1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Jump Threading pass. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/Transforms/Scalar/JumpThreading.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/DenseSet.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/DomTreeUpdater.h" 28 #include "llvm/Analysis/GlobalsModRef.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/LazyValueInfo.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CFG.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/InstrTypes.h" 46 #include "llvm/IR/Instruction.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/MDBuilder.h" 52 #include "llvm/IR/Metadata.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/PassManager.h" 55 #include "llvm/IR/PatternMatch.h" 56 #include "llvm/IR/Type.h" 57 #include "llvm/IR/Use.h" 58 #include "llvm/IR/User.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/InitializePasses.h" 61 #include "llvm/Pass.h" 62 #include "llvm/Support/BlockFrequency.h" 63 #include "llvm/Support/BranchProbability.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/raw_ostream.h" 68 #include "llvm/Transforms/Scalar.h" 69 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 70 #include "llvm/Transforms/Utils/Cloning.h" 71 #include "llvm/Transforms/Utils/Local.h" 72 #include "llvm/Transforms/Utils/SSAUpdater.h" 73 #include "llvm/Transforms/Utils/ValueMapper.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <memory> 80 #include <utility> 81 82 using namespace llvm; 83 using namespace jumpthreading; 84 85 #define DEBUG_TYPE "jump-threading" 86 87 STATISTIC(NumThreads, "Number of jumps threaded"); 88 STATISTIC(NumFolds, "Number of terminators folded"); 89 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 90 91 static cl::opt<unsigned> 92 BBDuplicateThreshold("jump-threading-threshold", 93 cl::desc("Max block size to duplicate for jump threading"), 94 cl::init(6), cl::Hidden); 95 96 static cl::opt<unsigned> 97 ImplicationSearchThreshold( 98 "jump-threading-implication-search-threshold", 99 cl::desc("The number of predecessors to search for a stronger " 100 "condition to use to thread over a weaker condition"), 101 cl::init(3), cl::Hidden); 102 103 static cl::opt<bool> PrintLVIAfterJumpThreading( 104 "print-lvi-after-jump-threading", 105 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 106 cl::Hidden); 107 108 static cl::opt<bool> JumpThreadingFreezeSelectCond( 109 "jump-threading-freeze-select-cond", 110 cl::desc("Freeze the condition when unfolding select"), cl::init(false), 111 cl::Hidden); 112 113 static cl::opt<bool> ThreadAcrossLoopHeaders( 114 "jump-threading-across-loop-headers", 115 cl::desc("Allow JumpThreading to thread across loop headers, for testing"), 116 cl::init(false), cl::Hidden); 117 118 119 namespace { 120 121 /// This pass performs 'jump threading', which looks at blocks that have 122 /// multiple predecessors and multiple successors. If one or more of the 123 /// predecessors of the block can be proven to always jump to one of the 124 /// successors, we forward the edge from the predecessor to the successor by 125 /// duplicating the contents of this block. 126 /// 127 /// An example of when this can occur is code like this: 128 /// 129 /// if () { ... 130 /// X = 4; 131 /// } 132 /// if (X < 3) { 133 /// 134 /// In this case, the unconditional branch at the end of the first if can be 135 /// revectored to the false side of the second if. 136 class JumpThreading : public FunctionPass { 137 JumpThreadingPass Impl; 138 139 public: 140 static char ID; // Pass identification 141 142 JumpThreading(bool InsertFreezeWhenUnfoldingSelect = false, int T = -1) 143 : FunctionPass(ID), Impl(InsertFreezeWhenUnfoldingSelect, T) { 144 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 145 } 146 147 bool runOnFunction(Function &F) override; 148 149 void getAnalysisUsage(AnalysisUsage &AU) const override { 150 AU.addRequired<DominatorTreeWrapperPass>(); 151 AU.addPreserved<DominatorTreeWrapperPass>(); 152 AU.addRequired<AAResultsWrapperPass>(); 153 AU.addRequired<LazyValueInfoWrapperPass>(); 154 AU.addPreserved<LazyValueInfoWrapperPass>(); 155 AU.addPreserved<GlobalsAAWrapperPass>(); 156 AU.addRequired<TargetLibraryInfoWrapperPass>(); 157 AU.addRequired<TargetTransformInfoWrapperPass>(); 158 } 159 160 void releaseMemory() override { Impl.releaseMemory(); } 161 }; 162 163 } // end anonymous namespace 164 165 char JumpThreading::ID = 0; 166 167 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 168 "Jump Threading", false, false) 169 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 172 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 173 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 174 "Jump Threading", false, false) 175 176 // Public interface to the Jump Threading pass 177 FunctionPass *llvm::createJumpThreadingPass(bool InsertFr, int Threshold) { 178 return new JumpThreading(InsertFr, Threshold); 179 } 180 181 JumpThreadingPass::JumpThreadingPass(bool InsertFr, int T) { 182 InsertFreezeWhenUnfoldingSelect = JumpThreadingFreezeSelectCond | InsertFr; 183 DefaultBBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 184 } 185 186 // Update branch probability information according to conditional 187 // branch probability. This is usually made possible for cloned branches 188 // in inline instances by the context specific profile in the caller. 189 // For instance, 190 // 191 // [Block PredBB] 192 // [Branch PredBr] 193 // if (t) { 194 // Block A; 195 // } else { 196 // Block B; 197 // } 198 // 199 // [Block BB] 200 // cond = PN([true, %A], [..., %B]); // PHI node 201 // [Branch CondBr] 202 // if (cond) { 203 // ... // P(cond == true) = 1% 204 // } 205 // 206 // Here we know that when block A is taken, cond must be true, which means 207 // P(cond == true | A) = 1 208 // 209 // Given that P(cond == true) = P(cond == true | A) * P(A) + 210 // P(cond == true | B) * P(B) 211 // we get: 212 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 213 // 214 // which gives us: 215 // P(A) is less than P(cond == true), i.e. 216 // P(t == true) <= P(cond == true) 217 // 218 // In other words, if we know P(cond == true) is unlikely, we know 219 // that P(t == true) is also unlikely. 220 // 221 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 222 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 223 if (!CondBr) 224 return; 225 226 uint64_t TrueWeight, FalseWeight; 227 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 228 return; 229 230 if (TrueWeight + FalseWeight == 0) 231 // Zero branch_weights do not give a hint for getting branch probabilities. 232 // Technically it would result in division by zero denominator, which is 233 // TrueWeight + FalseWeight. 234 return; 235 236 // Returns the outgoing edge of the dominating predecessor block 237 // that leads to the PhiNode's incoming block: 238 auto GetPredOutEdge = 239 [](BasicBlock *IncomingBB, 240 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 241 auto *PredBB = IncomingBB; 242 auto *SuccBB = PhiBB; 243 SmallPtrSet<BasicBlock *, 16> Visited; 244 while (true) { 245 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 246 if (PredBr && PredBr->isConditional()) 247 return {PredBB, SuccBB}; 248 Visited.insert(PredBB); 249 auto *SinglePredBB = PredBB->getSinglePredecessor(); 250 if (!SinglePredBB) 251 return {nullptr, nullptr}; 252 253 // Stop searching when SinglePredBB has been visited. It means we see 254 // an unreachable loop. 255 if (Visited.count(SinglePredBB)) 256 return {nullptr, nullptr}; 257 258 SuccBB = PredBB; 259 PredBB = SinglePredBB; 260 } 261 }; 262 263 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 264 Value *PhiOpnd = PN->getIncomingValue(i); 265 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 266 267 if (!CI || !CI->getType()->isIntegerTy(1)) 268 continue; 269 270 BranchProbability BP = 271 (CI->isOne() ? BranchProbability::getBranchProbability( 272 TrueWeight, TrueWeight + FalseWeight) 273 : BranchProbability::getBranchProbability( 274 FalseWeight, TrueWeight + FalseWeight)); 275 276 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 277 if (!PredOutEdge.first) 278 return; 279 280 BasicBlock *PredBB = PredOutEdge.first; 281 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 282 if (!PredBr) 283 return; 284 285 uint64_t PredTrueWeight, PredFalseWeight; 286 // FIXME: We currently only set the profile data when it is missing. 287 // With PGO, this can be used to refine even existing profile data with 288 // context information. This needs to be done after more performance 289 // testing. 290 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 291 continue; 292 293 // We can not infer anything useful when BP >= 50%, because BP is the 294 // upper bound probability value. 295 if (BP >= BranchProbability(50, 100)) 296 continue; 297 298 SmallVector<uint32_t, 2> Weights; 299 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 300 Weights.push_back(BP.getNumerator()); 301 Weights.push_back(BP.getCompl().getNumerator()); 302 } else { 303 Weights.push_back(BP.getCompl().getNumerator()); 304 Weights.push_back(BP.getNumerator()); 305 } 306 PredBr->setMetadata(LLVMContext::MD_prof, 307 MDBuilder(PredBr->getParent()->getContext()) 308 .createBranchWeights(Weights)); 309 } 310 } 311 312 /// runOnFunction - Toplevel algorithm. 313 bool JumpThreading::runOnFunction(Function &F) { 314 if (skipFunction(F)) 315 return false; 316 auto TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 317 // Jump Threading has no sense for the targets with divergent CF 318 if (TTI->hasBranchDivergence()) 319 return false; 320 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 321 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 322 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 323 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 324 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 325 std::unique_ptr<BlockFrequencyInfo> BFI; 326 std::unique_ptr<BranchProbabilityInfo> BPI; 327 if (F.hasProfileData()) { 328 LoopInfo LI{DominatorTree(F)}; 329 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 330 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 331 } 332 333 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, F.hasProfileData(), 334 std::move(BFI), std::move(BPI)); 335 if (PrintLVIAfterJumpThreading) { 336 dbgs() << "LVI for function '" << F.getName() << "':\n"; 337 LVI->printLVI(F, DTU.getDomTree(), dbgs()); 338 } 339 return Changed; 340 } 341 342 PreservedAnalyses JumpThreadingPass::run(Function &F, 343 FunctionAnalysisManager &AM) { 344 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 345 // Jump Threading has no sense for the targets with divergent CF 346 if (TTI.hasBranchDivergence()) 347 return PreservedAnalyses::all(); 348 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 349 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 350 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 351 auto &AA = AM.getResult<AAManager>(F); 352 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 353 354 std::unique_ptr<BlockFrequencyInfo> BFI; 355 std::unique_ptr<BranchProbabilityInfo> BPI; 356 if (F.hasProfileData()) { 357 LoopInfo LI{DominatorTree(F)}; 358 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 359 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 360 } 361 362 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, F.hasProfileData(), 363 std::move(BFI), std::move(BPI)); 364 365 if (PrintLVIAfterJumpThreading) { 366 dbgs() << "LVI for function '" << F.getName() << "':\n"; 367 LVI.printLVI(F, DTU.getDomTree(), dbgs()); 368 } 369 370 if (!Changed) 371 return PreservedAnalyses::all(); 372 PreservedAnalyses PA; 373 PA.preserve<GlobalsAA>(); 374 PA.preserve<DominatorTreeAnalysis>(); 375 PA.preserve<LazyValueAnalysis>(); 376 return PA; 377 } 378 379 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 380 LazyValueInfo *LVI_, AliasAnalysis *AA_, 381 DomTreeUpdater *DTU_, bool HasProfileData_, 382 std::unique_ptr<BlockFrequencyInfo> BFI_, 383 std::unique_ptr<BranchProbabilityInfo> BPI_) { 384 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 385 TLI = TLI_; 386 LVI = LVI_; 387 AA = AA_; 388 DTU = DTU_; 389 BFI.reset(); 390 BPI.reset(); 391 // When profile data is available, we need to update edge weights after 392 // successful jump threading, which requires both BPI and BFI being available. 393 HasProfileData = HasProfileData_; 394 auto *GuardDecl = F.getParent()->getFunction( 395 Intrinsic::getName(Intrinsic::experimental_guard)); 396 HasGuards = GuardDecl && !GuardDecl->use_empty(); 397 if (HasProfileData) { 398 BPI = std::move(BPI_); 399 BFI = std::move(BFI_); 400 } 401 402 // Reduce the number of instructions duplicated when optimizing strictly for 403 // size. 404 if (BBDuplicateThreshold.getNumOccurrences()) 405 BBDupThreshold = BBDuplicateThreshold; 406 else if (F.hasFnAttribute(Attribute::MinSize)) 407 BBDupThreshold = 3; 408 else 409 BBDupThreshold = DefaultBBDupThreshold; 410 411 // JumpThreading must not processes blocks unreachable from entry. It's a 412 // waste of compute time and can potentially lead to hangs. 413 SmallPtrSet<BasicBlock *, 16> Unreachable; 414 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 415 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 416 DominatorTree &DT = DTU->getDomTree(); 417 for (auto &BB : F) 418 if (!DT.isReachableFromEntry(&BB)) 419 Unreachable.insert(&BB); 420 421 if (!ThreadAcrossLoopHeaders) 422 findLoopHeaders(F); 423 424 bool EverChanged = false; 425 bool Changed; 426 do { 427 Changed = false; 428 for (auto &BB : F) { 429 if (Unreachable.count(&BB)) 430 continue; 431 while (processBlock(&BB)) // Thread all of the branches we can over BB. 432 Changed = true; 433 434 // Jump threading may have introduced redundant debug values into BB 435 // which should be removed. 436 if (Changed) 437 RemoveRedundantDbgInstrs(&BB); 438 439 // Stop processing BB if it's the entry or is now deleted. The following 440 // routines attempt to eliminate BB and locating a suitable replacement 441 // for the entry is non-trivial. 442 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 443 continue; 444 445 if (pred_empty(&BB)) { 446 // When processBlock makes BB unreachable it doesn't bother to fix up 447 // the instructions in it. We must remove BB to prevent invalid IR. 448 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 449 << "' with terminator: " << *BB.getTerminator() 450 << '\n'); 451 LoopHeaders.erase(&BB); 452 LVI->eraseBlock(&BB); 453 DeleteDeadBlock(&BB, DTU); 454 Changed = true; 455 continue; 456 } 457 458 // processBlock doesn't thread BBs with unconditional TIs. However, if BB 459 // is "almost empty", we attempt to merge BB with its sole successor. 460 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 461 if (BI && BI->isUnconditional()) { 462 BasicBlock *Succ = BI->getSuccessor(0); 463 if ( 464 // The terminator must be the only non-phi instruction in BB. 465 BB.getFirstNonPHIOrDbg()->isTerminator() && 466 // Don't alter Loop headers and latches to ensure another pass can 467 // detect and transform nested loops later. 468 !LoopHeaders.count(&BB) && !LoopHeaders.count(Succ) && 469 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 470 RemoveRedundantDbgInstrs(Succ); 471 // BB is valid for cleanup here because we passed in DTU. F remains 472 // BB's parent until a DTU->getDomTree() event. 473 LVI->eraseBlock(&BB); 474 Changed = true; 475 } 476 } 477 } 478 EverChanged |= Changed; 479 } while (Changed); 480 481 LoopHeaders.clear(); 482 return EverChanged; 483 } 484 485 // Replace uses of Cond with ToVal when safe to do so. If all uses are 486 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 487 // because we may incorrectly replace uses when guards/assumes are uses of 488 // of `Cond` and we used the guards/assume to reason about the `Cond` value 489 // at the end of block. RAUW unconditionally replaces all uses 490 // including the guards/assumes themselves and the uses before the 491 // guard/assume. 492 static void replaceFoldableUses(Instruction *Cond, Value *ToVal) { 493 assert(Cond->getType() == ToVal->getType()); 494 auto *BB = Cond->getParent(); 495 // We can unconditionally replace all uses in non-local blocks (i.e. uses 496 // strictly dominated by BB), since LVI information is true from the 497 // terminator of BB. 498 replaceNonLocalUsesWith(Cond, ToVal); 499 for (Instruction &I : reverse(*BB)) { 500 // Reached the Cond whose uses we are trying to replace, so there are no 501 // more uses. 502 if (&I == Cond) 503 break; 504 // We only replace uses in instructions that are guaranteed to reach the end 505 // of BB, where we know Cond is ToVal. 506 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 507 break; 508 I.replaceUsesOfWith(Cond, ToVal); 509 } 510 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 511 Cond->eraseFromParent(); 512 } 513 514 /// Return the cost of duplicating a piece of this block from first non-phi 515 /// and before StopAt instruction to thread across it. Stop scanning the block 516 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 517 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 518 Instruction *StopAt, 519 unsigned Threshold) { 520 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 521 /// Ignore PHI nodes, these will be flattened when duplication happens. 522 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 523 524 // FIXME: THREADING will delete values that are just used to compute the 525 // branch, so they shouldn't count against the duplication cost. 526 527 unsigned Bonus = 0; 528 if (BB->getTerminator() == StopAt) { 529 // Threading through a switch statement is particularly profitable. If this 530 // block ends in a switch, decrease its cost to make it more likely to 531 // happen. 532 if (isa<SwitchInst>(StopAt)) 533 Bonus = 6; 534 535 // The same holds for indirect branches, but slightly more so. 536 if (isa<IndirectBrInst>(StopAt)) 537 Bonus = 8; 538 } 539 540 // Bump the threshold up so the early exit from the loop doesn't skip the 541 // terminator-based Size adjustment at the end. 542 Threshold += Bonus; 543 544 // Sum up the cost of each instruction until we get to the terminator. Don't 545 // include the terminator because the copy won't include it. 546 unsigned Size = 0; 547 for (; &*I != StopAt; ++I) { 548 549 // Stop scanning the block if we've reached the threshold. 550 if (Size > Threshold) 551 return Size; 552 553 // Debugger intrinsics don't incur code size. 554 if (isa<DbgInfoIntrinsic>(I)) continue; 555 556 // Pseudo-probes don't incur code size. 557 if (isa<PseudoProbeInst>(I)) 558 continue; 559 560 // If this is a pointer->pointer bitcast, it is free. 561 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 562 continue; 563 564 // Freeze instruction is free, too. 565 if (isa<FreezeInst>(I)) 566 continue; 567 568 // Bail out if this instruction gives back a token type, it is not possible 569 // to duplicate it if it is used outside this BB. 570 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 571 return ~0U; 572 573 // All other instructions count for at least one unit. 574 ++Size; 575 576 // Calls are more expensive. If they are non-intrinsic calls, we model them 577 // as having cost of 4. If they are a non-vector intrinsic, we model them 578 // as having cost of 2 total, and if they are a vector intrinsic, we model 579 // them as having cost 1. 580 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 581 if (CI->cannotDuplicate() || CI->isConvergent()) 582 // Blocks with NoDuplicate are modelled as having infinite cost, so they 583 // are never duplicated. 584 return ~0U; 585 else if (!isa<IntrinsicInst>(CI)) 586 Size += 3; 587 else if (!CI->getType()->isVectorTy()) 588 Size += 1; 589 } 590 } 591 592 return Size > Bonus ? Size - Bonus : 0; 593 } 594 595 /// findLoopHeaders - We do not want jump threading to turn proper loop 596 /// structures into irreducible loops. Doing this breaks up the loop nesting 597 /// hierarchy and pessimizes later transformations. To prevent this from 598 /// happening, we first have to find the loop headers. Here we approximate this 599 /// by finding targets of backedges in the CFG. 600 /// 601 /// Note that there definitely are cases when we want to allow threading of 602 /// edges across a loop header. For example, threading a jump from outside the 603 /// loop (the preheader) to an exit block of the loop is definitely profitable. 604 /// It is also almost always profitable to thread backedges from within the loop 605 /// to exit blocks, and is often profitable to thread backedges to other blocks 606 /// within the loop (forming a nested loop). This simple analysis is not rich 607 /// enough to track all of these properties and keep it up-to-date as the CFG 608 /// mutates, so we don't allow any of these transformations. 609 void JumpThreadingPass::findLoopHeaders(Function &F) { 610 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 611 FindFunctionBackedges(F, Edges); 612 613 for (const auto &Edge : Edges) 614 LoopHeaders.insert(Edge.second); 615 } 616 617 /// getKnownConstant - Helper method to determine if we can thread over a 618 /// terminator with the given value as its condition, and if so what value to 619 /// use for that. What kind of value this is depends on whether we want an 620 /// integer or a block address, but an undef is always accepted. 621 /// Returns null if Val is null or not an appropriate constant. 622 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 623 if (!Val) 624 return nullptr; 625 626 // Undef is "known" enough. 627 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 628 return U; 629 630 if (Preference == WantBlockAddress) 631 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 632 633 return dyn_cast<ConstantInt>(Val); 634 } 635 636 /// computeValueKnownInPredecessors - Given a basic block BB and a value V, see 637 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 638 /// in any of our predecessors. If so, return the known list of value and pred 639 /// BB in the result vector. 640 /// 641 /// This returns true if there were any known values. 642 bool JumpThreadingPass::computeValueKnownInPredecessorsImpl( 643 Value *V, BasicBlock *BB, PredValueInfo &Result, 644 ConstantPreference Preference, DenseSet<Value *> &RecursionSet, 645 Instruction *CxtI) { 646 // This method walks up use-def chains recursively. Because of this, we could 647 // get into an infinite loop going around loops in the use-def chain. To 648 // prevent this, keep track of what (value, block) pairs we've already visited 649 // and terminate the search if we loop back to them 650 if (!RecursionSet.insert(V).second) 651 return false; 652 653 // If V is a constant, then it is known in all predecessors. 654 if (Constant *KC = getKnownConstant(V, Preference)) { 655 for (BasicBlock *Pred : predecessors(BB)) 656 Result.emplace_back(KC, Pred); 657 658 return !Result.empty(); 659 } 660 661 // If V is a non-instruction value, or an instruction in a different block, 662 // then it can't be derived from a PHI. 663 Instruction *I = dyn_cast<Instruction>(V); 664 if (!I || I->getParent() != BB) { 665 666 // Okay, if this is a live-in value, see if it has a known value at the end 667 // of any of our predecessors. 668 // 669 // FIXME: This should be an edge property, not a block end property. 670 /// TODO: Per PR2563, we could infer value range information about a 671 /// predecessor based on its terminator. 672 // 673 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 674 // "I" is a non-local compare-with-a-constant instruction. This would be 675 // able to handle value inequalities better, for example if the compare is 676 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 677 // Perhaps getConstantOnEdge should be smart enough to do this? 678 for (BasicBlock *P : predecessors(BB)) { 679 // If the value is known by LazyValueInfo to be a constant in a 680 // predecessor, use that information to try to thread this block. 681 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 682 if (Constant *KC = getKnownConstant(PredCst, Preference)) 683 Result.emplace_back(KC, P); 684 } 685 686 return !Result.empty(); 687 } 688 689 /// If I is a PHI node, then we know the incoming values for any constants. 690 if (PHINode *PN = dyn_cast<PHINode>(I)) { 691 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 692 Value *InVal = PN->getIncomingValue(i); 693 if (Constant *KC = getKnownConstant(InVal, Preference)) { 694 Result.emplace_back(KC, PN->getIncomingBlock(i)); 695 } else { 696 Constant *CI = LVI->getConstantOnEdge(InVal, 697 PN->getIncomingBlock(i), 698 BB, CxtI); 699 if (Constant *KC = getKnownConstant(CI, Preference)) 700 Result.emplace_back(KC, PN->getIncomingBlock(i)); 701 } 702 } 703 704 return !Result.empty(); 705 } 706 707 // Handle Cast instructions. 708 if (CastInst *CI = dyn_cast<CastInst>(I)) { 709 Value *Source = CI->getOperand(0); 710 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 711 RecursionSet, CxtI); 712 if (Result.empty()) 713 return false; 714 715 // Convert the known values. 716 for (auto &R : Result) 717 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 718 719 return true; 720 } 721 722 if (FreezeInst *FI = dyn_cast<FreezeInst>(I)) { 723 Value *Source = FI->getOperand(0); 724 computeValueKnownInPredecessorsImpl(Source, BB, Result, Preference, 725 RecursionSet, CxtI); 726 727 erase_if(Result, [](auto &Pair) { 728 return !isGuaranteedNotToBeUndefOrPoison(Pair.first); 729 }); 730 731 return !Result.empty(); 732 } 733 734 // Handle some boolean conditions. 735 if (I->getType()->getPrimitiveSizeInBits() == 1) { 736 using namespace PatternMatch; 737 738 assert(Preference == WantInteger && "One-bit non-integer type?"); 739 // X | true -> true 740 // X & false -> false 741 Value *Op0, *Op1; 742 if (match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1))) || 743 match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 744 PredValueInfoTy LHSVals, RHSVals; 745 746 computeValueKnownInPredecessorsImpl(Op0, BB, LHSVals, WantInteger, 747 RecursionSet, CxtI); 748 computeValueKnownInPredecessorsImpl(Op1, BB, RHSVals, WantInteger, 749 RecursionSet, CxtI); 750 751 if (LHSVals.empty() && RHSVals.empty()) 752 return false; 753 754 ConstantInt *InterestingVal; 755 if (match(I, m_LogicalOr())) 756 InterestingVal = ConstantInt::getTrue(I->getContext()); 757 else 758 InterestingVal = ConstantInt::getFalse(I->getContext()); 759 760 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 761 762 // Scan for the sentinel. If we find an undef, force it to the 763 // interesting value: x|undef -> true and x&undef -> false. 764 for (const auto &LHSVal : LHSVals) 765 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 766 Result.emplace_back(InterestingVal, LHSVal.second); 767 LHSKnownBBs.insert(LHSVal.second); 768 } 769 for (const auto &RHSVal : RHSVals) 770 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 771 // If we already inferred a value for this block on the LHS, don't 772 // re-add it. 773 if (!LHSKnownBBs.count(RHSVal.second)) 774 Result.emplace_back(InterestingVal, RHSVal.second); 775 } 776 777 return !Result.empty(); 778 } 779 780 // Handle the NOT form of XOR. 781 if (I->getOpcode() == Instruction::Xor && 782 isa<ConstantInt>(I->getOperand(1)) && 783 cast<ConstantInt>(I->getOperand(1))->isOne()) { 784 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, Result, 785 WantInteger, RecursionSet, CxtI); 786 if (Result.empty()) 787 return false; 788 789 // Invert the known values. 790 for (auto &R : Result) 791 R.first = ConstantExpr::getNot(R.first); 792 793 return true; 794 } 795 796 // Try to simplify some other binary operator values. 797 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 798 assert(Preference != WantBlockAddress 799 && "A binary operator creating a block address?"); 800 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 801 PredValueInfoTy LHSVals; 802 computeValueKnownInPredecessorsImpl(BO->getOperand(0), BB, LHSVals, 803 WantInteger, RecursionSet, CxtI); 804 805 // Try to use constant folding to simplify the binary operator. 806 for (const auto &LHSVal : LHSVals) { 807 Constant *V = LHSVal.first; 808 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 809 810 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 811 Result.emplace_back(KC, LHSVal.second); 812 } 813 } 814 815 return !Result.empty(); 816 } 817 818 // Handle compare with phi operand, where the PHI is defined in this block. 819 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 820 assert(Preference == WantInteger && "Compares only produce integers"); 821 Type *CmpType = Cmp->getType(); 822 Value *CmpLHS = Cmp->getOperand(0); 823 Value *CmpRHS = Cmp->getOperand(1); 824 CmpInst::Predicate Pred = Cmp->getPredicate(); 825 826 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 827 if (!PN) 828 PN = dyn_cast<PHINode>(CmpRHS); 829 if (PN && PN->getParent() == BB) { 830 const DataLayout &DL = PN->getModule()->getDataLayout(); 831 // We can do this simplification if any comparisons fold to true or false. 832 // See if any do. 833 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 834 BasicBlock *PredBB = PN->getIncomingBlock(i); 835 Value *LHS, *RHS; 836 if (PN == CmpLHS) { 837 LHS = PN->getIncomingValue(i); 838 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 839 } else { 840 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 841 RHS = PN->getIncomingValue(i); 842 } 843 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 844 if (!Res) { 845 if (!isa<Constant>(RHS)) 846 continue; 847 848 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 849 auto LHSInst = dyn_cast<Instruction>(LHS); 850 if (LHSInst && LHSInst->getParent() == BB) 851 continue; 852 853 LazyValueInfo::Tristate 854 ResT = LVI->getPredicateOnEdge(Pred, LHS, 855 cast<Constant>(RHS), PredBB, BB, 856 CxtI ? CxtI : Cmp); 857 if (ResT == LazyValueInfo::Unknown) 858 continue; 859 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 860 } 861 862 if (Constant *KC = getKnownConstant(Res, WantInteger)) 863 Result.emplace_back(KC, PredBB); 864 } 865 866 return !Result.empty(); 867 } 868 869 // If comparing a live-in value against a constant, see if we know the 870 // live-in value on any predecessors. 871 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 872 Constant *CmpConst = cast<Constant>(CmpRHS); 873 874 if (!isa<Instruction>(CmpLHS) || 875 cast<Instruction>(CmpLHS)->getParent() != BB) { 876 for (BasicBlock *P : predecessors(BB)) { 877 // If the value is known by LazyValueInfo to be a constant in a 878 // predecessor, use that information to try to thread this block. 879 LazyValueInfo::Tristate Res = 880 LVI->getPredicateOnEdge(Pred, CmpLHS, 881 CmpConst, P, BB, CxtI ? CxtI : Cmp); 882 if (Res == LazyValueInfo::Unknown) 883 continue; 884 885 Constant *ResC = ConstantInt::get(CmpType, Res); 886 Result.emplace_back(ResC, P); 887 } 888 889 return !Result.empty(); 890 } 891 892 // InstCombine can fold some forms of constant range checks into 893 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 894 // x as a live-in. 895 { 896 using namespace PatternMatch; 897 898 Value *AddLHS; 899 ConstantInt *AddConst; 900 if (isa<ConstantInt>(CmpConst) && 901 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 902 if (!isa<Instruction>(AddLHS) || 903 cast<Instruction>(AddLHS)->getParent() != BB) { 904 for (BasicBlock *P : predecessors(BB)) { 905 // If the value is known by LazyValueInfo to be a ConstantRange in 906 // a predecessor, use that information to try to thread this 907 // block. 908 ConstantRange CR = LVI->getConstantRangeOnEdge( 909 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 910 // Propagate the range through the addition. 911 CR = CR.add(AddConst->getValue()); 912 913 // Get the range where the compare returns true. 914 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 915 Pred, cast<ConstantInt>(CmpConst)->getValue()); 916 917 Constant *ResC; 918 if (CmpRange.contains(CR)) 919 ResC = ConstantInt::getTrue(CmpType); 920 else if (CmpRange.inverse().contains(CR)) 921 ResC = ConstantInt::getFalse(CmpType); 922 else 923 continue; 924 925 Result.emplace_back(ResC, P); 926 } 927 928 return !Result.empty(); 929 } 930 } 931 } 932 933 // Try to find a constant value for the LHS of a comparison, 934 // and evaluate it statically if we can. 935 PredValueInfoTy LHSVals; 936 computeValueKnownInPredecessorsImpl(I->getOperand(0), BB, LHSVals, 937 WantInteger, RecursionSet, CxtI); 938 939 for (const auto &LHSVal : LHSVals) { 940 Constant *V = LHSVal.first; 941 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 942 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 943 Result.emplace_back(KC, LHSVal.second); 944 } 945 946 return !Result.empty(); 947 } 948 } 949 950 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 951 // Handle select instructions where at least one operand is a known constant 952 // and we can figure out the condition value for any predecessor block. 953 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 954 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 955 PredValueInfoTy Conds; 956 if ((TrueVal || FalseVal) && 957 computeValueKnownInPredecessorsImpl(SI->getCondition(), BB, Conds, 958 WantInteger, RecursionSet, CxtI)) { 959 for (auto &C : Conds) { 960 Constant *Cond = C.first; 961 962 // Figure out what value to use for the condition. 963 bool KnownCond; 964 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 965 // A known boolean. 966 KnownCond = CI->isOne(); 967 } else { 968 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 969 // Either operand will do, so be sure to pick the one that's a known 970 // constant. 971 // FIXME: Do this more cleverly if both values are known constants? 972 KnownCond = (TrueVal != nullptr); 973 } 974 975 // See if the select has a known constant value for this predecessor. 976 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 977 Result.emplace_back(Val, C.second); 978 } 979 980 return !Result.empty(); 981 } 982 } 983 984 // If all else fails, see if LVI can figure out a constant value for us. 985 assert(CxtI->getParent() == BB && "CxtI should be in BB"); 986 Constant *CI = LVI->getConstant(V, CxtI); 987 if (Constant *KC = getKnownConstant(CI, Preference)) { 988 for (BasicBlock *Pred : predecessors(BB)) 989 Result.emplace_back(KC, Pred); 990 } 991 992 return !Result.empty(); 993 } 994 995 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 996 /// in an undefined jump, decide which block is best to revector to. 997 /// 998 /// Since we can pick an arbitrary destination, we pick the successor with the 999 /// fewest predecessors. This should reduce the in-degree of the others. 1000 static unsigned getBestDestForJumpOnUndef(BasicBlock *BB) { 1001 Instruction *BBTerm = BB->getTerminator(); 1002 unsigned MinSucc = 0; 1003 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 1004 // Compute the successor with the minimum number of predecessors. 1005 unsigned MinNumPreds = pred_size(TestBB); 1006 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1007 TestBB = BBTerm->getSuccessor(i); 1008 unsigned NumPreds = pred_size(TestBB); 1009 if (NumPreds < MinNumPreds) { 1010 MinSucc = i; 1011 MinNumPreds = NumPreds; 1012 } 1013 } 1014 1015 return MinSucc; 1016 } 1017 1018 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 1019 if (!BB->hasAddressTaken()) return false; 1020 1021 // If the block has its address taken, it may be a tree of dead constants 1022 // hanging off of it. These shouldn't keep the block alive. 1023 BlockAddress *BA = BlockAddress::get(BB); 1024 BA->removeDeadConstantUsers(); 1025 return !BA->use_empty(); 1026 } 1027 1028 /// processBlock - If there are any predecessors whose control can be threaded 1029 /// through to a successor, transform them now. 1030 bool JumpThreadingPass::processBlock(BasicBlock *BB) { 1031 // If the block is trivially dead, just return and let the caller nuke it. 1032 // This simplifies other transformations. 1033 if (DTU->isBBPendingDeletion(BB) || 1034 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 1035 return false; 1036 1037 // If this block has a single predecessor, and if that pred has a single 1038 // successor, merge the blocks. This encourages recursive jump threading 1039 // because now the condition in this block can be threaded through 1040 // predecessors of our predecessor block. 1041 if (maybeMergeBasicBlockIntoOnlyPred(BB)) 1042 return true; 1043 1044 if (tryToUnfoldSelectInCurrBB(BB)) 1045 return true; 1046 1047 // Look if we can propagate guards to predecessors. 1048 if (HasGuards && processGuards(BB)) 1049 return true; 1050 1051 // What kind of constant we're looking for. 1052 ConstantPreference Preference = WantInteger; 1053 1054 // Look to see if the terminator is a conditional branch, switch or indirect 1055 // branch, if not we can't thread it. 1056 Value *Condition; 1057 Instruction *Terminator = BB->getTerminator(); 1058 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1059 // Can't thread an unconditional jump. 1060 if (BI->isUnconditional()) return false; 1061 Condition = BI->getCondition(); 1062 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1063 Condition = SI->getCondition(); 1064 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1065 // Can't thread indirect branch with no successors. 1066 if (IB->getNumSuccessors() == 0) return false; 1067 Condition = IB->getAddress()->stripPointerCasts(); 1068 Preference = WantBlockAddress; 1069 } else { 1070 return false; // Must be an invoke or callbr. 1071 } 1072 1073 // Keep track if we constant folded the condition in this invocation. 1074 bool ConstantFolded = false; 1075 1076 // Run constant folding to see if we can reduce the condition to a simple 1077 // constant. 1078 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1079 Value *SimpleVal = 1080 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1081 if (SimpleVal) { 1082 I->replaceAllUsesWith(SimpleVal); 1083 if (isInstructionTriviallyDead(I, TLI)) 1084 I->eraseFromParent(); 1085 Condition = SimpleVal; 1086 ConstantFolded = true; 1087 } 1088 } 1089 1090 // If the terminator is branching on an undef or freeze undef, we can pick any 1091 // of the successors to branch to. Let getBestDestForJumpOnUndef decide. 1092 auto *FI = dyn_cast<FreezeInst>(Condition); 1093 if (isa<UndefValue>(Condition) || 1094 (FI && isa<UndefValue>(FI->getOperand(0)) && FI->hasOneUse())) { 1095 unsigned BestSucc = getBestDestForJumpOnUndef(BB); 1096 std::vector<DominatorTree::UpdateType> Updates; 1097 1098 // Fold the branch/switch. 1099 Instruction *BBTerm = BB->getTerminator(); 1100 Updates.reserve(BBTerm->getNumSuccessors()); 1101 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1102 if (i == BestSucc) continue; 1103 BasicBlock *Succ = BBTerm->getSuccessor(i); 1104 Succ->removePredecessor(BB, true); 1105 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1106 } 1107 1108 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1109 << "' folding undef terminator: " << *BBTerm << '\n'); 1110 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1111 BBTerm->eraseFromParent(); 1112 DTU->applyUpdatesPermissive(Updates); 1113 if (FI) 1114 FI->eraseFromParent(); 1115 return true; 1116 } 1117 1118 // If the terminator of this block is branching on a constant, simplify the 1119 // terminator to an unconditional branch. This can occur due to threading in 1120 // other blocks. 1121 if (getKnownConstant(Condition, Preference)) { 1122 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1123 << "' folding terminator: " << *BB->getTerminator() 1124 << '\n'); 1125 ++NumFolds; 1126 ConstantFoldTerminator(BB, true, nullptr, DTU); 1127 if (HasProfileData) 1128 BPI->eraseBlock(BB); 1129 return true; 1130 } 1131 1132 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1133 1134 // All the rest of our checks depend on the condition being an instruction. 1135 if (!CondInst) { 1136 // FIXME: Unify this with code below. 1137 if (processThreadableEdges(Condition, BB, Preference, Terminator)) 1138 return true; 1139 return ConstantFolded; 1140 } 1141 1142 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1143 // If we're branching on a conditional, LVI might be able to determine 1144 // it's value at the branch instruction. We only handle comparisons 1145 // against a constant at this time. 1146 // TODO: This should be extended to handle switches as well. 1147 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1148 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1149 if (CondBr && CondConst) { 1150 // We should have returned as soon as we turn a conditional branch to 1151 // unconditional. Because its no longer interesting as far as jump 1152 // threading is concerned. 1153 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1154 1155 LazyValueInfo::Tristate Ret = 1156 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1157 CondConst, CondBr); 1158 if (Ret != LazyValueInfo::Unknown) { 1159 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1160 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1161 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1162 ToRemoveSucc->removePredecessor(BB, true); 1163 BranchInst *UncondBr = 1164 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1165 UncondBr->setDebugLoc(CondBr->getDebugLoc()); 1166 CondBr->eraseFromParent(); 1167 if (CondCmp->use_empty()) 1168 CondCmp->eraseFromParent(); 1169 // We can safely replace *some* uses of the CondInst if it has 1170 // exactly one value as returned by LVI. RAUW is incorrect in the 1171 // presence of guards and assumes, that have the `Cond` as the use. This 1172 // is because we use the guards/assume to reason about the `Cond` value 1173 // at the end of block, but RAUW unconditionally replaces all uses 1174 // including the guards/assumes themselves and the uses before the 1175 // guard/assume. 1176 else if (CondCmp->getParent() == BB) { 1177 auto *CI = Ret == LazyValueInfo::True ? 1178 ConstantInt::getTrue(CondCmp->getType()) : 1179 ConstantInt::getFalse(CondCmp->getType()); 1180 replaceFoldableUses(CondCmp, CI); 1181 } 1182 DTU->applyUpdatesPermissive( 1183 {{DominatorTree::Delete, BB, ToRemoveSucc}}); 1184 if (HasProfileData) 1185 BPI->eraseBlock(BB); 1186 return true; 1187 } 1188 1189 // We did not manage to simplify this branch, try to see whether 1190 // CondCmp depends on a known phi-select pattern. 1191 if (tryToUnfoldSelect(CondCmp, BB)) 1192 return true; 1193 } 1194 } 1195 1196 if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) 1197 if (tryToUnfoldSelect(SI, BB)) 1198 return true; 1199 1200 // Check for some cases that are worth simplifying. Right now we want to look 1201 // for loads that are used by a switch or by the condition for the branch. If 1202 // we see one, check to see if it's partially redundant. If so, insert a PHI 1203 // which can then be used to thread the values. 1204 Value *SimplifyValue = CondInst; 1205 1206 if (auto *FI = dyn_cast<FreezeInst>(SimplifyValue)) 1207 // Look into freeze's operand 1208 SimplifyValue = FI->getOperand(0); 1209 1210 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1211 if (isa<Constant>(CondCmp->getOperand(1))) 1212 SimplifyValue = CondCmp->getOperand(0); 1213 1214 // TODO: There are other places where load PRE would be profitable, such as 1215 // more complex comparisons. 1216 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1217 if (simplifyPartiallyRedundantLoad(LoadI)) 1218 return true; 1219 1220 // Before threading, try to propagate profile data backwards: 1221 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1222 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1223 updatePredecessorProfileMetadata(PN, BB); 1224 1225 // Handle a variety of cases where we are branching on something derived from 1226 // a PHI node in the current block. If we can prove that any predecessors 1227 // compute a predictable value based on a PHI node, thread those predecessors. 1228 if (processThreadableEdges(CondInst, BB, Preference, Terminator)) 1229 return true; 1230 1231 // If this is an otherwise-unfoldable branch on a phi node or freeze(phi) in 1232 // the current block, see if we can simplify. 1233 PHINode *PN = dyn_cast<PHINode>( 1234 isa<FreezeInst>(CondInst) ? cast<FreezeInst>(CondInst)->getOperand(0) 1235 : CondInst); 1236 1237 if (PN && PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1238 return processBranchOnPHI(PN); 1239 1240 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1241 if (CondInst->getOpcode() == Instruction::Xor && 1242 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1243 return processBranchOnXOR(cast<BinaryOperator>(CondInst)); 1244 1245 // Search for a stronger dominating condition that can be used to simplify a 1246 // conditional branch leaving BB. 1247 if (processImpliedCondition(BB)) 1248 return true; 1249 1250 return false; 1251 } 1252 1253 bool JumpThreadingPass::processImpliedCondition(BasicBlock *BB) { 1254 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1255 if (!BI || !BI->isConditional()) 1256 return false; 1257 1258 Value *Cond = BI->getCondition(); 1259 BasicBlock *CurrentBB = BB; 1260 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1261 unsigned Iter = 0; 1262 1263 auto &DL = BB->getModule()->getDataLayout(); 1264 1265 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1266 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1267 if (!PBI || !PBI->isConditional()) 1268 return false; 1269 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1270 return false; 1271 1272 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1273 Optional<bool> Implication = 1274 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1275 if (Implication) { 1276 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1277 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1278 RemoveSucc->removePredecessor(BB); 1279 BranchInst *UncondBI = BranchInst::Create(KeepSucc, BI); 1280 UncondBI->setDebugLoc(BI->getDebugLoc()); 1281 BI->eraseFromParent(); 1282 DTU->applyUpdatesPermissive({{DominatorTree::Delete, BB, RemoveSucc}}); 1283 if (HasProfileData) 1284 BPI->eraseBlock(BB); 1285 return true; 1286 } 1287 CurrentBB = CurrentPred; 1288 CurrentPred = CurrentBB->getSinglePredecessor(); 1289 } 1290 1291 return false; 1292 } 1293 1294 /// Return true if Op is an instruction defined in the given block. 1295 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1296 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1297 if (OpInst->getParent() == BB) 1298 return true; 1299 return false; 1300 } 1301 1302 /// simplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1303 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1304 /// This is an important optimization that encourages jump threading, and needs 1305 /// to be run interlaced with other jump threading tasks. 1306 bool JumpThreadingPass::simplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1307 // Don't hack volatile and ordered loads. 1308 if (!LoadI->isUnordered()) return false; 1309 1310 // If the load is defined in a block with exactly one predecessor, it can't be 1311 // partially redundant. 1312 BasicBlock *LoadBB = LoadI->getParent(); 1313 if (LoadBB->getSinglePredecessor()) 1314 return false; 1315 1316 // If the load is defined in an EH pad, it can't be partially redundant, 1317 // because the edges between the invoke and the EH pad cannot have other 1318 // instructions between them. 1319 if (LoadBB->isEHPad()) 1320 return false; 1321 1322 Value *LoadedPtr = LoadI->getOperand(0); 1323 1324 // If the loaded operand is defined in the LoadBB and its not a phi, 1325 // it can't be available in predecessors. 1326 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1327 return false; 1328 1329 // Scan a few instructions up from the load, to see if it is obviously live at 1330 // the entry to its block. 1331 BasicBlock::iterator BBIt(LoadI); 1332 bool IsLoadCSE; 1333 if (Value *AvailableVal = FindAvailableLoadedValue( 1334 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1335 // If the value of the load is locally available within the block, just use 1336 // it. This frequently occurs for reg2mem'd allocas. 1337 1338 if (IsLoadCSE) { 1339 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1340 combineMetadataForCSE(NLoadI, LoadI, false); 1341 }; 1342 1343 // If the returned value is the load itself, replace with an undef. This can 1344 // only happen in dead loops. 1345 if (AvailableVal == LoadI) 1346 AvailableVal = UndefValue::get(LoadI->getType()); 1347 if (AvailableVal->getType() != LoadI->getType()) 1348 AvailableVal = CastInst::CreateBitOrPointerCast( 1349 AvailableVal, LoadI->getType(), "", LoadI); 1350 LoadI->replaceAllUsesWith(AvailableVal); 1351 LoadI->eraseFromParent(); 1352 return true; 1353 } 1354 1355 // Otherwise, if we scanned the whole block and got to the top of the block, 1356 // we know the block is locally transparent to the load. If not, something 1357 // might clobber its value. 1358 if (BBIt != LoadBB->begin()) 1359 return false; 1360 1361 // If all of the loads and stores that feed the value have the same AA tags, 1362 // then we can propagate them onto any newly inserted loads. 1363 AAMDNodes AATags; 1364 LoadI->getAAMetadata(AATags); 1365 1366 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1367 1368 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1369 1370 AvailablePredsTy AvailablePreds; 1371 BasicBlock *OneUnavailablePred = nullptr; 1372 SmallVector<LoadInst*, 8> CSELoads; 1373 1374 // If we got here, the loaded value is transparent through to the start of the 1375 // block. Check to see if it is available in any of the predecessor blocks. 1376 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1377 // If we already scanned this predecessor, skip it. 1378 if (!PredsScanned.insert(PredBB).second) 1379 continue; 1380 1381 BBIt = PredBB->end(); 1382 unsigned NumScanedInst = 0; 1383 Value *PredAvailable = nullptr; 1384 // NOTE: We don't CSE load that is volatile or anything stronger than 1385 // unordered, that should have been checked when we entered the function. 1386 assert(LoadI->isUnordered() && 1387 "Attempting to CSE volatile or atomic loads"); 1388 // If this is a load on a phi pointer, phi-translate it and search 1389 // for available load/store to the pointer in predecessors. 1390 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1391 PredAvailable = FindAvailablePtrLoadStore( 1392 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1393 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1394 1395 // If PredBB has a single predecessor, continue scanning through the 1396 // single predecessor. 1397 BasicBlock *SinglePredBB = PredBB; 1398 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1399 NumScanedInst < DefMaxInstsToScan) { 1400 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1401 if (SinglePredBB) { 1402 BBIt = SinglePredBB->end(); 1403 PredAvailable = FindAvailablePtrLoadStore( 1404 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1405 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1406 &NumScanedInst); 1407 } 1408 } 1409 1410 if (!PredAvailable) { 1411 OneUnavailablePred = PredBB; 1412 continue; 1413 } 1414 1415 if (IsLoadCSE) 1416 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1417 1418 // If so, this load is partially redundant. Remember this info so that we 1419 // can create a PHI node. 1420 AvailablePreds.emplace_back(PredBB, PredAvailable); 1421 } 1422 1423 // If the loaded value isn't available in any predecessor, it isn't partially 1424 // redundant. 1425 if (AvailablePreds.empty()) return false; 1426 1427 // Okay, the loaded value is available in at least one (and maybe all!) 1428 // predecessors. If the value is unavailable in more than one unique 1429 // predecessor, we want to insert a merge block for those common predecessors. 1430 // This ensures that we only have to insert one reload, thus not increasing 1431 // code size. 1432 BasicBlock *UnavailablePred = nullptr; 1433 1434 // If the value is unavailable in one of predecessors, we will end up 1435 // inserting a new instruction into them. It is only valid if all the 1436 // instructions before LoadI are guaranteed to pass execution to its 1437 // successor, or if LoadI is safe to speculate. 1438 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1439 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1440 // It requires domination tree analysis, so for this simple case it is an 1441 // overkill. 1442 if (PredsScanned.size() != AvailablePreds.size() && 1443 !isSafeToSpeculativelyExecute(LoadI)) 1444 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1445 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1446 return false; 1447 1448 // If there is exactly one predecessor where the value is unavailable, the 1449 // already computed 'OneUnavailablePred' block is it. If it ends in an 1450 // unconditional branch, we know that it isn't a critical edge. 1451 if (PredsScanned.size() == AvailablePreds.size()+1 && 1452 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1453 UnavailablePred = OneUnavailablePred; 1454 } else if (PredsScanned.size() != AvailablePreds.size()) { 1455 // Otherwise, we had multiple unavailable predecessors or we had a critical 1456 // edge from the one. 1457 SmallVector<BasicBlock*, 8> PredsToSplit; 1458 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1459 1460 for (const auto &AvailablePred : AvailablePreds) 1461 AvailablePredSet.insert(AvailablePred.first); 1462 1463 // Add all the unavailable predecessors to the PredsToSplit list. 1464 for (BasicBlock *P : predecessors(LoadBB)) { 1465 // If the predecessor is an indirect goto, we can't split the edge. 1466 // Same for CallBr. 1467 if (isa<IndirectBrInst>(P->getTerminator()) || 1468 isa<CallBrInst>(P->getTerminator())) 1469 return false; 1470 1471 if (!AvailablePredSet.count(P)) 1472 PredsToSplit.push_back(P); 1473 } 1474 1475 // Split them out to their own block. 1476 UnavailablePred = splitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1477 } 1478 1479 // If the value isn't available in all predecessors, then there will be 1480 // exactly one where it isn't available. Insert a load on that edge and add 1481 // it to the AvailablePreds list. 1482 if (UnavailablePred) { 1483 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1484 "Can't handle critical edge here!"); 1485 LoadInst *NewVal = new LoadInst( 1486 LoadI->getType(), LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1487 LoadI->getName() + ".pr", false, LoadI->getAlign(), 1488 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1489 UnavailablePred->getTerminator()); 1490 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1491 if (AATags) 1492 NewVal->setAAMetadata(AATags); 1493 1494 AvailablePreds.emplace_back(UnavailablePred, NewVal); 1495 } 1496 1497 // Now we know that each predecessor of this block has a value in 1498 // AvailablePreds, sort them for efficient access as we're walking the preds. 1499 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1500 1501 // Create a PHI node at the start of the block for the PRE'd load value. 1502 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1503 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1504 &LoadBB->front()); 1505 PN->takeName(LoadI); 1506 PN->setDebugLoc(LoadI->getDebugLoc()); 1507 1508 // Insert new entries into the PHI for each predecessor. A single block may 1509 // have multiple entries here. 1510 for (pred_iterator PI = PB; PI != PE; ++PI) { 1511 BasicBlock *P = *PI; 1512 AvailablePredsTy::iterator I = 1513 llvm::lower_bound(AvailablePreds, std::make_pair(P, (Value *)nullptr)); 1514 1515 assert(I != AvailablePreds.end() && I->first == P && 1516 "Didn't find entry for predecessor!"); 1517 1518 // If we have an available predecessor but it requires casting, insert the 1519 // cast in the predecessor and use the cast. Note that we have to update the 1520 // AvailablePreds vector as we go so that all of the PHI entries for this 1521 // predecessor use the same bitcast. 1522 Value *&PredV = I->second; 1523 if (PredV->getType() != LoadI->getType()) 1524 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1525 P->getTerminator()); 1526 1527 PN->addIncoming(PredV, I->first); 1528 } 1529 1530 for (LoadInst *PredLoadI : CSELoads) { 1531 combineMetadataForCSE(PredLoadI, LoadI, true); 1532 } 1533 1534 LoadI->replaceAllUsesWith(PN); 1535 LoadI->eraseFromParent(); 1536 1537 return true; 1538 } 1539 1540 /// findMostPopularDest - The specified list contains multiple possible 1541 /// threadable destinations. Pick the one that occurs the most frequently in 1542 /// the list. 1543 static BasicBlock * 1544 findMostPopularDest(BasicBlock *BB, 1545 const SmallVectorImpl<std::pair<BasicBlock *, 1546 BasicBlock *>> &PredToDestList) { 1547 assert(!PredToDestList.empty()); 1548 1549 // Determine popularity. If there are multiple possible destinations, we 1550 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1551 // blocks with known and real destinations to threading undef. We'll handle 1552 // them later if interesting. 1553 MapVector<BasicBlock *, unsigned> DestPopularity; 1554 1555 // Populate DestPopularity with the successors in the order they appear in the 1556 // successor list. This way, we ensure determinism by iterating it in the 1557 // same order in std::max_element below. We map nullptr to 0 so that we can 1558 // return nullptr when PredToDestList contains nullptr only. 1559 DestPopularity[nullptr] = 0; 1560 for (auto *SuccBB : successors(BB)) 1561 DestPopularity[SuccBB] = 0; 1562 1563 for (const auto &PredToDest : PredToDestList) 1564 if (PredToDest.second) 1565 DestPopularity[PredToDest.second]++; 1566 1567 // Find the most popular dest. 1568 using VT = decltype(DestPopularity)::value_type; 1569 auto MostPopular = std::max_element( 1570 DestPopularity.begin(), DestPopularity.end(), 1571 [](const VT &L, const VT &R) { return L.second < R.second; }); 1572 1573 // Okay, we have finally picked the most popular destination. 1574 return MostPopular->first; 1575 } 1576 1577 // Try to evaluate the value of V when the control flows from PredPredBB to 1578 // BB->getSinglePredecessor() and then on to BB. 1579 Constant *JumpThreadingPass::evaluateOnPredecessorEdge(BasicBlock *BB, 1580 BasicBlock *PredPredBB, 1581 Value *V) { 1582 BasicBlock *PredBB = BB->getSinglePredecessor(); 1583 assert(PredBB && "Expected a single predecessor"); 1584 1585 if (Constant *Cst = dyn_cast<Constant>(V)) { 1586 return Cst; 1587 } 1588 1589 // Consult LVI if V is not an instruction in BB or PredBB. 1590 Instruction *I = dyn_cast<Instruction>(V); 1591 if (!I || (I->getParent() != BB && I->getParent() != PredBB)) { 1592 return LVI->getConstantOnEdge(V, PredPredBB, PredBB, nullptr); 1593 } 1594 1595 // Look into a PHI argument. 1596 if (PHINode *PHI = dyn_cast<PHINode>(V)) { 1597 if (PHI->getParent() == PredBB) 1598 return dyn_cast<Constant>(PHI->getIncomingValueForBlock(PredPredBB)); 1599 return nullptr; 1600 } 1601 1602 // If we have a CmpInst, try to fold it for each incoming edge into PredBB. 1603 if (CmpInst *CondCmp = dyn_cast<CmpInst>(V)) { 1604 if (CondCmp->getParent() == BB) { 1605 Constant *Op0 = 1606 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(0)); 1607 Constant *Op1 = 1608 evaluateOnPredecessorEdge(BB, PredPredBB, CondCmp->getOperand(1)); 1609 if (Op0 && Op1) { 1610 return ConstantExpr::getCompare(CondCmp->getPredicate(), Op0, Op1); 1611 } 1612 } 1613 return nullptr; 1614 } 1615 1616 return nullptr; 1617 } 1618 1619 bool JumpThreadingPass::processThreadableEdges(Value *Cond, BasicBlock *BB, 1620 ConstantPreference Preference, 1621 Instruction *CxtI) { 1622 // If threading this would thread across a loop header, don't even try to 1623 // thread the edge. 1624 if (LoopHeaders.count(BB)) 1625 return false; 1626 1627 PredValueInfoTy PredValues; 1628 if (!computeValueKnownInPredecessors(Cond, BB, PredValues, Preference, 1629 CxtI)) { 1630 // We don't have known values in predecessors. See if we can thread through 1631 // BB and its sole predecessor. 1632 return maybethreadThroughTwoBasicBlocks(BB, Cond); 1633 } 1634 1635 assert(!PredValues.empty() && 1636 "computeValueKnownInPredecessors returned true with no values"); 1637 1638 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1639 for (const auto &PredValue : PredValues) { 1640 dbgs() << " BB '" << BB->getName() 1641 << "': FOUND condition = " << *PredValue.first 1642 << " for pred '" << PredValue.second->getName() << "'.\n"; 1643 }); 1644 1645 // Decide what we want to thread through. Convert our list of known values to 1646 // a list of known destinations for each pred. This also discards duplicate 1647 // predecessors and keeps track of the undefined inputs (which are represented 1648 // as a null dest in the PredToDestList). 1649 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1650 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1651 1652 BasicBlock *OnlyDest = nullptr; 1653 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1654 Constant *OnlyVal = nullptr; 1655 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1656 1657 for (const auto &PredValue : PredValues) { 1658 BasicBlock *Pred = PredValue.second; 1659 if (!SeenPreds.insert(Pred).second) 1660 continue; // Duplicate predecessor entry. 1661 1662 Constant *Val = PredValue.first; 1663 1664 BasicBlock *DestBB; 1665 if (isa<UndefValue>(Val)) 1666 DestBB = nullptr; 1667 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1668 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1669 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1670 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1671 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1672 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1673 } else { 1674 assert(isa<IndirectBrInst>(BB->getTerminator()) 1675 && "Unexpected terminator"); 1676 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1677 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1678 } 1679 1680 // If we have exactly one destination, remember it for efficiency below. 1681 if (PredToDestList.empty()) { 1682 OnlyDest = DestBB; 1683 OnlyVal = Val; 1684 } else { 1685 if (OnlyDest != DestBB) 1686 OnlyDest = MultipleDestSentinel; 1687 // It possible we have same destination, but different value, e.g. default 1688 // case in switchinst. 1689 if (Val != OnlyVal) 1690 OnlyVal = MultipleVal; 1691 } 1692 1693 // If the predecessor ends with an indirect goto, we can't change its 1694 // destination. Same for CallBr. 1695 if (isa<IndirectBrInst>(Pred->getTerminator()) || 1696 isa<CallBrInst>(Pred->getTerminator())) 1697 continue; 1698 1699 PredToDestList.emplace_back(Pred, DestBB); 1700 } 1701 1702 // If all edges were unthreadable, we fail. 1703 if (PredToDestList.empty()) 1704 return false; 1705 1706 // If all the predecessors go to a single known successor, we want to fold, 1707 // not thread. By doing so, we do not need to duplicate the current block and 1708 // also miss potential opportunities in case we dont/cant duplicate. 1709 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1710 if (BB->hasNPredecessors(PredToDestList.size())) { 1711 bool SeenFirstBranchToOnlyDest = false; 1712 std::vector <DominatorTree::UpdateType> Updates; 1713 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1714 for (BasicBlock *SuccBB : successors(BB)) { 1715 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1716 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1717 } else { 1718 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1719 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1720 } 1721 } 1722 1723 // Finally update the terminator. 1724 Instruction *Term = BB->getTerminator(); 1725 BranchInst::Create(OnlyDest, Term); 1726 Term->eraseFromParent(); 1727 DTU->applyUpdatesPermissive(Updates); 1728 if (HasProfileData) 1729 BPI->eraseBlock(BB); 1730 1731 // If the condition is now dead due to the removal of the old terminator, 1732 // erase it. 1733 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1734 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1735 CondInst->eraseFromParent(); 1736 // We can safely replace *some* uses of the CondInst if it has 1737 // exactly one value as returned by LVI. RAUW is incorrect in the 1738 // presence of guards and assumes, that have the `Cond` as the use. This 1739 // is because we use the guards/assume to reason about the `Cond` value 1740 // at the end of block, but RAUW unconditionally replaces all uses 1741 // including the guards/assumes themselves and the uses before the 1742 // guard/assume. 1743 else if (OnlyVal && OnlyVal != MultipleVal && 1744 CondInst->getParent() == BB) 1745 replaceFoldableUses(CondInst, OnlyVal); 1746 } 1747 return true; 1748 } 1749 } 1750 1751 // Determine which is the most common successor. If we have many inputs and 1752 // this block is a switch, we want to start by threading the batch that goes 1753 // to the most popular destination first. If we only know about one 1754 // threadable destination (the common case) we can avoid this. 1755 BasicBlock *MostPopularDest = OnlyDest; 1756 1757 if (MostPopularDest == MultipleDestSentinel) { 1758 // Remove any loop headers from the Dest list, threadEdge conservatively 1759 // won't process them, but we might have other destination that are eligible 1760 // and we still want to process. 1761 erase_if(PredToDestList, 1762 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1763 return LoopHeaders.contains(PredToDest.second); 1764 }); 1765 1766 if (PredToDestList.empty()) 1767 return false; 1768 1769 MostPopularDest = findMostPopularDest(BB, PredToDestList); 1770 } 1771 1772 // Now that we know what the most popular destination is, factor all 1773 // predecessors that will jump to it into a single predecessor. 1774 SmallVector<BasicBlock*, 16> PredsToFactor; 1775 for (const auto &PredToDest : PredToDestList) 1776 if (PredToDest.second == MostPopularDest) { 1777 BasicBlock *Pred = PredToDest.first; 1778 1779 // This predecessor may be a switch or something else that has multiple 1780 // edges to the block. Factor each of these edges by listing them 1781 // according to # occurrences in PredsToFactor. 1782 for (BasicBlock *Succ : successors(Pred)) 1783 if (Succ == BB) 1784 PredsToFactor.push_back(Pred); 1785 } 1786 1787 // If the threadable edges are branching on an undefined value, we get to pick 1788 // the destination that these predecessors should get to. 1789 if (!MostPopularDest) 1790 MostPopularDest = BB->getTerminator()-> 1791 getSuccessor(getBestDestForJumpOnUndef(BB)); 1792 1793 // Ok, try to thread it! 1794 return tryThreadEdge(BB, PredsToFactor, MostPopularDest); 1795 } 1796 1797 /// processBranchOnPHI - We have an otherwise unthreadable conditional branch on 1798 /// a PHI node (or freeze PHI) in the current block. See if there are any 1799 /// simplifications we can do based on inputs to the phi node. 1800 bool JumpThreadingPass::processBranchOnPHI(PHINode *PN) { 1801 BasicBlock *BB = PN->getParent(); 1802 1803 // TODO: We could make use of this to do it once for blocks with common PHI 1804 // values. 1805 SmallVector<BasicBlock*, 1> PredBBs; 1806 PredBBs.resize(1); 1807 1808 // If any of the predecessor blocks end in an unconditional branch, we can 1809 // *duplicate* the conditional branch into that block in order to further 1810 // encourage jump threading and to eliminate cases where we have branch on a 1811 // phi of an icmp (branch on icmp is much better). 1812 // This is still beneficial when a frozen phi is used as the branch condition 1813 // because it allows CodeGenPrepare to further canonicalize br(freeze(icmp)) 1814 // to br(icmp(freeze ...)). 1815 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1816 BasicBlock *PredBB = PN->getIncomingBlock(i); 1817 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1818 if (PredBr->isUnconditional()) { 1819 PredBBs[0] = PredBB; 1820 // Try to duplicate BB into PredBB. 1821 if (duplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1822 return true; 1823 } 1824 } 1825 1826 return false; 1827 } 1828 1829 /// processBranchOnXOR - We have an otherwise unthreadable conditional branch on 1830 /// a xor instruction in the current block. See if there are any 1831 /// simplifications we can do based on inputs to the xor. 1832 bool JumpThreadingPass::processBranchOnXOR(BinaryOperator *BO) { 1833 BasicBlock *BB = BO->getParent(); 1834 1835 // If either the LHS or RHS of the xor is a constant, don't do this 1836 // optimization. 1837 if (isa<ConstantInt>(BO->getOperand(0)) || 1838 isa<ConstantInt>(BO->getOperand(1))) 1839 return false; 1840 1841 // If the first instruction in BB isn't a phi, we won't be able to infer 1842 // anything special about any particular predecessor. 1843 if (!isa<PHINode>(BB->front())) 1844 return false; 1845 1846 // If this BB is a landing pad, we won't be able to split the edge into it. 1847 if (BB->isEHPad()) 1848 return false; 1849 1850 // If we have a xor as the branch input to this block, and we know that the 1851 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1852 // the condition into the predecessor and fix that value to true, saving some 1853 // logical ops on that path and encouraging other paths to simplify. 1854 // 1855 // This copies something like this: 1856 // 1857 // BB: 1858 // %X = phi i1 [1], [%X'] 1859 // %Y = icmp eq i32 %A, %B 1860 // %Z = xor i1 %X, %Y 1861 // br i1 %Z, ... 1862 // 1863 // Into: 1864 // BB': 1865 // %Y = icmp ne i32 %A, %B 1866 // br i1 %Y, ... 1867 1868 PredValueInfoTy XorOpValues; 1869 bool isLHS = true; 1870 if (!computeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1871 WantInteger, BO)) { 1872 assert(XorOpValues.empty()); 1873 if (!computeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1874 WantInteger, BO)) 1875 return false; 1876 isLHS = false; 1877 } 1878 1879 assert(!XorOpValues.empty() && 1880 "computeValueKnownInPredecessors returned true with no values"); 1881 1882 // Scan the information to see which is most popular: true or false. The 1883 // predecessors can be of the set true, false, or undef. 1884 unsigned NumTrue = 0, NumFalse = 0; 1885 for (const auto &XorOpValue : XorOpValues) { 1886 if (isa<UndefValue>(XorOpValue.first)) 1887 // Ignore undefs for the count. 1888 continue; 1889 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1890 ++NumFalse; 1891 else 1892 ++NumTrue; 1893 } 1894 1895 // Determine which value to split on, true, false, or undef if neither. 1896 ConstantInt *SplitVal = nullptr; 1897 if (NumTrue > NumFalse) 1898 SplitVal = ConstantInt::getTrue(BB->getContext()); 1899 else if (NumTrue != 0 || NumFalse != 0) 1900 SplitVal = ConstantInt::getFalse(BB->getContext()); 1901 1902 // Collect all of the blocks that this can be folded into so that we can 1903 // factor this once and clone it once. 1904 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1905 for (const auto &XorOpValue : XorOpValues) { 1906 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1907 continue; 1908 1909 BlocksToFoldInto.push_back(XorOpValue.second); 1910 } 1911 1912 // If we inferred a value for all of the predecessors, then duplication won't 1913 // help us. However, we can just replace the LHS or RHS with the constant. 1914 if (BlocksToFoldInto.size() == 1915 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1916 if (!SplitVal) { 1917 // If all preds provide undef, just nuke the xor, because it is undef too. 1918 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1919 BO->eraseFromParent(); 1920 } else if (SplitVal->isZero()) { 1921 // If all preds provide 0, replace the xor with the other input. 1922 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1923 BO->eraseFromParent(); 1924 } else { 1925 // If all preds provide 1, set the computed value to 1. 1926 BO->setOperand(!isLHS, SplitVal); 1927 } 1928 1929 return true; 1930 } 1931 1932 // If any of predecessors end with an indirect goto, we can't change its 1933 // destination. Same for CallBr. 1934 if (any_of(BlocksToFoldInto, [](BasicBlock *Pred) { 1935 return isa<IndirectBrInst>(Pred->getTerminator()) || 1936 isa<CallBrInst>(Pred->getTerminator()); 1937 })) 1938 return false; 1939 1940 // Try to duplicate BB into PredBB. 1941 return duplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1942 } 1943 1944 /// addPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1945 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1946 /// NewPred using the entries from OldPred (suitably mapped). 1947 static void addPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1948 BasicBlock *OldPred, 1949 BasicBlock *NewPred, 1950 DenseMap<Instruction*, Value*> &ValueMap) { 1951 for (PHINode &PN : PHIBB->phis()) { 1952 // Ok, we have a PHI node. Figure out what the incoming value was for the 1953 // DestBlock. 1954 Value *IV = PN.getIncomingValueForBlock(OldPred); 1955 1956 // Remap the value if necessary. 1957 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1958 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1959 if (I != ValueMap.end()) 1960 IV = I->second; 1961 } 1962 1963 PN.addIncoming(IV, NewPred); 1964 } 1965 } 1966 1967 /// Merge basic block BB into its sole predecessor if possible. 1968 bool JumpThreadingPass::maybeMergeBasicBlockIntoOnlyPred(BasicBlock *BB) { 1969 BasicBlock *SinglePred = BB->getSinglePredecessor(); 1970 if (!SinglePred) 1971 return false; 1972 1973 const Instruction *TI = SinglePred->getTerminator(); 1974 if (TI->isExceptionalTerminator() || TI->getNumSuccessors() != 1 || 1975 SinglePred == BB || hasAddressTakenAndUsed(BB)) 1976 return false; 1977 1978 // If SinglePred was a loop header, BB becomes one. 1979 if (LoopHeaders.erase(SinglePred)) 1980 LoopHeaders.insert(BB); 1981 1982 LVI->eraseBlock(SinglePred); 1983 MergeBasicBlockIntoOnlyPred(BB, DTU); 1984 1985 // Now that BB is merged into SinglePred (i.e. SinglePred code followed by 1986 // BB code within one basic block `BB`), we need to invalidate the LVI 1987 // information associated with BB, because the LVI information need not be 1988 // true for all of BB after the merge. For example, 1989 // Before the merge, LVI info and code is as follows: 1990 // SinglePred: <LVI info1 for %p val> 1991 // %y = use of %p 1992 // call @exit() // need not transfer execution to successor. 1993 // assume(%p) // from this point on %p is true 1994 // br label %BB 1995 // BB: <LVI info2 for %p val, i.e. %p is true> 1996 // %x = use of %p 1997 // br label exit 1998 // 1999 // Note that this LVI info for blocks BB and SinglPred is correct for %p 2000 // (info2 and info1 respectively). After the merge and the deletion of the 2001 // LVI info1 for SinglePred. We have the following code: 2002 // BB: <LVI info2 for %p val> 2003 // %y = use of %p 2004 // call @exit() 2005 // assume(%p) 2006 // %x = use of %p <-- LVI info2 is correct from here onwards. 2007 // br label exit 2008 // LVI info2 for BB is incorrect at the beginning of BB. 2009 2010 // Invalidate LVI information for BB if the LVI is not provably true for 2011 // all of BB. 2012 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 2013 LVI->eraseBlock(BB); 2014 return true; 2015 } 2016 2017 /// Update the SSA form. NewBB contains instructions that are copied from BB. 2018 /// ValueMapping maps old values in BB to new ones in NewBB. 2019 void JumpThreadingPass::updateSSA( 2020 BasicBlock *BB, BasicBlock *NewBB, 2021 DenseMap<Instruction *, Value *> &ValueMapping) { 2022 // If there were values defined in BB that are used outside the block, then we 2023 // now have to update all uses of the value to use either the original value, 2024 // the cloned value, or some PHI derived value. This can require arbitrary 2025 // PHI insertion, of which we are prepared to do, clean these up now. 2026 SSAUpdater SSAUpdate; 2027 SmallVector<Use *, 16> UsesToRename; 2028 2029 for (Instruction &I : *BB) { 2030 // Scan all uses of this instruction to see if it is used outside of its 2031 // block, and if so, record them in UsesToRename. 2032 for (Use &U : I.uses()) { 2033 Instruction *User = cast<Instruction>(U.getUser()); 2034 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2035 if (UserPN->getIncomingBlock(U) == BB) 2036 continue; 2037 } else if (User->getParent() == BB) 2038 continue; 2039 2040 UsesToRename.push_back(&U); 2041 } 2042 2043 // If there are no uses outside the block, we're done with this instruction. 2044 if (UsesToRename.empty()) 2045 continue; 2046 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2047 2048 // We found a use of I outside of BB. Rename all uses of I that are outside 2049 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2050 // with the two values we know. 2051 SSAUpdate.Initialize(I.getType(), I.getName()); 2052 SSAUpdate.AddAvailableValue(BB, &I); 2053 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2054 2055 while (!UsesToRename.empty()) 2056 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2057 LLVM_DEBUG(dbgs() << "\n"); 2058 } 2059 } 2060 2061 /// Clone instructions in range [BI, BE) to NewBB. For PHI nodes, we only clone 2062 /// arguments that come from PredBB. Return the map from the variables in the 2063 /// source basic block to the variables in the newly created basic block. 2064 DenseMap<Instruction *, Value *> 2065 JumpThreadingPass::cloneInstructions(BasicBlock::iterator BI, 2066 BasicBlock::iterator BE, BasicBlock *NewBB, 2067 BasicBlock *PredBB) { 2068 // We are going to have to map operands from the source basic block to the new 2069 // copy of the block 'NewBB'. If there are PHI nodes in the source basic 2070 // block, evaluate them to account for entry from PredBB. 2071 DenseMap<Instruction *, Value *> ValueMapping; 2072 2073 // Clone the phi nodes of the source basic block into NewBB. The resulting 2074 // phi nodes are trivial since NewBB only has one predecessor, but SSAUpdater 2075 // might need to rewrite the operand of the cloned phi. 2076 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2077 PHINode *NewPN = PHINode::Create(PN->getType(), 1, PN->getName(), NewBB); 2078 NewPN->addIncoming(PN->getIncomingValueForBlock(PredBB), PredBB); 2079 ValueMapping[PN] = NewPN; 2080 } 2081 2082 // Clone noalias scope declarations in the threaded block. When threading a 2083 // loop exit, we would otherwise end up with two idential scope declarations 2084 // visible at the same time. 2085 SmallVector<MDNode *> NoAliasScopes; 2086 DenseMap<MDNode *, MDNode *> ClonedScopes; 2087 LLVMContext &Context = PredBB->getContext(); 2088 identifyNoAliasScopesToClone(BI, BE, NoAliasScopes); 2089 cloneNoAliasScopes(NoAliasScopes, ClonedScopes, "thread", Context); 2090 2091 // Clone the non-phi instructions of the source basic block into NewBB, 2092 // keeping track of the mapping and using it to remap operands in the cloned 2093 // instructions. 2094 for (; BI != BE; ++BI) { 2095 Instruction *New = BI->clone(); 2096 New->setName(BI->getName()); 2097 NewBB->getInstList().push_back(New); 2098 ValueMapping[&*BI] = New; 2099 adaptNoAliasScopes(New, ClonedScopes, Context); 2100 2101 // Remap operands to patch up intra-block references. 2102 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2103 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2104 DenseMap<Instruction *, Value *>::iterator I = ValueMapping.find(Inst); 2105 if (I != ValueMapping.end()) 2106 New->setOperand(i, I->second); 2107 } 2108 } 2109 2110 return ValueMapping; 2111 } 2112 2113 /// Attempt to thread through two successive basic blocks. 2114 bool JumpThreadingPass::maybethreadThroughTwoBasicBlocks(BasicBlock *BB, 2115 Value *Cond) { 2116 // Consider: 2117 // 2118 // PredBB: 2119 // %var = phi i32* [ null, %bb1 ], [ @a, %bb2 ] 2120 // %tobool = icmp eq i32 %cond, 0 2121 // br i1 %tobool, label %BB, label ... 2122 // 2123 // BB: 2124 // %cmp = icmp eq i32* %var, null 2125 // br i1 %cmp, label ..., label ... 2126 // 2127 // We don't know the value of %var at BB even if we know which incoming edge 2128 // we take to BB. However, once we duplicate PredBB for each of its incoming 2129 // edges (say, PredBB1 and PredBB2), we know the value of %var in each copy of 2130 // PredBB. Then we can thread edges PredBB1->BB and PredBB2->BB through BB. 2131 2132 // Require that BB end with a Branch for simplicity. 2133 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2134 if (!CondBr) 2135 return false; 2136 2137 // BB must have exactly one predecessor. 2138 BasicBlock *PredBB = BB->getSinglePredecessor(); 2139 if (!PredBB) 2140 return false; 2141 2142 // Require that PredBB end with a conditional Branch. If PredBB ends with an 2143 // unconditional branch, we should be merging PredBB and BB instead. For 2144 // simplicity, we don't deal with a switch. 2145 BranchInst *PredBBBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2146 if (!PredBBBranch || PredBBBranch->isUnconditional()) 2147 return false; 2148 2149 // If PredBB has exactly one incoming edge, we don't gain anything by copying 2150 // PredBB. 2151 if (PredBB->getSinglePredecessor()) 2152 return false; 2153 2154 // Don't thread through PredBB if it contains a successor edge to itself, in 2155 // which case we would infinite loop. Suppose we are threading an edge from 2156 // PredPredBB through PredBB and BB to SuccBB with PredBB containing a 2157 // successor edge to itself. If we allowed jump threading in this case, we 2158 // could duplicate PredBB and BB as, say, PredBB.thread and BB.thread. Since 2159 // PredBB.thread has a successor edge to PredBB, we would immediately come up 2160 // with another jump threading opportunity from PredBB.thread through PredBB 2161 // and BB to SuccBB. This jump threading would repeatedly occur. That is, we 2162 // would keep peeling one iteration from PredBB. 2163 if (llvm::is_contained(successors(PredBB), PredBB)) 2164 return false; 2165 2166 // Don't thread across a loop header. 2167 if (LoopHeaders.count(PredBB)) 2168 return false; 2169 2170 // Avoid complication with duplicating EH pads. 2171 if (PredBB->isEHPad()) 2172 return false; 2173 2174 // Find a predecessor that we can thread. For simplicity, we only consider a 2175 // successor edge out of BB to which we thread exactly one incoming edge into 2176 // PredBB. 2177 unsigned ZeroCount = 0; 2178 unsigned OneCount = 0; 2179 BasicBlock *ZeroPred = nullptr; 2180 BasicBlock *OnePred = nullptr; 2181 for (BasicBlock *P : predecessors(PredBB)) { 2182 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>( 2183 evaluateOnPredecessorEdge(BB, P, Cond))) { 2184 if (CI->isZero()) { 2185 ZeroCount++; 2186 ZeroPred = P; 2187 } else if (CI->isOne()) { 2188 OneCount++; 2189 OnePred = P; 2190 } 2191 } 2192 } 2193 2194 // Disregard complicated cases where we have to thread multiple edges. 2195 BasicBlock *PredPredBB; 2196 if (ZeroCount == 1) { 2197 PredPredBB = ZeroPred; 2198 } else if (OneCount == 1) { 2199 PredPredBB = OnePred; 2200 } else { 2201 return false; 2202 } 2203 2204 BasicBlock *SuccBB = CondBr->getSuccessor(PredPredBB == ZeroPred); 2205 2206 // If threading to the same block as we come from, we would infinite loop. 2207 if (SuccBB == BB) { 2208 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2209 << "' - would thread to self!\n"); 2210 return false; 2211 } 2212 2213 // If threading this would thread across a loop header, don't thread the edge. 2214 // See the comments above findLoopHeaders for justifications and caveats. 2215 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2216 LLVM_DEBUG({ 2217 bool BBIsHeader = LoopHeaders.count(BB); 2218 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2219 dbgs() << " Not threading across " 2220 << (BBIsHeader ? "loop header BB '" : "block BB '") 2221 << BB->getName() << "' to dest " 2222 << (SuccIsHeader ? "loop header BB '" : "block BB '") 2223 << SuccBB->getName() 2224 << "' - it might create an irreducible loop!\n"; 2225 }); 2226 return false; 2227 } 2228 2229 // Compute the cost of duplicating BB and PredBB. 2230 unsigned BBCost = 2231 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2232 unsigned PredBBCost = getJumpThreadDuplicationCost( 2233 PredBB, PredBB->getTerminator(), BBDupThreshold); 2234 2235 // Give up if costs are too high. We need to check BBCost and PredBBCost 2236 // individually before checking their sum because getJumpThreadDuplicationCost 2237 // return (unsigned)~0 for those basic blocks that cannot be duplicated. 2238 if (BBCost > BBDupThreshold || PredBBCost > BBDupThreshold || 2239 BBCost + PredBBCost > BBDupThreshold) { 2240 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2241 << "' - Cost is too high: " << PredBBCost 2242 << " for PredBB, " << BBCost << "for BB\n"); 2243 return false; 2244 } 2245 2246 // Now we are ready to duplicate PredBB. 2247 threadThroughTwoBasicBlocks(PredPredBB, PredBB, BB, SuccBB); 2248 return true; 2249 } 2250 2251 void JumpThreadingPass::threadThroughTwoBasicBlocks(BasicBlock *PredPredBB, 2252 BasicBlock *PredBB, 2253 BasicBlock *BB, 2254 BasicBlock *SuccBB) { 2255 LLVM_DEBUG(dbgs() << " Threading through '" << PredBB->getName() << "' and '" 2256 << BB->getName() << "'\n"); 2257 2258 BranchInst *CondBr = cast<BranchInst>(BB->getTerminator()); 2259 BranchInst *PredBBBranch = cast<BranchInst>(PredBB->getTerminator()); 2260 2261 BasicBlock *NewBB = 2262 BasicBlock::Create(PredBB->getContext(), PredBB->getName() + ".thread", 2263 PredBB->getParent(), PredBB); 2264 NewBB->moveAfter(PredBB); 2265 2266 // Set the block frequency of NewBB. 2267 if (HasProfileData) { 2268 auto NewBBFreq = BFI->getBlockFreq(PredPredBB) * 2269 BPI->getEdgeProbability(PredPredBB, PredBB); 2270 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2271 } 2272 2273 // We are going to have to map operands from the original BB block to the new 2274 // copy of the block 'NewBB'. If there are PHI nodes in PredBB, evaluate them 2275 // to account for entry from PredPredBB. 2276 DenseMap<Instruction *, Value *> ValueMapping = 2277 cloneInstructions(PredBB->begin(), PredBB->end(), NewBB, PredPredBB); 2278 2279 // Copy the edge probabilities from PredBB to NewBB. 2280 if (HasProfileData) 2281 BPI->copyEdgeProbabilities(PredBB, NewBB); 2282 2283 // Update the terminator of PredPredBB to jump to NewBB instead of PredBB. 2284 // This eliminates predecessors from PredPredBB, which requires us to simplify 2285 // any PHI nodes in PredBB. 2286 Instruction *PredPredTerm = PredPredBB->getTerminator(); 2287 for (unsigned i = 0, e = PredPredTerm->getNumSuccessors(); i != e; ++i) 2288 if (PredPredTerm->getSuccessor(i) == PredBB) { 2289 PredBB->removePredecessor(PredPredBB, true); 2290 PredPredTerm->setSuccessor(i, NewBB); 2291 } 2292 2293 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(0), PredBB, NewBB, 2294 ValueMapping); 2295 addPHINodeEntriesForMappedBlock(PredBBBranch->getSuccessor(1), PredBB, NewBB, 2296 ValueMapping); 2297 2298 DTU->applyUpdatesPermissive( 2299 {{DominatorTree::Insert, NewBB, CondBr->getSuccessor(0)}, 2300 {DominatorTree::Insert, NewBB, CondBr->getSuccessor(1)}, 2301 {DominatorTree::Insert, PredPredBB, NewBB}, 2302 {DominatorTree::Delete, PredPredBB, PredBB}}); 2303 2304 updateSSA(PredBB, NewBB, ValueMapping); 2305 2306 // Clean up things like PHI nodes with single operands, dead instructions, 2307 // etc. 2308 SimplifyInstructionsInBlock(NewBB, TLI); 2309 SimplifyInstructionsInBlock(PredBB, TLI); 2310 2311 SmallVector<BasicBlock *, 1> PredsToFactor; 2312 PredsToFactor.push_back(NewBB); 2313 threadEdge(BB, PredsToFactor, SuccBB); 2314 } 2315 2316 /// tryThreadEdge - Thread an edge if it's safe and profitable to do so. 2317 bool JumpThreadingPass::tryThreadEdge( 2318 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs, 2319 BasicBlock *SuccBB) { 2320 // If threading to the same block as we come from, we would infinite loop. 2321 if (SuccBB == BB) { 2322 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 2323 << "' - would thread to self!\n"); 2324 return false; 2325 } 2326 2327 // If threading this would thread across a loop header, don't thread the edge. 2328 // See the comments above findLoopHeaders for justifications and caveats. 2329 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 2330 LLVM_DEBUG({ 2331 bool BBIsHeader = LoopHeaders.count(BB); 2332 bool SuccIsHeader = LoopHeaders.count(SuccBB); 2333 dbgs() << " Not threading across " 2334 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 2335 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 2336 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 2337 }); 2338 return false; 2339 } 2340 2341 unsigned JumpThreadCost = 2342 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2343 if (JumpThreadCost > BBDupThreshold) { 2344 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 2345 << "' - Cost is too high: " << JumpThreadCost << "\n"); 2346 return false; 2347 } 2348 2349 threadEdge(BB, PredBBs, SuccBB); 2350 return true; 2351 } 2352 2353 /// threadEdge - We have decided that it is safe and profitable to factor the 2354 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 2355 /// across BB. Transform the IR to reflect this change. 2356 void JumpThreadingPass::threadEdge(BasicBlock *BB, 2357 const SmallVectorImpl<BasicBlock *> &PredBBs, 2358 BasicBlock *SuccBB) { 2359 assert(SuccBB != BB && "Don't create an infinite loop"); 2360 2361 assert(!LoopHeaders.count(BB) && !LoopHeaders.count(SuccBB) && 2362 "Don't thread across loop headers"); 2363 2364 // And finally, do it! Start by factoring the predecessors if needed. 2365 BasicBlock *PredBB; 2366 if (PredBBs.size() == 1) 2367 PredBB = PredBBs[0]; 2368 else { 2369 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2370 << " common predecessors.\n"); 2371 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2372 } 2373 2374 // And finally, do it! 2375 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 2376 << "' to '" << SuccBB->getName() 2377 << ", across block:\n " << *BB << "\n"); 2378 2379 LVI->threadEdge(PredBB, BB, SuccBB); 2380 2381 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 2382 BB->getName()+".thread", 2383 BB->getParent(), BB); 2384 NewBB->moveAfter(PredBB); 2385 2386 // Set the block frequency of NewBB. 2387 if (HasProfileData) { 2388 auto NewBBFreq = 2389 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 2390 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2391 } 2392 2393 // Copy all the instructions from BB to NewBB except the terminator. 2394 DenseMap<Instruction *, Value *> ValueMapping = 2395 cloneInstructions(BB->begin(), std::prev(BB->end()), NewBB, PredBB); 2396 2397 // We didn't copy the terminator from BB over to NewBB, because there is now 2398 // an unconditional jump to SuccBB. Insert the unconditional jump. 2399 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 2400 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2401 2402 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2403 // PHI nodes for NewBB now. 2404 addPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2405 2406 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2407 // eliminates predecessors from BB, which requires us to simplify any PHI 2408 // nodes in BB. 2409 Instruction *PredTerm = PredBB->getTerminator(); 2410 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2411 if (PredTerm->getSuccessor(i) == BB) { 2412 BB->removePredecessor(PredBB, true); 2413 PredTerm->setSuccessor(i, NewBB); 2414 } 2415 2416 // Enqueue required DT updates. 2417 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, SuccBB}, 2418 {DominatorTree::Insert, PredBB, NewBB}, 2419 {DominatorTree::Delete, PredBB, BB}}); 2420 2421 updateSSA(BB, NewBB, ValueMapping); 2422 2423 // At this point, the IR is fully up to date and consistent. Do a quick scan 2424 // over the new instructions and zap any that are constants or dead. This 2425 // frequently happens because of phi translation. 2426 SimplifyInstructionsInBlock(NewBB, TLI); 2427 2428 // Update the edge weight from BB to SuccBB, which should be less than before. 2429 updateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2430 2431 // Threaded an edge! 2432 ++NumThreads; 2433 } 2434 2435 /// Create a new basic block that will be the predecessor of BB and successor of 2436 /// all blocks in Preds. When profile data is available, update the frequency of 2437 /// this new block. 2438 BasicBlock *JumpThreadingPass::splitBlockPreds(BasicBlock *BB, 2439 ArrayRef<BasicBlock *> Preds, 2440 const char *Suffix) { 2441 SmallVector<BasicBlock *, 2> NewBBs; 2442 2443 // Collect the frequencies of all predecessors of BB, which will be used to 2444 // update the edge weight of the result of splitting predecessors. 2445 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2446 if (HasProfileData) 2447 for (auto Pred : Preds) 2448 FreqMap.insert(std::make_pair( 2449 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2450 2451 // In the case when BB is a LandingPad block we create 2 new predecessors 2452 // instead of just one. 2453 if (BB->isLandingPad()) { 2454 std::string NewName = std::string(Suffix) + ".split-lp"; 2455 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2456 } else { 2457 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2458 } 2459 2460 std::vector<DominatorTree::UpdateType> Updates; 2461 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2462 for (auto NewBB : NewBBs) { 2463 BlockFrequency NewBBFreq(0); 2464 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2465 for (auto Pred : predecessors(NewBB)) { 2466 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2467 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2468 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2469 NewBBFreq += FreqMap.lookup(Pred); 2470 } 2471 if (HasProfileData) // Apply the summed frequency to NewBB. 2472 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2473 } 2474 2475 DTU->applyUpdatesPermissive(Updates); 2476 return NewBBs[0]; 2477 } 2478 2479 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2480 const Instruction *TI = BB->getTerminator(); 2481 assert(TI->getNumSuccessors() > 1 && "not a split"); 2482 2483 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2484 if (!WeightsNode) 2485 return false; 2486 2487 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2488 if (MDName->getString() != "branch_weights") 2489 return false; 2490 2491 // Ensure there are weights for all of the successors. Note that the first 2492 // operand to the metadata node is a name, not a weight. 2493 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2494 } 2495 2496 /// Update the block frequency of BB and branch weight and the metadata on the 2497 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2498 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2499 void JumpThreadingPass::updateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2500 BasicBlock *BB, 2501 BasicBlock *NewBB, 2502 BasicBlock *SuccBB) { 2503 if (!HasProfileData) 2504 return; 2505 2506 assert(BFI && BPI && "BFI & BPI should have been created here"); 2507 2508 // As the edge from PredBB to BB is deleted, we have to update the block 2509 // frequency of BB. 2510 auto BBOrigFreq = BFI->getBlockFreq(BB); 2511 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2512 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2513 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2514 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2515 2516 // Collect updated outgoing edges' frequencies from BB and use them to update 2517 // edge probabilities. 2518 SmallVector<uint64_t, 4> BBSuccFreq; 2519 for (BasicBlock *Succ : successors(BB)) { 2520 auto SuccFreq = (Succ == SuccBB) 2521 ? BB2SuccBBFreq - NewBBFreq 2522 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2523 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2524 } 2525 2526 uint64_t MaxBBSuccFreq = 2527 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2528 2529 SmallVector<BranchProbability, 4> BBSuccProbs; 2530 if (MaxBBSuccFreq == 0) 2531 BBSuccProbs.assign(BBSuccFreq.size(), 2532 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2533 else { 2534 for (uint64_t Freq : BBSuccFreq) 2535 BBSuccProbs.push_back( 2536 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2537 // Normalize edge probabilities so that they sum up to one. 2538 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2539 BBSuccProbs.end()); 2540 } 2541 2542 // Update edge probabilities in BPI. 2543 BPI->setEdgeProbability(BB, BBSuccProbs); 2544 2545 // Update the profile metadata as well. 2546 // 2547 // Don't do this if the profile of the transformed blocks was statically 2548 // estimated. (This could occur despite the function having an entry 2549 // frequency in completely cold parts of the CFG.) 2550 // 2551 // In this case we don't want to suggest to subsequent passes that the 2552 // calculated weights are fully consistent. Consider this graph: 2553 // 2554 // check_1 2555 // 50% / | 2556 // eq_1 | 50% 2557 // \ | 2558 // check_2 2559 // 50% / | 2560 // eq_2 | 50% 2561 // \ | 2562 // check_3 2563 // 50% / | 2564 // eq_3 | 50% 2565 // \ | 2566 // 2567 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2568 // the overall probabilities are inconsistent; the total probability that the 2569 // value is either 1, 2 or 3 is 150%. 2570 // 2571 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2572 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2573 // the loop exit edge. Then based solely on static estimation we would assume 2574 // the loop was extremely hot. 2575 // 2576 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2577 // shouldn't make edges extremely likely or unlikely based solely on static 2578 // estimation. 2579 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2580 SmallVector<uint32_t, 4> Weights; 2581 for (auto Prob : BBSuccProbs) 2582 Weights.push_back(Prob.getNumerator()); 2583 2584 auto TI = BB->getTerminator(); 2585 TI->setMetadata( 2586 LLVMContext::MD_prof, 2587 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2588 } 2589 } 2590 2591 /// duplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2592 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2593 /// If we can duplicate the contents of BB up into PredBB do so now, this 2594 /// improves the odds that the branch will be on an analyzable instruction like 2595 /// a compare. 2596 bool JumpThreadingPass::duplicateCondBranchOnPHIIntoPred( 2597 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2598 assert(!PredBBs.empty() && "Can't handle an empty set"); 2599 2600 // If BB is a loop header, then duplicating this block outside the loop would 2601 // cause us to transform this into an irreducible loop, don't do this. 2602 // See the comments above findLoopHeaders for justifications and caveats. 2603 if (LoopHeaders.count(BB)) { 2604 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2605 << "' into predecessor block '" << PredBBs[0]->getName() 2606 << "' - it might create an irreducible loop!\n"); 2607 return false; 2608 } 2609 2610 unsigned DuplicationCost = 2611 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2612 if (DuplicationCost > BBDupThreshold) { 2613 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2614 << "' - Cost is too high: " << DuplicationCost << "\n"); 2615 return false; 2616 } 2617 2618 // And finally, do it! Start by factoring the predecessors if needed. 2619 std::vector<DominatorTree::UpdateType> Updates; 2620 BasicBlock *PredBB; 2621 if (PredBBs.size() == 1) 2622 PredBB = PredBBs[0]; 2623 else { 2624 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2625 << " common predecessors.\n"); 2626 PredBB = splitBlockPreds(BB, PredBBs, ".thr_comm"); 2627 } 2628 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2629 2630 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2631 // of PredBB. 2632 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2633 << "' into end of '" << PredBB->getName() 2634 << "' to eliminate branch on phi. Cost: " 2635 << DuplicationCost << " block is:" << *BB << "\n"); 2636 2637 // Unless PredBB ends with an unconditional branch, split the edge so that we 2638 // can just clone the bits from BB into the end of the new PredBB. 2639 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2640 2641 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2642 BasicBlock *OldPredBB = PredBB; 2643 PredBB = SplitEdge(OldPredBB, BB); 2644 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2645 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2646 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2647 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2648 } 2649 2650 // We are going to have to map operands from the original BB block into the 2651 // PredBB block. Evaluate PHI nodes in BB. 2652 DenseMap<Instruction*, Value*> ValueMapping; 2653 2654 BasicBlock::iterator BI = BB->begin(); 2655 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2656 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2657 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2658 // mapping and using it to remap operands in the cloned instructions. 2659 for (; BI != BB->end(); ++BI) { 2660 Instruction *New = BI->clone(); 2661 2662 // Remap operands to patch up intra-block references. 2663 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2664 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2665 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2666 if (I != ValueMapping.end()) 2667 New->setOperand(i, I->second); 2668 } 2669 2670 // If this instruction can be simplified after the operands are updated, 2671 // just use the simplified value instead. This frequently happens due to 2672 // phi translation. 2673 if (Value *IV = SimplifyInstruction( 2674 New, 2675 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2676 ValueMapping[&*BI] = IV; 2677 if (!New->mayHaveSideEffects()) { 2678 New->deleteValue(); 2679 New = nullptr; 2680 } 2681 } else { 2682 ValueMapping[&*BI] = New; 2683 } 2684 if (New) { 2685 // Otherwise, insert the new instruction into the block. 2686 New->setName(BI->getName()); 2687 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2688 // Update Dominance from simplified New instruction operands. 2689 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2690 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2691 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2692 } 2693 } 2694 2695 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2696 // add entries to the PHI nodes for branch from PredBB now. 2697 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2698 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2699 ValueMapping); 2700 addPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2701 ValueMapping); 2702 2703 updateSSA(BB, PredBB, ValueMapping); 2704 2705 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2706 // that we nuked. 2707 BB->removePredecessor(PredBB, true); 2708 2709 // Remove the unconditional branch at the end of the PredBB block. 2710 OldPredBranch->eraseFromParent(); 2711 if (HasProfileData) 2712 BPI->copyEdgeProbabilities(BB, PredBB); 2713 DTU->applyUpdatesPermissive(Updates); 2714 2715 ++NumDupes; 2716 return true; 2717 } 2718 2719 // Pred is a predecessor of BB with an unconditional branch to BB. SI is 2720 // a Select instruction in Pred. BB has other predecessors and SI is used in 2721 // a PHI node in BB. SI has no other use. 2722 // A new basic block, NewBB, is created and SI is converted to compare and 2723 // conditional branch. SI is erased from parent. 2724 void JumpThreadingPass::unfoldSelectInstr(BasicBlock *Pred, BasicBlock *BB, 2725 SelectInst *SI, PHINode *SIUse, 2726 unsigned Idx) { 2727 // Expand the select. 2728 // 2729 // Pred -- 2730 // | v 2731 // | NewBB 2732 // | | 2733 // |----- 2734 // v 2735 // BB 2736 BranchInst *PredTerm = cast<BranchInst>(Pred->getTerminator()); 2737 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2738 BB->getParent(), BB); 2739 // Move the unconditional branch to NewBB. 2740 PredTerm->removeFromParent(); 2741 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2742 // Create a conditional branch and update PHI nodes. 2743 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2744 SIUse->setIncomingValue(Idx, SI->getFalseValue()); 2745 SIUse->addIncoming(SI->getTrueValue(), NewBB); 2746 2747 // The select is now dead. 2748 SI->eraseFromParent(); 2749 DTU->applyUpdatesPermissive({{DominatorTree::Insert, NewBB, BB}, 2750 {DominatorTree::Insert, Pred, NewBB}}); 2751 2752 // Update any other PHI nodes in BB. 2753 for (BasicBlock::iterator BI = BB->begin(); 2754 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2755 if (Phi != SIUse) 2756 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2757 } 2758 2759 bool JumpThreadingPass::tryToUnfoldSelect(SwitchInst *SI, BasicBlock *BB) { 2760 PHINode *CondPHI = dyn_cast<PHINode>(SI->getCondition()); 2761 2762 if (!CondPHI || CondPHI->getParent() != BB) 2763 return false; 2764 2765 for (unsigned I = 0, E = CondPHI->getNumIncomingValues(); I != E; ++I) { 2766 BasicBlock *Pred = CondPHI->getIncomingBlock(I); 2767 SelectInst *PredSI = dyn_cast<SelectInst>(CondPHI->getIncomingValue(I)); 2768 2769 // The second and third condition can be potentially relaxed. Currently 2770 // the conditions help to simplify the code and allow us to reuse existing 2771 // code, developed for tryToUnfoldSelect(CmpInst *, BasicBlock *) 2772 if (!PredSI || PredSI->getParent() != Pred || !PredSI->hasOneUse()) 2773 continue; 2774 2775 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2776 if (!PredTerm || !PredTerm->isUnconditional()) 2777 continue; 2778 2779 unfoldSelectInstr(Pred, BB, PredSI, CondPHI, I); 2780 return true; 2781 } 2782 return false; 2783 } 2784 2785 /// tryToUnfoldSelect - Look for blocks of the form 2786 /// bb1: 2787 /// %a = select 2788 /// br bb2 2789 /// 2790 /// bb2: 2791 /// %p = phi [%a, %bb1] ... 2792 /// %c = icmp %p 2793 /// br i1 %c 2794 /// 2795 /// And expand the select into a branch structure if one of its arms allows %c 2796 /// to be folded. This later enables threading from bb1 over bb2. 2797 bool JumpThreadingPass::tryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2798 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2799 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2800 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2801 2802 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2803 CondLHS->getParent() != BB) 2804 return false; 2805 2806 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2807 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2808 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2809 2810 // Look if one of the incoming values is a select in the corresponding 2811 // predecessor. 2812 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2813 continue; 2814 2815 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2816 if (!PredTerm || !PredTerm->isUnconditional()) 2817 continue; 2818 2819 // Now check if one of the select values would allow us to constant fold the 2820 // terminator in BB. We don't do the transform if both sides fold, those 2821 // cases will be threaded in any case. 2822 LazyValueInfo::Tristate LHSFolds = 2823 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2824 CondRHS, Pred, BB, CondCmp); 2825 LazyValueInfo::Tristate RHSFolds = 2826 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2827 CondRHS, Pred, BB, CondCmp); 2828 if ((LHSFolds != LazyValueInfo::Unknown || 2829 RHSFolds != LazyValueInfo::Unknown) && 2830 LHSFolds != RHSFolds) { 2831 unfoldSelectInstr(Pred, BB, SI, CondLHS, I); 2832 return true; 2833 } 2834 } 2835 return false; 2836 } 2837 2838 /// tryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2839 /// same BB in the form 2840 /// bb: 2841 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2842 /// %s = select %p, trueval, falseval 2843 /// 2844 /// or 2845 /// 2846 /// bb: 2847 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2848 /// %c = cmp %p, 0 2849 /// %s = select %c, trueval, falseval 2850 /// 2851 /// And expand the select into a branch structure. This later enables 2852 /// jump-threading over bb in this pass. 2853 /// 2854 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2855 /// select if the associated PHI has at least one constant. If the unfolded 2856 /// select is not jump-threaded, it will be folded again in the later 2857 /// optimizations. 2858 bool JumpThreadingPass::tryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2859 // This transform would reduce the quality of msan diagnostics. 2860 // Disable this transform under MemorySanitizer. 2861 if (BB->getParent()->hasFnAttribute(Attribute::SanitizeMemory)) 2862 return false; 2863 2864 // If threading this would thread across a loop header, don't thread the edge. 2865 // See the comments above findLoopHeaders for justifications and caveats. 2866 if (LoopHeaders.count(BB)) 2867 return false; 2868 2869 for (BasicBlock::iterator BI = BB->begin(); 2870 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2871 // Look for a Phi having at least one constant incoming value. 2872 if (llvm::all_of(PN->incoming_values(), 2873 [](Value *V) { return !isa<ConstantInt>(V); })) 2874 continue; 2875 2876 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2877 using namespace PatternMatch; 2878 2879 // Check if SI is in BB and use V as condition. 2880 if (SI->getParent() != BB) 2881 return false; 2882 Value *Cond = SI->getCondition(); 2883 bool IsAndOr = match(SI, m_CombineOr(m_LogicalAnd(), m_LogicalOr())); 2884 return Cond && Cond == V && Cond->getType()->isIntegerTy(1) && !IsAndOr; 2885 }; 2886 2887 SelectInst *SI = nullptr; 2888 for (Use &U : PN->uses()) { 2889 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2890 // Look for a ICmp in BB that compares PN with a constant and is the 2891 // condition of a Select. 2892 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2893 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2894 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2895 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2896 SI = SelectI; 2897 break; 2898 } 2899 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2900 // Look for a Select in BB that uses PN as condition. 2901 if (isUnfoldCandidate(SelectI, U.get())) { 2902 SI = SelectI; 2903 break; 2904 } 2905 } 2906 } 2907 2908 if (!SI) 2909 continue; 2910 // Expand the select. 2911 Value *Cond = SI->getCondition(); 2912 if (InsertFreezeWhenUnfoldingSelect && 2913 !isGuaranteedNotToBeUndefOrPoison(Cond, nullptr, SI, 2914 &DTU->getDomTree())) 2915 Cond = new FreezeInst(Cond, "cond.fr", SI); 2916 Instruction *Term = SplitBlockAndInsertIfThen(Cond, SI, false); 2917 BasicBlock *SplitBB = SI->getParent(); 2918 BasicBlock *NewBB = Term->getParent(); 2919 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2920 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2921 NewPN->addIncoming(SI->getFalseValue(), BB); 2922 SI->replaceAllUsesWith(NewPN); 2923 SI->eraseFromParent(); 2924 // NewBB and SplitBB are newly created blocks which require insertion. 2925 std::vector<DominatorTree::UpdateType> Updates; 2926 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2927 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2928 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2929 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2930 // BB's successors were moved to SplitBB, update DTU accordingly. 2931 for (auto *Succ : successors(SplitBB)) { 2932 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2933 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2934 } 2935 DTU->applyUpdatesPermissive(Updates); 2936 return true; 2937 } 2938 return false; 2939 } 2940 2941 /// Try to propagate a guard from the current BB into one of its predecessors 2942 /// in case if another branch of execution implies that the condition of this 2943 /// guard is always true. Currently we only process the simplest case that 2944 /// looks like: 2945 /// 2946 /// Start: 2947 /// %cond = ... 2948 /// br i1 %cond, label %T1, label %F1 2949 /// T1: 2950 /// br label %Merge 2951 /// F1: 2952 /// br label %Merge 2953 /// Merge: 2954 /// %condGuard = ... 2955 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2956 /// 2957 /// And cond either implies condGuard or !condGuard. In this case all the 2958 /// instructions before the guard can be duplicated in both branches, and the 2959 /// guard is then threaded to one of them. 2960 bool JumpThreadingPass::processGuards(BasicBlock *BB) { 2961 using namespace PatternMatch; 2962 2963 // We only want to deal with two predecessors. 2964 BasicBlock *Pred1, *Pred2; 2965 auto PI = pred_begin(BB), PE = pred_end(BB); 2966 if (PI == PE) 2967 return false; 2968 Pred1 = *PI++; 2969 if (PI == PE) 2970 return false; 2971 Pred2 = *PI++; 2972 if (PI != PE) 2973 return false; 2974 if (Pred1 == Pred2) 2975 return false; 2976 2977 // Try to thread one of the guards of the block. 2978 // TODO: Look up deeper than to immediate predecessor? 2979 auto *Parent = Pred1->getSinglePredecessor(); 2980 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2981 return false; 2982 2983 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2984 for (auto &I : *BB) 2985 if (isGuard(&I) && threadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2986 return true; 2987 2988 return false; 2989 } 2990 2991 /// Try to propagate the guard from BB which is the lower block of a diamond 2992 /// to one of its branches, in case if diamond's condition implies guard's 2993 /// condition. 2994 bool JumpThreadingPass::threadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2995 BranchInst *BI) { 2996 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2997 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2998 Value *GuardCond = Guard->getArgOperand(0); 2999 Value *BranchCond = BI->getCondition(); 3000 BasicBlock *TrueDest = BI->getSuccessor(0); 3001 BasicBlock *FalseDest = BI->getSuccessor(1); 3002 3003 auto &DL = BB->getModule()->getDataLayout(); 3004 bool TrueDestIsSafe = false; 3005 bool FalseDestIsSafe = false; 3006 3007 // True dest is safe if BranchCond => GuardCond. 3008 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 3009 if (Impl && *Impl) 3010 TrueDestIsSafe = true; 3011 else { 3012 // False dest is safe if !BranchCond => GuardCond. 3013 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 3014 if (Impl && *Impl) 3015 FalseDestIsSafe = true; 3016 } 3017 3018 if (!TrueDestIsSafe && !FalseDestIsSafe) 3019 return false; 3020 3021 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 3022 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 3023 3024 ValueToValueMapTy UnguardedMapping, GuardedMapping; 3025 Instruction *AfterGuard = Guard->getNextNode(); 3026 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 3027 if (Cost > BBDupThreshold) 3028 return false; 3029 // Duplicate all instructions before the guard and the guard itself to the 3030 // branch where implication is not proved. 3031 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 3032 BB, PredGuardedBlock, AfterGuard, GuardedMapping, *DTU); 3033 assert(GuardedBlock && "Could not create the guarded block?"); 3034 // Duplicate all instructions before the guard in the unguarded branch. 3035 // Since we have successfully duplicated the guarded block and this block 3036 // has fewer instructions, we expect it to succeed. 3037 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 3038 BB, PredUnguardedBlock, Guard, UnguardedMapping, *DTU); 3039 assert(UnguardedBlock && "Could not create the unguarded block?"); 3040 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 3041 << GuardedBlock->getName() << "\n"); 3042 // Some instructions before the guard may still have uses. For them, we need 3043 // to create Phi nodes merging their copies in both guarded and unguarded 3044 // branches. Those instructions that have no uses can be just removed. 3045 SmallVector<Instruction *, 4> ToRemove; 3046 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 3047 if (!isa<PHINode>(&*BI)) 3048 ToRemove.push_back(&*BI); 3049 3050 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 3051 assert(InsertionPoint && "Empty block?"); 3052 // Substitute with Phis & remove. 3053 for (auto *Inst : reverse(ToRemove)) { 3054 if (!Inst->use_empty()) { 3055 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 3056 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 3057 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 3058 NewPN->insertBefore(InsertionPoint); 3059 Inst->replaceAllUsesWith(NewPN); 3060 } 3061 Inst->eraseFromParent(); 3062 } 3063 return true; 3064 } 3065