1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<bool> PrintLVIAfterJumpThreading(
101     "print-lvi-after-jump-threading",
102     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
103     cl::Hidden);
104 
105 namespace {
106 
107   /// This pass performs 'jump threading', which looks at blocks that have
108   /// multiple predecessors and multiple successors.  If one or more of the
109   /// predecessors of the block can be proven to always jump to one of the
110   /// successors, we forward the edge from the predecessor to the successor by
111   /// duplicating the contents of this block.
112   ///
113   /// An example of when this can occur is code like this:
114   ///
115   ///   if () { ...
116   ///     X = 4;
117   ///   }
118   ///   if (X < 3) {
119   ///
120   /// In this case, the unconditional branch at the end of the first if can be
121   /// revectored to the false side of the second if.
122   class JumpThreading : public FunctionPass {
123     JumpThreadingPass Impl;
124 
125   public:
126     static char ID; // Pass identification
127 
128     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
129       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
130     }
131 
132     bool runOnFunction(Function &F) override;
133 
134     void getAnalysisUsage(AnalysisUsage &AU) const override {
135       AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addPreserved<DominatorTreeWrapperPass>();
137       AU.addRequired<AAResultsWrapperPass>();
138       AU.addRequired<LazyValueInfoWrapperPass>();
139       AU.addPreserved<LazyValueInfoWrapperPass>();
140       AU.addPreserved<GlobalsAAWrapperPass>();
141       AU.addRequired<TargetLibraryInfoWrapperPass>();
142     }
143 
144     void releaseMemory() override { Impl.releaseMemory(); }
145   };
146 
147 } // end anonymous namespace
148 
149 char JumpThreading::ID = 0;
150 
151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
152                 "Jump Threading", false, false)
153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
157 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
158                 "Jump Threading", false, false)
159 
160 // Public interface to the Jump Threading pass
161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
162   return new JumpThreading(Threshold);
163 }
164 
165 JumpThreadingPass::JumpThreadingPass(int T) {
166   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
167 }
168 
169 // Update branch probability information according to conditional
170 // branch probablity. This is usually made possible for cloned branches
171 // in inline instances by the context specific profile in the caller.
172 // For instance,
173 //
174 //  [Block PredBB]
175 //  [Branch PredBr]
176 //  if (t) {
177 //     Block A;
178 //  } else {
179 //     Block B;
180 //  }
181 //
182 //  [Block BB]
183 //  cond = PN([true, %A], [..., %B]); // PHI node
184 //  [Branch CondBr]
185 //  if (cond) {
186 //    ...  // P(cond == true) = 1%
187 //  }
188 //
189 //  Here we know that when block A is taken, cond must be true, which means
190 //      P(cond == true | A) = 1
191 //
192 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
193 //                               P(cond == true | B) * P(B)
194 //  we get:
195 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
196 //
197 //  which gives us:
198 //     P(A) is less than P(cond == true), i.e.
199 //     P(t == true) <= P(cond == true)
200 //
201 //  In other words, if we know P(cond == true) is unlikely, we know
202 //  that P(t == true) is also unlikely.
203 //
204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
205   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
206   if (!CondBr)
207     return;
208 
209   BranchProbability BP;
210   uint64_t TrueWeight, FalseWeight;
211   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
212     return;
213 
214   // Returns the outgoing edge of the dominating predecessor block
215   // that leads to the PhiNode's incoming block:
216   auto GetPredOutEdge =
217       [](BasicBlock *IncomingBB,
218          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
219     auto *PredBB = IncomingBB;
220     auto *SuccBB = PhiBB;
221     while (true) {
222       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
223       if (PredBr && PredBr->isConditional())
224         return {PredBB, SuccBB};
225       auto *SinglePredBB = PredBB->getSinglePredecessor();
226       if (!SinglePredBB)
227         return {nullptr, nullptr};
228       SuccBB = PredBB;
229       PredBB = SinglePredBB;
230     }
231   };
232 
233   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234     Value *PhiOpnd = PN->getIncomingValue(i);
235     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
236 
237     if (!CI || !CI->getType()->isIntegerTy(1))
238       continue;
239 
240     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
241                             TrueWeight, TrueWeight + FalseWeight)
242                       : BranchProbability::getBranchProbability(
243                             FalseWeight, TrueWeight + FalseWeight));
244 
245     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
246     if (!PredOutEdge.first)
247       return;
248 
249     BasicBlock *PredBB = PredOutEdge.first;
250     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
251 
252     uint64_t PredTrueWeight, PredFalseWeight;
253     // FIXME: We currently only set the profile data when it is missing.
254     // With PGO, this can be used to refine even existing profile data with
255     // context information. This needs to be done after more performance
256     // testing.
257     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
258       continue;
259 
260     // We can not infer anything useful when BP >= 50%, because BP is the
261     // upper bound probability value.
262     if (BP >= BranchProbability(50, 100))
263       continue;
264 
265     SmallVector<uint32_t, 2> Weights;
266     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
267       Weights.push_back(BP.getNumerator());
268       Weights.push_back(BP.getCompl().getNumerator());
269     } else {
270       Weights.push_back(BP.getCompl().getNumerator());
271       Weights.push_back(BP.getNumerator());
272     }
273     PredBr->setMetadata(LLVMContext::MD_prof,
274                         MDBuilder(PredBr->getParent()->getContext())
275                             .createBranchWeights(Weights));
276   }
277 }
278 
279 /// runOnFunction - Toplevel algorithm.
280 bool JumpThreading::runOnFunction(Function &F) {
281   if (skipFunction(F))
282     return false;
283   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
284   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
285   // DT if it's available.
286   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
287   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
288   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
289   DeferredDominance DDT(*DT);
290   std::unique_ptr<BlockFrequencyInfo> BFI;
291   std::unique_ptr<BranchProbabilityInfo> BPI;
292   bool HasProfileData = F.hasProfileData();
293   if (HasProfileData) {
294     LoopInfo LI{DominatorTree(F)};
295     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
296     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
297   }
298 
299   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
300                               std::move(BFI), std::move(BPI));
301   if (PrintLVIAfterJumpThreading) {
302     dbgs() << "LVI for function '" << F.getName() << "':\n";
303     LVI->printLVI(F, *DT, dbgs());
304   }
305   return Changed;
306 }
307 
308 PreservedAnalyses JumpThreadingPass::run(Function &F,
309                                          FunctionAnalysisManager &AM) {
310   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
311   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
312   // DT if it's available.
313   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
314   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
315   auto &AA = AM.getResult<AAManager>(F);
316   DeferredDominance DDT(DT);
317 
318   std::unique_ptr<BlockFrequencyInfo> BFI;
319   std::unique_ptr<BranchProbabilityInfo> BPI;
320   if (F.hasProfileData()) {
321     LoopInfo LI{DominatorTree(F)};
322     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
323     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
324   }
325 
326   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
327                          std::move(BFI), std::move(BPI));
328 
329   if (!Changed)
330     return PreservedAnalyses::all();
331   PreservedAnalyses PA;
332   PA.preserve<GlobalsAA>();
333   PA.preserve<DominatorTreeAnalysis>();
334   PA.preserve<LazyValueAnalysis>();
335   return PA;
336 }
337 
338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
339                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
340                                 DeferredDominance *DDT_, bool HasProfileData_,
341                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
342                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
343   LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
344   TLI = TLI_;
345   LVI = LVI_;
346   AA = AA_;
347   DDT = DDT_;
348   BFI.reset();
349   BPI.reset();
350   // When profile data is available, we need to update edge weights after
351   // successful jump threading, which requires both BPI and BFI being available.
352   HasProfileData = HasProfileData_;
353   auto *GuardDecl = F.getParent()->getFunction(
354       Intrinsic::getName(Intrinsic::experimental_guard));
355   HasGuards = GuardDecl && !GuardDecl->use_empty();
356   if (HasProfileData) {
357     BPI = std::move(BPI_);
358     BFI = std::move(BFI_);
359   }
360 
361   // JumpThreading must not processes blocks unreachable from entry. It's a
362   // waste of compute time and can potentially lead to hangs.
363   SmallPtrSet<BasicBlock *, 16> Unreachable;
364   DominatorTree &DT = DDT->flush();
365   for (auto &BB : F)
366     if (!DT.isReachableFromEntry(&BB))
367       Unreachable.insert(&BB);
368 
369   FindLoopHeaders(F);
370 
371   bool EverChanged = false;
372   bool Changed;
373   do {
374     Changed = false;
375     for (auto &BB : F) {
376       if (Unreachable.count(&BB))
377         continue;
378       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
379         Changed = true;
380       // Stop processing BB if it's the entry or is now deleted. The following
381       // routines attempt to eliminate BB and locating a suitable replacement
382       // for the entry is non-trivial.
383       if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB))
384         continue;
385 
386       if (pred_empty(&BB)) {
387         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
388         // the instructions in it. We must remove BB to prevent invalid IR.
389         LLVM_DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
390                           << "' with terminator: " << *BB.getTerminator()
391                           << '\n');
392         LoopHeaders.erase(&BB);
393         LVI->eraseBlock(&BB);
394         DeleteDeadBlock(&BB, DDT);
395         Changed = true;
396         continue;
397       }
398 
399       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
400       // is "almost empty", we attempt to merge BB with its sole successor.
401       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
402       if (BI && BI->isUnconditional() &&
403           // The terminator must be the only non-phi instruction in BB.
404           BB.getFirstNonPHIOrDbg()->isTerminator() &&
405           // Don't alter Loop headers and latches to ensure another pass can
406           // detect and transform nested loops later.
407           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
408           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) {
409         // BB is valid for cleanup here because we passed in DDT. F remains
410         // BB's parent until a DDT->flush() event.
411         LVI->eraseBlock(&BB);
412         Changed = true;
413       }
414     }
415     EverChanged |= Changed;
416   } while (Changed);
417 
418   LoopHeaders.clear();
419   DDT->flush();
420   LVI->enableDT();
421   return EverChanged;
422 }
423 
424 // Replace uses of Cond with ToVal when safe to do so. If all uses are
425 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
426 // because we may incorrectly replace uses when guards/assumes are uses of
427 // of `Cond` and we used the guards/assume to reason about the `Cond` value
428 // at the end of block. RAUW unconditionally replaces all uses
429 // including the guards/assumes themselves and the uses before the
430 // guard/assume.
431 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
432   assert(Cond->getType() == ToVal->getType());
433   auto *BB = Cond->getParent();
434   // We can unconditionally replace all uses in non-local blocks (i.e. uses
435   // strictly dominated by BB), since LVI information is true from the
436   // terminator of BB.
437   replaceNonLocalUsesWith(Cond, ToVal);
438   for (Instruction &I : reverse(*BB)) {
439     // Reached the Cond whose uses we are trying to replace, so there are no
440     // more uses.
441     if (&I == Cond)
442       break;
443     // We only replace uses in instructions that are guaranteed to reach the end
444     // of BB, where we know Cond is ToVal.
445     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
446       break;
447     I.replaceUsesOfWith(Cond, ToVal);
448   }
449   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
450     Cond->eraseFromParent();
451 }
452 
453 /// Return the cost of duplicating a piece of this block from first non-phi
454 /// and before StopAt instruction to thread across it. Stop scanning the block
455 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
456 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
457                                              Instruction *StopAt,
458                                              unsigned Threshold) {
459   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
460   /// Ignore PHI nodes, these will be flattened when duplication happens.
461   BasicBlock::const_iterator I(BB->getFirstNonPHI());
462 
463   // FIXME: THREADING will delete values that are just used to compute the
464   // branch, so they shouldn't count against the duplication cost.
465 
466   unsigned Bonus = 0;
467   if (BB->getTerminator() == StopAt) {
468     // Threading through a switch statement is particularly profitable.  If this
469     // block ends in a switch, decrease its cost to make it more likely to
470     // happen.
471     if (isa<SwitchInst>(StopAt))
472       Bonus = 6;
473 
474     // The same holds for indirect branches, but slightly more so.
475     if (isa<IndirectBrInst>(StopAt))
476       Bonus = 8;
477   }
478 
479   // Bump the threshold up so the early exit from the loop doesn't skip the
480   // terminator-based Size adjustment at the end.
481   Threshold += Bonus;
482 
483   // Sum up the cost of each instruction until we get to the terminator.  Don't
484   // include the terminator because the copy won't include it.
485   unsigned Size = 0;
486   for (; &*I != StopAt; ++I) {
487 
488     // Stop scanning the block if we've reached the threshold.
489     if (Size > Threshold)
490       return Size;
491 
492     // Debugger intrinsics don't incur code size.
493     if (isa<DbgInfoIntrinsic>(I)) continue;
494 
495     // If this is a pointer->pointer bitcast, it is free.
496     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
497       continue;
498 
499     // Bail out if this instruction gives back a token type, it is not possible
500     // to duplicate it if it is used outside this BB.
501     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
502       return ~0U;
503 
504     // All other instructions count for at least one unit.
505     ++Size;
506 
507     // Calls are more expensive.  If they are non-intrinsic calls, we model them
508     // as having cost of 4.  If they are a non-vector intrinsic, we model them
509     // as having cost of 2 total, and if they are a vector intrinsic, we model
510     // them as having cost 1.
511     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
512       if (CI->cannotDuplicate() || CI->isConvergent())
513         // Blocks with NoDuplicate are modelled as having infinite cost, so they
514         // are never duplicated.
515         return ~0U;
516       else if (!isa<IntrinsicInst>(CI))
517         Size += 3;
518       else if (!CI->getType()->isVectorTy())
519         Size += 1;
520     }
521   }
522 
523   return Size > Bonus ? Size - Bonus : 0;
524 }
525 
526 /// FindLoopHeaders - We do not want jump threading to turn proper loop
527 /// structures into irreducible loops.  Doing this breaks up the loop nesting
528 /// hierarchy and pessimizes later transformations.  To prevent this from
529 /// happening, we first have to find the loop headers.  Here we approximate this
530 /// by finding targets of backedges in the CFG.
531 ///
532 /// Note that there definitely are cases when we want to allow threading of
533 /// edges across a loop header.  For example, threading a jump from outside the
534 /// loop (the preheader) to an exit block of the loop is definitely profitable.
535 /// It is also almost always profitable to thread backedges from within the loop
536 /// to exit blocks, and is often profitable to thread backedges to other blocks
537 /// within the loop (forming a nested loop).  This simple analysis is not rich
538 /// enough to track all of these properties and keep it up-to-date as the CFG
539 /// mutates, so we don't allow any of these transformations.
540 void JumpThreadingPass::FindLoopHeaders(Function &F) {
541   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
542   FindFunctionBackedges(F, Edges);
543 
544   for (const auto &Edge : Edges)
545     LoopHeaders.insert(Edge.second);
546 }
547 
548 /// getKnownConstant - Helper method to determine if we can thread over a
549 /// terminator with the given value as its condition, and if so what value to
550 /// use for that. What kind of value this is depends on whether we want an
551 /// integer or a block address, but an undef is always accepted.
552 /// Returns null if Val is null or not an appropriate constant.
553 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
554   if (!Val)
555     return nullptr;
556 
557   // Undef is "known" enough.
558   if (UndefValue *U = dyn_cast<UndefValue>(Val))
559     return U;
560 
561   if (Preference == WantBlockAddress)
562     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
563 
564   return dyn_cast<ConstantInt>(Val);
565 }
566 
567 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
568 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
569 /// in any of our predecessors.  If so, return the known list of value and pred
570 /// BB in the result vector.
571 ///
572 /// This returns true if there were any known values.
573 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
574     Value *V, BasicBlock *BB, PredValueInfo &Result,
575     ConstantPreference Preference, Instruction *CxtI) {
576   // This method walks up use-def chains recursively.  Because of this, we could
577   // get into an infinite loop going around loops in the use-def chain.  To
578   // prevent this, keep track of what (value, block) pairs we've already visited
579   // and terminate the search if we loop back to them
580   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
581     return false;
582 
583   // An RAII help to remove this pair from the recursion set once the recursion
584   // stack pops back out again.
585   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
586 
587   // If V is a constant, then it is known in all predecessors.
588   if (Constant *KC = getKnownConstant(V, Preference)) {
589     for (BasicBlock *Pred : predecessors(BB))
590       Result.push_back(std::make_pair(KC, Pred));
591 
592     return !Result.empty();
593   }
594 
595   // If V is a non-instruction value, or an instruction in a different block,
596   // then it can't be derived from a PHI.
597   Instruction *I = dyn_cast<Instruction>(V);
598   if (!I || I->getParent() != BB) {
599 
600     // Okay, if this is a live-in value, see if it has a known value at the end
601     // of any of our predecessors.
602     //
603     // FIXME: This should be an edge property, not a block end property.
604     /// TODO: Per PR2563, we could infer value range information about a
605     /// predecessor based on its terminator.
606     //
607     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
608     // "I" is a non-local compare-with-a-constant instruction.  This would be
609     // able to handle value inequalities better, for example if the compare is
610     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
611     // Perhaps getConstantOnEdge should be smart enough to do this?
612 
613     if (DDT->pending())
614       LVI->disableDT();
615     else
616       LVI->enableDT();
617     for (BasicBlock *P : predecessors(BB)) {
618       // If the value is known by LazyValueInfo to be a constant in a
619       // predecessor, use that information to try to thread this block.
620       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
621       if (Constant *KC = getKnownConstant(PredCst, Preference))
622         Result.push_back(std::make_pair(KC, P));
623     }
624 
625     return !Result.empty();
626   }
627 
628   /// If I is a PHI node, then we know the incoming values for any constants.
629   if (PHINode *PN = dyn_cast<PHINode>(I)) {
630     if (DDT->pending())
631       LVI->disableDT();
632     else
633       LVI->enableDT();
634     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
635       Value *InVal = PN->getIncomingValue(i);
636       if (Constant *KC = getKnownConstant(InVal, Preference)) {
637         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
638       } else {
639         Constant *CI = LVI->getConstantOnEdge(InVal,
640                                               PN->getIncomingBlock(i),
641                                               BB, CxtI);
642         if (Constant *KC = getKnownConstant(CI, Preference))
643           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
644       }
645     }
646 
647     return !Result.empty();
648   }
649 
650   // Handle Cast instructions.  Only see through Cast when the source operand is
651   // PHI or Cmp to save the compilation time.
652   if (CastInst *CI = dyn_cast<CastInst>(I)) {
653     Value *Source = CI->getOperand(0);
654     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
655       return false;
656     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
657     if (Result.empty())
658       return false;
659 
660     // Convert the known values.
661     for (auto &R : Result)
662       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
663 
664     return true;
665   }
666 
667   // Handle some boolean conditions.
668   if (I->getType()->getPrimitiveSizeInBits() == 1) {
669     assert(Preference == WantInteger && "One-bit non-integer type?");
670     // X | true -> true
671     // X & false -> false
672     if (I->getOpcode() == Instruction::Or ||
673         I->getOpcode() == Instruction::And) {
674       PredValueInfoTy LHSVals, RHSVals;
675 
676       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
677                                       WantInteger, CxtI);
678       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
679                                       WantInteger, CxtI);
680 
681       if (LHSVals.empty() && RHSVals.empty())
682         return false;
683 
684       ConstantInt *InterestingVal;
685       if (I->getOpcode() == Instruction::Or)
686         InterestingVal = ConstantInt::getTrue(I->getContext());
687       else
688         InterestingVal = ConstantInt::getFalse(I->getContext());
689 
690       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
691 
692       // Scan for the sentinel.  If we find an undef, force it to the
693       // interesting value: x|undef -> true and x&undef -> false.
694       for (const auto &LHSVal : LHSVals)
695         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
696           Result.emplace_back(InterestingVal, LHSVal.second);
697           LHSKnownBBs.insert(LHSVal.second);
698         }
699       for (const auto &RHSVal : RHSVals)
700         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
701           // If we already inferred a value for this block on the LHS, don't
702           // re-add it.
703           if (!LHSKnownBBs.count(RHSVal.second))
704             Result.emplace_back(InterestingVal, RHSVal.second);
705         }
706 
707       return !Result.empty();
708     }
709 
710     // Handle the NOT form of XOR.
711     if (I->getOpcode() == Instruction::Xor &&
712         isa<ConstantInt>(I->getOperand(1)) &&
713         cast<ConstantInt>(I->getOperand(1))->isOne()) {
714       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
715                                       WantInteger, CxtI);
716       if (Result.empty())
717         return false;
718 
719       // Invert the known values.
720       for (auto &R : Result)
721         R.first = ConstantExpr::getNot(R.first);
722 
723       return true;
724     }
725 
726   // Try to simplify some other binary operator values.
727   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
728     assert(Preference != WantBlockAddress
729             && "A binary operator creating a block address?");
730     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
731       PredValueInfoTy LHSVals;
732       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
733                                       WantInteger, CxtI);
734 
735       // Try to use constant folding to simplify the binary operator.
736       for (const auto &LHSVal : LHSVals) {
737         Constant *V = LHSVal.first;
738         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
739 
740         if (Constant *KC = getKnownConstant(Folded, WantInteger))
741           Result.push_back(std::make_pair(KC, LHSVal.second));
742       }
743     }
744 
745     return !Result.empty();
746   }
747 
748   // Handle compare with phi operand, where the PHI is defined in this block.
749   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
750     assert(Preference == WantInteger && "Compares only produce integers");
751     Type *CmpType = Cmp->getType();
752     Value *CmpLHS = Cmp->getOperand(0);
753     Value *CmpRHS = Cmp->getOperand(1);
754     CmpInst::Predicate Pred = Cmp->getPredicate();
755 
756     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
757     if (!PN)
758       PN = dyn_cast<PHINode>(CmpRHS);
759     if (PN && PN->getParent() == BB) {
760       const DataLayout &DL = PN->getModule()->getDataLayout();
761       // We can do this simplification if any comparisons fold to true or false.
762       // See if any do.
763       if (DDT->pending())
764         LVI->disableDT();
765       else
766         LVI->enableDT();
767       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
768         BasicBlock *PredBB = PN->getIncomingBlock(i);
769         Value *LHS, *RHS;
770         if (PN == CmpLHS) {
771           LHS = PN->getIncomingValue(i);
772           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
773         } else {
774           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
775           RHS = PN->getIncomingValue(i);
776         }
777         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
778         if (!Res) {
779           if (!isa<Constant>(RHS))
780             continue;
781 
782           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
783           auto LHSInst = dyn_cast<Instruction>(LHS);
784           if (LHSInst && LHSInst->getParent() == BB)
785             continue;
786 
787           LazyValueInfo::Tristate
788             ResT = LVI->getPredicateOnEdge(Pred, LHS,
789                                            cast<Constant>(RHS), PredBB, BB,
790                                            CxtI ? CxtI : Cmp);
791           if (ResT == LazyValueInfo::Unknown)
792             continue;
793           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
794         }
795 
796         if (Constant *KC = getKnownConstant(Res, WantInteger))
797           Result.push_back(std::make_pair(KC, PredBB));
798       }
799 
800       return !Result.empty();
801     }
802 
803     // If comparing a live-in value against a constant, see if we know the
804     // live-in value on any predecessors.
805     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
806       Constant *CmpConst = cast<Constant>(CmpRHS);
807 
808       if (!isa<Instruction>(CmpLHS) ||
809           cast<Instruction>(CmpLHS)->getParent() != BB) {
810         if (DDT->pending())
811           LVI->disableDT();
812         else
813           LVI->enableDT();
814         for (BasicBlock *P : predecessors(BB)) {
815           // If the value is known by LazyValueInfo to be a constant in a
816           // predecessor, use that information to try to thread this block.
817           LazyValueInfo::Tristate Res =
818             LVI->getPredicateOnEdge(Pred, CmpLHS,
819                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
820           if (Res == LazyValueInfo::Unknown)
821             continue;
822 
823           Constant *ResC = ConstantInt::get(CmpType, Res);
824           Result.push_back(std::make_pair(ResC, P));
825         }
826 
827         return !Result.empty();
828       }
829 
830       // InstCombine can fold some forms of constant range checks into
831       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
832       // x as a live-in.
833       {
834         using namespace PatternMatch;
835 
836         Value *AddLHS;
837         ConstantInt *AddConst;
838         if (isa<ConstantInt>(CmpConst) &&
839             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
840           if (!isa<Instruction>(AddLHS) ||
841               cast<Instruction>(AddLHS)->getParent() != BB) {
842             if (DDT->pending())
843               LVI->disableDT();
844             else
845               LVI->enableDT();
846             for (BasicBlock *P : predecessors(BB)) {
847               // If the value is known by LazyValueInfo to be a ConstantRange in
848               // a predecessor, use that information to try to thread this
849               // block.
850               ConstantRange CR = LVI->getConstantRangeOnEdge(
851                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
852               // Propagate the range through the addition.
853               CR = CR.add(AddConst->getValue());
854 
855               // Get the range where the compare returns true.
856               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
857                   Pred, cast<ConstantInt>(CmpConst)->getValue());
858 
859               Constant *ResC;
860               if (CmpRange.contains(CR))
861                 ResC = ConstantInt::getTrue(CmpType);
862               else if (CmpRange.inverse().contains(CR))
863                 ResC = ConstantInt::getFalse(CmpType);
864               else
865                 continue;
866 
867               Result.push_back(std::make_pair(ResC, P));
868             }
869 
870             return !Result.empty();
871           }
872         }
873       }
874 
875       // Try to find a constant value for the LHS of a comparison,
876       // and evaluate it statically if we can.
877       PredValueInfoTy LHSVals;
878       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
879                                       WantInteger, CxtI);
880 
881       for (const auto &LHSVal : LHSVals) {
882         Constant *V = LHSVal.first;
883         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
884         if (Constant *KC = getKnownConstant(Folded, WantInteger))
885           Result.push_back(std::make_pair(KC, LHSVal.second));
886       }
887 
888       return !Result.empty();
889     }
890   }
891 
892   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
893     // Handle select instructions where at least one operand is a known constant
894     // and we can figure out the condition value for any predecessor block.
895     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
896     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
897     PredValueInfoTy Conds;
898     if ((TrueVal || FalseVal) &&
899         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
900                                         WantInteger, CxtI)) {
901       for (auto &C : Conds) {
902         Constant *Cond = C.first;
903 
904         // Figure out what value to use for the condition.
905         bool KnownCond;
906         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
907           // A known boolean.
908           KnownCond = CI->isOne();
909         } else {
910           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
911           // Either operand will do, so be sure to pick the one that's a known
912           // constant.
913           // FIXME: Do this more cleverly if both values are known constants?
914           KnownCond = (TrueVal != nullptr);
915         }
916 
917         // See if the select has a known constant value for this predecessor.
918         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
919           Result.push_back(std::make_pair(Val, C.second));
920       }
921 
922       return !Result.empty();
923     }
924   }
925 
926   // If all else fails, see if LVI can figure out a constant value for us.
927   if (DDT->pending())
928     LVI->disableDT();
929   else
930     LVI->enableDT();
931   Constant *CI = LVI->getConstant(V, BB, CxtI);
932   if (Constant *KC = getKnownConstant(CI, Preference)) {
933     for (BasicBlock *Pred : predecessors(BB))
934       Result.push_back(std::make_pair(KC, Pred));
935   }
936 
937   return !Result.empty();
938 }
939 
940 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
941 /// in an undefined jump, decide which block is best to revector to.
942 ///
943 /// Since we can pick an arbitrary destination, we pick the successor with the
944 /// fewest predecessors.  This should reduce the in-degree of the others.
945 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
946   TerminatorInst *BBTerm = BB->getTerminator();
947   unsigned MinSucc = 0;
948   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
949   // Compute the successor with the minimum number of predecessors.
950   unsigned MinNumPreds = pred_size(TestBB);
951   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
952     TestBB = BBTerm->getSuccessor(i);
953     unsigned NumPreds = pred_size(TestBB);
954     if (NumPreds < MinNumPreds) {
955       MinSucc = i;
956       MinNumPreds = NumPreds;
957     }
958   }
959 
960   return MinSucc;
961 }
962 
963 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
964   if (!BB->hasAddressTaken()) return false;
965 
966   // If the block has its address taken, it may be a tree of dead constants
967   // hanging off of it.  These shouldn't keep the block alive.
968   BlockAddress *BA = BlockAddress::get(BB);
969   BA->removeDeadConstantUsers();
970   return !BA->use_empty();
971 }
972 
973 /// ProcessBlock - If there are any predecessors whose control can be threaded
974 /// through to a successor, transform them now.
975 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
976   // If the block is trivially dead, just return and let the caller nuke it.
977   // This simplifies other transformations.
978   if (DDT->pendingDeletedBB(BB) ||
979       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
980     return false;
981 
982   // If this block has a single predecessor, and if that pred has a single
983   // successor, merge the blocks.  This encourages recursive jump threading
984   // because now the condition in this block can be threaded through
985   // predecessors of our predecessor block.
986   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
987     const TerminatorInst *TI = SinglePred->getTerminator();
988     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
989         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
990       // If SinglePred was a loop header, BB becomes one.
991       if (LoopHeaders.erase(SinglePred))
992         LoopHeaders.insert(BB);
993 
994       LVI->eraseBlock(SinglePred);
995       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
996 
997       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
998       // BB code within one basic block `BB`), we need to invalidate the LVI
999       // information associated with BB, because the LVI information need not be
1000       // true for all of BB after the merge. For example,
1001       // Before the merge, LVI info and code is as follows:
1002       // SinglePred: <LVI info1 for %p val>
1003       // %y = use of %p
1004       // call @exit() // need not transfer execution to successor.
1005       // assume(%p) // from this point on %p is true
1006       // br label %BB
1007       // BB: <LVI info2 for %p val, i.e. %p is true>
1008       // %x = use of %p
1009       // br label exit
1010       //
1011       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1012       // (info2 and info1 respectively). After the merge and the deletion of the
1013       // LVI info1 for SinglePred. We have the following code:
1014       // BB: <LVI info2 for %p val>
1015       // %y = use of %p
1016       // call @exit()
1017       // assume(%p)
1018       // %x = use of %p <-- LVI info2 is correct from here onwards.
1019       // br label exit
1020       // LVI info2 for BB is incorrect at the beginning of BB.
1021 
1022       // Invalidate LVI information for BB if the LVI is not provably true for
1023       // all of BB.
1024       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1025         LVI->eraseBlock(BB);
1026       return true;
1027     }
1028   }
1029 
1030   if (TryToUnfoldSelectInCurrBB(BB))
1031     return true;
1032 
1033   // Look if we can propagate guards to predecessors.
1034   if (HasGuards && ProcessGuards(BB))
1035     return true;
1036 
1037   // What kind of constant we're looking for.
1038   ConstantPreference Preference = WantInteger;
1039 
1040   // Look to see if the terminator is a conditional branch, switch or indirect
1041   // branch, if not we can't thread it.
1042   Value *Condition;
1043   Instruction *Terminator = BB->getTerminator();
1044   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1045     // Can't thread an unconditional jump.
1046     if (BI->isUnconditional()) return false;
1047     Condition = BI->getCondition();
1048   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1049     Condition = SI->getCondition();
1050   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1051     // Can't thread indirect branch with no successors.
1052     if (IB->getNumSuccessors() == 0) return false;
1053     Condition = IB->getAddress()->stripPointerCasts();
1054     Preference = WantBlockAddress;
1055   } else {
1056     return false; // Must be an invoke.
1057   }
1058 
1059   // Run constant folding to see if we can reduce the condition to a simple
1060   // constant.
1061   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1062     Value *SimpleVal =
1063         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1064     if (SimpleVal) {
1065       I->replaceAllUsesWith(SimpleVal);
1066       if (isInstructionTriviallyDead(I, TLI))
1067         I->eraseFromParent();
1068       Condition = SimpleVal;
1069     }
1070   }
1071 
1072   // If the terminator is branching on an undef, we can pick any of the
1073   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1074   if (isa<UndefValue>(Condition)) {
1075     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1076     std::vector<DominatorTree::UpdateType> Updates;
1077 
1078     // Fold the branch/switch.
1079     TerminatorInst *BBTerm = BB->getTerminator();
1080     Updates.reserve(BBTerm->getNumSuccessors());
1081     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1082       if (i == BestSucc) continue;
1083       BasicBlock *Succ = BBTerm->getSuccessor(i);
1084       Succ->removePredecessor(BB, true);
1085       Updates.push_back({DominatorTree::Delete, BB, Succ});
1086     }
1087 
1088     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1089                       << "' folding undef terminator: " << *BBTerm << '\n');
1090     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1091     BBTerm->eraseFromParent();
1092     DDT->applyUpdates(Updates);
1093     return true;
1094   }
1095 
1096   // If the terminator of this block is branching on a constant, simplify the
1097   // terminator to an unconditional branch.  This can occur due to threading in
1098   // other blocks.
1099   if (getKnownConstant(Condition, Preference)) {
1100     LLVM_DEBUG(dbgs() << "  In block '" << BB->getName()
1101                       << "' folding terminator: " << *BB->getTerminator()
1102                       << '\n');
1103     ++NumFolds;
1104     ConstantFoldTerminator(BB, true, nullptr, DDT);
1105     return true;
1106   }
1107 
1108   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1109 
1110   // All the rest of our checks depend on the condition being an instruction.
1111   if (!CondInst) {
1112     // FIXME: Unify this with code below.
1113     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1114       return true;
1115     return false;
1116   }
1117 
1118   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1119     // If we're branching on a conditional, LVI might be able to determine
1120     // it's value at the branch instruction.  We only handle comparisons
1121     // against a constant at this time.
1122     // TODO: This should be extended to handle switches as well.
1123     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1124     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1125     if (CondBr && CondConst) {
1126       // We should have returned as soon as we turn a conditional branch to
1127       // unconditional. Because its no longer interesting as far as jump
1128       // threading is concerned.
1129       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1130 
1131       if (DDT->pending())
1132         LVI->disableDT();
1133       else
1134         LVI->enableDT();
1135       LazyValueInfo::Tristate Ret =
1136         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1137                             CondConst, CondBr);
1138       if (Ret != LazyValueInfo::Unknown) {
1139         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1140         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1141         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1142         ToRemoveSucc->removePredecessor(BB, true);
1143         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1144         CondBr->eraseFromParent();
1145         if (CondCmp->use_empty())
1146           CondCmp->eraseFromParent();
1147         // We can safely replace *some* uses of the CondInst if it has
1148         // exactly one value as returned by LVI. RAUW is incorrect in the
1149         // presence of guards and assumes, that have the `Cond` as the use. This
1150         // is because we use the guards/assume to reason about the `Cond` value
1151         // at the end of block, but RAUW unconditionally replaces all uses
1152         // including the guards/assumes themselves and the uses before the
1153         // guard/assume.
1154         else if (CondCmp->getParent() == BB) {
1155           auto *CI = Ret == LazyValueInfo::True ?
1156             ConstantInt::getTrue(CondCmp->getType()) :
1157             ConstantInt::getFalse(CondCmp->getType());
1158           ReplaceFoldableUses(CondCmp, CI);
1159         }
1160         DDT->deleteEdge(BB, ToRemoveSucc);
1161         return true;
1162       }
1163 
1164       // We did not manage to simplify this branch, try to see whether
1165       // CondCmp depends on a known phi-select pattern.
1166       if (TryToUnfoldSelect(CondCmp, BB))
1167         return true;
1168     }
1169   }
1170 
1171   // Check for some cases that are worth simplifying.  Right now we want to look
1172   // for loads that are used by a switch or by the condition for the branch.  If
1173   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1174   // which can then be used to thread the values.
1175   Value *SimplifyValue = CondInst;
1176   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1177     if (isa<Constant>(CondCmp->getOperand(1)))
1178       SimplifyValue = CondCmp->getOperand(0);
1179 
1180   // TODO: There are other places where load PRE would be profitable, such as
1181   // more complex comparisons.
1182   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1183     if (SimplifyPartiallyRedundantLoad(LoadI))
1184       return true;
1185 
1186   // Before threading, try to propagate profile data backwards:
1187   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1188     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1189       updatePredecessorProfileMetadata(PN, BB);
1190 
1191   // Handle a variety of cases where we are branching on something derived from
1192   // a PHI node in the current block.  If we can prove that any predecessors
1193   // compute a predictable value based on a PHI node, thread those predecessors.
1194   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1195     return true;
1196 
1197   // If this is an otherwise-unfoldable branch on a phi node in the current
1198   // block, see if we can simplify.
1199   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1200     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1201       return ProcessBranchOnPHI(PN);
1202 
1203   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1204   if (CondInst->getOpcode() == Instruction::Xor &&
1205       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1206     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1207 
1208   // Search for a stronger dominating condition that can be used to simplify a
1209   // conditional branch leaving BB.
1210   if (ProcessImpliedCondition(BB))
1211     return true;
1212 
1213   return false;
1214 }
1215 
1216 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1217   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1218   if (!BI || !BI->isConditional())
1219     return false;
1220 
1221   Value *Cond = BI->getCondition();
1222   BasicBlock *CurrentBB = BB;
1223   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1224   unsigned Iter = 0;
1225 
1226   auto &DL = BB->getModule()->getDataLayout();
1227 
1228   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1229     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1230     if (!PBI || !PBI->isConditional())
1231       return false;
1232     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1233       return false;
1234 
1235     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1236     Optional<bool> Implication =
1237         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1238     if (Implication) {
1239       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1240       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1241       RemoveSucc->removePredecessor(BB);
1242       BranchInst::Create(KeepSucc, BI);
1243       BI->eraseFromParent();
1244       DDT->deleteEdge(BB, RemoveSucc);
1245       return true;
1246     }
1247     CurrentBB = CurrentPred;
1248     CurrentPred = CurrentBB->getSinglePredecessor();
1249   }
1250 
1251   return false;
1252 }
1253 
1254 /// Return true if Op is an instruction defined in the given block.
1255 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1256   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1257     if (OpInst->getParent() == BB)
1258       return true;
1259   return false;
1260 }
1261 
1262 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1263 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1264 /// This is an important optimization that encourages jump threading, and needs
1265 /// to be run interlaced with other jump threading tasks.
1266 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1267   // Don't hack volatile and ordered loads.
1268   if (!LoadI->isUnordered()) return false;
1269 
1270   // If the load is defined in a block with exactly one predecessor, it can't be
1271   // partially redundant.
1272   BasicBlock *LoadBB = LoadI->getParent();
1273   if (LoadBB->getSinglePredecessor())
1274     return false;
1275 
1276   // If the load is defined in an EH pad, it can't be partially redundant,
1277   // because the edges between the invoke and the EH pad cannot have other
1278   // instructions between them.
1279   if (LoadBB->isEHPad())
1280     return false;
1281 
1282   Value *LoadedPtr = LoadI->getOperand(0);
1283 
1284   // If the loaded operand is defined in the LoadBB and its not a phi,
1285   // it can't be available in predecessors.
1286   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1287     return false;
1288 
1289   // Scan a few instructions up from the load, to see if it is obviously live at
1290   // the entry to its block.
1291   BasicBlock::iterator BBIt(LoadI);
1292   bool IsLoadCSE;
1293   if (Value *AvailableVal = FindAvailableLoadedValue(
1294           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1295     // If the value of the load is locally available within the block, just use
1296     // it.  This frequently occurs for reg2mem'd allocas.
1297 
1298     if (IsLoadCSE) {
1299       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1300       combineMetadataForCSE(NLoadI, LoadI);
1301     };
1302 
1303     // If the returned value is the load itself, replace with an undef. This can
1304     // only happen in dead loops.
1305     if (AvailableVal == LoadI)
1306       AvailableVal = UndefValue::get(LoadI->getType());
1307     if (AvailableVal->getType() != LoadI->getType())
1308       AvailableVal = CastInst::CreateBitOrPointerCast(
1309           AvailableVal, LoadI->getType(), "", LoadI);
1310     LoadI->replaceAllUsesWith(AvailableVal);
1311     LoadI->eraseFromParent();
1312     return true;
1313   }
1314 
1315   // Otherwise, if we scanned the whole block and got to the top of the block,
1316   // we know the block is locally transparent to the load.  If not, something
1317   // might clobber its value.
1318   if (BBIt != LoadBB->begin())
1319     return false;
1320 
1321   // If all of the loads and stores that feed the value have the same AA tags,
1322   // then we can propagate them onto any newly inserted loads.
1323   AAMDNodes AATags;
1324   LoadI->getAAMetadata(AATags);
1325 
1326   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1327 
1328   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1329 
1330   AvailablePredsTy AvailablePreds;
1331   BasicBlock *OneUnavailablePred = nullptr;
1332   SmallVector<LoadInst*, 8> CSELoads;
1333 
1334   // If we got here, the loaded value is transparent through to the start of the
1335   // block.  Check to see if it is available in any of the predecessor blocks.
1336   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1337     // If we already scanned this predecessor, skip it.
1338     if (!PredsScanned.insert(PredBB).second)
1339       continue;
1340 
1341     BBIt = PredBB->end();
1342     unsigned NumScanedInst = 0;
1343     Value *PredAvailable = nullptr;
1344     // NOTE: We don't CSE load that is volatile or anything stronger than
1345     // unordered, that should have been checked when we entered the function.
1346     assert(LoadI->isUnordered() &&
1347            "Attempting to CSE volatile or atomic loads");
1348     // If this is a load on a phi pointer, phi-translate it and search
1349     // for available load/store to the pointer in predecessors.
1350     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1351     PredAvailable = FindAvailablePtrLoadStore(
1352         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1353         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1354 
1355     // If PredBB has a single predecessor, continue scanning through the
1356     // single precessor.
1357     BasicBlock *SinglePredBB = PredBB;
1358     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1359            NumScanedInst < DefMaxInstsToScan) {
1360       SinglePredBB = SinglePredBB->getSinglePredecessor();
1361       if (SinglePredBB) {
1362         BBIt = SinglePredBB->end();
1363         PredAvailable = FindAvailablePtrLoadStore(
1364             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1365             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1366             &NumScanedInst);
1367       }
1368     }
1369 
1370     if (!PredAvailable) {
1371       OneUnavailablePred = PredBB;
1372       continue;
1373     }
1374 
1375     if (IsLoadCSE)
1376       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1377 
1378     // If so, this load is partially redundant.  Remember this info so that we
1379     // can create a PHI node.
1380     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1381   }
1382 
1383   // If the loaded value isn't available in any predecessor, it isn't partially
1384   // redundant.
1385   if (AvailablePreds.empty()) return false;
1386 
1387   // Okay, the loaded value is available in at least one (and maybe all!)
1388   // predecessors.  If the value is unavailable in more than one unique
1389   // predecessor, we want to insert a merge block for those common predecessors.
1390   // This ensures that we only have to insert one reload, thus not increasing
1391   // code size.
1392   BasicBlock *UnavailablePred = nullptr;
1393 
1394   // If the value is unavailable in one of predecessors, we will end up
1395   // inserting a new instruction into them. It is only valid if all the
1396   // instructions before LoadI are guaranteed to pass execution to its
1397   // successor, or if LoadI is safe to speculate.
1398   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1399   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1400   // It requires domination tree analysis, so for this simple case it is an
1401   // overkill.
1402   if (PredsScanned.size() != AvailablePreds.size() &&
1403       !isSafeToSpeculativelyExecute(LoadI))
1404     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1405       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1406         return false;
1407 
1408   // If there is exactly one predecessor where the value is unavailable, the
1409   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1410   // unconditional branch, we know that it isn't a critical edge.
1411   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1412       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1413     UnavailablePred = OneUnavailablePred;
1414   } else if (PredsScanned.size() != AvailablePreds.size()) {
1415     // Otherwise, we had multiple unavailable predecessors or we had a critical
1416     // edge from the one.
1417     SmallVector<BasicBlock*, 8> PredsToSplit;
1418     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1419 
1420     for (const auto &AvailablePred : AvailablePreds)
1421       AvailablePredSet.insert(AvailablePred.first);
1422 
1423     // Add all the unavailable predecessors to the PredsToSplit list.
1424     for (BasicBlock *P : predecessors(LoadBB)) {
1425       // If the predecessor is an indirect goto, we can't split the edge.
1426       if (isa<IndirectBrInst>(P->getTerminator()))
1427         return false;
1428 
1429       if (!AvailablePredSet.count(P))
1430         PredsToSplit.push_back(P);
1431     }
1432 
1433     // Split them out to their own block.
1434     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1435   }
1436 
1437   // If the value isn't available in all predecessors, then there will be
1438   // exactly one where it isn't available.  Insert a load on that edge and add
1439   // it to the AvailablePreds list.
1440   if (UnavailablePred) {
1441     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1442            "Can't handle critical edge here!");
1443     LoadInst *NewVal =
1444         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1445                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1446                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1447                      UnavailablePred->getTerminator());
1448     NewVal->setDebugLoc(LoadI->getDebugLoc());
1449     if (AATags)
1450       NewVal->setAAMetadata(AATags);
1451 
1452     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1453   }
1454 
1455   // Now we know that each predecessor of this block has a value in
1456   // AvailablePreds, sort them for efficient access as we're walking the preds.
1457   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1458 
1459   // Create a PHI node at the start of the block for the PRE'd load value.
1460   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1461   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1462                                 &LoadBB->front());
1463   PN->takeName(LoadI);
1464   PN->setDebugLoc(LoadI->getDebugLoc());
1465 
1466   // Insert new entries into the PHI for each predecessor.  A single block may
1467   // have multiple entries here.
1468   for (pred_iterator PI = PB; PI != PE; ++PI) {
1469     BasicBlock *P = *PI;
1470     AvailablePredsTy::iterator I =
1471       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1472                        std::make_pair(P, (Value*)nullptr));
1473 
1474     assert(I != AvailablePreds.end() && I->first == P &&
1475            "Didn't find entry for predecessor!");
1476 
1477     // If we have an available predecessor but it requires casting, insert the
1478     // cast in the predecessor and use the cast. Note that we have to update the
1479     // AvailablePreds vector as we go so that all of the PHI entries for this
1480     // predecessor use the same bitcast.
1481     Value *&PredV = I->second;
1482     if (PredV->getType() != LoadI->getType())
1483       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1484                                                P->getTerminator());
1485 
1486     PN->addIncoming(PredV, I->first);
1487   }
1488 
1489   for (LoadInst *PredLoadI : CSELoads) {
1490     combineMetadataForCSE(PredLoadI, LoadI);
1491   }
1492 
1493   LoadI->replaceAllUsesWith(PN);
1494   LoadI->eraseFromParent();
1495 
1496   return true;
1497 }
1498 
1499 /// FindMostPopularDest - The specified list contains multiple possible
1500 /// threadable destinations.  Pick the one that occurs the most frequently in
1501 /// the list.
1502 static BasicBlock *
1503 FindMostPopularDest(BasicBlock *BB,
1504                     const SmallVectorImpl<std::pair<BasicBlock *,
1505                                           BasicBlock *>> &PredToDestList) {
1506   assert(!PredToDestList.empty());
1507 
1508   // Determine popularity.  If there are multiple possible destinations, we
1509   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1510   // blocks with known and real destinations to threading undef.  We'll handle
1511   // them later if interesting.
1512   DenseMap<BasicBlock*, unsigned> DestPopularity;
1513   for (const auto &PredToDest : PredToDestList)
1514     if (PredToDest.second)
1515       DestPopularity[PredToDest.second]++;
1516 
1517   if (DestPopularity.empty())
1518     return nullptr;
1519 
1520   // Find the most popular dest.
1521   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1522   BasicBlock *MostPopularDest = DPI->first;
1523   unsigned Popularity = DPI->second;
1524   SmallVector<BasicBlock*, 4> SamePopularity;
1525 
1526   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1527     // If the popularity of this entry isn't higher than the popularity we've
1528     // seen so far, ignore it.
1529     if (DPI->second < Popularity)
1530       ; // ignore.
1531     else if (DPI->second == Popularity) {
1532       // If it is the same as what we've seen so far, keep track of it.
1533       SamePopularity.push_back(DPI->first);
1534     } else {
1535       // If it is more popular, remember it.
1536       SamePopularity.clear();
1537       MostPopularDest = DPI->first;
1538       Popularity = DPI->second;
1539     }
1540   }
1541 
1542   // Okay, now we know the most popular destination.  If there is more than one
1543   // destination, we need to determine one.  This is arbitrary, but we need
1544   // to make a deterministic decision.  Pick the first one that appears in the
1545   // successor list.
1546   if (!SamePopularity.empty()) {
1547     SamePopularity.push_back(MostPopularDest);
1548     TerminatorInst *TI = BB->getTerminator();
1549     for (unsigned i = 0; ; ++i) {
1550       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1551 
1552       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1553         continue;
1554 
1555       MostPopularDest = TI->getSuccessor(i);
1556       break;
1557     }
1558   }
1559 
1560   // Okay, we have finally picked the most popular destination.
1561   return MostPopularDest;
1562 }
1563 
1564 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1565                                                ConstantPreference Preference,
1566                                                Instruction *CxtI) {
1567   // If threading this would thread across a loop header, don't even try to
1568   // thread the edge.
1569   if (LoopHeaders.count(BB))
1570     return false;
1571 
1572   PredValueInfoTy PredValues;
1573   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1574     return false;
1575 
1576   assert(!PredValues.empty() &&
1577          "ComputeValueKnownInPredecessors returned true with no values");
1578 
1579   LLVM_DEBUG(dbgs() << "IN BB: " << *BB;
1580              for (const auto &PredValue : PredValues) {
1581                dbgs() << "  BB '" << BB->getName()
1582                       << "': FOUND condition = " << *PredValue.first
1583                       << " for pred '" << PredValue.second->getName() << "'.\n";
1584   });
1585 
1586   // Decide what we want to thread through.  Convert our list of known values to
1587   // a list of known destinations for each pred.  This also discards duplicate
1588   // predecessors and keeps track of the undefined inputs (which are represented
1589   // as a null dest in the PredToDestList).
1590   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1591   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1592 
1593   BasicBlock *OnlyDest = nullptr;
1594   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1595   Constant *OnlyVal = nullptr;
1596   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1597 
1598   unsigned PredWithKnownDest = 0;
1599   for (const auto &PredValue : PredValues) {
1600     BasicBlock *Pred = PredValue.second;
1601     if (!SeenPreds.insert(Pred).second)
1602       continue;  // Duplicate predecessor entry.
1603 
1604     Constant *Val = PredValue.first;
1605 
1606     BasicBlock *DestBB;
1607     if (isa<UndefValue>(Val))
1608       DestBB = nullptr;
1609     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1610       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1611       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1612     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1613       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1614       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1615     } else {
1616       assert(isa<IndirectBrInst>(BB->getTerminator())
1617               && "Unexpected terminator");
1618       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1619       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1620     }
1621 
1622     // If we have exactly one destination, remember it for efficiency below.
1623     if (PredToDestList.empty()) {
1624       OnlyDest = DestBB;
1625       OnlyVal = Val;
1626     } else {
1627       if (OnlyDest != DestBB)
1628         OnlyDest = MultipleDestSentinel;
1629       // It possible we have same destination, but different value, e.g. default
1630       // case in switchinst.
1631       if (Val != OnlyVal)
1632         OnlyVal = MultipleVal;
1633     }
1634 
1635     // We know where this predecessor is going.
1636     ++PredWithKnownDest;
1637 
1638     // If the predecessor ends with an indirect goto, we can't change its
1639     // destination.
1640     if (isa<IndirectBrInst>(Pred->getTerminator()))
1641       continue;
1642 
1643     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1644   }
1645 
1646   // If all edges were unthreadable, we fail.
1647   if (PredToDestList.empty())
1648     return false;
1649 
1650   // If all the predecessors go to a single known successor, we want to fold,
1651   // not thread. By doing so, we do not need to duplicate the current block and
1652   // also miss potential opportunities in case we dont/cant duplicate.
1653   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1654     if (PredWithKnownDest == (size_t)pred_size(BB)) {
1655       bool SeenFirstBranchToOnlyDest = false;
1656       std::vector <DominatorTree::UpdateType> Updates;
1657       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1658       for (BasicBlock *SuccBB : successors(BB)) {
1659         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1660           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1661         } else {
1662           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1663           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1664         }
1665       }
1666 
1667       // Finally update the terminator.
1668       TerminatorInst *Term = BB->getTerminator();
1669       BranchInst::Create(OnlyDest, Term);
1670       Term->eraseFromParent();
1671       DDT->applyUpdates(Updates);
1672 
1673       // If the condition is now dead due to the removal of the old terminator,
1674       // erase it.
1675       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1676         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1677           CondInst->eraseFromParent();
1678         // We can safely replace *some* uses of the CondInst if it has
1679         // exactly one value as returned by LVI. RAUW is incorrect in the
1680         // presence of guards and assumes, that have the `Cond` as the use. This
1681         // is because we use the guards/assume to reason about the `Cond` value
1682         // at the end of block, but RAUW unconditionally replaces all uses
1683         // including the guards/assumes themselves and the uses before the
1684         // guard/assume.
1685         else if (OnlyVal && OnlyVal != MultipleVal &&
1686                  CondInst->getParent() == BB)
1687           ReplaceFoldableUses(CondInst, OnlyVal);
1688       }
1689       return true;
1690     }
1691   }
1692 
1693   // Determine which is the most common successor.  If we have many inputs and
1694   // this block is a switch, we want to start by threading the batch that goes
1695   // to the most popular destination first.  If we only know about one
1696   // threadable destination (the common case) we can avoid this.
1697   BasicBlock *MostPopularDest = OnlyDest;
1698 
1699   if (MostPopularDest == MultipleDestSentinel) {
1700     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1701     // won't process them, but we might have other destination that are eligible
1702     // and we still want to process.
1703     erase_if(PredToDestList,
1704              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1705                return LoopHeaders.count(PredToDest.second) != 0;
1706              });
1707 
1708     if (PredToDestList.empty())
1709       return false;
1710 
1711     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1712   }
1713 
1714   // Now that we know what the most popular destination is, factor all
1715   // predecessors that will jump to it into a single predecessor.
1716   SmallVector<BasicBlock*, 16> PredsToFactor;
1717   for (const auto &PredToDest : PredToDestList)
1718     if (PredToDest.second == MostPopularDest) {
1719       BasicBlock *Pred = PredToDest.first;
1720 
1721       // This predecessor may be a switch or something else that has multiple
1722       // edges to the block.  Factor each of these edges by listing them
1723       // according to # occurrences in PredsToFactor.
1724       for (BasicBlock *Succ : successors(Pred))
1725         if (Succ == BB)
1726           PredsToFactor.push_back(Pred);
1727     }
1728 
1729   // If the threadable edges are branching on an undefined value, we get to pick
1730   // the destination that these predecessors should get to.
1731   if (!MostPopularDest)
1732     MostPopularDest = BB->getTerminator()->
1733                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1734 
1735   // Ok, try to thread it!
1736   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1737 }
1738 
1739 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1740 /// a PHI node in the current block.  See if there are any simplifications we
1741 /// can do based on inputs to the phi node.
1742 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1743   BasicBlock *BB = PN->getParent();
1744 
1745   // TODO: We could make use of this to do it once for blocks with common PHI
1746   // values.
1747   SmallVector<BasicBlock*, 1> PredBBs;
1748   PredBBs.resize(1);
1749 
1750   // If any of the predecessor blocks end in an unconditional branch, we can
1751   // *duplicate* the conditional branch into that block in order to further
1752   // encourage jump threading and to eliminate cases where we have branch on a
1753   // phi of an icmp (branch on icmp is much better).
1754   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1755     BasicBlock *PredBB = PN->getIncomingBlock(i);
1756     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1757       if (PredBr->isUnconditional()) {
1758         PredBBs[0] = PredBB;
1759         // Try to duplicate BB into PredBB.
1760         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1761           return true;
1762       }
1763   }
1764 
1765   return false;
1766 }
1767 
1768 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1769 /// a xor instruction in the current block.  See if there are any
1770 /// simplifications we can do based on inputs to the xor.
1771 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1772   BasicBlock *BB = BO->getParent();
1773 
1774   // If either the LHS or RHS of the xor is a constant, don't do this
1775   // optimization.
1776   if (isa<ConstantInt>(BO->getOperand(0)) ||
1777       isa<ConstantInt>(BO->getOperand(1)))
1778     return false;
1779 
1780   // If the first instruction in BB isn't a phi, we won't be able to infer
1781   // anything special about any particular predecessor.
1782   if (!isa<PHINode>(BB->front()))
1783     return false;
1784 
1785   // If this BB is a landing pad, we won't be able to split the edge into it.
1786   if (BB->isEHPad())
1787     return false;
1788 
1789   // If we have a xor as the branch input to this block, and we know that the
1790   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1791   // the condition into the predecessor and fix that value to true, saving some
1792   // logical ops on that path and encouraging other paths to simplify.
1793   //
1794   // This copies something like this:
1795   //
1796   //  BB:
1797   //    %X = phi i1 [1],  [%X']
1798   //    %Y = icmp eq i32 %A, %B
1799   //    %Z = xor i1 %X, %Y
1800   //    br i1 %Z, ...
1801   //
1802   // Into:
1803   //  BB':
1804   //    %Y = icmp ne i32 %A, %B
1805   //    br i1 %Y, ...
1806 
1807   PredValueInfoTy XorOpValues;
1808   bool isLHS = true;
1809   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1810                                        WantInteger, BO)) {
1811     assert(XorOpValues.empty());
1812     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1813                                          WantInteger, BO))
1814       return false;
1815     isLHS = false;
1816   }
1817 
1818   assert(!XorOpValues.empty() &&
1819          "ComputeValueKnownInPredecessors returned true with no values");
1820 
1821   // Scan the information to see which is most popular: true or false.  The
1822   // predecessors can be of the set true, false, or undef.
1823   unsigned NumTrue = 0, NumFalse = 0;
1824   for (const auto &XorOpValue : XorOpValues) {
1825     if (isa<UndefValue>(XorOpValue.first))
1826       // Ignore undefs for the count.
1827       continue;
1828     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1829       ++NumFalse;
1830     else
1831       ++NumTrue;
1832   }
1833 
1834   // Determine which value to split on, true, false, or undef if neither.
1835   ConstantInt *SplitVal = nullptr;
1836   if (NumTrue > NumFalse)
1837     SplitVal = ConstantInt::getTrue(BB->getContext());
1838   else if (NumTrue != 0 || NumFalse != 0)
1839     SplitVal = ConstantInt::getFalse(BB->getContext());
1840 
1841   // Collect all of the blocks that this can be folded into so that we can
1842   // factor this once and clone it once.
1843   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1844   for (const auto &XorOpValue : XorOpValues) {
1845     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1846       continue;
1847 
1848     BlocksToFoldInto.push_back(XorOpValue.second);
1849   }
1850 
1851   // If we inferred a value for all of the predecessors, then duplication won't
1852   // help us.  However, we can just replace the LHS or RHS with the constant.
1853   if (BlocksToFoldInto.size() ==
1854       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1855     if (!SplitVal) {
1856       // If all preds provide undef, just nuke the xor, because it is undef too.
1857       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1858       BO->eraseFromParent();
1859     } else if (SplitVal->isZero()) {
1860       // If all preds provide 0, replace the xor with the other input.
1861       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1862       BO->eraseFromParent();
1863     } else {
1864       // If all preds provide 1, set the computed value to 1.
1865       BO->setOperand(!isLHS, SplitVal);
1866     }
1867 
1868     return true;
1869   }
1870 
1871   // Try to duplicate BB into PredBB.
1872   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1873 }
1874 
1875 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1876 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1877 /// NewPred using the entries from OldPred (suitably mapped).
1878 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1879                                             BasicBlock *OldPred,
1880                                             BasicBlock *NewPred,
1881                                      DenseMap<Instruction*, Value*> &ValueMap) {
1882   for (PHINode &PN : PHIBB->phis()) {
1883     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1884     // DestBlock.
1885     Value *IV = PN.getIncomingValueForBlock(OldPred);
1886 
1887     // Remap the value if necessary.
1888     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1889       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1890       if (I != ValueMap.end())
1891         IV = I->second;
1892     }
1893 
1894     PN.addIncoming(IV, NewPred);
1895   }
1896 }
1897 
1898 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1899 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1900 /// across BB.  Transform the IR to reflect this change.
1901 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1902                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1903                                    BasicBlock *SuccBB) {
1904   // If threading to the same block as we come from, we would infinite loop.
1905   if (SuccBB == BB) {
1906     LLVM_DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1907                       << "' - would thread to self!\n");
1908     return false;
1909   }
1910 
1911   // If threading this would thread across a loop header, don't thread the edge.
1912   // See the comments above FindLoopHeaders for justifications and caveats.
1913   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1914     LLVM_DEBUG({
1915       bool BBIsHeader = LoopHeaders.count(BB);
1916       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1917       dbgs() << "  Not threading across "
1918           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1919           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1920           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1921     });
1922     return false;
1923   }
1924 
1925   unsigned JumpThreadCost =
1926       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1927   if (JumpThreadCost > BBDupThreshold) {
1928     LLVM_DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1929                       << "' - Cost is too high: " << JumpThreadCost << "\n");
1930     return false;
1931   }
1932 
1933   // And finally, do it!  Start by factoring the predecessors if needed.
1934   BasicBlock *PredBB;
1935   if (PredBBs.size() == 1)
1936     PredBB = PredBBs[0];
1937   else {
1938     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1939                       << " common predecessors.\n");
1940     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1941   }
1942 
1943   // And finally, do it!
1944   LLVM_DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName()
1945                     << "' to '" << SuccBB->getName()
1946                     << "' with cost: " << JumpThreadCost
1947                     << ", across block:\n    " << *BB << "\n");
1948 
1949   if (DDT->pending())
1950     LVI->disableDT();
1951   else
1952     LVI->enableDT();
1953   LVI->threadEdge(PredBB, BB, SuccBB);
1954 
1955   // We are going to have to map operands from the original BB block to the new
1956   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1957   // account for entry from PredBB.
1958   DenseMap<Instruction*, Value*> ValueMapping;
1959 
1960   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1961                                          BB->getName()+".thread",
1962                                          BB->getParent(), BB);
1963   NewBB->moveAfter(PredBB);
1964 
1965   // Set the block frequency of NewBB.
1966   if (HasProfileData) {
1967     auto NewBBFreq =
1968         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1969     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1970   }
1971 
1972   BasicBlock::iterator BI = BB->begin();
1973   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1974     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1975 
1976   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1977   // mapping and using it to remap operands in the cloned instructions.
1978   for (; !isa<TerminatorInst>(BI); ++BI) {
1979     Instruction *New = BI->clone();
1980     New->setName(BI->getName());
1981     NewBB->getInstList().push_back(New);
1982     ValueMapping[&*BI] = New;
1983 
1984     // Remap operands to patch up intra-block references.
1985     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1986       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1987         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1988         if (I != ValueMapping.end())
1989           New->setOperand(i, I->second);
1990       }
1991   }
1992 
1993   // We didn't copy the terminator from BB over to NewBB, because there is now
1994   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1995   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1996   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1997 
1998   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1999   // PHI nodes for NewBB now.
2000   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
2001 
2002   // Update the terminator of PredBB to jump to NewBB instead of BB.  This
2003   // eliminates predecessors from BB, which requires us to simplify any PHI
2004   // nodes in BB.
2005   TerminatorInst *PredTerm = PredBB->getTerminator();
2006   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2007     if (PredTerm->getSuccessor(i) == BB) {
2008       BB->removePredecessor(PredBB, true);
2009       PredTerm->setSuccessor(i, NewBB);
2010     }
2011 
2012   // If there were values defined in BB that are used outside the block, then we
2013   // now have to update all uses of the value to use either the original value,
2014   // the cloned value, or some PHI derived value.  This can require arbitrary
2015   // PHI insertion, of which we are prepared to do, clean these up now.
2016   SSAUpdaterBulk SSAUpdate;
2017 
2018   for (Instruction &I : *BB) {
2019     SmallVector<Use*, 16> UsesToRename;
2020 
2021     // Scan all uses of this instruction to see if it is used outside of its
2022     // block, and if so, record them in UsesToRename. Also, skip phi operands
2023     // from PredBB - we'll remove them anyway.
2024     for (Use &U : I.uses()) {
2025       Instruction *User = cast<Instruction>(U.getUser());
2026       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2027         if (UserPN->getIncomingBlock(U) == BB ||
2028             UserPN->getIncomingBlock(U) == PredBB)
2029           continue;
2030       } else if (User->getParent() == BB)
2031         continue;
2032 
2033       UsesToRename.push_back(&U);
2034     }
2035 
2036     // If there are no uses outside the block, we're done with this instruction.
2037     if (UsesToRename.empty())
2038       continue;
2039     unsigned VarNum = SSAUpdate.AddVariable(I.getName(), I.getType());
2040 
2041     // We found a use of I outside of BB - we need to rename all uses of I that
2042     // are outside its block to be uses of the appropriate PHI node etc.
2043     SSAUpdate.AddAvailableValue(VarNum, BB, &I);
2044     SSAUpdate.AddAvailableValue(VarNum, NewBB, ValueMapping[&I]);
2045     for (auto *U : UsesToRename)
2046       SSAUpdate.AddUse(VarNum, U);
2047   }
2048 
2049   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2050                      {DominatorTree::Insert, PredBB, NewBB},
2051                      {DominatorTree::Delete, PredBB, BB}});
2052 
2053   // Apply all updates we queued with DDT and get the updated Dominator Tree.
2054   DominatorTree *DT = &DDT->flush();
2055   SSAUpdate.RewriteAllUses(DT);
2056 
2057   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2058   // over the new instructions and zap any that are constants or dead.  This
2059   // frequently happens because of phi translation.
2060   SimplifyInstructionsInBlock(NewBB, TLI);
2061 
2062   // Update the edge weight from BB to SuccBB, which should be less than before.
2063   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2064 
2065   // Threaded an edge!
2066   ++NumThreads;
2067   return true;
2068 }
2069 
2070 /// Create a new basic block that will be the predecessor of BB and successor of
2071 /// all blocks in Preds. When profile data is available, update the frequency of
2072 /// this new block.
2073 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2074                                                ArrayRef<BasicBlock *> Preds,
2075                                                const char *Suffix) {
2076   SmallVector<BasicBlock *, 2> NewBBs;
2077 
2078   // Collect the frequencies of all predecessors of BB, which will be used to
2079   // update the edge weight of the result of splitting predecessors.
2080   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2081   if (HasProfileData)
2082     for (auto Pred : Preds)
2083       FreqMap.insert(std::make_pair(
2084           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2085 
2086   // In the case when BB is a LandingPad block we create 2 new predecessors
2087   // instead of just one.
2088   if (BB->isLandingPad()) {
2089     std::string NewName = std::string(Suffix) + ".split-lp";
2090     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2091   } else {
2092     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2093   }
2094 
2095   std::vector<DominatorTree::UpdateType> Updates;
2096   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2097   for (auto NewBB : NewBBs) {
2098     BlockFrequency NewBBFreq(0);
2099     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2100     for (auto Pred : predecessors(NewBB)) {
2101       Updates.push_back({DominatorTree::Delete, Pred, BB});
2102       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2103       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2104         NewBBFreq += FreqMap.lookup(Pred);
2105     }
2106     if (HasProfileData) // Apply the summed frequency to NewBB.
2107       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2108   }
2109 
2110   DDT->applyUpdates(Updates);
2111   return NewBBs[0];
2112 }
2113 
2114 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2115   const TerminatorInst *TI = BB->getTerminator();
2116   assert(TI->getNumSuccessors() > 1 && "not a split");
2117 
2118   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2119   if (!WeightsNode)
2120     return false;
2121 
2122   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2123   if (MDName->getString() != "branch_weights")
2124     return false;
2125 
2126   // Ensure there are weights for all of the successors. Note that the first
2127   // operand to the metadata node is a name, not a weight.
2128   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2129 }
2130 
2131 /// Update the block frequency of BB and branch weight and the metadata on the
2132 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2133 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2134 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2135                                                      BasicBlock *BB,
2136                                                      BasicBlock *NewBB,
2137                                                      BasicBlock *SuccBB) {
2138   if (!HasProfileData)
2139     return;
2140 
2141   assert(BFI && BPI && "BFI & BPI should have been created here");
2142 
2143   // As the edge from PredBB to BB is deleted, we have to update the block
2144   // frequency of BB.
2145   auto BBOrigFreq = BFI->getBlockFreq(BB);
2146   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2147   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2148   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2149   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2150 
2151   // Collect updated outgoing edges' frequencies from BB and use them to update
2152   // edge probabilities.
2153   SmallVector<uint64_t, 4> BBSuccFreq;
2154   for (BasicBlock *Succ : successors(BB)) {
2155     auto SuccFreq = (Succ == SuccBB)
2156                         ? BB2SuccBBFreq - NewBBFreq
2157                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2158     BBSuccFreq.push_back(SuccFreq.getFrequency());
2159   }
2160 
2161   uint64_t MaxBBSuccFreq =
2162       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2163 
2164   SmallVector<BranchProbability, 4> BBSuccProbs;
2165   if (MaxBBSuccFreq == 0)
2166     BBSuccProbs.assign(BBSuccFreq.size(),
2167                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2168   else {
2169     for (uint64_t Freq : BBSuccFreq)
2170       BBSuccProbs.push_back(
2171           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2172     // Normalize edge probabilities so that they sum up to one.
2173     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2174                                               BBSuccProbs.end());
2175   }
2176 
2177   // Update edge probabilities in BPI.
2178   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2179     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2180 
2181   // Update the profile metadata as well.
2182   //
2183   // Don't do this if the profile of the transformed blocks was statically
2184   // estimated.  (This could occur despite the function having an entry
2185   // frequency in completely cold parts of the CFG.)
2186   //
2187   // In this case we don't want to suggest to subsequent passes that the
2188   // calculated weights are fully consistent.  Consider this graph:
2189   //
2190   //                 check_1
2191   //             50% /  |
2192   //             eq_1   | 50%
2193   //                 \  |
2194   //                 check_2
2195   //             50% /  |
2196   //             eq_2   | 50%
2197   //                 \  |
2198   //                 check_3
2199   //             50% /  |
2200   //             eq_3   | 50%
2201   //                 \  |
2202   //
2203   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2204   // the overall probabilities are inconsistent; the total probability that the
2205   // value is either 1, 2 or 3 is 150%.
2206   //
2207   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2208   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2209   // the loop exit edge.  Then based solely on static estimation we would assume
2210   // the loop was extremely hot.
2211   //
2212   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2213   // shouldn't make edges extremely likely or unlikely based solely on static
2214   // estimation.
2215   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2216     SmallVector<uint32_t, 4> Weights;
2217     for (auto Prob : BBSuccProbs)
2218       Weights.push_back(Prob.getNumerator());
2219 
2220     auto TI = BB->getTerminator();
2221     TI->setMetadata(
2222         LLVMContext::MD_prof,
2223         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2224   }
2225 }
2226 
2227 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2228 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2229 /// If we can duplicate the contents of BB up into PredBB do so now, this
2230 /// improves the odds that the branch will be on an analyzable instruction like
2231 /// a compare.
2232 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2233     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2234   assert(!PredBBs.empty() && "Can't handle an empty set");
2235 
2236   // If BB is a loop header, then duplicating this block outside the loop would
2237   // cause us to transform this into an irreducible loop, don't do this.
2238   // See the comments above FindLoopHeaders for justifications and caveats.
2239   if (LoopHeaders.count(BB)) {
2240     LLVM_DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2241                       << "' into predecessor block '" << PredBBs[0]->getName()
2242                       << "' - it might create an irreducible loop!\n");
2243     return false;
2244   }
2245 
2246   unsigned DuplicationCost =
2247       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2248   if (DuplicationCost > BBDupThreshold) {
2249     LLVM_DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2250                       << "' - Cost is too high: " << DuplicationCost << "\n");
2251     return false;
2252   }
2253 
2254   // And finally, do it!  Start by factoring the predecessors if needed.
2255   std::vector<DominatorTree::UpdateType> Updates;
2256   BasicBlock *PredBB;
2257   if (PredBBs.size() == 1)
2258     PredBB = PredBBs[0];
2259   else {
2260     LLVM_DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2261                       << " common predecessors.\n");
2262     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2263   }
2264   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2265 
2266   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2267   // of PredBB.
2268   LLVM_DEBUG(dbgs() << "  Duplicating block '" << BB->getName()
2269                     << "' into end of '" << PredBB->getName()
2270                     << "' to eliminate branch on phi.  Cost: "
2271                     << DuplicationCost << " block is:" << *BB << "\n");
2272 
2273   // Unless PredBB ends with an unconditional branch, split the edge so that we
2274   // can just clone the bits from BB into the end of the new PredBB.
2275   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2276 
2277   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2278     BasicBlock *OldPredBB = PredBB;
2279     PredBB = SplitEdge(OldPredBB, BB);
2280     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2281     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2282     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2283     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2284   }
2285 
2286   // We are going to have to map operands from the original BB block into the
2287   // PredBB block.  Evaluate PHI nodes in BB.
2288   DenseMap<Instruction*, Value*> ValueMapping;
2289 
2290   BasicBlock::iterator BI = BB->begin();
2291   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2292     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2293   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2294   // mapping and using it to remap operands in the cloned instructions.
2295   for (; BI != BB->end(); ++BI) {
2296     Instruction *New = BI->clone();
2297 
2298     // Remap operands to patch up intra-block references.
2299     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2300       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2301         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2302         if (I != ValueMapping.end())
2303           New->setOperand(i, I->second);
2304       }
2305 
2306     // If this instruction can be simplified after the operands are updated,
2307     // just use the simplified value instead.  This frequently happens due to
2308     // phi translation.
2309     if (Value *IV = SimplifyInstruction(
2310             New,
2311             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2312       ValueMapping[&*BI] = IV;
2313       if (!New->mayHaveSideEffects()) {
2314         New->deleteValue();
2315         New = nullptr;
2316       }
2317     } else {
2318       ValueMapping[&*BI] = New;
2319     }
2320     if (New) {
2321       // Otherwise, insert the new instruction into the block.
2322       New->setName(BI->getName());
2323       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2324       // Update Dominance from simplified New instruction operands.
2325       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2326         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2327           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2328     }
2329   }
2330 
2331   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2332   // add entries to the PHI nodes for branch from PredBB now.
2333   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2334   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2335                                   ValueMapping);
2336   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2337                                   ValueMapping);
2338 
2339   // If there were values defined in BB that are used outside the block, then we
2340   // now have to update all uses of the value to use either the original value,
2341   // the cloned value, or some PHI derived value.  This can require arbitrary
2342   // PHI insertion, of which we are prepared to do, clean these up now.
2343   SSAUpdater SSAUpdate;
2344   SmallVector<Use*, 16> UsesToRename;
2345   for (Instruction &I : *BB) {
2346     // Scan all uses of this instruction to see if it is used outside of its
2347     // block, and if so, record them in UsesToRename.
2348     for (Use &U : I.uses()) {
2349       Instruction *User = cast<Instruction>(U.getUser());
2350       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2351         if (UserPN->getIncomingBlock(U) == BB)
2352           continue;
2353       } else if (User->getParent() == BB)
2354         continue;
2355 
2356       UsesToRename.push_back(&U);
2357     }
2358 
2359     // If there are no uses outside the block, we're done with this instruction.
2360     if (UsesToRename.empty())
2361       continue;
2362 
2363     LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2364 
2365     // We found a use of I outside of BB.  Rename all uses of I that are outside
2366     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2367     // with the two values we know.
2368     SSAUpdate.Initialize(I.getType(), I.getName());
2369     SSAUpdate.AddAvailableValue(BB, &I);
2370     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2371 
2372     while (!UsesToRename.empty())
2373       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2374     LLVM_DEBUG(dbgs() << "\n");
2375   }
2376 
2377   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2378   // that we nuked.
2379   BB->removePredecessor(PredBB, true);
2380 
2381   // Remove the unconditional branch at the end of the PredBB block.
2382   OldPredBranch->eraseFromParent();
2383   DDT->applyUpdates(Updates);
2384 
2385   ++NumDupes;
2386   return true;
2387 }
2388 
2389 /// TryToUnfoldSelect - Look for blocks of the form
2390 /// bb1:
2391 ///   %a = select
2392 ///   br bb2
2393 ///
2394 /// bb2:
2395 ///   %p = phi [%a, %bb1] ...
2396 ///   %c = icmp %p
2397 ///   br i1 %c
2398 ///
2399 /// And expand the select into a branch structure if one of its arms allows %c
2400 /// to be folded. This later enables threading from bb1 over bb2.
2401 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2402   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2403   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2404   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2405 
2406   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2407       CondLHS->getParent() != BB)
2408     return false;
2409 
2410   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2411     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2412     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2413 
2414     // Look if one of the incoming values is a select in the corresponding
2415     // predecessor.
2416     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2417       continue;
2418 
2419     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2420     if (!PredTerm || !PredTerm->isUnconditional())
2421       continue;
2422 
2423     // Now check if one of the select values would allow us to constant fold the
2424     // terminator in BB. We don't do the transform if both sides fold, those
2425     // cases will be threaded in any case.
2426     if (DDT->pending())
2427       LVI->disableDT();
2428     else
2429       LVI->enableDT();
2430     LazyValueInfo::Tristate LHSFolds =
2431         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2432                                 CondRHS, Pred, BB, CondCmp);
2433     LazyValueInfo::Tristate RHSFolds =
2434         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2435                                 CondRHS, Pred, BB, CondCmp);
2436     if ((LHSFolds != LazyValueInfo::Unknown ||
2437          RHSFolds != LazyValueInfo::Unknown) &&
2438         LHSFolds != RHSFolds) {
2439       // Expand the select.
2440       //
2441       // Pred --
2442       //  |    v
2443       //  |  NewBB
2444       //  |    |
2445       //  |-----
2446       //  v
2447       // BB
2448       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2449                                              BB->getParent(), BB);
2450       // Move the unconditional branch to NewBB.
2451       PredTerm->removeFromParent();
2452       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2453       // Create a conditional branch and update PHI nodes.
2454       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2455       CondLHS->setIncomingValue(I, SI->getFalseValue());
2456       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2457       // The select is now dead.
2458       SI->eraseFromParent();
2459 
2460       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2461                          {DominatorTree::Insert, Pred, NewBB}});
2462       // Update any other PHI nodes in BB.
2463       for (BasicBlock::iterator BI = BB->begin();
2464            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2465         if (Phi != CondLHS)
2466           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2467       return true;
2468     }
2469   }
2470   return false;
2471 }
2472 
2473 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2474 /// same BB in the form
2475 /// bb:
2476 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2477 ///   %s = select %p, trueval, falseval
2478 ///
2479 /// or
2480 ///
2481 /// bb:
2482 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2483 ///   %c = cmp %p, 0
2484 ///   %s = select %c, trueval, falseval
2485 ///
2486 /// And expand the select into a branch structure. This later enables
2487 /// jump-threading over bb in this pass.
2488 ///
2489 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2490 /// select if the associated PHI has at least one constant.  If the unfolded
2491 /// select is not jump-threaded, it will be folded again in the later
2492 /// optimizations.
2493 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2494   // If threading this would thread across a loop header, don't thread the edge.
2495   // See the comments above FindLoopHeaders for justifications and caveats.
2496   if (LoopHeaders.count(BB))
2497     return false;
2498 
2499   for (BasicBlock::iterator BI = BB->begin();
2500        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2501     // Look for a Phi having at least one constant incoming value.
2502     if (llvm::all_of(PN->incoming_values(),
2503                      [](Value *V) { return !isa<ConstantInt>(V); }))
2504       continue;
2505 
2506     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2507       // Check if SI is in BB and use V as condition.
2508       if (SI->getParent() != BB)
2509         return false;
2510       Value *Cond = SI->getCondition();
2511       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2512     };
2513 
2514     SelectInst *SI = nullptr;
2515     for (Use &U : PN->uses()) {
2516       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2517         // Look for a ICmp in BB that compares PN with a constant and is the
2518         // condition of a Select.
2519         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2520             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2521           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2522             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2523               SI = SelectI;
2524               break;
2525             }
2526       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2527         // Look for a Select in BB that uses PN as condtion.
2528         if (isUnfoldCandidate(SelectI, U.get())) {
2529           SI = SelectI;
2530           break;
2531         }
2532       }
2533     }
2534 
2535     if (!SI)
2536       continue;
2537     // Expand the select.
2538     TerminatorInst *Term =
2539         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2540     BasicBlock *SplitBB = SI->getParent();
2541     BasicBlock *NewBB = Term->getParent();
2542     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2543     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2544     NewPN->addIncoming(SI->getFalseValue(), BB);
2545     SI->replaceAllUsesWith(NewPN);
2546     SI->eraseFromParent();
2547     // NewBB and SplitBB are newly created blocks which require insertion.
2548     std::vector<DominatorTree::UpdateType> Updates;
2549     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2550     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2551     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2552     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2553     // BB's successors were moved to SplitBB, update DDT accordingly.
2554     for (auto *Succ : successors(SplitBB)) {
2555       Updates.push_back({DominatorTree::Delete, BB, Succ});
2556       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2557     }
2558     DDT->applyUpdates(Updates);
2559     return true;
2560   }
2561   return false;
2562 }
2563 
2564 /// Try to propagate a guard from the current BB into one of its predecessors
2565 /// in case if another branch of execution implies that the condition of this
2566 /// guard is always true. Currently we only process the simplest case that
2567 /// looks like:
2568 ///
2569 /// Start:
2570 ///   %cond = ...
2571 ///   br i1 %cond, label %T1, label %F1
2572 /// T1:
2573 ///   br label %Merge
2574 /// F1:
2575 ///   br label %Merge
2576 /// Merge:
2577 ///   %condGuard = ...
2578 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2579 ///
2580 /// And cond either implies condGuard or !condGuard. In this case all the
2581 /// instructions before the guard can be duplicated in both branches, and the
2582 /// guard is then threaded to one of them.
2583 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2584   using namespace PatternMatch;
2585 
2586   // We only want to deal with two predecessors.
2587   BasicBlock *Pred1, *Pred2;
2588   auto PI = pred_begin(BB), PE = pred_end(BB);
2589   if (PI == PE)
2590     return false;
2591   Pred1 = *PI++;
2592   if (PI == PE)
2593     return false;
2594   Pred2 = *PI++;
2595   if (PI != PE)
2596     return false;
2597   if (Pred1 == Pred2)
2598     return false;
2599 
2600   // Try to thread one of the guards of the block.
2601   // TODO: Look up deeper than to immediate predecessor?
2602   auto *Parent = Pred1->getSinglePredecessor();
2603   if (!Parent || Parent != Pred2->getSinglePredecessor())
2604     return false;
2605 
2606   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2607     for (auto &I : *BB)
2608       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2609         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2610           return true;
2611 
2612   return false;
2613 }
2614 
2615 /// Try to propagate the guard from BB which is the lower block of a diamond
2616 /// to one of its branches, in case if diamond's condition implies guard's
2617 /// condition.
2618 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2619                                     BranchInst *BI) {
2620   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2621   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2622   Value *GuardCond = Guard->getArgOperand(0);
2623   Value *BranchCond = BI->getCondition();
2624   BasicBlock *TrueDest = BI->getSuccessor(0);
2625   BasicBlock *FalseDest = BI->getSuccessor(1);
2626 
2627   auto &DL = BB->getModule()->getDataLayout();
2628   bool TrueDestIsSafe = false;
2629   bool FalseDestIsSafe = false;
2630 
2631   // True dest is safe if BranchCond => GuardCond.
2632   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2633   if (Impl && *Impl)
2634     TrueDestIsSafe = true;
2635   else {
2636     // False dest is safe if !BranchCond => GuardCond.
2637     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2638     if (Impl && *Impl)
2639       FalseDestIsSafe = true;
2640   }
2641 
2642   if (!TrueDestIsSafe && !FalseDestIsSafe)
2643     return false;
2644 
2645   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2646   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2647 
2648   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2649   Instruction *AfterGuard = Guard->getNextNode();
2650   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2651   if (Cost > BBDupThreshold)
2652     return false;
2653   // Duplicate all instructions before the guard and the guard itself to the
2654   // branch where implication is not proved.
2655   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2656       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2657   assert(GuardedBlock && "Could not create the guarded block?");
2658   // Duplicate all instructions before the guard in the unguarded branch.
2659   // Since we have successfully duplicated the guarded block and this block
2660   // has fewer instructions, we expect it to succeed.
2661   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2662       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2663   assert(UnguardedBlock && "Could not create the unguarded block?");
2664   LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2665                     << GuardedBlock->getName() << "\n");
2666   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2667   // PredBB and BB. We need to perform two inserts and one delete for each of
2668   // the above calls to update Dominators.
2669   DDT->applyUpdates(
2670       {// Guarded block split.
2671        {DominatorTree::Delete, PredGuardedBlock, BB},
2672        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2673        {DominatorTree::Insert, GuardedBlock, BB},
2674        // Unguarded block split.
2675        {DominatorTree::Delete, PredUnguardedBlock, BB},
2676        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2677        {DominatorTree::Insert, UnguardedBlock, BB}});
2678   // Some instructions before the guard may still have uses. For them, we need
2679   // to create Phi nodes merging their copies in both guarded and unguarded
2680   // branches. Those instructions that have no uses can be just removed.
2681   SmallVector<Instruction *, 4> ToRemove;
2682   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2683     if (!isa<PHINode>(&*BI))
2684       ToRemove.push_back(&*BI);
2685 
2686   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2687   assert(InsertionPoint && "Empty block?");
2688   // Substitute with Phis & remove.
2689   for (auto *Inst : reverse(ToRemove)) {
2690     if (!Inst->use_empty()) {
2691       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2692       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2693       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2694       NewPN->insertBefore(InsertionPoint);
2695       Inst->replaceAllUsesWith(NewPN);
2696     }
2697     Inst->eraseFromParent();
2698   }
2699   return true;
2700 }
2701