1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/BasicBlock.h"
35 #include "llvm/IR/CFG.h"
36 #include "llvm/IR/Constant.h"
37 #include "llvm/IR/ConstantRange.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DomTreeUpdater.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/Local.h"
69 #include "llvm/Transforms/Utils/SSAUpdater.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<bool> PrintLVIAfterJumpThreading(
101     "print-lvi-after-jump-threading",
102     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
103     cl::Hidden);
104 
105 namespace {
106 
107   /// This pass performs 'jump threading', which looks at blocks that have
108   /// multiple predecessors and multiple successors.  If one or more of the
109   /// predecessors of the block can be proven to always jump to one of the
110   /// successors, we forward the edge from the predecessor to the successor by
111   /// duplicating the contents of this block.
112   ///
113   /// An example of when this can occur is code like this:
114   ///
115   ///   if () { ...
116   ///     X = 4;
117   ///   }
118   ///   if (X < 3) {
119   ///
120   /// In this case, the unconditional branch at the end of the first if can be
121   /// revectored to the false side of the second if.
122   class JumpThreading : public FunctionPass {
123     JumpThreadingPass Impl;
124 
125   public:
126     static char ID; // Pass identification
127 
128     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
129       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
130     }
131 
132     bool runOnFunction(Function &F) override;
133 
134     void getAnalysisUsage(AnalysisUsage &AU) const override {
135       AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addPreserved<DominatorTreeWrapperPass>();
137       AU.addRequired<AAResultsWrapperPass>();
138       AU.addRequired<LazyValueInfoWrapperPass>();
139       AU.addPreserved<LazyValueInfoWrapperPass>();
140       AU.addPreserved<GlobalsAAWrapperPass>();
141       AU.addRequired<TargetLibraryInfoWrapperPass>();
142     }
143 
144     void releaseMemory() override { Impl.releaseMemory(); }
145   };
146 
147 } // end anonymous namespace
148 
149 char JumpThreading::ID = 0;
150 
151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
152                 "Jump Threading", false, false)
153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
157 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
158                 "Jump Threading", false, false)
159 
160 // Public interface to the Jump Threading pass
161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
162   return new JumpThreading(Threshold);
163 }
164 
165 JumpThreadingPass::JumpThreadingPass(int T) {
166   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
167 }
168 
169 // Update branch probability information according to conditional
170 // branch probability. This is usually made possible for cloned branches
171 // in inline instances by the context specific profile in the caller.
172 // For instance,
173 //
174 //  [Block PredBB]
175 //  [Branch PredBr]
176 //  if (t) {
177 //     Block A;
178 //  } else {
179 //     Block B;
180 //  }
181 //
182 //  [Block BB]
183 //  cond = PN([true, %A], [..., %B]); // PHI node
184 //  [Branch CondBr]
185 //  if (cond) {
186 //    ...  // P(cond == true) = 1%
187 //  }
188 //
189 //  Here we know that when block A is taken, cond must be true, which means
190 //      P(cond == true | A) = 1
191 //
192 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
193 //                               P(cond == true | B) * P(B)
194 //  we get:
195 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
196 //
197 //  which gives us:
198 //     P(A) is less than P(cond == true), i.e.
199 //     P(t == true) <= P(cond == true)
200 //
201 //  In other words, if we know P(cond == true) is unlikely, we know
202 //  that P(t == true) is also unlikely.
203 //
204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
205   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
206   if (!CondBr)
207     return;
208 
209   BranchProbability BP;
210   uint64_t TrueWeight, FalseWeight;
211   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
212     return;
213 
214   // Returns the outgoing edge of the dominating predecessor block
215   // that leads to the PhiNode's incoming block:
216   auto GetPredOutEdge =
217       [](BasicBlock *IncomingBB,
218          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
219     auto *PredBB = IncomingBB;
220     auto *SuccBB = PhiBB;
221     while (true) {
222       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
223       if (PredBr && PredBr->isConditional())
224         return {PredBB, SuccBB};
225       auto *SinglePredBB = PredBB->getSinglePredecessor();
226       if (!SinglePredBB)
227         return {nullptr, nullptr};
228       SuccBB = PredBB;
229       PredBB = SinglePredBB;
230     }
231   };
232 
233   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234     Value *PhiOpnd = PN->getIncomingValue(i);
235     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
236 
237     if (!CI || !CI->getType()->isIntegerTy(1))
238       continue;
239 
240     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
241                             TrueWeight, TrueWeight + FalseWeight)
242                       : BranchProbability::getBranchProbability(
243                             FalseWeight, TrueWeight + FalseWeight));
244 
245     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
246     if (!PredOutEdge.first)
247       return;
248 
249     BasicBlock *PredBB = PredOutEdge.first;
250     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
251 
252     uint64_t PredTrueWeight, PredFalseWeight;
253     // FIXME: We currently only set the profile data when it is missing.
254     // With PGO, this can be used to refine even existing profile data with
255     // context information. This needs to be done after more performance
256     // testing.
257     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
258       continue;
259 
260     // We can not infer anything useful when BP >= 50%, because BP is the
261     // upper bound probability value.
262     if (BP >= BranchProbability(50, 100))
263       continue;
264 
265     SmallVector<uint32_t, 2> Weights;
266     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
267       Weights.push_back(BP.getNumerator());
268       Weights.push_back(BP.getCompl().getNumerator());
269     } else {
270       Weights.push_back(BP.getCompl().getNumerator());
271       Weights.push_back(BP.getNumerator());
272     }
273     PredBr->setMetadata(LLVMContext::MD_prof,
274                         MDBuilder(PredBr->getParent()->getContext())
275                             .createBranchWeights(Weights));
276   }
277 }
278 
279 /// runOnFunction - Toplevel algorithm.
280 bool JumpThreading::runOnFunction(Function &F) {
281   if (skipFunction(F))
282     return false;
283   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
284   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
285   // DT if it's available.
286   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
287   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
288   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
289   DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
290   std::unique_ptr<BlockFrequencyInfo> BFI;
291   std::unique_ptr<BranchProbabilityInfo> BPI;
292   bool HasProfileData = F.hasProfileData();
293   if (HasProfileData) {
294     LoopInfo LI{DominatorTree(F)};
295     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
296     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
297   }
298 
299   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData,
300                               std::move(BFI), std::move(BPI));
301   if (PrintLVIAfterJumpThreading) {
302     dbgs() << "LVI for function '" << F.getName() << "':\n";
303     LVI->printLVI(F, *DT, dbgs());
304   }
305   return Changed;
306 }
307 
308 PreservedAnalyses JumpThreadingPass::run(Function &F,
309                                          FunctionAnalysisManager &AM) {
310   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
311   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
312   // DT if it's available.
313   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
314   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
315   auto &AA = AM.getResult<AAManager>(F);
316   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
317 
318   std::unique_ptr<BlockFrequencyInfo> BFI;
319   std::unique_ptr<BranchProbabilityInfo> BPI;
320   if (F.hasProfileData()) {
321     LoopInfo LI{DominatorTree(F)};
322     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
323     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
324   }
325 
326   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData,
327                          std::move(BFI), std::move(BPI));
328 
329   if (!Changed)
330     return PreservedAnalyses::all();
331   PreservedAnalyses PA;
332   PA.preserve<GlobalsAA>();
333   PA.preserve<DominatorTreeAnalysis>();
334   PA.preserve<LazyValueAnalysis>();
335   return PA;
336 }
337 
338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
339                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
340                                 DomTreeUpdater *DTU_, bool HasProfileData_,
341                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
342                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
343   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
344   TLI = TLI_;
345   LVI = LVI_;
346   AA = AA_;
347   DTU = DTU_;
348   BFI.reset();
349   BPI.reset();
350   // When profile data is available, we need to update edge weights after
351   // successful jump threading, which requires both BPI and BFI being available.
352   HasProfileData = HasProfileData_;
353   auto *GuardDecl = F.getParent()->getFunction(
354       Intrinsic::getName(Intrinsic::experimental_guard));
355   HasGuards = GuardDecl && !GuardDecl->use_empty();
356   if (HasProfileData) {
357     BPI = std::move(BPI_);
358     BFI = std::move(BFI_);
359   }
360 
361   // JumpThreading must not processes blocks unreachable from entry. It's a
362   // waste of compute time and can potentially lead to hangs.
363   SmallPtrSet<BasicBlock *, 16> Unreachable;
364   assert(DTU && "DTU isn't passed into JumpThreading before using it.");
365   assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed.");
366   DominatorTree &DT = DTU->getDomTree();
367   for (auto &BB : F)
368     if (!DT.isReachableFromEntry(&BB))
369       Unreachable.insert(&BB);
370 
371   FindLoopHeaders(F);
372 
373   bool EverChanged = false;
374   bool Changed;
375   do {
376     Changed = false;
377     for (auto &BB : F) {
378       if (Unreachable.count(&BB))
379         continue;
380       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
381         Changed = true;
382       // Stop processing BB if it's the entry or is now deleted. The following
383       // routines attempt to eliminate BB and locating a suitable replacement
384       // for the entry is non-trivial.
385       if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB))
386         continue;
387 
388       if (pred_empty(&BB)) {
389         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
390         // the instructions in it. We must remove BB to prevent invalid IR.
391         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
392                           << "' with terminator: " << *BB.getTerminator()
393                           << '\n');
394         LoopHeaders.erase(&BB);
395         LVI->eraseBlock(&BB);
396         DeleteDeadBlock(&BB, DTU);
397         Changed = true;
398         continue;
399       }
400 
401       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
402       // is "almost empty", we attempt to merge BB with its sole successor.
403       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
404       if (BI && BI->isUnconditional() &&
405           // The terminator must be the only non-phi instruction in BB.
406           BB.getFirstNonPHIOrDbg()->isTerminator() &&
407           // Don't alter Loop headers and latches to ensure another pass can
408           // detect and transform nested loops later.
409           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
410           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) {
411         // BB is valid for cleanup here because we passed in DTU. F remains
412         // BB's parent until a DTU->getDomTree() event.
413         LVI->eraseBlock(&BB);
414         Changed = true;
415       }
416     }
417     EverChanged |= Changed;
418   } while (Changed);
419 
420   LoopHeaders.clear();
421   // Flush only the Dominator Tree.
422   DTU->getDomTree();
423   LVI->enableDT();
424   return EverChanged;
425 }
426 
427 // Replace uses of Cond with ToVal when safe to do so. If all uses are
428 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
429 // because we may incorrectly replace uses when guards/assumes are uses of
430 // of `Cond` and we used the guards/assume to reason about the `Cond` value
431 // at the end of block. RAUW unconditionally replaces all uses
432 // including the guards/assumes themselves and the uses before the
433 // guard/assume.
434 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
435   assert(Cond->getType() == ToVal->getType());
436   auto *BB = Cond->getParent();
437   // We can unconditionally replace all uses in non-local blocks (i.e. uses
438   // strictly dominated by BB), since LVI information is true from the
439   // terminator of BB.
440   replaceNonLocalUsesWith(Cond, ToVal);
441   for (Instruction &I : reverse(*BB)) {
442     // Reached the Cond whose uses we are trying to replace, so there are no
443     // more uses.
444     if (&I == Cond)
445       break;
446     // We only replace uses in instructions that are guaranteed to reach the end
447     // of BB, where we know Cond is ToVal.
448     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
449       break;
450     I.replaceUsesOfWith(Cond, ToVal);
451   }
452   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
453     Cond->eraseFromParent();
454 }
455 
456 /// Return the cost of duplicating a piece of this block from first non-phi
457 /// and before StopAt instruction to thread across it. Stop scanning the block
458 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
459 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
460                                              Instruction *StopAt,
461                                              unsigned Threshold) {
462   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
463   /// Ignore PHI nodes, these will be flattened when duplication happens.
464   BasicBlock::const_iterator I(BB->getFirstNonPHI());
465 
466   // FIXME: THREADING will delete values that are just used to compute the
467   // branch, so they shouldn't count against the duplication cost.
468 
469   unsigned Bonus = 0;
470   if (BB->getTerminator() == StopAt) {
471     // Threading through a switch statement is particularly profitable.  If this
472     // block ends in a switch, decrease its cost to make it more likely to
473     // happen.
474     if (isa<SwitchInst>(StopAt))
475       Bonus = 6;
476 
477     // The same holds for indirect branches, but slightly more so.
478     if (isa<IndirectBrInst>(StopAt))
479       Bonus = 8;
480   }
481 
482   // Bump the threshold up so the early exit from the loop doesn't skip the
483   // terminator-based Size adjustment at the end.
484   Threshold += Bonus;
485 
486   // Sum up the cost of each instruction until we get to the terminator.  Don't
487   // include the terminator because the copy won't include it.
488   unsigned Size = 0;
489   for (; &*I != StopAt; ++I) {
490 
491     // Stop scanning the block if we've reached the threshold.
492     if (Size > Threshold)
493       return Size;
494 
495     // Debugger intrinsics don't incur code size.
496     if (isa<DbgInfoIntrinsic>(I)) continue;
497 
498     // If this is a pointer->pointer bitcast, it is free.
499     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
500       continue;
501 
502     // Bail out if this instruction gives back a token type, it is not possible
503     // to duplicate it if it is used outside this BB.
504     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
505       return ~0U;
506 
507     // All other instructions count for at least one unit.
508     ++Size;
509 
510     // Calls are more expensive.  If they are non-intrinsic calls, we model them
511     // as having cost of 4.  If they are a non-vector intrinsic, we model them
512     // as having cost of 2 total, and if they are a vector intrinsic, we model
513     // them as having cost 1.
514     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
515       if (CI->cannotDuplicate() || CI->isConvergent())
516         // Blocks with NoDuplicate are modelled as having infinite cost, so they
517         // are never duplicated.
518         return ~0U;
519       else if (!isa<IntrinsicInst>(CI))
520         Size += 3;
521       else if (!CI->getType()->isVectorTy())
522         Size += 1;
523     }
524   }
525 
526   return Size > Bonus ? Size - Bonus : 0;
527 }
528 
529 /// FindLoopHeaders - We do not want jump threading to turn proper loop
530 /// structures into irreducible loops.  Doing this breaks up the loop nesting
531 /// hierarchy and pessimizes later transformations.  To prevent this from
532 /// happening, we first have to find the loop headers.  Here we approximate this
533 /// by finding targets of backedges in the CFG.
534 ///
535 /// Note that there definitely are cases when we want to allow threading of
536 /// edges across a loop header.  For example, threading a jump from outside the
537 /// loop (the preheader) to an exit block of the loop is definitely profitable.
538 /// It is also almost always profitable to thread backedges from within the loop
539 /// to exit blocks, and is often profitable to thread backedges to other blocks
540 /// within the loop (forming a nested loop).  This simple analysis is not rich
541 /// enough to track all of these properties and keep it up-to-date as the CFG
542 /// mutates, so we don't allow any of these transformations.
543 void JumpThreadingPass::FindLoopHeaders(Function &F) {
544   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
545   FindFunctionBackedges(F, Edges);
546 
547   for (const auto &Edge : Edges)
548     LoopHeaders.insert(Edge.second);
549 }
550 
551 /// getKnownConstant - Helper method to determine if we can thread over a
552 /// terminator with the given value as its condition, and if so what value to
553 /// use for that. What kind of value this is depends on whether we want an
554 /// integer or a block address, but an undef is always accepted.
555 /// Returns null if Val is null or not an appropriate constant.
556 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
557   if (!Val)
558     return nullptr;
559 
560   // Undef is "known" enough.
561   if (UndefValue *U = dyn_cast<UndefValue>(Val))
562     return U;
563 
564   if (Preference == WantBlockAddress)
565     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
566 
567   return dyn_cast<ConstantInt>(Val);
568 }
569 
570 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
571 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
572 /// in any of our predecessors.  If so, return the known list of value and pred
573 /// BB in the result vector.
574 ///
575 /// This returns true if there were any known values.
576 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
577     Value *V, BasicBlock *BB, PredValueInfo &Result,
578     ConstantPreference Preference, Instruction *CxtI) {
579   // This method walks up use-def chains recursively.  Because of this, we could
580   // get into an infinite loop going around loops in the use-def chain.  To
581   // prevent this, keep track of what (value, block) pairs we've already visited
582   // and terminate the search if we loop back to them
583   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
584     return false;
585 
586   // An RAII help to remove this pair from the recursion set once the recursion
587   // stack pops back out again.
588   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
589 
590   // If V is a constant, then it is known in all predecessors.
591   if (Constant *KC = getKnownConstant(V, Preference)) {
592     for (BasicBlock *Pred : predecessors(BB))
593       Result.push_back(std::make_pair(KC, Pred));
594 
595     return !Result.empty();
596   }
597 
598   // If V is a non-instruction value, or an instruction in a different block,
599   // then it can't be derived from a PHI.
600   Instruction *I = dyn_cast<Instruction>(V);
601   if (!I || I->getParent() != BB) {
602 
603     // Okay, if this is a live-in value, see if it has a known value at the end
604     // of any of our predecessors.
605     //
606     // FIXME: This should be an edge property, not a block end property.
607     /// TODO: Per PR2563, we could infer value range information about a
608     /// predecessor based on its terminator.
609     //
610     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
611     // "I" is a non-local compare-with-a-constant instruction.  This would be
612     // able to handle value inequalities better, for example if the compare is
613     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
614     // Perhaps getConstantOnEdge should be smart enough to do this?
615 
616     if (DTU->hasPendingDomTreeUpdates())
617       LVI->disableDT();
618     else
619       LVI->enableDT();
620     for (BasicBlock *P : predecessors(BB)) {
621       // If the value is known by LazyValueInfo to be a constant in a
622       // predecessor, use that information to try to thread this block.
623       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
624       if (Constant *KC = getKnownConstant(PredCst, Preference))
625         Result.push_back(std::make_pair(KC, P));
626     }
627 
628     return !Result.empty();
629   }
630 
631   /// If I is a PHI node, then we know the incoming values for any constants.
632   if (PHINode *PN = dyn_cast<PHINode>(I)) {
633     if (DTU->hasPendingDomTreeUpdates())
634       LVI->disableDT();
635     else
636       LVI->enableDT();
637     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
638       Value *InVal = PN->getIncomingValue(i);
639       if (Constant *KC = getKnownConstant(InVal, Preference)) {
640         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
641       } else {
642         Constant *CI = LVI->getConstantOnEdge(InVal,
643                                               PN->getIncomingBlock(i),
644                                               BB, CxtI);
645         if (Constant *KC = getKnownConstant(CI, Preference))
646           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
647       }
648     }
649 
650     return !Result.empty();
651   }
652 
653   // Handle Cast instructions.  Only see through Cast when the source operand is
654   // PHI or Cmp to save the compilation time.
655   if (CastInst *CI = dyn_cast<CastInst>(I)) {
656     Value *Source = CI->getOperand(0);
657     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
658       return false;
659     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
660     if (Result.empty())
661       return false;
662 
663     // Convert the known values.
664     for (auto &R : Result)
665       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
666 
667     return true;
668   }
669 
670   // Handle some boolean conditions.
671   if (I->getType()->getPrimitiveSizeInBits() == 1) {
672     assert(Preference == WantInteger && "One-bit non-integer type?");
673     // X | true -> true
674     // X & false -> false
675     if (I->getOpcode() == Instruction::Or ||
676         I->getOpcode() == Instruction::And) {
677       PredValueInfoTy LHSVals, RHSVals;
678 
679       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
680                                       WantInteger, CxtI);
681       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
682                                       WantInteger, CxtI);
683 
684       if (LHSVals.empty() && RHSVals.empty())
685         return false;
686 
687       ConstantInt *InterestingVal;
688       if (I->getOpcode() == Instruction::Or)
689         InterestingVal = ConstantInt::getTrue(I->getContext());
690       else
691         InterestingVal = ConstantInt::getFalse(I->getContext());
692 
693       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
694 
695       // Scan for the sentinel.  If we find an undef, force it to the
696       // interesting value: x|undef -> true and x&undef -> false.
697       for (const auto &LHSVal : LHSVals)
698         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
699           Result.emplace_back(InterestingVal, LHSVal.second);
700           LHSKnownBBs.insert(LHSVal.second);
701         }
702       for (const auto &RHSVal : RHSVals)
703         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
704           // If we already inferred a value for this block on the LHS, don't
705           // re-add it.
706           if (!LHSKnownBBs.count(RHSVal.second))
707             Result.emplace_back(InterestingVal, RHSVal.second);
708         }
709 
710       return !Result.empty();
711     }
712 
713     // Handle the NOT form of XOR.
714     if (I->getOpcode() == Instruction::Xor &&
715         isa<ConstantInt>(I->getOperand(1)) &&
716         cast<ConstantInt>(I->getOperand(1))->isOne()) {
717       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
718                                       WantInteger, CxtI);
719       if (Result.empty())
720         return false;
721 
722       // Invert the known values.
723       for (auto &R : Result)
724         R.first = ConstantExpr::getNot(R.first);
725 
726       return true;
727     }
728 
729   // Try to simplify some other binary operator values.
730   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
731     assert(Preference != WantBlockAddress
732             && "A binary operator creating a block address?");
733     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
734       PredValueInfoTy LHSVals;
735       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
736                                       WantInteger, CxtI);
737 
738       // Try to use constant folding to simplify the binary operator.
739       for (const auto &LHSVal : LHSVals) {
740         Constant *V = LHSVal.first;
741         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
742 
743         if (Constant *KC = getKnownConstant(Folded, WantInteger))
744           Result.push_back(std::make_pair(KC, LHSVal.second));
745       }
746     }
747 
748     return !Result.empty();
749   }
750 
751   // Handle compare with phi operand, where the PHI is defined in this block.
752   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
753     assert(Preference == WantInteger && "Compares only produce integers");
754     Type *CmpType = Cmp->getType();
755     Value *CmpLHS = Cmp->getOperand(0);
756     Value *CmpRHS = Cmp->getOperand(1);
757     CmpInst::Predicate Pred = Cmp->getPredicate();
758 
759     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
760     if (!PN)
761       PN = dyn_cast<PHINode>(CmpRHS);
762     if (PN && PN->getParent() == BB) {
763       const DataLayout &DL = PN->getModule()->getDataLayout();
764       // We can do this simplification if any comparisons fold to true or false.
765       // See if any do.
766       if (DTU->hasPendingDomTreeUpdates())
767         LVI->disableDT();
768       else
769         LVI->enableDT();
770       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
771         BasicBlock *PredBB = PN->getIncomingBlock(i);
772         Value *LHS, *RHS;
773         if (PN == CmpLHS) {
774           LHS = PN->getIncomingValue(i);
775           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
776         } else {
777           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
778           RHS = PN->getIncomingValue(i);
779         }
780         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
781         if (!Res) {
782           if (!isa<Constant>(RHS))
783             continue;
784 
785           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
786           auto LHSInst = dyn_cast<Instruction>(LHS);
787           if (LHSInst && LHSInst->getParent() == BB)
788             continue;
789 
790           LazyValueInfo::Tristate
791             ResT = LVI->getPredicateOnEdge(Pred, LHS,
792                                            cast<Constant>(RHS), PredBB, BB,
793                                            CxtI ? CxtI : Cmp);
794           if (ResT == LazyValueInfo::Unknown)
795             continue;
796           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
797         }
798 
799         if (Constant *KC = getKnownConstant(Res, WantInteger))
800           Result.push_back(std::make_pair(KC, PredBB));
801       }
802 
803       return !Result.empty();
804     }
805 
806     // If comparing a live-in value against a constant, see if we know the
807     // live-in value on any predecessors.
808     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
809       Constant *CmpConst = cast<Constant>(CmpRHS);
810 
811       if (!isa<Instruction>(CmpLHS) ||
812           cast<Instruction>(CmpLHS)->getParent() != BB) {
813         if (DTU->hasPendingDomTreeUpdates())
814           LVI->disableDT();
815         else
816           LVI->enableDT();
817         for (BasicBlock *P : predecessors(BB)) {
818           // If the value is known by LazyValueInfo to be a constant in a
819           // predecessor, use that information to try to thread this block.
820           LazyValueInfo::Tristate Res =
821             LVI->getPredicateOnEdge(Pred, CmpLHS,
822                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
823           if (Res == LazyValueInfo::Unknown)
824             continue;
825 
826           Constant *ResC = ConstantInt::get(CmpType, Res);
827           Result.push_back(std::make_pair(ResC, P));
828         }
829 
830         return !Result.empty();
831       }
832 
833       // InstCombine can fold some forms of constant range checks into
834       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
835       // x as a live-in.
836       {
837         using namespace PatternMatch;
838 
839         Value *AddLHS;
840         ConstantInt *AddConst;
841         if (isa<ConstantInt>(CmpConst) &&
842             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
843           if (!isa<Instruction>(AddLHS) ||
844               cast<Instruction>(AddLHS)->getParent() != BB) {
845             if (DTU->hasPendingDomTreeUpdates())
846               LVI->disableDT();
847             else
848               LVI->enableDT();
849             for (BasicBlock *P : predecessors(BB)) {
850               // If the value is known by LazyValueInfo to be a ConstantRange in
851               // a predecessor, use that information to try to thread this
852               // block.
853               ConstantRange CR = LVI->getConstantRangeOnEdge(
854                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
855               // Propagate the range through the addition.
856               CR = CR.add(AddConst->getValue());
857 
858               // Get the range where the compare returns true.
859               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
860                   Pred, cast<ConstantInt>(CmpConst)->getValue());
861 
862               Constant *ResC;
863               if (CmpRange.contains(CR))
864                 ResC = ConstantInt::getTrue(CmpType);
865               else if (CmpRange.inverse().contains(CR))
866                 ResC = ConstantInt::getFalse(CmpType);
867               else
868                 continue;
869 
870               Result.push_back(std::make_pair(ResC, P));
871             }
872 
873             return !Result.empty();
874           }
875         }
876       }
877 
878       // Try to find a constant value for the LHS of a comparison,
879       // and evaluate it statically if we can.
880       PredValueInfoTy LHSVals;
881       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
882                                       WantInteger, CxtI);
883 
884       for (const auto &LHSVal : LHSVals) {
885         Constant *V = LHSVal.first;
886         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
887         if (Constant *KC = getKnownConstant(Folded, WantInteger))
888           Result.push_back(std::make_pair(KC, LHSVal.second));
889       }
890 
891       return !Result.empty();
892     }
893   }
894 
895   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
896     // Handle select instructions where at least one operand is a known constant
897     // and we can figure out the condition value for any predecessor block.
898     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
899     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
900     PredValueInfoTy Conds;
901     if ((TrueVal || FalseVal) &&
902         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
903                                         WantInteger, CxtI)) {
904       for (auto &C : Conds) {
905         Constant *Cond = C.first;
906 
907         // Figure out what value to use for the condition.
908         bool KnownCond;
909         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
910           // A known boolean.
911           KnownCond = CI->isOne();
912         } else {
913           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
914           // Either operand will do, so be sure to pick the one that's a known
915           // constant.
916           // FIXME: Do this more cleverly if both values are known constants?
917           KnownCond = (TrueVal != nullptr);
918         }
919 
920         // See if the select has a known constant value for this predecessor.
921         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
922           Result.push_back(std::make_pair(Val, C.second));
923       }
924 
925       return !Result.empty();
926     }
927   }
928 
929   // If all else fails, see if LVI can figure out a constant value for us.
930   if (DTU->hasPendingDomTreeUpdates())
931     LVI->disableDT();
932   else
933     LVI->enableDT();
934   Constant *CI = LVI->getConstant(V, BB, CxtI);
935   if (Constant *KC = getKnownConstant(CI, Preference)) {
936     for (BasicBlock *Pred : predecessors(BB))
937       Result.push_back(std::make_pair(KC, Pred));
938   }
939 
940   return !Result.empty();
941 }
942 
943 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
944 /// in an undefined jump, decide which block is best to revector to.
945 ///
946 /// Since we can pick an arbitrary destination, we pick the successor with the
947 /// fewest predecessors.  This should reduce the in-degree of the others.
948 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
949   TerminatorInst *BBTerm = BB->getTerminator();
950   unsigned MinSucc = 0;
951   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
952   // Compute the successor with the minimum number of predecessors.
953   unsigned MinNumPreds = pred_size(TestBB);
954   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
955     TestBB = BBTerm->getSuccessor(i);
956     unsigned NumPreds = pred_size(TestBB);
957     if (NumPreds < MinNumPreds) {
958       MinSucc = i;
959       MinNumPreds = NumPreds;
960     }
961   }
962 
963   return MinSucc;
964 }
965 
966 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
967   if (!BB->hasAddressTaken()) return false;
968 
969   // If the block has its address taken, it may be a tree of dead constants
970   // hanging off of it.  These shouldn't keep the block alive.
971   BlockAddress *BA = BlockAddress::get(BB);
972   BA->removeDeadConstantUsers();
973   return !BA->use_empty();
974 }
975 
976 /// ProcessBlock - If there are any predecessors whose control can be threaded
977 /// through to a successor, transform them now.
978 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
979   // If the block is trivially dead, just return and let the caller nuke it.
980   // This simplifies other transformations.
981   if (DTU->isBBPendingDeletion(BB) ||
982       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
983     return false;
984 
985   // If this block has a single predecessor, and if that pred has a single
986   // successor, merge the blocks.  This encourages recursive jump threading
987   // because now the condition in this block can be threaded through
988   // predecessors of our predecessor block.
989   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
990     const TerminatorInst *TI = SinglePred->getTerminator();
991     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
992         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
993       // If SinglePred was a loop header, BB becomes one.
994       if (LoopHeaders.erase(SinglePred))
995         LoopHeaders.insert(BB);
996 
997       LVI->eraseBlock(SinglePred);
998       MergeBasicBlockIntoOnlyPred(BB, DTU);
999 
1000       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
1001       // BB code within one basic block `BB`), we need to invalidate the LVI
1002       // information associated with BB, because the LVI information need not be
1003       // true for all of BB after the merge. For example,
1004       // Before the merge, LVI info and code is as follows:
1005       // SinglePred: <LVI info1 for %p val>
1006       // %y = use of %p
1007       // call @exit() // need not transfer execution to successor.
1008       // assume(%p) // from this point on %p is true
1009       // br label %BB
1010       // BB: <LVI info2 for %p val, i.e. %p is true>
1011       // %x = use of %p
1012       // br label exit
1013       //
1014       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1015       // (info2 and info1 respectively). After the merge and the deletion of the
1016       // LVI info1 for SinglePred. We have the following code:
1017       // BB: <LVI info2 for %p val>
1018       // %y = use of %p
1019       // call @exit()
1020       // assume(%p)
1021       // %x = use of %p <-- LVI info2 is correct from here onwards.
1022       // br label exit
1023       // LVI info2 for BB is incorrect at the beginning of BB.
1024 
1025       // Invalidate LVI information for BB if the LVI is not provably true for
1026       // all of BB.
1027       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1028         LVI->eraseBlock(BB);
1029       return true;
1030     }
1031   }
1032 
1033   if (TryToUnfoldSelectInCurrBB(BB))
1034     return true;
1035 
1036   // Look if we can propagate guards to predecessors.
1037   if (HasGuards && ProcessGuards(BB))
1038     return true;
1039 
1040   // What kind of constant we're looking for.
1041   ConstantPreference Preference = WantInteger;
1042 
1043   // Look to see if the terminator is a conditional branch, switch or indirect
1044   // branch, if not we can't thread it.
1045   Value *Condition;
1046   Instruction *Terminator = BB->getTerminator();
1047   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1048     // Can't thread an unconditional jump.
1049     if (BI->isUnconditional()) return false;
1050     Condition = BI->getCondition();
1051   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1052     Condition = SI->getCondition();
1053   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1054     // Can't thread indirect branch with no successors.
1055     if (IB->getNumSuccessors() == 0) return false;
1056     Condition = IB->getAddress()->stripPointerCasts();
1057     Preference = WantBlockAddress;
1058   } else {
1059     return false; // Must be an invoke.
1060   }
1061 
1062   // Run constant folding to see if we can reduce the condition to a simple
1063   // constant.
1064   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1065     Value *SimpleVal =
1066         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1067     if (SimpleVal) {
1068       I->replaceAllUsesWith(SimpleVal);
1069       if (isInstructionTriviallyDead(I, TLI))
1070         I->eraseFromParent();
1071       Condition = SimpleVal;
1072     }
1073   }
1074 
1075   // If the terminator is branching on an undef, we can pick any of the
1076   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1077   if (isa<UndefValue>(Condition)) {
1078     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1079     std::vector<DominatorTree::UpdateType> Updates;
1080 
1081     // Fold the branch/switch.
1082     TerminatorInst *BBTerm = BB->getTerminator();
1083     Updates.reserve(BBTerm->getNumSuccessors());
1084     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1085       if (i == BestSucc) continue;
1086       BasicBlock *Succ = BBTerm->getSuccessor(i);
1087       Succ->removePredecessor(BB, true);
1088       Updates.push_back({DominatorTree::Delete, BB, Succ});
1089     }
1090 
1091     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1092                       << "' folding undef terminator: " << *BBTerm << '\n');
1093     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1094     BBTerm->eraseFromParent();
1095     DTU->applyUpdates(Updates);
1096     return true;
1097   }
1098 
1099   // If the terminator of this block is branching on a constant, simplify the
1100   // terminator to an unconditional branch.  This can occur due to threading in
1101   // other blocks.
1102   if (getKnownConstant(Condition, Preference)) {
1103     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1104                       << "' folding terminator: " << *BB->getTerminator()
1105                       << '\n');
1106     ++NumFolds;
1107     ConstantFoldTerminator(BB, true, nullptr, DTU);
1108     return true;
1109   }
1110 
1111   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1112 
1113   // All the rest of our checks depend on the condition being an instruction.
1114   if (!CondInst) {
1115     // FIXME: Unify this with code below.
1116     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1117       return true;
1118     return false;
1119   }
1120 
1121   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1122     // If we're branching on a conditional, LVI might be able to determine
1123     // it's value at the branch instruction.  We only handle comparisons
1124     // against a constant at this time.
1125     // TODO: This should be extended to handle switches as well.
1126     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1127     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1128     if (CondBr && CondConst) {
1129       // We should have returned as soon as we turn a conditional branch to
1130       // unconditional. Because its no longer interesting as far as jump
1131       // threading is concerned.
1132       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1133 
1134       if (DTU->hasPendingDomTreeUpdates())
1135         LVI->disableDT();
1136       else
1137         LVI->enableDT();
1138       LazyValueInfo::Tristate Ret =
1139         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1140                             CondConst, CondBr);
1141       if (Ret != LazyValueInfo::Unknown) {
1142         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1143         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1144         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1145         ToRemoveSucc->removePredecessor(BB, true);
1146         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1147         CondBr->eraseFromParent();
1148         if (CondCmp->use_empty())
1149           CondCmp->eraseFromParent();
1150         // We can safely replace *some* uses of the CondInst if it has
1151         // exactly one value as returned by LVI. RAUW is incorrect in the
1152         // presence of guards and assumes, that have the `Cond` as the use. This
1153         // is because we use the guards/assume to reason about the `Cond` value
1154         // at the end of block, but RAUW unconditionally replaces all uses
1155         // including the guards/assumes themselves and the uses before the
1156         // guard/assume.
1157         else if (CondCmp->getParent() == BB) {
1158           auto *CI = Ret == LazyValueInfo::True ?
1159             ConstantInt::getTrue(CondCmp->getType()) :
1160             ConstantInt::getFalse(CondCmp->getType());
1161           ReplaceFoldableUses(CondCmp, CI);
1162         }
1163         DTU->deleteEdgeRelaxed(BB, ToRemoveSucc);
1164         return true;
1165       }
1166 
1167       // We did not manage to simplify this branch, try to see whether
1168       // CondCmp depends on a known phi-select pattern.
1169       if (TryToUnfoldSelect(CondCmp, BB))
1170         return true;
1171     }
1172   }
1173 
1174   // Check for some cases that are worth simplifying.  Right now we want to look
1175   // for loads that are used by a switch or by the condition for the branch.  If
1176   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1177   // which can then be used to thread the values.
1178   Value *SimplifyValue = CondInst;
1179   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1180     if (isa<Constant>(CondCmp->getOperand(1)))
1181       SimplifyValue = CondCmp->getOperand(0);
1182 
1183   // TODO: There are other places where load PRE would be profitable, such as
1184   // more complex comparisons.
1185   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1186     if (SimplifyPartiallyRedundantLoad(LoadI))
1187       return true;
1188 
1189   // Before threading, try to propagate profile data backwards:
1190   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1191     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1192       updatePredecessorProfileMetadata(PN, BB);
1193 
1194   // Handle a variety of cases where we are branching on something derived from
1195   // a PHI node in the current block.  If we can prove that any predecessors
1196   // compute a predictable value based on a PHI node, thread those predecessors.
1197   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1198     return true;
1199 
1200   // If this is an otherwise-unfoldable branch on a phi node in the current
1201   // block, see if we can simplify.
1202   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1203     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1204       return ProcessBranchOnPHI(PN);
1205 
1206   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1207   if (CondInst->getOpcode() == Instruction::Xor &&
1208       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1209     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1210 
1211   // Search for a stronger dominating condition that can be used to simplify a
1212   // conditional branch leaving BB.
1213   if (ProcessImpliedCondition(BB))
1214     return true;
1215 
1216   return false;
1217 }
1218 
1219 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1220   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1221   if (!BI || !BI->isConditional())
1222     return false;
1223 
1224   Value *Cond = BI->getCondition();
1225   BasicBlock *CurrentBB = BB;
1226   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1227   unsigned Iter = 0;
1228 
1229   auto &DL = BB->getModule()->getDataLayout();
1230 
1231   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1232     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1233     if (!PBI || !PBI->isConditional())
1234       return false;
1235     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1236       return false;
1237 
1238     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1239     Optional<bool> Implication =
1240         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1241     if (Implication) {
1242       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1243       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1244       RemoveSucc->removePredecessor(BB);
1245       BranchInst::Create(KeepSucc, BI);
1246       BI->eraseFromParent();
1247       DTU->deleteEdgeRelaxed(BB, RemoveSucc);
1248       return true;
1249     }
1250     CurrentBB = CurrentPred;
1251     CurrentPred = CurrentBB->getSinglePredecessor();
1252   }
1253 
1254   return false;
1255 }
1256 
1257 /// Return true if Op is an instruction defined in the given block.
1258 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1259   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1260     if (OpInst->getParent() == BB)
1261       return true;
1262   return false;
1263 }
1264 
1265 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1266 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1267 /// This is an important optimization that encourages jump threading, and needs
1268 /// to be run interlaced with other jump threading tasks.
1269 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1270   // Don't hack volatile and ordered loads.
1271   if (!LoadI->isUnordered()) return false;
1272 
1273   // If the load is defined in a block with exactly one predecessor, it can't be
1274   // partially redundant.
1275   BasicBlock *LoadBB = LoadI->getParent();
1276   if (LoadBB->getSinglePredecessor())
1277     return false;
1278 
1279   // If the load is defined in an EH pad, it can't be partially redundant,
1280   // because the edges between the invoke and the EH pad cannot have other
1281   // instructions between them.
1282   if (LoadBB->isEHPad())
1283     return false;
1284 
1285   Value *LoadedPtr = LoadI->getOperand(0);
1286 
1287   // If the loaded operand is defined in the LoadBB and its not a phi,
1288   // it can't be available in predecessors.
1289   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1290     return false;
1291 
1292   // Scan a few instructions up from the load, to see if it is obviously live at
1293   // the entry to its block.
1294   BasicBlock::iterator BBIt(LoadI);
1295   bool IsLoadCSE;
1296   if (Value *AvailableVal = FindAvailableLoadedValue(
1297           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1298     // If the value of the load is locally available within the block, just use
1299     // it.  This frequently occurs for reg2mem'd allocas.
1300 
1301     if (IsLoadCSE) {
1302       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1303       combineMetadataForCSE(NLoadI, LoadI);
1304     };
1305 
1306     // If the returned value is the load itself, replace with an undef. This can
1307     // only happen in dead loops.
1308     if (AvailableVal == LoadI)
1309       AvailableVal = UndefValue::get(LoadI->getType());
1310     if (AvailableVal->getType() != LoadI->getType())
1311       AvailableVal = CastInst::CreateBitOrPointerCast(
1312           AvailableVal, LoadI->getType(), "", LoadI);
1313     LoadI->replaceAllUsesWith(AvailableVal);
1314     LoadI->eraseFromParent();
1315     return true;
1316   }
1317 
1318   // Otherwise, if we scanned the whole block and got to the top of the block,
1319   // we know the block is locally transparent to the load.  If not, something
1320   // might clobber its value.
1321   if (BBIt != LoadBB->begin())
1322     return false;
1323 
1324   // If all of the loads and stores that feed the value have the same AA tags,
1325   // then we can propagate them onto any newly inserted loads.
1326   AAMDNodes AATags;
1327   LoadI->getAAMetadata(AATags);
1328 
1329   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1330 
1331   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1332 
1333   AvailablePredsTy AvailablePreds;
1334   BasicBlock *OneUnavailablePred = nullptr;
1335   SmallVector<LoadInst*, 8> CSELoads;
1336 
1337   // If we got here, the loaded value is transparent through to the start of the
1338   // block.  Check to see if it is available in any of the predecessor blocks.
1339   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1340     // If we already scanned this predecessor, skip it.
1341     if (!PredsScanned.insert(PredBB).second)
1342       continue;
1343 
1344     BBIt = PredBB->end();
1345     unsigned NumScanedInst = 0;
1346     Value *PredAvailable = nullptr;
1347     // NOTE: We don't CSE load that is volatile or anything stronger than
1348     // unordered, that should have been checked when we entered the function.
1349     assert(LoadI->isUnordered() &&
1350            "Attempting to CSE volatile or atomic loads");
1351     // If this is a load on a phi pointer, phi-translate it and search
1352     // for available load/store to the pointer in predecessors.
1353     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1354     PredAvailable = FindAvailablePtrLoadStore(
1355         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1356         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1357 
1358     // If PredBB has a single predecessor, continue scanning through the
1359     // single predecessor.
1360     BasicBlock *SinglePredBB = PredBB;
1361     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1362            NumScanedInst < DefMaxInstsToScan) {
1363       SinglePredBB = SinglePredBB->getSinglePredecessor();
1364       if (SinglePredBB) {
1365         BBIt = SinglePredBB->end();
1366         PredAvailable = FindAvailablePtrLoadStore(
1367             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1368             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1369             &NumScanedInst);
1370       }
1371     }
1372 
1373     if (!PredAvailable) {
1374       OneUnavailablePred = PredBB;
1375       continue;
1376     }
1377 
1378     if (IsLoadCSE)
1379       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1380 
1381     // If so, this load is partially redundant.  Remember this info so that we
1382     // can create a PHI node.
1383     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1384   }
1385 
1386   // If the loaded value isn't available in any predecessor, it isn't partially
1387   // redundant.
1388   if (AvailablePreds.empty()) return false;
1389 
1390   // Okay, the loaded value is available in at least one (and maybe all!)
1391   // predecessors.  If the value is unavailable in more than one unique
1392   // predecessor, we want to insert a merge block for those common predecessors.
1393   // This ensures that we only have to insert one reload, thus not increasing
1394   // code size.
1395   BasicBlock *UnavailablePred = nullptr;
1396 
1397   // If the value is unavailable in one of predecessors, we will end up
1398   // inserting a new instruction into them. It is only valid if all the
1399   // instructions before LoadI are guaranteed to pass execution to its
1400   // successor, or if LoadI is safe to speculate.
1401   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1402   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1403   // It requires domination tree analysis, so for this simple case it is an
1404   // overkill.
1405   if (PredsScanned.size() != AvailablePreds.size() &&
1406       !isSafeToSpeculativelyExecute(LoadI))
1407     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1408       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1409         return false;
1410 
1411   // If there is exactly one predecessor where the value is unavailable, the
1412   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1413   // unconditional branch, we know that it isn't a critical edge.
1414   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1415       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1416     UnavailablePred = OneUnavailablePred;
1417   } else if (PredsScanned.size() != AvailablePreds.size()) {
1418     // Otherwise, we had multiple unavailable predecessors or we had a critical
1419     // edge from the one.
1420     SmallVector<BasicBlock*, 8> PredsToSplit;
1421     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1422 
1423     for (const auto &AvailablePred : AvailablePreds)
1424       AvailablePredSet.insert(AvailablePred.first);
1425 
1426     // Add all the unavailable predecessors to the PredsToSplit list.
1427     for (BasicBlock *P : predecessors(LoadBB)) {
1428       // If the predecessor is an indirect goto, we can't split the edge.
1429       if (isa<IndirectBrInst>(P->getTerminator()))
1430         return false;
1431 
1432       if (!AvailablePredSet.count(P))
1433         PredsToSplit.push_back(P);
1434     }
1435 
1436     // Split them out to their own block.
1437     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1438   }
1439 
1440   // If the value isn't available in all predecessors, then there will be
1441   // exactly one where it isn't available.  Insert a load on that edge and add
1442   // it to the AvailablePreds list.
1443   if (UnavailablePred) {
1444     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1445            "Can't handle critical edge here!");
1446     LoadInst *NewVal =
1447         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1448                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1449                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1450                      UnavailablePred->getTerminator());
1451     NewVal->setDebugLoc(LoadI->getDebugLoc());
1452     if (AATags)
1453       NewVal->setAAMetadata(AATags);
1454 
1455     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1456   }
1457 
1458   // Now we know that each predecessor of this block has a value in
1459   // AvailablePreds, sort them for efficient access as we're walking the preds.
1460   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1461 
1462   // Create a PHI node at the start of the block for the PRE'd load value.
1463   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1464   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1465                                 &LoadBB->front());
1466   PN->takeName(LoadI);
1467   PN->setDebugLoc(LoadI->getDebugLoc());
1468 
1469   // Insert new entries into the PHI for each predecessor.  A single block may
1470   // have multiple entries here.
1471   for (pred_iterator PI = PB; PI != PE; ++PI) {
1472     BasicBlock *P = *PI;
1473     AvailablePredsTy::iterator I =
1474       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1475                        std::make_pair(P, (Value*)nullptr));
1476 
1477     assert(I != AvailablePreds.end() && I->first == P &&
1478            "Didn't find entry for predecessor!");
1479 
1480     // If we have an available predecessor but it requires casting, insert the
1481     // cast in the predecessor and use the cast. Note that we have to update the
1482     // AvailablePreds vector as we go so that all of the PHI entries for this
1483     // predecessor use the same bitcast.
1484     Value *&PredV = I->second;
1485     if (PredV->getType() != LoadI->getType())
1486       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1487                                                P->getTerminator());
1488 
1489     PN->addIncoming(PredV, I->first);
1490   }
1491 
1492   for (LoadInst *PredLoadI : CSELoads) {
1493     combineMetadataForCSE(PredLoadI, LoadI);
1494   }
1495 
1496   LoadI->replaceAllUsesWith(PN);
1497   LoadI->eraseFromParent();
1498 
1499   return true;
1500 }
1501 
1502 /// FindMostPopularDest - The specified list contains multiple possible
1503 /// threadable destinations.  Pick the one that occurs the most frequently in
1504 /// the list.
1505 static BasicBlock *
1506 FindMostPopularDest(BasicBlock *BB,
1507                     const SmallVectorImpl<std::pair<BasicBlock *,
1508                                           BasicBlock *>> &PredToDestList) {
1509   assert(!PredToDestList.empty());
1510 
1511   // Determine popularity.  If there are multiple possible destinations, we
1512   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1513   // blocks with known and real destinations to threading undef.  We'll handle
1514   // them later if interesting.
1515   DenseMap<BasicBlock*, unsigned> DestPopularity;
1516   for (const auto &PredToDest : PredToDestList)
1517     if (PredToDest.second)
1518       DestPopularity[PredToDest.second]++;
1519 
1520   if (DestPopularity.empty())
1521     return nullptr;
1522 
1523   // Find the most popular dest.
1524   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1525   BasicBlock *MostPopularDest = DPI->first;
1526   unsigned Popularity = DPI->second;
1527   SmallVector<BasicBlock*, 4> SamePopularity;
1528 
1529   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1530     // If the popularity of this entry isn't higher than the popularity we've
1531     // seen so far, ignore it.
1532     if (DPI->second < Popularity)
1533       ; // ignore.
1534     else if (DPI->second == Popularity) {
1535       // If it is the same as what we've seen so far, keep track of it.
1536       SamePopularity.push_back(DPI->first);
1537     } else {
1538       // If it is more popular, remember it.
1539       SamePopularity.clear();
1540       MostPopularDest = DPI->first;
1541       Popularity = DPI->second;
1542     }
1543   }
1544 
1545   // Okay, now we know the most popular destination.  If there is more than one
1546   // destination, we need to determine one.  This is arbitrary, but we need
1547   // to make a deterministic decision.  Pick the first one that appears in the
1548   // successor list.
1549   if (!SamePopularity.empty()) {
1550     SamePopularity.push_back(MostPopularDest);
1551     TerminatorInst *TI = BB->getTerminator();
1552     for (unsigned i = 0; ; ++i) {
1553       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1554 
1555       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1556         continue;
1557 
1558       MostPopularDest = TI->getSuccessor(i);
1559       break;
1560     }
1561   }
1562 
1563   // Okay, we have finally picked the most popular destination.
1564   return MostPopularDest;
1565 }
1566 
1567 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1568                                                ConstantPreference Preference,
1569                                                Instruction *CxtI) {
1570   // If threading this would thread across a loop header, don't even try to
1571   // thread the edge.
1572   if (LoopHeaders.count(BB))
1573     return false;
1574 
1575   PredValueInfoTy PredValues;
1576   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1577     return false;
1578 
1579   assert(!PredValues.empty() &&
1580          "ComputeValueKnownInPredecessors returned true with no values");
1581 
1582   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1583              for (const auto &PredValue : PredValues) {
1584                dbgs() << "  BB '" << BB->getName()
1585                       << "': FOUND condition = " << *PredValue.first
1586                       << " for pred '" << PredValue.second->getName() << "'.\n";
1587   });
1588 
1589   // Decide what we want to thread through.  Convert our list of known values to
1590   // a list of known destinations for each pred.  This also discards duplicate
1591   // predecessors and keeps track of the undefined inputs (which are represented
1592   // as a null dest in the PredToDestList).
1593   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1594   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1595 
1596   BasicBlock *OnlyDest = nullptr;
1597   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1598   Constant *OnlyVal = nullptr;
1599   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1600 
1601   unsigned PredWithKnownDest = 0;
1602   for (const auto &PredValue : PredValues) {
1603     BasicBlock *Pred = PredValue.second;
1604     if (!SeenPreds.insert(Pred).second)
1605       continue;  // Duplicate predecessor entry.
1606 
1607     Constant *Val = PredValue.first;
1608 
1609     BasicBlock *DestBB;
1610     if (isa<UndefValue>(Val))
1611       DestBB = nullptr;
1612     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1613       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1614       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1615     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1616       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1617       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1618     } else {
1619       assert(isa<IndirectBrInst>(BB->getTerminator())
1620               && "Unexpected terminator");
1621       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1622       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1623     }
1624 
1625     // If we have exactly one destination, remember it for efficiency below.
1626     if (PredToDestList.empty()) {
1627       OnlyDest = DestBB;
1628       OnlyVal = Val;
1629     } else {
1630       if (OnlyDest != DestBB)
1631         OnlyDest = MultipleDestSentinel;
1632       // It possible we have same destination, but different value, e.g. default
1633       // case in switchinst.
1634       if (Val != OnlyVal)
1635         OnlyVal = MultipleVal;
1636     }
1637 
1638     // We know where this predecessor is going.
1639     ++PredWithKnownDest;
1640 
1641     // If the predecessor ends with an indirect goto, we can't change its
1642     // destination.
1643     if (isa<IndirectBrInst>(Pred->getTerminator()))
1644       continue;
1645 
1646     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1647   }
1648 
1649   // If all edges were unthreadable, we fail.
1650   if (PredToDestList.empty())
1651     return false;
1652 
1653   // If all the predecessors go to a single known successor, we want to fold,
1654   // not thread. By doing so, we do not need to duplicate the current block and
1655   // also miss potential opportunities in case we dont/cant duplicate.
1656   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1657     if (PredWithKnownDest == (size_t)pred_size(BB)) {
1658       bool SeenFirstBranchToOnlyDest = false;
1659       std::vector <DominatorTree::UpdateType> Updates;
1660       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1661       for (BasicBlock *SuccBB : successors(BB)) {
1662         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1663           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1664         } else {
1665           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1666           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1667         }
1668       }
1669 
1670       // Finally update the terminator.
1671       TerminatorInst *Term = BB->getTerminator();
1672       BranchInst::Create(OnlyDest, Term);
1673       Term->eraseFromParent();
1674       DTU->applyUpdates(Updates);
1675 
1676       // If the condition is now dead due to the removal of the old terminator,
1677       // erase it.
1678       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1679         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1680           CondInst->eraseFromParent();
1681         // We can safely replace *some* uses of the CondInst if it has
1682         // exactly one value as returned by LVI. RAUW is incorrect in the
1683         // presence of guards and assumes, that have the `Cond` as the use. This
1684         // is because we use the guards/assume to reason about the `Cond` value
1685         // at the end of block, but RAUW unconditionally replaces all uses
1686         // including the guards/assumes themselves and the uses before the
1687         // guard/assume.
1688         else if (OnlyVal && OnlyVal != MultipleVal &&
1689                  CondInst->getParent() == BB)
1690           ReplaceFoldableUses(CondInst, OnlyVal);
1691       }
1692       return true;
1693     }
1694   }
1695 
1696   // Determine which is the most common successor.  If we have many inputs and
1697   // this block is a switch, we want to start by threading the batch that goes
1698   // to the most popular destination first.  If we only know about one
1699   // threadable destination (the common case) we can avoid this.
1700   BasicBlock *MostPopularDest = OnlyDest;
1701 
1702   if (MostPopularDest == MultipleDestSentinel) {
1703     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1704     // won't process them, but we might have other destination that are eligible
1705     // and we still want to process.
1706     erase_if(PredToDestList,
1707              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1708                return LoopHeaders.count(PredToDest.second) != 0;
1709              });
1710 
1711     if (PredToDestList.empty())
1712       return false;
1713 
1714     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1715   }
1716 
1717   // Now that we know what the most popular destination is, factor all
1718   // predecessors that will jump to it into a single predecessor.
1719   SmallVector<BasicBlock*, 16> PredsToFactor;
1720   for (const auto &PredToDest : PredToDestList)
1721     if (PredToDest.second == MostPopularDest) {
1722       BasicBlock *Pred = PredToDest.first;
1723 
1724       // This predecessor may be a switch or something else that has multiple
1725       // edges to the block.  Factor each of these edges by listing them
1726       // according to # occurrences in PredsToFactor.
1727       for (BasicBlock *Succ : successors(Pred))
1728         if (Succ == BB)
1729           PredsToFactor.push_back(Pred);
1730     }
1731 
1732   // If the threadable edges are branching on an undefined value, we get to pick
1733   // the destination that these predecessors should get to.
1734   if (!MostPopularDest)
1735     MostPopularDest = BB->getTerminator()->
1736                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1737 
1738   // Ok, try to thread it!
1739   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1740 }
1741 
1742 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1743 /// a PHI node in the current block.  See if there are any simplifications we
1744 /// can do based on inputs to the phi node.
1745 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1746   BasicBlock *BB = PN->getParent();
1747 
1748   // TODO: We could make use of this to do it once for blocks with common PHI
1749   // values.
1750   SmallVector<BasicBlock*, 1> PredBBs;
1751   PredBBs.resize(1);
1752 
1753   // If any of the predecessor blocks end in an unconditional branch, we can
1754   // *duplicate* the conditional branch into that block in order to further
1755   // encourage jump threading and to eliminate cases where we have branch on a
1756   // phi of an icmp (branch on icmp is much better).
1757   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1758     BasicBlock *PredBB = PN->getIncomingBlock(i);
1759     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1760       if (PredBr->isUnconditional()) {
1761         PredBBs[0] = PredBB;
1762         // Try to duplicate BB into PredBB.
1763         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1764           return true;
1765       }
1766   }
1767 
1768   return false;
1769 }
1770 
1771 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1772 /// a xor instruction in the current block.  See if there are any
1773 /// simplifications we can do based on inputs to the xor.
1774 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1775   BasicBlock *BB = BO->getParent();
1776 
1777   // If either the LHS or RHS of the xor is a constant, don't do this
1778   // optimization.
1779   if (isa<ConstantInt>(BO->getOperand(0)) ||
1780       isa<ConstantInt>(BO->getOperand(1)))
1781     return false;
1782 
1783   // If the first instruction in BB isn't a phi, we won't be able to infer
1784   // anything special about any particular predecessor.
1785   if (!isa<PHINode>(BB->front()))
1786     return false;
1787 
1788   // If this BB is a landing pad, we won't be able to split the edge into it.
1789   if (BB->isEHPad())
1790     return false;
1791 
1792   // If we have a xor as the branch input to this block, and we know that the
1793   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1794   // the condition into the predecessor and fix that value to true, saving some
1795   // logical ops on that path and encouraging other paths to simplify.
1796   //
1797   // This copies something like this:
1798   //
1799   //  BB:
1800   //    %X = phi i1 [1],  [%X']
1801   //    %Y = icmp eq i32 %A, %B
1802   //    %Z = xor i1 %X, %Y
1803   //    br i1 %Z, ...
1804   //
1805   // Into:
1806   //  BB':
1807   //    %Y = icmp ne i32 %A, %B
1808   //    br i1 %Y, ...
1809 
1810   PredValueInfoTy XorOpValues;
1811   bool isLHS = true;
1812   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1813                                        WantInteger, BO)) {
1814     assert(XorOpValues.empty());
1815     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1816                                          WantInteger, BO))
1817       return false;
1818     isLHS = false;
1819   }
1820 
1821   assert(!XorOpValues.empty() &&
1822          "ComputeValueKnownInPredecessors returned true with no values");
1823 
1824   // Scan the information to see which is most popular: true or false.  The
1825   // predecessors can be of the set true, false, or undef.
1826   unsigned NumTrue = 0, NumFalse = 0;
1827   for (const auto &XorOpValue : XorOpValues) {
1828     if (isa<UndefValue>(XorOpValue.first))
1829       // Ignore undefs for the count.
1830       continue;
1831     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1832       ++NumFalse;
1833     else
1834       ++NumTrue;
1835   }
1836 
1837   // Determine which value to split on, true, false, or undef if neither.
1838   ConstantInt *SplitVal = nullptr;
1839   if (NumTrue > NumFalse)
1840     SplitVal = ConstantInt::getTrue(BB->getContext());
1841   else if (NumTrue != 0 || NumFalse != 0)
1842     SplitVal = ConstantInt::getFalse(BB->getContext());
1843 
1844   // Collect all of the blocks that this can be folded into so that we can
1845   // factor this once and clone it once.
1846   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1847   for (const auto &XorOpValue : XorOpValues) {
1848     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1849       continue;
1850 
1851     BlocksToFoldInto.push_back(XorOpValue.second);
1852   }
1853 
1854   // If we inferred a value for all of the predecessors, then duplication won't
1855   // help us.  However, we can just replace the LHS or RHS with the constant.
1856   if (BlocksToFoldInto.size() ==
1857       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1858     if (!SplitVal) {
1859       // If all preds provide undef, just nuke the xor, because it is undef too.
1860       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1861       BO->eraseFromParent();
1862     } else if (SplitVal->isZero()) {
1863       // If all preds provide 0, replace the xor with the other input.
1864       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1865       BO->eraseFromParent();
1866     } else {
1867       // If all preds provide 1, set the computed value to 1.
1868       BO->setOperand(!isLHS, SplitVal);
1869     }
1870 
1871     return true;
1872   }
1873 
1874   // Try to duplicate BB into PredBB.
1875   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1876 }
1877 
1878 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1879 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1880 /// NewPred using the entries from OldPred (suitably mapped).
1881 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1882                                             BasicBlock *OldPred,
1883                                             BasicBlock *NewPred,
1884                                      DenseMap<Instruction*, Value*> &ValueMap) {
1885   for (PHINode &PN : PHIBB->phis()) {
1886     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1887     // DestBlock.
1888     Value *IV = PN.getIncomingValueForBlock(OldPred);
1889 
1890     // Remap the value if necessary.
1891     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1892       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1893       if (I != ValueMap.end())
1894         IV = I->second;
1895     }
1896 
1897     PN.addIncoming(IV, NewPred);
1898   }
1899 }
1900 
1901 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1902 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1903 /// across BB.  Transform the IR to reflect this change.
1904 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1905                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1906                                    BasicBlock *SuccBB) {
1907   // If threading to the same block as we come from, we would infinite loop.
1908   if (SuccBB == BB) {
1909     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1910                       << "' - would thread to self!\n");
1911     return false;
1912   }
1913 
1914   // If threading this would thread across a loop header, don't thread the edge.
1915   // See the comments above FindLoopHeaders for justifications and caveats.
1916   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1917     LLVM_DEBUG({
1918       bool BBIsHeader = LoopHeaders.count(BB);
1919       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1920       dbgs() << "  Not threading across "
1921           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1922           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1923           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1924     });
1925     return false;
1926   }
1927 
1928   unsigned JumpThreadCost =
1929       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1930   if (JumpThreadCost > BBDupThreshold) {
1931     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1932                       << "' - Cost is too high: " << JumpThreadCost << "\n");
1933     return false;
1934   }
1935 
1936   // And finally, do it!  Start by factoring the predecessors if needed.
1937   BasicBlock *PredBB;
1938   if (PredBBs.size() == 1)
1939     PredBB = PredBBs[0];
1940   else {
1941     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1942                       << " common predecessors.\n");
1943     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1944   }
1945 
1946   // And finally, do it!
1947   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
1948                     << "' to '" << SuccBB->getName()
1949                     << "' with cost: " << JumpThreadCost
1950                     << ", across block:\n    " << *BB << "\n");
1951 
1952   if (DTU->hasPendingDomTreeUpdates())
1953     LVI->disableDT();
1954   else
1955     LVI->enableDT();
1956   LVI->threadEdge(PredBB, BB, SuccBB);
1957 
1958   // We are going to have to map operands from the original BB block to the new
1959   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1960   // account for entry from PredBB.
1961   DenseMap<Instruction*, Value*> ValueMapping;
1962 
1963   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1964                                          BB->getName()+".thread",
1965                                          BB->getParent(), BB);
1966   NewBB->moveAfter(PredBB);
1967 
1968   // Set the block frequency of NewBB.
1969   if (HasProfileData) {
1970     auto NewBBFreq =
1971         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1972     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1973   }
1974 
1975   BasicBlock::iterator BI = BB->begin();
1976   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1977     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1978 
1979   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1980   // mapping and using it to remap operands in the cloned instructions.
1981   for (; !isa<TerminatorInst>(BI); ++BI) {
1982     Instruction *New = BI->clone();
1983     New->setName(BI->getName());
1984     NewBB->getInstList().push_back(New);
1985     ValueMapping[&*BI] = New;
1986 
1987     // Remap operands to patch up intra-block references.
1988     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1989       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1990         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1991         if (I != ValueMapping.end())
1992           New->setOperand(i, I->second);
1993       }
1994   }
1995 
1996   // We didn't copy the terminator from BB over to NewBB, because there is now
1997   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1998   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1999   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
2000 
2001   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
2002   // PHI nodes for NewBB now.
2003   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2004 
2005   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2006   // eliminates predecessors from BB, which requires us to simplify any PHI
2007   // nodes in BB.
2008   TerminatorInst *PredTerm = PredBB->getTerminator();
2009   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2010     if (PredTerm->getSuccessor(i) == BB) {
2011       BB->removePredecessor(PredBB, true);
2012       PredTerm->setSuccessor(i, NewBB);
2013     }
2014 
2015   // Enqueue required DT updates.
2016   DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2017                      {DominatorTree::Insert, PredBB, NewBB},
2018                      {DominatorTree::Delete, PredBB, BB}});
2019 
2020   // If there were values defined in BB that are used outside the block, then we
2021   // now have to update all uses of the value to use either the original value,
2022   // the cloned value, or some PHI derived value.  This can require arbitrary
2023   // PHI insertion, of which we are prepared to do, clean these up now.
2024   SSAUpdater SSAUpdate;
2025   SmallVector<Use*, 16> UsesToRename;
2026 
2027   for (Instruction &I : *BB) {
2028     // Scan all uses of this instruction to see if their uses are no longer
2029     // dominated by the previous def and if so, record them in UsesToRename.
2030     // Also, skip phi operands from PredBB - we'll remove them anyway.
2031     for (Use &U : I.uses()) {
2032       Instruction *User = cast<Instruction>(U.getUser());
2033       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2034         if (UserPN->getIncomingBlock(U) == BB)
2035           continue;
2036       } else if (User->getParent() == BB)
2037         continue;
2038 
2039       UsesToRename.push_back(&U);
2040     }
2041 
2042     // If there are no uses outside the block, we're done with this instruction.
2043     if (UsesToRename.empty())
2044       continue;
2045     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2046 
2047     // We found a use of I outside of BB.  Rename all uses of I that are outside
2048     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2049     // with the two values we know.
2050     SSAUpdate.Initialize(I.getType(), I.getName());
2051     SSAUpdate.AddAvailableValue(BB, &I);
2052     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2053 
2054     while (!UsesToRename.empty())
2055       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2056     LLVM_DEBUG(dbgs() << "\n");
2057   }
2058 
2059   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2060   // over the new instructions and zap any that are constants or dead.  This
2061   // frequently happens because of phi translation.
2062   SimplifyInstructionsInBlock(NewBB, TLI);
2063 
2064   // Update the edge weight from BB to SuccBB, which should be less than before.
2065   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2066 
2067   // Threaded an edge!
2068   ++NumThreads;
2069   return true;
2070 }
2071 
2072 /// Create a new basic block that will be the predecessor of BB and successor of
2073 /// all blocks in Preds. When profile data is available, update the frequency of
2074 /// this new block.
2075 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2076                                                ArrayRef<BasicBlock *> Preds,
2077                                                const char *Suffix) {
2078   SmallVector<BasicBlock *, 2> NewBBs;
2079 
2080   // Collect the frequencies of all predecessors of BB, which will be used to
2081   // update the edge weight of the result of splitting predecessors.
2082   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2083   if (HasProfileData)
2084     for (auto Pred : Preds)
2085       FreqMap.insert(std::make_pair(
2086           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2087 
2088   // In the case when BB is a LandingPad block we create 2 new predecessors
2089   // instead of just one.
2090   if (BB->isLandingPad()) {
2091     std::string NewName = std::string(Suffix) + ".split-lp";
2092     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2093   } else {
2094     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2095   }
2096 
2097   std::vector<DominatorTree::UpdateType> Updates;
2098   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2099   for (auto NewBB : NewBBs) {
2100     BlockFrequency NewBBFreq(0);
2101     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2102     for (auto Pred : predecessors(NewBB)) {
2103       Updates.push_back({DominatorTree::Delete, Pred, BB});
2104       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2105       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2106         NewBBFreq += FreqMap.lookup(Pred);
2107     }
2108     if (HasProfileData) // Apply the summed frequency to NewBB.
2109       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2110   }
2111 
2112   DTU->applyUpdates(Updates);
2113   return NewBBs[0];
2114 }
2115 
2116 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2117   const TerminatorInst *TI = BB->getTerminator();
2118   assert(TI->getNumSuccessors() > 1 && "not a split");
2119 
2120   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2121   if (!WeightsNode)
2122     return false;
2123 
2124   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2125   if (MDName->getString() != "branch_weights")
2126     return false;
2127 
2128   // Ensure there are weights for all of the successors. Note that the first
2129   // operand to the metadata node is a name, not a weight.
2130   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2131 }
2132 
2133 /// Update the block frequency of BB and branch weight and the metadata on the
2134 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2135 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2136 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2137                                                      BasicBlock *BB,
2138                                                      BasicBlock *NewBB,
2139                                                      BasicBlock *SuccBB) {
2140   if (!HasProfileData)
2141     return;
2142 
2143   assert(BFI && BPI && "BFI & BPI should have been created here");
2144 
2145   // As the edge from PredBB to BB is deleted, we have to update the block
2146   // frequency of BB.
2147   auto BBOrigFreq = BFI->getBlockFreq(BB);
2148   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2149   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2150   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2151   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2152 
2153   // Collect updated outgoing edges' frequencies from BB and use them to update
2154   // edge probabilities.
2155   SmallVector<uint64_t, 4> BBSuccFreq;
2156   for (BasicBlock *Succ : successors(BB)) {
2157     auto SuccFreq = (Succ == SuccBB)
2158                         ? BB2SuccBBFreq - NewBBFreq
2159                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2160     BBSuccFreq.push_back(SuccFreq.getFrequency());
2161   }
2162 
2163   uint64_t MaxBBSuccFreq =
2164       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2165 
2166   SmallVector<BranchProbability, 4> BBSuccProbs;
2167   if (MaxBBSuccFreq == 0)
2168     BBSuccProbs.assign(BBSuccFreq.size(),
2169                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2170   else {
2171     for (uint64_t Freq : BBSuccFreq)
2172       BBSuccProbs.push_back(
2173           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2174     // Normalize edge probabilities so that they sum up to one.
2175     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2176                                               BBSuccProbs.end());
2177   }
2178 
2179   // Update edge probabilities in BPI.
2180   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2181     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2182 
2183   // Update the profile metadata as well.
2184   //
2185   // Don't do this if the profile of the transformed blocks was statically
2186   // estimated.  (This could occur despite the function having an entry
2187   // frequency in completely cold parts of the CFG.)
2188   //
2189   // In this case we don't want to suggest to subsequent passes that the
2190   // calculated weights are fully consistent.  Consider this graph:
2191   //
2192   //                 check_1
2193   //             50% /  |
2194   //             eq_1   | 50%
2195   //                 \  |
2196   //                 check_2
2197   //             50% /  |
2198   //             eq_2   | 50%
2199   //                 \  |
2200   //                 check_3
2201   //             50% /  |
2202   //             eq_3   | 50%
2203   //                 \  |
2204   //
2205   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2206   // the overall probabilities are inconsistent; the total probability that the
2207   // value is either 1, 2 or 3 is 150%.
2208   //
2209   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2210   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2211   // the loop exit edge.  Then based solely on static estimation we would assume
2212   // the loop was extremely hot.
2213   //
2214   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2215   // shouldn't make edges extremely likely or unlikely based solely on static
2216   // estimation.
2217   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2218     SmallVector<uint32_t, 4> Weights;
2219     for (auto Prob : BBSuccProbs)
2220       Weights.push_back(Prob.getNumerator());
2221 
2222     auto TI = BB->getTerminator();
2223     TI->setMetadata(
2224         LLVMContext::MD_prof,
2225         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2226   }
2227 }
2228 
2229 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2230 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2231 /// If we can duplicate the contents of BB up into PredBB do so now, this
2232 /// improves the odds that the branch will be on an analyzable instruction like
2233 /// a compare.
2234 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2235     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2236   assert(!PredBBs.empty() && "Can't handle an empty set");
2237 
2238   // If BB is a loop header, then duplicating this block outside the loop would
2239   // cause us to transform this into an irreducible loop, don't do this.
2240   // See the comments above FindLoopHeaders for justifications and caveats.
2241   if (LoopHeaders.count(BB)) {
2242     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2243                       << "' into predecessor block '" << PredBBs[0]->getName()
2244                       << "' - it might create an irreducible loop!\n");
2245     return false;
2246   }
2247 
2248   unsigned DuplicationCost =
2249       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2250   if (DuplicationCost > BBDupThreshold) {
2251     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2252                       << "' - Cost is too high: " << DuplicationCost << "\n");
2253     return false;
2254   }
2255 
2256   // And finally, do it!  Start by factoring the predecessors if needed.
2257   std::vector<DominatorTree::UpdateType> Updates;
2258   BasicBlock *PredBB;
2259   if (PredBBs.size() == 1)
2260     PredBB = PredBBs[0];
2261   else {
2262     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2263                       << " common predecessors.\n");
2264     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2265   }
2266   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2267 
2268   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2269   // of PredBB.
2270   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2271                     << "' into end of '" << PredBB->getName()
2272                     << "' to eliminate branch on phi.  Cost: "
2273                     << DuplicationCost << " block is:" << *BB << "\n");
2274 
2275   // Unless PredBB ends with an unconditional branch, split the edge so that we
2276   // can just clone the bits from BB into the end of the new PredBB.
2277   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2278 
2279   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2280     BasicBlock *OldPredBB = PredBB;
2281     PredBB = SplitEdge(OldPredBB, BB);
2282     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2283     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2284     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2285     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2286   }
2287 
2288   // We are going to have to map operands from the original BB block into the
2289   // PredBB block.  Evaluate PHI nodes in BB.
2290   DenseMap<Instruction*, Value*> ValueMapping;
2291 
2292   BasicBlock::iterator BI = BB->begin();
2293   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2294     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2295   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2296   // mapping and using it to remap operands in the cloned instructions.
2297   for (; BI != BB->end(); ++BI) {
2298     Instruction *New = BI->clone();
2299 
2300     // Remap operands to patch up intra-block references.
2301     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2302       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2303         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2304         if (I != ValueMapping.end())
2305           New->setOperand(i, I->second);
2306       }
2307 
2308     // If this instruction can be simplified after the operands are updated,
2309     // just use the simplified value instead.  This frequently happens due to
2310     // phi translation.
2311     if (Value *IV = SimplifyInstruction(
2312             New,
2313             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2314       ValueMapping[&*BI] = IV;
2315       if (!New->mayHaveSideEffects()) {
2316         New->deleteValue();
2317         New = nullptr;
2318       }
2319     } else {
2320       ValueMapping[&*BI] = New;
2321     }
2322     if (New) {
2323       // Otherwise, insert the new instruction into the block.
2324       New->setName(BI->getName());
2325       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2326       // Update Dominance from simplified New instruction operands.
2327       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2328         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2329           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2330     }
2331   }
2332 
2333   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2334   // add entries to the PHI nodes for branch from PredBB now.
2335   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2336   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2337                                   ValueMapping);
2338   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2339                                   ValueMapping);
2340 
2341   // If there were values defined in BB that are used outside the block, then we
2342   // now have to update all uses of the value to use either the original value,
2343   // the cloned value, or some PHI derived value.  This can require arbitrary
2344   // PHI insertion, of which we are prepared to do, clean these up now.
2345   SSAUpdater SSAUpdate;
2346   SmallVector<Use*, 16> UsesToRename;
2347   for (Instruction &I : *BB) {
2348     // Scan all uses of this instruction to see if it is used outside of its
2349     // block, and if so, record them in UsesToRename.
2350     for (Use &U : I.uses()) {
2351       Instruction *User = cast<Instruction>(U.getUser());
2352       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2353         if (UserPN->getIncomingBlock(U) == BB)
2354           continue;
2355       } else if (User->getParent() == BB)
2356         continue;
2357 
2358       UsesToRename.push_back(&U);
2359     }
2360 
2361     // If there are no uses outside the block, we're done with this instruction.
2362     if (UsesToRename.empty())
2363       continue;
2364 
2365     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2366 
2367     // We found a use of I outside of BB.  Rename all uses of I that are outside
2368     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2369     // with the two values we know.
2370     SSAUpdate.Initialize(I.getType(), I.getName());
2371     SSAUpdate.AddAvailableValue(BB, &I);
2372     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2373 
2374     while (!UsesToRename.empty())
2375       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2376     LLVM_DEBUG(dbgs() << "\n");
2377   }
2378 
2379   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2380   // that we nuked.
2381   BB->removePredecessor(PredBB, true);
2382 
2383   // Remove the unconditional branch at the end of the PredBB block.
2384   OldPredBranch->eraseFromParent();
2385   DTU->applyUpdates(Updates);
2386 
2387   ++NumDupes;
2388   return true;
2389 }
2390 
2391 /// TryToUnfoldSelect - Look for blocks of the form
2392 /// bb1:
2393 ///   %a = select
2394 ///   br bb2
2395 ///
2396 /// bb2:
2397 ///   %p = phi [%a, %bb1] ...
2398 ///   %c = icmp %p
2399 ///   br i1 %c
2400 ///
2401 /// And expand the select into a branch structure if one of its arms allows %c
2402 /// to be folded. This later enables threading from bb1 over bb2.
2403 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2404   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2405   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2406   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2407 
2408   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2409       CondLHS->getParent() != BB)
2410     return false;
2411 
2412   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2413     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2414     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2415 
2416     // Look if one of the incoming values is a select in the corresponding
2417     // predecessor.
2418     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2419       continue;
2420 
2421     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2422     if (!PredTerm || !PredTerm->isUnconditional())
2423       continue;
2424 
2425     // Now check if one of the select values would allow us to constant fold the
2426     // terminator in BB. We don't do the transform if both sides fold, those
2427     // cases will be threaded in any case.
2428     if (DTU->hasPendingDomTreeUpdates())
2429       LVI->disableDT();
2430     else
2431       LVI->enableDT();
2432     LazyValueInfo::Tristate LHSFolds =
2433         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2434                                 CondRHS, Pred, BB, CondCmp);
2435     LazyValueInfo::Tristate RHSFolds =
2436         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2437                                 CondRHS, Pred, BB, CondCmp);
2438     if ((LHSFolds != LazyValueInfo::Unknown ||
2439          RHSFolds != LazyValueInfo::Unknown) &&
2440         LHSFolds != RHSFolds) {
2441       // Expand the select.
2442       //
2443       // Pred --
2444       //  |    v
2445       //  |  NewBB
2446       //  |    |
2447       //  |-----
2448       //  v
2449       // BB
2450       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2451                                              BB->getParent(), BB);
2452       // Move the unconditional branch to NewBB.
2453       PredTerm->removeFromParent();
2454       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2455       // Create a conditional branch and update PHI nodes.
2456       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2457       CondLHS->setIncomingValue(I, SI->getFalseValue());
2458       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2459       // The select is now dead.
2460       SI->eraseFromParent();
2461 
2462       DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2463                          {DominatorTree::Insert, Pred, NewBB}});
2464       // Update any other PHI nodes in BB.
2465       for (BasicBlock::iterator BI = BB->begin();
2466            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2467         if (Phi != CondLHS)
2468           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2469       return true;
2470     }
2471   }
2472   return false;
2473 }
2474 
2475 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2476 /// same BB in the form
2477 /// bb:
2478 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2479 ///   %s = select %p, trueval, falseval
2480 ///
2481 /// or
2482 ///
2483 /// bb:
2484 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2485 ///   %c = cmp %p, 0
2486 ///   %s = select %c, trueval, falseval
2487 ///
2488 /// And expand the select into a branch structure. This later enables
2489 /// jump-threading over bb in this pass.
2490 ///
2491 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2492 /// select if the associated PHI has at least one constant.  If the unfolded
2493 /// select is not jump-threaded, it will be folded again in the later
2494 /// optimizations.
2495 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2496   // If threading this would thread across a loop header, don't thread the edge.
2497   // See the comments above FindLoopHeaders for justifications and caveats.
2498   if (LoopHeaders.count(BB))
2499     return false;
2500 
2501   for (BasicBlock::iterator BI = BB->begin();
2502        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2503     // Look for a Phi having at least one constant incoming value.
2504     if (llvm::all_of(PN->incoming_values(),
2505                      [](Value *V) { return !isa<ConstantInt>(V); }))
2506       continue;
2507 
2508     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2509       // Check if SI is in BB and use V as condition.
2510       if (SI->getParent() != BB)
2511         return false;
2512       Value *Cond = SI->getCondition();
2513       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2514     };
2515 
2516     SelectInst *SI = nullptr;
2517     for (Use &U : PN->uses()) {
2518       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2519         // Look for a ICmp in BB that compares PN with a constant and is the
2520         // condition of a Select.
2521         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2522             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2523           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2524             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2525               SI = SelectI;
2526               break;
2527             }
2528       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2529         // Look for a Select in BB that uses PN as condition.
2530         if (isUnfoldCandidate(SelectI, U.get())) {
2531           SI = SelectI;
2532           break;
2533         }
2534       }
2535     }
2536 
2537     if (!SI)
2538       continue;
2539     // Expand the select.
2540     TerminatorInst *Term =
2541         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2542     BasicBlock *SplitBB = SI->getParent();
2543     BasicBlock *NewBB = Term->getParent();
2544     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2545     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2546     NewPN->addIncoming(SI->getFalseValue(), BB);
2547     SI->replaceAllUsesWith(NewPN);
2548     SI->eraseFromParent();
2549     // NewBB and SplitBB are newly created blocks which require insertion.
2550     std::vector<DominatorTree::UpdateType> Updates;
2551     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2552     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2553     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2554     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2555     // BB's successors were moved to SplitBB, update DTU accordingly.
2556     for (auto *Succ : successors(SplitBB)) {
2557       Updates.push_back({DominatorTree::Delete, BB, Succ});
2558       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2559     }
2560     DTU->applyUpdates(Updates);
2561     return true;
2562   }
2563   return false;
2564 }
2565 
2566 /// Try to propagate a guard from the current BB into one of its predecessors
2567 /// in case if another branch of execution implies that the condition of this
2568 /// guard is always true. Currently we only process the simplest case that
2569 /// looks like:
2570 ///
2571 /// Start:
2572 ///   %cond = ...
2573 ///   br i1 %cond, label %T1, label %F1
2574 /// T1:
2575 ///   br label %Merge
2576 /// F1:
2577 ///   br label %Merge
2578 /// Merge:
2579 ///   %condGuard = ...
2580 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2581 ///
2582 /// And cond either implies condGuard or !condGuard. In this case all the
2583 /// instructions before the guard can be duplicated in both branches, and the
2584 /// guard is then threaded to one of them.
2585 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2586   using namespace PatternMatch;
2587 
2588   // We only want to deal with two predecessors.
2589   BasicBlock *Pred1, *Pred2;
2590   auto PI = pred_begin(BB), PE = pred_end(BB);
2591   if (PI == PE)
2592     return false;
2593   Pred1 = *PI++;
2594   if (PI == PE)
2595     return false;
2596   Pred2 = *PI++;
2597   if (PI != PE)
2598     return false;
2599   if (Pred1 == Pred2)
2600     return false;
2601 
2602   // Try to thread one of the guards of the block.
2603   // TODO: Look up deeper than to immediate predecessor?
2604   auto *Parent = Pred1->getSinglePredecessor();
2605   if (!Parent || Parent != Pred2->getSinglePredecessor())
2606     return false;
2607 
2608   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2609     for (auto &I : *BB)
2610       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2611         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2612           return true;
2613 
2614   return false;
2615 }
2616 
2617 /// Try to propagate the guard from BB which is the lower block of a diamond
2618 /// to one of its branches, in case if diamond's condition implies guard's
2619 /// condition.
2620 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2621                                     BranchInst *BI) {
2622   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2623   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2624   Value *GuardCond = Guard->getArgOperand(0);
2625   Value *BranchCond = BI->getCondition();
2626   BasicBlock *TrueDest = BI->getSuccessor(0);
2627   BasicBlock *FalseDest = BI->getSuccessor(1);
2628 
2629   auto &DL = BB->getModule()->getDataLayout();
2630   bool TrueDestIsSafe = false;
2631   bool FalseDestIsSafe = false;
2632 
2633   // True dest is safe if BranchCond => GuardCond.
2634   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2635   if (Impl && *Impl)
2636     TrueDestIsSafe = true;
2637   else {
2638     // False dest is safe if !BranchCond => GuardCond.
2639     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2640     if (Impl && *Impl)
2641       FalseDestIsSafe = true;
2642   }
2643 
2644   if (!TrueDestIsSafe && !FalseDestIsSafe)
2645     return false;
2646 
2647   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2648   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2649 
2650   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2651   Instruction *AfterGuard = Guard->getNextNode();
2652   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2653   if (Cost > BBDupThreshold)
2654     return false;
2655   // Duplicate all instructions before the guard and the guard itself to the
2656   // branch where implication is not proved.
2657   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2658       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2659   assert(GuardedBlock && "Could not create the guarded block?");
2660   // Duplicate all instructions before the guard in the unguarded branch.
2661   // Since we have successfully duplicated the guarded block and this block
2662   // has fewer instructions, we expect it to succeed.
2663   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2664       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2665   assert(UnguardedBlock && "Could not create the unguarded block?");
2666   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2667                     << GuardedBlock->getName() << "\n");
2668   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2669   // PredBB and BB. We need to perform two inserts and one delete for each of
2670   // the above calls to update Dominators.
2671   DTU->applyUpdates(
2672       {// Guarded block split.
2673        {DominatorTree::Delete, PredGuardedBlock, BB},
2674        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2675        {DominatorTree::Insert, GuardedBlock, BB},
2676        // Unguarded block split.
2677        {DominatorTree::Delete, PredUnguardedBlock, BB},
2678        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2679        {DominatorTree::Insert, UnguardedBlock, BB}});
2680   // Some instructions before the guard may still have uses. For them, we need
2681   // to create Phi nodes merging their copies in both guarded and unguarded
2682   // branches. Those instructions that have no uses can be just removed.
2683   SmallVector<Instruction *, 4> ToRemove;
2684   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2685     if (!isa<PHINode>(&*BI))
2686       ToRemove.push_back(&*BI);
2687 
2688   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2689   assert(InsertionPoint && "Empty block?");
2690   // Substitute with Phis & remove.
2691   for (auto *Inst : reverse(ToRemove)) {
2692     if (!Inst->use_empty()) {
2693       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2694       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2695       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2696       NewPN->insertBefore(InsertionPoint);
2697       Inst->replaceAllUsesWith(NewPN);
2698     }
2699     Inst->eraseFromParent();
2700   }
2701   return true;
2702 }
2703