1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 if (PrintLVIAfterJumpThreading) 135 AU.addRequired<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<GlobalsAAWrapperPass>(); 139 AU.addRequired<TargetLibraryInfoWrapperPass>(); 140 } 141 142 void releaseMemory() override { Impl.releaseMemory(); } 143 }; 144 145 } // end anonymous namespace 146 147 char JumpThreading::ID = 0; 148 149 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 150 "Jump Threading", false, false) 151 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 154 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 155 "Jump Threading", false, false) 156 157 // Public interface to the Jump Threading pass 158 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 159 return new JumpThreading(Threshold); 160 } 161 162 JumpThreadingPass::JumpThreadingPass(int T) { 163 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 164 } 165 166 // Update branch probability information according to conditional 167 // branch probablity. This is usually made possible for cloned branches 168 // in inline instances by the context specific profile in the caller. 169 // For instance, 170 // 171 // [Block PredBB] 172 // [Branch PredBr] 173 // if (t) { 174 // Block A; 175 // } else { 176 // Block B; 177 // } 178 // 179 // [Block BB] 180 // cond = PN([true, %A], [..., %B]); // PHI node 181 // [Branch CondBr] 182 // if (cond) { 183 // ... // P(cond == true) = 1% 184 // } 185 // 186 // Here we know that when block A is taken, cond must be true, which means 187 // P(cond == true | A) = 1 188 // 189 // Given that P(cond == true) = P(cond == true | A) * P(A) + 190 // P(cond == true | B) * P(B) 191 // we get 192 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 193 // 194 // which gives us: 195 // P(A) <= P(c == true), i.e. 196 // P(t == true) <= P(cond == true) 197 // 198 // In other words, if we know P(cond == true), we know that P(t == true) 199 // can not be greater than 1%. 200 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 201 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 202 if (!CondBr) 203 return; 204 205 BranchProbability BP; 206 uint64_t TrueWeight, FalseWeight; 207 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 208 return; 209 210 // Returns the outgoing edge of the dominating predecessor block 211 // that leads to the PhiNode's incoming block: 212 auto GetPredOutEdge = 213 [](BasicBlock *IncomingBB, 214 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 215 auto *PredBB = IncomingBB; 216 auto *SuccBB = PhiBB; 217 while (true) { 218 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 219 if (PredBr && PredBr->isConditional()) 220 return {PredBB, SuccBB}; 221 auto *SinglePredBB = PredBB->getSinglePredecessor(); 222 if (!SinglePredBB) 223 return {nullptr, nullptr}; 224 SuccBB = PredBB; 225 PredBB = SinglePredBB; 226 } 227 }; 228 229 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 230 Value *PhiOpnd = PN->getIncomingValue(i); 231 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 232 233 if (!CI || !CI->getType()->isIntegerTy(1)) 234 continue; 235 236 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 237 TrueWeight, TrueWeight + FalseWeight) 238 : BranchProbability::getBranchProbability( 239 FalseWeight, TrueWeight + FalseWeight)); 240 241 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 242 if (!PredOutEdge.first) 243 return; 244 245 BasicBlock *PredBB = PredOutEdge.first; 246 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 247 248 uint64_t PredTrueWeight, PredFalseWeight; 249 // FIXME: We currently only set the profile data when it is missing. 250 // With PGO, this can be used to refine even existing profile data with 251 // context information. This needs to be done after more performance 252 // testing. 253 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 254 continue; 255 256 // We can not infer anything useful when BP >= 50%, because BP is the 257 // upper bound probability value. 258 if (BP >= BranchProbability(50, 100)) 259 continue; 260 261 SmallVector<uint32_t, 2> Weights; 262 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 263 Weights.push_back(BP.getNumerator()); 264 Weights.push_back(BP.getCompl().getNumerator()); 265 } else { 266 Weights.push_back(BP.getCompl().getNumerator()); 267 Weights.push_back(BP.getNumerator()); 268 } 269 PredBr->setMetadata(LLVMContext::MD_prof, 270 MDBuilder(PredBr->getParent()->getContext()) 271 .createBranchWeights(Weights)); 272 } 273 } 274 275 /// runOnFunction - Toplevel algorithm. 276 bool JumpThreading::runOnFunction(Function &F) { 277 if (skipFunction(F)) 278 return false; 279 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 280 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 281 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 282 std::unique_ptr<BlockFrequencyInfo> BFI; 283 std::unique_ptr<BranchProbabilityInfo> BPI; 284 bool HasProfileData = F.getEntryCount().hasValue(); 285 if (HasProfileData) { 286 LoopInfo LI{DominatorTree(F)}; 287 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 288 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 289 } 290 291 bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI), 292 std::move(BPI)); 293 if (PrintLVIAfterJumpThreading) { 294 dbgs() << "LVI for function '" << F.getName() << "':\n"; 295 LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 296 dbgs()); 297 } 298 return Changed; 299 } 300 301 PreservedAnalyses JumpThreadingPass::run(Function &F, 302 FunctionAnalysisManager &AM) { 303 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 304 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 305 auto &AA = AM.getResult<AAManager>(F); 306 307 std::unique_ptr<BlockFrequencyInfo> BFI; 308 std::unique_ptr<BranchProbabilityInfo> BPI; 309 bool HasProfileData = F.getEntryCount().hasValue(); 310 if (HasProfileData) { 311 LoopInfo LI{DominatorTree(F)}; 312 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 313 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 314 } 315 316 bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI), 317 std::move(BPI)); 318 319 if (!Changed) 320 return PreservedAnalyses::all(); 321 PreservedAnalyses PA; 322 PA.preserve<GlobalsAA>(); 323 return PA; 324 } 325 326 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 327 LazyValueInfo *LVI_, AliasAnalysis *AA_, 328 bool HasProfileData_, 329 std::unique_ptr<BlockFrequencyInfo> BFI_, 330 std::unique_ptr<BranchProbabilityInfo> BPI_) { 331 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 332 TLI = TLI_; 333 LVI = LVI_; 334 AA = AA_; 335 BFI.reset(); 336 BPI.reset(); 337 // When profile data is available, we need to update edge weights after 338 // successful jump threading, which requires both BPI and BFI being available. 339 HasProfileData = HasProfileData_; 340 auto *GuardDecl = F.getParent()->getFunction( 341 Intrinsic::getName(Intrinsic::experimental_guard)); 342 HasGuards = GuardDecl && !GuardDecl->use_empty(); 343 if (HasProfileData) { 344 BPI = std::move(BPI_); 345 BFI = std::move(BFI_); 346 } 347 348 // Remove unreachable blocks from function as they may result in infinite 349 // loop. We do threading if we found something profitable. Jump threading a 350 // branch can create other opportunities. If these opportunities form a cycle 351 // i.e. if any jump threading is undoing previous threading in the path, then 352 // we will loop forever. We take care of this issue by not jump threading for 353 // back edges. This works for normal cases but not for unreachable blocks as 354 // they may have cycle with no back edge. 355 bool EverChanged = false; 356 EverChanged |= removeUnreachableBlocks(F, LVI); 357 358 FindLoopHeaders(F); 359 360 bool Changed; 361 do { 362 Changed = false; 363 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 364 BasicBlock *BB = &*I; 365 // Thread all of the branches we can over this block. 366 while (ProcessBlock(BB)) 367 Changed = true; 368 369 ++I; 370 371 // If the block is trivially dead, zap it. This eliminates the successor 372 // edges which simplifies the CFG. 373 if (pred_empty(BB) && 374 BB != &BB->getParent()->getEntryBlock()) { 375 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 376 << "' with terminator: " << *BB->getTerminator() << '\n'); 377 LoopHeaders.erase(BB); 378 LVI->eraseBlock(BB); 379 DeleteDeadBlock(BB); 380 Changed = true; 381 continue; 382 } 383 384 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 385 386 // Can't thread an unconditional jump, but if the block is "almost 387 // empty", we can replace uses of it with uses of the successor and make 388 // this dead. 389 // We should not eliminate the loop header or latch either, because 390 // eliminating a loop header or latch might later prevent LoopSimplify 391 // from transforming nested loops into simplified form. We will rely on 392 // later passes in backend to clean up empty blocks. 393 if (BI && BI->isUnconditional() && 394 BB != &BB->getParent()->getEntryBlock() && 395 // If the terminator is the only non-phi instruction, try to nuke it. 396 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) && 397 !LoopHeaders.count(BI->getSuccessor(0))) { 398 // FIXME: It is always conservatively correct to drop the info 399 // for a block even if it doesn't get erased. This isn't totally 400 // awesome, but it allows us to use AssertingVH to prevent nasty 401 // dangling pointer issues within LazyValueInfo. 402 LVI->eraseBlock(BB); 403 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 404 Changed = true; 405 } 406 } 407 EverChanged |= Changed; 408 } while (Changed); 409 410 LoopHeaders.clear(); 411 return EverChanged; 412 } 413 414 // Replace uses of Cond with ToVal when safe to do so. If all uses are 415 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 416 // because we may incorrectly replace uses when guards/assumes are uses of 417 // of `Cond` and we used the guards/assume to reason about the `Cond` value 418 // at the end of block. RAUW unconditionally replaces all uses 419 // including the guards/assumes themselves and the uses before the 420 // guard/assume. 421 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 422 assert(Cond->getType() == ToVal->getType()); 423 auto *BB = Cond->getParent(); 424 // We can unconditionally replace all uses in non-local blocks (i.e. uses 425 // strictly dominated by BB), since LVI information is true from the 426 // terminator of BB. 427 replaceNonLocalUsesWith(Cond, ToVal); 428 for (Instruction &I : reverse(*BB)) { 429 // Reached the Cond whose uses we are trying to replace, so there are no 430 // more uses. 431 if (&I == Cond) 432 break; 433 // We only replace uses in instructions that are guaranteed to reach the end 434 // of BB, where we know Cond is ToVal. 435 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 436 break; 437 I.replaceUsesOfWith(Cond, ToVal); 438 } 439 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 440 Cond->eraseFromParent(); 441 } 442 443 /// Return the cost of duplicating a piece of this block from first non-phi 444 /// and before StopAt instruction to thread across it. Stop scanning the block 445 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 446 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 447 Instruction *StopAt, 448 unsigned Threshold) { 449 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 450 /// Ignore PHI nodes, these will be flattened when duplication happens. 451 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 452 453 // FIXME: THREADING will delete values that are just used to compute the 454 // branch, so they shouldn't count against the duplication cost. 455 456 unsigned Bonus = 0; 457 if (BB->getTerminator() == StopAt) { 458 // Threading through a switch statement is particularly profitable. If this 459 // block ends in a switch, decrease its cost to make it more likely to 460 // happen. 461 if (isa<SwitchInst>(StopAt)) 462 Bonus = 6; 463 464 // The same holds for indirect branches, but slightly more so. 465 if (isa<IndirectBrInst>(StopAt)) 466 Bonus = 8; 467 } 468 469 // Bump the threshold up so the early exit from the loop doesn't skip the 470 // terminator-based Size adjustment at the end. 471 Threshold += Bonus; 472 473 // Sum up the cost of each instruction until we get to the terminator. Don't 474 // include the terminator because the copy won't include it. 475 unsigned Size = 0; 476 for (; &*I != StopAt; ++I) { 477 478 // Stop scanning the block if we've reached the threshold. 479 if (Size > Threshold) 480 return Size; 481 482 // Debugger intrinsics don't incur code size. 483 if (isa<DbgInfoIntrinsic>(I)) continue; 484 485 // If this is a pointer->pointer bitcast, it is free. 486 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 487 continue; 488 489 // Bail out if this instruction gives back a token type, it is not possible 490 // to duplicate it if it is used outside this BB. 491 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 492 return ~0U; 493 494 // All other instructions count for at least one unit. 495 ++Size; 496 497 // Calls are more expensive. If they are non-intrinsic calls, we model them 498 // as having cost of 4. If they are a non-vector intrinsic, we model them 499 // as having cost of 2 total, and if they are a vector intrinsic, we model 500 // them as having cost 1. 501 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 502 if (CI->cannotDuplicate() || CI->isConvergent()) 503 // Blocks with NoDuplicate are modelled as having infinite cost, so they 504 // are never duplicated. 505 return ~0U; 506 else if (!isa<IntrinsicInst>(CI)) 507 Size += 3; 508 else if (!CI->getType()->isVectorTy()) 509 Size += 1; 510 } 511 } 512 513 return Size > Bonus ? Size - Bonus : 0; 514 } 515 516 /// FindLoopHeaders - We do not want jump threading to turn proper loop 517 /// structures into irreducible loops. Doing this breaks up the loop nesting 518 /// hierarchy and pessimizes later transformations. To prevent this from 519 /// happening, we first have to find the loop headers. Here we approximate this 520 /// by finding targets of backedges in the CFG. 521 /// 522 /// Note that there definitely are cases when we want to allow threading of 523 /// edges across a loop header. For example, threading a jump from outside the 524 /// loop (the preheader) to an exit block of the loop is definitely profitable. 525 /// It is also almost always profitable to thread backedges from within the loop 526 /// to exit blocks, and is often profitable to thread backedges to other blocks 527 /// within the loop (forming a nested loop). This simple analysis is not rich 528 /// enough to track all of these properties and keep it up-to-date as the CFG 529 /// mutates, so we don't allow any of these transformations. 530 void JumpThreadingPass::FindLoopHeaders(Function &F) { 531 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 532 FindFunctionBackedges(F, Edges); 533 534 for (const auto &Edge : Edges) 535 LoopHeaders.insert(Edge.second); 536 } 537 538 /// getKnownConstant - Helper method to determine if we can thread over a 539 /// terminator with the given value as its condition, and if so what value to 540 /// use for that. What kind of value this is depends on whether we want an 541 /// integer or a block address, but an undef is always accepted. 542 /// Returns null if Val is null or not an appropriate constant. 543 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 544 if (!Val) 545 return nullptr; 546 547 // Undef is "known" enough. 548 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 549 return U; 550 551 if (Preference == WantBlockAddress) 552 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 553 554 return dyn_cast<ConstantInt>(Val); 555 } 556 557 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 558 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 559 /// in any of our predecessors. If so, return the known list of value and pred 560 /// BB in the result vector. 561 /// 562 /// This returns true if there were any known values. 563 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 564 Value *V, BasicBlock *BB, PredValueInfo &Result, 565 ConstantPreference Preference, Instruction *CxtI) { 566 // This method walks up use-def chains recursively. Because of this, we could 567 // get into an infinite loop going around loops in the use-def chain. To 568 // prevent this, keep track of what (value, block) pairs we've already visited 569 // and terminate the search if we loop back to them 570 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 571 return false; 572 573 // An RAII help to remove this pair from the recursion set once the recursion 574 // stack pops back out again. 575 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 576 577 // If V is a constant, then it is known in all predecessors. 578 if (Constant *KC = getKnownConstant(V, Preference)) { 579 for (BasicBlock *Pred : predecessors(BB)) 580 Result.push_back(std::make_pair(KC, Pred)); 581 582 return !Result.empty(); 583 } 584 585 // If V is a non-instruction value, or an instruction in a different block, 586 // then it can't be derived from a PHI. 587 Instruction *I = dyn_cast<Instruction>(V); 588 if (!I || I->getParent() != BB) { 589 590 // Okay, if this is a live-in value, see if it has a known value at the end 591 // of any of our predecessors. 592 // 593 // FIXME: This should be an edge property, not a block end property. 594 /// TODO: Per PR2563, we could infer value range information about a 595 /// predecessor based on its terminator. 596 // 597 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 598 // "I" is a non-local compare-with-a-constant instruction. This would be 599 // able to handle value inequalities better, for example if the compare is 600 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 601 // Perhaps getConstantOnEdge should be smart enough to do this? 602 603 for (BasicBlock *P : predecessors(BB)) { 604 // If the value is known by LazyValueInfo to be a constant in a 605 // predecessor, use that information to try to thread this block. 606 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 607 if (Constant *KC = getKnownConstant(PredCst, Preference)) 608 Result.push_back(std::make_pair(KC, P)); 609 } 610 611 return !Result.empty(); 612 } 613 614 /// If I is a PHI node, then we know the incoming values for any constants. 615 if (PHINode *PN = dyn_cast<PHINode>(I)) { 616 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 617 Value *InVal = PN->getIncomingValue(i); 618 if (Constant *KC = getKnownConstant(InVal, Preference)) { 619 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 620 } else { 621 Constant *CI = LVI->getConstantOnEdge(InVal, 622 PN->getIncomingBlock(i), 623 BB, CxtI); 624 if (Constant *KC = getKnownConstant(CI, Preference)) 625 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 626 } 627 } 628 629 return !Result.empty(); 630 } 631 632 // Handle Cast instructions. Only see through Cast when the source operand is 633 // PHI or Cmp and the source type is i1 to save the compilation time. 634 if (CastInst *CI = dyn_cast<CastInst>(I)) { 635 Value *Source = CI->getOperand(0); 636 if (!Source->getType()->isIntegerTy(1)) 637 return false; 638 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 639 return false; 640 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 641 if (Result.empty()) 642 return false; 643 644 // Convert the known values. 645 for (auto &R : Result) 646 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 647 648 return true; 649 } 650 651 // Handle some boolean conditions. 652 if (I->getType()->getPrimitiveSizeInBits() == 1) { 653 assert(Preference == WantInteger && "One-bit non-integer type?"); 654 // X | true -> true 655 // X & false -> false 656 if (I->getOpcode() == Instruction::Or || 657 I->getOpcode() == Instruction::And) { 658 PredValueInfoTy LHSVals, RHSVals; 659 660 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 661 WantInteger, CxtI); 662 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 663 WantInteger, CxtI); 664 665 if (LHSVals.empty() && RHSVals.empty()) 666 return false; 667 668 ConstantInt *InterestingVal; 669 if (I->getOpcode() == Instruction::Or) 670 InterestingVal = ConstantInt::getTrue(I->getContext()); 671 else 672 InterestingVal = ConstantInt::getFalse(I->getContext()); 673 674 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 675 676 // Scan for the sentinel. If we find an undef, force it to the 677 // interesting value: x|undef -> true and x&undef -> false. 678 for (const auto &LHSVal : LHSVals) 679 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 680 Result.emplace_back(InterestingVal, LHSVal.second); 681 LHSKnownBBs.insert(LHSVal.second); 682 } 683 for (const auto &RHSVal : RHSVals) 684 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 685 // If we already inferred a value for this block on the LHS, don't 686 // re-add it. 687 if (!LHSKnownBBs.count(RHSVal.second)) 688 Result.emplace_back(InterestingVal, RHSVal.second); 689 } 690 691 return !Result.empty(); 692 } 693 694 // Handle the NOT form of XOR. 695 if (I->getOpcode() == Instruction::Xor && 696 isa<ConstantInt>(I->getOperand(1)) && 697 cast<ConstantInt>(I->getOperand(1))->isOne()) { 698 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 699 WantInteger, CxtI); 700 if (Result.empty()) 701 return false; 702 703 // Invert the known values. 704 for (auto &R : Result) 705 R.first = ConstantExpr::getNot(R.first); 706 707 return true; 708 } 709 710 // Try to simplify some other binary operator values. 711 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 712 assert(Preference != WantBlockAddress 713 && "A binary operator creating a block address?"); 714 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 715 PredValueInfoTy LHSVals; 716 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 717 WantInteger, CxtI); 718 719 // Try to use constant folding to simplify the binary operator. 720 for (const auto &LHSVal : LHSVals) { 721 Constant *V = LHSVal.first; 722 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 723 724 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 725 Result.push_back(std::make_pair(KC, LHSVal.second)); 726 } 727 } 728 729 return !Result.empty(); 730 } 731 732 // Handle compare with phi operand, where the PHI is defined in this block. 733 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 734 assert(Preference == WantInteger && "Compares only produce integers"); 735 Type *CmpType = Cmp->getType(); 736 Value *CmpLHS = Cmp->getOperand(0); 737 Value *CmpRHS = Cmp->getOperand(1); 738 CmpInst::Predicate Pred = Cmp->getPredicate(); 739 740 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 741 if (PN && PN->getParent() == BB) { 742 const DataLayout &DL = PN->getModule()->getDataLayout(); 743 // We can do this simplification if any comparisons fold to true or false. 744 // See if any do. 745 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 746 BasicBlock *PredBB = PN->getIncomingBlock(i); 747 Value *LHS = PN->getIncomingValue(i); 748 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 749 750 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 751 if (!Res) { 752 if (!isa<Constant>(RHS)) 753 continue; 754 755 LazyValueInfo::Tristate 756 ResT = LVI->getPredicateOnEdge(Pred, LHS, 757 cast<Constant>(RHS), PredBB, BB, 758 CxtI ? CxtI : Cmp); 759 if (ResT == LazyValueInfo::Unknown) 760 continue; 761 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 762 } 763 764 if (Constant *KC = getKnownConstant(Res, WantInteger)) 765 Result.push_back(std::make_pair(KC, PredBB)); 766 } 767 768 return !Result.empty(); 769 } 770 771 // If comparing a live-in value against a constant, see if we know the 772 // live-in value on any predecessors. 773 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 774 Constant *CmpConst = cast<Constant>(CmpRHS); 775 776 if (!isa<Instruction>(CmpLHS) || 777 cast<Instruction>(CmpLHS)->getParent() != BB) { 778 for (BasicBlock *P : predecessors(BB)) { 779 // If the value is known by LazyValueInfo to be a constant in a 780 // predecessor, use that information to try to thread this block. 781 LazyValueInfo::Tristate Res = 782 LVI->getPredicateOnEdge(Pred, CmpLHS, 783 CmpConst, P, BB, CxtI ? CxtI : Cmp); 784 if (Res == LazyValueInfo::Unknown) 785 continue; 786 787 Constant *ResC = ConstantInt::get(CmpType, Res); 788 Result.push_back(std::make_pair(ResC, P)); 789 } 790 791 return !Result.empty(); 792 } 793 794 // InstCombine can fold some forms of constant range checks into 795 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 796 // x as a live-in. 797 { 798 using namespace PatternMatch; 799 800 Value *AddLHS; 801 ConstantInt *AddConst; 802 if (isa<ConstantInt>(CmpConst) && 803 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 804 if (!isa<Instruction>(AddLHS) || 805 cast<Instruction>(AddLHS)->getParent() != BB) { 806 for (BasicBlock *P : predecessors(BB)) { 807 // If the value is known by LazyValueInfo to be a ConstantRange in 808 // a predecessor, use that information to try to thread this 809 // block. 810 ConstantRange CR = LVI->getConstantRangeOnEdge( 811 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 812 // Propagate the range through the addition. 813 CR = CR.add(AddConst->getValue()); 814 815 // Get the range where the compare returns true. 816 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 817 Pred, cast<ConstantInt>(CmpConst)->getValue()); 818 819 Constant *ResC; 820 if (CmpRange.contains(CR)) 821 ResC = ConstantInt::getTrue(CmpType); 822 else if (CmpRange.inverse().contains(CR)) 823 ResC = ConstantInt::getFalse(CmpType); 824 else 825 continue; 826 827 Result.push_back(std::make_pair(ResC, P)); 828 } 829 830 return !Result.empty(); 831 } 832 } 833 } 834 835 // Try to find a constant value for the LHS of a comparison, 836 // and evaluate it statically if we can. 837 PredValueInfoTy LHSVals; 838 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 839 WantInteger, CxtI); 840 841 for (const auto &LHSVal : LHSVals) { 842 Constant *V = LHSVal.first; 843 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 844 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 845 Result.push_back(std::make_pair(KC, LHSVal.second)); 846 } 847 848 return !Result.empty(); 849 } 850 } 851 852 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 853 // Handle select instructions where at least one operand is a known constant 854 // and we can figure out the condition value for any predecessor block. 855 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 856 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 857 PredValueInfoTy Conds; 858 if ((TrueVal || FalseVal) && 859 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 860 WantInteger, CxtI)) { 861 for (auto &C : Conds) { 862 Constant *Cond = C.first; 863 864 // Figure out what value to use for the condition. 865 bool KnownCond; 866 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 867 // A known boolean. 868 KnownCond = CI->isOne(); 869 } else { 870 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 871 // Either operand will do, so be sure to pick the one that's a known 872 // constant. 873 // FIXME: Do this more cleverly if both values are known constants? 874 KnownCond = (TrueVal != nullptr); 875 } 876 877 // See if the select has a known constant value for this predecessor. 878 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 879 Result.push_back(std::make_pair(Val, C.second)); 880 } 881 882 return !Result.empty(); 883 } 884 } 885 886 // If all else fails, see if LVI can figure out a constant value for us. 887 Constant *CI = LVI->getConstant(V, BB, CxtI); 888 if (Constant *KC = getKnownConstant(CI, Preference)) { 889 for (BasicBlock *Pred : predecessors(BB)) 890 Result.push_back(std::make_pair(KC, Pred)); 891 } 892 893 return !Result.empty(); 894 } 895 896 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 897 /// in an undefined jump, decide which block is best to revector to. 898 /// 899 /// Since we can pick an arbitrary destination, we pick the successor with the 900 /// fewest predecessors. This should reduce the in-degree of the others. 901 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 902 TerminatorInst *BBTerm = BB->getTerminator(); 903 unsigned MinSucc = 0; 904 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 905 // Compute the successor with the minimum number of predecessors. 906 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 907 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 908 TestBB = BBTerm->getSuccessor(i); 909 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 910 if (NumPreds < MinNumPreds) { 911 MinSucc = i; 912 MinNumPreds = NumPreds; 913 } 914 } 915 916 return MinSucc; 917 } 918 919 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 920 if (!BB->hasAddressTaken()) return false; 921 922 // If the block has its address taken, it may be a tree of dead constants 923 // hanging off of it. These shouldn't keep the block alive. 924 BlockAddress *BA = BlockAddress::get(BB); 925 BA->removeDeadConstantUsers(); 926 return !BA->use_empty(); 927 } 928 929 /// ProcessBlock - If there are any predecessors whose control can be threaded 930 /// through to a successor, transform them now. 931 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 932 // If the block is trivially dead, just return and let the caller nuke it. 933 // This simplifies other transformations. 934 if (pred_empty(BB) && 935 BB != &BB->getParent()->getEntryBlock()) 936 return false; 937 938 // If this block has a single predecessor, and if that pred has a single 939 // successor, merge the blocks. This encourages recursive jump threading 940 // because now the condition in this block can be threaded through 941 // predecessors of our predecessor block. 942 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 943 const TerminatorInst *TI = SinglePred->getTerminator(); 944 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 945 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 946 // If SinglePred was a loop header, BB becomes one. 947 if (LoopHeaders.erase(SinglePred)) 948 LoopHeaders.insert(BB); 949 950 LVI->eraseBlock(SinglePred); 951 MergeBasicBlockIntoOnlyPred(BB); 952 953 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 954 // BB code within one basic block `BB`), we need to invalidate the LVI 955 // information associated with BB, because the LVI information need not be 956 // true for all of BB after the merge. For example, 957 // Before the merge, LVI info and code is as follows: 958 // SinglePred: <LVI info1 for %p val> 959 // %y = use of %p 960 // call @exit() // need not transfer execution to successor. 961 // assume(%p) // from this point on %p is true 962 // br label %BB 963 // BB: <LVI info2 for %p val, i.e. %p is true> 964 // %x = use of %p 965 // br label exit 966 // 967 // Note that this LVI info for blocks BB and SinglPred is correct for %p 968 // (info2 and info1 respectively). After the merge and the deletion of the 969 // LVI info1 for SinglePred. We have the following code: 970 // BB: <LVI info2 for %p val> 971 // %y = use of %p 972 // call @exit() 973 // assume(%p) 974 // %x = use of %p <-- LVI info2 is correct from here onwards. 975 // br label exit 976 // LVI info2 for BB is incorrect at the beginning of BB. 977 978 // Invalidate LVI information for BB if the LVI is not provably true for 979 // all of BB. 980 if (any_of(*BB, [](Instruction &I) { 981 return !isGuaranteedToTransferExecutionToSuccessor(&I); 982 })) 983 LVI->eraseBlock(BB); 984 return true; 985 } 986 } 987 988 if (TryToUnfoldSelectInCurrBB(BB)) 989 return true; 990 991 // Look if we can propagate guards to predecessors. 992 if (HasGuards && ProcessGuards(BB)) 993 return true; 994 995 // What kind of constant we're looking for. 996 ConstantPreference Preference = WantInteger; 997 998 // Look to see if the terminator is a conditional branch, switch or indirect 999 // branch, if not we can't thread it. 1000 Value *Condition; 1001 Instruction *Terminator = BB->getTerminator(); 1002 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1003 // Can't thread an unconditional jump. 1004 if (BI->isUnconditional()) return false; 1005 Condition = BI->getCondition(); 1006 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1007 Condition = SI->getCondition(); 1008 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1009 // Can't thread indirect branch with no successors. 1010 if (IB->getNumSuccessors() == 0) return false; 1011 Condition = IB->getAddress()->stripPointerCasts(); 1012 Preference = WantBlockAddress; 1013 } else { 1014 return false; // Must be an invoke. 1015 } 1016 1017 // Run constant folding to see if we can reduce the condition to a simple 1018 // constant. 1019 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1020 Value *SimpleVal = 1021 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1022 if (SimpleVal) { 1023 I->replaceAllUsesWith(SimpleVal); 1024 if (isInstructionTriviallyDead(I, TLI)) 1025 I->eraseFromParent(); 1026 Condition = SimpleVal; 1027 } 1028 } 1029 1030 // If the terminator is branching on an undef, we can pick any of the 1031 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1032 if (isa<UndefValue>(Condition)) { 1033 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1034 1035 // Fold the branch/switch. 1036 TerminatorInst *BBTerm = BB->getTerminator(); 1037 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1038 if (i == BestSucc) continue; 1039 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 1040 } 1041 1042 DEBUG(dbgs() << " In block '" << BB->getName() 1043 << "' folding undef terminator: " << *BBTerm << '\n'); 1044 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1045 BBTerm->eraseFromParent(); 1046 return true; 1047 } 1048 1049 // If the terminator of this block is branching on a constant, simplify the 1050 // terminator to an unconditional branch. This can occur due to threading in 1051 // other blocks. 1052 if (getKnownConstant(Condition, Preference)) { 1053 DEBUG(dbgs() << " In block '" << BB->getName() 1054 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1055 ++NumFolds; 1056 ConstantFoldTerminator(BB, true); 1057 return true; 1058 } 1059 1060 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1061 1062 // All the rest of our checks depend on the condition being an instruction. 1063 if (!CondInst) { 1064 // FIXME: Unify this with code below. 1065 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1066 return true; 1067 return false; 1068 } 1069 1070 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1071 // If we're branching on a conditional, LVI might be able to determine 1072 // it's value at the branch instruction. We only handle comparisons 1073 // against a constant at this time. 1074 // TODO: This should be extended to handle switches as well. 1075 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1076 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1077 if (CondBr && CondConst) { 1078 // We should have returned as soon as we turn a conditional branch to 1079 // unconditional. Because its no longer interesting as far as jump 1080 // threading is concerned. 1081 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1082 1083 LazyValueInfo::Tristate Ret = 1084 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1085 CondConst, CondBr); 1086 if (Ret != LazyValueInfo::Unknown) { 1087 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1088 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1089 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 1090 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1091 CondBr->eraseFromParent(); 1092 if (CondCmp->use_empty()) 1093 CondCmp->eraseFromParent(); 1094 // We can safely replace *some* uses of the CondInst if it has 1095 // exactly one value as returned by LVI. RAUW is incorrect in the 1096 // presence of guards and assumes, that have the `Cond` as the use. This 1097 // is because we use the guards/assume to reason about the `Cond` value 1098 // at the end of block, but RAUW unconditionally replaces all uses 1099 // including the guards/assumes themselves and the uses before the 1100 // guard/assume. 1101 else if (CondCmp->getParent() == BB) { 1102 auto *CI = Ret == LazyValueInfo::True ? 1103 ConstantInt::getTrue(CondCmp->getType()) : 1104 ConstantInt::getFalse(CondCmp->getType()); 1105 ReplaceFoldableUses(CondCmp, CI); 1106 } 1107 return true; 1108 } 1109 1110 // We did not manage to simplify this branch, try to see whether 1111 // CondCmp depends on a known phi-select pattern. 1112 if (TryToUnfoldSelect(CondCmp, BB)) 1113 return true; 1114 } 1115 } 1116 1117 // Check for some cases that are worth simplifying. Right now we want to look 1118 // for loads that are used by a switch or by the condition for the branch. If 1119 // we see one, check to see if it's partially redundant. If so, insert a PHI 1120 // which can then be used to thread the values. 1121 Value *SimplifyValue = CondInst; 1122 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1123 if (isa<Constant>(CondCmp->getOperand(1))) 1124 SimplifyValue = CondCmp->getOperand(0); 1125 1126 // TODO: There are other places where load PRE would be profitable, such as 1127 // more complex comparisons. 1128 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 1129 if (SimplifyPartiallyRedundantLoad(LI)) 1130 return true; 1131 1132 // Before threading, try to propagate profile data backwards: 1133 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1134 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1135 updatePredecessorProfileMetadata(PN, BB); 1136 1137 // Handle a variety of cases where we are branching on something derived from 1138 // a PHI node in the current block. If we can prove that any predecessors 1139 // compute a predictable value based on a PHI node, thread those predecessors. 1140 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1141 return true; 1142 1143 // If this is an otherwise-unfoldable branch on a phi node in the current 1144 // block, see if we can simplify. 1145 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1146 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1147 return ProcessBranchOnPHI(PN); 1148 1149 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1150 if (CondInst->getOpcode() == Instruction::Xor && 1151 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1152 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1153 1154 // Search for a stronger dominating condition that can be used to simplify a 1155 // conditional branch leaving BB. 1156 if (ProcessImpliedCondition(BB)) 1157 return true; 1158 1159 return false; 1160 } 1161 1162 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1163 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1164 if (!BI || !BI->isConditional()) 1165 return false; 1166 1167 Value *Cond = BI->getCondition(); 1168 BasicBlock *CurrentBB = BB; 1169 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1170 unsigned Iter = 0; 1171 1172 auto &DL = BB->getModule()->getDataLayout(); 1173 1174 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1175 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1176 if (!PBI || !PBI->isConditional()) 1177 return false; 1178 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1179 return false; 1180 1181 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1182 Optional<bool> Implication = 1183 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1184 if (Implication) { 1185 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 1186 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 1187 BI->eraseFromParent(); 1188 return true; 1189 } 1190 CurrentBB = CurrentPred; 1191 CurrentPred = CurrentBB->getSinglePredecessor(); 1192 } 1193 1194 return false; 1195 } 1196 1197 /// Return true if Op is an instruction defined in the given block. 1198 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1199 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1200 if (OpInst->getParent() == BB) 1201 return true; 1202 return false; 1203 } 1204 1205 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 1206 /// load instruction, eliminate it by replacing it with a PHI node. This is an 1207 /// important optimization that encourages jump threading, and needs to be run 1208 /// interlaced with other jump threading tasks. 1209 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 1210 // Don't hack volatile and ordered loads. 1211 if (!LI->isUnordered()) return false; 1212 1213 // If the load is defined in a block with exactly one predecessor, it can't be 1214 // partially redundant. 1215 BasicBlock *LoadBB = LI->getParent(); 1216 if (LoadBB->getSinglePredecessor()) 1217 return false; 1218 1219 // If the load is defined in an EH pad, it can't be partially redundant, 1220 // because the edges between the invoke and the EH pad cannot have other 1221 // instructions between them. 1222 if (LoadBB->isEHPad()) 1223 return false; 1224 1225 Value *LoadedPtr = LI->getOperand(0); 1226 1227 // If the loaded operand is defined in the LoadBB and its not a phi, 1228 // it can't be available in predecessors. 1229 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1230 return false; 1231 1232 // Scan a few instructions up from the load, to see if it is obviously live at 1233 // the entry to its block. 1234 BasicBlock::iterator BBIt(LI); 1235 bool IsLoadCSE; 1236 if (Value *AvailableVal = FindAvailableLoadedValue( 1237 LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1238 // If the value of the load is locally available within the block, just use 1239 // it. This frequently occurs for reg2mem'd allocas. 1240 1241 if (IsLoadCSE) { 1242 LoadInst *NLI = cast<LoadInst>(AvailableVal); 1243 combineMetadataForCSE(NLI, LI); 1244 }; 1245 1246 // If the returned value is the load itself, replace with an undef. This can 1247 // only happen in dead loops. 1248 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 1249 if (AvailableVal->getType() != LI->getType()) 1250 AvailableVal = 1251 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 1252 LI->replaceAllUsesWith(AvailableVal); 1253 LI->eraseFromParent(); 1254 return true; 1255 } 1256 1257 // Otherwise, if we scanned the whole block and got to the top of the block, 1258 // we know the block is locally transparent to the load. If not, something 1259 // might clobber its value. 1260 if (BBIt != LoadBB->begin()) 1261 return false; 1262 1263 // If all of the loads and stores that feed the value have the same AA tags, 1264 // then we can propagate them onto any newly inserted loads. 1265 AAMDNodes AATags; 1266 LI->getAAMetadata(AATags); 1267 1268 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1269 1270 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1271 1272 AvailablePredsTy AvailablePreds; 1273 BasicBlock *OneUnavailablePred = nullptr; 1274 SmallVector<LoadInst*, 8> CSELoads; 1275 1276 // If we got here, the loaded value is transparent through to the start of the 1277 // block. Check to see if it is available in any of the predecessor blocks. 1278 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1279 // If we already scanned this predecessor, skip it. 1280 if (!PredsScanned.insert(PredBB).second) 1281 continue; 1282 1283 BBIt = PredBB->end(); 1284 unsigned NumScanedInst = 0; 1285 Value *PredAvailable = nullptr; 1286 // NOTE: We don't CSE load that is volatile or anything stronger than 1287 // unordered, that should have been checked when we entered the function. 1288 assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads"); 1289 // If this is a load on a phi pointer, phi-translate it and search 1290 // for available load/store to the pointer in predecessors. 1291 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1292 PredAvailable = FindAvailablePtrLoadStore( 1293 Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1294 AA, &IsLoadCSE, &NumScanedInst); 1295 1296 // If PredBB has a single predecessor, continue scanning through the 1297 // single precessor. 1298 BasicBlock *SinglePredBB = PredBB; 1299 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1300 NumScanedInst < DefMaxInstsToScan) { 1301 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1302 if (SinglePredBB) { 1303 BBIt = SinglePredBB->end(); 1304 PredAvailable = FindAvailablePtrLoadStore( 1305 Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt, 1306 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1307 &NumScanedInst); 1308 } 1309 } 1310 1311 if (!PredAvailable) { 1312 OneUnavailablePred = PredBB; 1313 continue; 1314 } 1315 1316 if (IsLoadCSE) 1317 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1318 1319 // If so, this load is partially redundant. Remember this info so that we 1320 // can create a PHI node. 1321 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1322 } 1323 1324 // If the loaded value isn't available in any predecessor, it isn't partially 1325 // redundant. 1326 if (AvailablePreds.empty()) return false; 1327 1328 // Okay, the loaded value is available in at least one (and maybe all!) 1329 // predecessors. If the value is unavailable in more than one unique 1330 // predecessor, we want to insert a merge block for those common predecessors. 1331 // This ensures that we only have to insert one reload, thus not increasing 1332 // code size. 1333 BasicBlock *UnavailablePred = nullptr; 1334 1335 // If there is exactly one predecessor where the value is unavailable, the 1336 // already computed 'OneUnavailablePred' block is it. If it ends in an 1337 // unconditional branch, we know that it isn't a critical edge. 1338 if (PredsScanned.size() == AvailablePreds.size()+1 && 1339 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1340 UnavailablePred = OneUnavailablePred; 1341 } else if (PredsScanned.size() != AvailablePreds.size()) { 1342 // Otherwise, we had multiple unavailable predecessors or we had a critical 1343 // edge from the one. 1344 SmallVector<BasicBlock*, 8> PredsToSplit; 1345 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1346 1347 for (const auto &AvailablePred : AvailablePreds) 1348 AvailablePredSet.insert(AvailablePred.first); 1349 1350 // Add all the unavailable predecessors to the PredsToSplit list. 1351 for (BasicBlock *P : predecessors(LoadBB)) { 1352 // If the predecessor is an indirect goto, we can't split the edge. 1353 if (isa<IndirectBrInst>(P->getTerminator())) 1354 return false; 1355 1356 if (!AvailablePredSet.count(P)) 1357 PredsToSplit.push_back(P); 1358 } 1359 1360 // Split them out to their own block. 1361 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1362 } 1363 1364 // If the value isn't available in all predecessors, then there will be 1365 // exactly one where it isn't available. Insert a load on that edge and add 1366 // it to the AvailablePreds list. 1367 if (UnavailablePred) { 1368 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1369 "Can't handle critical edge here!"); 1370 LoadInst *NewVal = new LoadInst( 1371 LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1372 LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(), 1373 LI->getSyncScopeID(), UnavailablePred->getTerminator()); 1374 NewVal->setDebugLoc(LI->getDebugLoc()); 1375 if (AATags) 1376 NewVal->setAAMetadata(AATags); 1377 1378 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1379 } 1380 1381 // Now we know that each predecessor of this block has a value in 1382 // AvailablePreds, sort them for efficient access as we're walking the preds. 1383 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1384 1385 // Create a PHI node at the start of the block for the PRE'd load value. 1386 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1387 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1388 &LoadBB->front()); 1389 PN->takeName(LI); 1390 PN->setDebugLoc(LI->getDebugLoc()); 1391 1392 // Insert new entries into the PHI for each predecessor. A single block may 1393 // have multiple entries here. 1394 for (pred_iterator PI = PB; PI != PE; ++PI) { 1395 BasicBlock *P = *PI; 1396 AvailablePredsTy::iterator I = 1397 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1398 std::make_pair(P, (Value*)nullptr)); 1399 1400 assert(I != AvailablePreds.end() && I->first == P && 1401 "Didn't find entry for predecessor!"); 1402 1403 // If we have an available predecessor but it requires casting, insert the 1404 // cast in the predecessor and use the cast. Note that we have to update the 1405 // AvailablePreds vector as we go so that all of the PHI entries for this 1406 // predecessor use the same bitcast. 1407 Value *&PredV = I->second; 1408 if (PredV->getType() != LI->getType()) 1409 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1410 P->getTerminator()); 1411 1412 PN->addIncoming(PredV, I->first); 1413 } 1414 1415 for (LoadInst *PredLI : CSELoads) { 1416 combineMetadataForCSE(PredLI, LI); 1417 } 1418 1419 LI->replaceAllUsesWith(PN); 1420 LI->eraseFromParent(); 1421 1422 return true; 1423 } 1424 1425 /// FindMostPopularDest - The specified list contains multiple possible 1426 /// threadable destinations. Pick the one that occurs the most frequently in 1427 /// the list. 1428 static BasicBlock * 1429 FindMostPopularDest(BasicBlock *BB, 1430 const SmallVectorImpl<std::pair<BasicBlock *, 1431 BasicBlock *>> &PredToDestList) { 1432 assert(!PredToDestList.empty()); 1433 1434 // Determine popularity. If there are multiple possible destinations, we 1435 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1436 // blocks with known and real destinations to threading undef. We'll handle 1437 // them later if interesting. 1438 DenseMap<BasicBlock*, unsigned> DestPopularity; 1439 for (const auto &PredToDest : PredToDestList) 1440 if (PredToDest.second) 1441 DestPopularity[PredToDest.second]++; 1442 1443 // Find the most popular dest. 1444 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1445 BasicBlock *MostPopularDest = DPI->first; 1446 unsigned Popularity = DPI->second; 1447 SmallVector<BasicBlock*, 4> SamePopularity; 1448 1449 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1450 // If the popularity of this entry isn't higher than the popularity we've 1451 // seen so far, ignore it. 1452 if (DPI->second < Popularity) 1453 ; // ignore. 1454 else if (DPI->second == Popularity) { 1455 // If it is the same as what we've seen so far, keep track of it. 1456 SamePopularity.push_back(DPI->first); 1457 } else { 1458 // If it is more popular, remember it. 1459 SamePopularity.clear(); 1460 MostPopularDest = DPI->first; 1461 Popularity = DPI->second; 1462 } 1463 } 1464 1465 // Okay, now we know the most popular destination. If there is more than one 1466 // destination, we need to determine one. This is arbitrary, but we need 1467 // to make a deterministic decision. Pick the first one that appears in the 1468 // successor list. 1469 if (!SamePopularity.empty()) { 1470 SamePopularity.push_back(MostPopularDest); 1471 TerminatorInst *TI = BB->getTerminator(); 1472 for (unsigned i = 0; ; ++i) { 1473 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1474 1475 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1476 continue; 1477 1478 MostPopularDest = TI->getSuccessor(i); 1479 break; 1480 } 1481 } 1482 1483 // Okay, we have finally picked the most popular destination. 1484 return MostPopularDest; 1485 } 1486 1487 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1488 ConstantPreference Preference, 1489 Instruction *CxtI) { 1490 // If threading this would thread across a loop header, don't even try to 1491 // thread the edge. 1492 if (LoopHeaders.count(BB)) 1493 return false; 1494 1495 PredValueInfoTy PredValues; 1496 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1497 return false; 1498 1499 assert(!PredValues.empty() && 1500 "ComputeValueKnownInPredecessors returned true with no values"); 1501 1502 DEBUG(dbgs() << "IN BB: " << *BB; 1503 for (const auto &PredValue : PredValues) { 1504 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1505 << *PredValue.first 1506 << " for pred '" << PredValue.second->getName() << "'.\n"; 1507 }); 1508 1509 // Decide what we want to thread through. Convert our list of known values to 1510 // a list of known destinations for each pred. This also discards duplicate 1511 // predecessors and keeps track of the undefined inputs (which are represented 1512 // as a null dest in the PredToDestList). 1513 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1514 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1515 1516 BasicBlock *OnlyDest = nullptr; 1517 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1518 Constant *OnlyVal = nullptr; 1519 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1520 1521 unsigned PredWithKnownDest = 0; 1522 for (const auto &PredValue : PredValues) { 1523 BasicBlock *Pred = PredValue.second; 1524 if (!SeenPreds.insert(Pred).second) 1525 continue; // Duplicate predecessor entry. 1526 1527 Constant *Val = PredValue.first; 1528 1529 BasicBlock *DestBB; 1530 if (isa<UndefValue>(Val)) 1531 DestBB = nullptr; 1532 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1533 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1534 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1535 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1536 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1537 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1538 } else { 1539 assert(isa<IndirectBrInst>(BB->getTerminator()) 1540 && "Unexpected terminator"); 1541 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1542 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1543 } 1544 1545 // If we have exactly one destination, remember it for efficiency below. 1546 if (PredToDestList.empty()) { 1547 OnlyDest = DestBB; 1548 OnlyVal = Val; 1549 } else { 1550 if (OnlyDest != DestBB) 1551 OnlyDest = MultipleDestSentinel; 1552 // It possible we have same destination, but different value, e.g. default 1553 // case in switchinst. 1554 if (Val != OnlyVal) 1555 OnlyVal = MultipleVal; 1556 } 1557 1558 // We know where this predecessor is going. 1559 ++PredWithKnownDest; 1560 1561 // If the predecessor ends with an indirect goto, we can't change its 1562 // destination. 1563 if (isa<IndirectBrInst>(Pred->getTerminator())) 1564 continue; 1565 1566 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1567 } 1568 1569 // If all edges were unthreadable, we fail. 1570 if (PredToDestList.empty()) 1571 return false; 1572 1573 // If all the predecessors go to a single known successor, we want to fold, 1574 // not thread. By doing so, we do not need to duplicate the current block and 1575 // also miss potential opportunities in case we dont/cant duplicate. 1576 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1577 if (PredWithKnownDest == 1578 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1579 bool SeenFirstBranchToOnlyDest = false; 1580 for (BasicBlock *SuccBB : successors(BB)) { 1581 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) 1582 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1583 else 1584 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1585 } 1586 1587 // Finally update the terminator. 1588 TerminatorInst *Term = BB->getTerminator(); 1589 BranchInst::Create(OnlyDest, Term); 1590 Term->eraseFromParent(); 1591 1592 // If the condition is now dead due to the removal of the old terminator, 1593 // erase it. 1594 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1595 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1596 CondInst->eraseFromParent(); 1597 // We can safely replace *some* uses of the CondInst if it has 1598 // exactly one value as returned by LVI. RAUW is incorrect in the 1599 // presence of guards and assumes, that have the `Cond` as the use. This 1600 // is because we use the guards/assume to reason about the `Cond` value 1601 // at the end of block, but RAUW unconditionally replaces all uses 1602 // including the guards/assumes themselves and the uses before the 1603 // guard/assume. 1604 else if (OnlyVal && OnlyVal != MultipleVal && 1605 CondInst->getParent() == BB) 1606 ReplaceFoldableUses(CondInst, OnlyVal); 1607 } 1608 return true; 1609 } 1610 } 1611 1612 // Determine which is the most common successor. If we have many inputs and 1613 // this block is a switch, we want to start by threading the batch that goes 1614 // to the most popular destination first. If we only know about one 1615 // threadable destination (the common case) we can avoid this. 1616 BasicBlock *MostPopularDest = OnlyDest; 1617 1618 if (MostPopularDest == MultipleDestSentinel) 1619 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1620 1621 // Now that we know what the most popular destination is, factor all 1622 // predecessors that will jump to it into a single predecessor. 1623 SmallVector<BasicBlock*, 16> PredsToFactor; 1624 for (const auto &PredToDest : PredToDestList) 1625 if (PredToDest.second == MostPopularDest) { 1626 BasicBlock *Pred = PredToDest.first; 1627 1628 // This predecessor may be a switch or something else that has multiple 1629 // edges to the block. Factor each of these edges by listing them 1630 // according to # occurrences in PredsToFactor. 1631 for (BasicBlock *Succ : successors(Pred)) 1632 if (Succ == BB) 1633 PredsToFactor.push_back(Pred); 1634 } 1635 1636 // If the threadable edges are branching on an undefined value, we get to pick 1637 // the destination that these predecessors should get to. 1638 if (!MostPopularDest) 1639 MostPopularDest = BB->getTerminator()-> 1640 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1641 1642 // Ok, try to thread it! 1643 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1644 } 1645 1646 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1647 /// a PHI node in the current block. See if there are any simplifications we 1648 /// can do based on inputs to the phi node. 1649 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1650 BasicBlock *BB = PN->getParent(); 1651 1652 // TODO: We could make use of this to do it once for blocks with common PHI 1653 // values. 1654 SmallVector<BasicBlock*, 1> PredBBs; 1655 PredBBs.resize(1); 1656 1657 // If any of the predecessor blocks end in an unconditional branch, we can 1658 // *duplicate* the conditional branch into that block in order to further 1659 // encourage jump threading and to eliminate cases where we have branch on a 1660 // phi of an icmp (branch on icmp is much better). 1661 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1662 BasicBlock *PredBB = PN->getIncomingBlock(i); 1663 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1664 if (PredBr->isUnconditional()) { 1665 PredBBs[0] = PredBB; 1666 // Try to duplicate BB into PredBB. 1667 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1668 return true; 1669 } 1670 } 1671 1672 return false; 1673 } 1674 1675 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1676 /// a xor instruction in the current block. See if there are any 1677 /// simplifications we can do based on inputs to the xor. 1678 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1679 BasicBlock *BB = BO->getParent(); 1680 1681 // If either the LHS or RHS of the xor is a constant, don't do this 1682 // optimization. 1683 if (isa<ConstantInt>(BO->getOperand(0)) || 1684 isa<ConstantInt>(BO->getOperand(1))) 1685 return false; 1686 1687 // If the first instruction in BB isn't a phi, we won't be able to infer 1688 // anything special about any particular predecessor. 1689 if (!isa<PHINode>(BB->front())) 1690 return false; 1691 1692 // If this BB is a landing pad, we won't be able to split the edge into it. 1693 if (BB->isEHPad()) 1694 return false; 1695 1696 // If we have a xor as the branch input to this block, and we know that the 1697 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1698 // the condition into the predecessor and fix that value to true, saving some 1699 // logical ops on that path and encouraging other paths to simplify. 1700 // 1701 // This copies something like this: 1702 // 1703 // BB: 1704 // %X = phi i1 [1], [%X'] 1705 // %Y = icmp eq i32 %A, %B 1706 // %Z = xor i1 %X, %Y 1707 // br i1 %Z, ... 1708 // 1709 // Into: 1710 // BB': 1711 // %Y = icmp ne i32 %A, %B 1712 // br i1 %Y, ... 1713 1714 PredValueInfoTy XorOpValues; 1715 bool isLHS = true; 1716 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1717 WantInteger, BO)) { 1718 assert(XorOpValues.empty()); 1719 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1720 WantInteger, BO)) 1721 return false; 1722 isLHS = false; 1723 } 1724 1725 assert(!XorOpValues.empty() && 1726 "ComputeValueKnownInPredecessors returned true with no values"); 1727 1728 // Scan the information to see which is most popular: true or false. The 1729 // predecessors can be of the set true, false, or undef. 1730 unsigned NumTrue = 0, NumFalse = 0; 1731 for (const auto &XorOpValue : XorOpValues) { 1732 if (isa<UndefValue>(XorOpValue.first)) 1733 // Ignore undefs for the count. 1734 continue; 1735 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1736 ++NumFalse; 1737 else 1738 ++NumTrue; 1739 } 1740 1741 // Determine which value to split on, true, false, or undef if neither. 1742 ConstantInt *SplitVal = nullptr; 1743 if (NumTrue > NumFalse) 1744 SplitVal = ConstantInt::getTrue(BB->getContext()); 1745 else if (NumTrue != 0 || NumFalse != 0) 1746 SplitVal = ConstantInt::getFalse(BB->getContext()); 1747 1748 // Collect all of the blocks that this can be folded into so that we can 1749 // factor this once and clone it once. 1750 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1751 for (const auto &XorOpValue : XorOpValues) { 1752 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1753 continue; 1754 1755 BlocksToFoldInto.push_back(XorOpValue.second); 1756 } 1757 1758 // If we inferred a value for all of the predecessors, then duplication won't 1759 // help us. However, we can just replace the LHS or RHS with the constant. 1760 if (BlocksToFoldInto.size() == 1761 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1762 if (!SplitVal) { 1763 // If all preds provide undef, just nuke the xor, because it is undef too. 1764 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1765 BO->eraseFromParent(); 1766 } else if (SplitVal->isZero()) { 1767 // If all preds provide 0, replace the xor with the other input. 1768 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1769 BO->eraseFromParent(); 1770 } else { 1771 // If all preds provide 1, set the computed value to 1. 1772 BO->setOperand(!isLHS, SplitVal); 1773 } 1774 1775 return true; 1776 } 1777 1778 // Try to duplicate BB into PredBB. 1779 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1780 } 1781 1782 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1783 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1784 /// NewPred using the entries from OldPred (suitably mapped). 1785 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1786 BasicBlock *OldPred, 1787 BasicBlock *NewPred, 1788 DenseMap<Instruction*, Value*> &ValueMap) { 1789 for (BasicBlock::iterator PNI = PHIBB->begin(); 1790 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1791 // Ok, we have a PHI node. Figure out what the incoming value was for the 1792 // DestBlock. 1793 Value *IV = PN->getIncomingValueForBlock(OldPred); 1794 1795 // Remap the value if necessary. 1796 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1797 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1798 if (I != ValueMap.end()) 1799 IV = I->second; 1800 } 1801 1802 PN->addIncoming(IV, NewPred); 1803 } 1804 } 1805 1806 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1807 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1808 /// across BB. Transform the IR to reflect this change. 1809 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1810 const SmallVectorImpl<BasicBlock *> &PredBBs, 1811 BasicBlock *SuccBB) { 1812 // If threading to the same block as we come from, we would infinite loop. 1813 if (SuccBB == BB) { 1814 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1815 << "' - would thread to self!\n"); 1816 return false; 1817 } 1818 1819 // If threading this would thread across a loop header, don't thread the edge. 1820 // See the comments above FindLoopHeaders for justifications and caveats. 1821 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1822 DEBUG({ 1823 bool BBIsHeader = LoopHeaders.count(BB); 1824 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1825 dbgs() << " Not threading across " 1826 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1827 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1828 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1829 }); 1830 return false; 1831 } 1832 1833 unsigned JumpThreadCost = 1834 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1835 if (JumpThreadCost > BBDupThreshold) { 1836 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1837 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1838 return false; 1839 } 1840 1841 // And finally, do it! Start by factoring the predecessors if needed. 1842 BasicBlock *PredBB; 1843 if (PredBBs.size() == 1) 1844 PredBB = PredBBs[0]; 1845 else { 1846 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1847 << " common predecessors.\n"); 1848 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1849 } 1850 1851 // And finally, do it! 1852 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1853 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1854 << ", across block:\n " 1855 << *BB << "\n"); 1856 1857 LVI->threadEdge(PredBB, BB, SuccBB); 1858 1859 // We are going to have to map operands from the original BB block to the new 1860 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1861 // account for entry from PredBB. 1862 DenseMap<Instruction*, Value*> ValueMapping; 1863 1864 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1865 BB->getName()+".thread", 1866 BB->getParent(), BB); 1867 NewBB->moveAfter(PredBB); 1868 1869 // Set the block frequency of NewBB. 1870 if (HasProfileData) { 1871 auto NewBBFreq = 1872 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1873 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1874 } 1875 1876 BasicBlock::iterator BI = BB->begin(); 1877 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1878 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1879 1880 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1881 // mapping and using it to remap operands in the cloned instructions. 1882 for (; !isa<TerminatorInst>(BI); ++BI) { 1883 Instruction *New = BI->clone(); 1884 New->setName(BI->getName()); 1885 NewBB->getInstList().push_back(New); 1886 ValueMapping[&*BI] = New; 1887 1888 // Remap operands to patch up intra-block references. 1889 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1890 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1891 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1892 if (I != ValueMapping.end()) 1893 New->setOperand(i, I->second); 1894 } 1895 } 1896 1897 // We didn't copy the terminator from BB over to NewBB, because there is now 1898 // an unconditional jump to SuccBB. Insert the unconditional jump. 1899 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1900 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1901 1902 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1903 // PHI nodes for NewBB now. 1904 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1905 1906 // If there were values defined in BB that are used outside the block, then we 1907 // now have to update all uses of the value to use either the original value, 1908 // the cloned value, or some PHI derived value. This can require arbitrary 1909 // PHI insertion, of which we are prepared to do, clean these up now. 1910 SSAUpdater SSAUpdate; 1911 SmallVector<Use*, 16> UsesToRename; 1912 for (Instruction &I : *BB) { 1913 // Scan all uses of this instruction to see if it is used outside of its 1914 // block, and if so, record them in UsesToRename. 1915 for (Use &U : I.uses()) { 1916 Instruction *User = cast<Instruction>(U.getUser()); 1917 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1918 if (UserPN->getIncomingBlock(U) == BB) 1919 continue; 1920 } else if (User->getParent() == BB) 1921 continue; 1922 1923 UsesToRename.push_back(&U); 1924 } 1925 1926 // If there are no uses outside the block, we're done with this instruction. 1927 if (UsesToRename.empty()) 1928 continue; 1929 1930 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1931 1932 // We found a use of I outside of BB. Rename all uses of I that are outside 1933 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1934 // with the two values we know. 1935 SSAUpdate.Initialize(I.getType(), I.getName()); 1936 SSAUpdate.AddAvailableValue(BB, &I); 1937 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1938 1939 while (!UsesToRename.empty()) 1940 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1941 DEBUG(dbgs() << "\n"); 1942 } 1943 1944 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1945 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1946 // us to simplify any PHI nodes in BB. 1947 TerminatorInst *PredTerm = PredBB->getTerminator(); 1948 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1949 if (PredTerm->getSuccessor(i) == BB) { 1950 BB->removePredecessor(PredBB, true); 1951 PredTerm->setSuccessor(i, NewBB); 1952 } 1953 1954 // At this point, the IR is fully up to date and consistent. Do a quick scan 1955 // over the new instructions and zap any that are constants or dead. This 1956 // frequently happens because of phi translation. 1957 SimplifyInstructionsInBlock(NewBB, TLI); 1958 1959 // Update the edge weight from BB to SuccBB, which should be less than before. 1960 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1961 1962 // Threaded an edge! 1963 ++NumThreads; 1964 return true; 1965 } 1966 1967 /// Create a new basic block that will be the predecessor of BB and successor of 1968 /// all blocks in Preds. When profile data is available, update the frequency of 1969 /// this new block. 1970 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1971 ArrayRef<BasicBlock *> Preds, 1972 const char *Suffix) { 1973 // Collect the frequencies of all predecessors of BB, which will be used to 1974 // update the edge weight on BB->SuccBB. 1975 BlockFrequency PredBBFreq(0); 1976 if (HasProfileData) 1977 for (auto Pred : Preds) 1978 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1979 1980 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1981 1982 // Set the block frequency of the newly created PredBB, which is the sum of 1983 // frequencies of Preds. 1984 if (HasProfileData) 1985 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1986 return PredBB; 1987 } 1988 1989 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1990 const TerminatorInst *TI = BB->getTerminator(); 1991 assert(TI->getNumSuccessors() > 1 && "not a split"); 1992 1993 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1994 if (!WeightsNode) 1995 return false; 1996 1997 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1998 if (MDName->getString() != "branch_weights") 1999 return false; 2000 2001 // Ensure there are weights for all of the successors. Note that the first 2002 // operand to the metadata node is a name, not a weight. 2003 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2004 } 2005 2006 /// Update the block frequency of BB and branch weight and the metadata on the 2007 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2008 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2009 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2010 BasicBlock *BB, 2011 BasicBlock *NewBB, 2012 BasicBlock *SuccBB) { 2013 if (!HasProfileData) 2014 return; 2015 2016 assert(BFI && BPI && "BFI & BPI should have been created here"); 2017 2018 // As the edge from PredBB to BB is deleted, we have to update the block 2019 // frequency of BB. 2020 auto BBOrigFreq = BFI->getBlockFreq(BB); 2021 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2022 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2023 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2024 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2025 2026 // Collect updated outgoing edges' frequencies from BB and use them to update 2027 // edge probabilities. 2028 SmallVector<uint64_t, 4> BBSuccFreq; 2029 for (BasicBlock *Succ : successors(BB)) { 2030 auto SuccFreq = (Succ == SuccBB) 2031 ? BB2SuccBBFreq - NewBBFreq 2032 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2033 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2034 } 2035 2036 uint64_t MaxBBSuccFreq = 2037 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2038 2039 SmallVector<BranchProbability, 4> BBSuccProbs; 2040 if (MaxBBSuccFreq == 0) 2041 BBSuccProbs.assign(BBSuccFreq.size(), 2042 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2043 else { 2044 for (uint64_t Freq : BBSuccFreq) 2045 BBSuccProbs.push_back( 2046 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2047 // Normalize edge probabilities so that they sum up to one. 2048 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2049 BBSuccProbs.end()); 2050 } 2051 2052 // Update edge probabilities in BPI. 2053 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2054 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2055 2056 // Update the profile metadata as well. 2057 // 2058 // Don't do this if the profile of the transformed blocks was statically 2059 // estimated. (This could occur despite the function having an entry 2060 // frequency in completely cold parts of the CFG.) 2061 // 2062 // In this case we don't want to suggest to subsequent passes that the 2063 // calculated weights are fully consistent. Consider this graph: 2064 // 2065 // check_1 2066 // 50% / | 2067 // eq_1 | 50% 2068 // \ | 2069 // check_2 2070 // 50% / | 2071 // eq_2 | 50% 2072 // \ | 2073 // check_3 2074 // 50% / | 2075 // eq_3 | 50% 2076 // \ | 2077 // 2078 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2079 // the overall probabilities are inconsistent; the total probability that the 2080 // value is either 1, 2 or 3 is 150%. 2081 // 2082 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2083 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2084 // the loop exit edge. Then based solely on static estimation we would assume 2085 // the loop was extremely hot. 2086 // 2087 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2088 // shouldn't make edges extremely likely or unlikely based solely on static 2089 // estimation. 2090 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2091 SmallVector<uint32_t, 4> Weights; 2092 for (auto Prob : BBSuccProbs) 2093 Weights.push_back(Prob.getNumerator()); 2094 2095 auto TI = BB->getTerminator(); 2096 TI->setMetadata( 2097 LLVMContext::MD_prof, 2098 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2099 } 2100 } 2101 2102 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2103 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2104 /// If we can duplicate the contents of BB up into PredBB do so now, this 2105 /// improves the odds that the branch will be on an analyzable instruction like 2106 /// a compare. 2107 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2108 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2109 assert(!PredBBs.empty() && "Can't handle an empty set"); 2110 2111 // If BB is a loop header, then duplicating this block outside the loop would 2112 // cause us to transform this into an irreducible loop, don't do this. 2113 // See the comments above FindLoopHeaders for justifications and caveats. 2114 if (LoopHeaders.count(BB)) { 2115 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2116 << "' into predecessor block '" << PredBBs[0]->getName() 2117 << "' - it might create an irreducible loop!\n"); 2118 return false; 2119 } 2120 2121 unsigned DuplicationCost = 2122 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2123 if (DuplicationCost > BBDupThreshold) { 2124 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2125 << "' - Cost is too high: " << DuplicationCost << "\n"); 2126 return false; 2127 } 2128 2129 // And finally, do it! Start by factoring the predecessors if needed. 2130 BasicBlock *PredBB; 2131 if (PredBBs.size() == 1) 2132 PredBB = PredBBs[0]; 2133 else { 2134 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2135 << " common predecessors.\n"); 2136 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2137 } 2138 2139 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2140 // of PredBB. 2141 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2142 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2143 << DuplicationCost << " block is:" << *BB << "\n"); 2144 2145 // Unless PredBB ends with an unconditional branch, split the edge so that we 2146 // can just clone the bits from BB into the end of the new PredBB. 2147 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2148 2149 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2150 PredBB = SplitEdge(PredBB, BB); 2151 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2152 } 2153 2154 // We are going to have to map operands from the original BB block into the 2155 // PredBB block. Evaluate PHI nodes in BB. 2156 DenseMap<Instruction*, Value*> ValueMapping; 2157 2158 BasicBlock::iterator BI = BB->begin(); 2159 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2160 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2161 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2162 // mapping and using it to remap operands in the cloned instructions. 2163 for (; BI != BB->end(); ++BI) { 2164 Instruction *New = BI->clone(); 2165 2166 // Remap operands to patch up intra-block references. 2167 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2168 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2169 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2170 if (I != ValueMapping.end()) 2171 New->setOperand(i, I->second); 2172 } 2173 2174 // If this instruction can be simplified after the operands are updated, 2175 // just use the simplified value instead. This frequently happens due to 2176 // phi translation. 2177 if (Value *IV = SimplifyInstruction( 2178 New, 2179 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2180 ValueMapping[&*BI] = IV; 2181 if (!New->mayHaveSideEffects()) { 2182 New->deleteValue(); 2183 New = nullptr; 2184 } 2185 } else { 2186 ValueMapping[&*BI] = New; 2187 } 2188 if (New) { 2189 // Otherwise, insert the new instruction into the block. 2190 New->setName(BI->getName()); 2191 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2192 } 2193 } 2194 2195 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2196 // add entries to the PHI nodes for branch from PredBB now. 2197 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2198 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2199 ValueMapping); 2200 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2201 ValueMapping); 2202 2203 // If there were values defined in BB that are used outside the block, then we 2204 // now have to update all uses of the value to use either the original value, 2205 // the cloned value, or some PHI derived value. This can require arbitrary 2206 // PHI insertion, of which we are prepared to do, clean these up now. 2207 SSAUpdater SSAUpdate; 2208 SmallVector<Use*, 16> UsesToRename; 2209 for (Instruction &I : *BB) { 2210 // Scan all uses of this instruction to see if it is used outside of its 2211 // block, and if so, record them in UsesToRename. 2212 for (Use &U : I.uses()) { 2213 Instruction *User = cast<Instruction>(U.getUser()); 2214 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2215 if (UserPN->getIncomingBlock(U) == BB) 2216 continue; 2217 } else if (User->getParent() == BB) 2218 continue; 2219 2220 UsesToRename.push_back(&U); 2221 } 2222 2223 // If there are no uses outside the block, we're done with this instruction. 2224 if (UsesToRename.empty()) 2225 continue; 2226 2227 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2228 2229 // We found a use of I outside of BB. Rename all uses of I that are outside 2230 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2231 // with the two values we know. 2232 SSAUpdate.Initialize(I.getType(), I.getName()); 2233 SSAUpdate.AddAvailableValue(BB, &I); 2234 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2235 2236 while (!UsesToRename.empty()) 2237 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2238 DEBUG(dbgs() << "\n"); 2239 } 2240 2241 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2242 // that we nuked. 2243 BB->removePredecessor(PredBB, true); 2244 2245 // Remove the unconditional branch at the end of the PredBB block. 2246 OldPredBranch->eraseFromParent(); 2247 2248 ++NumDupes; 2249 return true; 2250 } 2251 2252 /// TryToUnfoldSelect - Look for blocks of the form 2253 /// bb1: 2254 /// %a = select 2255 /// br bb2 2256 /// 2257 /// bb2: 2258 /// %p = phi [%a, %bb1] ... 2259 /// %c = icmp %p 2260 /// br i1 %c 2261 /// 2262 /// And expand the select into a branch structure if one of its arms allows %c 2263 /// to be folded. This later enables threading from bb1 over bb2. 2264 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2265 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2266 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2267 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2268 2269 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2270 CondLHS->getParent() != BB) 2271 return false; 2272 2273 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2274 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2275 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2276 2277 // Look if one of the incoming values is a select in the corresponding 2278 // predecessor. 2279 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2280 continue; 2281 2282 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2283 if (!PredTerm || !PredTerm->isUnconditional()) 2284 continue; 2285 2286 // Now check if one of the select values would allow us to constant fold the 2287 // terminator in BB. We don't do the transform if both sides fold, those 2288 // cases will be threaded in any case. 2289 LazyValueInfo::Tristate LHSFolds = 2290 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2291 CondRHS, Pred, BB, CondCmp); 2292 LazyValueInfo::Tristate RHSFolds = 2293 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2294 CondRHS, Pred, BB, CondCmp); 2295 if ((LHSFolds != LazyValueInfo::Unknown || 2296 RHSFolds != LazyValueInfo::Unknown) && 2297 LHSFolds != RHSFolds) { 2298 // Expand the select. 2299 // 2300 // Pred -- 2301 // | v 2302 // | NewBB 2303 // | | 2304 // |----- 2305 // v 2306 // BB 2307 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2308 BB->getParent(), BB); 2309 // Move the unconditional branch to NewBB. 2310 PredTerm->removeFromParent(); 2311 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2312 // Create a conditional branch and update PHI nodes. 2313 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2314 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2315 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2316 // The select is now dead. 2317 SI->eraseFromParent(); 2318 2319 // Update any other PHI nodes in BB. 2320 for (BasicBlock::iterator BI = BB->begin(); 2321 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2322 if (Phi != CondLHS) 2323 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2324 return true; 2325 } 2326 } 2327 return false; 2328 } 2329 2330 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2331 /// same BB in the form 2332 /// bb: 2333 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2334 /// %s = select %p, trueval, falseval 2335 /// 2336 /// or 2337 /// 2338 /// bb: 2339 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2340 /// %c = cmp %p, 0 2341 /// %s = select %c, trueval, falseval 2342 /// 2343 /// And expand the select into a branch structure. This later enables 2344 /// jump-threading over bb in this pass. 2345 /// 2346 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2347 /// select if the associated PHI has at least one constant. If the unfolded 2348 /// select is not jump-threaded, it will be folded again in the later 2349 /// optimizations. 2350 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2351 // If threading this would thread across a loop header, don't thread the edge. 2352 // See the comments above FindLoopHeaders for justifications and caveats. 2353 if (LoopHeaders.count(BB)) 2354 return false; 2355 2356 for (BasicBlock::iterator BI = BB->begin(); 2357 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2358 // Look for a Phi having at least one constant incoming value. 2359 if (llvm::all_of(PN->incoming_values(), 2360 [](Value *V) { return !isa<ConstantInt>(V); })) 2361 continue; 2362 2363 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2364 // Check if SI is in BB and use V as condition. 2365 if (SI->getParent() != BB) 2366 return false; 2367 Value *Cond = SI->getCondition(); 2368 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2369 }; 2370 2371 SelectInst *SI = nullptr; 2372 for (Use &U : PN->uses()) { 2373 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2374 // Look for a ICmp in BB that compares PN with a constant and is the 2375 // condition of a Select. 2376 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2377 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2378 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2379 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2380 SI = SelectI; 2381 break; 2382 } 2383 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2384 // Look for a Select in BB that uses PN as condtion. 2385 if (isUnfoldCandidate(SelectI, U.get())) { 2386 SI = SelectI; 2387 break; 2388 } 2389 } 2390 } 2391 2392 if (!SI) 2393 continue; 2394 // Expand the select. 2395 TerminatorInst *Term = 2396 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2397 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2398 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2399 NewPN->addIncoming(SI->getFalseValue(), BB); 2400 SI->replaceAllUsesWith(NewPN); 2401 SI->eraseFromParent(); 2402 return true; 2403 } 2404 return false; 2405 } 2406 2407 /// Try to propagate a guard from the current BB into one of its predecessors 2408 /// in case if another branch of execution implies that the condition of this 2409 /// guard is always true. Currently we only process the simplest case that 2410 /// looks like: 2411 /// 2412 /// Start: 2413 /// %cond = ... 2414 /// br i1 %cond, label %T1, label %F1 2415 /// T1: 2416 /// br label %Merge 2417 /// F1: 2418 /// br label %Merge 2419 /// Merge: 2420 /// %condGuard = ... 2421 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2422 /// 2423 /// And cond either implies condGuard or !condGuard. In this case all the 2424 /// instructions before the guard can be duplicated in both branches, and the 2425 /// guard is then threaded to one of them. 2426 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2427 using namespace PatternMatch; 2428 2429 // We only want to deal with two predecessors. 2430 BasicBlock *Pred1, *Pred2; 2431 auto PI = pred_begin(BB), PE = pred_end(BB); 2432 if (PI == PE) 2433 return false; 2434 Pred1 = *PI++; 2435 if (PI == PE) 2436 return false; 2437 Pred2 = *PI++; 2438 if (PI != PE) 2439 return false; 2440 if (Pred1 == Pred2) 2441 return false; 2442 2443 // Try to thread one of the guards of the block. 2444 // TODO: Look up deeper than to immediate predecessor? 2445 auto *Parent = Pred1->getSinglePredecessor(); 2446 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2447 return false; 2448 2449 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2450 for (auto &I : *BB) 2451 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2452 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2453 return true; 2454 2455 return false; 2456 } 2457 2458 /// Try to propagate the guard from BB which is the lower block of a diamond 2459 /// to one of its branches, in case if diamond's condition implies guard's 2460 /// condition. 2461 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2462 BranchInst *BI) { 2463 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2464 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2465 Value *GuardCond = Guard->getArgOperand(0); 2466 Value *BranchCond = BI->getCondition(); 2467 BasicBlock *TrueDest = BI->getSuccessor(0); 2468 BasicBlock *FalseDest = BI->getSuccessor(1); 2469 2470 auto &DL = BB->getModule()->getDataLayout(); 2471 bool TrueDestIsSafe = false; 2472 bool FalseDestIsSafe = false; 2473 2474 // True dest is safe if BranchCond => GuardCond. 2475 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2476 if (Impl && *Impl) 2477 TrueDestIsSafe = true; 2478 else { 2479 // False dest is safe if !BranchCond => GuardCond. 2480 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2481 if (Impl && *Impl) 2482 FalseDestIsSafe = true; 2483 } 2484 2485 if (!TrueDestIsSafe && !FalseDestIsSafe) 2486 return false; 2487 2488 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2489 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2490 2491 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2492 Instruction *AfterGuard = Guard->getNextNode(); 2493 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2494 if (Cost > BBDupThreshold) 2495 return false; 2496 // Duplicate all instructions before the guard and the guard itself to the 2497 // branch where implication is not proved. 2498 GuardedBlock = DuplicateInstructionsInSplitBetween( 2499 BB, GuardedBlock, AfterGuard, GuardedMapping); 2500 assert(GuardedBlock && "Could not create the guarded block?"); 2501 // Duplicate all instructions before the guard in the unguarded branch. 2502 // Since we have successfully duplicated the guarded block and this block 2503 // has fewer instructions, we expect it to succeed. 2504 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2505 Guard, UnguardedMapping); 2506 assert(UnguardedBlock && "Could not create the unguarded block?"); 2507 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2508 << GuardedBlock->getName() << "\n"); 2509 2510 // Some instructions before the guard may still have uses. For them, we need 2511 // to create Phi nodes merging their copies in both guarded and unguarded 2512 // branches. Those instructions that have no uses can be just removed. 2513 SmallVector<Instruction *, 4> ToRemove; 2514 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2515 if (!isa<PHINode>(&*BI)) 2516 ToRemove.push_back(&*BI); 2517 2518 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2519 assert(InsertionPoint && "Empty block?"); 2520 // Substitute with Phis & remove. 2521 for (auto *Inst : reverse(ToRemove)) { 2522 if (!Inst->use_empty()) { 2523 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2524 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2525 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2526 NewPN->insertBefore(InsertionPoint); 2527 Inst->replaceAllUsesWith(NewPN); 2528 } 2529 Inst->eraseFromParent(); 2530 } 2531 return true; 2532 } 2533