1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<DominatorTreeWrapperPass>();
135       AU.addPreserved<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<LazyValueInfoWrapperPass>();
139       AU.addPreserved<GlobalsAAWrapperPass>();
140       AU.addRequired<TargetLibraryInfoWrapperPass>();
141     }
142 
143     void releaseMemory() override { Impl.releaseMemory(); }
144   };
145 
146 } // end anonymous namespace
147 
148 char JumpThreading::ID = 0;
149 
150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
151                 "Jump Threading", false, false)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
156 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
157                 "Jump Threading", false, false)
158 
159 // Public interface to the Jump Threading pass
160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
161   return new JumpThreading(Threshold);
162 }
163 
164 JumpThreadingPass::JumpThreadingPass(int T) {
165   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
166 }
167 
168 // Update branch probability information according to conditional
169 // branch probablity. This is usually made possible for cloned branches
170 // in inline instances by the context specific profile in the caller.
171 // For instance,
172 //
173 //  [Block PredBB]
174 //  [Branch PredBr]
175 //  if (t) {
176 //     Block A;
177 //  } else {
178 //     Block B;
179 //  }
180 //
181 //  [Block BB]
182 //  cond = PN([true, %A], [..., %B]); // PHI node
183 //  [Branch CondBr]
184 //  if (cond) {
185 //    ...  // P(cond == true) = 1%
186 //  }
187 //
188 //  Here we know that when block A is taken, cond must be true, which means
189 //      P(cond == true | A) = 1
190 //
191 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
192 //                               P(cond == true | B) * P(B)
193 //  we get:
194 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
195 //
196 //  which gives us:
197 //     P(A) is less than P(cond == true), i.e.
198 //     P(t == true) <= P(cond == true)
199 //
200 //  In other words, if we know P(cond == true) is unlikely, we know
201 //  that P(t == true) is also unlikely.
202 //
203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
204   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
205   if (!CondBr)
206     return;
207 
208   BranchProbability BP;
209   uint64_t TrueWeight, FalseWeight;
210   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
211     return;
212 
213   // Returns the outgoing edge of the dominating predecessor block
214   // that leads to the PhiNode's incoming block:
215   auto GetPredOutEdge =
216       [](BasicBlock *IncomingBB,
217          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
218     auto *PredBB = IncomingBB;
219     auto *SuccBB = PhiBB;
220     while (true) {
221       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
222       if (PredBr && PredBr->isConditional())
223         return {PredBB, SuccBB};
224       auto *SinglePredBB = PredBB->getSinglePredecessor();
225       if (!SinglePredBB)
226         return {nullptr, nullptr};
227       SuccBB = PredBB;
228       PredBB = SinglePredBB;
229     }
230   };
231 
232   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
233     Value *PhiOpnd = PN->getIncomingValue(i);
234     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
235 
236     if (!CI || !CI->getType()->isIntegerTy(1))
237       continue;
238 
239     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
240                             TrueWeight, TrueWeight + FalseWeight)
241                       : BranchProbability::getBranchProbability(
242                             FalseWeight, TrueWeight + FalseWeight));
243 
244     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
245     if (!PredOutEdge.first)
246       return;
247 
248     BasicBlock *PredBB = PredOutEdge.first;
249     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
250 
251     uint64_t PredTrueWeight, PredFalseWeight;
252     // FIXME: We currently only set the profile data when it is missing.
253     // With PGO, this can be used to refine even existing profile data with
254     // context information. This needs to be done after more performance
255     // testing.
256     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
257       continue;
258 
259     // We can not infer anything useful when BP >= 50%, because BP is the
260     // upper bound probability value.
261     if (BP >= BranchProbability(50, 100))
262       continue;
263 
264     SmallVector<uint32_t, 2> Weights;
265     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
266       Weights.push_back(BP.getNumerator());
267       Weights.push_back(BP.getCompl().getNumerator());
268     } else {
269       Weights.push_back(BP.getCompl().getNumerator());
270       Weights.push_back(BP.getNumerator());
271     }
272     PredBr->setMetadata(LLVMContext::MD_prof,
273                         MDBuilder(PredBr->getParent()->getContext())
274                             .createBranchWeights(Weights));
275   }
276 }
277 
278 /// runOnFunction - Toplevel algorithm.
279 bool JumpThreading::runOnFunction(Function &F) {
280   if (skipFunction(F))
281     return false;
282   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
283   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
284   // DT if it's available.
285   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
286   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
287   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
288   DeferredDominance DDT(*DT);
289   std::unique_ptr<BlockFrequencyInfo> BFI;
290   std::unique_ptr<BranchProbabilityInfo> BPI;
291   bool HasProfileData = F.hasProfileData();
292   if (HasProfileData) {
293     LoopInfo LI{DominatorTree(F)};
294     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
295     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
296   }
297 
298   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
299                               std::move(BFI), std::move(BPI));
300   if (PrintLVIAfterJumpThreading) {
301     dbgs() << "LVI for function '" << F.getName() << "':\n";
302     LVI->printLVI(F, *DT, dbgs());
303   }
304   return Changed;
305 }
306 
307 PreservedAnalyses JumpThreadingPass::run(Function &F,
308                                          FunctionAnalysisManager &AM) {
309   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
310   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
311   // DT if it's available.
312   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
313   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
314   auto &AA = AM.getResult<AAManager>(F);
315   DeferredDominance DDT(DT);
316 
317   std::unique_ptr<BlockFrequencyInfo> BFI;
318   std::unique_ptr<BranchProbabilityInfo> BPI;
319   if (F.hasProfileData()) {
320     LoopInfo LI{DominatorTree(F)};
321     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
322     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
323   }
324 
325   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
326                          std::move(BFI), std::move(BPI));
327 
328   if (!Changed)
329     return PreservedAnalyses::all();
330   PreservedAnalyses PA;
331   PA.preserve<GlobalsAA>();
332   PA.preserve<DominatorTreeAnalysis>();
333   PA.preserve<LazyValueAnalysis>();
334   return PA;
335 }
336 
337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
338                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
339                                 DeferredDominance *DDT_, bool HasProfileData_,
340                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
341                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
342   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
343   TLI = TLI_;
344   LVI = LVI_;
345   AA = AA_;
346   DDT = DDT_;
347   BFI.reset();
348   BPI.reset();
349   // When profile data is available, we need to update edge weights after
350   // successful jump threading, which requires both BPI and BFI being available.
351   HasProfileData = HasProfileData_;
352   auto *GuardDecl = F.getParent()->getFunction(
353       Intrinsic::getName(Intrinsic::experimental_guard));
354   HasGuards = GuardDecl && !GuardDecl->use_empty();
355   if (HasProfileData) {
356     BPI = std::move(BPI_);
357     BFI = std::move(BFI_);
358   }
359 
360   // JumpThreading must not processes blocks unreachable from entry. It's a
361   // waste of compute time and can potentially lead to hangs.
362   SmallPtrSet<BasicBlock *, 16> Unreachable;
363   DominatorTree &DT = DDT->flush();
364   for (auto &BB : F)
365     if (!DT.isReachableFromEntry(&BB))
366       Unreachable.insert(&BB);
367 
368   FindLoopHeaders(F);
369 
370   bool EverChanged = false;
371   bool Changed;
372   do {
373     Changed = false;
374     for (auto &BB : F) {
375       if (Unreachable.count(&BB))
376         continue;
377       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
378         Changed = true;
379       // Stop processing BB if it's the entry or is now deleted. The following
380       // routines attempt to eliminate BB and locating a suitable replacement
381       // for the entry is non-trivial.
382       if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB))
383         continue;
384 
385       if (pred_empty(&BB)) {
386         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
387         // the instructions in it. We must remove BB to prevent invalid IR.
388         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
389                      << "' with terminator: " << *BB.getTerminator() << '\n');
390         LoopHeaders.erase(&BB);
391         LVI->eraseBlock(&BB);
392         DeleteDeadBlock(&BB, DDT);
393         Changed = true;
394         continue;
395       }
396 
397       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
398       // is "almost empty", we attempt to merge BB with its sole successor.
399       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
400       if (BI && BI->isUnconditional() &&
401           // The terminator must be the only non-phi instruction in BB.
402           BB.getFirstNonPHIOrDbg()->isTerminator() &&
403           // Don't alter Loop headers and latches to ensure another pass can
404           // detect and transform nested loops later.
405           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
406           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) {
407         // BB is valid for cleanup here because we passed in DDT. F remains
408         // BB's parent until a DDT->flush() event.
409         LVI->eraseBlock(&BB);
410         Changed = true;
411       }
412     }
413     EverChanged |= Changed;
414   } while (Changed);
415 
416   LoopHeaders.clear();
417   DDT->flush();
418   LVI->enableDT();
419   return EverChanged;
420 }
421 
422 // Replace uses of Cond with ToVal when safe to do so. If all uses are
423 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
424 // because we may incorrectly replace uses when guards/assumes are uses of
425 // of `Cond` and we used the guards/assume to reason about the `Cond` value
426 // at the end of block. RAUW unconditionally replaces all uses
427 // including the guards/assumes themselves and the uses before the
428 // guard/assume.
429 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
430   assert(Cond->getType() == ToVal->getType());
431   auto *BB = Cond->getParent();
432   // We can unconditionally replace all uses in non-local blocks (i.e. uses
433   // strictly dominated by BB), since LVI information is true from the
434   // terminator of BB.
435   replaceNonLocalUsesWith(Cond, ToVal);
436   for (Instruction &I : reverse(*BB)) {
437     // Reached the Cond whose uses we are trying to replace, so there are no
438     // more uses.
439     if (&I == Cond)
440       break;
441     // We only replace uses in instructions that are guaranteed to reach the end
442     // of BB, where we know Cond is ToVal.
443     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
444       break;
445     I.replaceUsesOfWith(Cond, ToVal);
446   }
447   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
448     Cond->eraseFromParent();
449 }
450 
451 /// Return the cost of duplicating a piece of this block from first non-phi
452 /// and before StopAt instruction to thread across it. Stop scanning the block
453 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
454 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
455                                              Instruction *StopAt,
456                                              unsigned Threshold) {
457   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
458   /// Ignore PHI nodes, these will be flattened when duplication happens.
459   BasicBlock::const_iterator I(BB->getFirstNonPHI());
460 
461   // FIXME: THREADING will delete values that are just used to compute the
462   // branch, so they shouldn't count against the duplication cost.
463 
464   unsigned Bonus = 0;
465   if (BB->getTerminator() == StopAt) {
466     // Threading through a switch statement is particularly profitable.  If this
467     // block ends in a switch, decrease its cost to make it more likely to
468     // happen.
469     if (isa<SwitchInst>(StopAt))
470       Bonus = 6;
471 
472     // The same holds for indirect branches, but slightly more so.
473     if (isa<IndirectBrInst>(StopAt))
474       Bonus = 8;
475   }
476 
477   // Bump the threshold up so the early exit from the loop doesn't skip the
478   // terminator-based Size adjustment at the end.
479   Threshold += Bonus;
480 
481   // Sum up the cost of each instruction until we get to the terminator.  Don't
482   // include the terminator because the copy won't include it.
483   unsigned Size = 0;
484   for (; &*I != StopAt; ++I) {
485 
486     // Stop scanning the block if we've reached the threshold.
487     if (Size > Threshold)
488       return Size;
489 
490     // Debugger intrinsics don't incur code size.
491     if (isa<DbgInfoIntrinsic>(I)) continue;
492 
493     // If this is a pointer->pointer bitcast, it is free.
494     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
495       continue;
496 
497     // Bail out if this instruction gives back a token type, it is not possible
498     // to duplicate it if it is used outside this BB.
499     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
500       return ~0U;
501 
502     // All other instructions count for at least one unit.
503     ++Size;
504 
505     // Calls are more expensive.  If they are non-intrinsic calls, we model them
506     // as having cost of 4.  If they are a non-vector intrinsic, we model them
507     // as having cost of 2 total, and if they are a vector intrinsic, we model
508     // them as having cost 1.
509     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
510       if (CI->cannotDuplicate() || CI->isConvergent())
511         // Blocks with NoDuplicate are modelled as having infinite cost, so they
512         // are never duplicated.
513         return ~0U;
514       else if (!isa<IntrinsicInst>(CI))
515         Size += 3;
516       else if (!CI->getType()->isVectorTy())
517         Size += 1;
518     }
519   }
520 
521   return Size > Bonus ? Size - Bonus : 0;
522 }
523 
524 /// FindLoopHeaders - We do not want jump threading to turn proper loop
525 /// structures into irreducible loops.  Doing this breaks up the loop nesting
526 /// hierarchy and pessimizes later transformations.  To prevent this from
527 /// happening, we first have to find the loop headers.  Here we approximate this
528 /// by finding targets of backedges in the CFG.
529 ///
530 /// Note that there definitely are cases when we want to allow threading of
531 /// edges across a loop header.  For example, threading a jump from outside the
532 /// loop (the preheader) to an exit block of the loop is definitely profitable.
533 /// It is also almost always profitable to thread backedges from within the loop
534 /// to exit blocks, and is often profitable to thread backedges to other blocks
535 /// within the loop (forming a nested loop).  This simple analysis is not rich
536 /// enough to track all of these properties and keep it up-to-date as the CFG
537 /// mutates, so we don't allow any of these transformations.
538 void JumpThreadingPass::FindLoopHeaders(Function &F) {
539   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
540   FindFunctionBackedges(F, Edges);
541 
542   for (const auto &Edge : Edges)
543     LoopHeaders.insert(Edge.second);
544 }
545 
546 /// getKnownConstant - Helper method to determine if we can thread over a
547 /// terminator with the given value as its condition, and if so what value to
548 /// use for that. What kind of value this is depends on whether we want an
549 /// integer or a block address, but an undef is always accepted.
550 /// Returns null if Val is null or not an appropriate constant.
551 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
552   if (!Val)
553     return nullptr;
554 
555   // Undef is "known" enough.
556   if (UndefValue *U = dyn_cast<UndefValue>(Val))
557     return U;
558 
559   if (Preference == WantBlockAddress)
560     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
561 
562   return dyn_cast<ConstantInt>(Val);
563 }
564 
565 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
566 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
567 /// in any of our predecessors.  If so, return the known list of value and pred
568 /// BB in the result vector.
569 ///
570 /// This returns true if there were any known values.
571 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
572     Value *V, BasicBlock *BB, PredValueInfo &Result,
573     ConstantPreference Preference, Instruction *CxtI) {
574   // This method walks up use-def chains recursively.  Because of this, we could
575   // get into an infinite loop going around loops in the use-def chain.  To
576   // prevent this, keep track of what (value, block) pairs we've already visited
577   // and terminate the search if we loop back to them
578   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
579     return false;
580 
581   // An RAII help to remove this pair from the recursion set once the recursion
582   // stack pops back out again.
583   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
584 
585   // If V is a constant, then it is known in all predecessors.
586   if (Constant *KC = getKnownConstant(V, Preference)) {
587     for (BasicBlock *Pred : predecessors(BB))
588       Result.push_back(std::make_pair(KC, Pred));
589 
590     return !Result.empty();
591   }
592 
593   // If V is a non-instruction value, or an instruction in a different block,
594   // then it can't be derived from a PHI.
595   Instruction *I = dyn_cast<Instruction>(V);
596   if (!I || I->getParent() != BB) {
597 
598     // Okay, if this is a live-in value, see if it has a known value at the end
599     // of any of our predecessors.
600     //
601     // FIXME: This should be an edge property, not a block end property.
602     /// TODO: Per PR2563, we could infer value range information about a
603     /// predecessor based on its terminator.
604     //
605     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
606     // "I" is a non-local compare-with-a-constant instruction.  This would be
607     // able to handle value inequalities better, for example if the compare is
608     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
609     // Perhaps getConstantOnEdge should be smart enough to do this?
610 
611     if (DDT->pending())
612       LVI->disableDT();
613     else
614       LVI->enableDT();
615     for (BasicBlock *P : predecessors(BB)) {
616       // If the value is known by LazyValueInfo to be a constant in a
617       // predecessor, use that information to try to thread this block.
618       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
619       if (Constant *KC = getKnownConstant(PredCst, Preference))
620         Result.push_back(std::make_pair(KC, P));
621     }
622 
623     return !Result.empty();
624   }
625 
626   /// If I is a PHI node, then we know the incoming values for any constants.
627   if (PHINode *PN = dyn_cast<PHINode>(I)) {
628     if (DDT->pending())
629       LVI->disableDT();
630     else
631       LVI->enableDT();
632     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
633       Value *InVal = PN->getIncomingValue(i);
634       if (Constant *KC = getKnownConstant(InVal, Preference)) {
635         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
636       } else {
637         Constant *CI = LVI->getConstantOnEdge(InVal,
638                                               PN->getIncomingBlock(i),
639                                               BB, CxtI);
640         if (Constant *KC = getKnownConstant(CI, Preference))
641           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
642       }
643     }
644 
645     return !Result.empty();
646   }
647 
648   // Handle Cast instructions.  Only see through Cast when the source operand is
649   // PHI or Cmp to save the compilation time.
650   if (CastInst *CI = dyn_cast<CastInst>(I)) {
651     Value *Source = CI->getOperand(0);
652     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
653       return false;
654     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
655     if (Result.empty())
656       return false;
657 
658     // Convert the known values.
659     for (auto &R : Result)
660       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
661 
662     return true;
663   }
664 
665   // Handle some boolean conditions.
666   if (I->getType()->getPrimitiveSizeInBits() == 1) {
667     assert(Preference == WantInteger && "One-bit non-integer type?");
668     // X | true -> true
669     // X & false -> false
670     if (I->getOpcode() == Instruction::Or ||
671         I->getOpcode() == Instruction::And) {
672       PredValueInfoTy LHSVals, RHSVals;
673 
674       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
675                                       WantInteger, CxtI);
676       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
677                                       WantInteger, CxtI);
678 
679       if (LHSVals.empty() && RHSVals.empty())
680         return false;
681 
682       ConstantInt *InterestingVal;
683       if (I->getOpcode() == Instruction::Or)
684         InterestingVal = ConstantInt::getTrue(I->getContext());
685       else
686         InterestingVal = ConstantInt::getFalse(I->getContext());
687 
688       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
689 
690       // Scan for the sentinel.  If we find an undef, force it to the
691       // interesting value: x|undef -> true and x&undef -> false.
692       for (const auto &LHSVal : LHSVals)
693         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
694           Result.emplace_back(InterestingVal, LHSVal.second);
695           LHSKnownBBs.insert(LHSVal.second);
696         }
697       for (const auto &RHSVal : RHSVals)
698         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
699           // If we already inferred a value for this block on the LHS, don't
700           // re-add it.
701           if (!LHSKnownBBs.count(RHSVal.second))
702             Result.emplace_back(InterestingVal, RHSVal.second);
703         }
704 
705       return !Result.empty();
706     }
707 
708     // Handle the NOT form of XOR.
709     if (I->getOpcode() == Instruction::Xor &&
710         isa<ConstantInt>(I->getOperand(1)) &&
711         cast<ConstantInt>(I->getOperand(1))->isOne()) {
712       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
713                                       WantInteger, CxtI);
714       if (Result.empty())
715         return false;
716 
717       // Invert the known values.
718       for (auto &R : Result)
719         R.first = ConstantExpr::getNot(R.first);
720 
721       return true;
722     }
723 
724   // Try to simplify some other binary operator values.
725   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
726     assert(Preference != WantBlockAddress
727             && "A binary operator creating a block address?");
728     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
729       PredValueInfoTy LHSVals;
730       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
731                                       WantInteger, CxtI);
732 
733       // Try to use constant folding to simplify the binary operator.
734       for (const auto &LHSVal : LHSVals) {
735         Constant *V = LHSVal.first;
736         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
737 
738         if (Constant *KC = getKnownConstant(Folded, WantInteger))
739           Result.push_back(std::make_pair(KC, LHSVal.second));
740       }
741     }
742 
743     return !Result.empty();
744   }
745 
746   // Handle compare with phi operand, where the PHI is defined in this block.
747   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
748     assert(Preference == WantInteger && "Compares only produce integers");
749     Type *CmpType = Cmp->getType();
750     Value *CmpLHS = Cmp->getOperand(0);
751     Value *CmpRHS = Cmp->getOperand(1);
752     CmpInst::Predicate Pred = Cmp->getPredicate();
753 
754     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
755     if (PN && PN->getParent() == BB) {
756       const DataLayout &DL = PN->getModule()->getDataLayout();
757       // We can do this simplification if any comparisons fold to true or false.
758       // See if any do.
759       if (DDT->pending())
760         LVI->disableDT();
761       else
762         LVI->enableDT();
763       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
764         BasicBlock *PredBB = PN->getIncomingBlock(i);
765         Value *LHS = PN->getIncomingValue(i);
766         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
767 
768         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
769         if (!Res) {
770           if (!isa<Constant>(RHS))
771             continue;
772 
773           LazyValueInfo::Tristate
774             ResT = LVI->getPredicateOnEdge(Pred, LHS,
775                                            cast<Constant>(RHS), PredBB, BB,
776                                            CxtI ? CxtI : Cmp);
777           if (ResT == LazyValueInfo::Unknown)
778             continue;
779           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
780         }
781 
782         if (Constant *KC = getKnownConstant(Res, WantInteger))
783           Result.push_back(std::make_pair(KC, PredBB));
784       }
785 
786       return !Result.empty();
787     }
788 
789     // If comparing a live-in value against a constant, see if we know the
790     // live-in value on any predecessors.
791     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
792       Constant *CmpConst = cast<Constant>(CmpRHS);
793 
794       if (!isa<Instruction>(CmpLHS) ||
795           cast<Instruction>(CmpLHS)->getParent() != BB) {
796         if (DDT->pending())
797           LVI->disableDT();
798         else
799           LVI->enableDT();
800         for (BasicBlock *P : predecessors(BB)) {
801           // If the value is known by LazyValueInfo to be a constant in a
802           // predecessor, use that information to try to thread this block.
803           LazyValueInfo::Tristate Res =
804             LVI->getPredicateOnEdge(Pred, CmpLHS,
805                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
806           if (Res == LazyValueInfo::Unknown)
807             continue;
808 
809           Constant *ResC = ConstantInt::get(CmpType, Res);
810           Result.push_back(std::make_pair(ResC, P));
811         }
812 
813         return !Result.empty();
814       }
815 
816       // InstCombine can fold some forms of constant range checks into
817       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
818       // x as a live-in.
819       {
820         using namespace PatternMatch;
821 
822         Value *AddLHS;
823         ConstantInt *AddConst;
824         if (isa<ConstantInt>(CmpConst) &&
825             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
826           if (!isa<Instruction>(AddLHS) ||
827               cast<Instruction>(AddLHS)->getParent() != BB) {
828             if (DDT->pending())
829               LVI->disableDT();
830             else
831               LVI->enableDT();
832             for (BasicBlock *P : predecessors(BB)) {
833               // If the value is known by LazyValueInfo to be a ConstantRange in
834               // a predecessor, use that information to try to thread this
835               // block.
836               ConstantRange CR = LVI->getConstantRangeOnEdge(
837                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
838               // Propagate the range through the addition.
839               CR = CR.add(AddConst->getValue());
840 
841               // Get the range where the compare returns true.
842               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
843                   Pred, cast<ConstantInt>(CmpConst)->getValue());
844 
845               Constant *ResC;
846               if (CmpRange.contains(CR))
847                 ResC = ConstantInt::getTrue(CmpType);
848               else if (CmpRange.inverse().contains(CR))
849                 ResC = ConstantInt::getFalse(CmpType);
850               else
851                 continue;
852 
853               Result.push_back(std::make_pair(ResC, P));
854             }
855 
856             return !Result.empty();
857           }
858         }
859       }
860 
861       // Try to find a constant value for the LHS of a comparison,
862       // and evaluate it statically if we can.
863       PredValueInfoTy LHSVals;
864       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
865                                       WantInteger, CxtI);
866 
867       for (const auto &LHSVal : LHSVals) {
868         Constant *V = LHSVal.first;
869         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
870         if (Constant *KC = getKnownConstant(Folded, WantInteger))
871           Result.push_back(std::make_pair(KC, LHSVal.second));
872       }
873 
874       return !Result.empty();
875     }
876   }
877 
878   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
879     // Handle select instructions where at least one operand is a known constant
880     // and we can figure out the condition value for any predecessor block.
881     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
882     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
883     PredValueInfoTy Conds;
884     if ((TrueVal || FalseVal) &&
885         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
886                                         WantInteger, CxtI)) {
887       for (auto &C : Conds) {
888         Constant *Cond = C.first;
889 
890         // Figure out what value to use for the condition.
891         bool KnownCond;
892         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
893           // A known boolean.
894           KnownCond = CI->isOne();
895         } else {
896           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
897           // Either operand will do, so be sure to pick the one that's a known
898           // constant.
899           // FIXME: Do this more cleverly if both values are known constants?
900           KnownCond = (TrueVal != nullptr);
901         }
902 
903         // See if the select has a known constant value for this predecessor.
904         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
905           Result.push_back(std::make_pair(Val, C.second));
906       }
907 
908       return !Result.empty();
909     }
910   }
911 
912   // If all else fails, see if LVI can figure out a constant value for us.
913   if (DDT->pending())
914     LVI->disableDT();
915   else
916     LVI->enableDT();
917   Constant *CI = LVI->getConstant(V, BB, CxtI);
918   if (Constant *KC = getKnownConstant(CI, Preference)) {
919     for (BasicBlock *Pred : predecessors(BB))
920       Result.push_back(std::make_pair(KC, Pred));
921   }
922 
923   return !Result.empty();
924 }
925 
926 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
927 /// in an undefined jump, decide which block is best to revector to.
928 ///
929 /// Since we can pick an arbitrary destination, we pick the successor with the
930 /// fewest predecessors.  This should reduce the in-degree of the others.
931 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
932   TerminatorInst *BBTerm = BB->getTerminator();
933   unsigned MinSucc = 0;
934   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
935   // Compute the successor with the minimum number of predecessors.
936   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
937   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
938     TestBB = BBTerm->getSuccessor(i);
939     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
940     if (NumPreds < MinNumPreds) {
941       MinSucc = i;
942       MinNumPreds = NumPreds;
943     }
944   }
945 
946   return MinSucc;
947 }
948 
949 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
950   if (!BB->hasAddressTaken()) return false;
951 
952   // If the block has its address taken, it may be a tree of dead constants
953   // hanging off of it.  These shouldn't keep the block alive.
954   BlockAddress *BA = BlockAddress::get(BB);
955   BA->removeDeadConstantUsers();
956   return !BA->use_empty();
957 }
958 
959 /// ProcessBlock - If there are any predecessors whose control can be threaded
960 /// through to a successor, transform them now.
961 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
962   // If the block is trivially dead, just return and let the caller nuke it.
963   // This simplifies other transformations.
964   if (DDT->pendingDeletedBB(BB) ||
965       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
966     return false;
967 
968   // If this block has a single predecessor, and if that pred has a single
969   // successor, merge the blocks.  This encourages recursive jump threading
970   // because now the condition in this block can be threaded through
971   // predecessors of our predecessor block.
972   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
973     const TerminatorInst *TI = SinglePred->getTerminator();
974     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
975         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
976       // If SinglePred was a loop header, BB becomes one.
977       if (LoopHeaders.erase(SinglePred))
978         LoopHeaders.insert(BB);
979 
980       LVI->eraseBlock(SinglePred);
981       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
982 
983       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
984       // BB code within one basic block `BB`), we need to invalidate the LVI
985       // information associated with BB, because the LVI information need not be
986       // true for all of BB after the merge. For example,
987       // Before the merge, LVI info and code is as follows:
988       // SinglePred: <LVI info1 for %p val>
989       // %y = use of %p
990       // call @exit() // need not transfer execution to successor.
991       // assume(%p) // from this point on %p is true
992       // br label %BB
993       // BB: <LVI info2 for %p val, i.e. %p is true>
994       // %x = use of %p
995       // br label exit
996       //
997       // Note that this LVI info for blocks BB and SinglPred is correct for %p
998       // (info2 and info1 respectively). After the merge and the deletion of the
999       // LVI info1 for SinglePred. We have the following code:
1000       // BB: <LVI info2 for %p val>
1001       // %y = use of %p
1002       // call @exit()
1003       // assume(%p)
1004       // %x = use of %p <-- LVI info2 is correct from here onwards.
1005       // br label exit
1006       // LVI info2 for BB is incorrect at the beginning of BB.
1007 
1008       // Invalidate LVI information for BB if the LVI is not provably true for
1009       // all of BB.
1010       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1011         LVI->eraseBlock(BB);
1012       return true;
1013     }
1014   }
1015 
1016   if (TryToUnfoldSelectInCurrBB(BB))
1017     return true;
1018 
1019   // Look if we can propagate guards to predecessors.
1020   if (HasGuards && ProcessGuards(BB))
1021     return true;
1022 
1023   // What kind of constant we're looking for.
1024   ConstantPreference Preference = WantInteger;
1025 
1026   // Look to see if the terminator is a conditional branch, switch or indirect
1027   // branch, if not we can't thread it.
1028   Value *Condition;
1029   Instruction *Terminator = BB->getTerminator();
1030   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1031     // Can't thread an unconditional jump.
1032     if (BI->isUnconditional()) return false;
1033     Condition = BI->getCondition();
1034   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1035     Condition = SI->getCondition();
1036   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1037     // Can't thread indirect branch with no successors.
1038     if (IB->getNumSuccessors() == 0) return false;
1039     Condition = IB->getAddress()->stripPointerCasts();
1040     Preference = WantBlockAddress;
1041   } else {
1042     return false; // Must be an invoke.
1043   }
1044 
1045   // Run constant folding to see if we can reduce the condition to a simple
1046   // constant.
1047   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1048     Value *SimpleVal =
1049         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1050     if (SimpleVal) {
1051       I->replaceAllUsesWith(SimpleVal);
1052       if (isInstructionTriviallyDead(I, TLI))
1053         I->eraseFromParent();
1054       Condition = SimpleVal;
1055     }
1056   }
1057 
1058   // If the terminator is branching on an undef, we can pick any of the
1059   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1060   if (isa<UndefValue>(Condition)) {
1061     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1062     std::vector<DominatorTree::UpdateType> Updates;
1063 
1064     // Fold the branch/switch.
1065     TerminatorInst *BBTerm = BB->getTerminator();
1066     Updates.reserve(BBTerm->getNumSuccessors());
1067     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1068       if (i == BestSucc) continue;
1069       BasicBlock *Succ = BBTerm->getSuccessor(i);
1070       Succ->removePredecessor(BB, true);
1071       Updates.push_back({DominatorTree::Delete, BB, Succ});
1072     }
1073 
1074     DEBUG(dbgs() << "  In block '" << BB->getName()
1075           << "' folding undef terminator: " << *BBTerm << '\n');
1076     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1077     BBTerm->eraseFromParent();
1078     DDT->applyUpdates(Updates);
1079     return true;
1080   }
1081 
1082   // If the terminator of this block is branching on a constant, simplify the
1083   // terminator to an unconditional branch.  This can occur due to threading in
1084   // other blocks.
1085   if (getKnownConstant(Condition, Preference)) {
1086     DEBUG(dbgs() << "  In block '" << BB->getName()
1087           << "' folding terminator: " << *BB->getTerminator() << '\n');
1088     ++NumFolds;
1089     ConstantFoldTerminator(BB, true, nullptr, DDT);
1090     return true;
1091   }
1092 
1093   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1094 
1095   // All the rest of our checks depend on the condition being an instruction.
1096   if (!CondInst) {
1097     // FIXME: Unify this with code below.
1098     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1099       return true;
1100     return false;
1101   }
1102 
1103   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1104     // If we're branching on a conditional, LVI might be able to determine
1105     // it's value at the branch instruction.  We only handle comparisons
1106     // against a constant at this time.
1107     // TODO: This should be extended to handle switches as well.
1108     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1109     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1110     if (CondBr && CondConst) {
1111       // We should have returned as soon as we turn a conditional branch to
1112       // unconditional. Because its no longer interesting as far as jump
1113       // threading is concerned.
1114       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1115 
1116       if (DDT->pending())
1117         LVI->disableDT();
1118       else
1119         LVI->enableDT();
1120       LazyValueInfo::Tristate Ret =
1121         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1122                             CondConst, CondBr);
1123       if (Ret != LazyValueInfo::Unknown) {
1124         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1125         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1126         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1127         ToRemoveSucc->removePredecessor(BB, true);
1128         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1129         CondBr->eraseFromParent();
1130         if (CondCmp->use_empty())
1131           CondCmp->eraseFromParent();
1132         // We can safely replace *some* uses of the CondInst if it has
1133         // exactly one value as returned by LVI. RAUW is incorrect in the
1134         // presence of guards and assumes, that have the `Cond` as the use. This
1135         // is because we use the guards/assume to reason about the `Cond` value
1136         // at the end of block, but RAUW unconditionally replaces all uses
1137         // including the guards/assumes themselves and the uses before the
1138         // guard/assume.
1139         else if (CondCmp->getParent() == BB) {
1140           auto *CI = Ret == LazyValueInfo::True ?
1141             ConstantInt::getTrue(CondCmp->getType()) :
1142             ConstantInt::getFalse(CondCmp->getType());
1143           ReplaceFoldableUses(CondCmp, CI);
1144         }
1145         DDT->deleteEdge(BB, ToRemoveSucc);
1146         return true;
1147       }
1148 
1149       // We did not manage to simplify this branch, try to see whether
1150       // CondCmp depends on a known phi-select pattern.
1151       if (TryToUnfoldSelect(CondCmp, BB))
1152         return true;
1153     }
1154   }
1155 
1156   // Check for some cases that are worth simplifying.  Right now we want to look
1157   // for loads that are used by a switch or by the condition for the branch.  If
1158   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1159   // which can then be used to thread the values.
1160   Value *SimplifyValue = CondInst;
1161   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1162     if (isa<Constant>(CondCmp->getOperand(1)))
1163       SimplifyValue = CondCmp->getOperand(0);
1164 
1165   // TODO: There are other places where load PRE would be profitable, such as
1166   // more complex comparisons.
1167   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1168     if (SimplifyPartiallyRedundantLoad(LoadI))
1169       return true;
1170 
1171   // Before threading, try to propagate profile data backwards:
1172   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1173     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1174       updatePredecessorProfileMetadata(PN, BB);
1175 
1176   // Handle a variety of cases where we are branching on something derived from
1177   // a PHI node in the current block.  If we can prove that any predecessors
1178   // compute a predictable value based on a PHI node, thread those predecessors.
1179   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1180     return true;
1181 
1182   // If this is an otherwise-unfoldable branch on a phi node in the current
1183   // block, see if we can simplify.
1184   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1185     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1186       return ProcessBranchOnPHI(PN);
1187 
1188   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1189   if (CondInst->getOpcode() == Instruction::Xor &&
1190       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1191     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1192 
1193   // Search for a stronger dominating condition that can be used to simplify a
1194   // conditional branch leaving BB.
1195   if (ProcessImpliedCondition(BB))
1196     return true;
1197 
1198   return false;
1199 }
1200 
1201 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1202   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1203   if (!BI || !BI->isConditional())
1204     return false;
1205 
1206   Value *Cond = BI->getCondition();
1207   BasicBlock *CurrentBB = BB;
1208   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1209   unsigned Iter = 0;
1210 
1211   auto &DL = BB->getModule()->getDataLayout();
1212 
1213   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1214     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1215     if (!PBI || !PBI->isConditional())
1216       return false;
1217     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1218       return false;
1219 
1220     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1221     Optional<bool> Implication =
1222         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1223     if (Implication) {
1224       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1225       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1226       RemoveSucc->removePredecessor(BB);
1227       BranchInst::Create(KeepSucc, BI);
1228       BI->eraseFromParent();
1229       DDT->deleteEdge(BB, RemoveSucc);
1230       return true;
1231     }
1232     CurrentBB = CurrentPred;
1233     CurrentPred = CurrentBB->getSinglePredecessor();
1234   }
1235 
1236   return false;
1237 }
1238 
1239 /// Return true if Op is an instruction defined in the given block.
1240 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1241   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1242     if (OpInst->getParent() == BB)
1243       return true;
1244   return false;
1245 }
1246 
1247 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1248 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1249 /// This is an important optimization that encourages jump threading, and needs
1250 /// to be run interlaced with other jump threading tasks.
1251 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1252   // Don't hack volatile and ordered loads.
1253   if (!LoadI->isUnordered()) return false;
1254 
1255   // If the load is defined in a block with exactly one predecessor, it can't be
1256   // partially redundant.
1257   BasicBlock *LoadBB = LoadI->getParent();
1258   if (LoadBB->getSinglePredecessor())
1259     return false;
1260 
1261   // If the load is defined in an EH pad, it can't be partially redundant,
1262   // because the edges between the invoke and the EH pad cannot have other
1263   // instructions between them.
1264   if (LoadBB->isEHPad())
1265     return false;
1266 
1267   Value *LoadedPtr = LoadI->getOperand(0);
1268 
1269   // If the loaded operand is defined in the LoadBB and its not a phi,
1270   // it can't be available in predecessors.
1271   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1272     return false;
1273 
1274   // Scan a few instructions up from the load, to see if it is obviously live at
1275   // the entry to its block.
1276   BasicBlock::iterator BBIt(LoadI);
1277   bool IsLoadCSE;
1278   if (Value *AvailableVal = FindAvailableLoadedValue(
1279           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1280     // If the value of the load is locally available within the block, just use
1281     // it.  This frequently occurs for reg2mem'd allocas.
1282 
1283     if (IsLoadCSE) {
1284       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1285       combineMetadataForCSE(NLoadI, LoadI);
1286     };
1287 
1288     // If the returned value is the load itself, replace with an undef. This can
1289     // only happen in dead loops.
1290     if (AvailableVal == LoadI)
1291       AvailableVal = UndefValue::get(LoadI->getType());
1292     if (AvailableVal->getType() != LoadI->getType())
1293       AvailableVal = CastInst::CreateBitOrPointerCast(
1294           AvailableVal, LoadI->getType(), "", LoadI);
1295     LoadI->replaceAllUsesWith(AvailableVal);
1296     LoadI->eraseFromParent();
1297     return true;
1298   }
1299 
1300   // Otherwise, if we scanned the whole block and got to the top of the block,
1301   // we know the block is locally transparent to the load.  If not, something
1302   // might clobber its value.
1303   if (BBIt != LoadBB->begin())
1304     return false;
1305 
1306   // If all of the loads and stores that feed the value have the same AA tags,
1307   // then we can propagate them onto any newly inserted loads.
1308   AAMDNodes AATags;
1309   LoadI->getAAMetadata(AATags);
1310 
1311   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1312 
1313   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1314 
1315   AvailablePredsTy AvailablePreds;
1316   BasicBlock *OneUnavailablePred = nullptr;
1317   SmallVector<LoadInst*, 8> CSELoads;
1318 
1319   // If we got here, the loaded value is transparent through to the start of the
1320   // block.  Check to see if it is available in any of the predecessor blocks.
1321   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1322     // If we already scanned this predecessor, skip it.
1323     if (!PredsScanned.insert(PredBB).second)
1324       continue;
1325 
1326     BBIt = PredBB->end();
1327     unsigned NumScanedInst = 0;
1328     Value *PredAvailable = nullptr;
1329     // NOTE: We don't CSE load that is volatile or anything stronger than
1330     // unordered, that should have been checked when we entered the function.
1331     assert(LoadI->isUnordered() &&
1332            "Attempting to CSE volatile or atomic loads");
1333     // If this is a load on a phi pointer, phi-translate it and search
1334     // for available load/store to the pointer in predecessors.
1335     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1336     PredAvailable = FindAvailablePtrLoadStore(
1337         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1338         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1339 
1340     // If PredBB has a single predecessor, continue scanning through the
1341     // single precessor.
1342     BasicBlock *SinglePredBB = PredBB;
1343     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1344            NumScanedInst < DefMaxInstsToScan) {
1345       SinglePredBB = SinglePredBB->getSinglePredecessor();
1346       if (SinglePredBB) {
1347         BBIt = SinglePredBB->end();
1348         PredAvailable = FindAvailablePtrLoadStore(
1349             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1350             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1351             &NumScanedInst);
1352       }
1353     }
1354 
1355     if (!PredAvailable) {
1356       OneUnavailablePred = PredBB;
1357       continue;
1358     }
1359 
1360     if (IsLoadCSE)
1361       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1362 
1363     // If so, this load is partially redundant.  Remember this info so that we
1364     // can create a PHI node.
1365     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1366   }
1367 
1368   // If the loaded value isn't available in any predecessor, it isn't partially
1369   // redundant.
1370   if (AvailablePreds.empty()) return false;
1371 
1372   // Okay, the loaded value is available in at least one (and maybe all!)
1373   // predecessors.  If the value is unavailable in more than one unique
1374   // predecessor, we want to insert a merge block for those common predecessors.
1375   // This ensures that we only have to insert one reload, thus not increasing
1376   // code size.
1377   BasicBlock *UnavailablePred = nullptr;
1378 
1379   // If the value is unavailable in one of predecessors, we will end up
1380   // inserting a new instruction into them. It is only valid if all the
1381   // instructions before LoadI are guaranteed to pass execution to its
1382   // successor, or if LoadI is safe to speculate.
1383   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1384   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1385   // It requires domination tree analysis, so for this simple case it is an
1386   // overkill.
1387   if (PredsScanned.size() != AvailablePreds.size() &&
1388       !isSafeToSpeculativelyExecute(LoadI))
1389     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1390       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1391         return false;
1392 
1393   // If there is exactly one predecessor where the value is unavailable, the
1394   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1395   // unconditional branch, we know that it isn't a critical edge.
1396   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1397       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1398     UnavailablePred = OneUnavailablePred;
1399   } else if (PredsScanned.size() != AvailablePreds.size()) {
1400     // Otherwise, we had multiple unavailable predecessors or we had a critical
1401     // edge from the one.
1402     SmallVector<BasicBlock*, 8> PredsToSplit;
1403     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1404 
1405     for (const auto &AvailablePred : AvailablePreds)
1406       AvailablePredSet.insert(AvailablePred.first);
1407 
1408     // Add all the unavailable predecessors to the PredsToSplit list.
1409     for (BasicBlock *P : predecessors(LoadBB)) {
1410       // If the predecessor is an indirect goto, we can't split the edge.
1411       if (isa<IndirectBrInst>(P->getTerminator()))
1412         return false;
1413 
1414       if (!AvailablePredSet.count(P))
1415         PredsToSplit.push_back(P);
1416     }
1417 
1418     // Split them out to their own block.
1419     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1420   }
1421 
1422   // If the value isn't available in all predecessors, then there will be
1423   // exactly one where it isn't available.  Insert a load on that edge and add
1424   // it to the AvailablePreds list.
1425   if (UnavailablePred) {
1426     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1427            "Can't handle critical edge here!");
1428     LoadInst *NewVal =
1429         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1430                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1431                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1432                      UnavailablePred->getTerminator());
1433     NewVal->setDebugLoc(LoadI->getDebugLoc());
1434     if (AATags)
1435       NewVal->setAAMetadata(AATags);
1436 
1437     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1438   }
1439 
1440   // Now we know that each predecessor of this block has a value in
1441   // AvailablePreds, sort them for efficient access as we're walking the preds.
1442   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1443 
1444   // Create a PHI node at the start of the block for the PRE'd load value.
1445   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1446   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1447                                 &LoadBB->front());
1448   PN->takeName(LoadI);
1449   PN->setDebugLoc(LoadI->getDebugLoc());
1450 
1451   // Insert new entries into the PHI for each predecessor.  A single block may
1452   // have multiple entries here.
1453   for (pred_iterator PI = PB; PI != PE; ++PI) {
1454     BasicBlock *P = *PI;
1455     AvailablePredsTy::iterator I =
1456       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1457                        std::make_pair(P, (Value*)nullptr));
1458 
1459     assert(I != AvailablePreds.end() && I->first == P &&
1460            "Didn't find entry for predecessor!");
1461 
1462     // If we have an available predecessor but it requires casting, insert the
1463     // cast in the predecessor and use the cast. Note that we have to update the
1464     // AvailablePreds vector as we go so that all of the PHI entries for this
1465     // predecessor use the same bitcast.
1466     Value *&PredV = I->second;
1467     if (PredV->getType() != LoadI->getType())
1468       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1469                                                P->getTerminator());
1470 
1471     PN->addIncoming(PredV, I->first);
1472   }
1473 
1474   for (LoadInst *PredLoadI : CSELoads) {
1475     combineMetadataForCSE(PredLoadI, LoadI);
1476   }
1477 
1478   LoadI->replaceAllUsesWith(PN);
1479   LoadI->eraseFromParent();
1480 
1481   return true;
1482 }
1483 
1484 /// FindMostPopularDest - The specified list contains multiple possible
1485 /// threadable destinations.  Pick the one that occurs the most frequently in
1486 /// the list.
1487 static BasicBlock *
1488 FindMostPopularDest(BasicBlock *BB,
1489                     const SmallVectorImpl<std::pair<BasicBlock *,
1490                                           BasicBlock *>> &PredToDestList) {
1491   assert(!PredToDestList.empty());
1492 
1493   // Determine popularity.  If there are multiple possible destinations, we
1494   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1495   // blocks with known and real destinations to threading undef.  We'll handle
1496   // them later if interesting.
1497   DenseMap<BasicBlock*, unsigned> DestPopularity;
1498   for (const auto &PredToDest : PredToDestList)
1499     if (PredToDest.second)
1500       DestPopularity[PredToDest.second]++;
1501 
1502   if (DestPopularity.empty())
1503     return nullptr;
1504 
1505   // Find the most popular dest.
1506   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1507   BasicBlock *MostPopularDest = DPI->first;
1508   unsigned Popularity = DPI->second;
1509   SmallVector<BasicBlock*, 4> SamePopularity;
1510 
1511   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1512     // If the popularity of this entry isn't higher than the popularity we've
1513     // seen so far, ignore it.
1514     if (DPI->second < Popularity)
1515       ; // ignore.
1516     else if (DPI->second == Popularity) {
1517       // If it is the same as what we've seen so far, keep track of it.
1518       SamePopularity.push_back(DPI->first);
1519     } else {
1520       // If it is more popular, remember it.
1521       SamePopularity.clear();
1522       MostPopularDest = DPI->first;
1523       Popularity = DPI->second;
1524     }
1525   }
1526 
1527   // Okay, now we know the most popular destination.  If there is more than one
1528   // destination, we need to determine one.  This is arbitrary, but we need
1529   // to make a deterministic decision.  Pick the first one that appears in the
1530   // successor list.
1531   if (!SamePopularity.empty()) {
1532     SamePopularity.push_back(MostPopularDest);
1533     TerminatorInst *TI = BB->getTerminator();
1534     for (unsigned i = 0; ; ++i) {
1535       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1536 
1537       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1538         continue;
1539 
1540       MostPopularDest = TI->getSuccessor(i);
1541       break;
1542     }
1543   }
1544 
1545   // Okay, we have finally picked the most popular destination.
1546   return MostPopularDest;
1547 }
1548 
1549 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1550                                                ConstantPreference Preference,
1551                                                Instruction *CxtI) {
1552   // If threading this would thread across a loop header, don't even try to
1553   // thread the edge.
1554   if (LoopHeaders.count(BB))
1555     return false;
1556 
1557   PredValueInfoTy PredValues;
1558   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1559     return false;
1560 
1561   assert(!PredValues.empty() &&
1562          "ComputeValueKnownInPredecessors returned true with no values");
1563 
1564   DEBUG(dbgs() << "IN BB: " << *BB;
1565         for (const auto &PredValue : PredValues) {
1566           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1567             << *PredValue.first
1568             << " for pred '" << PredValue.second->getName() << "'.\n";
1569         });
1570 
1571   // Decide what we want to thread through.  Convert our list of known values to
1572   // a list of known destinations for each pred.  This also discards duplicate
1573   // predecessors and keeps track of the undefined inputs (which are represented
1574   // as a null dest in the PredToDestList).
1575   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1576   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1577 
1578   BasicBlock *OnlyDest = nullptr;
1579   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1580   Constant *OnlyVal = nullptr;
1581   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1582 
1583   unsigned PredWithKnownDest = 0;
1584   for (const auto &PredValue : PredValues) {
1585     BasicBlock *Pred = PredValue.second;
1586     if (!SeenPreds.insert(Pred).second)
1587       continue;  // Duplicate predecessor entry.
1588 
1589     Constant *Val = PredValue.first;
1590 
1591     BasicBlock *DestBB;
1592     if (isa<UndefValue>(Val))
1593       DestBB = nullptr;
1594     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1595       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1596       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1597     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1598       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1599       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1600     } else {
1601       assert(isa<IndirectBrInst>(BB->getTerminator())
1602               && "Unexpected terminator");
1603       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1604       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1605     }
1606 
1607     // If we have exactly one destination, remember it for efficiency below.
1608     if (PredToDestList.empty()) {
1609       OnlyDest = DestBB;
1610       OnlyVal = Val;
1611     } else {
1612       if (OnlyDest != DestBB)
1613         OnlyDest = MultipleDestSentinel;
1614       // It possible we have same destination, but different value, e.g. default
1615       // case in switchinst.
1616       if (Val != OnlyVal)
1617         OnlyVal = MultipleVal;
1618     }
1619 
1620     // We know where this predecessor is going.
1621     ++PredWithKnownDest;
1622 
1623     // If the predecessor ends with an indirect goto, we can't change its
1624     // destination.
1625     if (isa<IndirectBrInst>(Pred->getTerminator()))
1626       continue;
1627 
1628     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1629   }
1630 
1631   // If all edges were unthreadable, we fail.
1632   if (PredToDestList.empty())
1633     return false;
1634 
1635   // If all the predecessors go to a single known successor, we want to fold,
1636   // not thread. By doing so, we do not need to duplicate the current block and
1637   // also miss potential opportunities in case we dont/cant duplicate.
1638   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1639     if (PredWithKnownDest ==
1640         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1641       bool SeenFirstBranchToOnlyDest = false;
1642       std::vector <DominatorTree::UpdateType> Updates;
1643       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1644       for (BasicBlock *SuccBB : successors(BB)) {
1645         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1646           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1647         } else {
1648           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1649           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1650         }
1651       }
1652 
1653       // Finally update the terminator.
1654       TerminatorInst *Term = BB->getTerminator();
1655       BranchInst::Create(OnlyDest, Term);
1656       Term->eraseFromParent();
1657       DDT->applyUpdates(Updates);
1658 
1659       // If the condition is now dead due to the removal of the old terminator,
1660       // erase it.
1661       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1662         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1663           CondInst->eraseFromParent();
1664         // We can safely replace *some* uses of the CondInst if it has
1665         // exactly one value as returned by LVI. RAUW is incorrect in the
1666         // presence of guards and assumes, that have the `Cond` as the use. This
1667         // is because we use the guards/assume to reason about the `Cond` value
1668         // at the end of block, but RAUW unconditionally replaces all uses
1669         // including the guards/assumes themselves and the uses before the
1670         // guard/assume.
1671         else if (OnlyVal && OnlyVal != MultipleVal &&
1672                  CondInst->getParent() == BB)
1673           ReplaceFoldableUses(CondInst, OnlyVal);
1674       }
1675       return true;
1676     }
1677   }
1678 
1679   // Determine which is the most common successor.  If we have many inputs and
1680   // this block is a switch, we want to start by threading the batch that goes
1681   // to the most popular destination first.  If we only know about one
1682   // threadable destination (the common case) we can avoid this.
1683   BasicBlock *MostPopularDest = OnlyDest;
1684 
1685   if (MostPopularDest == MultipleDestSentinel) {
1686     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1687     // won't process them, but we might have other destination that are eligible
1688     // and we still want to process.
1689     erase_if(PredToDestList,
1690              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1691                return LoopHeaders.count(PredToDest.second) != 0;
1692              });
1693 
1694     if (PredToDestList.empty())
1695       return false;
1696 
1697     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1698   }
1699 
1700   // Now that we know what the most popular destination is, factor all
1701   // predecessors that will jump to it into a single predecessor.
1702   SmallVector<BasicBlock*, 16> PredsToFactor;
1703   for (const auto &PredToDest : PredToDestList)
1704     if (PredToDest.second == MostPopularDest) {
1705       BasicBlock *Pred = PredToDest.first;
1706 
1707       // This predecessor may be a switch or something else that has multiple
1708       // edges to the block.  Factor each of these edges by listing them
1709       // according to # occurrences in PredsToFactor.
1710       for (BasicBlock *Succ : successors(Pred))
1711         if (Succ == BB)
1712           PredsToFactor.push_back(Pred);
1713     }
1714 
1715   // If the threadable edges are branching on an undefined value, we get to pick
1716   // the destination that these predecessors should get to.
1717   if (!MostPopularDest)
1718     MostPopularDest = BB->getTerminator()->
1719                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1720 
1721   // Ok, try to thread it!
1722   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1723 }
1724 
1725 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1726 /// a PHI node in the current block.  See if there are any simplifications we
1727 /// can do based on inputs to the phi node.
1728 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1729   BasicBlock *BB = PN->getParent();
1730 
1731   // TODO: We could make use of this to do it once for blocks with common PHI
1732   // values.
1733   SmallVector<BasicBlock*, 1> PredBBs;
1734   PredBBs.resize(1);
1735 
1736   // If any of the predecessor blocks end in an unconditional branch, we can
1737   // *duplicate* the conditional branch into that block in order to further
1738   // encourage jump threading and to eliminate cases where we have branch on a
1739   // phi of an icmp (branch on icmp is much better).
1740   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1741     BasicBlock *PredBB = PN->getIncomingBlock(i);
1742     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1743       if (PredBr->isUnconditional()) {
1744         PredBBs[0] = PredBB;
1745         // Try to duplicate BB into PredBB.
1746         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1747           return true;
1748       }
1749   }
1750 
1751   return false;
1752 }
1753 
1754 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1755 /// a xor instruction in the current block.  See if there are any
1756 /// simplifications we can do based on inputs to the xor.
1757 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1758   BasicBlock *BB = BO->getParent();
1759 
1760   // If either the LHS or RHS of the xor is a constant, don't do this
1761   // optimization.
1762   if (isa<ConstantInt>(BO->getOperand(0)) ||
1763       isa<ConstantInt>(BO->getOperand(1)))
1764     return false;
1765 
1766   // If the first instruction in BB isn't a phi, we won't be able to infer
1767   // anything special about any particular predecessor.
1768   if (!isa<PHINode>(BB->front()))
1769     return false;
1770 
1771   // If this BB is a landing pad, we won't be able to split the edge into it.
1772   if (BB->isEHPad())
1773     return false;
1774 
1775   // If we have a xor as the branch input to this block, and we know that the
1776   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1777   // the condition into the predecessor and fix that value to true, saving some
1778   // logical ops on that path and encouraging other paths to simplify.
1779   //
1780   // This copies something like this:
1781   //
1782   //  BB:
1783   //    %X = phi i1 [1],  [%X']
1784   //    %Y = icmp eq i32 %A, %B
1785   //    %Z = xor i1 %X, %Y
1786   //    br i1 %Z, ...
1787   //
1788   // Into:
1789   //  BB':
1790   //    %Y = icmp ne i32 %A, %B
1791   //    br i1 %Y, ...
1792 
1793   PredValueInfoTy XorOpValues;
1794   bool isLHS = true;
1795   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1796                                        WantInteger, BO)) {
1797     assert(XorOpValues.empty());
1798     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1799                                          WantInteger, BO))
1800       return false;
1801     isLHS = false;
1802   }
1803 
1804   assert(!XorOpValues.empty() &&
1805          "ComputeValueKnownInPredecessors returned true with no values");
1806 
1807   // Scan the information to see which is most popular: true or false.  The
1808   // predecessors can be of the set true, false, or undef.
1809   unsigned NumTrue = 0, NumFalse = 0;
1810   for (const auto &XorOpValue : XorOpValues) {
1811     if (isa<UndefValue>(XorOpValue.first))
1812       // Ignore undefs for the count.
1813       continue;
1814     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1815       ++NumFalse;
1816     else
1817       ++NumTrue;
1818   }
1819 
1820   // Determine which value to split on, true, false, or undef if neither.
1821   ConstantInt *SplitVal = nullptr;
1822   if (NumTrue > NumFalse)
1823     SplitVal = ConstantInt::getTrue(BB->getContext());
1824   else if (NumTrue != 0 || NumFalse != 0)
1825     SplitVal = ConstantInt::getFalse(BB->getContext());
1826 
1827   // Collect all of the blocks that this can be folded into so that we can
1828   // factor this once and clone it once.
1829   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1830   for (const auto &XorOpValue : XorOpValues) {
1831     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1832       continue;
1833 
1834     BlocksToFoldInto.push_back(XorOpValue.second);
1835   }
1836 
1837   // If we inferred a value for all of the predecessors, then duplication won't
1838   // help us.  However, we can just replace the LHS or RHS with the constant.
1839   if (BlocksToFoldInto.size() ==
1840       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1841     if (!SplitVal) {
1842       // If all preds provide undef, just nuke the xor, because it is undef too.
1843       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1844       BO->eraseFromParent();
1845     } else if (SplitVal->isZero()) {
1846       // If all preds provide 0, replace the xor with the other input.
1847       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1848       BO->eraseFromParent();
1849     } else {
1850       // If all preds provide 1, set the computed value to 1.
1851       BO->setOperand(!isLHS, SplitVal);
1852     }
1853 
1854     return true;
1855   }
1856 
1857   // Try to duplicate BB into PredBB.
1858   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1859 }
1860 
1861 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1862 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1863 /// NewPred using the entries from OldPred (suitably mapped).
1864 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1865                                             BasicBlock *OldPred,
1866                                             BasicBlock *NewPred,
1867                                      DenseMap<Instruction*, Value*> &ValueMap) {
1868   for (PHINode &PN : PHIBB->phis()) {
1869     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1870     // DestBlock.
1871     Value *IV = PN.getIncomingValueForBlock(OldPred);
1872 
1873     // Remap the value if necessary.
1874     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1875       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1876       if (I != ValueMap.end())
1877         IV = I->second;
1878     }
1879 
1880     PN.addIncoming(IV, NewPred);
1881   }
1882 }
1883 
1884 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1885 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1886 /// across BB.  Transform the IR to reflect this change.
1887 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1888                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1889                                    BasicBlock *SuccBB) {
1890   // If threading to the same block as we come from, we would infinite loop.
1891   if (SuccBB == BB) {
1892     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1893           << "' - would thread to self!\n");
1894     return false;
1895   }
1896 
1897   // If threading this would thread across a loop header, don't thread the edge.
1898   // See the comments above FindLoopHeaders for justifications and caveats.
1899   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1900     DEBUG({
1901       bool BBIsHeader = LoopHeaders.count(BB);
1902       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1903       dbgs() << "  Not threading across "
1904           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1905           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1906           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1907     });
1908     return false;
1909   }
1910 
1911   unsigned JumpThreadCost =
1912       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1913   if (JumpThreadCost > BBDupThreshold) {
1914     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1915           << "' - Cost is too high: " << JumpThreadCost << "\n");
1916     return false;
1917   }
1918 
1919   // And finally, do it!  Start by factoring the predecessors if needed.
1920   BasicBlock *PredBB;
1921   if (PredBBs.size() == 1)
1922     PredBB = PredBBs[0];
1923   else {
1924     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1925           << " common predecessors.\n");
1926     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1927   }
1928 
1929   // And finally, do it!
1930   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1931         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1932         << ", across block:\n    "
1933         << *BB << "\n");
1934 
1935   if (DDT->pending())
1936     LVI->disableDT();
1937   else
1938     LVI->enableDT();
1939   LVI->threadEdge(PredBB, BB, SuccBB);
1940 
1941   // We are going to have to map operands from the original BB block to the new
1942   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1943   // account for entry from PredBB.
1944   DenseMap<Instruction*, Value*> ValueMapping;
1945 
1946   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1947                                          BB->getName()+".thread",
1948                                          BB->getParent(), BB);
1949   NewBB->moveAfter(PredBB);
1950 
1951   // Set the block frequency of NewBB.
1952   if (HasProfileData) {
1953     auto NewBBFreq =
1954         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1955     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1956   }
1957 
1958   BasicBlock::iterator BI = BB->begin();
1959   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1960     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1961 
1962   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1963   // mapping and using it to remap operands in the cloned instructions.
1964   for (; !isa<TerminatorInst>(BI); ++BI) {
1965     Instruction *New = BI->clone();
1966     New->setName(BI->getName());
1967     NewBB->getInstList().push_back(New);
1968     ValueMapping[&*BI] = New;
1969 
1970     // Remap operands to patch up intra-block references.
1971     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1972       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1973         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1974         if (I != ValueMapping.end())
1975           New->setOperand(i, I->second);
1976       }
1977   }
1978 
1979   // We didn't copy the terminator from BB over to NewBB, because there is now
1980   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1981   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1982   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1983 
1984   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1985   // PHI nodes for NewBB now.
1986   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1987 
1988   // If there were values defined in BB that are used outside the block, then we
1989   // now have to update all uses of the value to use either the original value,
1990   // the cloned value, or some PHI derived value.  This can require arbitrary
1991   // PHI insertion, of which we are prepared to do, clean these up now.
1992   SSAUpdater SSAUpdate;
1993   SmallVector<Use*, 16> UsesToRename;
1994   for (Instruction &I : *BB) {
1995     // Scan all uses of this instruction to see if it is used outside of its
1996     // block, and if so, record them in UsesToRename.
1997     for (Use &U : I.uses()) {
1998       Instruction *User = cast<Instruction>(U.getUser());
1999       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2000         if (UserPN->getIncomingBlock(U) == BB)
2001           continue;
2002       } else if (User->getParent() == BB)
2003         continue;
2004 
2005       UsesToRename.push_back(&U);
2006     }
2007 
2008     // If there are no uses outside the block, we're done with this instruction.
2009     if (UsesToRename.empty())
2010       continue;
2011 
2012     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2013 
2014     // We found a use of I outside of BB.  Rename all uses of I that are outside
2015     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2016     // with the two values we know.
2017     SSAUpdate.Initialize(I.getType(), I.getName());
2018     SSAUpdate.AddAvailableValue(BB, &I);
2019     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2020 
2021     while (!UsesToRename.empty())
2022       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2023     DEBUG(dbgs() << "\n");
2024   }
2025 
2026   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
2027   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
2028   // us to simplify any PHI nodes in BB.
2029   TerminatorInst *PredTerm = PredBB->getTerminator();
2030   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2031     if (PredTerm->getSuccessor(i) == BB) {
2032       BB->removePredecessor(PredBB, true);
2033       PredTerm->setSuccessor(i, NewBB);
2034     }
2035 
2036   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2037                      {DominatorTree::Insert, PredBB, NewBB},
2038                      {DominatorTree::Delete, PredBB, BB}});
2039 
2040   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2041   // over the new instructions and zap any that are constants or dead.  This
2042   // frequently happens because of phi translation.
2043   SimplifyInstructionsInBlock(NewBB, TLI);
2044 
2045   // Update the edge weight from BB to SuccBB, which should be less than before.
2046   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2047 
2048   // Threaded an edge!
2049   ++NumThreads;
2050   return true;
2051 }
2052 
2053 /// Create a new basic block that will be the predecessor of BB and successor of
2054 /// all blocks in Preds. When profile data is available, update the frequency of
2055 /// this new block.
2056 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2057                                                ArrayRef<BasicBlock *> Preds,
2058                                                const char *Suffix) {
2059   SmallVector<BasicBlock *, 2> NewBBs;
2060 
2061   // Collect the frequencies of all predecessors of BB, which will be used to
2062   // update the edge weight of the result of splitting predecessors.
2063   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2064   if (HasProfileData)
2065     for (auto Pred : Preds)
2066       FreqMap.insert(std::make_pair(
2067           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2068 
2069   // In the case when BB is a LandingPad block we create 2 new predecessors
2070   // instead of just one.
2071   if (BB->isLandingPad()) {
2072     std::string NewName = std::string(Suffix) + ".split-lp";
2073     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2074   } else {
2075     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2076   }
2077 
2078   std::vector<DominatorTree::UpdateType> Updates;
2079   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2080   for (auto NewBB : NewBBs) {
2081     BlockFrequency NewBBFreq(0);
2082     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2083     for (auto Pred : predecessors(NewBB)) {
2084       Updates.push_back({DominatorTree::Delete, Pred, BB});
2085       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2086       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2087         NewBBFreq += FreqMap.lookup(Pred);
2088     }
2089     if (HasProfileData) // Apply the summed frequency to NewBB.
2090       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2091   }
2092 
2093   DDT->applyUpdates(Updates);
2094   return NewBBs[0];
2095 }
2096 
2097 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2098   const TerminatorInst *TI = BB->getTerminator();
2099   assert(TI->getNumSuccessors() > 1 && "not a split");
2100 
2101   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2102   if (!WeightsNode)
2103     return false;
2104 
2105   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2106   if (MDName->getString() != "branch_weights")
2107     return false;
2108 
2109   // Ensure there are weights for all of the successors. Note that the first
2110   // operand to the metadata node is a name, not a weight.
2111   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2112 }
2113 
2114 /// Update the block frequency of BB and branch weight and the metadata on the
2115 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2116 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2117 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2118                                                      BasicBlock *BB,
2119                                                      BasicBlock *NewBB,
2120                                                      BasicBlock *SuccBB) {
2121   if (!HasProfileData)
2122     return;
2123 
2124   assert(BFI && BPI && "BFI & BPI should have been created here");
2125 
2126   // As the edge from PredBB to BB is deleted, we have to update the block
2127   // frequency of BB.
2128   auto BBOrigFreq = BFI->getBlockFreq(BB);
2129   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2130   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2131   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2132   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2133 
2134   // Collect updated outgoing edges' frequencies from BB and use them to update
2135   // edge probabilities.
2136   SmallVector<uint64_t, 4> BBSuccFreq;
2137   for (BasicBlock *Succ : successors(BB)) {
2138     auto SuccFreq = (Succ == SuccBB)
2139                         ? BB2SuccBBFreq - NewBBFreq
2140                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2141     BBSuccFreq.push_back(SuccFreq.getFrequency());
2142   }
2143 
2144   uint64_t MaxBBSuccFreq =
2145       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2146 
2147   SmallVector<BranchProbability, 4> BBSuccProbs;
2148   if (MaxBBSuccFreq == 0)
2149     BBSuccProbs.assign(BBSuccFreq.size(),
2150                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2151   else {
2152     for (uint64_t Freq : BBSuccFreq)
2153       BBSuccProbs.push_back(
2154           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2155     // Normalize edge probabilities so that they sum up to one.
2156     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2157                                               BBSuccProbs.end());
2158   }
2159 
2160   // Update edge probabilities in BPI.
2161   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2162     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2163 
2164   // Update the profile metadata as well.
2165   //
2166   // Don't do this if the profile of the transformed blocks was statically
2167   // estimated.  (This could occur despite the function having an entry
2168   // frequency in completely cold parts of the CFG.)
2169   //
2170   // In this case we don't want to suggest to subsequent passes that the
2171   // calculated weights are fully consistent.  Consider this graph:
2172   //
2173   //                 check_1
2174   //             50% /  |
2175   //             eq_1   | 50%
2176   //                 \  |
2177   //                 check_2
2178   //             50% /  |
2179   //             eq_2   | 50%
2180   //                 \  |
2181   //                 check_3
2182   //             50% /  |
2183   //             eq_3   | 50%
2184   //                 \  |
2185   //
2186   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2187   // the overall probabilities are inconsistent; the total probability that the
2188   // value is either 1, 2 or 3 is 150%.
2189   //
2190   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2191   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2192   // the loop exit edge.  Then based solely on static estimation we would assume
2193   // the loop was extremely hot.
2194   //
2195   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2196   // shouldn't make edges extremely likely or unlikely based solely on static
2197   // estimation.
2198   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2199     SmallVector<uint32_t, 4> Weights;
2200     for (auto Prob : BBSuccProbs)
2201       Weights.push_back(Prob.getNumerator());
2202 
2203     auto TI = BB->getTerminator();
2204     TI->setMetadata(
2205         LLVMContext::MD_prof,
2206         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2207   }
2208 }
2209 
2210 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2211 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2212 /// If we can duplicate the contents of BB up into PredBB do so now, this
2213 /// improves the odds that the branch will be on an analyzable instruction like
2214 /// a compare.
2215 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2216     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2217   assert(!PredBBs.empty() && "Can't handle an empty set");
2218 
2219   // If BB is a loop header, then duplicating this block outside the loop would
2220   // cause us to transform this into an irreducible loop, don't do this.
2221   // See the comments above FindLoopHeaders for justifications and caveats.
2222   if (LoopHeaders.count(BB)) {
2223     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2224           << "' into predecessor block '" << PredBBs[0]->getName()
2225           << "' - it might create an irreducible loop!\n");
2226     return false;
2227   }
2228 
2229   unsigned DuplicationCost =
2230       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2231   if (DuplicationCost > BBDupThreshold) {
2232     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2233           << "' - Cost is too high: " << DuplicationCost << "\n");
2234     return false;
2235   }
2236 
2237   // And finally, do it!  Start by factoring the predecessors if needed.
2238   std::vector<DominatorTree::UpdateType> Updates;
2239   BasicBlock *PredBB;
2240   if (PredBBs.size() == 1)
2241     PredBB = PredBBs[0];
2242   else {
2243     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2244           << " common predecessors.\n");
2245     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2246   }
2247   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2248 
2249   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2250   // of PredBB.
2251   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2252         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2253         << DuplicationCost << " block is:" << *BB << "\n");
2254 
2255   // Unless PredBB ends with an unconditional branch, split the edge so that we
2256   // can just clone the bits from BB into the end of the new PredBB.
2257   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2258 
2259   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2260     BasicBlock *OldPredBB = PredBB;
2261     PredBB = SplitEdge(OldPredBB, BB);
2262     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2263     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2264     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2265     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2266   }
2267 
2268   // We are going to have to map operands from the original BB block into the
2269   // PredBB block.  Evaluate PHI nodes in BB.
2270   DenseMap<Instruction*, Value*> ValueMapping;
2271 
2272   BasicBlock::iterator BI = BB->begin();
2273   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2274     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2275   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2276   // mapping and using it to remap operands in the cloned instructions.
2277   for (; BI != BB->end(); ++BI) {
2278     Instruction *New = BI->clone();
2279 
2280     // Remap operands to patch up intra-block references.
2281     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2282       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2283         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2284         if (I != ValueMapping.end())
2285           New->setOperand(i, I->second);
2286       }
2287 
2288     // If this instruction can be simplified after the operands are updated,
2289     // just use the simplified value instead.  This frequently happens due to
2290     // phi translation.
2291     if (Value *IV = SimplifyInstruction(
2292             New,
2293             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2294       ValueMapping[&*BI] = IV;
2295       if (!New->mayHaveSideEffects()) {
2296         New->deleteValue();
2297         New = nullptr;
2298       }
2299     } else {
2300       ValueMapping[&*BI] = New;
2301     }
2302     if (New) {
2303       // Otherwise, insert the new instruction into the block.
2304       New->setName(BI->getName());
2305       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2306       // Update Dominance from simplified New instruction operands.
2307       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2308         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2309           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2310     }
2311   }
2312 
2313   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2314   // add entries to the PHI nodes for branch from PredBB now.
2315   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2316   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2317                                   ValueMapping);
2318   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2319                                   ValueMapping);
2320 
2321   // If there were values defined in BB that are used outside the block, then we
2322   // now have to update all uses of the value to use either the original value,
2323   // the cloned value, or some PHI derived value.  This can require arbitrary
2324   // PHI insertion, of which we are prepared to do, clean these up now.
2325   SSAUpdater SSAUpdate;
2326   SmallVector<Use*, 16> UsesToRename;
2327   for (Instruction &I : *BB) {
2328     // Scan all uses of this instruction to see if it is used outside of its
2329     // block, and if so, record them in UsesToRename.
2330     for (Use &U : I.uses()) {
2331       Instruction *User = cast<Instruction>(U.getUser());
2332       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2333         if (UserPN->getIncomingBlock(U) == BB)
2334           continue;
2335       } else if (User->getParent() == BB)
2336         continue;
2337 
2338       UsesToRename.push_back(&U);
2339     }
2340 
2341     // If there are no uses outside the block, we're done with this instruction.
2342     if (UsesToRename.empty())
2343       continue;
2344 
2345     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2346 
2347     // We found a use of I outside of BB.  Rename all uses of I that are outside
2348     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2349     // with the two values we know.
2350     SSAUpdate.Initialize(I.getType(), I.getName());
2351     SSAUpdate.AddAvailableValue(BB, &I);
2352     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2353 
2354     while (!UsesToRename.empty())
2355       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2356     DEBUG(dbgs() << "\n");
2357   }
2358 
2359   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2360   // that we nuked.
2361   BB->removePredecessor(PredBB, true);
2362 
2363   // Remove the unconditional branch at the end of the PredBB block.
2364   OldPredBranch->eraseFromParent();
2365   DDT->applyUpdates(Updates);
2366 
2367   ++NumDupes;
2368   return true;
2369 }
2370 
2371 /// TryToUnfoldSelect - Look for blocks of the form
2372 /// bb1:
2373 ///   %a = select
2374 ///   br bb2
2375 ///
2376 /// bb2:
2377 ///   %p = phi [%a, %bb1] ...
2378 ///   %c = icmp %p
2379 ///   br i1 %c
2380 ///
2381 /// And expand the select into a branch structure if one of its arms allows %c
2382 /// to be folded. This later enables threading from bb1 over bb2.
2383 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2384   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2385   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2386   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2387 
2388   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2389       CondLHS->getParent() != BB)
2390     return false;
2391 
2392   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2393     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2394     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2395 
2396     // Look if one of the incoming values is a select in the corresponding
2397     // predecessor.
2398     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2399       continue;
2400 
2401     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2402     if (!PredTerm || !PredTerm->isUnconditional())
2403       continue;
2404 
2405     // Now check if one of the select values would allow us to constant fold the
2406     // terminator in BB. We don't do the transform if both sides fold, those
2407     // cases will be threaded in any case.
2408     if (DDT->pending())
2409       LVI->disableDT();
2410     else
2411       LVI->enableDT();
2412     LazyValueInfo::Tristate LHSFolds =
2413         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2414                                 CondRHS, Pred, BB, CondCmp);
2415     LazyValueInfo::Tristate RHSFolds =
2416         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2417                                 CondRHS, Pred, BB, CondCmp);
2418     if ((LHSFolds != LazyValueInfo::Unknown ||
2419          RHSFolds != LazyValueInfo::Unknown) &&
2420         LHSFolds != RHSFolds) {
2421       // Expand the select.
2422       //
2423       // Pred --
2424       //  |    v
2425       //  |  NewBB
2426       //  |    |
2427       //  |-----
2428       //  v
2429       // BB
2430       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2431                                              BB->getParent(), BB);
2432       // Move the unconditional branch to NewBB.
2433       PredTerm->removeFromParent();
2434       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2435       // Create a conditional branch and update PHI nodes.
2436       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2437       CondLHS->setIncomingValue(I, SI->getFalseValue());
2438       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2439       // The select is now dead.
2440       SI->eraseFromParent();
2441 
2442       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2443                          {DominatorTree::Insert, Pred, NewBB}});
2444       // Update any other PHI nodes in BB.
2445       for (BasicBlock::iterator BI = BB->begin();
2446            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2447         if (Phi != CondLHS)
2448           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2449       return true;
2450     }
2451   }
2452   return false;
2453 }
2454 
2455 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2456 /// same BB in the form
2457 /// bb:
2458 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2459 ///   %s = select %p, trueval, falseval
2460 ///
2461 /// or
2462 ///
2463 /// bb:
2464 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2465 ///   %c = cmp %p, 0
2466 ///   %s = select %c, trueval, falseval
2467 ///
2468 /// And expand the select into a branch structure. This later enables
2469 /// jump-threading over bb in this pass.
2470 ///
2471 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2472 /// select if the associated PHI has at least one constant.  If the unfolded
2473 /// select is not jump-threaded, it will be folded again in the later
2474 /// optimizations.
2475 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2476   // If threading this would thread across a loop header, don't thread the edge.
2477   // See the comments above FindLoopHeaders for justifications and caveats.
2478   if (LoopHeaders.count(BB))
2479     return false;
2480 
2481   for (BasicBlock::iterator BI = BB->begin();
2482        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2483     // Look for a Phi having at least one constant incoming value.
2484     if (llvm::all_of(PN->incoming_values(),
2485                      [](Value *V) { return !isa<ConstantInt>(V); }))
2486       continue;
2487 
2488     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2489       // Check if SI is in BB and use V as condition.
2490       if (SI->getParent() != BB)
2491         return false;
2492       Value *Cond = SI->getCondition();
2493       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2494     };
2495 
2496     SelectInst *SI = nullptr;
2497     for (Use &U : PN->uses()) {
2498       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2499         // Look for a ICmp in BB that compares PN with a constant and is the
2500         // condition of a Select.
2501         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2502             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2503           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2504             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2505               SI = SelectI;
2506               break;
2507             }
2508       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2509         // Look for a Select in BB that uses PN as condtion.
2510         if (isUnfoldCandidate(SelectI, U.get())) {
2511           SI = SelectI;
2512           break;
2513         }
2514       }
2515     }
2516 
2517     if (!SI)
2518       continue;
2519     // Expand the select.
2520     TerminatorInst *Term =
2521         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2522     BasicBlock *SplitBB = SI->getParent();
2523     BasicBlock *NewBB = Term->getParent();
2524     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2525     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2526     NewPN->addIncoming(SI->getFalseValue(), BB);
2527     SI->replaceAllUsesWith(NewPN);
2528     SI->eraseFromParent();
2529     // NewBB and SplitBB are newly created blocks which require insertion.
2530     std::vector<DominatorTree::UpdateType> Updates;
2531     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2532     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2533     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2534     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2535     // BB's successors were moved to SplitBB, update DDT accordingly.
2536     for (auto *Succ : successors(SplitBB)) {
2537       Updates.push_back({DominatorTree::Delete, BB, Succ});
2538       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2539     }
2540     DDT->applyUpdates(Updates);
2541     return true;
2542   }
2543   return false;
2544 }
2545 
2546 /// Try to propagate a guard from the current BB into one of its predecessors
2547 /// in case if another branch of execution implies that the condition of this
2548 /// guard is always true. Currently we only process the simplest case that
2549 /// looks like:
2550 ///
2551 /// Start:
2552 ///   %cond = ...
2553 ///   br i1 %cond, label %T1, label %F1
2554 /// T1:
2555 ///   br label %Merge
2556 /// F1:
2557 ///   br label %Merge
2558 /// Merge:
2559 ///   %condGuard = ...
2560 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2561 ///
2562 /// And cond either implies condGuard or !condGuard. In this case all the
2563 /// instructions before the guard can be duplicated in both branches, and the
2564 /// guard is then threaded to one of them.
2565 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2566   using namespace PatternMatch;
2567 
2568   // We only want to deal with two predecessors.
2569   BasicBlock *Pred1, *Pred2;
2570   auto PI = pred_begin(BB), PE = pred_end(BB);
2571   if (PI == PE)
2572     return false;
2573   Pred1 = *PI++;
2574   if (PI == PE)
2575     return false;
2576   Pred2 = *PI++;
2577   if (PI != PE)
2578     return false;
2579   if (Pred1 == Pred2)
2580     return false;
2581 
2582   // Try to thread one of the guards of the block.
2583   // TODO: Look up deeper than to immediate predecessor?
2584   auto *Parent = Pred1->getSinglePredecessor();
2585   if (!Parent || Parent != Pred2->getSinglePredecessor())
2586     return false;
2587 
2588   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2589     for (auto &I : *BB)
2590       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2591         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2592           return true;
2593 
2594   return false;
2595 }
2596 
2597 /// Try to propagate the guard from BB which is the lower block of a diamond
2598 /// to one of its branches, in case if diamond's condition implies guard's
2599 /// condition.
2600 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2601                                     BranchInst *BI) {
2602   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2603   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2604   Value *GuardCond = Guard->getArgOperand(0);
2605   Value *BranchCond = BI->getCondition();
2606   BasicBlock *TrueDest = BI->getSuccessor(0);
2607   BasicBlock *FalseDest = BI->getSuccessor(1);
2608 
2609   auto &DL = BB->getModule()->getDataLayout();
2610   bool TrueDestIsSafe = false;
2611   bool FalseDestIsSafe = false;
2612 
2613   // True dest is safe if BranchCond => GuardCond.
2614   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2615   if (Impl && *Impl)
2616     TrueDestIsSafe = true;
2617   else {
2618     // False dest is safe if !BranchCond => GuardCond.
2619     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2620     if (Impl && *Impl)
2621       FalseDestIsSafe = true;
2622   }
2623 
2624   if (!TrueDestIsSafe && !FalseDestIsSafe)
2625     return false;
2626 
2627   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2628   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2629 
2630   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2631   Instruction *AfterGuard = Guard->getNextNode();
2632   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2633   if (Cost > BBDupThreshold)
2634     return false;
2635   // Duplicate all instructions before the guard and the guard itself to the
2636   // branch where implication is not proved.
2637   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2638       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2639   assert(GuardedBlock && "Could not create the guarded block?");
2640   // Duplicate all instructions before the guard in the unguarded branch.
2641   // Since we have successfully duplicated the guarded block and this block
2642   // has fewer instructions, we expect it to succeed.
2643   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2644       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2645   assert(UnguardedBlock && "Could not create the unguarded block?");
2646   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2647                << GuardedBlock->getName() << "\n");
2648   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2649   // PredBB and BB. We need to perform two inserts and one delete for each of
2650   // the above calls to update Dominators.
2651   DDT->applyUpdates(
2652       {// Guarded block split.
2653        {DominatorTree::Delete, PredGuardedBlock, BB},
2654        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2655        {DominatorTree::Insert, GuardedBlock, BB},
2656        // Unguarded block split.
2657        {DominatorTree::Delete, PredUnguardedBlock, BB},
2658        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2659        {DominatorTree::Insert, UnguardedBlock, BB}});
2660   // Some instructions before the guard may still have uses. For them, we need
2661   // to create Phi nodes merging their copies in both guarded and unguarded
2662   // branches. Those instructions that have no uses can be just removed.
2663   SmallVector<Instruction *, 4> ToRemove;
2664   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2665     if (!isa<PHINode>(&*BI))
2666       ToRemove.push_back(&*BI);
2667 
2668   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2669   assert(InsertionPoint && "Empty block?");
2670   // Substitute with Phis & remove.
2671   for (auto *Inst : reverse(ToRemove)) {
2672     if (!Inst->use_empty()) {
2673       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2674       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2675       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2676       NewPN->insertBefore(InsertionPoint);
2677       Inst->replaceAllUsesWith(NewPN);
2678     }
2679     Inst->eraseFromParent();
2680   }
2681   return true;
2682 }
2683