1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 if (PrintLVIAfterJumpThreading) 135 AU.addRequired<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<GlobalsAAWrapperPass>(); 139 AU.addRequired<TargetLibraryInfoWrapperPass>(); 140 } 141 142 void releaseMemory() override { Impl.releaseMemory(); } 143 }; 144 145 } // end anonymous namespace 146 147 char JumpThreading::ID = 0; 148 149 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 150 "Jump Threading", false, false) 151 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 154 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 155 "Jump Threading", false, false) 156 157 // Public interface to the Jump Threading pass 158 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 159 return new JumpThreading(Threshold); 160 } 161 162 JumpThreadingPass::JumpThreadingPass(int T) { 163 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 164 } 165 166 // Update branch probability information according to conditional 167 // branch probablity. This is usually made possible for cloned branches 168 // in inline instances by the context specific profile in the caller. 169 // For instance, 170 // 171 // [Block PredBB] 172 // [Branch PredBr] 173 // if (t) { 174 // Block A; 175 // } else { 176 // Block B; 177 // } 178 // 179 // [Block BB] 180 // cond = PN([true, %A], [..., %B]); // PHI node 181 // [Branch CondBr] 182 // if (cond) { 183 // ... // P(cond == true) = 1% 184 // } 185 // 186 // Here we know that when block A is taken, cond must be true, which means 187 // P(cond == true | A) = 1 188 // 189 // Given that P(cond == true) = P(cond == true | A) * P(A) + 190 // P(cond == true | B) * P(B) 191 // we get 192 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 193 // 194 // which gives us: 195 // P(A) is less than P(cond == true), i.e. 196 // P(t == true) <= P(cond == true) 197 // 198 // In other words, if we know P(cond == true) is unlikely, we know 199 // that P(t == true) is also unlikely. 200 // 201 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 202 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 203 if (!CondBr) 204 return; 205 206 BranchProbability BP; 207 uint64_t TrueWeight, FalseWeight; 208 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 209 return; 210 211 // Returns the outgoing edge of the dominating predecessor block 212 // that leads to the PhiNode's incoming block: 213 auto GetPredOutEdge = 214 [](BasicBlock *IncomingBB, 215 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 216 auto *PredBB = IncomingBB; 217 auto *SuccBB = PhiBB; 218 while (true) { 219 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 220 if (PredBr && PredBr->isConditional()) 221 return {PredBB, SuccBB}; 222 auto *SinglePredBB = PredBB->getSinglePredecessor(); 223 if (!SinglePredBB) 224 return {nullptr, nullptr}; 225 SuccBB = PredBB; 226 PredBB = SinglePredBB; 227 } 228 }; 229 230 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 231 Value *PhiOpnd = PN->getIncomingValue(i); 232 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 233 234 if (!CI || !CI->getType()->isIntegerTy(1)) 235 continue; 236 237 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 238 TrueWeight, TrueWeight + FalseWeight) 239 : BranchProbability::getBranchProbability( 240 FalseWeight, TrueWeight + FalseWeight)); 241 242 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 243 if (!PredOutEdge.first) 244 return; 245 246 BasicBlock *PredBB = PredOutEdge.first; 247 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 248 249 uint64_t PredTrueWeight, PredFalseWeight; 250 // FIXME: We currently only set the profile data when it is missing. 251 // With PGO, this can be used to refine even existing profile data with 252 // context information. This needs to be done after more performance 253 // testing. 254 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 255 continue; 256 257 // We can not infer anything useful when BP >= 50%, because BP is the 258 // upper bound probability value. 259 if (BP >= BranchProbability(50, 100)) 260 continue; 261 262 SmallVector<uint32_t, 2> Weights; 263 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 264 Weights.push_back(BP.getNumerator()); 265 Weights.push_back(BP.getCompl().getNumerator()); 266 } else { 267 Weights.push_back(BP.getCompl().getNumerator()); 268 Weights.push_back(BP.getNumerator()); 269 } 270 PredBr->setMetadata(LLVMContext::MD_prof, 271 MDBuilder(PredBr->getParent()->getContext()) 272 .createBranchWeights(Weights)); 273 } 274 } 275 276 /// runOnFunction - Toplevel algorithm. 277 bool JumpThreading::runOnFunction(Function &F) { 278 if (skipFunction(F)) 279 return false; 280 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 281 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 282 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 283 std::unique_ptr<BlockFrequencyInfo> BFI; 284 std::unique_ptr<BranchProbabilityInfo> BPI; 285 bool HasProfileData = F.getEntryCount().hasValue(); 286 if (HasProfileData) { 287 LoopInfo LI{DominatorTree(F)}; 288 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 289 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 290 } 291 292 bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI), 293 std::move(BPI)); 294 if (PrintLVIAfterJumpThreading) { 295 dbgs() << "LVI for function '" << F.getName() << "':\n"; 296 LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 297 dbgs()); 298 } 299 return Changed; 300 } 301 302 PreservedAnalyses JumpThreadingPass::run(Function &F, 303 FunctionAnalysisManager &AM) { 304 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 305 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 306 auto &AA = AM.getResult<AAManager>(F); 307 308 std::unique_ptr<BlockFrequencyInfo> BFI; 309 std::unique_ptr<BranchProbabilityInfo> BPI; 310 bool HasProfileData = F.getEntryCount().hasValue(); 311 if (HasProfileData) { 312 LoopInfo LI{DominatorTree(F)}; 313 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 314 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 315 } 316 317 bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI), 318 std::move(BPI)); 319 320 if (!Changed) 321 return PreservedAnalyses::all(); 322 PreservedAnalyses PA; 323 PA.preserve<GlobalsAA>(); 324 return PA; 325 } 326 327 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 328 LazyValueInfo *LVI_, AliasAnalysis *AA_, 329 bool HasProfileData_, 330 std::unique_ptr<BlockFrequencyInfo> BFI_, 331 std::unique_ptr<BranchProbabilityInfo> BPI_) { 332 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 333 TLI = TLI_; 334 LVI = LVI_; 335 AA = AA_; 336 BFI.reset(); 337 BPI.reset(); 338 // When profile data is available, we need to update edge weights after 339 // successful jump threading, which requires both BPI and BFI being available. 340 HasProfileData = HasProfileData_; 341 auto *GuardDecl = F.getParent()->getFunction( 342 Intrinsic::getName(Intrinsic::experimental_guard)); 343 HasGuards = GuardDecl && !GuardDecl->use_empty(); 344 if (HasProfileData) { 345 BPI = std::move(BPI_); 346 BFI = std::move(BFI_); 347 } 348 349 // Remove unreachable blocks from function as they may result in infinite 350 // loop. We do threading if we found something profitable. Jump threading a 351 // branch can create other opportunities. If these opportunities form a cycle 352 // i.e. if any jump threading is undoing previous threading in the path, then 353 // we will loop forever. We take care of this issue by not jump threading for 354 // back edges. This works for normal cases but not for unreachable blocks as 355 // they may have cycle with no back edge. 356 bool EverChanged = false; 357 EverChanged |= removeUnreachableBlocks(F, LVI); 358 359 FindLoopHeaders(F); 360 361 bool Changed; 362 do { 363 Changed = false; 364 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 365 BasicBlock *BB = &*I; 366 // Thread all of the branches we can over this block. 367 while (ProcessBlock(BB)) 368 Changed = true; 369 370 ++I; 371 372 // If the block is trivially dead, zap it. This eliminates the successor 373 // edges which simplifies the CFG. 374 if (pred_empty(BB) && 375 BB != &BB->getParent()->getEntryBlock()) { 376 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 377 << "' with terminator: " << *BB->getTerminator() << '\n'); 378 LoopHeaders.erase(BB); 379 LVI->eraseBlock(BB); 380 DeleteDeadBlock(BB); 381 Changed = true; 382 continue; 383 } 384 385 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 386 387 // Can't thread an unconditional jump, but if the block is "almost 388 // empty", we can replace uses of it with uses of the successor and make 389 // this dead. 390 // We should not eliminate the loop header or latch either, because 391 // eliminating a loop header or latch might later prevent LoopSimplify 392 // from transforming nested loops into simplified form. We will rely on 393 // later passes in backend to clean up empty blocks. 394 if (BI && BI->isUnconditional() && 395 BB != &BB->getParent()->getEntryBlock() && 396 // If the terminator is the only non-phi instruction, try to nuke it. 397 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) && 398 !LoopHeaders.count(BI->getSuccessor(0))) { 399 // FIXME: It is always conservatively correct to drop the info 400 // for a block even if it doesn't get erased. This isn't totally 401 // awesome, but it allows us to use AssertingVH to prevent nasty 402 // dangling pointer issues within LazyValueInfo. 403 LVI->eraseBlock(BB); 404 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 405 Changed = true; 406 } 407 } 408 EverChanged |= Changed; 409 } while (Changed); 410 411 LoopHeaders.clear(); 412 return EverChanged; 413 } 414 415 // Replace uses of Cond with ToVal when safe to do so. If all uses are 416 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 417 // because we may incorrectly replace uses when guards/assumes are uses of 418 // of `Cond` and we used the guards/assume to reason about the `Cond` value 419 // at the end of block. RAUW unconditionally replaces all uses 420 // including the guards/assumes themselves and the uses before the 421 // guard/assume. 422 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 423 assert(Cond->getType() == ToVal->getType()); 424 auto *BB = Cond->getParent(); 425 // We can unconditionally replace all uses in non-local blocks (i.e. uses 426 // strictly dominated by BB), since LVI information is true from the 427 // terminator of BB. 428 replaceNonLocalUsesWith(Cond, ToVal); 429 for (Instruction &I : reverse(*BB)) { 430 // Reached the Cond whose uses we are trying to replace, so there are no 431 // more uses. 432 if (&I == Cond) 433 break; 434 // We only replace uses in instructions that are guaranteed to reach the end 435 // of BB, where we know Cond is ToVal. 436 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 437 break; 438 I.replaceUsesOfWith(Cond, ToVal); 439 } 440 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 441 Cond->eraseFromParent(); 442 } 443 444 /// Return the cost of duplicating a piece of this block from first non-phi 445 /// and before StopAt instruction to thread across it. Stop scanning the block 446 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 447 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 448 Instruction *StopAt, 449 unsigned Threshold) { 450 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 451 /// Ignore PHI nodes, these will be flattened when duplication happens. 452 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 453 454 // FIXME: THREADING will delete values that are just used to compute the 455 // branch, so they shouldn't count against the duplication cost. 456 457 unsigned Bonus = 0; 458 if (BB->getTerminator() == StopAt) { 459 // Threading through a switch statement is particularly profitable. If this 460 // block ends in a switch, decrease its cost to make it more likely to 461 // happen. 462 if (isa<SwitchInst>(StopAt)) 463 Bonus = 6; 464 465 // The same holds for indirect branches, but slightly more so. 466 if (isa<IndirectBrInst>(StopAt)) 467 Bonus = 8; 468 } 469 470 // Bump the threshold up so the early exit from the loop doesn't skip the 471 // terminator-based Size adjustment at the end. 472 Threshold += Bonus; 473 474 // Sum up the cost of each instruction until we get to the terminator. Don't 475 // include the terminator because the copy won't include it. 476 unsigned Size = 0; 477 for (; &*I != StopAt; ++I) { 478 479 // Stop scanning the block if we've reached the threshold. 480 if (Size > Threshold) 481 return Size; 482 483 // Debugger intrinsics don't incur code size. 484 if (isa<DbgInfoIntrinsic>(I)) continue; 485 486 // If this is a pointer->pointer bitcast, it is free. 487 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 488 continue; 489 490 // Bail out if this instruction gives back a token type, it is not possible 491 // to duplicate it if it is used outside this BB. 492 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 493 return ~0U; 494 495 // All other instructions count for at least one unit. 496 ++Size; 497 498 // Calls are more expensive. If they are non-intrinsic calls, we model them 499 // as having cost of 4. If they are a non-vector intrinsic, we model them 500 // as having cost of 2 total, and if they are a vector intrinsic, we model 501 // them as having cost 1. 502 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 503 if (CI->cannotDuplicate() || CI->isConvergent()) 504 // Blocks with NoDuplicate are modelled as having infinite cost, so they 505 // are never duplicated. 506 return ~0U; 507 else if (!isa<IntrinsicInst>(CI)) 508 Size += 3; 509 else if (!CI->getType()->isVectorTy()) 510 Size += 1; 511 } 512 } 513 514 return Size > Bonus ? Size - Bonus : 0; 515 } 516 517 /// FindLoopHeaders - We do not want jump threading to turn proper loop 518 /// structures into irreducible loops. Doing this breaks up the loop nesting 519 /// hierarchy and pessimizes later transformations. To prevent this from 520 /// happening, we first have to find the loop headers. Here we approximate this 521 /// by finding targets of backedges in the CFG. 522 /// 523 /// Note that there definitely are cases when we want to allow threading of 524 /// edges across a loop header. For example, threading a jump from outside the 525 /// loop (the preheader) to an exit block of the loop is definitely profitable. 526 /// It is also almost always profitable to thread backedges from within the loop 527 /// to exit blocks, and is often profitable to thread backedges to other blocks 528 /// within the loop (forming a nested loop). This simple analysis is not rich 529 /// enough to track all of these properties and keep it up-to-date as the CFG 530 /// mutates, so we don't allow any of these transformations. 531 void JumpThreadingPass::FindLoopHeaders(Function &F) { 532 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 533 FindFunctionBackedges(F, Edges); 534 535 for (const auto &Edge : Edges) 536 LoopHeaders.insert(Edge.second); 537 } 538 539 /// getKnownConstant - Helper method to determine if we can thread over a 540 /// terminator with the given value as its condition, and if so what value to 541 /// use for that. What kind of value this is depends on whether we want an 542 /// integer or a block address, but an undef is always accepted. 543 /// Returns null if Val is null or not an appropriate constant. 544 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 545 if (!Val) 546 return nullptr; 547 548 // Undef is "known" enough. 549 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 550 return U; 551 552 if (Preference == WantBlockAddress) 553 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 554 555 return dyn_cast<ConstantInt>(Val); 556 } 557 558 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 559 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 560 /// in any of our predecessors. If so, return the known list of value and pred 561 /// BB in the result vector. 562 /// 563 /// This returns true if there were any known values. 564 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 565 Value *V, BasicBlock *BB, PredValueInfo &Result, 566 ConstantPreference Preference, Instruction *CxtI) { 567 // This method walks up use-def chains recursively. Because of this, we could 568 // get into an infinite loop going around loops in the use-def chain. To 569 // prevent this, keep track of what (value, block) pairs we've already visited 570 // and terminate the search if we loop back to them 571 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 572 return false; 573 574 // An RAII help to remove this pair from the recursion set once the recursion 575 // stack pops back out again. 576 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 577 578 // If V is a constant, then it is known in all predecessors. 579 if (Constant *KC = getKnownConstant(V, Preference)) { 580 for (BasicBlock *Pred : predecessors(BB)) 581 Result.push_back(std::make_pair(KC, Pred)); 582 583 return !Result.empty(); 584 } 585 586 // If V is a non-instruction value, or an instruction in a different block, 587 // then it can't be derived from a PHI. 588 Instruction *I = dyn_cast<Instruction>(V); 589 if (!I || I->getParent() != BB) { 590 591 // Okay, if this is a live-in value, see if it has a known value at the end 592 // of any of our predecessors. 593 // 594 // FIXME: This should be an edge property, not a block end property. 595 /// TODO: Per PR2563, we could infer value range information about a 596 /// predecessor based on its terminator. 597 // 598 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 599 // "I" is a non-local compare-with-a-constant instruction. This would be 600 // able to handle value inequalities better, for example if the compare is 601 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 602 // Perhaps getConstantOnEdge should be smart enough to do this? 603 604 for (BasicBlock *P : predecessors(BB)) { 605 // If the value is known by LazyValueInfo to be a constant in a 606 // predecessor, use that information to try to thread this block. 607 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 608 if (Constant *KC = getKnownConstant(PredCst, Preference)) 609 Result.push_back(std::make_pair(KC, P)); 610 } 611 612 return !Result.empty(); 613 } 614 615 /// If I is a PHI node, then we know the incoming values for any constants. 616 if (PHINode *PN = dyn_cast<PHINode>(I)) { 617 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 618 Value *InVal = PN->getIncomingValue(i); 619 if (Constant *KC = getKnownConstant(InVal, Preference)) { 620 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 621 } else { 622 Constant *CI = LVI->getConstantOnEdge(InVal, 623 PN->getIncomingBlock(i), 624 BB, CxtI); 625 if (Constant *KC = getKnownConstant(CI, Preference)) 626 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 627 } 628 } 629 630 return !Result.empty(); 631 } 632 633 // Handle Cast instructions. Only see through Cast when the source operand is 634 // PHI or Cmp and the source type is i1 to save the compilation time. 635 if (CastInst *CI = dyn_cast<CastInst>(I)) { 636 Value *Source = CI->getOperand(0); 637 if (!Source->getType()->isIntegerTy(1)) 638 return false; 639 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 640 return false; 641 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 642 if (Result.empty()) 643 return false; 644 645 // Convert the known values. 646 for (auto &R : Result) 647 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 648 649 return true; 650 } 651 652 // Handle some boolean conditions. 653 if (I->getType()->getPrimitiveSizeInBits() == 1) { 654 assert(Preference == WantInteger && "One-bit non-integer type?"); 655 // X | true -> true 656 // X & false -> false 657 if (I->getOpcode() == Instruction::Or || 658 I->getOpcode() == Instruction::And) { 659 PredValueInfoTy LHSVals, RHSVals; 660 661 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 662 WantInteger, CxtI); 663 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 664 WantInteger, CxtI); 665 666 if (LHSVals.empty() && RHSVals.empty()) 667 return false; 668 669 ConstantInt *InterestingVal; 670 if (I->getOpcode() == Instruction::Or) 671 InterestingVal = ConstantInt::getTrue(I->getContext()); 672 else 673 InterestingVal = ConstantInt::getFalse(I->getContext()); 674 675 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 676 677 // Scan for the sentinel. If we find an undef, force it to the 678 // interesting value: x|undef -> true and x&undef -> false. 679 for (const auto &LHSVal : LHSVals) 680 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 681 Result.emplace_back(InterestingVal, LHSVal.second); 682 LHSKnownBBs.insert(LHSVal.second); 683 } 684 for (const auto &RHSVal : RHSVals) 685 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 686 // If we already inferred a value for this block on the LHS, don't 687 // re-add it. 688 if (!LHSKnownBBs.count(RHSVal.second)) 689 Result.emplace_back(InterestingVal, RHSVal.second); 690 } 691 692 return !Result.empty(); 693 } 694 695 // Handle the NOT form of XOR. 696 if (I->getOpcode() == Instruction::Xor && 697 isa<ConstantInt>(I->getOperand(1)) && 698 cast<ConstantInt>(I->getOperand(1))->isOne()) { 699 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 700 WantInteger, CxtI); 701 if (Result.empty()) 702 return false; 703 704 // Invert the known values. 705 for (auto &R : Result) 706 R.first = ConstantExpr::getNot(R.first); 707 708 return true; 709 } 710 711 // Try to simplify some other binary operator values. 712 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 713 assert(Preference != WantBlockAddress 714 && "A binary operator creating a block address?"); 715 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 716 PredValueInfoTy LHSVals; 717 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 718 WantInteger, CxtI); 719 720 // Try to use constant folding to simplify the binary operator. 721 for (const auto &LHSVal : LHSVals) { 722 Constant *V = LHSVal.first; 723 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 724 725 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 726 Result.push_back(std::make_pair(KC, LHSVal.second)); 727 } 728 } 729 730 return !Result.empty(); 731 } 732 733 // Handle compare with phi operand, where the PHI is defined in this block. 734 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 735 assert(Preference == WantInteger && "Compares only produce integers"); 736 Type *CmpType = Cmp->getType(); 737 Value *CmpLHS = Cmp->getOperand(0); 738 Value *CmpRHS = Cmp->getOperand(1); 739 CmpInst::Predicate Pred = Cmp->getPredicate(); 740 741 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 742 if (PN && PN->getParent() == BB) { 743 const DataLayout &DL = PN->getModule()->getDataLayout(); 744 // We can do this simplification if any comparisons fold to true or false. 745 // See if any do. 746 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 747 BasicBlock *PredBB = PN->getIncomingBlock(i); 748 Value *LHS = PN->getIncomingValue(i); 749 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 750 751 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 752 if (!Res) { 753 if (!isa<Constant>(RHS)) 754 continue; 755 756 LazyValueInfo::Tristate 757 ResT = LVI->getPredicateOnEdge(Pred, LHS, 758 cast<Constant>(RHS), PredBB, BB, 759 CxtI ? CxtI : Cmp); 760 if (ResT == LazyValueInfo::Unknown) 761 continue; 762 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 763 } 764 765 if (Constant *KC = getKnownConstant(Res, WantInteger)) 766 Result.push_back(std::make_pair(KC, PredBB)); 767 } 768 769 return !Result.empty(); 770 } 771 772 // If comparing a live-in value against a constant, see if we know the 773 // live-in value on any predecessors. 774 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 775 Constant *CmpConst = cast<Constant>(CmpRHS); 776 777 if (!isa<Instruction>(CmpLHS) || 778 cast<Instruction>(CmpLHS)->getParent() != BB) { 779 for (BasicBlock *P : predecessors(BB)) { 780 // If the value is known by LazyValueInfo to be a constant in a 781 // predecessor, use that information to try to thread this block. 782 LazyValueInfo::Tristate Res = 783 LVI->getPredicateOnEdge(Pred, CmpLHS, 784 CmpConst, P, BB, CxtI ? CxtI : Cmp); 785 if (Res == LazyValueInfo::Unknown) 786 continue; 787 788 Constant *ResC = ConstantInt::get(CmpType, Res); 789 Result.push_back(std::make_pair(ResC, P)); 790 } 791 792 return !Result.empty(); 793 } 794 795 // InstCombine can fold some forms of constant range checks into 796 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 797 // x as a live-in. 798 { 799 using namespace PatternMatch; 800 801 Value *AddLHS; 802 ConstantInt *AddConst; 803 if (isa<ConstantInt>(CmpConst) && 804 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 805 if (!isa<Instruction>(AddLHS) || 806 cast<Instruction>(AddLHS)->getParent() != BB) { 807 for (BasicBlock *P : predecessors(BB)) { 808 // If the value is known by LazyValueInfo to be a ConstantRange in 809 // a predecessor, use that information to try to thread this 810 // block. 811 ConstantRange CR = LVI->getConstantRangeOnEdge( 812 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 813 // Propagate the range through the addition. 814 CR = CR.add(AddConst->getValue()); 815 816 // Get the range where the compare returns true. 817 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 818 Pred, cast<ConstantInt>(CmpConst)->getValue()); 819 820 Constant *ResC; 821 if (CmpRange.contains(CR)) 822 ResC = ConstantInt::getTrue(CmpType); 823 else if (CmpRange.inverse().contains(CR)) 824 ResC = ConstantInt::getFalse(CmpType); 825 else 826 continue; 827 828 Result.push_back(std::make_pair(ResC, P)); 829 } 830 831 return !Result.empty(); 832 } 833 } 834 } 835 836 // Try to find a constant value for the LHS of a comparison, 837 // and evaluate it statically if we can. 838 PredValueInfoTy LHSVals; 839 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 840 WantInteger, CxtI); 841 842 for (const auto &LHSVal : LHSVals) { 843 Constant *V = LHSVal.first; 844 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 845 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 846 Result.push_back(std::make_pair(KC, LHSVal.second)); 847 } 848 849 return !Result.empty(); 850 } 851 } 852 853 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 854 // Handle select instructions where at least one operand is a known constant 855 // and we can figure out the condition value for any predecessor block. 856 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 857 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 858 PredValueInfoTy Conds; 859 if ((TrueVal || FalseVal) && 860 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 861 WantInteger, CxtI)) { 862 for (auto &C : Conds) { 863 Constant *Cond = C.first; 864 865 // Figure out what value to use for the condition. 866 bool KnownCond; 867 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 868 // A known boolean. 869 KnownCond = CI->isOne(); 870 } else { 871 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 872 // Either operand will do, so be sure to pick the one that's a known 873 // constant. 874 // FIXME: Do this more cleverly if both values are known constants? 875 KnownCond = (TrueVal != nullptr); 876 } 877 878 // See if the select has a known constant value for this predecessor. 879 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 880 Result.push_back(std::make_pair(Val, C.second)); 881 } 882 883 return !Result.empty(); 884 } 885 } 886 887 // If all else fails, see if LVI can figure out a constant value for us. 888 Constant *CI = LVI->getConstant(V, BB, CxtI); 889 if (Constant *KC = getKnownConstant(CI, Preference)) { 890 for (BasicBlock *Pred : predecessors(BB)) 891 Result.push_back(std::make_pair(KC, Pred)); 892 } 893 894 return !Result.empty(); 895 } 896 897 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 898 /// in an undefined jump, decide which block is best to revector to. 899 /// 900 /// Since we can pick an arbitrary destination, we pick the successor with the 901 /// fewest predecessors. This should reduce the in-degree of the others. 902 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 903 TerminatorInst *BBTerm = BB->getTerminator(); 904 unsigned MinSucc = 0; 905 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 906 // Compute the successor with the minimum number of predecessors. 907 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 908 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 909 TestBB = BBTerm->getSuccessor(i); 910 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 911 if (NumPreds < MinNumPreds) { 912 MinSucc = i; 913 MinNumPreds = NumPreds; 914 } 915 } 916 917 return MinSucc; 918 } 919 920 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 921 if (!BB->hasAddressTaken()) return false; 922 923 // If the block has its address taken, it may be a tree of dead constants 924 // hanging off of it. These shouldn't keep the block alive. 925 BlockAddress *BA = BlockAddress::get(BB); 926 BA->removeDeadConstantUsers(); 927 return !BA->use_empty(); 928 } 929 930 /// ProcessBlock - If there are any predecessors whose control can be threaded 931 /// through to a successor, transform them now. 932 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 933 // If the block is trivially dead, just return and let the caller nuke it. 934 // This simplifies other transformations. 935 if (pred_empty(BB) && 936 BB != &BB->getParent()->getEntryBlock()) 937 return false; 938 939 // If this block has a single predecessor, and if that pred has a single 940 // successor, merge the blocks. This encourages recursive jump threading 941 // because now the condition in this block can be threaded through 942 // predecessors of our predecessor block. 943 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 944 const TerminatorInst *TI = SinglePred->getTerminator(); 945 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 946 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 947 // If SinglePred was a loop header, BB becomes one. 948 if (LoopHeaders.erase(SinglePred)) 949 LoopHeaders.insert(BB); 950 951 LVI->eraseBlock(SinglePred); 952 MergeBasicBlockIntoOnlyPred(BB); 953 954 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 955 // BB code within one basic block `BB`), we need to invalidate the LVI 956 // information associated with BB, because the LVI information need not be 957 // true for all of BB after the merge. For example, 958 // Before the merge, LVI info and code is as follows: 959 // SinglePred: <LVI info1 for %p val> 960 // %y = use of %p 961 // call @exit() // need not transfer execution to successor. 962 // assume(%p) // from this point on %p is true 963 // br label %BB 964 // BB: <LVI info2 for %p val, i.e. %p is true> 965 // %x = use of %p 966 // br label exit 967 // 968 // Note that this LVI info for blocks BB and SinglPred is correct for %p 969 // (info2 and info1 respectively). After the merge and the deletion of the 970 // LVI info1 for SinglePred. We have the following code: 971 // BB: <LVI info2 for %p val> 972 // %y = use of %p 973 // call @exit() 974 // assume(%p) 975 // %x = use of %p <-- LVI info2 is correct from here onwards. 976 // br label exit 977 // LVI info2 for BB is incorrect at the beginning of BB. 978 979 // Invalidate LVI information for BB if the LVI is not provably true for 980 // all of BB. 981 if (any_of(*BB, [](Instruction &I) { 982 return !isGuaranteedToTransferExecutionToSuccessor(&I); 983 })) 984 LVI->eraseBlock(BB); 985 return true; 986 } 987 } 988 989 if (TryToUnfoldSelectInCurrBB(BB)) 990 return true; 991 992 // Look if we can propagate guards to predecessors. 993 if (HasGuards && ProcessGuards(BB)) 994 return true; 995 996 // What kind of constant we're looking for. 997 ConstantPreference Preference = WantInteger; 998 999 // Look to see if the terminator is a conditional branch, switch or indirect 1000 // branch, if not we can't thread it. 1001 Value *Condition; 1002 Instruction *Terminator = BB->getTerminator(); 1003 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1004 // Can't thread an unconditional jump. 1005 if (BI->isUnconditional()) return false; 1006 Condition = BI->getCondition(); 1007 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1008 Condition = SI->getCondition(); 1009 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1010 // Can't thread indirect branch with no successors. 1011 if (IB->getNumSuccessors() == 0) return false; 1012 Condition = IB->getAddress()->stripPointerCasts(); 1013 Preference = WantBlockAddress; 1014 } else { 1015 return false; // Must be an invoke. 1016 } 1017 1018 // Run constant folding to see if we can reduce the condition to a simple 1019 // constant. 1020 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1021 Value *SimpleVal = 1022 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1023 if (SimpleVal) { 1024 I->replaceAllUsesWith(SimpleVal); 1025 if (isInstructionTriviallyDead(I, TLI)) 1026 I->eraseFromParent(); 1027 Condition = SimpleVal; 1028 } 1029 } 1030 1031 // If the terminator is branching on an undef, we can pick any of the 1032 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1033 if (isa<UndefValue>(Condition)) { 1034 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1035 1036 // Fold the branch/switch. 1037 TerminatorInst *BBTerm = BB->getTerminator(); 1038 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1039 if (i == BestSucc) continue; 1040 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 1041 } 1042 1043 DEBUG(dbgs() << " In block '" << BB->getName() 1044 << "' folding undef terminator: " << *BBTerm << '\n'); 1045 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1046 BBTerm->eraseFromParent(); 1047 return true; 1048 } 1049 1050 // If the terminator of this block is branching on a constant, simplify the 1051 // terminator to an unconditional branch. This can occur due to threading in 1052 // other blocks. 1053 if (getKnownConstant(Condition, Preference)) { 1054 DEBUG(dbgs() << " In block '" << BB->getName() 1055 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1056 ++NumFolds; 1057 ConstantFoldTerminator(BB, true); 1058 return true; 1059 } 1060 1061 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1062 1063 // All the rest of our checks depend on the condition being an instruction. 1064 if (!CondInst) { 1065 // FIXME: Unify this with code below. 1066 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1067 return true; 1068 return false; 1069 } 1070 1071 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1072 // If we're branching on a conditional, LVI might be able to determine 1073 // it's value at the branch instruction. We only handle comparisons 1074 // against a constant at this time. 1075 // TODO: This should be extended to handle switches as well. 1076 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1077 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1078 if (CondBr && CondConst) { 1079 // We should have returned as soon as we turn a conditional branch to 1080 // unconditional. Because its no longer interesting as far as jump 1081 // threading is concerned. 1082 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1083 1084 LazyValueInfo::Tristate Ret = 1085 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1086 CondConst, CondBr); 1087 if (Ret != LazyValueInfo::Unknown) { 1088 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1089 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1090 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 1091 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1092 CondBr->eraseFromParent(); 1093 if (CondCmp->use_empty()) 1094 CondCmp->eraseFromParent(); 1095 // We can safely replace *some* uses of the CondInst if it has 1096 // exactly one value as returned by LVI. RAUW is incorrect in the 1097 // presence of guards and assumes, that have the `Cond` as the use. This 1098 // is because we use the guards/assume to reason about the `Cond` value 1099 // at the end of block, but RAUW unconditionally replaces all uses 1100 // including the guards/assumes themselves and the uses before the 1101 // guard/assume. 1102 else if (CondCmp->getParent() == BB) { 1103 auto *CI = Ret == LazyValueInfo::True ? 1104 ConstantInt::getTrue(CondCmp->getType()) : 1105 ConstantInt::getFalse(CondCmp->getType()); 1106 ReplaceFoldableUses(CondCmp, CI); 1107 } 1108 return true; 1109 } 1110 1111 // We did not manage to simplify this branch, try to see whether 1112 // CondCmp depends on a known phi-select pattern. 1113 if (TryToUnfoldSelect(CondCmp, BB)) 1114 return true; 1115 } 1116 } 1117 1118 // Check for some cases that are worth simplifying. Right now we want to look 1119 // for loads that are used by a switch or by the condition for the branch. If 1120 // we see one, check to see if it's partially redundant. If so, insert a PHI 1121 // which can then be used to thread the values. 1122 Value *SimplifyValue = CondInst; 1123 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1124 if (isa<Constant>(CondCmp->getOperand(1))) 1125 SimplifyValue = CondCmp->getOperand(0); 1126 1127 // TODO: There are other places where load PRE would be profitable, such as 1128 // more complex comparisons. 1129 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 1130 if (SimplifyPartiallyRedundantLoad(LI)) 1131 return true; 1132 1133 // Before threading, try to propagate profile data backwards: 1134 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1135 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1136 updatePredecessorProfileMetadata(PN, BB); 1137 1138 // Handle a variety of cases where we are branching on something derived from 1139 // a PHI node in the current block. If we can prove that any predecessors 1140 // compute a predictable value based on a PHI node, thread those predecessors. 1141 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1142 return true; 1143 1144 // If this is an otherwise-unfoldable branch on a phi node in the current 1145 // block, see if we can simplify. 1146 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1147 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1148 return ProcessBranchOnPHI(PN); 1149 1150 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1151 if (CondInst->getOpcode() == Instruction::Xor && 1152 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1153 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1154 1155 // Search for a stronger dominating condition that can be used to simplify a 1156 // conditional branch leaving BB. 1157 if (ProcessImpliedCondition(BB)) 1158 return true; 1159 1160 return false; 1161 } 1162 1163 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1164 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1165 if (!BI || !BI->isConditional()) 1166 return false; 1167 1168 Value *Cond = BI->getCondition(); 1169 BasicBlock *CurrentBB = BB; 1170 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1171 unsigned Iter = 0; 1172 1173 auto &DL = BB->getModule()->getDataLayout(); 1174 1175 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1176 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1177 if (!PBI || !PBI->isConditional()) 1178 return false; 1179 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1180 return false; 1181 1182 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1183 Optional<bool> Implication = 1184 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1185 if (Implication) { 1186 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 1187 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 1188 BI->eraseFromParent(); 1189 return true; 1190 } 1191 CurrentBB = CurrentPred; 1192 CurrentPred = CurrentBB->getSinglePredecessor(); 1193 } 1194 1195 return false; 1196 } 1197 1198 /// Return true if Op is an instruction defined in the given block. 1199 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1200 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1201 if (OpInst->getParent() == BB) 1202 return true; 1203 return false; 1204 } 1205 1206 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 1207 /// load instruction, eliminate it by replacing it with a PHI node. This is an 1208 /// important optimization that encourages jump threading, and needs to be run 1209 /// interlaced with other jump threading tasks. 1210 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 1211 // Don't hack volatile and ordered loads. 1212 if (!LI->isUnordered()) return false; 1213 1214 // If the load is defined in a block with exactly one predecessor, it can't be 1215 // partially redundant. 1216 BasicBlock *LoadBB = LI->getParent(); 1217 if (LoadBB->getSinglePredecessor()) 1218 return false; 1219 1220 // If the load is defined in an EH pad, it can't be partially redundant, 1221 // because the edges between the invoke and the EH pad cannot have other 1222 // instructions between them. 1223 if (LoadBB->isEHPad()) 1224 return false; 1225 1226 Value *LoadedPtr = LI->getOperand(0); 1227 1228 // If the loaded operand is defined in the LoadBB and its not a phi, 1229 // it can't be available in predecessors. 1230 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1231 return false; 1232 1233 // Scan a few instructions up from the load, to see if it is obviously live at 1234 // the entry to its block. 1235 BasicBlock::iterator BBIt(LI); 1236 bool IsLoadCSE; 1237 if (Value *AvailableVal = FindAvailableLoadedValue( 1238 LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1239 // If the value of the load is locally available within the block, just use 1240 // it. This frequently occurs for reg2mem'd allocas. 1241 1242 if (IsLoadCSE) { 1243 LoadInst *NLI = cast<LoadInst>(AvailableVal); 1244 combineMetadataForCSE(NLI, LI); 1245 }; 1246 1247 // If the returned value is the load itself, replace with an undef. This can 1248 // only happen in dead loops. 1249 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 1250 if (AvailableVal->getType() != LI->getType()) 1251 AvailableVal = 1252 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 1253 LI->replaceAllUsesWith(AvailableVal); 1254 LI->eraseFromParent(); 1255 return true; 1256 } 1257 1258 // Otherwise, if we scanned the whole block and got to the top of the block, 1259 // we know the block is locally transparent to the load. If not, something 1260 // might clobber its value. 1261 if (BBIt != LoadBB->begin()) 1262 return false; 1263 1264 // If all of the loads and stores that feed the value have the same AA tags, 1265 // then we can propagate them onto any newly inserted loads. 1266 AAMDNodes AATags; 1267 LI->getAAMetadata(AATags); 1268 1269 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1270 1271 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1272 1273 AvailablePredsTy AvailablePreds; 1274 BasicBlock *OneUnavailablePred = nullptr; 1275 SmallVector<LoadInst*, 8> CSELoads; 1276 1277 // If we got here, the loaded value is transparent through to the start of the 1278 // block. Check to see if it is available in any of the predecessor blocks. 1279 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1280 // If we already scanned this predecessor, skip it. 1281 if (!PredsScanned.insert(PredBB).second) 1282 continue; 1283 1284 BBIt = PredBB->end(); 1285 unsigned NumScanedInst = 0; 1286 Value *PredAvailable = nullptr; 1287 // NOTE: We don't CSE load that is volatile or anything stronger than 1288 // unordered, that should have been checked when we entered the function. 1289 assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads"); 1290 // If this is a load on a phi pointer, phi-translate it and search 1291 // for available load/store to the pointer in predecessors. 1292 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1293 PredAvailable = FindAvailablePtrLoadStore( 1294 Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1295 AA, &IsLoadCSE, &NumScanedInst); 1296 1297 // If PredBB has a single predecessor, continue scanning through the 1298 // single precessor. 1299 BasicBlock *SinglePredBB = PredBB; 1300 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1301 NumScanedInst < DefMaxInstsToScan) { 1302 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1303 if (SinglePredBB) { 1304 BBIt = SinglePredBB->end(); 1305 PredAvailable = FindAvailablePtrLoadStore( 1306 Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt, 1307 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1308 &NumScanedInst); 1309 } 1310 } 1311 1312 if (!PredAvailable) { 1313 OneUnavailablePred = PredBB; 1314 continue; 1315 } 1316 1317 if (IsLoadCSE) 1318 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1319 1320 // If so, this load is partially redundant. Remember this info so that we 1321 // can create a PHI node. 1322 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1323 } 1324 1325 // If the loaded value isn't available in any predecessor, it isn't partially 1326 // redundant. 1327 if (AvailablePreds.empty()) return false; 1328 1329 // Okay, the loaded value is available in at least one (and maybe all!) 1330 // predecessors. If the value is unavailable in more than one unique 1331 // predecessor, we want to insert a merge block for those common predecessors. 1332 // This ensures that we only have to insert one reload, thus not increasing 1333 // code size. 1334 BasicBlock *UnavailablePred = nullptr; 1335 1336 // If there is exactly one predecessor where the value is unavailable, the 1337 // already computed 'OneUnavailablePred' block is it. If it ends in an 1338 // unconditional branch, we know that it isn't a critical edge. 1339 if (PredsScanned.size() == AvailablePreds.size()+1 && 1340 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1341 UnavailablePred = OneUnavailablePred; 1342 } else if (PredsScanned.size() != AvailablePreds.size()) { 1343 // Otherwise, we had multiple unavailable predecessors or we had a critical 1344 // edge from the one. 1345 SmallVector<BasicBlock*, 8> PredsToSplit; 1346 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1347 1348 for (const auto &AvailablePred : AvailablePreds) 1349 AvailablePredSet.insert(AvailablePred.first); 1350 1351 // Add all the unavailable predecessors to the PredsToSplit list. 1352 for (BasicBlock *P : predecessors(LoadBB)) { 1353 // If the predecessor is an indirect goto, we can't split the edge. 1354 if (isa<IndirectBrInst>(P->getTerminator())) 1355 return false; 1356 1357 if (!AvailablePredSet.count(P)) 1358 PredsToSplit.push_back(P); 1359 } 1360 1361 // Split them out to their own block. 1362 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1363 } 1364 1365 // If the value isn't available in all predecessors, then there will be 1366 // exactly one where it isn't available. Insert a load on that edge and add 1367 // it to the AvailablePreds list. 1368 if (UnavailablePred) { 1369 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1370 "Can't handle critical edge here!"); 1371 LoadInst *NewVal = new LoadInst( 1372 LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1373 LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(), 1374 LI->getSyncScopeID(), UnavailablePred->getTerminator()); 1375 NewVal->setDebugLoc(LI->getDebugLoc()); 1376 if (AATags) 1377 NewVal->setAAMetadata(AATags); 1378 1379 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1380 } 1381 1382 // Now we know that each predecessor of this block has a value in 1383 // AvailablePreds, sort them for efficient access as we're walking the preds. 1384 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1385 1386 // Create a PHI node at the start of the block for the PRE'd load value. 1387 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1388 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1389 &LoadBB->front()); 1390 PN->takeName(LI); 1391 PN->setDebugLoc(LI->getDebugLoc()); 1392 1393 // Insert new entries into the PHI for each predecessor. A single block may 1394 // have multiple entries here. 1395 for (pred_iterator PI = PB; PI != PE; ++PI) { 1396 BasicBlock *P = *PI; 1397 AvailablePredsTy::iterator I = 1398 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1399 std::make_pair(P, (Value*)nullptr)); 1400 1401 assert(I != AvailablePreds.end() && I->first == P && 1402 "Didn't find entry for predecessor!"); 1403 1404 // If we have an available predecessor but it requires casting, insert the 1405 // cast in the predecessor and use the cast. Note that we have to update the 1406 // AvailablePreds vector as we go so that all of the PHI entries for this 1407 // predecessor use the same bitcast. 1408 Value *&PredV = I->second; 1409 if (PredV->getType() != LI->getType()) 1410 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1411 P->getTerminator()); 1412 1413 PN->addIncoming(PredV, I->first); 1414 } 1415 1416 for (LoadInst *PredLI : CSELoads) { 1417 combineMetadataForCSE(PredLI, LI); 1418 } 1419 1420 LI->replaceAllUsesWith(PN); 1421 LI->eraseFromParent(); 1422 1423 return true; 1424 } 1425 1426 /// FindMostPopularDest - The specified list contains multiple possible 1427 /// threadable destinations. Pick the one that occurs the most frequently in 1428 /// the list. 1429 static BasicBlock * 1430 FindMostPopularDest(BasicBlock *BB, 1431 const SmallVectorImpl<std::pair<BasicBlock *, 1432 BasicBlock *>> &PredToDestList) { 1433 assert(!PredToDestList.empty()); 1434 1435 // Determine popularity. If there are multiple possible destinations, we 1436 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1437 // blocks with known and real destinations to threading undef. We'll handle 1438 // them later if interesting. 1439 DenseMap<BasicBlock*, unsigned> DestPopularity; 1440 for (const auto &PredToDest : PredToDestList) 1441 if (PredToDest.second) 1442 DestPopularity[PredToDest.second]++; 1443 1444 // Find the most popular dest. 1445 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1446 BasicBlock *MostPopularDest = DPI->first; 1447 unsigned Popularity = DPI->second; 1448 SmallVector<BasicBlock*, 4> SamePopularity; 1449 1450 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1451 // If the popularity of this entry isn't higher than the popularity we've 1452 // seen so far, ignore it. 1453 if (DPI->second < Popularity) 1454 ; // ignore. 1455 else if (DPI->second == Popularity) { 1456 // If it is the same as what we've seen so far, keep track of it. 1457 SamePopularity.push_back(DPI->first); 1458 } else { 1459 // If it is more popular, remember it. 1460 SamePopularity.clear(); 1461 MostPopularDest = DPI->first; 1462 Popularity = DPI->second; 1463 } 1464 } 1465 1466 // Okay, now we know the most popular destination. If there is more than one 1467 // destination, we need to determine one. This is arbitrary, but we need 1468 // to make a deterministic decision. Pick the first one that appears in the 1469 // successor list. 1470 if (!SamePopularity.empty()) { 1471 SamePopularity.push_back(MostPopularDest); 1472 TerminatorInst *TI = BB->getTerminator(); 1473 for (unsigned i = 0; ; ++i) { 1474 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1475 1476 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1477 continue; 1478 1479 MostPopularDest = TI->getSuccessor(i); 1480 break; 1481 } 1482 } 1483 1484 // Okay, we have finally picked the most popular destination. 1485 return MostPopularDest; 1486 } 1487 1488 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1489 ConstantPreference Preference, 1490 Instruction *CxtI) { 1491 // If threading this would thread across a loop header, don't even try to 1492 // thread the edge. 1493 if (LoopHeaders.count(BB)) 1494 return false; 1495 1496 PredValueInfoTy PredValues; 1497 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1498 return false; 1499 1500 assert(!PredValues.empty() && 1501 "ComputeValueKnownInPredecessors returned true with no values"); 1502 1503 DEBUG(dbgs() << "IN BB: " << *BB; 1504 for (const auto &PredValue : PredValues) { 1505 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1506 << *PredValue.first 1507 << " for pred '" << PredValue.second->getName() << "'.\n"; 1508 }); 1509 1510 // Decide what we want to thread through. Convert our list of known values to 1511 // a list of known destinations for each pred. This also discards duplicate 1512 // predecessors and keeps track of the undefined inputs (which are represented 1513 // as a null dest in the PredToDestList). 1514 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1515 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1516 1517 BasicBlock *OnlyDest = nullptr; 1518 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1519 Constant *OnlyVal = nullptr; 1520 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1521 1522 unsigned PredWithKnownDest = 0; 1523 for (const auto &PredValue : PredValues) { 1524 BasicBlock *Pred = PredValue.second; 1525 if (!SeenPreds.insert(Pred).second) 1526 continue; // Duplicate predecessor entry. 1527 1528 Constant *Val = PredValue.first; 1529 1530 BasicBlock *DestBB; 1531 if (isa<UndefValue>(Val)) 1532 DestBB = nullptr; 1533 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1534 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1535 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1536 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1537 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1538 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1539 } else { 1540 assert(isa<IndirectBrInst>(BB->getTerminator()) 1541 && "Unexpected terminator"); 1542 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1543 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1544 } 1545 1546 // If we have exactly one destination, remember it for efficiency below. 1547 if (PredToDestList.empty()) { 1548 OnlyDest = DestBB; 1549 OnlyVal = Val; 1550 } else { 1551 if (OnlyDest != DestBB) 1552 OnlyDest = MultipleDestSentinel; 1553 // It possible we have same destination, but different value, e.g. default 1554 // case in switchinst. 1555 if (Val != OnlyVal) 1556 OnlyVal = MultipleVal; 1557 } 1558 1559 // We know where this predecessor is going. 1560 ++PredWithKnownDest; 1561 1562 // If the predecessor ends with an indirect goto, we can't change its 1563 // destination. 1564 if (isa<IndirectBrInst>(Pred->getTerminator())) 1565 continue; 1566 1567 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1568 } 1569 1570 // If all edges were unthreadable, we fail. 1571 if (PredToDestList.empty()) 1572 return false; 1573 1574 // If all the predecessors go to a single known successor, we want to fold, 1575 // not thread. By doing so, we do not need to duplicate the current block and 1576 // also miss potential opportunities in case we dont/cant duplicate. 1577 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1578 if (PredWithKnownDest == 1579 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1580 bool SeenFirstBranchToOnlyDest = false; 1581 for (BasicBlock *SuccBB : successors(BB)) { 1582 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) 1583 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1584 else 1585 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1586 } 1587 1588 // Finally update the terminator. 1589 TerminatorInst *Term = BB->getTerminator(); 1590 BranchInst::Create(OnlyDest, Term); 1591 Term->eraseFromParent(); 1592 1593 // If the condition is now dead due to the removal of the old terminator, 1594 // erase it. 1595 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1596 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1597 CondInst->eraseFromParent(); 1598 // We can safely replace *some* uses of the CondInst if it has 1599 // exactly one value as returned by LVI. RAUW is incorrect in the 1600 // presence of guards and assumes, that have the `Cond` as the use. This 1601 // is because we use the guards/assume to reason about the `Cond` value 1602 // at the end of block, but RAUW unconditionally replaces all uses 1603 // including the guards/assumes themselves and the uses before the 1604 // guard/assume. 1605 else if (OnlyVal && OnlyVal != MultipleVal && 1606 CondInst->getParent() == BB) 1607 ReplaceFoldableUses(CondInst, OnlyVal); 1608 } 1609 return true; 1610 } 1611 } 1612 1613 // Determine which is the most common successor. If we have many inputs and 1614 // this block is a switch, we want to start by threading the batch that goes 1615 // to the most popular destination first. If we only know about one 1616 // threadable destination (the common case) we can avoid this. 1617 BasicBlock *MostPopularDest = OnlyDest; 1618 1619 if (MostPopularDest == MultipleDestSentinel) 1620 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1621 1622 // Now that we know what the most popular destination is, factor all 1623 // predecessors that will jump to it into a single predecessor. 1624 SmallVector<BasicBlock*, 16> PredsToFactor; 1625 for (const auto &PredToDest : PredToDestList) 1626 if (PredToDest.second == MostPopularDest) { 1627 BasicBlock *Pred = PredToDest.first; 1628 1629 // This predecessor may be a switch or something else that has multiple 1630 // edges to the block. Factor each of these edges by listing them 1631 // according to # occurrences in PredsToFactor. 1632 for (BasicBlock *Succ : successors(Pred)) 1633 if (Succ == BB) 1634 PredsToFactor.push_back(Pred); 1635 } 1636 1637 // If the threadable edges are branching on an undefined value, we get to pick 1638 // the destination that these predecessors should get to. 1639 if (!MostPopularDest) 1640 MostPopularDest = BB->getTerminator()-> 1641 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1642 1643 // Ok, try to thread it! 1644 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1645 } 1646 1647 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1648 /// a PHI node in the current block. See if there are any simplifications we 1649 /// can do based on inputs to the phi node. 1650 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1651 BasicBlock *BB = PN->getParent(); 1652 1653 // TODO: We could make use of this to do it once for blocks with common PHI 1654 // values. 1655 SmallVector<BasicBlock*, 1> PredBBs; 1656 PredBBs.resize(1); 1657 1658 // If any of the predecessor blocks end in an unconditional branch, we can 1659 // *duplicate* the conditional branch into that block in order to further 1660 // encourage jump threading and to eliminate cases where we have branch on a 1661 // phi of an icmp (branch on icmp is much better). 1662 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1663 BasicBlock *PredBB = PN->getIncomingBlock(i); 1664 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1665 if (PredBr->isUnconditional()) { 1666 PredBBs[0] = PredBB; 1667 // Try to duplicate BB into PredBB. 1668 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1669 return true; 1670 } 1671 } 1672 1673 return false; 1674 } 1675 1676 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1677 /// a xor instruction in the current block. See if there are any 1678 /// simplifications we can do based on inputs to the xor. 1679 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1680 BasicBlock *BB = BO->getParent(); 1681 1682 // If either the LHS or RHS of the xor is a constant, don't do this 1683 // optimization. 1684 if (isa<ConstantInt>(BO->getOperand(0)) || 1685 isa<ConstantInt>(BO->getOperand(1))) 1686 return false; 1687 1688 // If the first instruction in BB isn't a phi, we won't be able to infer 1689 // anything special about any particular predecessor. 1690 if (!isa<PHINode>(BB->front())) 1691 return false; 1692 1693 // If this BB is a landing pad, we won't be able to split the edge into it. 1694 if (BB->isEHPad()) 1695 return false; 1696 1697 // If we have a xor as the branch input to this block, and we know that the 1698 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1699 // the condition into the predecessor and fix that value to true, saving some 1700 // logical ops on that path and encouraging other paths to simplify. 1701 // 1702 // This copies something like this: 1703 // 1704 // BB: 1705 // %X = phi i1 [1], [%X'] 1706 // %Y = icmp eq i32 %A, %B 1707 // %Z = xor i1 %X, %Y 1708 // br i1 %Z, ... 1709 // 1710 // Into: 1711 // BB': 1712 // %Y = icmp ne i32 %A, %B 1713 // br i1 %Y, ... 1714 1715 PredValueInfoTy XorOpValues; 1716 bool isLHS = true; 1717 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1718 WantInteger, BO)) { 1719 assert(XorOpValues.empty()); 1720 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1721 WantInteger, BO)) 1722 return false; 1723 isLHS = false; 1724 } 1725 1726 assert(!XorOpValues.empty() && 1727 "ComputeValueKnownInPredecessors returned true with no values"); 1728 1729 // Scan the information to see which is most popular: true or false. The 1730 // predecessors can be of the set true, false, or undef. 1731 unsigned NumTrue = 0, NumFalse = 0; 1732 for (const auto &XorOpValue : XorOpValues) { 1733 if (isa<UndefValue>(XorOpValue.first)) 1734 // Ignore undefs for the count. 1735 continue; 1736 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1737 ++NumFalse; 1738 else 1739 ++NumTrue; 1740 } 1741 1742 // Determine which value to split on, true, false, or undef if neither. 1743 ConstantInt *SplitVal = nullptr; 1744 if (NumTrue > NumFalse) 1745 SplitVal = ConstantInt::getTrue(BB->getContext()); 1746 else if (NumTrue != 0 || NumFalse != 0) 1747 SplitVal = ConstantInt::getFalse(BB->getContext()); 1748 1749 // Collect all of the blocks that this can be folded into so that we can 1750 // factor this once and clone it once. 1751 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1752 for (const auto &XorOpValue : XorOpValues) { 1753 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1754 continue; 1755 1756 BlocksToFoldInto.push_back(XorOpValue.second); 1757 } 1758 1759 // If we inferred a value for all of the predecessors, then duplication won't 1760 // help us. However, we can just replace the LHS or RHS with the constant. 1761 if (BlocksToFoldInto.size() == 1762 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1763 if (!SplitVal) { 1764 // If all preds provide undef, just nuke the xor, because it is undef too. 1765 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1766 BO->eraseFromParent(); 1767 } else if (SplitVal->isZero()) { 1768 // If all preds provide 0, replace the xor with the other input. 1769 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1770 BO->eraseFromParent(); 1771 } else { 1772 // If all preds provide 1, set the computed value to 1. 1773 BO->setOperand(!isLHS, SplitVal); 1774 } 1775 1776 return true; 1777 } 1778 1779 // Try to duplicate BB into PredBB. 1780 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1781 } 1782 1783 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1784 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1785 /// NewPred using the entries from OldPred (suitably mapped). 1786 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1787 BasicBlock *OldPred, 1788 BasicBlock *NewPred, 1789 DenseMap<Instruction*, Value*> &ValueMap) { 1790 for (BasicBlock::iterator PNI = PHIBB->begin(); 1791 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1792 // Ok, we have a PHI node. Figure out what the incoming value was for the 1793 // DestBlock. 1794 Value *IV = PN->getIncomingValueForBlock(OldPred); 1795 1796 // Remap the value if necessary. 1797 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1798 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1799 if (I != ValueMap.end()) 1800 IV = I->second; 1801 } 1802 1803 PN->addIncoming(IV, NewPred); 1804 } 1805 } 1806 1807 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1808 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1809 /// across BB. Transform the IR to reflect this change. 1810 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1811 const SmallVectorImpl<BasicBlock *> &PredBBs, 1812 BasicBlock *SuccBB) { 1813 // If threading to the same block as we come from, we would infinite loop. 1814 if (SuccBB == BB) { 1815 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1816 << "' - would thread to self!\n"); 1817 return false; 1818 } 1819 1820 // If threading this would thread across a loop header, don't thread the edge. 1821 // See the comments above FindLoopHeaders for justifications and caveats. 1822 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1823 DEBUG({ 1824 bool BBIsHeader = LoopHeaders.count(BB); 1825 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1826 dbgs() << " Not threading across " 1827 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1828 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1829 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1830 }); 1831 return false; 1832 } 1833 1834 unsigned JumpThreadCost = 1835 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1836 if (JumpThreadCost > BBDupThreshold) { 1837 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1838 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1839 return false; 1840 } 1841 1842 // And finally, do it! Start by factoring the predecessors if needed. 1843 BasicBlock *PredBB; 1844 if (PredBBs.size() == 1) 1845 PredBB = PredBBs[0]; 1846 else { 1847 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1848 << " common predecessors.\n"); 1849 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1850 } 1851 1852 // And finally, do it! 1853 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1854 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1855 << ", across block:\n " 1856 << *BB << "\n"); 1857 1858 LVI->threadEdge(PredBB, BB, SuccBB); 1859 1860 // We are going to have to map operands from the original BB block to the new 1861 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1862 // account for entry from PredBB. 1863 DenseMap<Instruction*, Value*> ValueMapping; 1864 1865 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1866 BB->getName()+".thread", 1867 BB->getParent(), BB); 1868 NewBB->moveAfter(PredBB); 1869 1870 // Set the block frequency of NewBB. 1871 if (HasProfileData) { 1872 auto NewBBFreq = 1873 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1874 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1875 } 1876 1877 BasicBlock::iterator BI = BB->begin(); 1878 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1879 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1880 1881 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1882 // mapping and using it to remap operands in the cloned instructions. 1883 for (; !isa<TerminatorInst>(BI); ++BI) { 1884 Instruction *New = BI->clone(); 1885 New->setName(BI->getName()); 1886 NewBB->getInstList().push_back(New); 1887 ValueMapping[&*BI] = New; 1888 1889 // Remap operands to patch up intra-block references. 1890 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1891 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1892 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1893 if (I != ValueMapping.end()) 1894 New->setOperand(i, I->second); 1895 } 1896 } 1897 1898 // We didn't copy the terminator from BB over to NewBB, because there is now 1899 // an unconditional jump to SuccBB. Insert the unconditional jump. 1900 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1901 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1902 1903 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1904 // PHI nodes for NewBB now. 1905 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1906 1907 // If there were values defined in BB that are used outside the block, then we 1908 // now have to update all uses of the value to use either the original value, 1909 // the cloned value, or some PHI derived value. This can require arbitrary 1910 // PHI insertion, of which we are prepared to do, clean these up now. 1911 SSAUpdater SSAUpdate; 1912 SmallVector<Use*, 16> UsesToRename; 1913 for (Instruction &I : *BB) { 1914 // Scan all uses of this instruction to see if it is used outside of its 1915 // block, and if so, record them in UsesToRename. 1916 for (Use &U : I.uses()) { 1917 Instruction *User = cast<Instruction>(U.getUser()); 1918 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1919 if (UserPN->getIncomingBlock(U) == BB) 1920 continue; 1921 } else if (User->getParent() == BB) 1922 continue; 1923 1924 UsesToRename.push_back(&U); 1925 } 1926 1927 // If there are no uses outside the block, we're done with this instruction. 1928 if (UsesToRename.empty()) 1929 continue; 1930 1931 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1932 1933 // We found a use of I outside of BB. Rename all uses of I that are outside 1934 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1935 // with the two values we know. 1936 SSAUpdate.Initialize(I.getType(), I.getName()); 1937 SSAUpdate.AddAvailableValue(BB, &I); 1938 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1939 1940 while (!UsesToRename.empty()) 1941 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1942 DEBUG(dbgs() << "\n"); 1943 } 1944 1945 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1946 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1947 // us to simplify any PHI nodes in BB. 1948 TerminatorInst *PredTerm = PredBB->getTerminator(); 1949 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1950 if (PredTerm->getSuccessor(i) == BB) { 1951 BB->removePredecessor(PredBB, true); 1952 PredTerm->setSuccessor(i, NewBB); 1953 } 1954 1955 // At this point, the IR is fully up to date and consistent. Do a quick scan 1956 // over the new instructions and zap any that are constants or dead. This 1957 // frequently happens because of phi translation. 1958 SimplifyInstructionsInBlock(NewBB, TLI); 1959 1960 // Update the edge weight from BB to SuccBB, which should be less than before. 1961 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1962 1963 // Threaded an edge! 1964 ++NumThreads; 1965 return true; 1966 } 1967 1968 /// Create a new basic block that will be the predecessor of BB and successor of 1969 /// all blocks in Preds. When profile data is available, update the frequency of 1970 /// this new block. 1971 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1972 ArrayRef<BasicBlock *> Preds, 1973 const char *Suffix) { 1974 // Collect the frequencies of all predecessors of BB, which will be used to 1975 // update the edge weight on BB->SuccBB. 1976 BlockFrequency PredBBFreq(0); 1977 if (HasProfileData) 1978 for (auto Pred : Preds) 1979 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1980 1981 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1982 1983 // Set the block frequency of the newly created PredBB, which is the sum of 1984 // frequencies of Preds. 1985 if (HasProfileData) 1986 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1987 return PredBB; 1988 } 1989 1990 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1991 const TerminatorInst *TI = BB->getTerminator(); 1992 assert(TI->getNumSuccessors() > 1 && "not a split"); 1993 1994 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1995 if (!WeightsNode) 1996 return false; 1997 1998 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1999 if (MDName->getString() != "branch_weights") 2000 return false; 2001 2002 // Ensure there are weights for all of the successors. Note that the first 2003 // operand to the metadata node is a name, not a weight. 2004 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2005 } 2006 2007 /// Update the block frequency of BB and branch weight and the metadata on the 2008 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2009 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2010 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2011 BasicBlock *BB, 2012 BasicBlock *NewBB, 2013 BasicBlock *SuccBB) { 2014 if (!HasProfileData) 2015 return; 2016 2017 assert(BFI && BPI && "BFI & BPI should have been created here"); 2018 2019 // As the edge from PredBB to BB is deleted, we have to update the block 2020 // frequency of BB. 2021 auto BBOrigFreq = BFI->getBlockFreq(BB); 2022 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2023 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2024 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2025 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2026 2027 // Collect updated outgoing edges' frequencies from BB and use them to update 2028 // edge probabilities. 2029 SmallVector<uint64_t, 4> BBSuccFreq; 2030 for (BasicBlock *Succ : successors(BB)) { 2031 auto SuccFreq = (Succ == SuccBB) 2032 ? BB2SuccBBFreq - NewBBFreq 2033 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2034 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2035 } 2036 2037 uint64_t MaxBBSuccFreq = 2038 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2039 2040 SmallVector<BranchProbability, 4> BBSuccProbs; 2041 if (MaxBBSuccFreq == 0) 2042 BBSuccProbs.assign(BBSuccFreq.size(), 2043 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2044 else { 2045 for (uint64_t Freq : BBSuccFreq) 2046 BBSuccProbs.push_back( 2047 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2048 // Normalize edge probabilities so that they sum up to one. 2049 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2050 BBSuccProbs.end()); 2051 } 2052 2053 // Update edge probabilities in BPI. 2054 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2055 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2056 2057 // Update the profile metadata as well. 2058 // 2059 // Don't do this if the profile of the transformed blocks was statically 2060 // estimated. (This could occur despite the function having an entry 2061 // frequency in completely cold parts of the CFG.) 2062 // 2063 // In this case we don't want to suggest to subsequent passes that the 2064 // calculated weights are fully consistent. Consider this graph: 2065 // 2066 // check_1 2067 // 50% / | 2068 // eq_1 | 50% 2069 // \ | 2070 // check_2 2071 // 50% / | 2072 // eq_2 | 50% 2073 // \ | 2074 // check_3 2075 // 50% / | 2076 // eq_3 | 50% 2077 // \ | 2078 // 2079 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2080 // the overall probabilities are inconsistent; the total probability that the 2081 // value is either 1, 2 or 3 is 150%. 2082 // 2083 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2084 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2085 // the loop exit edge. Then based solely on static estimation we would assume 2086 // the loop was extremely hot. 2087 // 2088 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2089 // shouldn't make edges extremely likely or unlikely based solely on static 2090 // estimation. 2091 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2092 SmallVector<uint32_t, 4> Weights; 2093 for (auto Prob : BBSuccProbs) 2094 Weights.push_back(Prob.getNumerator()); 2095 2096 auto TI = BB->getTerminator(); 2097 TI->setMetadata( 2098 LLVMContext::MD_prof, 2099 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2100 } 2101 } 2102 2103 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2104 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2105 /// If we can duplicate the contents of BB up into PredBB do so now, this 2106 /// improves the odds that the branch will be on an analyzable instruction like 2107 /// a compare. 2108 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2109 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2110 assert(!PredBBs.empty() && "Can't handle an empty set"); 2111 2112 // If BB is a loop header, then duplicating this block outside the loop would 2113 // cause us to transform this into an irreducible loop, don't do this. 2114 // See the comments above FindLoopHeaders for justifications and caveats. 2115 if (LoopHeaders.count(BB)) { 2116 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2117 << "' into predecessor block '" << PredBBs[0]->getName() 2118 << "' - it might create an irreducible loop!\n"); 2119 return false; 2120 } 2121 2122 unsigned DuplicationCost = 2123 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2124 if (DuplicationCost > BBDupThreshold) { 2125 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2126 << "' - Cost is too high: " << DuplicationCost << "\n"); 2127 return false; 2128 } 2129 2130 // And finally, do it! Start by factoring the predecessors if needed. 2131 BasicBlock *PredBB; 2132 if (PredBBs.size() == 1) 2133 PredBB = PredBBs[0]; 2134 else { 2135 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2136 << " common predecessors.\n"); 2137 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2138 } 2139 2140 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2141 // of PredBB. 2142 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2143 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2144 << DuplicationCost << " block is:" << *BB << "\n"); 2145 2146 // Unless PredBB ends with an unconditional branch, split the edge so that we 2147 // can just clone the bits from BB into the end of the new PredBB. 2148 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2149 2150 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2151 PredBB = SplitEdge(PredBB, BB); 2152 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2153 } 2154 2155 // We are going to have to map operands from the original BB block into the 2156 // PredBB block. Evaluate PHI nodes in BB. 2157 DenseMap<Instruction*, Value*> ValueMapping; 2158 2159 BasicBlock::iterator BI = BB->begin(); 2160 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2161 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2162 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2163 // mapping and using it to remap operands in the cloned instructions. 2164 for (; BI != BB->end(); ++BI) { 2165 Instruction *New = BI->clone(); 2166 2167 // Remap operands to patch up intra-block references. 2168 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2169 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2170 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2171 if (I != ValueMapping.end()) 2172 New->setOperand(i, I->second); 2173 } 2174 2175 // If this instruction can be simplified after the operands are updated, 2176 // just use the simplified value instead. This frequently happens due to 2177 // phi translation. 2178 if (Value *IV = SimplifyInstruction( 2179 New, 2180 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2181 ValueMapping[&*BI] = IV; 2182 if (!New->mayHaveSideEffects()) { 2183 New->deleteValue(); 2184 New = nullptr; 2185 } 2186 } else { 2187 ValueMapping[&*BI] = New; 2188 } 2189 if (New) { 2190 // Otherwise, insert the new instruction into the block. 2191 New->setName(BI->getName()); 2192 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2193 } 2194 } 2195 2196 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2197 // add entries to the PHI nodes for branch from PredBB now. 2198 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2199 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2200 ValueMapping); 2201 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2202 ValueMapping); 2203 2204 // If there were values defined in BB that are used outside the block, then we 2205 // now have to update all uses of the value to use either the original value, 2206 // the cloned value, or some PHI derived value. This can require arbitrary 2207 // PHI insertion, of which we are prepared to do, clean these up now. 2208 SSAUpdater SSAUpdate; 2209 SmallVector<Use*, 16> UsesToRename; 2210 for (Instruction &I : *BB) { 2211 // Scan all uses of this instruction to see if it is used outside of its 2212 // block, and if so, record them in UsesToRename. 2213 for (Use &U : I.uses()) { 2214 Instruction *User = cast<Instruction>(U.getUser()); 2215 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2216 if (UserPN->getIncomingBlock(U) == BB) 2217 continue; 2218 } else if (User->getParent() == BB) 2219 continue; 2220 2221 UsesToRename.push_back(&U); 2222 } 2223 2224 // If there are no uses outside the block, we're done with this instruction. 2225 if (UsesToRename.empty()) 2226 continue; 2227 2228 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2229 2230 // We found a use of I outside of BB. Rename all uses of I that are outside 2231 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2232 // with the two values we know. 2233 SSAUpdate.Initialize(I.getType(), I.getName()); 2234 SSAUpdate.AddAvailableValue(BB, &I); 2235 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2236 2237 while (!UsesToRename.empty()) 2238 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2239 DEBUG(dbgs() << "\n"); 2240 } 2241 2242 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2243 // that we nuked. 2244 BB->removePredecessor(PredBB, true); 2245 2246 // Remove the unconditional branch at the end of the PredBB block. 2247 OldPredBranch->eraseFromParent(); 2248 2249 ++NumDupes; 2250 return true; 2251 } 2252 2253 /// TryToUnfoldSelect - Look for blocks of the form 2254 /// bb1: 2255 /// %a = select 2256 /// br bb2 2257 /// 2258 /// bb2: 2259 /// %p = phi [%a, %bb1] ... 2260 /// %c = icmp %p 2261 /// br i1 %c 2262 /// 2263 /// And expand the select into a branch structure if one of its arms allows %c 2264 /// to be folded. This later enables threading from bb1 over bb2. 2265 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2266 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2267 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2268 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2269 2270 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2271 CondLHS->getParent() != BB) 2272 return false; 2273 2274 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2275 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2276 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2277 2278 // Look if one of the incoming values is a select in the corresponding 2279 // predecessor. 2280 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2281 continue; 2282 2283 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2284 if (!PredTerm || !PredTerm->isUnconditional()) 2285 continue; 2286 2287 // Now check if one of the select values would allow us to constant fold the 2288 // terminator in BB. We don't do the transform if both sides fold, those 2289 // cases will be threaded in any case. 2290 LazyValueInfo::Tristate LHSFolds = 2291 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2292 CondRHS, Pred, BB, CondCmp); 2293 LazyValueInfo::Tristate RHSFolds = 2294 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2295 CondRHS, Pred, BB, CondCmp); 2296 if ((LHSFolds != LazyValueInfo::Unknown || 2297 RHSFolds != LazyValueInfo::Unknown) && 2298 LHSFolds != RHSFolds) { 2299 // Expand the select. 2300 // 2301 // Pred -- 2302 // | v 2303 // | NewBB 2304 // | | 2305 // |----- 2306 // v 2307 // BB 2308 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2309 BB->getParent(), BB); 2310 // Move the unconditional branch to NewBB. 2311 PredTerm->removeFromParent(); 2312 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2313 // Create a conditional branch and update PHI nodes. 2314 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2315 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2316 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2317 // The select is now dead. 2318 SI->eraseFromParent(); 2319 2320 // Update any other PHI nodes in BB. 2321 for (BasicBlock::iterator BI = BB->begin(); 2322 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2323 if (Phi != CondLHS) 2324 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2325 return true; 2326 } 2327 } 2328 return false; 2329 } 2330 2331 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2332 /// same BB in the form 2333 /// bb: 2334 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2335 /// %s = select %p, trueval, falseval 2336 /// 2337 /// or 2338 /// 2339 /// bb: 2340 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2341 /// %c = cmp %p, 0 2342 /// %s = select %c, trueval, falseval 2343 /// 2344 /// And expand the select into a branch structure. This later enables 2345 /// jump-threading over bb in this pass. 2346 /// 2347 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2348 /// select if the associated PHI has at least one constant. If the unfolded 2349 /// select is not jump-threaded, it will be folded again in the later 2350 /// optimizations. 2351 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2352 // If threading this would thread across a loop header, don't thread the edge. 2353 // See the comments above FindLoopHeaders for justifications and caveats. 2354 if (LoopHeaders.count(BB)) 2355 return false; 2356 2357 for (BasicBlock::iterator BI = BB->begin(); 2358 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2359 // Look for a Phi having at least one constant incoming value. 2360 if (llvm::all_of(PN->incoming_values(), 2361 [](Value *V) { return !isa<ConstantInt>(V); })) 2362 continue; 2363 2364 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2365 // Check if SI is in BB and use V as condition. 2366 if (SI->getParent() != BB) 2367 return false; 2368 Value *Cond = SI->getCondition(); 2369 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2370 }; 2371 2372 SelectInst *SI = nullptr; 2373 for (Use &U : PN->uses()) { 2374 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2375 // Look for a ICmp in BB that compares PN with a constant and is the 2376 // condition of a Select. 2377 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2378 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2379 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2380 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2381 SI = SelectI; 2382 break; 2383 } 2384 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2385 // Look for a Select in BB that uses PN as condtion. 2386 if (isUnfoldCandidate(SelectI, U.get())) { 2387 SI = SelectI; 2388 break; 2389 } 2390 } 2391 } 2392 2393 if (!SI) 2394 continue; 2395 // Expand the select. 2396 TerminatorInst *Term = 2397 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2398 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2399 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2400 NewPN->addIncoming(SI->getFalseValue(), BB); 2401 SI->replaceAllUsesWith(NewPN); 2402 SI->eraseFromParent(); 2403 return true; 2404 } 2405 return false; 2406 } 2407 2408 /// Try to propagate a guard from the current BB into one of its predecessors 2409 /// in case if another branch of execution implies that the condition of this 2410 /// guard is always true. Currently we only process the simplest case that 2411 /// looks like: 2412 /// 2413 /// Start: 2414 /// %cond = ... 2415 /// br i1 %cond, label %T1, label %F1 2416 /// T1: 2417 /// br label %Merge 2418 /// F1: 2419 /// br label %Merge 2420 /// Merge: 2421 /// %condGuard = ... 2422 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2423 /// 2424 /// And cond either implies condGuard or !condGuard. In this case all the 2425 /// instructions before the guard can be duplicated in both branches, and the 2426 /// guard is then threaded to one of them. 2427 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2428 using namespace PatternMatch; 2429 2430 // We only want to deal with two predecessors. 2431 BasicBlock *Pred1, *Pred2; 2432 auto PI = pred_begin(BB), PE = pred_end(BB); 2433 if (PI == PE) 2434 return false; 2435 Pred1 = *PI++; 2436 if (PI == PE) 2437 return false; 2438 Pred2 = *PI++; 2439 if (PI != PE) 2440 return false; 2441 if (Pred1 == Pred2) 2442 return false; 2443 2444 // Try to thread one of the guards of the block. 2445 // TODO: Look up deeper than to immediate predecessor? 2446 auto *Parent = Pred1->getSinglePredecessor(); 2447 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2448 return false; 2449 2450 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2451 for (auto &I : *BB) 2452 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2453 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2454 return true; 2455 2456 return false; 2457 } 2458 2459 /// Try to propagate the guard from BB which is the lower block of a diamond 2460 /// to one of its branches, in case if diamond's condition implies guard's 2461 /// condition. 2462 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2463 BranchInst *BI) { 2464 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2465 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2466 Value *GuardCond = Guard->getArgOperand(0); 2467 Value *BranchCond = BI->getCondition(); 2468 BasicBlock *TrueDest = BI->getSuccessor(0); 2469 BasicBlock *FalseDest = BI->getSuccessor(1); 2470 2471 auto &DL = BB->getModule()->getDataLayout(); 2472 bool TrueDestIsSafe = false; 2473 bool FalseDestIsSafe = false; 2474 2475 // True dest is safe if BranchCond => GuardCond. 2476 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2477 if (Impl && *Impl) 2478 TrueDestIsSafe = true; 2479 else { 2480 // False dest is safe if !BranchCond => GuardCond. 2481 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2482 if (Impl && *Impl) 2483 FalseDestIsSafe = true; 2484 } 2485 2486 if (!TrueDestIsSafe && !FalseDestIsSafe) 2487 return false; 2488 2489 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2490 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2491 2492 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2493 Instruction *AfterGuard = Guard->getNextNode(); 2494 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2495 if (Cost > BBDupThreshold) 2496 return false; 2497 // Duplicate all instructions before the guard and the guard itself to the 2498 // branch where implication is not proved. 2499 GuardedBlock = DuplicateInstructionsInSplitBetween( 2500 BB, GuardedBlock, AfterGuard, GuardedMapping); 2501 assert(GuardedBlock && "Could not create the guarded block?"); 2502 // Duplicate all instructions before the guard in the unguarded branch. 2503 // Since we have successfully duplicated the guarded block and this block 2504 // has fewer instructions, we expect it to succeed. 2505 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2506 Guard, UnguardedMapping); 2507 assert(UnguardedBlock && "Could not create the unguarded block?"); 2508 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2509 << GuardedBlock->getName() << "\n"); 2510 2511 // Some instructions before the guard may still have uses. For them, we need 2512 // to create Phi nodes merging their copies in both guarded and unguarded 2513 // branches. Those instructions that have no uses can be just removed. 2514 SmallVector<Instruction *, 4> ToRemove; 2515 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2516 if (!isa<PHINode>(&*BI)) 2517 ToRemove.push_back(&*BI); 2518 2519 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2520 assert(InsertionPoint && "Empty block?"); 2521 // Substitute with Phis & remove. 2522 for (auto *Inst : reverse(ToRemove)) { 2523 if (!Inst->use_empty()) { 2524 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2525 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2526 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2527 NewPN->insertBefore(InsertionPoint); 2528 Inst->replaceAllUsesWith(NewPN); 2529 } 2530 Inst->eraseFromParent(); 2531 } 2532 return true; 2533 } 2534