1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DomTreeUpdater.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/Local.h" 69 #include "llvm/Transforms/Utils/SSAUpdater.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<bool> PrintLVIAfterJumpThreading( 101 "print-lvi-after-jump-threading", 102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 103 cl::Hidden); 104 105 namespace { 106 107 /// This pass performs 'jump threading', which looks at blocks that have 108 /// multiple predecessors and multiple successors. If one or more of the 109 /// predecessors of the block can be proven to always jump to one of the 110 /// successors, we forward the edge from the predecessor to the successor by 111 /// duplicating the contents of this block. 112 /// 113 /// An example of when this can occur is code like this: 114 /// 115 /// if () { ... 116 /// X = 4; 117 /// } 118 /// if (X < 3) { 119 /// 120 /// In this case, the unconditional branch at the end of the first if can be 121 /// revectored to the false side of the second if. 122 class JumpThreading : public FunctionPass { 123 JumpThreadingPass Impl; 124 125 public: 126 static char ID; // Pass identification 127 128 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 129 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 130 } 131 132 bool runOnFunction(Function &F) override; 133 134 void getAnalysisUsage(AnalysisUsage &AU) const override { 135 AU.addRequired<DominatorTreeWrapperPass>(); 136 AU.addPreserved<DominatorTreeWrapperPass>(); 137 AU.addRequired<AAResultsWrapperPass>(); 138 AU.addRequired<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<LazyValueInfoWrapperPass>(); 140 AU.addPreserved<GlobalsAAWrapperPass>(); 141 AU.addRequired<TargetLibraryInfoWrapperPass>(); 142 } 143 144 void releaseMemory() override { Impl.releaseMemory(); } 145 }; 146 147 } // end anonymous namespace 148 149 char JumpThreading::ID = 0; 150 151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 152 "Jump Threading", false, false) 153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 157 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 158 "Jump Threading", false, false) 159 160 // Public interface to the Jump Threading pass 161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 162 return new JumpThreading(Threshold); 163 } 164 165 JumpThreadingPass::JumpThreadingPass(int T) { 166 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 167 } 168 169 // Update branch probability information according to conditional 170 // branch probability. This is usually made possible for cloned branches 171 // in inline instances by the context specific profile in the caller. 172 // For instance, 173 // 174 // [Block PredBB] 175 // [Branch PredBr] 176 // if (t) { 177 // Block A; 178 // } else { 179 // Block B; 180 // } 181 // 182 // [Block BB] 183 // cond = PN([true, %A], [..., %B]); // PHI node 184 // [Branch CondBr] 185 // if (cond) { 186 // ... // P(cond == true) = 1% 187 // } 188 // 189 // Here we know that when block A is taken, cond must be true, which means 190 // P(cond == true | A) = 1 191 // 192 // Given that P(cond == true) = P(cond == true | A) * P(A) + 193 // P(cond == true | B) * P(B) 194 // we get: 195 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 196 // 197 // which gives us: 198 // P(A) is less than P(cond == true), i.e. 199 // P(t == true) <= P(cond == true) 200 // 201 // In other words, if we know P(cond == true) is unlikely, we know 202 // that P(t == true) is also unlikely. 203 // 204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 205 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 206 if (!CondBr) 207 return; 208 209 BranchProbability BP; 210 uint64_t TrueWeight, FalseWeight; 211 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 212 return; 213 214 // Returns the outgoing edge of the dominating predecessor block 215 // that leads to the PhiNode's incoming block: 216 auto GetPredOutEdge = 217 [](BasicBlock *IncomingBB, 218 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 219 auto *PredBB = IncomingBB; 220 auto *SuccBB = PhiBB; 221 while (true) { 222 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 223 if (PredBr && PredBr->isConditional()) 224 return {PredBB, SuccBB}; 225 auto *SinglePredBB = PredBB->getSinglePredecessor(); 226 if (!SinglePredBB) 227 return {nullptr, nullptr}; 228 SuccBB = PredBB; 229 PredBB = SinglePredBB; 230 } 231 }; 232 233 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 234 Value *PhiOpnd = PN->getIncomingValue(i); 235 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 236 237 if (!CI || !CI->getType()->isIntegerTy(1)) 238 continue; 239 240 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 241 TrueWeight, TrueWeight + FalseWeight) 242 : BranchProbability::getBranchProbability( 243 FalseWeight, TrueWeight + FalseWeight)); 244 245 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 246 if (!PredOutEdge.first) 247 return; 248 249 BasicBlock *PredBB = PredOutEdge.first; 250 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 251 252 uint64_t PredTrueWeight, PredFalseWeight; 253 // FIXME: We currently only set the profile data when it is missing. 254 // With PGO, this can be used to refine even existing profile data with 255 // context information. This needs to be done after more performance 256 // testing. 257 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 258 continue; 259 260 // We can not infer anything useful when BP >= 50%, because BP is the 261 // upper bound probability value. 262 if (BP >= BranchProbability(50, 100)) 263 continue; 264 265 SmallVector<uint32_t, 2> Weights; 266 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 267 Weights.push_back(BP.getNumerator()); 268 Weights.push_back(BP.getCompl().getNumerator()); 269 } else { 270 Weights.push_back(BP.getCompl().getNumerator()); 271 Weights.push_back(BP.getNumerator()); 272 } 273 PredBr->setMetadata(LLVMContext::MD_prof, 274 MDBuilder(PredBr->getParent()->getContext()) 275 .createBranchWeights(Weights)); 276 } 277 } 278 279 /// runOnFunction - Toplevel algorithm. 280 bool JumpThreading::runOnFunction(Function &F) { 281 if (skipFunction(F)) 282 return false; 283 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 284 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 285 // DT if it's available. 286 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 287 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 288 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 289 DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); 290 std::unique_ptr<BlockFrequencyInfo> BFI; 291 std::unique_ptr<BranchProbabilityInfo> BPI; 292 bool HasProfileData = F.hasProfileData(); 293 if (HasProfileData) { 294 LoopInfo LI{DominatorTree(F)}; 295 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 296 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 297 } 298 299 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DTU, HasProfileData, 300 std::move(BFI), std::move(BPI)); 301 if (PrintLVIAfterJumpThreading) { 302 dbgs() << "LVI for function '" << F.getName() << "':\n"; 303 LVI->printLVI(F, *DT, dbgs()); 304 } 305 return Changed; 306 } 307 308 PreservedAnalyses JumpThreadingPass::run(Function &F, 309 FunctionAnalysisManager &AM) { 310 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 311 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 312 // DT if it's available. 313 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 314 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 315 auto &AA = AM.getResult<AAManager>(F); 316 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); 317 318 std::unique_ptr<BlockFrequencyInfo> BFI; 319 std::unique_ptr<BranchProbabilityInfo> BPI; 320 if (F.hasProfileData()) { 321 LoopInfo LI{DominatorTree(F)}; 322 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 323 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 324 } 325 326 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DTU, HasProfileData, 327 std::move(BFI), std::move(BPI)); 328 329 if (!Changed) 330 return PreservedAnalyses::all(); 331 PreservedAnalyses PA; 332 PA.preserve<GlobalsAA>(); 333 PA.preserve<DominatorTreeAnalysis>(); 334 PA.preserve<LazyValueAnalysis>(); 335 return PA; 336 } 337 338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 339 LazyValueInfo *LVI_, AliasAnalysis *AA_, 340 DomTreeUpdater *DTU_, bool HasProfileData_, 341 std::unique_ptr<BlockFrequencyInfo> BFI_, 342 std::unique_ptr<BranchProbabilityInfo> BPI_) { 343 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 344 TLI = TLI_; 345 LVI = LVI_; 346 AA = AA_; 347 DTU = DTU_; 348 BFI.reset(); 349 BPI.reset(); 350 // When profile data is available, we need to update edge weights after 351 // successful jump threading, which requires both BPI and BFI being available. 352 HasProfileData = HasProfileData_; 353 auto *GuardDecl = F.getParent()->getFunction( 354 Intrinsic::getName(Intrinsic::experimental_guard)); 355 HasGuards = GuardDecl && !GuardDecl->use_empty(); 356 if (HasProfileData) { 357 BPI = std::move(BPI_); 358 BFI = std::move(BFI_); 359 } 360 361 // JumpThreading must not processes blocks unreachable from entry. It's a 362 // waste of compute time and can potentially lead to hangs. 363 SmallPtrSet<BasicBlock *, 16> Unreachable; 364 assert(DTU && "DTU isn't passed into JumpThreading before using it."); 365 assert(DTU->hasDomTree() && "JumpThreading relies on DomTree to proceed."); 366 DominatorTree &DT = DTU->getDomTree(); 367 for (auto &BB : F) 368 if (!DT.isReachableFromEntry(&BB)) 369 Unreachable.insert(&BB); 370 371 FindLoopHeaders(F); 372 373 bool EverChanged = false; 374 bool Changed; 375 do { 376 Changed = false; 377 for (auto &BB : F) { 378 if (Unreachable.count(&BB)) 379 continue; 380 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 381 Changed = true; 382 // Stop processing BB if it's the entry or is now deleted. The following 383 // routines attempt to eliminate BB and locating a suitable replacement 384 // for the entry is non-trivial. 385 if (&BB == &F.getEntryBlock() || DTU->isBBPendingDeletion(&BB)) 386 continue; 387 388 if (pred_empty(&BB)) { 389 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 390 // the instructions in it. We must remove BB to prevent invalid IR. 391 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 392 << "' with terminator: " << *BB.getTerminator() 393 << '\n'); 394 LoopHeaders.erase(&BB); 395 LVI->eraseBlock(&BB); 396 DeleteDeadBlock(&BB, DTU); 397 Changed = true; 398 continue; 399 } 400 401 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 402 // is "almost empty", we attempt to merge BB with its sole successor. 403 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 404 if (BI && BI->isUnconditional() && 405 // The terminator must be the only non-phi instruction in BB. 406 BB.getFirstNonPHIOrDbg()->isTerminator() && 407 // Don't alter Loop headers and latches to ensure another pass can 408 // detect and transform nested loops later. 409 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 410 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DTU)) { 411 // BB is valid for cleanup here because we passed in DTU. F remains 412 // BB's parent until a DTU->getDomTree() event. 413 LVI->eraseBlock(&BB); 414 Changed = true; 415 } 416 } 417 EverChanged |= Changed; 418 } while (Changed); 419 420 LoopHeaders.clear(); 421 // Flush only the Dominator Tree. 422 DTU->getDomTree(); 423 LVI->enableDT(); 424 return EverChanged; 425 } 426 427 // Replace uses of Cond with ToVal when safe to do so. If all uses are 428 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 429 // because we may incorrectly replace uses when guards/assumes are uses of 430 // of `Cond` and we used the guards/assume to reason about the `Cond` value 431 // at the end of block. RAUW unconditionally replaces all uses 432 // including the guards/assumes themselves and the uses before the 433 // guard/assume. 434 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 435 assert(Cond->getType() == ToVal->getType()); 436 auto *BB = Cond->getParent(); 437 // We can unconditionally replace all uses in non-local blocks (i.e. uses 438 // strictly dominated by BB), since LVI information is true from the 439 // terminator of BB. 440 replaceNonLocalUsesWith(Cond, ToVal); 441 for (Instruction &I : reverse(*BB)) { 442 // Reached the Cond whose uses we are trying to replace, so there are no 443 // more uses. 444 if (&I == Cond) 445 break; 446 // We only replace uses in instructions that are guaranteed to reach the end 447 // of BB, where we know Cond is ToVal. 448 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 449 break; 450 I.replaceUsesOfWith(Cond, ToVal); 451 } 452 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 453 Cond->eraseFromParent(); 454 } 455 456 /// Return the cost of duplicating a piece of this block from first non-phi 457 /// and before StopAt instruction to thread across it. Stop scanning the block 458 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 459 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 460 Instruction *StopAt, 461 unsigned Threshold) { 462 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 463 /// Ignore PHI nodes, these will be flattened when duplication happens. 464 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 465 466 // FIXME: THREADING will delete values that are just used to compute the 467 // branch, so they shouldn't count against the duplication cost. 468 469 unsigned Bonus = 0; 470 if (BB->getTerminator() == StopAt) { 471 // Threading through a switch statement is particularly profitable. If this 472 // block ends in a switch, decrease its cost to make it more likely to 473 // happen. 474 if (isa<SwitchInst>(StopAt)) 475 Bonus = 6; 476 477 // The same holds for indirect branches, but slightly more so. 478 if (isa<IndirectBrInst>(StopAt)) 479 Bonus = 8; 480 } 481 482 // Bump the threshold up so the early exit from the loop doesn't skip the 483 // terminator-based Size adjustment at the end. 484 Threshold += Bonus; 485 486 // Sum up the cost of each instruction until we get to the terminator. Don't 487 // include the terminator because the copy won't include it. 488 unsigned Size = 0; 489 for (; &*I != StopAt; ++I) { 490 491 // Stop scanning the block if we've reached the threshold. 492 if (Size > Threshold) 493 return Size; 494 495 // Debugger intrinsics don't incur code size. 496 if (isa<DbgInfoIntrinsic>(I)) continue; 497 498 // If this is a pointer->pointer bitcast, it is free. 499 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 500 continue; 501 502 // Bail out if this instruction gives back a token type, it is not possible 503 // to duplicate it if it is used outside this BB. 504 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 505 return ~0U; 506 507 // All other instructions count for at least one unit. 508 ++Size; 509 510 // Calls are more expensive. If they are non-intrinsic calls, we model them 511 // as having cost of 4. If they are a non-vector intrinsic, we model them 512 // as having cost of 2 total, and if they are a vector intrinsic, we model 513 // them as having cost 1. 514 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 515 if (CI->cannotDuplicate() || CI->isConvergent()) 516 // Blocks with NoDuplicate are modelled as having infinite cost, so they 517 // are never duplicated. 518 return ~0U; 519 else if (!isa<IntrinsicInst>(CI)) 520 Size += 3; 521 else if (!CI->getType()->isVectorTy()) 522 Size += 1; 523 } 524 } 525 526 return Size > Bonus ? Size - Bonus : 0; 527 } 528 529 /// FindLoopHeaders - We do not want jump threading to turn proper loop 530 /// structures into irreducible loops. Doing this breaks up the loop nesting 531 /// hierarchy and pessimizes later transformations. To prevent this from 532 /// happening, we first have to find the loop headers. Here we approximate this 533 /// by finding targets of backedges in the CFG. 534 /// 535 /// Note that there definitely are cases when we want to allow threading of 536 /// edges across a loop header. For example, threading a jump from outside the 537 /// loop (the preheader) to an exit block of the loop is definitely profitable. 538 /// It is also almost always profitable to thread backedges from within the loop 539 /// to exit blocks, and is often profitable to thread backedges to other blocks 540 /// within the loop (forming a nested loop). This simple analysis is not rich 541 /// enough to track all of these properties and keep it up-to-date as the CFG 542 /// mutates, so we don't allow any of these transformations. 543 void JumpThreadingPass::FindLoopHeaders(Function &F) { 544 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 545 FindFunctionBackedges(F, Edges); 546 547 for (const auto &Edge : Edges) 548 LoopHeaders.insert(Edge.second); 549 } 550 551 /// getKnownConstant - Helper method to determine if we can thread over a 552 /// terminator with the given value as its condition, and if so what value to 553 /// use for that. What kind of value this is depends on whether we want an 554 /// integer or a block address, but an undef is always accepted. 555 /// Returns null if Val is null or not an appropriate constant. 556 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 557 if (!Val) 558 return nullptr; 559 560 // Undef is "known" enough. 561 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 562 return U; 563 564 if (Preference == WantBlockAddress) 565 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 566 567 return dyn_cast<ConstantInt>(Val); 568 } 569 570 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 571 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 572 /// in any of our predecessors. If so, return the known list of value and pred 573 /// BB in the result vector. 574 /// 575 /// This returns true if there were any known values. 576 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 577 Value *V, BasicBlock *BB, PredValueInfo &Result, 578 ConstantPreference Preference, Instruction *CxtI) { 579 // This method walks up use-def chains recursively. Because of this, we could 580 // get into an infinite loop going around loops in the use-def chain. To 581 // prevent this, keep track of what (value, block) pairs we've already visited 582 // and terminate the search if we loop back to them 583 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 584 return false; 585 586 // An RAII help to remove this pair from the recursion set once the recursion 587 // stack pops back out again. 588 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 589 590 // If V is a constant, then it is known in all predecessors. 591 if (Constant *KC = getKnownConstant(V, Preference)) { 592 for (BasicBlock *Pred : predecessors(BB)) 593 Result.push_back(std::make_pair(KC, Pred)); 594 595 return !Result.empty(); 596 } 597 598 // If V is a non-instruction value, or an instruction in a different block, 599 // then it can't be derived from a PHI. 600 Instruction *I = dyn_cast<Instruction>(V); 601 if (!I || I->getParent() != BB) { 602 603 // Okay, if this is a live-in value, see if it has a known value at the end 604 // of any of our predecessors. 605 // 606 // FIXME: This should be an edge property, not a block end property. 607 /// TODO: Per PR2563, we could infer value range information about a 608 /// predecessor based on its terminator. 609 // 610 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 611 // "I" is a non-local compare-with-a-constant instruction. This would be 612 // able to handle value inequalities better, for example if the compare is 613 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 614 // Perhaps getConstantOnEdge should be smart enough to do this? 615 616 if (DTU->hasPendingDomTreeUpdates()) 617 LVI->disableDT(); 618 else 619 LVI->enableDT(); 620 for (BasicBlock *P : predecessors(BB)) { 621 // If the value is known by LazyValueInfo to be a constant in a 622 // predecessor, use that information to try to thread this block. 623 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 624 if (Constant *KC = getKnownConstant(PredCst, Preference)) 625 Result.push_back(std::make_pair(KC, P)); 626 } 627 628 return !Result.empty(); 629 } 630 631 /// If I is a PHI node, then we know the incoming values for any constants. 632 if (PHINode *PN = dyn_cast<PHINode>(I)) { 633 if (DTU->hasPendingDomTreeUpdates()) 634 LVI->disableDT(); 635 else 636 LVI->enableDT(); 637 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 638 Value *InVal = PN->getIncomingValue(i); 639 if (Constant *KC = getKnownConstant(InVal, Preference)) { 640 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 641 } else { 642 Constant *CI = LVI->getConstantOnEdge(InVal, 643 PN->getIncomingBlock(i), 644 BB, CxtI); 645 if (Constant *KC = getKnownConstant(CI, Preference)) 646 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 647 } 648 } 649 650 return !Result.empty(); 651 } 652 653 // Handle Cast instructions. Only see through Cast when the source operand is 654 // PHI or Cmp to save the compilation time. 655 if (CastInst *CI = dyn_cast<CastInst>(I)) { 656 Value *Source = CI->getOperand(0); 657 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 658 return false; 659 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 660 if (Result.empty()) 661 return false; 662 663 // Convert the known values. 664 for (auto &R : Result) 665 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 666 667 return true; 668 } 669 670 // Handle some boolean conditions. 671 if (I->getType()->getPrimitiveSizeInBits() == 1) { 672 assert(Preference == WantInteger && "One-bit non-integer type?"); 673 // X | true -> true 674 // X & false -> false 675 if (I->getOpcode() == Instruction::Or || 676 I->getOpcode() == Instruction::And) { 677 PredValueInfoTy LHSVals, RHSVals; 678 679 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 680 WantInteger, CxtI); 681 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 682 WantInteger, CxtI); 683 684 if (LHSVals.empty() && RHSVals.empty()) 685 return false; 686 687 ConstantInt *InterestingVal; 688 if (I->getOpcode() == Instruction::Or) 689 InterestingVal = ConstantInt::getTrue(I->getContext()); 690 else 691 InterestingVal = ConstantInt::getFalse(I->getContext()); 692 693 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 694 695 // Scan for the sentinel. If we find an undef, force it to the 696 // interesting value: x|undef -> true and x&undef -> false. 697 for (const auto &LHSVal : LHSVals) 698 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 699 Result.emplace_back(InterestingVal, LHSVal.second); 700 LHSKnownBBs.insert(LHSVal.second); 701 } 702 for (const auto &RHSVal : RHSVals) 703 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 704 // If we already inferred a value for this block on the LHS, don't 705 // re-add it. 706 if (!LHSKnownBBs.count(RHSVal.second)) 707 Result.emplace_back(InterestingVal, RHSVal.second); 708 } 709 710 return !Result.empty(); 711 } 712 713 // Handle the NOT form of XOR. 714 if (I->getOpcode() == Instruction::Xor && 715 isa<ConstantInt>(I->getOperand(1)) && 716 cast<ConstantInt>(I->getOperand(1))->isOne()) { 717 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 718 WantInteger, CxtI); 719 if (Result.empty()) 720 return false; 721 722 // Invert the known values. 723 for (auto &R : Result) 724 R.first = ConstantExpr::getNot(R.first); 725 726 return true; 727 } 728 729 // Try to simplify some other binary operator values. 730 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 731 assert(Preference != WantBlockAddress 732 && "A binary operator creating a block address?"); 733 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 734 PredValueInfoTy LHSVals; 735 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 736 WantInteger, CxtI); 737 738 // Try to use constant folding to simplify the binary operator. 739 for (const auto &LHSVal : LHSVals) { 740 Constant *V = LHSVal.first; 741 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 742 743 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 744 Result.push_back(std::make_pair(KC, LHSVal.second)); 745 } 746 } 747 748 return !Result.empty(); 749 } 750 751 // Handle compare with phi operand, where the PHI is defined in this block. 752 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 753 assert(Preference == WantInteger && "Compares only produce integers"); 754 Type *CmpType = Cmp->getType(); 755 Value *CmpLHS = Cmp->getOperand(0); 756 Value *CmpRHS = Cmp->getOperand(1); 757 CmpInst::Predicate Pred = Cmp->getPredicate(); 758 759 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 760 if (!PN) 761 PN = dyn_cast<PHINode>(CmpRHS); 762 if (PN && PN->getParent() == BB) { 763 const DataLayout &DL = PN->getModule()->getDataLayout(); 764 // We can do this simplification if any comparisons fold to true or false. 765 // See if any do. 766 if (DTU->hasPendingDomTreeUpdates()) 767 LVI->disableDT(); 768 else 769 LVI->enableDT(); 770 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 771 BasicBlock *PredBB = PN->getIncomingBlock(i); 772 Value *LHS, *RHS; 773 if (PN == CmpLHS) { 774 LHS = PN->getIncomingValue(i); 775 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 776 } else { 777 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 778 RHS = PN->getIncomingValue(i); 779 } 780 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 781 if (!Res) { 782 if (!isa<Constant>(RHS)) 783 continue; 784 785 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 786 auto LHSInst = dyn_cast<Instruction>(LHS); 787 if (LHSInst && LHSInst->getParent() == BB) 788 continue; 789 790 LazyValueInfo::Tristate 791 ResT = LVI->getPredicateOnEdge(Pred, LHS, 792 cast<Constant>(RHS), PredBB, BB, 793 CxtI ? CxtI : Cmp); 794 if (ResT == LazyValueInfo::Unknown) 795 continue; 796 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 797 } 798 799 if (Constant *KC = getKnownConstant(Res, WantInteger)) 800 Result.push_back(std::make_pair(KC, PredBB)); 801 } 802 803 return !Result.empty(); 804 } 805 806 // If comparing a live-in value against a constant, see if we know the 807 // live-in value on any predecessors. 808 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 809 Constant *CmpConst = cast<Constant>(CmpRHS); 810 811 if (!isa<Instruction>(CmpLHS) || 812 cast<Instruction>(CmpLHS)->getParent() != BB) { 813 if (DTU->hasPendingDomTreeUpdates()) 814 LVI->disableDT(); 815 else 816 LVI->enableDT(); 817 for (BasicBlock *P : predecessors(BB)) { 818 // If the value is known by LazyValueInfo to be a constant in a 819 // predecessor, use that information to try to thread this block. 820 LazyValueInfo::Tristate Res = 821 LVI->getPredicateOnEdge(Pred, CmpLHS, 822 CmpConst, P, BB, CxtI ? CxtI : Cmp); 823 if (Res == LazyValueInfo::Unknown) 824 continue; 825 826 Constant *ResC = ConstantInt::get(CmpType, Res); 827 Result.push_back(std::make_pair(ResC, P)); 828 } 829 830 return !Result.empty(); 831 } 832 833 // InstCombine can fold some forms of constant range checks into 834 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 835 // x as a live-in. 836 { 837 using namespace PatternMatch; 838 839 Value *AddLHS; 840 ConstantInt *AddConst; 841 if (isa<ConstantInt>(CmpConst) && 842 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 843 if (!isa<Instruction>(AddLHS) || 844 cast<Instruction>(AddLHS)->getParent() != BB) { 845 if (DTU->hasPendingDomTreeUpdates()) 846 LVI->disableDT(); 847 else 848 LVI->enableDT(); 849 for (BasicBlock *P : predecessors(BB)) { 850 // If the value is known by LazyValueInfo to be a ConstantRange in 851 // a predecessor, use that information to try to thread this 852 // block. 853 ConstantRange CR = LVI->getConstantRangeOnEdge( 854 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 855 // Propagate the range through the addition. 856 CR = CR.add(AddConst->getValue()); 857 858 // Get the range where the compare returns true. 859 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 860 Pred, cast<ConstantInt>(CmpConst)->getValue()); 861 862 Constant *ResC; 863 if (CmpRange.contains(CR)) 864 ResC = ConstantInt::getTrue(CmpType); 865 else if (CmpRange.inverse().contains(CR)) 866 ResC = ConstantInt::getFalse(CmpType); 867 else 868 continue; 869 870 Result.push_back(std::make_pair(ResC, P)); 871 } 872 873 return !Result.empty(); 874 } 875 } 876 } 877 878 // Try to find a constant value for the LHS of a comparison, 879 // and evaluate it statically if we can. 880 PredValueInfoTy LHSVals; 881 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 882 WantInteger, CxtI); 883 884 for (const auto &LHSVal : LHSVals) { 885 Constant *V = LHSVal.first; 886 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 887 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 888 Result.push_back(std::make_pair(KC, LHSVal.second)); 889 } 890 891 return !Result.empty(); 892 } 893 } 894 895 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 896 // Handle select instructions where at least one operand is a known constant 897 // and we can figure out the condition value for any predecessor block. 898 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 899 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 900 PredValueInfoTy Conds; 901 if ((TrueVal || FalseVal) && 902 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 903 WantInteger, CxtI)) { 904 for (auto &C : Conds) { 905 Constant *Cond = C.first; 906 907 // Figure out what value to use for the condition. 908 bool KnownCond; 909 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 910 // A known boolean. 911 KnownCond = CI->isOne(); 912 } else { 913 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 914 // Either operand will do, so be sure to pick the one that's a known 915 // constant. 916 // FIXME: Do this more cleverly if both values are known constants? 917 KnownCond = (TrueVal != nullptr); 918 } 919 920 // See if the select has a known constant value for this predecessor. 921 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 922 Result.push_back(std::make_pair(Val, C.second)); 923 } 924 925 return !Result.empty(); 926 } 927 } 928 929 // If all else fails, see if LVI can figure out a constant value for us. 930 if (DTU->hasPendingDomTreeUpdates()) 931 LVI->disableDT(); 932 else 933 LVI->enableDT(); 934 Constant *CI = LVI->getConstant(V, BB, CxtI); 935 if (Constant *KC = getKnownConstant(CI, Preference)) { 936 for (BasicBlock *Pred : predecessors(BB)) 937 Result.push_back(std::make_pair(KC, Pred)); 938 } 939 940 return !Result.empty(); 941 } 942 943 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 944 /// in an undefined jump, decide which block is best to revector to. 945 /// 946 /// Since we can pick an arbitrary destination, we pick the successor with the 947 /// fewest predecessors. This should reduce the in-degree of the others. 948 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 949 TerminatorInst *BBTerm = BB->getTerminator(); 950 unsigned MinSucc = 0; 951 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 952 // Compute the successor with the minimum number of predecessors. 953 unsigned MinNumPreds = pred_size(TestBB); 954 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 955 TestBB = BBTerm->getSuccessor(i); 956 unsigned NumPreds = pred_size(TestBB); 957 if (NumPreds < MinNumPreds) { 958 MinSucc = i; 959 MinNumPreds = NumPreds; 960 } 961 } 962 963 return MinSucc; 964 } 965 966 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 967 if (!BB->hasAddressTaken()) return false; 968 969 // If the block has its address taken, it may be a tree of dead constants 970 // hanging off of it. These shouldn't keep the block alive. 971 BlockAddress *BA = BlockAddress::get(BB); 972 BA->removeDeadConstantUsers(); 973 return !BA->use_empty(); 974 } 975 976 /// ProcessBlock - If there are any predecessors whose control can be threaded 977 /// through to a successor, transform them now. 978 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 979 // If the block is trivially dead, just return and let the caller nuke it. 980 // This simplifies other transformations. 981 if (DTU->isBBPendingDeletion(BB) || 982 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 983 return false; 984 985 // If this block has a single predecessor, and if that pred has a single 986 // successor, merge the blocks. This encourages recursive jump threading 987 // because now the condition in this block can be threaded through 988 // predecessors of our predecessor block. 989 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 990 const TerminatorInst *TI = SinglePred->getTerminator(); 991 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 992 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 993 // If SinglePred was a loop header, BB becomes one. 994 if (LoopHeaders.erase(SinglePred)) 995 LoopHeaders.insert(BB); 996 997 LVI->eraseBlock(SinglePred); 998 MergeBasicBlockIntoOnlyPred(BB, DTU); 999 1000 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 1001 // BB code within one basic block `BB`), we need to invalidate the LVI 1002 // information associated with BB, because the LVI information need not be 1003 // true for all of BB after the merge. For example, 1004 // Before the merge, LVI info and code is as follows: 1005 // SinglePred: <LVI info1 for %p val> 1006 // %y = use of %p 1007 // call @exit() // need not transfer execution to successor. 1008 // assume(%p) // from this point on %p is true 1009 // br label %BB 1010 // BB: <LVI info2 for %p val, i.e. %p is true> 1011 // %x = use of %p 1012 // br label exit 1013 // 1014 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1015 // (info2 and info1 respectively). After the merge and the deletion of the 1016 // LVI info1 for SinglePred. We have the following code: 1017 // BB: <LVI info2 for %p val> 1018 // %y = use of %p 1019 // call @exit() 1020 // assume(%p) 1021 // %x = use of %p <-- LVI info2 is correct from here onwards. 1022 // br label exit 1023 // LVI info2 for BB is incorrect at the beginning of BB. 1024 1025 // Invalidate LVI information for BB if the LVI is not provably true for 1026 // all of BB. 1027 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1028 LVI->eraseBlock(BB); 1029 return true; 1030 } 1031 } 1032 1033 if (TryToUnfoldSelectInCurrBB(BB)) 1034 return true; 1035 1036 // Look if we can propagate guards to predecessors. 1037 if (HasGuards && ProcessGuards(BB)) 1038 return true; 1039 1040 // What kind of constant we're looking for. 1041 ConstantPreference Preference = WantInteger; 1042 1043 // Look to see if the terminator is a conditional branch, switch or indirect 1044 // branch, if not we can't thread it. 1045 Value *Condition; 1046 Instruction *Terminator = BB->getTerminator(); 1047 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1048 // Can't thread an unconditional jump. 1049 if (BI->isUnconditional()) return false; 1050 Condition = BI->getCondition(); 1051 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1052 Condition = SI->getCondition(); 1053 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1054 // Can't thread indirect branch with no successors. 1055 if (IB->getNumSuccessors() == 0) return false; 1056 Condition = IB->getAddress()->stripPointerCasts(); 1057 Preference = WantBlockAddress; 1058 } else { 1059 return false; // Must be an invoke. 1060 } 1061 1062 // Run constant folding to see if we can reduce the condition to a simple 1063 // constant. 1064 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1065 Value *SimpleVal = 1066 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1067 if (SimpleVal) { 1068 I->replaceAllUsesWith(SimpleVal); 1069 if (isInstructionTriviallyDead(I, TLI)) 1070 I->eraseFromParent(); 1071 Condition = SimpleVal; 1072 } 1073 } 1074 1075 // If the terminator is branching on an undef, we can pick any of the 1076 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1077 if (isa<UndefValue>(Condition)) { 1078 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1079 std::vector<DominatorTree::UpdateType> Updates; 1080 1081 // Fold the branch/switch. 1082 TerminatorInst *BBTerm = BB->getTerminator(); 1083 Updates.reserve(BBTerm->getNumSuccessors()); 1084 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1085 if (i == BestSucc) continue; 1086 BasicBlock *Succ = BBTerm->getSuccessor(i); 1087 Succ->removePredecessor(BB, true); 1088 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1089 } 1090 1091 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1092 << "' folding undef terminator: " << *BBTerm << '\n'); 1093 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1094 BBTerm->eraseFromParent(); 1095 DTU->applyUpdates(Updates); 1096 return true; 1097 } 1098 1099 // If the terminator of this block is branching on a constant, simplify the 1100 // terminator to an unconditional branch. This can occur due to threading in 1101 // other blocks. 1102 if (getKnownConstant(Condition, Preference)) { 1103 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1104 << "' folding terminator: " << *BB->getTerminator() 1105 << '\n'); 1106 ++NumFolds; 1107 ConstantFoldTerminator(BB, true, nullptr, DTU); 1108 return true; 1109 } 1110 1111 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1112 1113 // All the rest of our checks depend on the condition being an instruction. 1114 if (!CondInst) { 1115 // FIXME: Unify this with code below. 1116 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1117 return true; 1118 return false; 1119 } 1120 1121 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1122 // If we're branching on a conditional, LVI might be able to determine 1123 // it's value at the branch instruction. We only handle comparisons 1124 // against a constant at this time. 1125 // TODO: This should be extended to handle switches as well. 1126 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1127 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1128 if (CondBr && CondConst) { 1129 // We should have returned as soon as we turn a conditional branch to 1130 // unconditional. Because its no longer interesting as far as jump 1131 // threading is concerned. 1132 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1133 1134 if (DTU->hasPendingDomTreeUpdates()) 1135 LVI->disableDT(); 1136 else 1137 LVI->enableDT(); 1138 LazyValueInfo::Tristate Ret = 1139 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1140 CondConst, CondBr); 1141 if (Ret != LazyValueInfo::Unknown) { 1142 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1143 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1144 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1145 ToRemoveSucc->removePredecessor(BB, true); 1146 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1147 CondBr->eraseFromParent(); 1148 if (CondCmp->use_empty()) 1149 CondCmp->eraseFromParent(); 1150 // We can safely replace *some* uses of the CondInst if it has 1151 // exactly one value as returned by LVI. RAUW is incorrect in the 1152 // presence of guards and assumes, that have the `Cond` as the use. This 1153 // is because we use the guards/assume to reason about the `Cond` value 1154 // at the end of block, but RAUW unconditionally replaces all uses 1155 // including the guards/assumes themselves and the uses before the 1156 // guard/assume. 1157 else if (CondCmp->getParent() == BB) { 1158 auto *CI = Ret == LazyValueInfo::True ? 1159 ConstantInt::getTrue(CondCmp->getType()) : 1160 ConstantInt::getFalse(CondCmp->getType()); 1161 ReplaceFoldableUses(CondCmp, CI); 1162 } 1163 DTU->deleteEdgeRelaxed(BB, ToRemoveSucc); 1164 return true; 1165 } 1166 1167 // We did not manage to simplify this branch, try to see whether 1168 // CondCmp depends on a known phi-select pattern. 1169 if (TryToUnfoldSelect(CondCmp, BB)) 1170 return true; 1171 } 1172 } 1173 1174 // Check for some cases that are worth simplifying. Right now we want to look 1175 // for loads that are used by a switch or by the condition for the branch. If 1176 // we see one, check to see if it's partially redundant. If so, insert a PHI 1177 // which can then be used to thread the values. 1178 Value *SimplifyValue = CondInst; 1179 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1180 if (isa<Constant>(CondCmp->getOperand(1))) 1181 SimplifyValue = CondCmp->getOperand(0); 1182 1183 // TODO: There are other places where load PRE would be profitable, such as 1184 // more complex comparisons. 1185 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1186 if (SimplifyPartiallyRedundantLoad(LoadI)) 1187 return true; 1188 1189 // Before threading, try to propagate profile data backwards: 1190 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1191 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1192 updatePredecessorProfileMetadata(PN, BB); 1193 1194 // Handle a variety of cases where we are branching on something derived from 1195 // a PHI node in the current block. If we can prove that any predecessors 1196 // compute a predictable value based on a PHI node, thread those predecessors. 1197 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1198 return true; 1199 1200 // If this is an otherwise-unfoldable branch on a phi node in the current 1201 // block, see if we can simplify. 1202 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1203 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1204 return ProcessBranchOnPHI(PN); 1205 1206 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1207 if (CondInst->getOpcode() == Instruction::Xor && 1208 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1209 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1210 1211 // Search for a stronger dominating condition that can be used to simplify a 1212 // conditional branch leaving BB. 1213 if (ProcessImpliedCondition(BB)) 1214 return true; 1215 1216 return false; 1217 } 1218 1219 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1220 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1221 if (!BI || !BI->isConditional()) 1222 return false; 1223 1224 Value *Cond = BI->getCondition(); 1225 BasicBlock *CurrentBB = BB; 1226 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1227 unsigned Iter = 0; 1228 1229 auto &DL = BB->getModule()->getDataLayout(); 1230 1231 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1232 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1233 if (!PBI || !PBI->isConditional()) 1234 return false; 1235 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1236 return false; 1237 1238 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1239 Optional<bool> Implication = 1240 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1241 if (Implication) { 1242 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1243 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1244 RemoveSucc->removePredecessor(BB); 1245 BranchInst::Create(KeepSucc, BI); 1246 BI->eraseFromParent(); 1247 DTU->deleteEdgeRelaxed(BB, RemoveSucc); 1248 return true; 1249 } 1250 CurrentBB = CurrentPred; 1251 CurrentPred = CurrentBB->getSinglePredecessor(); 1252 } 1253 1254 return false; 1255 } 1256 1257 /// Return true if Op is an instruction defined in the given block. 1258 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1259 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1260 if (OpInst->getParent() == BB) 1261 return true; 1262 return false; 1263 } 1264 1265 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1266 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1267 /// This is an important optimization that encourages jump threading, and needs 1268 /// to be run interlaced with other jump threading tasks. 1269 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1270 // Don't hack volatile and ordered loads. 1271 if (!LoadI->isUnordered()) return false; 1272 1273 // If the load is defined in a block with exactly one predecessor, it can't be 1274 // partially redundant. 1275 BasicBlock *LoadBB = LoadI->getParent(); 1276 if (LoadBB->getSinglePredecessor()) 1277 return false; 1278 1279 // If the load is defined in an EH pad, it can't be partially redundant, 1280 // because the edges between the invoke and the EH pad cannot have other 1281 // instructions between them. 1282 if (LoadBB->isEHPad()) 1283 return false; 1284 1285 Value *LoadedPtr = LoadI->getOperand(0); 1286 1287 // If the loaded operand is defined in the LoadBB and its not a phi, 1288 // it can't be available in predecessors. 1289 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1290 return false; 1291 1292 // Scan a few instructions up from the load, to see if it is obviously live at 1293 // the entry to its block. 1294 BasicBlock::iterator BBIt(LoadI); 1295 bool IsLoadCSE; 1296 if (Value *AvailableVal = FindAvailableLoadedValue( 1297 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1298 // If the value of the load is locally available within the block, just use 1299 // it. This frequently occurs for reg2mem'd allocas. 1300 1301 if (IsLoadCSE) { 1302 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1303 combineMetadataForCSE(NLoadI, LoadI); 1304 }; 1305 1306 // If the returned value is the load itself, replace with an undef. This can 1307 // only happen in dead loops. 1308 if (AvailableVal == LoadI) 1309 AvailableVal = UndefValue::get(LoadI->getType()); 1310 if (AvailableVal->getType() != LoadI->getType()) 1311 AvailableVal = CastInst::CreateBitOrPointerCast( 1312 AvailableVal, LoadI->getType(), "", LoadI); 1313 LoadI->replaceAllUsesWith(AvailableVal); 1314 LoadI->eraseFromParent(); 1315 return true; 1316 } 1317 1318 // Otherwise, if we scanned the whole block and got to the top of the block, 1319 // we know the block is locally transparent to the load. If not, something 1320 // might clobber its value. 1321 if (BBIt != LoadBB->begin()) 1322 return false; 1323 1324 // If all of the loads and stores that feed the value have the same AA tags, 1325 // then we can propagate them onto any newly inserted loads. 1326 AAMDNodes AATags; 1327 LoadI->getAAMetadata(AATags); 1328 1329 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1330 1331 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1332 1333 AvailablePredsTy AvailablePreds; 1334 BasicBlock *OneUnavailablePred = nullptr; 1335 SmallVector<LoadInst*, 8> CSELoads; 1336 1337 // If we got here, the loaded value is transparent through to the start of the 1338 // block. Check to see if it is available in any of the predecessor blocks. 1339 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1340 // If we already scanned this predecessor, skip it. 1341 if (!PredsScanned.insert(PredBB).second) 1342 continue; 1343 1344 BBIt = PredBB->end(); 1345 unsigned NumScanedInst = 0; 1346 Value *PredAvailable = nullptr; 1347 // NOTE: We don't CSE load that is volatile or anything stronger than 1348 // unordered, that should have been checked when we entered the function. 1349 assert(LoadI->isUnordered() && 1350 "Attempting to CSE volatile or atomic loads"); 1351 // If this is a load on a phi pointer, phi-translate it and search 1352 // for available load/store to the pointer in predecessors. 1353 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1354 PredAvailable = FindAvailablePtrLoadStore( 1355 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1356 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1357 1358 // If PredBB has a single predecessor, continue scanning through the 1359 // single predecessor. 1360 BasicBlock *SinglePredBB = PredBB; 1361 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1362 NumScanedInst < DefMaxInstsToScan) { 1363 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1364 if (SinglePredBB) { 1365 BBIt = SinglePredBB->end(); 1366 PredAvailable = FindAvailablePtrLoadStore( 1367 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1368 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1369 &NumScanedInst); 1370 } 1371 } 1372 1373 if (!PredAvailable) { 1374 OneUnavailablePred = PredBB; 1375 continue; 1376 } 1377 1378 if (IsLoadCSE) 1379 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1380 1381 // If so, this load is partially redundant. Remember this info so that we 1382 // can create a PHI node. 1383 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1384 } 1385 1386 // If the loaded value isn't available in any predecessor, it isn't partially 1387 // redundant. 1388 if (AvailablePreds.empty()) return false; 1389 1390 // Okay, the loaded value is available in at least one (and maybe all!) 1391 // predecessors. If the value is unavailable in more than one unique 1392 // predecessor, we want to insert a merge block for those common predecessors. 1393 // This ensures that we only have to insert one reload, thus not increasing 1394 // code size. 1395 BasicBlock *UnavailablePred = nullptr; 1396 1397 // If the value is unavailable in one of predecessors, we will end up 1398 // inserting a new instruction into them. It is only valid if all the 1399 // instructions before LoadI are guaranteed to pass execution to its 1400 // successor, or if LoadI is safe to speculate. 1401 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1402 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1403 // It requires domination tree analysis, so for this simple case it is an 1404 // overkill. 1405 if (PredsScanned.size() != AvailablePreds.size() && 1406 !isSafeToSpeculativelyExecute(LoadI)) 1407 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1408 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1409 return false; 1410 1411 // If there is exactly one predecessor where the value is unavailable, the 1412 // already computed 'OneUnavailablePred' block is it. If it ends in an 1413 // unconditional branch, we know that it isn't a critical edge. 1414 if (PredsScanned.size() == AvailablePreds.size()+1 && 1415 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1416 UnavailablePred = OneUnavailablePred; 1417 } else if (PredsScanned.size() != AvailablePreds.size()) { 1418 // Otherwise, we had multiple unavailable predecessors or we had a critical 1419 // edge from the one. 1420 SmallVector<BasicBlock*, 8> PredsToSplit; 1421 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1422 1423 for (const auto &AvailablePred : AvailablePreds) 1424 AvailablePredSet.insert(AvailablePred.first); 1425 1426 // Add all the unavailable predecessors to the PredsToSplit list. 1427 for (BasicBlock *P : predecessors(LoadBB)) { 1428 // If the predecessor is an indirect goto, we can't split the edge. 1429 if (isa<IndirectBrInst>(P->getTerminator())) 1430 return false; 1431 1432 if (!AvailablePredSet.count(P)) 1433 PredsToSplit.push_back(P); 1434 } 1435 1436 // Split them out to their own block. 1437 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1438 } 1439 1440 // If the value isn't available in all predecessors, then there will be 1441 // exactly one where it isn't available. Insert a load on that edge and add 1442 // it to the AvailablePreds list. 1443 if (UnavailablePred) { 1444 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1445 "Can't handle critical edge here!"); 1446 LoadInst *NewVal = 1447 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1448 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1449 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1450 UnavailablePred->getTerminator()); 1451 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1452 if (AATags) 1453 NewVal->setAAMetadata(AATags); 1454 1455 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1456 } 1457 1458 // Now we know that each predecessor of this block has a value in 1459 // AvailablePreds, sort them for efficient access as we're walking the preds. 1460 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1461 1462 // Create a PHI node at the start of the block for the PRE'd load value. 1463 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1464 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1465 &LoadBB->front()); 1466 PN->takeName(LoadI); 1467 PN->setDebugLoc(LoadI->getDebugLoc()); 1468 1469 // Insert new entries into the PHI for each predecessor. A single block may 1470 // have multiple entries here. 1471 for (pred_iterator PI = PB; PI != PE; ++PI) { 1472 BasicBlock *P = *PI; 1473 AvailablePredsTy::iterator I = 1474 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1475 std::make_pair(P, (Value*)nullptr)); 1476 1477 assert(I != AvailablePreds.end() && I->first == P && 1478 "Didn't find entry for predecessor!"); 1479 1480 // If we have an available predecessor but it requires casting, insert the 1481 // cast in the predecessor and use the cast. Note that we have to update the 1482 // AvailablePreds vector as we go so that all of the PHI entries for this 1483 // predecessor use the same bitcast. 1484 Value *&PredV = I->second; 1485 if (PredV->getType() != LoadI->getType()) 1486 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1487 P->getTerminator()); 1488 1489 PN->addIncoming(PredV, I->first); 1490 } 1491 1492 for (LoadInst *PredLoadI : CSELoads) { 1493 combineMetadataForCSE(PredLoadI, LoadI); 1494 } 1495 1496 LoadI->replaceAllUsesWith(PN); 1497 LoadI->eraseFromParent(); 1498 1499 return true; 1500 } 1501 1502 /// FindMostPopularDest - The specified list contains multiple possible 1503 /// threadable destinations. Pick the one that occurs the most frequently in 1504 /// the list. 1505 static BasicBlock * 1506 FindMostPopularDest(BasicBlock *BB, 1507 const SmallVectorImpl<std::pair<BasicBlock *, 1508 BasicBlock *>> &PredToDestList) { 1509 assert(!PredToDestList.empty()); 1510 1511 // Determine popularity. If there are multiple possible destinations, we 1512 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1513 // blocks with known and real destinations to threading undef. We'll handle 1514 // them later if interesting. 1515 DenseMap<BasicBlock*, unsigned> DestPopularity; 1516 for (const auto &PredToDest : PredToDestList) 1517 if (PredToDest.second) 1518 DestPopularity[PredToDest.second]++; 1519 1520 if (DestPopularity.empty()) 1521 return nullptr; 1522 1523 // Find the most popular dest. 1524 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1525 BasicBlock *MostPopularDest = DPI->first; 1526 unsigned Popularity = DPI->second; 1527 SmallVector<BasicBlock*, 4> SamePopularity; 1528 1529 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1530 // If the popularity of this entry isn't higher than the popularity we've 1531 // seen so far, ignore it. 1532 if (DPI->second < Popularity) 1533 ; // ignore. 1534 else if (DPI->second == Popularity) { 1535 // If it is the same as what we've seen so far, keep track of it. 1536 SamePopularity.push_back(DPI->first); 1537 } else { 1538 // If it is more popular, remember it. 1539 SamePopularity.clear(); 1540 MostPopularDest = DPI->first; 1541 Popularity = DPI->second; 1542 } 1543 } 1544 1545 // Okay, now we know the most popular destination. If there is more than one 1546 // destination, we need to determine one. This is arbitrary, but we need 1547 // to make a deterministic decision. Pick the first one that appears in the 1548 // successor list. 1549 if (!SamePopularity.empty()) { 1550 SamePopularity.push_back(MostPopularDest); 1551 TerminatorInst *TI = BB->getTerminator(); 1552 for (unsigned i = 0; ; ++i) { 1553 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1554 1555 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1556 continue; 1557 1558 MostPopularDest = TI->getSuccessor(i); 1559 break; 1560 } 1561 } 1562 1563 // Okay, we have finally picked the most popular destination. 1564 return MostPopularDest; 1565 } 1566 1567 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1568 ConstantPreference Preference, 1569 Instruction *CxtI) { 1570 // If threading this would thread across a loop header, don't even try to 1571 // thread the edge. 1572 if (LoopHeaders.count(BB)) 1573 return false; 1574 1575 PredValueInfoTy PredValues; 1576 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1577 return false; 1578 1579 assert(!PredValues.empty() && 1580 "ComputeValueKnownInPredecessors returned true with no values"); 1581 1582 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1583 for (const auto &PredValue : PredValues) { 1584 dbgs() << " BB '" << BB->getName() 1585 << "': FOUND condition = " << *PredValue.first 1586 << " for pred '" << PredValue.second->getName() << "'.\n"; 1587 }); 1588 1589 // Decide what we want to thread through. Convert our list of known values to 1590 // a list of known destinations for each pred. This also discards duplicate 1591 // predecessors and keeps track of the undefined inputs (which are represented 1592 // as a null dest in the PredToDestList). 1593 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1594 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1595 1596 BasicBlock *OnlyDest = nullptr; 1597 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1598 Constant *OnlyVal = nullptr; 1599 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1600 1601 unsigned PredWithKnownDest = 0; 1602 for (const auto &PredValue : PredValues) { 1603 BasicBlock *Pred = PredValue.second; 1604 if (!SeenPreds.insert(Pred).second) 1605 continue; // Duplicate predecessor entry. 1606 1607 Constant *Val = PredValue.first; 1608 1609 BasicBlock *DestBB; 1610 if (isa<UndefValue>(Val)) 1611 DestBB = nullptr; 1612 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1613 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1614 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1615 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1616 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1617 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1618 } else { 1619 assert(isa<IndirectBrInst>(BB->getTerminator()) 1620 && "Unexpected terminator"); 1621 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1622 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1623 } 1624 1625 // If we have exactly one destination, remember it for efficiency below. 1626 if (PredToDestList.empty()) { 1627 OnlyDest = DestBB; 1628 OnlyVal = Val; 1629 } else { 1630 if (OnlyDest != DestBB) 1631 OnlyDest = MultipleDestSentinel; 1632 // It possible we have same destination, but different value, e.g. default 1633 // case in switchinst. 1634 if (Val != OnlyVal) 1635 OnlyVal = MultipleVal; 1636 } 1637 1638 // We know where this predecessor is going. 1639 ++PredWithKnownDest; 1640 1641 // If the predecessor ends with an indirect goto, we can't change its 1642 // destination. 1643 if (isa<IndirectBrInst>(Pred->getTerminator())) 1644 continue; 1645 1646 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1647 } 1648 1649 // If all edges were unthreadable, we fail. 1650 if (PredToDestList.empty()) 1651 return false; 1652 1653 // If all the predecessors go to a single known successor, we want to fold, 1654 // not thread. By doing so, we do not need to duplicate the current block and 1655 // also miss potential opportunities in case we dont/cant duplicate. 1656 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1657 if (PredWithKnownDest == (size_t)pred_size(BB)) { 1658 bool SeenFirstBranchToOnlyDest = false; 1659 std::vector <DominatorTree::UpdateType> Updates; 1660 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1661 for (BasicBlock *SuccBB : successors(BB)) { 1662 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1663 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1664 } else { 1665 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1666 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1667 } 1668 } 1669 1670 // Finally update the terminator. 1671 TerminatorInst *Term = BB->getTerminator(); 1672 BranchInst::Create(OnlyDest, Term); 1673 Term->eraseFromParent(); 1674 DTU->applyUpdates(Updates); 1675 1676 // If the condition is now dead due to the removal of the old terminator, 1677 // erase it. 1678 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1679 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1680 CondInst->eraseFromParent(); 1681 // We can safely replace *some* uses of the CondInst if it has 1682 // exactly one value as returned by LVI. RAUW is incorrect in the 1683 // presence of guards and assumes, that have the `Cond` as the use. This 1684 // is because we use the guards/assume to reason about the `Cond` value 1685 // at the end of block, but RAUW unconditionally replaces all uses 1686 // including the guards/assumes themselves and the uses before the 1687 // guard/assume. 1688 else if (OnlyVal && OnlyVal != MultipleVal && 1689 CondInst->getParent() == BB) 1690 ReplaceFoldableUses(CondInst, OnlyVal); 1691 } 1692 return true; 1693 } 1694 } 1695 1696 // Determine which is the most common successor. If we have many inputs and 1697 // this block is a switch, we want to start by threading the batch that goes 1698 // to the most popular destination first. If we only know about one 1699 // threadable destination (the common case) we can avoid this. 1700 BasicBlock *MostPopularDest = OnlyDest; 1701 1702 if (MostPopularDest == MultipleDestSentinel) { 1703 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1704 // won't process them, but we might have other destination that are eligible 1705 // and we still want to process. 1706 erase_if(PredToDestList, 1707 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1708 return LoopHeaders.count(PredToDest.second) != 0; 1709 }); 1710 1711 if (PredToDestList.empty()) 1712 return false; 1713 1714 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1715 } 1716 1717 // Now that we know what the most popular destination is, factor all 1718 // predecessors that will jump to it into a single predecessor. 1719 SmallVector<BasicBlock*, 16> PredsToFactor; 1720 for (const auto &PredToDest : PredToDestList) 1721 if (PredToDest.second == MostPopularDest) { 1722 BasicBlock *Pred = PredToDest.first; 1723 1724 // This predecessor may be a switch or something else that has multiple 1725 // edges to the block. Factor each of these edges by listing them 1726 // according to # occurrences in PredsToFactor. 1727 for (BasicBlock *Succ : successors(Pred)) 1728 if (Succ == BB) 1729 PredsToFactor.push_back(Pred); 1730 } 1731 1732 // If the threadable edges are branching on an undefined value, we get to pick 1733 // the destination that these predecessors should get to. 1734 if (!MostPopularDest) 1735 MostPopularDest = BB->getTerminator()-> 1736 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1737 1738 // Ok, try to thread it! 1739 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1740 } 1741 1742 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1743 /// a PHI node in the current block. See if there are any simplifications we 1744 /// can do based on inputs to the phi node. 1745 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1746 BasicBlock *BB = PN->getParent(); 1747 1748 // TODO: We could make use of this to do it once for blocks with common PHI 1749 // values. 1750 SmallVector<BasicBlock*, 1> PredBBs; 1751 PredBBs.resize(1); 1752 1753 // If any of the predecessor blocks end in an unconditional branch, we can 1754 // *duplicate* the conditional branch into that block in order to further 1755 // encourage jump threading and to eliminate cases where we have branch on a 1756 // phi of an icmp (branch on icmp is much better). 1757 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1758 BasicBlock *PredBB = PN->getIncomingBlock(i); 1759 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1760 if (PredBr->isUnconditional()) { 1761 PredBBs[0] = PredBB; 1762 // Try to duplicate BB into PredBB. 1763 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1764 return true; 1765 } 1766 } 1767 1768 return false; 1769 } 1770 1771 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1772 /// a xor instruction in the current block. See if there are any 1773 /// simplifications we can do based on inputs to the xor. 1774 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1775 BasicBlock *BB = BO->getParent(); 1776 1777 // If either the LHS or RHS of the xor is a constant, don't do this 1778 // optimization. 1779 if (isa<ConstantInt>(BO->getOperand(0)) || 1780 isa<ConstantInt>(BO->getOperand(1))) 1781 return false; 1782 1783 // If the first instruction in BB isn't a phi, we won't be able to infer 1784 // anything special about any particular predecessor. 1785 if (!isa<PHINode>(BB->front())) 1786 return false; 1787 1788 // If this BB is a landing pad, we won't be able to split the edge into it. 1789 if (BB->isEHPad()) 1790 return false; 1791 1792 // If we have a xor as the branch input to this block, and we know that the 1793 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1794 // the condition into the predecessor and fix that value to true, saving some 1795 // logical ops on that path and encouraging other paths to simplify. 1796 // 1797 // This copies something like this: 1798 // 1799 // BB: 1800 // %X = phi i1 [1], [%X'] 1801 // %Y = icmp eq i32 %A, %B 1802 // %Z = xor i1 %X, %Y 1803 // br i1 %Z, ... 1804 // 1805 // Into: 1806 // BB': 1807 // %Y = icmp ne i32 %A, %B 1808 // br i1 %Y, ... 1809 1810 PredValueInfoTy XorOpValues; 1811 bool isLHS = true; 1812 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1813 WantInteger, BO)) { 1814 assert(XorOpValues.empty()); 1815 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1816 WantInteger, BO)) 1817 return false; 1818 isLHS = false; 1819 } 1820 1821 assert(!XorOpValues.empty() && 1822 "ComputeValueKnownInPredecessors returned true with no values"); 1823 1824 // Scan the information to see which is most popular: true or false. The 1825 // predecessors can be of the set true, false, or undef. 1826 unsigned NumTrue = 0, NumFalse = 0; 1827 for (const auto &XorOpValue : XorOpValues) { 1828 if (isa<UndefValue>(XorOpValue.first)) 1829 // Ignore undefs for the count. 1830 continue; 1831 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1832 ++NumFalse; 1833 else 1834 ++NumTrue; 1835 } 1836 1837 // Determine which value to split on, true, false, or undef if neither. 1838 ConstantInt *SplitVal = nullptr; 1839 if (NumTrue > NumFalse) 1840 SplitVal = ConstantInt::getTrue(BB->getContext()); 1841 else if (NumTrue != 0 || NumFalse != 0) 1842 SplitVal = ConstantInt::getFalse(BB->getContext()); 1843 1844 // Collect all of the blocks that this can be folded into so that we can 1845 // factor this once and clone it once. 1846 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1847 for (const auto &XorOpValue : XorOpValues) { 1848 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1849 continue; 1850 1851 BlocksToFoldInto.push_back(XorOpValue.second); 1852 } 1853 1854 // If we inferred a value for all of the predecessors, then duplication won't 1855 // help us. However, we can just replace the LHS or RHS with the constant. 1856 if (BlocksToFoldInto.size() == 1857 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1858 if (!SplitVal) { 1859 // If all preds provide undef, just nuke the xor, because it is undef too. 1860 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1861 BO->eraseFromParent(); 1862 } else if (SplitVal->isZero()) { 1863 // If all preds provide 0, replace the xor with the other input. 1864 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1865 BO->eraseFromParent(); 1866 } else { 1867 // If all preds provide 1, set the computed value to 1. 1868 BO->setOperand(!isLHS, SplitVal); 1869 } 1870 1871 return true; 1872 } 1873 1874 // Try to duplicate BB into PredBB. 1875 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1876 } 1877 1878 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1879 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1880 /// NewPred using the entries from OldPred (suitably mapped). 1881 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1882 BasicBlock *OldPred, 1883 BasicBlock *NewPred, 1884 DenseMap<Instruction*, Value*> &ValueMap) { 1885 for (PHINode &PN : PHIBB->phis()) { 1886 // Ok, we have a PHI node. Figure out what the incoming value was for the 1887 // DestBlock. 1888 Value *IV = PN.getIncomingValueForBlock(OldPred); 1889 1890 // Remap the value if necessary. 1891 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1892 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1893 if (I != ValueMap.end()) 1894 IV = I->second; 1895 } 1896 1897 PN.addIncoming(IV, NewPred); 1898 } 1899 } 1900 1901 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1902 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1903 /// across BB. Transform the IR to reflect this change. 1904 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1905 const SmallVectorImpl<BasicBlock *> &PredBBs, 1906 BasicBlock *SuccBB) { 1907 // If threading to the same block as we come from, we would infinite loop. 1908 if (SuccBB == BB) { 1909 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1910 << "' - would thread to self!\n"); 1911 return false; 1912 } 1913 1914 // If threading this would thread across a loop header, don't thread the edge. 1915 // See the comments above FindLoopHeaders for justifications and caveats. 1916 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1917 LLVM_DEBUG({ 1918 bool BBIsHeader = LoopHeaders.count(BB); 1919 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1920 dbgs() << " Not threading across " 1921 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1922 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1923 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1924 }); 1925 return false; 1926 } 1927 1928 unsigned JumpThreadCost = 1929 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1930 if (JumpThreadCost > BBDupThreshold) { 1931 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1932 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1933 return false; 1934 } 1935 1936 // And finally, do it! Start by factoring the predecessors if needed. 1937 BasicBlock *PredBB; 1938 if (PredBBs.size() == 1) 1939 PredBB = PredBBs[0]; 1940 else { 1941 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1942 << " common predecessors.\n"); 1943 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1944 } 1945 1946 // And finally, do it! 1947 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 1948 << "' to '" << SuccBB->getName() 1949 << "' with cost: " << JumpThreadCost 1950 << ", across block:\n " << *BB << "\n"); 1951 1952 if (DTU->hasPendingDomTreeUpdates()) 1953 LVI->disableDT(); 1954 else 1955 LVI->enableDT(); 1956 LVI->threadEdge(PredBB, BB, SuccBB); 1957 1958 // We are going to have to map operands from the original BB block to the new 1959 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1960 // account for entry from PredBB. 1961 DenseMap<Instruction*, Value*> ValueMapping; 1962 1963 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1964 BB->getName()+".thread", 1965 BB->getParent(), BB); 1966 NewBB->moveAfter(PredBB); 1967 1968 // Set the block frequency of NewBB. 1969 if (HasProfileData) { 1970 auto NewBBFreq = 1971 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1972 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1973 } 1974 1975 BasicBlock::iterator BI = BB->begin(); 1976 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1977 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1978 1979 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1980 // mapping and using it to remap operands in the cloned instructions. 1981 for (; !isa<TerminatorInst>(BI); ++BI) { 1982 Instruction *New = BI->clone(); 1983 New->setName(BI->getName()); 1984 NewBB->getInstList().push_back(New); 1985 ValueMapping[&*BI] = New; 1986 1987 // Remap operands to patch up intra-block references. 1988 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1989 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1990 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1991 if (I != ValueMapping.end()) 1992 New->setOperand(i, I->second); 1993 } 1994 } 1995 1996 // We didn't copy the terminator from BB over to NewBB, because there is now 1997 // an unconditional jump to SuccBB. Insert the unconditional jump. 1998 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1999 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 2000 2001 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 2002 // PHI nodes for NewBB now. 2003 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2004 2005 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2006 // eliminates predecessors from BB, which requires us to simplify any PHI 2007 // nodes in BB. 2008 TerminatorInst *PredTerm = PredBB->getTerminator(); 2009 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2010 if (PredTerm->getSuccessor(i) == BB) { 2011 BB->removePredecessor(PredBB, true); 2012 PredTerm->setSuccessor(i, NewBB); 2013 } 2014 2015 // Enqueue required DT updates. 2016 DTU->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2017 {DominatorTree::Insert, PredBB, NewBB}, 2018 {DominatorTree::Delete, PredBB, BB}}); 2019 2020 // If there were values defined in BB that are used outside the block, then we 2021 // now have to update all uses of the value to use either the original value, 2022 // the cloned value, or some PHI derived value. This can require arbitrary 2023 // PHI insertion, of which we are prepared to do, clean these up now. 2024 SSAUpdater SSAUpdate; 2025 SmallVector<Use*, 16> UsesToRename; 2026 2027 for (Instruction &I : *BB) { 2028 // Scan all uses of this instruction to see if their uses are no longer 2029 // dominated by the previous def and if so, record them in UsesToRename. 2030 // Also, skip phi operands from PredBB - we'll remove them anyway. 2031 for (Use &U : I.uses()) { 2032 Instruction *User = cast<Instruction>(U.getUser()); 2033 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2034 if (UserPN->getIncomingBlock(U) == BB) 2035 continue; 2036 } else if (User->getParent() == BB) 2037 continue; 2038 2039 UsesToRename.push_back(&U); 2040 } 2041 2042 // If there are no uses outside the block, we're done with this instruction. 2043 if (UsesToRename.empty()) 2044 continue; 2045 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2046 2047 // We found a use of I outside of BB. Rename all uses of I that are outside 2048 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2049 // with the two values we know. 2050 SSAUpdate.Initialize(I.getType(), I.getName()); 2051 SSAUpdate.AddAvailableValue(BB, &I); 2052 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2053 2054 while (!UsesToRename.empty()) 2055 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2056 LLVM_DEBUG(dbgs() << "\n"); 2057 } 2058 2059 // At this point, the IR is fully up to date and consistent. Do a quick scan 2060 // over the new instructions and zap any that are constants or dead. This 2061 // frequently happens because of phi translation. 2062 SimplifyInstructionsInBlock(NewBB, TLI); 2063 2064 // Update the edge weight from BB to SuccBB, which should be less than before. 2065 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2066 2067 // Threaded an edge! 2068 ++NumThreads; 2069 return true; 2070 } 2071 2072 /// Create a new basic block that will be the predecessor of BB and successor of 2073 /// all blocks in Preds. When profile data is available, update the frequency of 2074 /// this new block. 2075 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2076 ArrayRef<BasicBlock *> Preds, 2077 const char *Suffix) { 2078 SmallVector<BasicBlock *, 2> NewBBs; 2079 2080 // Collect the frequencies of all predecessors of BB, which will be used to 2081 // update the edge weight of the result of splitting predecessors. 2082 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2083 if (HasProfileData) 2084 for (auto Pred : Preds) 2085 FreqMap.insert(std::make_pair( 2086 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2087 2088 // In the case when BB is a LandingPad block we create 2 new predecessors 2089 // instead of just one. 2090 if (BB->isLandingPad()) { 2091 std::string NewName = std::string(Suffix) + ".split-lp"; 2092 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2093 } else { 2094 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2095 } 2096 2097 std::vector<DominatorTree::UpdateType> Updates; 2098 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2099 for (auto NewBB : NewBBs) { 2100 BlockFrequency NewBBFreq(0); 2101 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2102 for (auto Pred : predecessors(NewBB)) { 2103 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2104 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2105 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2106 NewBBFreq += FreqMap.lookup(Pred); 2107 } 2108 if (HasProfileData) // Apply the summed frequency to NewBB. 2109 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2110 } 2111 2112 DTU->applyUpdates(Updates); 2113 return NewBBs[0]; 2114 } 2115 2116 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2117 const TerminatorInst *TI = BB->getTerminator(); 2118 assert(TI->getNumSuccessors() > 1 && "not a split"); 2119 2120 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2121 if (!WeightsNode) 2122 return false; 2123 2124 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2125 if (MDName->getString() != "branch_weights") 2126 return false; 2127 2128 // Ensure there are weights for all of the successors. Note that the first 2129 // operand to the metadata node is a name, not a weight. 2130 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2131 } 2132 2133 /// Update the block frequency of BB and branch weight and the metadata on the 2134 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2135 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2136 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2137 BasicBlock *BB, 2138 BasicBlock *NewBB, 2139 BasicBlock *SuccBB) { 2140 if (!HasProfileData) 2141 return; 2142 2143 assert(BFI && BPI && "BFI & BPI should have been created here"); 2144 2145 // As the edge from PredBB to BB is deleted, we have to update the block 2146 // frequency of BB. 2147 auto BBOrigFreq = BFI->getBlockFreq(BB); 2148 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2149 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2150 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2151 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2152 2153 // Collect updated outgoing edges' frequencies from BB and use them to update 2154 // edge probabilities. 2155 SmallVector<uint64_t, 4> BBSuccFreq; 2156 for (BasicBlock *Succ : successors(BB)) { 2157 auto SuccFreq = (Succ == SuccBB) 2158 ? BB2SuccBBFreq - NewBBFreq 2159 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2160 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2161 } 2162 2163 uint64_t MaxBBSuccFreq = 2164 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2165 2166 SmallVector<BranchProbability, 4> BBSuccProbs; 2167 if (MaxBBSuccFreq == 0) 2168 BBSuccProbs.assign(BBSuccFreq.size(), 2169 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2170 else { 2171 for (uint64_t Freq : BBSuccFreq) 2172 BBSuccProbs.push_back( 2173 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2174 // Normalize edge probabilities so that they sum up to one. 2175 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2176 BBSuccProbs.end()); 2177 } 2178 2179 // Update edge probabilities in BPI. 2180 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2181 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2182 2183 // Update the profile metadata as well. 2184 // 2185 // Don't do this if the profile of the transformed blocks was statically 2186 // estimated. (This could occur despite the function having an entry 2187 // frequency in completely cold parts of the CFG.) 2188 // 2189 // In this case we don't want to suggest to subsequent passes that the 2190 // calculated weights are fully consistent. Consider this graph: 2191 // 2192 // check_1 2193 // 50% / | 2194 // eq_1 | 50% 2195 // \ | 2196 // check_2 2197 // 50% / | 2198 // eq_2 | 50% 2199 // \ | 2200 // check_3 2201 // 50% / | 2202 // eq_3 | 50% 2203 // \ | 2204 // 2205 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2206 // the overall probabilities are inconsistent; the total probability that the 2207 // value is either 1, 2 or 3 is 150%. 2208 // 2209 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2210 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2211 // the loop exit edge. Then based solely on static estimation we would assume 2212 // the loop was extremely hot. 2213 // 2214 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2215 // shouldn't make edges extremely likely or unlikely based solely on static 2216 // estimation. 2217 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2218 SmallVector<uint32_t, 4> Weights; 2219 for (auto Prob : BBSuccProbs) 2220 Weights.push_back(Prob.getNumerator()); 2221 2222 auto TI = BB->getTerminator(); 2223 TI->setMetadata( 2224 LLVMContext::MD_prof, 2225 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2226 } 2227 } 2228 2229 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2230 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2231 /// If we can duplicate the contents of BB up into PredBB do so now, this 2232 /// improves the odds that the branch will be on an analyzable instruction like 2233 /// a compare. 2234 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2235 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2236 assert(!PredBBs.empty() && "Can't handle an empty set"); 2237 2238 // If BB is a loop header, then duplicating this block outside the loop would 2239 // cause us to transform this into an irreducible loop, don't do this. 2240 // See the comments above FindLoopHeaders for justifications and caveats. 2241 if (LoopHeaders.count(BB)) { 2242 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2243 << "' into predecessor block '" << PredBBs[0]->getName() 2244 << "' - it might create an irreducible loop!\n"); 2245 return false; 2246 } 2247 2248 unsigned DuplicationCost = 2249 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2250 if (DuplicationCost > BBDupThreshold) { 2251 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2252 << "' - Cost is too high: " << DuplicationCost << "\n"); 2253 return false; 2254 } 2255 2256 // And finally, do it! Start by factoring the predecessors if needed. 2257 std::vector<DominatorTree::UpdateType> Updates; 2258 BasicBlock *PredBB; 2259 if (PredBBs.size() == 1) 2260 PredBB = PredBBs[0]; 2261 else { 2262 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2263 << " common predecessors.\n"); 2264 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2265 } 2266 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2267 2268 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2269 // of PredBB. 2270 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2271 << "' into end of '" << PredBB->getName() 2272 << "' to eliminate branch on phi. Cost: " 2273 << DuplicationCost << " block is:" << *BB << "\n"); 2274 2275 // Unless PredBB ends with an unconditional branch, split the edge so that we 2276 // can just clone the bits from BB into the end of the new PredBB. 2277 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2278 2279 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2280 BasicBlock *OldPredBB = PredBB; 2281 PredBB = SplitEdge(OldPredBB, BB); 2282 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2283 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2284 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2285 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2286 } 2287 2288 // We are going to have to map operands from the original BB block into the 2289 // PredBB block. Evaluate PHI nodes in BB. 2290 DenseMap<Instruction*, Value*> ValueMapping; 2291 2292 BasicBlock::iterator BI = BB->begin(); 2293 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2294 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2295 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2296 // mapping and using it to remap operands in the cloned instructions. 2297 for (; BI != BB->end(); ++BI) { 2298 Instruction *New = BI->clone(); 2299 2300 // Remap operands to patch up intra-block references. 2301 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2302 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2303 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2304 if (I != ValueMapping.end()) 2305 New->setOperand(i, I->second); 2306 } 2307 2308 // If this instruction can be simplified after the operands are updated, 2309 // just use the simplified value instead. This frequently happens due to 2310 // phi translation. 2311 if (Value *IV = SimplifyInstruction( 2312 New, 2313 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2314 ValueMapping[&*BI] = IV; 2315 if (!New->mayHaveSideEffects()) { 2316 New->deleteValue(); 2317 New = nullptr; 2318 } 2319 } else { 2320 ValueMapping[&*BI] = New; 2321 } 2322 if (New) { 2323 // Otherwise, insert the new instruction into the block. 2324 New->setName(BI->getName()); 2325 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2326 // Update Dominance from simplified New instruction operands. 2327 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2328 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2329 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2330 } 2331 } 2332 2333 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2334 // add entries to the PHI nodes for branch from PredBB now. 2335 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2336 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2337 ValueMapping); 2338 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2339 ValueMapping); 2340 2341 // If there were values defined in BB that are used outside the block, then we 2342 // now have to update all uses of the value to use either the original value, 2343 // the cloned value, or some PHI derived value. This can require arbitrary 2344 // PHI insertion, of which we are prepared to do, clean these up now. 2345 SSAUpdater SSAUpdate; 2346 SmallVector<Use*, 16> UsesToRename; 2347 for (Instruction &I : *BB) { 2348 // Scan all uses of this instruction to see if it is used outside of its 2349 // block, and if so, record them in UsesToRename. 2350 for (Use &U : I.uses()) { 2351 Instruction *User = cast<Instruction>(U.getUser()); 2352 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2353 if (UserPN->getIncomingBlock(U) == BB) 2354 continue; 2355 } else if (User->getParent() == BB) 2356 continue; 2357 2358 UsesToRename.push_back(&U); 2359 } 2360 2361 // If there are no uses outside the block, we're done with this instruction. 2362 if (UsesToRename.empty()) 2363 continue; 2364 2365 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2366 2367 // We found a use of I outside of BB. Rename all uses of I that are outside 2368 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2369 // with the two values we know. 2370 SSAUpdate.Initialize(I.getType(), I.getName()); 2371 SSAUpdate.AddAvailableValue(BB, &I); 2372 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2373 2374 while (!UsesToRename.empty()) 2375 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2376 LLVM_DEBUG(dbgs() << "\n"); 2377 } 2378 2379 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2380 // that we nuked. 2381 BB->removePredecessor(PredBB, true); 2382 2383 // Remove the unconditional branch at the end of the PredBB block. 2384 OldPredBranch->eraseFromParent(); 2385 DTU->applyUpdates(Updates); 2386 2387 ++NumDupes; 2388 return true; 2389 } 2390 2391 /// TryToUnfoldSelect - Look for blocks of the form 2392 /// bb1: 2393 /// %a = select 2394 /// br bb2 2395 /// 2396 /// bb2: 2397 /// %p = phi [%a, %bb1] ... 2398 /// %c = icmp %p 2399 /// br i1 %c 2400 /// 2401 /// And expand the select into a branch structure if one of its arms allows %c 2402 /// to be folded. This later enables threading from bb1 over bb2. 2403 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2404 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2405 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2406 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2407 2408 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2409 CondLHS->getParent() != BB) 2410 return false; 2411 2412 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2413 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2414 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2415 2416 // Look if one of the incoming values is a select in the corresponding 2417 // predecessor. 2418 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2419 continue; 2420 2421 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2422 if (!PredTerm || !PredTerm->isUnconditional()) 2423 continue; 2424 2425 // Now check if one of the select values would allow us to constant fold the 2426 // terminator in BB. We don't do the transform if both sides fold, those 2427 // cases will be threaded in any case. 2428 if (DTU->hasPendingDomTreeUpdates()) 2429 LVI->disableDT(); 2430 else 2431 LVI->enableDT(); 2432 LazyValueInfo::Tristate LHSFolds = 2433 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2434 CondRHS, Pred, BB, CondCmp); 2435 LazyValueInfo::Tristate RHSFolds = 2436 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2437 CondRHS, Pred, BB, CondCmp); 2438 if ((LHSFolds != LazyValueInfo::Unknown || 2439 RHSFolds != LazyValueInfo::Unknown) && 2440 LHSFolds != RHSFolds) { 2441 // Expand the select. 2442 // 2443 // Pred -- 2444 // | v 2445 // | NewBB 2446 // | | 2447 // |----- 2448 // v 2449 // BB 2450 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2451 BB->getParent(), BB); 2452 // Move the unconditional branch to NewBB. 2453 PredTerm->removeFromParent(); 2454 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2455 // Create a conditional branch and update PHI nodes. 2456 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2457 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2458 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2459 // The select is now dead. 2460 SI->eraseFromParent(); 2461 2462 DTU->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2463 {DominatorTree::Insert, Pred, NewBB}}); 2464 // Update any other PHI nodes in BB. 2465 for (BasicBlock::iterator BI = BB->begin(); 2466 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2467 if (Phi != CondLHS) 2468 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2469 return true; 2470 } 2471 } 2472 return false; 2473 } 2474 2475 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2476 /// same BB in the form 2477 /// bb: 2478 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2479 /// %s = select %p, trueval, falseval 2480 /// 2481 /// or 2482 /// 2483 /// bb: 2484 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2485 /// %c = cmp %p, 0 2486 /// %s = select %c, trueval, falseval 2487 /// 2488 /// And expand the select into a branch structure. This later enables 2489 /// jump-threading over bb in this pass. 2490 /// 2491 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2492 /// select if the associated PHI has at least one constant. If the unfolded 2493 /// select is not jump-threaded, it will be folded again in the later 2494 /// optimizations. 2495 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2496 // If threading this would thread across a loop header, don't thread the edge. 2497 // See the comments above FindLoopHeaders for justifications and caveats. 2498 if (LoopHeaders.count(BB)) 2499 return false; 2500 2501 for (BasicBlock::iterator BI = BB->begin(); 2502 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2503 // Look for a Phi having at least one constant incoming value. 2504 if (llvm::all_of(PN->incoming_values(), 2505 [](Value *V) { return !isa<ConstantInt>(V); })) 2506 continue; 2507 2508 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2509 // Check if SI is in BB and use V as condition. 2510 if (SI->getParent() != BB) 2511 return false; 2512 Value *Cond = SI->getCondition(); 2513 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2514 }; 2515 2516 SelectInst *SI = nullptr; 2517 for (Use &U : PN->uses()) { 2518 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2519 // Look for a ICmp in BB that compares PN with a constant and is the 2520 // condition of a Select. 2521 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2522 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2523 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2524 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2525 SI = SelectI; 2526 break; 2527 } 2528 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2529 // Look for a Select in BB that uses PN as condition. 2530 if (isUnfoldCandidate(SelectI, U.get())) { 2531 SI = SelectI; 2532 break; 2533 } 2534 } 2535 } 2536 2537 if (!SI) 2538 continue; 2539 // Expand the select. 2540 TerminatorInst *Term = 2541 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2542 BasicBlock *SplitBB = SI->getParent(); 2543 BasicBlock *NewBB = Term->getParent(); 2544 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2545 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2546 NewPN->addIncoming(SI->getFalseValue(), BB); 2547 SI->replaceAllUsesWith(NewPN); 2548 SI->eraseFromParent(); 2549 // NewBB and SplitBB are newly created blocks which require insertion. 2550 std::vector<DominatorTree::UpdateType> Updates; 2551 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2552 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2553 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2554 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2555 // BB's successors were moved to SplitBB, update DTU accordingly. 2556 for (auto *Succ : successors(SplitBB)) { 2557 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2558 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2559 } 2560 DTU->applyUpdates(Updates); 2561 return true; 2562 } 2563 return false; 2564 } 2565 2566 /// Try to propagate a guard from the current BB into one of its predecessors 2567 /// in case if another branch of execution implies that the condition of this 2568 /// guard is always true. Currently we only process the simplest case that 2569 /// looks like: 2570 /// 2571 /// Start: 2572 /// %cond = ... 2573 /// br i1 %cond, label %T1, label %F1 2574 /// T1: 2575 /// br label %Merge 2576 /// F1: 2577 /// br label %Merge 2578 /// Merge: 2579 /// %condGuard = ... 2580 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2581 /// 2582 /// And cond either implies condGuard or !condGuard. In this case all the 2583 /// instructions before the guard can be duplicated in both branches, and the 2584 /// guard is then threaded to one of them. 2585 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2586 using namespace PatternMatch; 2587 2588 // We only want to deal with two predecessors. 2589 BasicBlock *Pred1, *Pred2; 2590 auto PI = pred_begin(BB), PE = pred_end(BB); 2591 if (PI == PE) 2592 return false; 2593 Pred1 = *PI++; 2594 if (PI == PE) 2595 return false; 2596 Pred2 = *PI++; 2597 if (PI != PE) 2598 return false; 2599 if (Pred1 == Pred2) 2600 return false; 2601 2602 // Try to thread one of the guards of the block. 2603 // TODO: Look up deeper than to immediate predecessor? 2604 auto *Parent = Pred1->getSinglePredecessor(); 2605 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2606 return false; 2607 2608 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2609 for (auto &I : *BB) 2610 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2611 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2612 return true; 2613 2614 return false; 2615 } 2616 2617 /// Try to propagate the guard from BB which is the lower block of a diamond 2618 /// to one of its branches, in case if diamond's condition implies guard's 2619 /// condition. 2620 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2621 BranchInst *BI) { 2622 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2623 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2624 Value *GuardCond = Guard->getArgOperand(0); 2625 Value *BranchCond = BI->getCondition(); 2626 BasicBlock *TrueDest = BI->getSuccessor(0); 2627 BasicBlock *FalseDest = BI->getSuccessor(1); 2628 2629 auto &DL = BB->getModule()->getDataLayout(); 2630 bool TrueDestIsSafe = false; 2631 bool FalseDestIsSafe = false; 2632 2633 // True dest is safe if BranchCond => GuardCond. 2634 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2635 if (Impl && *Impl) 2636 TrueDestIsSafe = true; 2637 else { 2638 // False dest is safe if !BranchCond => GuardCond. 2639 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2640 if (Impl && *Impl) 2641 FalseDestIsSafe = true; 2642 } 2643 2644 if (!TrueDestIsSafe && !FalseDestIsSafe) 2645 return false; 2646 2647 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2648 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2649 2650 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2651 Instruction *AfterGuard = Guard->getNextNode(); 2652 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2653 if (Cost > BBDupThreshold) 2654 return false; 2655 // Duplicate all instructions before the guard and the guard itself to the 2656 // branch where implication is not proved. 2657 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2658 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2659 assert(GuardedBlock && "Could not create the guarded block?"); 2660 // Duplicate all instructions before the guard in the unguarded branch. 2661 // Since we have successfully duplicated the guarded block and this block 2662 // has fewer instructions, we expect it to succeed. 2663 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2664 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2665 assert(UnguardedBlock && "Could not create the unguarded block?"); 2666 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2667 << GuardedBlock->getName() << "\n"); 2668 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2669 // PredBB and BB. We need to perform two inserts and one delete for each of 2670 // the above calls to update Dominators. 2671 DTU->applyUpdates( 2672 {// Guarded block split. 2673 {DominatorTree::Delete, PredGuardedBlock, BB}, 2674 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2675 {DominatorTree::Insert, GuardedBlock, BB}, 2676 // Unguarded block split. 2677 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2678 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2679 {DominatorTree::Insert, UnguardedBlock, BB}}); 2680 // Some instructions before the guard may still have uses. For them, we need 2681 // to create Phi nodes merging their copies in both guarded and unguarded 2682 // branches. Those instructions that have no uses can be just removed. 2683 SmallVector<Instruction *, 4> ToRemove; 2684 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2685 if (!isa<PHINode>(&*BI)) 2686 ToRemove.push_back(&*BI); 2687 2688 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2689 assert(InsertionPoint && "Empty block?"); 2690 // Substitute with Phis & remove. 2691 for (auto *Inst : reverse(ToRemove)) { 2692 if (!Inst->use_empty()) { 2693 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2694 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2695 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2696 NewPN->insertBefore(InsertionPoint); 2697 Inst->replaceAllUsesWith(NewPN); 2698 } 2699 Inst->eraseFromParent(); 2700 } 2701 return true; 2702 } 2703