SamePopularity.empty()) { 1326 SamePopularity.push_back(MostPopularDest); 1327 TerminatorInst *TI = BB->getTerminator(); 1328 for (unsigned i = 0; ; ++i) { 1329 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1330 1331 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1332 continue; 1333 1334 MostPopularDest = TI->getSuccessor(i); 1335 break; 1336 } 1337 } 1338 1339 // Okay, we have finally picked the most popular destination. 1340 return MostPopularDest; 1341 } 1342 1343 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1344 ConstantPreference Preference, 1345 Instruction *CxtI) { 1346 // If threading this would thread across a loop header, don't even try to 1347 // thread the edge. 1348 if (LoopHeaders.count(BB)) 1349 return false; 1350 1351 PredValueInfoTy PredValues; 1352 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1353 return false; 1354 1355 assert(!PredValues.empty() && 1356 "ComputeValueKnownInPredecessors returned true with no values"); 1357 1358 DEBUG(dbgs() << "IN BB: " << *BB; 1359 for (const auto &PredValue : PredValues) { 1360 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1361 << *PredValue.first 1362 << " for pred '" << PredValue.second->getName() << "'.\n"; 1363 }); 1364 1365 // Decide what we want to thread through. Convert our list of known values to 1366 // a list of known destinations for each pred. This also discards duplicate 1367 // predecessors and keeps track of the undefined inputs (which are represented 1368 // as a null dest in the PredToDestList). 1369 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1370 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1371 1372 BasicBlock *OnlyDest = nullptr; 1373 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1374 Constant *OnlyVal = nullptr; 1375 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1376 1377 unsigned PredWithKnownDest = 0; 1378 for (const auto &PredValue : PredValues) { 1379 BasicBlock *Pred = PredValue.second; 1380 if (!SeenPreds.insert(Pred).second) 1381 continue; // Duplicate predecessor entry. 1382 1383 Constant *Val = PredValue.first; 1384 1385 BasicBlock *DestBB; 1386 if (isa<UndefValue>(Val)) 1387 DestBB = nullptr; 1388 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1389 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1390 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1391 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1392 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1393 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1394 } else { 1395 assert(isa<IndirectBrInst>(BB->getTerminator()) 1396 && "Unexpected terminator"); 1397 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1398 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1399 } 1400 1401 // If we have exactly one destination, remember it for efficiency below. 1402 if (PredToDestList.empty()) { 1403 OnlyDest = DestBB; 1404 OnlyVal = Val; 1405 } else { 1406 if (OnlyDest != DestBB) 1407 OnlyDest = MultipleDestSentinel; 1408 // It possible we have same destination, but different value, e.g. default 1409 // case in switchinst. 1410 if (Val != OnlyVal) 1411 OnlyVal = MultipleVal; 1412 } 1413 1414 // We know where this predecessor is going. 1415 ++PredWithKnownDest; 1416 1417 // If the predecessor ends with an indirect goto, we can't change its 1418 // destination. 1419 if (isa<IndirectBrInst>(Pred->getTerminator())) 1420 continue; 1421 1422 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1423 } 1424 1425 // If all edges were unthreadable, we fail. 1426 if (PredToDestList.empty()) 1427 return false; 1428 1429 // If all the predecessors go to a single known successor, we want to fold, 1430 // not thread. By doing so, we do not need to duplicate the current block and 1431 // also miss potential opportunities in case we dont/cant duplicate. 1432 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1433 if (PredWithKnownDest == 1434 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1435 bool SeenFirstBranchToOnlyDest = false; 1436 for (BasicBlock *SuccBB : successors(BB)) { 1437 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) 1438 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1439 else 1440 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1441 } 1442 1443 // Finally update the terminator. 1444 TerminatorInst *Term = BB->getTerminator(); 1445 BranchInst::Create(OnlyDest, Term); 1446 Term->eraseFromParent(); 1447 1448 // If the condition is now dead due to the removal of the old terminator, 1449 // erase it. 1450 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1451 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1452 CondInst->eraseFromParent(); 1453 // We can safely replace *some* uses of the CondInst if it has 1454 // exactly one value as returned by LVI. RAUW is incorrect in the 1455 // presence of guards and assumes, that have the `Cond` as the use. This 1456 // is because we use the guards/assume to reason about the `Cond` value 1457 // at the end of block, but RAUW unconditionally replaces all uses 1458 // including the guards/assumes themselves and the uses before the 1459 // guard/assume. 1460 else if (OnlyVal && OnlyVal != MultipleVal && 1461 CondInst->getParent() == BB) 1462 ReplaceFoldableUses(CondInst, OnlyVal); 1463 } 1464 return true; 1465 } 1466 } 1467 1468 // Determine which is the most common successor. If we have many inputs and 1469 // this block is a switch, we want to start by threading the batch that goes 1470 // to the most popular destination first. If we only know about one 1471 // threadable destination (the common case) we can avoid this. 1472 BasicBlock *MostPopularDest = OnlyDest; 1473 1474 if (MostPopularDest == MultipleDestSentinel) 1475 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1476 1477 // Now that we know what the most popular destination is, factor all 1478 // predecessors that will jump to it into a single predecessor. 1479 SmallVector<BasicBlock*, 16> PredsToFactor; 1480 for (const auto &PredToDest : PredToDestList) 1481 if (PredToDest.second == MostPopularDest) { 1482 BasicBlock *Pred = PredToDest.first; 1483 1484 // This predecessor may be a switch or something else that has multiple 1485 // edges to the block. Factor each of these edges by listing them 1486 // according to # occurrences in PredsToFactor. 1487 for (BasicBlock *Succ : successors(Pred)) 1488 if (Succ == BB) 1489 PredsToFactor.push_back(Pred); 1490 } 1491 1492 // If the threadable edges are branching on an undefined value, we get to pick 1493 // the destination that these predecessors should get to. 1494 if (!MostPopularDest) 1495 MostPopularDest = BB->getTerminator()-> 1496 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1497 1498 // Ok, try to thread it! 1499 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1500 } 1501 1502 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1503 /// a PHI node in the current block. See if there are any simplifications we 1504 /// can do based on inputs to the phi node. 1505 /// 1506 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1507 BasicBlock *BB = PN->getParent(); 1508 1509 // TODO: We could make use of this to do it once for blocks with common PHI 1510 // values. 1511 SmallVector<BasicBlock*, 1> PredBBs; 1512 PredBBs.resize(1); 1513 1514 // If any of the predecessor blocks end in an unconditional branch, we can 1515 // *duplicate* the conditional branch into that block in order to further 1516 // encourage jump threading and to eliminate cases where we have branch on a 1517 // phi of an icmp (branch on icmp is much better). 1518 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1519 BasicBlock *PredBB = PN->getIncomingBlock(i); 1520 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1521 if (PredBr->isUnconditional()) { 1522 PredBBs[0] = PredBB; 1523 // Try to duplicate BB into PredBB. 1524 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1525 return true; 1526 } 1527 } 1528 1529 return false; 1530 } 1531 1532 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1533 /// a xor instruction in the current block. See if there are any 1534 /// simplifications we can do based on inputs to the xor. 1535 /// 1536 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1537 BasicBlock *BB = BO->getParent(); 1538 1539 // If either the LHS or RHS of the xor is a constant, don't do this 1540 // optimization. 1541 if (isa<ConstantInt>(BO->getOperand(0)) || 1542 isa<ConstantInt>(BO->getOperand(1))) 1543 return false; 1544 1545 // If the first instruction in BB isn't a phi, we won't be able to infer 1546 // anything special about any particular predecessor. 1547 if (!isa<PHINode>(BB->front())) 1548 return false; 1549 1550 // If this BB is a landing pad, we won't be able to split the edge into it. 1551 if (BB->isEHPad()) 1552 return false; 1553 1554 // If we have a xor as the branch input to this block, and we know that the 1555 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1556 // the condition into the predecessor and fix that value to true, saving some 1557 // logical ops on that path and encouraging other paths to simplify. 1558 // 1559 // This copies something like this: 1560 // 1561 // BB: 1562 // %X = phi i1 [1], [%X'] 1563 // %Y = icmp eq i32 %A, %B 1564 // %Z = xor i1 %X, %Y 1565 // br i1 %Z, ... 1566 // 1567 // Into: 1568 // BB': 1569 // %Y = icmp ne i32 %A, %B 1570 // br i1 %Y, ... 1571 1572 PredValueInfoTy XorOpValues; 1573 bool isLHS = true; 1574 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1575 WantInteger, BO)) { 1576 assert(XorOpValues.empty()); 1577 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1578 WantInteger, BO)) 1579 return false; 1580 isLHS = false; 1581 } 1582 1583 assert(!XorOpValues.empty() && 1584 "ComputeValueKnownInPredecessors returned true with no values"); 1585 1586 // Scan the information to see which is most popular: true or false. The 1587 // predecessors can be of the set true, false, or undef. 1588 unsigned NumTrue = 0, NumFalse = 0; 1589 for (const auto &XorOpValue : XorOpValues) { 1590 if (isa<UndefValue>(XorOpValue.first)) 1591 // Ignore undefs for the count. 1592 continue; 1593 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1594 ++NumFalse; 1595 else 1596 ++NumTrue; 1597 } 1598 1599 // Determine which value to split on, true, false, or undef if neither. 1600 ConstantInt *SplitVal = nullptr; 1601 if (NumTrue > NumFalse) 1602 SplitVal = ConstantInt::getTrue(BB->getContext()); 1603 else if (NumTrue != 0 || NumFalse != 0) 1604 SplitVal = ConstantInt::getFalse(BB->getContext()); 1605 1606 // Collect all of the blocks that this can be folded into so that we can 1607 // factor this once and clone it once. 1608 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1609 for (const auto &XorOpValue : XorOpValues) { 1610 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1611 continue; 1612 1613 BlocksToFoldInto.push_back(XorOpValue.second); 1614 } 1615 1616 // If we inferred a value for all of the predecessors, then duplication won't 1617 // help us. However, we can just replace the LHS or RHS with the constant. 1618 if (BlocksToFoldInto.size() == 1619 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1620 if (!SplitVal) { 1621 // If all preds provide undef, just nuke the xor, because it is undef too. 1622 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1623 BO->eraseFromParent(); 1624 } else if (SplitVal->isZero()) { 1625 // If all preds provide 0, replace the xor with the other input. 1626 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1627 BO->eraseFromParent(); 1628 } else { 1629 // If all preds provide 1, set the computed value to 1. 1630 BO->setOperand(!isLHS, SplitVal); 1631 } 1632 1633 return true; 1634 } 1635 1636 // Try to duplicate BB into PredBB. 1637 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1638 } 1639 1640 1641 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1642 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1643 /// NewPred using the entries from OldPred (suitably mapped). 1644 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1645 BasicBlock *OldPred, 1646 BasicBlock *NewPred, 1647 DenseMap<Instruction*, Value*> &ValueMap) { 1648 for (BasicBlock::iterator PNI = PHIBB->begin(); 1649 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1650 // Ok, we have a PHI node. Figure out what the incoming value was for the 1651 // DestBlock. 1652 Value *IV = PN->getIncomingValueForBlock(OldPred); 1653 1654 // Remap the value if necessary. 1655 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1656 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1657 if (I != ValueMap.end()) 1658 IV = I->second; 1659 } 1660 1661 PN->addIncoming(IV, NewPred); 1662 } 1663 } 1664 1665 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1666 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1667 /// across BB. Transform the IR to reflect this change. 1668 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1669 const SmallVectorImpl<BasicBlock *> &PredBBs, 1670 BasicBlock *SuccBB) { 1671 // If threading to the same block as we come from, we would infinite loop. 1672 if (SuccBB == BB) { 1673 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1674 << "' - would thread to self!\n"); 1675 return false; 1676 } 1677 1678 // If threading this would thread across a loop header, don't thread the edge. 1679 // See the comments above FindLoopHeaders for justifications and caveats. 1680 if (LoopHeaders.count(BB)) { 1681 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1682 << "' to dest BB '" << SuccBB->getName() 1683 << "' - it might create an irreducible loop!\n"); 1684 return false; 1685 } 1686 1687 unsigned JumpThreadCost = 1688 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1689 if (JumpThreadCost > BBDupThreshold) { 1690 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1691 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1692 return false; 1693 } 1694 1695 // And finally, do it! Start by factoring the predecessors if needed. 1696 BasicBlock *PredBB; 1697 if (PredBBs.size() == 1) 1698 PredBB = PredBBs[0]; 1699 else { 1700 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1701 << " common predecessors.\n"); 1702 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1703 } 1704 1705 // And finally, do it! 1706 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1707 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1708 << ", across block:\n " 1709 << *BB << "\n"); 1710 1711 LVI->threadEdge(PredBB, BB, SuccBB); 1712 1713 // We are going to have to map operands from the original BB block to the new 1714 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1715 // account for entry from PredBB. 1716 DenseMap<Instruction*, Value*> ValueMapping; 1717 1718 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1719 BB->getName()+".thread", 1720 BB->getParent(), BB); 1721 NewBB->moveAfter(PredBB); 1722 1723 // Set the block frequency of NewBB. 1724 if (HasProfileData) { 1725 auto NewBBFreq = 1726 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1727 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1728 } 1729 1730 BasicBlock::iterator BI = BB->begin(); 1731 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1732 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1733 1734 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1735 // mapping and using it to remap operands in the cloned instructions. 1736 for (; !isa<TerminatorInst>(BI); ++BI) { 1737 Instruction *New = BI->clone(); 1738 New->setName(BI->getName()); 1739 NewBB->getInstList().push_back(New); 1740 ValueMapping[&*BI] = New; 1741 1742 // Remap operands to patch up intra-block references. 1743 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1744 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1745 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1746 if (I != ValueMapping.end()) 1747 New->setOperand(i, I->second); 1748 } 1749 } 1750 1751 // We didn't copy the terminator from BB over to NewBB, because there is now 1752 // an unconditional jump to SuccBB. Insert the unconditional jump. 1753 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1754 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1755 1756 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1757 // PHI nodes for NewBB now. 1758 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1759 1760 // If there were values defined in BB that are used outside the block, then we 1761 // now have to update all uses of the value to use either the original value, 1762 // the cloned value, or some PHI derived value. This can require arbitrary 1763 // PHI insertion, of which we are prepared to do, clean these up now. 1764 SSAUpdater SSAUpdate; 1765 SmallVector<Use*, 16> UsesToRename; 1766 for (Instruction &I : *BB) { 1767 // Scan all uses of this instruction to see if it is used outside of its 1768 // block, and if so, record them in UsesToRename. 1769 for (Use &U : I.uses()) { 1770 Instruction *User = cast<Instruction>(U.getUser()); 1771 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1772 if (UserPN->getIncomingBlock(U) == BB) 1773 continue; 1774 } else if (User->getParent() == BB) 1775 continue; 1776 1777 UsesToRename.push_back(&U); 1778 } 1779 1780 // If there are no uses outside the block, we're done with this instruction. 1781 if (UsesToRename.empty()) 1782 continue; 1783 1784 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1785 1786 // We found a use of I outside of BB. Rename all uses of I that are outside 1787 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1788 // with the two values we know. 1789 SSAUpdate.Initialize(I.getType(), I.getName()); 1790 SSAUpdate.AddAvailableValue(BB, &I); 1791 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1792 1793 while (!UsesToRename.empty()) 1794 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1795 DEBUG(dbgs() << "\n"); 1796 } 1797 1798 1799 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1800 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1801 // us to simplify any PHI nodes in BB. 1802 TerminatorInst *PredTerm = PredBB->getTerminator(); 1803 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1804 if (PredTerm->getSuccessor(i) == BB) { 1805 BB->removePredecessor(PredBB, true); 1806 PredTerm->setSuccessor(i, NewBB); 1807 } 1808 1809 // At this point, the IR is fully up to date and consistent. Do a quick scan 1810 // over the new instructions and zap any that are constants or dead. This 1811 // frequently happens because of phi translation. 1812 SimplifyInstructionsInBlock(NewBB, TLI); 1813 1814 // Update the edge weight from BB to SuccBB, which should be less than before. 1815 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1816 1817 // Threaded an edge! 1818 ++NumThreads; 1819 return true; 1820 } 1821 1822 /// Create a new basic block that will be the predecessor of BB and successor of 1823 /// all blocks in Preds. When profile data is available, update the frequency of 1824 /// this new block. 1825 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1826 ArrayRef<BasicBlock *> Preds, 1827 const char *Suffix) { 1828 // Collect the frequencies of all predecessors of BB, which will be used to 1829 // update the edge weight on BB->SuccBB. 1830 BlockFrequency PredBBFreq(0); 1831 if (HasProfileData) 1832 for (auto Pred : Preds) 1833 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1834 1835 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1836 1837 // Set the block frequency of the newly created PredBB, which is the sum of 1838 // frequencies of Preds. 1839 if (HasProfileData) 1840 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1841 return PredBB; 1842 } 1843 1844 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1845 const TerminatorInst *TI = BB->getTerminator(); 1846 assert(TI->getNumSuccessors() > 1 && "not a split"); 1847 1848 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1849 if (!WeightsNode) 1850 return false; 1851 1852 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1853 if (MDName->getString() != "branch_weights") 1854 return false; 1855 1856 // Ensure there are weights for all of the successors. Note that the first 1857 // operand to the metadata node is a name, not a weight. 1858 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 1859 } 1860 1861 /// Update the block frequency of BB and branch weight and the metadata on the 1862 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1863 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1864 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1865 BasicBlock *BB, 1866 BasicBlock *NewBB, 1867 BasicBlock *SuccBB) { 1868 if (!HasProfileData) 1869 return; 1870 1871 assert(BFI && BPI && "BFI & BPI should have been created here"); 1872 1873 // As the edge from PredBB to BB is deleted, we have to update the block 1874 // frequency of BB. 1875 auto BBOrigFreq = BFI->getBlockFreq(BB); 1876 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1877 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1878 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1879 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1880 1881 // Collect updated outgoing edges' frequencies from BB and use them to update 1882 // edge probabilities. 1883 SmallVector<uint64_t, 4> BBSuccFreq; 1884 for (BasicBlock *Succ : successors(BB)) { 1885 auto SuccFreq = (Succ == SuccBB) 1886 ? BB2SuccBBFreq - NewBBFreq 1887 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1888 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1889 } 1890 1891 uint64_t MaxBBSuccFreq = 1892 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1893 1894 SmallVector<BranchProbability, 4> BBSuccProbs; 1895 if (MaxBBSuccFreq == 0) 1896 BBSuccProbs.assign(BBSuccFreq.size(), 1897 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1898 else { 1899 for (uint64_t Freq : BBSuccFreq) 1900 BBSuccProbs.push_back( 1901 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1902 // Normalize edge probabilities so that they sum up to one. 1903 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1904 BBSuccProbs.end()); 1905 } 1906 1907 // Update edge probabilities in BPI. 1908 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1909 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1910 1911 // Update the profile metadata as well. 1912 // 1913 // Don't do this if the profile of the transformed blocks was statically 1914 // estimated. (This could occur despite the function having an entry 1915 // frequency in completely cold parts of the CFG.) 1916 // 1917 // In this case we don't want to suggest to subsequent passes that the 1918 // calculated weights are fully consistent. Consider this graph: 1919 // 1920 // check_1 1921 // 50% / | 1922 // eq_1 | 50% 1923 // \ | 1924 // check_2 1925 // 50% / | 1926 // eq_2 | 50% 1927 // \ | 1928 // check_3 1929 // 50% / | 1930 // eq_3 | 50% 1931 // \ | 1932 // 1933 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 1934 // the overall probabilities are inconsistent; the total probability that the 1935 // value is either 1, 2 or 3 is 150%. 1936 // 1937 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 1938 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 1939 // the loop exit edge. Then based solely on static estimation we would assume 1940 // the loop was extremely hot. 1941 // 1942 // FIXME this locally as well so that BPI and BFI are consistent as well. We 1943 // shouldn't make edges extremely likely or unlikely based solely on static 1944 // estimation. 1945 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 1946 SmallVector<uint32_t, 4> Weights; 1947 for (auto Prob : BBSuccProbs) 1948 Weights.push_back(Prob.getNumerator()); 1949 1950 auto TI = BB->getTerminator(); 1951 TI->setMetadata( 1952 LLVMContext::MD_prof, 1953 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1954 } 1955 } 1956 1957 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1958 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1959 /// If we can duplicate the contents of BB up into PredBB do so now, this 1960 /// improves the odds that the branch will be on an analyzable instruction like 1961 /// a compare. 1962 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1963 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1964 assert(!PredBBs.empty() && "Can't handle an empty set"); 1965 1966 // If BB is a loop header, then duplicating this block outside the loop would 1967 // cause us to transform this into an irreducible loop, don't do this. 1968 // See the comments above FindLoopHeaders for justifications and caveats. 1969 if (LoopHeaders.count(BB)) { 1970 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1971 << "' into predecessor block '" << PredBBs[0]->getName() 1972 << "' - it might create an irreducible loop!\n"); 1973 return false; 1974 } 1975 1976 unsigned DuplicationCost = 1977 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1978 if (DuplicationCost > BBDupThreshold) { 1979 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1980 << "' - Cost is too high: " << DuplicationCost << "\n"); 1981 return false; 1982 } 1983 1984 // And finally, do it! Start by factoring the predecessors if needed. 1985 BasicBlock *PredBB; 1986 if (PredBBs.size() == 1) 1987 PredBB = PredBBs[0]; 1988 else { 1989 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1990 << " common predecessors.\n"); 1991 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1992 } 1993 1994 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1995 // of PredBB. 1996 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1997 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1998 << DuplicationCost << " block is:" << *BB << "\n"); 1999 2000 // Unless PredBB ends with an unconditional branch, split the edge so that we 2001 // can just clone the bits from BB into the end of the new PredBB. 2002 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2003 2004 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2005 PredBB = SplitEdge(PredBB, BB); 2006 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2007 } 2008 2009 // We are going to have to map operands from the original BB block into the 2010 // PredBB block. Evaluate PHI nodes in BB. 2011 DenseMap<Instruction*, Value*> ValueMapping; 2012 2013 BasicBlock::iterator BI = BB->begin(); 2014 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2015 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2016 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2017 // mapping and using it to remap operands in the cloned instructions. 2018 for (; BI != BB->end(); ++BI) { 2019 Instruction *New = BI->clone(); 2020 2021 // Remap operands to patch up intra-block references. 2022 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2023 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2024 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2025 if (I != ValueMapping.end()) 2026 New->setOperand(i, I->second); 2027 } 2028 2029 // If this instruction can be simplified after the operands are updated, 2030 // just use the simplified value instead. This frequently happens due to 2031 // phi translation. 2032 if (Value *IV = SimplifyInstruction( 2033 New, 2034 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2035 ValueMapping[&*BI] = IV; 2036 if (!New->mayHaveSideEffects()) { 2037 New->deleteValue(); 2038 New = nullptr; 2039 } 2040 } else { 2041 ValueMapping[&*BI] = New; 2042 } 2043 if (New) { 2044 // Otherwise, insert the new instruction into the block. 2045 New->setName(BI->getName()); 2046 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2047 } 2048 } 2049 2050 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2051 // add entries to the PHI nodes for branch from PredBB now. 2052 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2053 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2054 ValueMapping); 2055 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2056 ValueMapping); 2057 2058 // If there were values defined in BB that are used outside the block, then we 2059 // now have to update all uses of the value to use either the original value, 2060 // the cloned value, or some PHI derived value. This can require arbitrary 2061 // PHI insertion, of which we are prepared to do, clean these up now. 2062 SSAUpdater SSAUpdate; 2063 SmallVector<Use*, 16> UsesToRename; 2064 for (Instruction &I : *BB) { 2065 // Scan all uses of this instruction to see if it is used outside of its 2066 // block, and if so, record them in UsesToRename. 2067 for (Use &U : I.uses()) { 2068 Instruction *User = cast<Instruction>(U.getUser()); 2069 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2070 if (UserPN->getIncomingBlock(U) == BB) 2071 continue; 2072 } else if (User->getParent() == BB) 2073 continue; 2074 2075 UsesToRename.push_back(&U); 2076 } 2077 2078 // If there are no uses outside the block, we're done with this instruction. 2079 if (UsesToRename.empty()) 2080 continue; 2081 2082 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2083 2084 // We found a use of I outside of BB. Rename all uses of I that are outside 2085 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2086 // with the two values we know. 2087 SSAUpdate.Initialize(I.getType(), I.getName()); 2088 SSAUpdate.AddAvailableValue(BB, &I); 2089 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2090 2091 while (!UsesToRename.empty()) 2092 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2093 DEBUG(dbgs() << "\n"); 2094 } 2095 2096 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2097 // that we nuked. 2098 BB->removePredecessor(PredBB, true); 2099 2100 // Remove the unconditional branch at the end of the PredBB block. 2101 OldPredBranch->eraseFromParent(); 2102 2103 ++NumDupes; 2104 return true; 2105 } 2106 2107 /// TryToUnfoldSelect - Look for blocks of the form 2108 /// bb1: 2109 /// %a = select 2110 /// br bb2 2111 /// 2112 /// bb2: 2113 /// %p = phi [%a, %bb1] ... 2114 /// %c = icmp %p 2115 /// br i1 %c 2116 /// 2117 /// And expand the select into a branch structure if one of its arms allows %c 2118 /// to be folded. This later enables threading from bb1 over bb2. 2119 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2120 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2121 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2122 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2123 2124 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2125 CondLHS->getParent() != BB) 2126 return false; 2127 2128 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2129 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2130 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2131 2132 // Look if one of the incoming values is a select in the corresponding 2133 // predecessor. 2134 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2135 continue; 2136 2137 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2138 if (!PredTerm || !PredTerm->isUnconditional()) 2139 continue; 2140 2141 // Now check if one of the select values would allow us to constant fold the 2142 // terminator in BB. We don't do the transform if both sides fold, those 2143 // cases will be threaded in any case. 2144 LazyValueInfo::Tristate LHSFolds = 2145 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2146 CondRHS, Pred, BB, CondCmp); 2147 LazyValueInfo::Tristate RHSFolds = 2148 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2149 CondRHS, Pred, BB, CondCmp); 2150 if ((LHSFolds != LazyValueInfo::Unknown || 2151 RHSFolds != LazyValueInfo::Unknown) && 2152 LHSFolds != RHSFolds) { 2153 // Expand the select. 2154 // 2155 // Pred -- 2156 // | v 2157 // | NewBB 2158 // | | 2159 // |----- 2160 // v 2161 // BB 2162 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2163 BB->getParent(), BB); 2164 // Move the unconditional branch to NewBB. 2165 PredTerm->removeFromParent(); 2166 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2167 // Create a conditional branch and update PHI nodes. 2168 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2169 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2170 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2171 // The select is now dead. 2172 SI->eraseFromParent(); 2173 2174 // Update any other PHI nodes in BB. 2175 for (BasicBlock::iterator BI = BB->begin(); 2176 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2177 if (Phi != CondLHS) 2178 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2179 return true; 2180 } 2181 } 2182 return false; 2183 } 2184 2185 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2186 /// same BB in the form 2187 /// bb: 2188 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2189 /// %s = select %p, trueval, falseval 2190 /// 2191 /// or 2192 /// 2193 /// bb: 2194 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2195 /// %c = cmp %p, 0 2196 /// %s = select %c, trueval, falseval 2197 // 2198 /// And expand the select into a branch structure. This later enables 2199 /// jump-threading over bb in this pass. 2200 /// 2201 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2202 /// select if the associated PHI has at least one constant. If the unfolded 2203 /// select is not jump-threaded, it will be folded again in the later 2204 /// optimizations. 2205 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2206 // If threading this would thread across a loop header, don't thread the edge. 2207 // See the comments above FindLoopHeaders for justifications and caveats. 2208 if (LoopHeaders.count(BB)) 2209 return false; 2210 2211 for (BasicBlock::iterator BI = BB->begin(); 2212 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2213 // Look for a Phi having at least one constant incoming value. 2214 if (llvm::all_of(PN->incoming_values(), 2215 [](Value *V) { return !isa<ConstantInt>(V); })) 2216 continue; 2217 2218 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2219 // Check if SI is in BB and use V as condition. 2220 if (SI->getParent() != BB) 2221 return false; 2222 Value *Cond = SI->getCondition(); 2223 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2224 }; 2225 2226 SelectInst *SI = nullptr; 2227 for (Use &U : PN->uses()) { 2228 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2229 // Look for a ICmp in BB that compares PN with a constant and is the 2230 // condition of a Select. 2231 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2232 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2233 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2234 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2235 SI = SelectI; 2236 break; 2237 } 2238 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2239 // Look for a Select in BB that uses PN as condtion. 2240 if (isUnfoldCandidate(SelectI, U.get())) { 2241 SI = SelectI; 2242 break; 2243 } 2244 } 2245 } 2246 2247 if (!SI) 2248 continue; 2249 // Expand the select. 2250 TerminatorInst *Term = 2251 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2252 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2253 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2254 NewPN->addIncoming(SI->getFalseValue(), BB); 2255 SI->replaceAllUsesWith(NewPN); 2256 SI->eraseFromParent(); 2257 return true; 2258 } 2259 return false; 2260 } 2261 2262 /// Try to propagate a guard from the current BB into one of its predecessors 2263 /// in case if another branch of execution implies that the condition of this 2264 /// guard is always true. Currently we only process the simplest case that 2265 /// looks like: 2266 /// 2267 /// Start: 2268 /// %cond = ... 2269 /// br i1 %cond, label %T1, label %F1 2270 /// T1: 2271 /// br label %Merge 2272 /// F1: 2273 /// br label %Merge 2274 /// Merge: 2275 /// %condGuard = ... 2276 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2277 /// 2278 /// And cond either implies condGuard or !condGuard. In this case all the 2279 /// instructions before the guard can be duplicated in both branches, and the 2280 /// guard is then threaded to one of them. 2281 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2282 using namespace PatternMatch; 2283 // We only want to deal with two predecessors. 2284 BasicBlock *Pred1, *Pred2; 2285 auto PI = pred_begin(BB), PE = pred_end(BB); 2286 if (PI == PE) 2287 return false; 2288 Pred1 = *PI++; 2289 if (PI == PE) 2290 return false; 2291 Pred2 = *PI++; 2292 if (PI != PE) 2293 return false; 2294 if (Pred1 == Pred2) 2295 return false; 2296 2297 // Try to thread one of the guards of the block. 2298 // TODO: Look up deeper than to immediate predecessor? 2299 auto *Parent = Pred1->getSinglePredecessor(); 2300 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2301 return false; 2302 2303 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2304 for (auto &I : *BB) 2305 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2306 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2307 return true; 2308 2309 return false; 2310 } 2311 2312 /// Try to propagate the guard from BB which is the lower block of a diamond 2313 /// to one of its branches, in case if diamond's condition implies guard's 2314 /// condition. 2315 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2316 BranchInst *BI) { 2317 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2318 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2319 Value *GuardCond = Guard->getArgOperand(0); 2320 Value *BranchCond = BI->getCondition(); 2321 BasicBlock *TrueDest = BI->getSuccessor(0); 2322 BasicBlock *FalseDest = BI->getSuccessor(1); 2323 2324 auto &DL = BB->getModule()->getDataLayout(); 2325 bool TrueDestIsSafe = false; 2326 bool FalseDestIsSafe = false; 2327 2328 // True dest is safe if BranchCond => GuardCond. 2329 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2330 if (Impl && *Impl) 2331 TrueDestIsSafe = true; 2332 else { 2333 // False dest is safe if !BranchCond => GuardCond. 2334 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2335 if (Impl && *Impl) 2336 FalseDestIsSafe = true; 2337 } 2338 2339 if (!TrueDestIsSafe && !FalseDestIsSafe) 2340 return false; 2341 2342 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2343 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2344 2345 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2346 Instruction *AfterGuard = Guard->getNextNode(); 2347 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2348 if (Cost > BBDupThreshold) 2349 return false; 2350 // Duplicate all instructions before the guard and the guard itself to the 2351 // branch where implication is not proved. 2352 GuardedBlock = DuplicateInstructionsInSplitBetween( 2353 BB, GuardedBlock, AfterGuard, GuardedMapping); 2354 assert(GuardedBlock && "Could not create the guarded block?"); 2355 // Duplicate all instructions before the guard in the unguarded branch. 2356 // Since we have successfully duplicated the guarded block and this block 2357 // has fewer instructions, we expect it to succeed. 2358 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2359 Guard, UnguardedMapping); 2360 assert(UnguardedBlock && "Could not create the unguarded block?"); 2361 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2362 << GuardedBlock->getName() << "\n"); 2363 2364 // Some instructions before the guard may still have uses. For them, we need 2365 // to create Phi nodes merging their copies in both guarded and unguarded 2366 // branches. Those instructions that have no uses can be just removed. 2367 SmallVector<Instruction *, 4> ToRemove; 2368 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2369 if (!isa<PHINode>(&*BI)) 2370 ToRemove.push_back(&*BI); 2371 2372 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2373 assert(InsertionPoint && "Empty block?"); 2374 // Substitute with Phis & remove. 2375 for (auto *Inst : reverse(ToRemove)) { 2376 if (!Inst->use_empty()) { 2377 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2378 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2379 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2380 NewPN->insertBefore(InsertionPoint); 2381 Inst->replaceAllUsesWith(NewPN); 2382 } 2383 Inst->eraseFromParent(); 2384 } 2385 return true; 2386 } 2387