1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<DominatorTreeWrapperPass>(); 135 AU.addPreserved<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<GlobalsAAWrapperPass>(); 140 AU.addRequired<TargetLibraryInfoWrapperPass>(); 141 } 142 143 void releaseMemory() override { Impl.releaseMemory(); } 144 }; 145 146 } // end anonymous namespace 147 148 char JumpThreading::ID = 0; 149 150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 151 "Jump Threading", false, false) 152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 156 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 157 "Jump Threading", false, false) 158 159 // Public interface to the Jump Threading pass 160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 161 return new JumpThreading(Threshold); 162 } 163 164 JumpThreadingPass::JumpThreadingPass(int T) { 165 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 166 } 167 168 // Update branch probability information according to conditional 169 // branch probablity. This is usually made possible for cloned branches 170 // in inline instances by the context specific profile in the caller. 171 // For instance, 172 // 173 // [Block PredBB] 174 // [Branch PredBr] 175 // if (t) { 176 // Block A; 177 // } else { 178 // Block B; 179 // } 180 // 181 // [Block BB] 182 // cond = PN([true, %A], [..., %B]); // PHI node 183 // [Branch CondBr] 184 // if (cond) { 185 // ... // P(cond == true) = 1% 186 // } 187 // 188 // Here we know that when block A is taken, cond must be true, which means 189 // P(cond == true | A) = 1 190 // 191 // Given that P(cond == true) = P(cond == true | A) * P(A) + 192 // P(cond == true | B) * P(B) 193 // we get: 194 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 195 // 196 // which gives us: 197 // P(A) is less than P(cond == true), i.e. 198 // P(t == true) <= P(cond == true) 199 // 200 // In other words, if we know P(cond == true) is unlikely, we know 201 // that P(t == true) is also unlikely. 202 // 203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 204 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 205 if (!CondBr) 206 return; 207 208 BranchProbability BP; 209 uint64_t TrueWeight, FalseWeight; 210 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 211 return; 212 213 // Returns the outgoing edge of the dominating predecessor block 214 // that leads to the PhiNode's incoming block: 215 auto GetPredOutEdge = 216 [](BasicBlock *IncomingBB, 217 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 218 auto *PredBB = IncomingBB; 219 auto *SuccBB = PhiBB; 220 while (true) { 221 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 222 if (PredBr && PredBr->isConditional()) 223 return {PredBB, SuccBB}; 224 auto *SinglePredBB = PredBB->getSinglePredecessor(); 225 if (!SinglePredBB) 226 return {nullptr, nullptr}; 227 SuccBB = PredBB; 228 PredBB = SinglePredBB; 229 } 230 }; 231 232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 233 Value *PhiOpnd = PN->getIncomingValue(i); 234 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 235 236 if (!CI || !CI->getType()->isIntegerTy(1)) 237 continue; 238 239 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 240 TrueWeight, TrueWeight + FalseWeight) 241 : BranchProbability::getBranchProbability( 242 FalseWeight, TrueWeight + FalseWeight)); 243 244 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 245 if (!PredOutEdge.first) 246 return; 247 248 BasicBlock *PredBB = PredOutEdge.first; 249 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 250 251 uint64_t PredTrueWeight, PredFalseWeight; 252 // FIXME: We currently only set the profile data when it is missing. 253 // With PGO, this can be used to refine even existing profile data with 254 // context information. This needs to be done after more performance 255 // testing. 256 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 257 continue; 258 259 // We can not infer anything useful when BP >= 50%, because BP is the 260 // upper bound probability value. 261 if (BP >= BranchProbability(50, 100)) 262 continue; 263 264 SmallVector<uint32_t, 2> Weights; 265 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 266 Weights.push_back(BP.getNumerator()); 267 Weights.push_back(BP.getCompl().getNumerator()); 268 } else { 269 Weights.push_back(BP.getCompl().getNumerator()); 270 Weights.push_back(BP.getNumerator()); 271 } 272 PredBr->setMetadata(LLVMContext::MD_prof, 273 MDBuilder(PredBr->getParent()->getContext()) 274 .createBranchWeights(Weights)); 275 } 276 } 277 278 /// runOnFunction - Toplevel algorithm. 279 bool JumpThreading::runOnFunction(Function &F) { 280 if (skipFunction(F)) 281 return false; 282 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 283 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 284 // DT if it's available. 285 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 286 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 287 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 288 DeferredDominance DDT(*DT); 289 std::unique_ptr<BlockFrequencyInfo> BFI; 290 std::unique_ptr<BranchProbabilityInfo> BPI; 291 bool HasProfileData = F.hasProfileData(); 292 if (HasProfileData) { 293 LoopInfo LI{DominatorTree(F)}; 294 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 295 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 296 } 297 298 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData, 299 std::move(BFI), std::move(BPI)); 300 if (PrintLVIAfterJumpThreading) { 301 dbgs() << "LVI for function '" << F.getName() << "':\n"; 302 LVI->printLVI(F, *DT, dbgs()); 303 } 304 return Changed; 305 } 306 307 PreservedAnalyses JumpThreadingPass::run(Function &F, 308 FunctionAnalysisManager &AM) { 309 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 310 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 311 // DT if it's available. 312 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 313 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 314 auto &AA = AM.getResult<AAManager>(F); 315 DeferredDominance DDT(DT); 316 317 std::unique_ptr<BlockFrequencyInfo> BFI; 318 std::unique_ptr<BranchProbabilityInfo> BPI; 319 if (F.hasProfileData()) { 320 LoopInfo LI{DominatorTree(F)}; 321 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 322 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 323 } 324 325 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData, 326 std::move(BFI), std::move(BPI)); 327 328 if (!Changed) 329 return PreservedAnalyses::all(); 330 PreservedAnalyses PA; 331 PA.preserve<GlobalsAA>(); 332 PA.preserve<DominatorTreeAnalysis>(); 333 PA.preserve<LazyValueAnalysis>(); 334 return PA; 335 } 336 337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 338 LazyValueInfo *LVI_, AliasAnalysis *AA_, 339 DeferredDominance *DDT_, bool HasProfileData_, 340 std::unique_ptr<BlockFrequencyInfo> BFI_, 341 std::unique_ptr<BranchProbabilityInfo> BPI_) { 342 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 343 TLI = TLI_; 344 LVI = LVI_; 345 AA = AA_; 346 DDT = DDT_; 347 BFI.reset(); 348 BPI.reset(); 349 // When profile data is available, we need to update edge weights after 350 // successful jump threading, which requires both BPI and BFI being available. 351 HasProfileData = HasProfileData_; 352 auto *GuardDecl = F.getParent()->getFunction( 353 Intrinsic::getName(Intrinsic::experimental_guard)); 354 HasGuards = GuardDecl && !GuardDecl->use_empty(); 355 if (HasProfileData) { 356 BPI = std::move(BPI_); 357 BFI = std::move(BFI_); 358 } 359 360 // JumpThreading must not processes blocks unreachable from entry. It's a 361 // waste of compute time and can potentially lead to hangs. 362 SmallPtrSet<BasicBlock *, 16> Unreachable; 363 DominatorTree &DT = DDT->flush(); 364 for (auto &BB : F) 365 if (!DT.isReachableFromEntry(&BB)) 366 Unreachable.insert(&BB); 367 368 FindLoopHeaders(F); 369 370 bool EverChanged = false; 371 bool Changed; 372 do { 373 Changed = false; 374 for (auto &BB : F) { 375 if (Unreachable.count(&BB)) 376 continue; 377 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 378 Changed = true; 379 // Stop processing BB if it's the entry or is now deleted. The following 380 // routines attempt to eliminate BB and locating a suitable replacement 381 // for the entry is non-trivial. 382 if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB)) 383 continue; 384 385 if (pred_empty(&BB)) { 386 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 387 // the instructions in it. We must remove BB to prevent invalid IR. 388 DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 389 << "' with terminator: " << *BB.getTerminator() << '\n'); 390 LoopHeaders.erase(&BB); 391 LVI->eraseBlock(&BB); 392 DeleteDeadBlock(&BB, DDT); 393 Changed = true; 394 continue; 395 } 396 397 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 398 // is "almost empty", we attempt to merge BB with its sole successor. 399 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 400 if (BI && BI->isUnconditional() && 401 // The terminator must be the only non-phi instruction in BB. 402 BB.getFirstNonPHIOrDbg()->isTerminator() && 403 // Don't alter Loop headers and latches to ensure another pass can 404 // detect and transform nested loops later. 405 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 406 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) { 407 // BB is valid for cleanup here because we passed in DDT. F remains 408 // BB's parent until a DDT->flush() event. 409 LVI->eraseBlock(&BB); 410 Changed = true; 411 } 412 } 413 EverChanged |= Changed; 414 } while (Changed); 415 416 LoopHeaders.clear(); 417 DDT->flush(); 418 LVI->enableDT(); 419 return EverChanged; 420 } 421 422 // Replace uses of Cond with ToVal when safe to do so. If all uses are 423 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 424 // because we may incorrectly replace uses when guards/assumes are uses of 425 // of `Cond` and we used the guards/assume to reason about the `Cond` value 426 // at the end of block. RAUW unconditionally replaces all uses 427 // including the guards/assumes themselves and the uses before the 428 // guard/assume. 429 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 430 assert(Cond->getType() == ToVal->getType()); 431 auto *BB = Cond->getParent(); 432 // We can unconditionally replace all uses in non-local blocks (i.e. uses 433 // strictly dominated by BB), since LVI information is true from the 434 // terminator of BB. 435 replaceNonLocalUsesWith(Cond, ToVal); 436 for (Instruction &I : reverse(*BB)) { 437 // Reached the Cond whose uses we are trying to replace, so there are no 438 // more uses. 439 if (&I == Cond) 440 break; 441 // We only replace uses in instructions that are guaranteed to reach the end 442 // of BB, where we know Cond is ToVal. 443 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 444 break; 445 I.replaceUsesOfWith(Cond, ToVal); 446 } 447 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 448 Cond->eraseFromParent(); 449 } 450 451 /// Return the cost of duplicating a piece of this block from first non-phi 452 /// and before StopAt instruction to thread across it. Stop scanning the block 453 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 454 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 455 Instruction *StopAt, 456 unsigned Threshold) { 457 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 458 /// Ignore PHI nodes, these will be flattened when duplication happens. 459 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 460 461 // FIXME: THREADING will delete values that are just used to compute the 462 // branch, so they shouldn't count against the duplication cost. 463 464 unsigned Bonus = 0; 465 if (BB->getTerminator() == StopAt) { 466 // Threading through a switch statement is particularly profitable. If this 467 // block ends in a switch, decrease its cost to make it more likely to 468 // happen. 469 if (isa<SwitchInst>(StopAt)) 470 Bonus = 6; 471 472 // The same holds for indirect branches, but slightly more so. 473 if (isa<IndirectBrInst>(StopAt)) 474 Bonus = 8; 475 } 476 477 // Bump the threshold up so the early exit from the loop doesn't skip the 478 // terminator-based Size adjustment at the end. 479 Threshold += Bonus; 480 481 // Sum up the cost of each instruction until we get to the terminator. Don't 482 // include the terminator because the copy won't include it. 483 unsigned Size = 0; 484 for (; &*I != StopAt; ++I) { 485 486 // Stop scanning the block if we've reached the threshold. 487 if (Size > Threshold) 488 return Size; 489 490 // Debugger intrinsics don't incur code size. 491 if (isa<DbgInfoIntrinsic>(I)) continue; 492 493 // If this is a pointer->pointer bitcast, it is free. 494 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 495 continue; 496 497 // Bail out if this instruction gives back a token type, it is not possible 498 // to duplicate it if it is used outside this BB. 499 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 500 return ~0U; 501 502 // All other instructions count for at least one unit. 503 ++Size; 504 505 // Calls are more expensive. If they are non-intrinsic calls, we model them 506 // as having cost of 4. If they are a non-vector intrinsic, we model them 507 // as having cost of 2 total, and if they are a vector intrinsic, we model 508 // them as having cost 1. 509 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 510 if (CI->cannotDuplicate() || CI->isConvergent()) 511 // Blocks with NoDuplicate are modelled as having infinite cost, so they 512 // are never duplicated. 513 return ~0U; 514 else if (!isa<IntrinsicInst>(CI)) 515 Size += 3; 516 else if (!CI->getType()->isVectorTy()) 517 Size += 1; 518 } 519 } 520 521 return Size > Bonus ? Size - Bonus : 0; 522 } 523 524 /// FindLoopHeaders - We do not want jump threading to turn proper loop 525 /// structures into irreducible loops. Doing this breaks up the loop nesting 526 /// hierarchy and pessimizes later transformations. To prevent this from 527 /// happening, we first have to find the loop headers. Here we approximate this 528 /// by finding targets of backedges in the CFG. 529 /// 530 /// Note that there definitely are cases when we want to allow threading of 531 /// edges across a loop header. For example, threading a jump from outside the 532 /// loop (the preheader) to an exit block of the loop is definitely profitable. 533 /// It is also almost always profitable to thread backedges from within the loop 534 /// to exit blocks, and is often profitable to thread backedges to other blocks 535 /// within the loop (forming a nested loop). This simple analysis is not rich 536 /// enough to track all of these properties and keep it up-to-date as the CFG 537 /// mutates, so we don't allow any of these transformations. 538 void JumpThreadingPass::FindLoopHeaders(Function &F) { 539 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 540 FindFunctionBackedges(F, Edges); 541 542 for (const auto &Edge : Edges) 543 LoopHeaders.insert(Edge.second); 544 } 545 546 /// getKnownConstant - Helper method to determine if we can thread over a 547 /// terminator with the given value as its condition, and if so what value to 548 /// use for that. What kind of value this is depends on whether we want an 549 /// integer or a block address, but an undef is always accepted. 550 /// Returns null if Val is null or not an appropriate constant. 551 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 552 if (!Val) 553 return nullptr; 554 555 // Undef is "known" enough. 556 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 557 return U; 558 559 if (Preference == WantBlockAddress) 560 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 561 562 return dyn_cast<ConstantInt>(Val); 563 } 564 565 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 566 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 567 /// in any of our predecessors. If so, return the known list of value and pred 568 /// BB in the result vector. 569 /// 570 /// This returns true if there were any known values. 571 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 572 Value *V, BasicBlock *BB, PredValueInfo &Result, 573 ConstantPreference Preference, Instruction *CxtI) { 574 // This method walks up use-def chains recursively. Because of this, we could 575 // get into an infinite loop going around loops in the use-def chain. To 576 // prevent this, keep track of what (value, block) pairs we've already visited 577 // and terminate the search if we loop back to them 578 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 579 return false; 580 581 // An RAII help to remove this pair from the recursion set once the recursion 582 // stack pops back out again. 583 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 584 585 // If V is a constant, then it is known in all predecessors. 586 if (Constant *KC = getKnownConstant(V, Preference)) { 587 for (BasicBlock *Pred : predecessors(BB)) 588 Result.push_back(std::make_pair(KC, Pred)); 589 590 return !Result.empty(); 591 } 592 593 // If V is a non-instruction value, or an instruction in a different block, 594 // then it can't be derived from a PHI. 595 Instruction *I = dyn_cast<Instruction>(V); 596 if (!I || I->getParent() != BB) { 597 598 // Okay, if this is a live-in value, see if it has a known value at the end 599 // of any of our predecessors. 600 // 601 // FIXME: This should be an edge property, not a block end property. 602 /// TODO: Per PR2563, we could infer value range information about a 603 /// predecessor based on its terminator. 604 // 605 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 606 // "I" is a non-local compare-with-a-constant instruction. This would be 607 // able to handle value inequalities better, for example if the compare is 608 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 609 // Perhaps getConstantOnEdge should be smart enough to do this? 610 611 if (DDT->pending()) 612 LVI->disableDT(); 613 else 614 LVI->enableDT(); 615 for (BasicBlock *P : predecessors(BB)) { 616 // If the value is known by LazyValueInfo to be a constant in a 617 // predecessor, use that information to try to thread this block. 618 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 619 if (Constant *KC = getKnownConstant(PredCst, Preference)) 620 Result.push_back(std::make_pair(KC, P)); 621 } 622 623 return !Result.empty(); 624 } 625 626 /// If I is a PHI node, then we know the incoming values for any constants. 627 if (PHINode *PN = dyn_cast<PHINode>(I)) { 628 if (DDT->pending()) 629 LVI->disableDT(); 630 else 631 LVI->enableDT(); 632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 633 Value *InVal = PN->getIncomingValue(i); 634 if (Constant *KC = getKnownConstant(InVal, Preference)) { 635 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 636 } else { 637 Constant *CI = LVI->getConstantOnEdge(InVal, 638 PN->getIncomingBlock(i), 639 BB, CxtI); 640 if (Constant *KC = getKnownConstant(CI, Preference)) 641 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 642 } 643 } 644 645 return !Result.empty(); 646 } 647 648 // Handle Cast instructions. Only see through Cast when the source operand is 649 // PHI or Cmp to save the compilation time. 650 if (CastInst *CI = dyn_cast<CastInst>(I)) { 651 Value *Source = CI->getOperand(0); 652 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 653 return false; 654 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 655 if (Result.empty()) 656 return false; 657 658 // Convert the known values. 659 for (auto &R : Result) 660 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 661 662 return true; 663 } 664 665 // Handle some boolean conditions. 666 if (I->getType()->getPrimitiveSizeInBits() == 1) { 667 assert(Preference == WantInteger && "One-bit non-integer type?"); 668 // X | true -> true 669 // X & false -> false 670 if (I->getOpcode() == Instruction::Or || 671 I->getOpcode() == Instruction::And) { 672 PredValueInfoTy LHSVals, RHSVals; 673 674 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 675 WantInteger, CxtI); 676 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 677 WantInteger, CxtI); 678 679 if (LHSVals.empty() && RHSVals.empty()) 680 return false; 681 682 ConstantInt *InterestingVal; 683 if (I->getOpcode() == Instruction::Or) 684 InterestingVal = ConstantInt::getTrue(I->getContext()); 685 else 686 InterestingVal = ConstantInt::getFalse(I->getContext()); 687 688 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 689 690 // Scan for the sentinel. If we find an undef, force it to the 691 // interesting value: x|undef -> true and x&undef -> false. 692 for (const auto &LHSVal : LHSVals) 693 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 694 Result.emplace_back(InterestingVal, LHSVal.second); 695 LHSKnownBBs.insert(LHSVal.second); 696 } 697 for (const auto &RHSVal : RHSVals) 698 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 699 // If we already inferred a value for this block on the LHS, don't 700 // re-add it. 701 if (!LHSKnownBBs.count(RHSVal.second)) 702 Result.emplace_back(InterestingVal, RHSVal.second); 703 } 704 705 return !Result.empty(); 706 } 707 708 // Handle the NOT form of XOR. 709 if (I->getOpcode() == Instruction::Xor && 710 isa<ConstantInt>(I->getOperand(1)) && 711 cast<ConstantInt>(I->getOperand(1))->isOne()) { 712 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 713 WantInteger, CxtI); 714 if (Result.empty()) 715 return false; 716 717 // Invert the known values. 718 for (auto &R : Result) 719 R.first = ConstantExpr::getNot(R.first); 720 721 return true; 722 } 723 724 // Try to simplify some other binary operator values. 725 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 726 assert(Preference != WantBlockAddress 727 && "A binary operator creating a block address?"); 728 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 729 PredValueInfoTy LHSVals; 730 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 731 WantInteger, CxtI); 732 733 // Try to use constant folding to simplify the binary operator. 734 for (const auto &LHSVal : LHSVals) { 735 Constant *V = LHSVal.first; 736 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 737 738 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 739 Result.push_back(std::make_pair(KC, LHSVal.second)); 740 } 741 } 742 743 return !Result.empty(); 744 } 745 746 // Handle compare with phi operand, where the PHI is defined in this block. 747 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 748 assert(Preference == WantInteger && "Compares only produce integers"); 749 Type *CmpType = Cmp->getType(); 750 Value *CmpLHS = Cmp->getOperand(0); 751 Value *CmpRHS = Cmp->getOperand(1); 752 CmpInst::Predicate Pred = Cmp->getPredicate(); 753 754 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 755 if (PN && PN->getParent() == BB) { 756 const DataLayout &DL = PN->getModule()->getDataLayout(); 757 // We can do this simplification if any comparisons fold to true or false. 758 // See if any do. 759 if (DDT->pending()) 760 LVI->disableDT(); 761 else 762 LVI->enableDT(); 763 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 764 BasicBlock *PredBB = PN->getIncomingBlock(i); 765 Value *LHS = PN->getIncomingValue(i); 766 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 767 768 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 769 if (!Res) { 770 if (!isa<Constant>(RHS)) 771 continue; 772 773 LazyValueInfo::Tristate 774 ResT = LVI->getPredicateOnEdge(Pred, LHS, 775 cast<Constant>(RHS), PredBB, BB, 776 CxtI ? CxtI : Cmp); 777 if (ResT == LazyValueInfo::Unknown) 778 continue; 779 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 780 } 781 782 if (Constant *KC = getKnownConstant(Res, WantInteger)) 783 Result.push_back(std::make_pair(KC, PredBB)); 784 } 785 786 return !Result.empty(); 787 } 788 789 // If comparing a live-in value against a constant, see if we know the 790 // live-in value on any predecessors. 791 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 792 Constant *CmpConst = cast<Constant>(CmpRHS); 793 794 if (!isa<Instruction>(CmpLHS) || 795 cast<Instruction>(CmpLHS)->getParent() != BB) { 796 if (DDT->pending()) 797 LVI->disableDT(); 798 else 799 LVI->enableDT(); 800 for (BasicBlock *P : predecessors(BB)) { 801 // If the value is known by LazyValueInfo to be a constant in a 802 // predecessor, use that information to try to thread this block. 803 LazyValueInfo::Tristate Res = 804 LVI->getPredicateOnEdge(Pred, CmpLHS, 805 CmpConst, P, BB, CxtI ? CxtI : Cmp); 806 if (Res == LazyValueInfo::Unknown) 807 continue; 808 809 Constant *ResC = ConstantInt::get(CmpType, Res); 810 Result.push_back(std::make_pair(ResC, P)); 811 } 812 813 return !Result.empty(); 814 } 815 816 // InstCombine can fold some forms of constant range checks into 817 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 818 // x as a live-in. 819 { 820 using namespace PatternMatch; 821 822 Value *AddLHS; 823 ConstantInt *AddConst; 824 if (isa<ConstantInt>(CmpConst) && 825 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 826 if (!isa<Instruction>(AddLHS) || 827 cast<Instruction>(AddLHS)->getParent() != BB) { 828 if (DDT->pending()) 829 LVI->disableDT(); 830 else 831 LVI->enableDT(); 832 for (BasicBlock *P : predecessors(BB)) { 833 // If the value is known by LazyValueInfo to be a ConstantRange in 834 // a predecessor, use that information to try to thread this 835 // block. 836 ConstantRange CR = LVI->getConstantRangeOnEdge( 837 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 838 // Propagate the range through the addition. 839 CR = CR.add(AddConst->getValue()); 840 841 // Get the range where the compare returns true. 842 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 843 Pred, cast<ConstantInt>(CmpConst)->getValue()); 844 845 Constant *ResC; 846 if (CmpRange.contains(CR)) 847 ResC = ConstantInt::getTrue(CmpType); 848 else if (CmpRange.inverse().contains(CR)) 849 ResC = ConstantInt::getFalse(CmpType); 850 else 851 continue; 852 853 Result.push_back(std::make_pair(ResC, P)); 854 } 855 856 return !Result.empty(); 857 } 858 } 859 } 860 861 // Try to find a constant value for the LHS of a comparison, 862 // and evaluate it statically if we can. 863 PredValueInfoTy LHSVals; 864 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 865 WantInteger, CxtI); 866 867 for (const auto &LHSVal : LHSVals) { 868 Constant *V = LHSVal.first; 869 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 870 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 871 Result.push_back(std::make_pair(KC, LHSVal.second)); 872 } 873 874 return !Result.empty(); 875 } 876 } 877 878 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 879 // Handle select instructions where at least one operand is a known constant 880 // and we can figure out the condition value for any predecessor block. 881 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 882 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 883 PredValueInfoTy Conds; 884 if ((TrueVal || FalseVal) && 885 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 886 WantInteger, CxtI)) { 887 for (auto &C : Conds) { 888 Constant *Cond = C.first; 889 890 // Figure out what value to use for the condition. 891 bool KnownCond; 892 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 893 // A known boolean. 894 KnownCond = CI->isOne(); 895 } else { 896 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 897 // Either operand will do, so be sure to pick the one that's a known 898 // constant. 899 // FIXME: Do this more cleverly if both values are known constants? 900 KnownCond = (TrueVal != nullptr); 901 } 902 903 // See if the select has a known constant value for this predecessor. 904 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 905 Result.push_back(std::make_pair(Val, C.second)); 906 } 907 908 return !Result.empty(); 909 } 910 } 911 912 // If all else fails, see if LVI can figure out a constant value for us. 913 if (DDT->pending()) 914 LVI->disableDT(); 915 else 916 LVI->enableDT(); 917 Constant *CI = LVI->getConstant(V, BB, CxtI); 918 if (Constant *KC = getKnownConstant(CI, Preference)) { 919 for (BasicBlock *Pred : predecessors(BB)) 920 Result.push_back(std::make_pair(KC, Pred)); 921 } 922 923 return !Result.empty(); 924 } 925 926 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 927 /// in an undefined jump, decide which block is best to revector to. 928 /// 929 /// Since we can pick an arbitrary destination, we pick the successor with the 930 /// fewest predecessors. This should reduce the in-degree of the others. 931 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 932 TerminatorInst *BBTerm = BB->getTerminator(); 933 unsigned MinSucc = 0; 934 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 935 // Compute the successor with the minimum number of predecessors. 936 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 937 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 938 TestBB = BBTerm->getSuccessor(i); 939 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 940 if (NumPreds < MinNumPreds) { 941 MinSucc = i; 942 MinNumPreds = NumPreds; 943 } 944 } 945 946 return MinSucc; 947 } 948 949 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 950 if (!BB->hasAddressTaken()) return false; 951 952 // If the block has its address taken, it may be a tree of dead constants 953 // hanging off of it. These shouldn't keep the block alive. 954 BlockAddress *BA = BlockAddress::get(BB); 955 BA->removeDeadConstantUsers(); 956 return !BA->use_empty(); 957 } 958 959 /// ProcessBlock - If there are any predecessors whose control can be threaded 960 /// through to a successor, transform them now. 961 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 962 // If the block is trivially dead, just return and let the caller nuke it. 963 // This simplifies other transformations. 964 if (DDT->pendingDeletedBB(BB) || 965 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 966 return false; 967 968 // If this block has a single predecessor, and if that pred has a single 969 // successor, merge the blocks. This encourages recursive jump threading 970 // because now the condition in this block can be threaded through 971 // predecessors of our predecessor block. 972 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 973 const TerminatorInst *TI = SinglePred->getTerminator(); 974 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 975 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 976 // If SinglePred was a loop header, BB becomes one. 977 if (LoopHeaders.erase(SinglePred)) 978 LoopHeaders.insert(BB); 979 980 LVI->eraseBlock(SinglePred); 981 MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT); 982 983 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 984 // BB code within one basic block `BB`), we need to invalidate the LVI 985 // information associated with BB, because the LVI information need not be 986 // true for all of BB after the merge. For example, 987 // Before the merge, LVI info and code is as follows: 988 // SinglePred: <LVI info1 for %p val> 989 // %y = use of %p 990 // call @exit() // need not transfer execution to successor. 991 // assume(%p) // from this point on %p is true 992 // br label %BB 993 // BB: <LVI info2 for %p val, i.e. %p is true> 994 // %x = use of %p 995 // br label exit 996 // 997 // Note that this LVI info for blocks BB and SinglPred is correct for %p 998 // (info2 and info1 respectively). After the merge and the deletion of the 999 // LVI info1 for SinglePred. We have the following code: 1000 // BB: <LVI info2 for %p val> 1001 // %y = use of %p 1002 // call @exit() 1003 // assume(%p) 1004 // %x = use of %p <-- LVI info2 is correct from here onwards. 1005 // br label exit 1006 // LVI info2 for BB is incorrect at the beginning of BB. 1007 1008 // Invalidate LVI information for BB if the LVI is not provably true for 1009 // all of BB. 1010 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1011 LVI->eraseBlock(BB); 1012 return true; 1013 } 1014 } 1015 1016 if (TryToUnfoldSelectInCurrBB(BB)) 1017 return true; 1018 1019 // Look if we can propagate guards to predecessors. 1020 if (HasGuards && ProcessGuards(BB)) 1021 return true; 1022 1023 // What kind of constant we're looking for. 1024 ConstantPreference Preference = WantInteger; 1025 1026 // Look to see if the terminator is a conditional branch, switch or indirect 1027 // branch, if not we can't thread it. 1028 Value *Condition; 1029 Instruction *Terminator = BB->getTerminator(); 1030 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1031 // Can't thread an unconditional jump. 1032 if (BI->isUnconditional()) return false; 1033 Condition = BI->getCondition(); 1034 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1035 Condition = SI->getCondition(); 1036 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1037 // Can't thread indirect branch with no successors. 1038 if (IB->getNumSuccessors() == 0) return false; 1039 Condition = IB->getAddress()->stripPointerCasts(); 1040 Preference = WantBlockAddress; 1041 } else { 1042 return false; // Must be an invoke. 1043 } 1044 1045 // Run constant folding to see if we can reduce the condition to a simple 1046 // constant. 1047 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1048 Value *SimpleVal = 1049 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1050 if (SimpleVal) { 1051 I->replaceAllUsesWith(SimpleVal); 1052 if (isInstructionTriviallyDead(I, TLI)) 1053 I->eraseFromParent(); 1054 Condition = SimpleVal; 1055 } 1056 } 1057 1058 // If the terminator is branching on an undef, we can pick any of the 1059 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1060 if (isa<UndefValue>(Condition)) { 1061 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1062 std::vector<DominatorTree::UpdateType> Updates; 1063 1064 // Fold the branch/switch. 1065 TerminatorInst *BBTerm = BB->getTerminator(); 1066 Updates.reserve(BBTerm->getNumSuccessors()); 1067 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1068 if (i == BestSucc) continue; 1069 BasicBlock *Succ = BBTerm->getSuccessor(i); 1070 Succ->removePredecessor(BB, true); 1071 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1072 } 1073 1074 DEBUG(dbgs() << " In block '" << BB->getName() 1075 << "' folding undef terminator: " << *BBTerm << '\n'); 1076 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1077 BBTerm->eraseFromParent(); 1078 DDT->applyUpdates(Updates); 1079 return true; 1080 } 1081 1082 // If the terminator of this block is branching on a constant, simplify the 1083 // terminator to an unconditional branch. This can occur due to threading in 1084 // other blocks. 1085 if (getKnownConstant(Condition, Preference)) { 1086 DEBUG(dbgs() << " In block '" << BB->getName() 1087 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1088 ++NumFolds; 1089 ConstantFoldTerminator(BB, true, nullptr, DDT); 1090 return true; 1091 } 1092 1093 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1094 1095 // All the rest of our checks depend on the condition being an instruction. 1096 if (!CondInst) { 1097 // FIXME: Unify this with code below. 1098 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1099 return true; 1100 return false; 1101 } 1102 1103 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1104 // If we're branching on a conditional, LVI might be able to determine 1105 // it's value at the branch instruction. We only handle comparisons 1106 // against a constant at this time. 1107 // TODO: This should be extended to handle switches as well. 1108 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1109 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1110 if (CondBr && CondConst) { 1111 // We should have returned as soon as we turn a conditional branch to 1112 // unconditional. Because its no longer interesting as far as jump 1113 // threading is concerned. 1114 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1115 1116 if (DDT->pending()) 1117 LVI->disableDT(); 1118 else 1119 LVI->enableDT(); 1120 LazyValueInfo::Tristate Ret = 1121 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1122 CondConst, CondBr); 1123 if (Ret != LazyValueInfo::Unknown) { 1124 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1125 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1126 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1127 ToRemoveSucc->removePredecessor(BB, true); 1128 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1129 CondBr->eraseFromParent(); 1130 if (CondCmp->use_empty()) 1131 CondCmp->eraseFromParent(); 1132 // We can safely replace *some* uses of the CondInst if it has 1133 // exactly one value as returned by LVI. RAUW is incorrect in the 1134 // presence of guards and assumes, that have the `Cond` as the use. This 1135 // is because we use the guards/assume to reason about the `Cond` value 1136 // at the end of block, but RAUW unconditionally replaces all uses 1137 // including the guards/assumes themselves and the uses before the 1138 // guard/assume. 1139 else if (CondCmp->getParent() == BB) { 1140 auto *CI = Ret == LazyValueInfo::True ? 1141 ConstantInt::getTrue(CondCmp->getType()) : 1142 ConstantInt::getFalse(CondCmp->getType()); 1143 ReplaceFoldableUses(CondCmp, CI); 1144 } 1145 DDT->deleteEdge(BB, ToRemoveSucc); 1146 return true; 1147 } 1148 1149 // We did not manage to simplify this branch, try to see whether 1150 // CondCmp depends on a known phi-select pattern. 1151 if (TryToUnfoldSelect(CondCmp, BB)) 1152 return true; 1153 } 1154 } 1155 1156 // Check for some cases that are worth simplifying. Right now we want to look 1157 // for loads that are used by a switch or by the condition for the branch. If 1158 // we see one, check to see if it's partially redundant. If so, insert a PHI 1159 // which can then be used to thread the values. 1160 Value *SimplifyValue = CondInst; 1161 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1162 if (isa<Constant>(CondCmp->getOperand(1))) 1163 SimplifyValue = CondCmp->getOperand(0); 1164 1165 // TODO: There are other places where load PRE would be profitable, such as 1166 // more complex comparisons. 1167 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1168 if (SimplifyPartiallyRedundantLoad(LoadI)) 1169 return true; 1170 1171 // Before threading, try to propagate profile data backwards: 1172 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1173 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1174 updatePredecessorProfileMetadata(PN, BB); 1175 1176 // Handle a variety of cases where we are branching on something derived from 1177 // a PHI node in the current block. If we can prove that any predecessors 1178 // compute a predictable value based on a PHI node, thread those predecessors. 1179 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1180 return true; 1181 1182 // If this is an otherwise-unfoldable branch on a phi node in the current 1183 // block, see if we can simplify. 1184 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1185 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1186 return ProcessBranchOnPHI(PN); 1187 1188 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1189 if (CondInst->getOpcode() == Instruction::Xor && 1190 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1191 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1192 1193 // Search for a stronger dominating condition that can be used to simplify a 1194 // conditional branch leaving BB. 1195 if (ProcessImpliedCondition(BB)) 1196 return true; 1197 1198 return false; 1199 } 1200 1201 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1202 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1203 if (!BI || !BI->isConditional()) 1204 return false; 1205 1206 Value *Cond = BI->getCondition(); 1207 BasicBlock *CurrentBB = BB; 1208 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1209 unsigned Iter = 0; 1210 1211 auto &DL = BB->getModule()->getDataLayout(); 1212 1213 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1214 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1215 if (!PBI || !PBI->isConditional()) 1216 return false; 1217 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1218 return false; 1219 1220 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1221 Optional<bool> Implication = 1222 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1223 if (Implication) { 1224 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1225 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1226 RemoveSucc->removePredecessor(BB); 1227 BranchInst::Create(KeepSucc, BI); 1228 BI->eraseFromParent(); 1229 DDT->deleteEdge(BB, RemoveSucc); 1230 return true; 1231 } 1232 CurrentBB = CurrentPred; 1233 CurrentPred = CurrentBB->getSinglePredecessor(); 1234 } 1235 1236 return false; 1237 } 1238 1239 /// Return true if Op is an instruction defined in the given block. 1240 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1241 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1242 if (OpInst->getParent() == BB) 1243 return true; 1244 return false; 1245 } 1246 1247 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1248 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1249 /// This is an important optimization that encourages jump threading, and needs 1250 /// to be run interlaced with other jump threading tasks. 1251 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1252 // Don't hack volatile and ordered loads. 1253 if (!LoadI->isUnordered()) return false; 1254 1255 // If the load is defined in a block with exactly one predecessor, it can't be 1256 // partially redundant. 1257 BasicBlock *LoadBB = LoadI->getParent(); 1258 if (LoadBB->getSinglePredecessor()) 1259 return false; 1260 1261 // If the load is defined in an EH pad, it can't be partially redundant, 1262 // because the edges between the invoke and the EH pad cannot have other 1263 // instructions between them. 1264 if (LoadBB->isEHPad()) 1265 return false; 1266 1267 Value *LoadedPtr = LoadI->getOperand(0); 1268 1269 // If the loaded operand is defined in the LoadBB and its not a phi, 1270 // it can't be available in predecessors. 1271 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1272 return false; 1273 1274 // Scan a few instructions up from the load, to see if it is obviously live at 1275 // the entry to its block. 1276 BasicBlock::iterator BBIt(LoadI); 1277 bool IsLoadCSE; 1278 if (Value *AvailableVal = FindAvailableLoadedValue( 1279 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1280 // If the value of the load is locally available within the block, just use 1281 // it. This frequently occurs for reg2mem'd allocas. 1282 1283 if (IsLoadCSE) { 1284 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1285 combineMetadataForCSE(NLoadI, LoadI); 1286 }; 1287 1288 // If the returned value is the load itself, replace with an undef. This can 1289 // only happen in dead loops. 1290 if (AvailableVal == LoadI) 1291 AvailableVal = UndefValue::get(LoadI->getType()); 1292 if (AvailableVal->getType() != LoadI->getType()) 1293 AvailableVal = CastInst::CreateBitOrPointerCast( 1294 AvailableVal, LoadI->getType(), "", LoadI); 1295 LoadI->replaceAllUsesWith(AvailableVal); 1296 LoadI->eraseFromParent(); 1297 return true; 1298 } 1299 1300 // Otherwise, if we scanned the whole block and got to the top of the block, 1301 // we know the block is locally transparent to the load. If not, something 1302 // might clobber its value. 1303 if (BBIt != LoadBB->begin()) 1304 return false; 1305 1306 // If all of the loads and stores that feed the value have the same AA tags, 1307 // then we can propagate them onto any newly inserted loads. 1308 AAMDNodes AATags; 1309 LoadI->getAAMetadata(AATags); 1310 1311 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1312 1313 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1314 1315 AvailablePredsTy AvailablePreds; 1316 BasicBlock *OneUnavailablePred = nullptr; 1317 SmallVector<LoadInst*, 8> CSELoads; 1318 1319 // If we got here, the loaded value is transparent through to the start of the 1320 // block. Check to see if it is available in any of the predecessor blocks. 1321 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1322 // If we already scanned this predecessor, skip it. 1323 if (!PredsScanned.insert(PredBB).second) 1324 continue; 1325 1326 BBIt = PredBB->end(); 1327 unsigned NumScanedInst = 0; 1328 Value *PredAvailable = nullptr; 1329 // NOTE: We don't CSE load that is volatile or anything stronger than 1330 // unordered, that should have been checked when we entered the function. 1331 assert(LoadI->isUnordered() && 1332 "Attempting to CSE volatile or atomic loads"); 1333 // If this is a load on a phi pointer, phi-translate it and search 1334 // for available load/store to the pointer in predecessors. 1335 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1336 PredAvailable = FindAvailablePtrLoadStore( 1337 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1338 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1339 1340 // If PredBB has a single predecessor, continue scanning through the 1341 // single precessor. 1342 BasicBlock *SinglePredBB = PredBB; 1343 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1344 NumScanedInst < DefMaxInstsToScan) { 1345 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1346 if (SinglePredBB) { 1347 BBIt = SinglePredBB->end(); 1348 PredAvailable = FindAvailablePtrLoadStore( 1349 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1350 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1351 &NumScanedInst); 1352 } 1353 } 1354 1355 if (!PredAvailable) { 1356 OneUnavailablePred = PredBB; 1357 continue; 1358 } 1359 1360 if (IsLoadCSE) 1361 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1362 1363 // If so, this load is partially redundant. Remember this info so that we 1364 // can create a PHI node. 1365 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1366 } 1367 1368 // If the loaded value isn't available in any predecessor, it isn't partially 1369 // redundant. 1370 if (AvailablePreds.empty()) return false; 1371 1372 // Okay, the loaded value is available in at least one (and maybe all!) 1373 // predecessors. If the value is unavailable in more than one unique 1374 // predecessor, we want to insert a merge block for those common predecessors. 1375 // This ensures that we only have to insert one reload, thus not increasing 1376 // code size. 1377 BasicBlock *UnavailablePred = nullptr; 1378 1379 // If the value is unavailable in one of predecessors, we will end up 1380 // inserting a new instruction into them. It is only valid if all the 1381 // instructions before LoadI are guaranteed to pass execution to its 1382 // successor, or if LoadI is safe to speculate. 1383 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1384 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1385 // It requires domination tree analysis, so for this simple case it is an 1386 // overkill. 1387 if (PredsScanned.size() != AvailablePreds.size() && 1388 !isSafeToSpeculativelyExecute(LoadI)) 1389 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1390 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1391 return false; 1392 1393 // If there is exactly one predecessor where the value is unavailable, the 1394 // already computed 'OneUnavailablePred' block is it. If it ends in an 1395 // unconditional branch, we know that it isn't a critical edge. 1396 if (PredsScanned.size() == AvailablePreds.size()+1 && 1397 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1398 UnavailablePred = OneUnavailablePred; 1399 } else if (PredsScanned.size() != AvailablePreds.size()) { 1400 // Otherwise, we had multiple unavailable predecessors or we had a critical 1401 // edge from the one. 1402 SmallVector<BasicBlock*, 8> PredsToSplit; 1403 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1404 1405 for (const auto &AvailablePred : AvailablePreds) 1406 AvailablePredSet.insert(AvailablePred.first); 1407 1408 // Add all the unavailable predecessors to the PredsToSplit list. 1409 for (BasicBlock *P : predecessors(LoadBB)) { 1410 // If the predecessor is an indirect goto, we can't split the edge. 1411 if (isa<IndirectBrInst>(P->getTerminator())) 1412 return false; 1413 1414 if (!AvailablePredSet.count(P)) 1415 PredsToSplit.push_back(P); 1416 } 1417 1418 // Split them out to their own block. 1419 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1420 } 1421 1422 // If the value isn't available in all predecessors, then there will be 1423 // exactly one where it isn't available. Insert a load on that edge and add 1424 // it to the AvailablePreds list. 1425 if (UnavailablePred) { 1426 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1427 "Can't handle critical edge here!"); 1428 LoadInst *NewVal = 1429 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1430 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1431 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1432 UnavailablePred->getTerminator()); 1433 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1434 if (AATags) 1435 NewVal->setAAMetadata(AATags); 1436 1437 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1438 } 1439 1440 // Now we know that each predecessor of this block has a value in 1441 // AvailablePreds, sort them for efficient access as we're walking the preds. 1442 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1443 1444 // Create a PHI node at the start of the block for the PRE'd load value. 1445 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1446 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1447 &LoadBB->front()); 1448 PN->takeName(LoadI); 1449 PN->setDebugLoc(LoadI->getDebugLoc()); 1450 1451 // Insert new entries into the PHI for each predecessor. A single block may 1452 // have multiple entries here. 1453 for (pred_iterator PI = PB; PI != PE; ++PI) { 1454 BasicBlock *P = *PI; 1455 AvailablePredsTy::iterator I = 1456 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1457 std::make_pair(P, (Value*)nullptr)); 1458 1459 assert(I != AvailablePreds.end() && I->first == P && 1460 "Didn't find entry for predecessor!"); 1461 1462 // If we have an available predecessor but it requires casting, insert the 1463 // cast in the predecessor and use the cast. Note that we have to update the 1464 // AvailablePreds vector as we go so that all of the PHI entries for this 1465 // predecessor use the same bitcast. 1466 Value *&PredV = I->second; 1467 if (PredV->getType() != LoadI->getType()) 1468 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1469 P->getTerminator()); 1470 1471 PN->addIncoming(PredV, I->first); 1472 } 1473 1474 for (LoadInst *PredLoadI : CSELoads) { 1475 combineMetadataForCSE(PredLoadI, LoadI); 1476 } 1477 1478 LoadI->replaceAllUsesWith(PN); 1479 LoadI->eraseFromParent(); 1480 1481 return true; 1482 } 1483 1484 /// FindMostPopularDest - The specified list contains multiple possible 1485 /// threadable destinations. Pick the one that occurs the most frequently in 1486 /// the list. 1487 static BasicBlock * 1488 FindMostPopularDest(BasicBlock *BB, 1489 const SmallVectorImpl<std::pair<BasicBlock *, 1490 BasicBlock *>> &PredToDestList) { 1491 assert(!PredToDestList.empty()); 1492 1493 // Determine popularity. If there are multiple possible destinations, we 1494 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1495 // blocks with known and real destinations to threading undef. We'll handle 1496 // them later if interesting. 1497 DenseMap<BasicBlock*, unsigned> DestPopularity; 1498 for (const auto &PredToDest : PredToDestList) 1499 if (PredToDest.second) 1500 DestPopularity[PredToDest.second]++; 1501 1502 if (DestPopularity.empty()) 1503 return nullptr; 1504 1505 // Find the most popular dest. 1506 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1507 BasicBlock *MostPopularDest = DPI->first; 1508 unsigned Popularity = DPI->second; 1509 SmallVector<BasicBlock*, 4> SamePopularity; 1510 1511 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1512 // If the popularity of this entry isn't higher than the popularity we've 1513 // seen so far, ignore it. 1514 if (DPI->second < Popularity) 1515 ; // ignore. 1516 else if (DPI->second == Popularity) { 1517 // If it is the same as what we've seen so far, keep track of it. 1518 SamePopularity.push_back(DPI->first); 1519 } else { 1520 // If it is more popular, remember it. 1521 SamePopularity.clear(); 1522 MostPopularDest = DPI->first; 1523 Popularity = DPI->second; 1524 } 1525 } 1526 1527 // Okay, now we know the most popular destination. If there is more than one 1528 // destination, we need to determine one. This is arbitrary, but we need 1529 // to make a deterministic decision. Pick the first one that appears in the 1530 // successor list. 1531 if (!SamePopularity.empty()) { 1532 SamePopularity.push_back(MostPopularDest); 1533 TerminatorInst *TI = BB->getTerminator(); 1534 for (unsigned i = 0; ; ++i) { 1535 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1536 1537 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1538 continue; 1539 1540 MostPopularDest = TI->getSuccessor(i); 1541 break; 1542 } 1543 } 1544 1545 // Okay, we have finally picked the most popular destination. 1546 return MostPopularDest; 1547 } 1548 1549 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1550 ConstantPreference Preference, 1551 Instruction *CxtI) { 1552 // If threading this would thread across a loop header, don't even try to 1553 // thread the edge. 1554 if (LoopHeaders.count(BB)) 1555 return false; 1556 1557 PredValueInfoTy PredValues; 1558 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1559 return false; 1560 1561 assert(!PredValues.empty() && 1562 "ComputeValueKnownInPredecessors returned true with no values"); 1563 1564 DEBUG(dbgs() << "IN BB: " << *BB; 1565 for (const auto &PredValue : PredValues) { 1566 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1567 << *PredValue.first 1568 << " for pred '" << PredValue.second->getName() << "'.\n"; 1569 }); 1570 1571 // Decide what we want to thread through. Convert our list of known values to 1572 // a list of known destinations for each pred. This also discards duplicate 1573 // predecessors and keeps track of the undefined inputs (which are represented 1574 // as a null dest in the PredToDestList). 1575 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1576 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1577 1578 BasicBlock *OnlyDest = nullptr; 1579 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1580 Constant *OnlyVal = nullptr; 1581 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1582 1583 unsigned PredWithKnownDest = 0; 1584 for (const auto &PredValue : PredValues) { 1585 BasicBlock *Pred = PredValue.second; 1586 if (!SeenPreds.insert(Pred).second) 1587 continue; // Duplicate predecessor entry. 1588 1589 Constant *Val = PredValue.first; 1590 1591 BasicBlock *DestBB; 1592 if (isa<UndefValue>(Val)) 1593 DestBB = nullptr; 1594 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1595 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1596 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1597 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1598 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1599 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1600 } else { 1601 assert(isa<IndirectBrInst>(BB->getTerminator()) 1602 && "Unexpected terminator"); 1603 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1604 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1605 } 1606 1607 // If we have exactly one destination, remember it for efficiency below. 1608 if (PredToDestList.empty()) { 1609 OnlyDest = DestBB; 1610 OnlyVal = Val; 1611 } else { 1612 if (OnlyDest != DestBB) 1613 OnlyDest = MultipleDestSentinel; 1614 // It possible we have same destination, but different value, e.g. default 1615 // case in switchinst. 1616 if (Val != OnlyVal) 1617 OnlyVal = MultipleVal; 1618 } 1619 1620 // We know where this predecessor is going. 1621 ++PredWithKnownDest; 1622 1623 // If the predecessor ends with an indirect goto, we can't change its 1624 // destination. 1625 if (isa<IndirectBrInst>(Pred->getTerminator())) 1626 continue; 1627 1628 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1629 } 1630 1631 // If all edges were unthreadable, we fail. 1632 if (PredToDestList.empty()) 1633 return false; 1634 1635 // If all the predecessors go to a single known successor, we want to fold, 1636 // not thread. By doing so, we do not need to duplicate the current block and 1637 // also miss potential opportunities in case we dont/cant duplicate. 1638 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1639 if (PredWithKnownDest == 1640 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1641 bool SeenFirstBranchToOnlyDest = false; 1642 std::vector <DominatorTree::UpdateType> Updates; 1643 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1644 for (BasicBlock *SuccBB : successors(BB)) { 1645 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1646 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1647 } else { 1648 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1649 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1650 } 1651 } 1652 1653 // Finally update the terminator. 1654 TerminatorInst *Term = BB->getTerminator(); 1655 BranchInst::Create(OnlyDest, Term); 1656 Term->eraseFromParent(); 1657 DDT->applyUpdates(Updates); 1658 1659 // If the condition is now dead due to the removal of the old terminator, 1660 // erase it. 1661 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1662 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1663 CondInst->eraseFromParent(); 1664 // We can safely replace *some* uses of the CondInst if it has 1665 // exactly one value as returned by LVI. RAUW is incorrect in the 1666 // presence of guards and assumes, that have the `Cond` as the use. This 1667 // is because we use the guards/assume to reason about the `Cond` value 1668 // at the end of block, but RAUW unconditionally replaces all uses 1669 // including the guards/assumes themselves and the uses before the 1670 // guard/assume. 1671 else if (OnlyVal && OnlyVal != MultipleVal && 1672 CondInst->getParent() == BB) 1673 ReplaceFoldableUses(CondInst, OnlyVal); 1674 } 1675 return true; 1676 } 1677 } 1678 1679 // Determine which is the most common successor. If we have many inputs and 1680 // this block is a switch, we want to start by threading the batch that goes 1681 // to the most popular destination first. If we only know about one 1682 // threadable destination (the common case) we can avoid this. 1683 BasicBlock *MostPopularDest = OnlyDest; 1684 1685 if (MostPopularDest == MultipleDestSentinel) { 1686 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1687 // won't process them, but we might have other destination that are eligible 1688 // and we still want to process. 1689 erase_if(PredToDestList, 1690 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1691 return LoopHeaders.count(PredToDest.second) != 0; 1692 }); 1693 1694 if (PredToDestList.empty()) 1695 return false; 1696 1697 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1698 } 1699 1700 // Now that we know what the most popular destination is, factor all 1701 // predecessors that will jump to it into a single predecessor. 1702 SmallVector<BasicBlock*, 16> PredsToFactor; 1703 for (const auto &PredToDest : PredToDestList) 1704 if (PredToDest.second == MostPopularDest) { 1705 BasicBlock *Pred = PredToDest.first; 1706 1707 // This predecessor may be a switch or something else that has multiple 1708 // edges to the block. Factor each of these edges by listing them 1709 // according to # occurrences in PredsToFactor. 1710 for (BasicBlock *Succ : successors(Pred)) 1711 if (Succ == BB) 1712 PredsToFactor.push_back(Pred); 1713 } 1714 1715 // If the threadable edges are branching on an undefined value, we get to pick 1716 // the destination that these predecessors should get to. 1717 if (!MostPopularDest) 1718 MostPopularDest = BB->getTerminator()-> 1719 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1720 1721 // Ok, try to thread it! 1722 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1723 } 1724 1725 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1726 /// a PHI node in the current block. See if there are any simplifications we 1727 /// can do based on inputs to the phi node. 1728 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1729 BasicBlock *BB = PN->getParent(); 1730 1731 // TODO: We could make use of this to do it once for blocks with common PHI 1732 // values. 1733 SmallVector<BasicBlock*, 1> PredBBs; 1734 PredBBs.resize(1); 1735 1736 // If any of the predecessor blocks end in an unconditional branch, we can 1737 // *duplicate* the conditional branch into that block in order to further 1738 // encourage jump threading and to eliminate cases where we have branch on a 1739 // phi of an icmp (branch on icmp is much better). 1740 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1741 BasicBlock *PredBB = PN->getIncomingBlock(i); 1742 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1743 if (PredBr->isUnconditional()) { 1744 PredBBs[0] = PredBB; 1745 // Try to duplicate BB into PredBB. 1746 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1747 return true; 1748 } 1749 } 1750 1751 return false; 1752 } 1753 1754 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1755 /// a xor instruction in the current block. See if there are any 1756 /// simplifications we can do based on inputs to the xor. 1757 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1758 BasicBlock *BB = BO->getParent(); 1759 1760 // If either the LHS or RHS of the xor is a constant, don't do this 1761 // optimization. 1762 if (isa<ConstantInt>(BO->getOperand(0)) || 1763 isa<ConstantInt>(BO->getOperand(1))) 1764 return false; 1765 1766 // If the first instruction in BB isn't a phi, we won't be able to infer 1767 // anything special about any particular predecessor. 1768 if (!isa<PHINode>(BB->front())) 1769 return false; 1770 1771 // If this BB is a landing pad, we won't be able to split the edge into it. 1772 if (BB->isEHPad()) 1773 return false; 1774 1775 // If we have a xor as the branch input to this block, and we know that the 1776 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1777 // the condition into the predecessor and fix that value to true, saving some 1778 // logical ops on that path and encouraging other paths to simplify. 1779 // 1780 // This copies something like this: 1781 // 1782 // BB: 1783 // %X = phi i1 [1], [%X'] 1784 // %Y = icmp eq i32 %A, %B 1785 // %Z = xor i1 %X, %Y 1786 // br i1 %Z, ... 1787 // 1788 // Into: 1789 // BB': 1790 // %Y = icmp ne i32 %A, %B 1791 // br i1 %Y, ... 1792 1793 PredValueInfoTy XorOpValues; 1794 bool isLHS = true; 1795 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1796 WantInteger, BO)) { 1797 assert(XorOpValues.empty()); 1798 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1799 WantInteger, BO)) 1800 return false; 1801 isLHS = false; 1802 } 1803 1804 assert(!XorOpValues.empty() && 1805 "ComputeValueKnownInPredecessors returned true with no values"); 1806 1807 // Scan the information to see which is most popular: true or false. The 1808 // predecessors can be of the set true, false, or undef. 1809 unsigned NumTrue = 0, NumFalse = 0; 1810 for (const auto &XorOpValue : XorOpValues) { 1811 if (isa<UndefValue>(XorOpValue.first)) 1812 // Ignore undefs for the count. 1813 continue; 1814 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1815 ++NumFalse; 1816 else 1817 ++NumTrue; 1818 } 1819 1820 // Determine which value to split on, true, false, or undef if neither. 1821 ConstantInt *SplitVal = nullptr; 1822 if (NumTrue > NumFalse) 1823 SplitVal = ConstantInt::getTrue(BB->getContext()); 1824 else if (NumTrue != 0 || NumFalse != 0) 1825 SplitVal = ConstantInt::getFalse(BB->getContext()); 1826 1827 // Collect all of the blocks that this can be folded into so that we can 1828 // factor this once and clone it once. 1829 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1830 for (const auto &XorOpValue : XorOpValues) { 1831 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1832 continue; 1833 1834 BlocksToFoldInto.push_back(XorOpValue.second); 1835 } 1836 1837 // If we inferred a value for all of the predecessors, then duplication won't 1838 // help us. However, we can just replace the LHS or RHS with the constant. 1839 if (BlocksToFoldInto.size() == 1840 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1841 if (!SplitVal) { 1842 // If all preds provide undef, just nuke the xor, because it is undef too. 1843 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1844 BO->eraseFromParent(); 1845 } else if (SplitVal->isZero()) { 1846 // If all preds provide 0, replace the xor with the other input. 1847 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1848 BO->eraseFromParent(); 1849 } else { 1850 // If all preds provide 1, set the computed value to 1. 1851 BO->setOperand(!isLHS, SplitVal); 1852 } 1853 1854 return true; 1855 } 1856 1857 // Try to duplicate BB into PredBB. 1858 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1859 } 1860 1861 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1862 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1863 /// NewPred using the entries from OldPred (suitably mapped). 1864 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1865 BasicBlock *OldPred, 1866 BasicBlock *NewPred, 1867 DenseMap<Instruction*, Value*> &ValueMap) { 1868 for (PHINode &PN : PHIBB->phis()) { 1869 // Ok, we have a PHI node. Figure out what the incoming value was for the 1870 // DestBlock. 1871 Value *IV = PN.getIncomingValueForBlock(OldPred); 1872 1873 // Remap the value if necessary. 1874 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1875 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1876 if (I != ValueMap.end()) 1877 IV = I->second; 1878 } 1879 1880 PN.addIncoming(IV, NewPred); 1881 } 1882 } 1883 1884 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1885 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1886 /// across BB. Transform the IR to reflect this change. 1887 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1888 const SmallVectorImpl<BasicBlock *> &PredBBs, 1889 BasicBlock *SuccBB) { 1890 // If threading to the same block as we come from, we would infinite loop. 1891 if (SuccBB == BB) { 1892 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1893 << "' - would thread to self!\n"); 1894 return false; 1895 } 1896 1897 // If threading this would thread across a loop header, don't thread the edge. 1898 // See the comments above FindLoopHeaders for justifications and caveats. 1899 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1900 DEBUG({ 1901 bool BBIsHeader = LoopHeaders.count(BB); 1902 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1903 dbgs() << " Not threading across " 1904 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1905 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1906 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1907 }); 1908 return false; 1909 } 1910 1911 unsigned JumpThreadCost = 1912 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1913 if (JumpThreadCost > BBDupThreshold) { 1914 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1915 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1916 return false; 1917 } 1918 1919 // And finally, do it! Start by factoring the predecessors if needed. 1920 BasicBlock *PredBB; 1921 if (PredBBs.size() == 1) 1922 PredBB = PredBBs[0]; 1923 else { 1924 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1925 << " common predecessors.\n"); 1926 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1927 } 1928 1929 // And finally, do it! 1930 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1931 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1932 << ", across block:\n " 1933 << *BB << "\n"); 1934 1935 if (DDT->pending()) 1936 LVI->disableDT(); 1937 else 1938 LVI->enableDT(); 1939 LVI->threadEdge(PredBB, BB, SuccBB); 1940 1941 // We are going to have to map operands from the original BB block to the new 1942 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1943 // account for entry from PredBB. 1944 DenseMap<Instruction*, Value*> ValueMapping; 1945 1946 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1947 BB->getName()+".thread", 1948 BB->getParent(), BB); 1949 NewBB->moveAfter(PredBB); 1950 1951 // Set the block frequency of NewBB. 1952 if (HasProfileData) { 1953 auto NewBBFreq = 1954 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1955 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1956 } 1957 1958 BasicBlock::iterator BI = BB->begin(); 1959 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1960 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1961 1962 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1963 // mapping and using it to remap operands in the cloned instructions. 1964 for (; !isa<TerminatorInst>(BI); ++BI) { 1965 Instruction *New = BI->clone(); 1966 New->setName(BI->getName()); 1967 NewBB->getInstList().push_back(New); 1968 ValueMapping[&*BI] = New; 1969 1970 // Remap operands to patch up intra-block references. 1971 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1972 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1973 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1974 if (I != ValueMapping.end()) 1975 New->setOperand(i, I->second); 1976 } 1977 } 1978 1979 // We didn't copy the terminator from BB over to NewBB, because there is now 1980 // an unconditional jump to SuccBB. Insert the unconditional jump. 1981 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1982 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1983 1984 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1985 // PHI nodes for NewBB now. 1986 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1987 1988 // If there were values defined in BB that are used outside the block, then we 1989 // now have to update all uses of the value to use either the original value, 1990 // the cloned value, or some PHI derived value. This can require arbitrary 1991 // PHI insertion, of which we are prepared to do, clean these up now. 1992 SSAUpdater SSAUpdate; 1993 SmallVector<Use*, 16> UsesToRename; 1994 for (Instruction &I : *BB) { 1995 // Scan all uses of this instruction to see if it is used outside of its 1996 // block, and if so, record them in UsesToRename. 1997 for (Use &U : I.uses()) { 1998 Instruction *User = cast<Instruction>(U.getUser()); 1999 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2000 if (UserPN->getIncomingBlock(U) == BB) 2001 continue; 2002 } else if (User->getParent() == BB) 2003 continue; 2004 2005 UsesToRename.push_back(&U); 2006 } 2007 2008 // If there are no uses outside the block, we're done with this instruction. 2009 if (UsesToRename.empty()) 2010 continue; 2011 2012 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2013 2014 // We found a use of I outside of BB. Rename all uses of I that are outside 2015 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2016 // with the two values we know. 2017 SSAUpdate.Initialize(I.getType(), I.getName()); 2018 SSAUpdate.AddAvailableValue(BB, &I); 2019 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2020 2021 while (!UsesToRename.empty()) 2022 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2023 DEBUG(dbgs() << "\n"); 2024 } 2025 2026 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 2027 // NewBB instead of BB. This eliminates predecessors from BB, which requires 2028 // us to simplify any PHI nodes in BB. 2029 TerminatorInst *PredTerm = PredBB->getTerminator(); 2030 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2031 if (PredTerm->getSuccessor(i) == BB) { 2032 BB->removePredecessor(PredBB, true); 2033 PredTerm->setSuccessor(i, NewBB); 2034 } 2035 2036 DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2037 {DominatorTree::Insert, PredBB, NewBB}, 2038 {DominatorTree::Delete, PredBB, BB}}); 2039 2040 // At this point, the IR is fully up to date and consistent. Do a quick scan 2041 // over the new instructions and zap any that are constants or dead. This 2042 // frequently happens because of phi translation. 2043 SimplifyInstructionsInBlock(NewBB, TLI); 2044 2045 // Update the edge weight from BB to SuccBB, which should be less than before. 2046 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2047 2048 // Threaded an edge! 2049 ++NumThreads; 2050 return true; 2051 } 2052 2053 /// Create a new basic block that will be the predecessor of BB and successor of 2054 /// all blocks in Preds. When profile data is available, update the frequency of 2055 /// this new block. 2056 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2057 ArrayRef<BasicBlock *> Preds, 2058 const char *Suffix) { 2059 SmallVector<BasicBlock *, 2> NewBBs; 2060 2061 // Collect the frequencies of all predecessors of BB, which will be used to 2062 // update the edge weight of the result of splitting predecessors. 2063 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2064 if (HasProfileData) 2065 for (auto Pred : Preds) 2066 FreqMap.insert(std::make_pair( 2067 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2068 2069 // In the case when BB is a LandingPad block we create 2 new predecessors 2070 // instead of just one. 2071 if (BB->isLandingPad()) { 2072 std::string NewName = std::string(Suffix) + ".split-lp"; 2073 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2074 } else { 2075 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2076 } 2077 2078 std::vector<DominatorTree::UpdateType> Updates; 2079 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2080 for (auto NewBB : NewBBs) { 2081 BlockFrequency NewBBFreq(0); 2082 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2083 for (auto Pred : predecessors(NewBB)) { 2084 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2085 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2086 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2087 NewBBFreq += FreqMap.lookup(Pred); 2088 } 2089 if (HasProfileData) // Apply the summed frequency to NewBB. 2090 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2091 } 2092 2093 DDT->applyUpdates(Updates); 2094 return NewBBs[0]; 2095 } 2096 2097 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2098 const TerminatorInst *TI = BB->getTerminator(); 2099 assert(TI->getNumSuccessors() > 1 && "not a split"); 2100 2101 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2102 if (!WeightsNode) 2103 return false; 2104 2105 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2106 if (MDName->getString() != "branch_weights") 2107 return false; 2108 2109 // Ensure there are weights for all of the successors. Note that the first 2110 // operand to the metadata node is a name, not a weight. 2111 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2112 } 2113 2114 /// Update the block frequency of BB and branch weight and the metadata on the 2115 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2116 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2117 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2118 BasicBlock *BB, 2119 BasicBlock *NewBB, 2120 BasicBlock *SuccBB) { 2121 if (!HasProfileData) 2122 return; 2123 2124 assert(BFI && BPI && "BFI & BPI should have been created here"); 2125 2126 // As the edge from PredBB to BB is deleted, we have to update the block 2127 // frequency of BB. 2128 auto BBOrigFreq = BFI->getBlockFreq(BB); 2129 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2130 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2131 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2132 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2133 2134 // Collect updated outgoing edges' frequencies from BB and use them to update 2135 // edge probabilities. 2136 SmallVector<uint64_t, 4> BBSuccFreq; 2137 for (BasicBlock *Succ : successors(BB)) { 2138 auto SuccFreq = (Succ == SuccBB) 2139 ? BB2SuccBBFreq - NewBBFreq 2140 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2141 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2142 } 2143 2144 uint64_t MaxBBSuccFreq = 2145 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2146 2147 SmallVector<BranchProbability, 4> BBSuccProbs; 2148 if (MaxBBSuccFreq == 0) 2149 BBSuccProbs.assign(BBSuccFreq.size(), 2150 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2151 else { 2152 for (uint64_t Freq : BBSuccFreq) 2153 BBSuccProbs.push_back( 2154 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2155 // Normalize edge probabilities so that they sum up to one. 2156 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2157 BBSuccProbs.end()); 2158 } 2159 2160 // Update edge probabilities in BPI. 2161 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2162 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2163 2164 // Update the profile metadata as well. 2165 // 2166 // Don't do this if the profile of the transformed blocks was statically 2167 // estimated. (This could occur despite the function having an entry 2168 // frequency in completely cold parts of the CFG.) 2169 // 2170 // In this case we don't want to suggest to subsequent passes that the 2171 // calculated weights are fully consistent. Consider this graph: 2172 // 2173 // check_1 2174 // 50% / | 2175 // eq_1 | 50% 2176 // \ | 2177 // check_2 2178 // 50% / | 2179 // eq_2 | 50% 2180 // \ | 2181 // check_3 2182 // 50% / | 2183 // eq_3 | 50% 2184 // \ | 2185 // 2186 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2187 // the overall probabilities are inconsistent; the total probability that the 2188 // value is either 1, 2 or 3 is 150%. 2189 // 2190 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2191 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2192 // the loop exit edge. Then based solely on static estimation we would assume 2193 // the loop was extremely hot. 2194 // 2195 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2196 // shouldn't make edges extremely likely or unlikely based solely on static 2197 // estimation. 2198 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2199 SmallVector<uint32_t, 4> Weights; 2200 for (auto Prob : BBSuccProbs) 2201 Weights.push_back(Prob.getNumerator()); 2202 2203 auto TI = BB->getTerminator(); 2204 TI->setMetadata( 2205 LLVMContext::MD_prof, 2206 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2207 } 2208 } 2209 2210 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2211 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2212 /// If we can duplicate the contents of BB up into PredBB do so now, this 2213 /// improves the odds that the branch will be on an analyzable instruction like 2214 /// a compare. 2215 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2216 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2217 assert(!PredBBs.empty() && "Can't handle an empty set"); 2218 2219 // If BB is a loop header, then duplicating this block outside the loop would 2220 // cause us to transform this into an irreducible loop, don't do this. 2221 // See the comments above FindLoopHeaders for justifications and caveats. 2222 if (LoopHeaders.count(BB)) { 2223 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2224 << "' into predecessor block '" << PredBBs[0]->getName() 2225 << "' - it might create an irreducible loop!\n"); 2226 return false; 2227 } 2228 2229 unsigned DuplicationCost = 2230 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2231 if (DuplicationCost > BBDupThreshold) { 2232 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2233 << "' - Cost is too high: " << DuplicationCost << "\n"); 2234 return false; 2235 } 2236 2237 // And finally, do it! Start by factoring the predecessors if needed. 2238 std::vector<DominatorTree::UpdateType> Updates; 2239 BasicBlock *PredBB; 2240 if (PredBBs.size() == 1) 2241 PredBB = PredBBs[0]; 2242 else { 2243 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2244 << " common predecessors.\n"); 2245 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2246 } 2247 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2248 2249 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2250 // of PredBB. 2251 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2252 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2253 << DuplicationCost << " block is:" << *BB << "\n"); 2254 2255 // Unless PredBB ends with an unconditional branch, split the edge so that we 2256 // can just clone the bits from BB into the end of the new PredBB. 2257 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2258 2259 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2260 BasicBlock *OldPredBB = PredBB; 2261 PredBB = SplitEdge(OldPredBB, BB); 2262 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2263 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2264 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2265 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2266 } 2267 2268 // We are going to have to map operands from the original BB block into the 2269 // PredBB block. Evaluate PHI nodes in BB. 2270 DenseMap<Instruction*, Value*> ValueMapping; 2271 2272 BasicBlock::iterator BI = BB->begin(); 2273 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2274 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2275 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2276 // mapping and using it to remap operands in the cloned instructions. 2277 for (; BI != BB->end(); ++BI) { 2278 Instruction *New = BI->clone(); 2279 2280 // Remap operands to patch up intra-block references. 2281 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2282 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2283 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2284 if (I != ValueMapping.end()) 2285 New->setOperand(i, I->second); 2286 } 2287 2288 // If this instruction can be simplified after the operands are updated, 2289 // just use the simplified value instead. This frequently happens due to 2290 // phi translation. 2291 if (Value *IV = SimplifyInstruction( 2292 New, 2293 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2294 ValueMapping[&*BI] = IV; 2295 if (!New->mayHaveSideEffects()) { 2296 New->deleteValue(); 2297 New = nullptr; 2298 } 2299 } else { 2300 ValueMapping[&*BI] = New; 2301 } 2302 if (New) { 2303 // Otherwise, insert the new instruction into the block. 2304 New->setName(BI->getName()); 2305 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2306 // Update Dominance from simplified New instruction operands. 2307 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2308 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2309 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2310 } 2311 } 2312 2313 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2314 // add entries to the PHI nodes for branch from PredBB now. 2315 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2316 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2317 ValueMapping); 2318 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2319 ValueMapping); 2320 2321 // If there were values defined in BB that are used outside the block, then we 2322 // now have to update all uses of the value to use either the original value, 2323 // the cloned value, or some PHI derived value. This can require arbitrary 2324 // PHI insertion, of which we are prepared to do, clean these up now. 2325 SSAUpdater SSAUpdate; 2326 SmallVector<Use*, 16> UsesToRename; 2327 for (Instruction &I : *BB) { 2328 // Scan all uses of this instruction to see if it is used outside of its 2329 // block, and if so, record them in UsesToRename. 2330 for (Use &U : I.uses()) { 2331 Instruction *User = cast<Instruction>(U.getUser()); 2332 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2333 if (UserPN->getIncomingBlock(U) == BB) 2334 continue; 2335 } else if (User->getParent() == BB) 2336 continue; 2337 2338 UsesToRename.push_back(&U); 2339 } 2340 2341 // If there are no uses outside the block, we're done with this instruction. 2342 if (UsesToRename.empty()) 2343 continue; 2344 2345 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2346 2347 // We found a use of I outside of BB. Rename all uses of I that are outside 2348 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2349 // with the two values we know. 2350 SSAUpdate.Initialize(I.getType(), I.getName()); 2351 SSAUpdate.AddAvailableValue(BB, &I); 2352 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2353 2354 while (!UsesToRename.empty()) 2355 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2356 DEBUG(dbgs() << "\n"); 2357 } 2358 2359 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2360 // that we nuked. 2361 BB->removePredecessor(PredBB, true); 2362 2363 // Remove the unconditional branch at the end of the PredBB block. 2364 OldPredBranch->eraseFromParent(); 2365 DDT->applyUpdates(Updates); 2366 2367 ++NumDupes; 2368 return true; 2369 } 2370 2371 /// TryToUnfoldSelect - Look for blocks of the form 2372 /// bb1: 2373 /// %a = select 2374 /// br bb2 2375 /// 2376 /// bb2: 2377 /// %p = phi [%a, %bb1] ... 2378 /// %c = icmp %p 2379 /// br i1 %c 2380 /// 2381 /// And expand the select into a branch structure if one of its arms allows %c 2382 /// to be folded. This later enables threading from bb1 over bb2. 2383 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2384 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2385 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2386 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2387 2388 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2389 CondLHS->getParent() != BB) 2390 return false; 2391 2392 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2393 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2394 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2395 2396 // Look if one of the incoming values is a select in the corresponding 2397 // predecessor. 2398 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2399 continue; 2400 2401 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2402 if (!PredTerm || !PredTerm->isUnconditional()) 2403 continue; 2404 2405 // Now check if one of the select values would allow us to constant fold the 2406 // terminator in BB. We don't do the transform if both sides fold, those 2407 // cases will be threaded in any case. 2408 if (DDT->pending()) 2409 LVI->disableDT(); 2410 else 2411 LVI->enableDT(); 2412 LazyValueInfo::Tristate LHSFolds = 2413 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2414 CondRHS, Pred, BB, CondCmp); 2415 LazyValueInfo::Tristate RHSFolds = 2416 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2417 CondRHS, Pred, BB, CondCmp); 2418 if ((LHSFolds != LazyValueInfo::Unknown || 2419 RHSFolds != LazyValueInfo::Unknown) && 2420 LHSFolds != RHSFolds) { 2421 // Expand the select. 2422 // 2423 // Pred -- 2424 // | v 2425 // | NewBB 2426 // | | 2427 // |----- 2428 // v 2429 // BB 2430 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2431 BB->getParent(), BB); 2432 // Move the unconditional branch to NewBB. 2433 PredTerm->removeFromParent(); 2434 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2435 // Create a conditional branch and update PHI nodes. 2436 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2437 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2438 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2439 // The select is now dead. 2440 SI->eraseFromParent(); 2441 2442 DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2443 {DominatorTree::Insert, Pred, NewBB}}); 2444 // Update any other PHI nodes in BB. 2445 for (BasicBlock::iterator BI = BB->begin(); 2446 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2447 if (Phi != CondLHS) 2448 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2449 return true; 2450 } 2451 } 2452 return false; 2453 } 2454 2455 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2456 /// same BB in the form 2457 /// bb: 2458 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2459 /// %s = select %p, trueval, falseval 2460 /// 2461 /// or 2462 /// 2463 /// bb: 2464 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2465 /// %c = cmp %p, 0 2466 /// %s = select %c, trueval, falseval 2467 /// 2468 /// And expand the select into a branch structure. This later enables 2469 /// jump-threading over bb in this pass. 2470 /// 2471 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2472 /// select if the associated PHI has at least one constant. If the unfolded 2473 /// select is not jump-threaded, it will be folded again in the later 2474 /// optimizations. 2475 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2476 // If threading this would thread across a loop header, don't thread the edge. 2477 // See the comments above FindLoopHeaders for justifications and caveats. 2478 if (LoopHeaders.count(BB)) 2479 return false; 2480 2481 for (BasicBlock::iterator BI = BB->begin(); 2482 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2483 // Look for a Phi having at least one constant incoming value. 2484 if (llvm::all_of(PN->incoming_values(), 2485 [](Value *V) { return !isa<ConstantInt>(V); })) 2486 continue; 2487 2488 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2489 // Check if SI is in BB and use V as condition. 2490 if (SI->getParent() != BB) 2491 return false; 2492 Value *Cond = SI->getCondition(); 2493 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2494 }; 2495 2496 SelectInst *SI = nullptr; 2497 for (Use &U : PN->uses()) { 2498 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2499 // Look for a ICmp in BB that compares PN with a constant and is the 2500 // condition of a Select. 2501 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2502 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2503 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2504 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2505 SI = SelectI; 2506 break; 2507 } 2508 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2509 // Look for a Select in BB that uses PN as condtion. 2510 if (isUnfoldCandidate(SelectI, U.get())) { 2511 SI = SelectI; 2512 break; 2513 } 2514 } 2515 } 2516 2517 if (!SI) 2518 continue; 2519 // Expand the select. 2520 TerminatorInst *Term = 2521 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2522 BasicBlock *SplitBB = SI->getParent(); 2523 BasicBlock *NewBB = Term->getParent(); 2524 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2525 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2526 NewPN->addIncoming(SI->getFalseValue(), BB); 2527 SI->replaceAllUsesWith(NewPN); 2528 SI->eraseFromParent(); 2529 // NewBB and SplitBB are newly created blocks which require insertion. 2530 std::vector<DominatorTree::UpdateType> Updates; 2531 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2532 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2533 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2534 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2535 // BB's successors were moved to SplitBB, update DDT accordingly. 2536 for (auto *Succ : successors(SplitBB)) { 2537 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2538 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2539 } 2540 DDT->applyUpdates(Updates); 2541 return true; 2542 } 2543 return false; 2544 } 2545 2546 /// Try to propagate a guard from the current BB into one of its predecessors 2547 /// in case if another branch of execution implies that the condition of this 2548 /// guard is always true. Currently we only process the simplest case that 2549 /// looks like: 2550 /// 2551 /// Start: 2552 /// %cond = ... 2553 /// br i1 %cond, label %T1, label %F1 2554 /// T1: 2555 /// br label %Merge 2556 /// F1: 2557 /// br label %Merge 2558 /// Merge: 2559 /// %condGuard = ... 2560 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2561 /// 2562 /// And cond either implies condGuard or !condGuard. In this case all the 2563 /// instructions before the guard can be duplicated in both branches, and the 2564 /// guard is then threaded to one of them. 2565 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2566 using namespace PatternMatch; 2567 2568 // We only want to deal with two predecessors. 2569 BasicBlock *Pred1, *Pred2; 2570 auto PI = pred_begin(BB), PE = pred_end(BB); 2571 if (PI == PE) 2572 return false; 2573 Pred1 = *PI++; 2574 if (PI == PE) 2575 return false; 2576 Pred2 = *PI++; 2577 if (PI != PE) 2578 return false; 2579 if (Pred1 == Pred2) 2580 return false; 2581 2582 // Try to thread one of the guards of the block. 2583 // TODO: Look up deeper than to immediate predecessor? 2584 auto *Parent = Pred1->getSinglePredecessor(); 2585 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2586 return false; 2587 2588 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2589 for (auto &I : *BB) 2590 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2591 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2592 return true; 2593 2594 return false; 2595 } 2596 2597 /// Try to propagate the guard from BB which is the lower block of a diamond 2598 /// to one of its branches, in case if diamond's condition implies guard's 2599 /// condition. 2600 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2601 BranchInst *BI) { 2602 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2603 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2604 Value *GuardCond = Guard->getArgOperand(0); 2605 Value *BranchCond = BI->getCondition(); 2606 BasicBlock *TrueDest = BI->getSuccessor(0); 2607 BasicBlock *FalseDest = BI->getSuccessor(1); 2608 2609 auto &DL = BB->getModule()->getDataLayout(); 2610 bool TrueDestIsSafe = false; 2611 bool FalseDestIsSafe = false; 2612 2613 // True dest is safe if BranchCond => GuardCond. 2614 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2615 if (Impl && *Impl) 2616 TrueDestIsSafe = true; 2617 else { 2618 // False dest is safe if !BranchCond => GuardCond. 2619 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2620 if (Impl && *Impl) 2621 FalseDestIsSafe = true; 2622 } 2623 2624 if (!TrueDestIsSafe && !FalseDestIsSafe) 2625 return false; 2626 2627 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2628 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2629 2630 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2631 Instruction *AfterGuard = Guard->getNextNode(); 2632 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2633 if (Cost > BBDupThreshold) 2634 return false; 2635 // Duplicate all instructions before the guard and the guard itself to the 2636 // branch where implication is not proved. 2637 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2638 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2639 assert(GuardedBlock && "Could not create the guarded block?"); 2640 // Duplicate all instructions before the guard in the unguarded branch. 2641 // Since we have successfully duplicated the guarded block and this block 2642 // has fewer instructions, we expect it to succeed. 2643 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2644 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2645 assert(UnguardedBlock && "Could not create the unguarded block?"); 2646 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2647 << GuardedBlock->getName() << "\n"); 2648 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2649 // PredBB and BB. We need to perform two inserts and one delete for each of 2650 // the above calls to update Dominators. 2651 DDT->applyUpdates( 2652 {// Guarded block split. 2653 {DominatorTree::Delete, PredGuardedBlock, BB}, 2654 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2655 {DominatorTree::Insert, GuardedBlock, BB}, 2656 // Unguarded block split. 2657 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2658 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2659 {DominatorTree::Insert, UnguardedBlock, BB}}); 2660 // Some instructions before the guard may still have uses. For them, we need 2661 // to create Phi nodes merging their copies in both guarded and unguarded 2662 // branches. Those instructions that have no uses can be just removed. 2663 SmallVector<Instruction *, 4> ToRemove; 2664 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2665 if (!isa<PHINode>(&*BI)) 2666 ToRemove.push_back(&*BI); 2667 2668 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2669 assert(InsertionPoint && "Empty block?"); 2670 // Substitute with Phis & remove. 2671 for (auto *Inst : reverse(ToRemove)) { 2672 if (!Inst->use_empty()) { 2673 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2674 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2675 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2676 NewPN->insertBefore(InsertionPoint); 2677 Inst->replaceAllUsesWith(NewPN); 2678 } 2679 Inst->eraseFromParent(); 2680 } 2681 return true; 2682 } 2683