1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h" 70 #include "llvm/Transforms/Utils/ValueMapper.h" 71 #include <algorithm> 72 #include <cassert> 73 #include <cstddef> 74 #include <cstdint> 75 #include <iterator> 76 #include <memory> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace jumpthreading; 81 82 #define DEBUG_TYPE "jump-threading" 83 84 STATISTIC(NumThreads, "Number of jumps threaded"); 85 STATISTIC(NumFolds, "Number of terminators folded"); 86 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 87 88 static cl::opt<unsigned> 89 BBDuplicateThreshold("jump-threading-threshold", 90 cl::desc("Max block size to duplicate for jump threading"), 91 cl::init(6), cl::Hidden); 92 93 static cl::opt<unsigned> 94 ImplicationSearchThreshold( 95 "jump-threading-implication-search-threshold", 96 cl::desc("The number of predecessors to search for a stronger " 97 "condition to use to thread over a weaker condition"), 98 cl::init(3), cl::Hidden); 99 100 static cl::opt<bool> PrintLVIAfterJumpThreading( 101 "print-lvi-after-jump-threading", 102 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 103 cl::Hidden); 104 105 namespace { 106 107 /// This pass performs 'jump threading', which looks at blocks that have 108 /// multiple predecessors and multiple successors. If one or more of the 109 /// predecessors of the block can be proven to always jump to one of the 110 /// successors, we forward the edge from the predecessor to the successor by 111 /// duplicating the contents of this block. 112 /// 113 /// An example of when this can occur is code like this: 114 /// 115 /// if () { ... 116 /// X = 4; 117 /// } 118 /// if (X < 3) { 119 /// 120 /// In this case, the unconditional branch at the end of the first if can be 121 /// revectored to the false side of the second if. 122 class JumpThreading : public FunctionPass { 123 JumpThreadingPass Impl; 124 125 public: 126 static char ID; // Pass identification 127 128 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 129 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 130 } 131 132 bool runOnFunction(Function &F) override; 133 134 void getAnalysisUsage(AnalysisUsage &AU) const override { 135 AU.addRequired<DominatorTreeWrapperPass>(); 136 AU.addPreserved<DominatorTreeWrapperPass>(); 137 AU.addRequired<AAResultsWrapperPass>(); 138 AU.addRequired<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<LazyValueInfoWrapperPass>(); 140 AU.addPreserved<GlobalsAAWrapperPass>(); 141 AU.addRequired<TargetLibraryInfoWrapperPass>(); 142 } 143 144 void releaseMemory() override { Impl.releaseMemory(); } 145 }; 146 147 } // end anonymous namespace 148 149 char JumpThreading::ID = 0; 150 151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 152 "Jump Threading", false, false) 153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 157 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 158 "Jump Threading", false, false) 159 160 // Public interface to the Jump Threading pass 161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 162 return new JumpThreading(Threshold); 163 } 164 165 JumpThreadingPass::JumpThreadingPass(int T) { 166 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 167 } 168 169 // Update branch probability information according to conditional 170 // branch probablity. This is usually made possible for cloned branches 171 // in inline instances by the context specific profile in the caller. 172 // For instance, 173 // 174 // [Block PredBB] 175 // [Branch PredBr] 176 // if (t) { 177 // Block A; 178 // } else { 179 // Block B; 180 // } 181 // 182 // [Block BB] 183 // cond = PN([true, %A], [..., %B]); // PHI node 184 // [Branch CondBr] 185 // if (cond) { 186 // ... // P(cond == true) = 1% 187 // } 188 // 189 // Here we know that when block A is taken, cond must be true, which means 190 // P(cond == true | A) = 1 191 // 192 // Given that P(cond == true) = P(cond == true | A) * P(A) + 193 // P(cond == true | B) * P(B) 194 // we get: 195 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 196 // 197 // which gives us: 198 // P(A) is less than P(cond == true), i.e. 199 // P(t == true) <= P(cond == true) 200 // 201 // In other words, if we know P(cond == true) is unlikely, we know 202 // that P(t == true) is also unlikely. 203 // 204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 205 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 206 if (!CondBr) 207 return; 208 209 BranchProbability BP; 210 uint64_t TrueWeight, FalseWeight; 211 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 212 return; 213 214 // Returns the outgoing edge of the dominating predecessor block 215 // that leads to the PhiNode's incoming block: 216 auto GetPredOutEdge = 217 [](BasicBlock *IncomingBB, 218 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 219 auto *PredBB = IncomingBB; 220 auto *SuccBB = PhiBB; 221 while (true) { 222 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 223 if (PredBr && PredBr->isConditional()) 224 return {PredBB, SuccBB}; 225 auto *SinglePredBB = PredBB->getSinglePredecessor(); 226 if (!SinglePredBB) 227 return {nullptr, nullptr}; 228 SuccBB = PredBB; 229 PredBB = SinglePredBB; 230 } 231 }; 232 233 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 234 Value *PhiOpnd = PN->getIncomingValue(i); 235 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 236 237 if (!CI || !CI->getType()->isIntegerTy(1)) 238 continue; 239 240 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 241 TrueWeight, TrueWeight + FalseWeight) 242 : BranchProbability::getBranchProbability( 243 FalseWeight, TrueWeight + FalseWeight)); 244 245 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 246 if (!PredOutEdge.first) 247 return; 248 249 BasicBlock *PredBB = PredOutEdge.first; 250 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 251 252 uint64_t PredTrueWeight, PredFalseWeight; 253 // FIXME: We currently only set the profile data when it is missing. 254 // With PGO, this can be used to refine even existing profile data with 255 // context information. This needs to be done after more performance 256 // testing. 257 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 258 continue; 259 260 // We can not infer anything useful when BP >= 50%, because BP is the 261 // upper bound probability value. 262 if (BP >= BranchProbability(50, 100)) 263 continue; 264 265 SmallVector<uint32_t, 2> Weights; 266 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 267 Weights.push_back(BP.getNumerator()); 268 Weights.push_back(BP.getCompl().getNumerator()); 269 } else { 270 Weights.push_back(BP.getCompl().getNumerator()); 271 Weights.push_back(BP.getNumerator()); 272 } 273 PredBr->setMetadata(LLVMContext::MD_prof, 274 MDBuilder(PredBr->getParent()->getContext()) 275 .createBranchWeights(Weights)); 276 } 277 } 278 279 /// runOnFunction - Toplevel algorithm. 280 bool JumpThreading::runOnFunction(Function &F) { 281 if (skipFunction(F)) 282 return false; 283 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 284 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 285 // DT if it's available. 286 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 287 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 288 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 289 DeferredDominance DDT(*DT); 290 std::unique_ptr<BlockFrequencyInfo> BFI; 291 std::unique_ptr<BranchProbabilityInfo> BPI; 292 bool HasProfileData = F.hasProfileData(); 293 if (HasProfileData) { 294 LoopInfo LI{DominatorTree(F)}; 295 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 296 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 297 } 298 299 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData, 300 std::move(BFI), std::move(BPI)); 301 if (PrintLVIAfterJumpThreading) { 302 dbgs() << "LVI for function '" << F.getName() << "':\n"; 303 LVI->printLVI(F, *DT, dbgs()); 304 } 305 return Changed; 306 } 307 308 PreservedAnalyses JumpThreadingPass::run(Function &F, 309 FunctionAnalysisManager &AM) { 310 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 311 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 312 // DT if it's available. 313 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 314 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 315 auto &AA = AM.getResult<AAManager>(F); 316 DeferredDominance DDT(DT); 317 318 std::unique_ptr<BlockFrequencyInfo> BFI; 319 std::unique_ptr<BranchProbabilityInfo> BPI; 320 if (F.hasProfileData()) { 321 LoopInfo LI{DominatorTree(F)}; 322 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 323 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 324 } 325 326 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData, 327 std::move(BFI), std::move(BPI)); 328 329 if (!Changed) 330 return PreservedAnalyses::all(); 331 PreservedAnalyses PA; 332 PA.preserve<GlobalsAA>(); 333 PA.preserve<DominatorTreeAnalysis>(); 334 PA.preserve<LazyValueAnalysis>(); 335 return PA; 336 } 337 338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 339 LazyValueInfo *LVI_, AliasAnalysis *AA_, 340 DeferredDominance *DDT_, bool HasProfileData_, 341 std::unique_ptr<BlockFrequencyInfo> BFI_, 342 std::unique_ptr<BranchProbabilityInfo> BPI_) { 343 LLVM_DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 344 TLI = TLI_; 345 LVI = LVI_; 346 AA = AA_; 347 DDT = DDT_; 348 BFI.reset(); 349 BPI.reset(); 350 // When profile data is available, we need to update edge weights after 351 // successful jump threading, which requires both BPI and BFI being available. 352 HasProfileData = HasProfileData_; 353 auto *GuardDecl = F.getParent()->getFunction( 354 Intrinsic::getName(Intrinsic::experimental_guard)); 355 HasGuards = GuardDecl && !GuardDecl->use_empty(); 356 if (HasProfileData) { 357 BPI = std::move(BPI_); 358 BFI = std::move(BFI_); 359 } 360 361 // JumpThreading must not processes blocks unreachable from entry. It's a 362 // waste of compute time and can potentially lead to hangs. 363 SmallPtrSet<BasicBlock *, 16> Unreachable; 364 DominatorTree &DT = DDT->flush(); 365 for (auto &BB : F) 366 if (!DT.isReachableFromEntry(&BB)) 367 Unreachable.insert(&BB); 368 369 FindLoopHeaders(F); 370 371 bool EverChanged = false; 372 bool Changed; 373 do { 374 Changed = false; 375 for (auto &BB : F) { 376 if (Unreachable.count(&BB)) 377 continue; 378 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 379 Changed = true; 380 // Stop processing BB if it's the entry or is now deleted. The following 381 // routines attempt to eliminate BB and locating a suitable replacement 382 // for the entry is non-trivial. 383 if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB)) 384 continue; 385 386 if (pred_empty(&BB)) { 387 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 388 // the instructions in it. We must remove BB to prevent invalid IR. 389 LLVM_DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 390 << "' with terminator: " << *BB.getTerminator() 391 << '\n'); 392 LoopHeaders.erase(&BB); 393 LVI->eraseBlock(&BB); 394 DeleteDeadBlock(&BB, DDT); 395 Changed = true; 396 continue; 397 } 398 399 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 400 // is "almost empty", we attempt to merge BB with its sole successor. 401 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 402 if (BI && BI->isUnconditional() && 403 // The terminator must be the only non-phi instruction in BB. 404 BB.getFirstNonPHIOrDbg()->isTerminator() && 405 // Don't alter Loop headers and latches to ensure another pass can 406 // detect and transform nested loops later. 407 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 408 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) { 409 // BB is valid for cleanup here because we passed in DDT. F remains 410 // BB's parent until a DDT->flush() event. 411 LVI->eraseBlock(&BB); 412 Changed = true; 413 } 414 } 415 EverChanged |= Changed; 416 } while (Changed); 417 418 LoopHeaders.clear(); 419 DDT->flush(); 420 LVI->enableDT(); 421 return EverChanged; 422 } 423 424 // Replace uses of Cond with ToVal when safe to do so. If all uses are 425 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 426 // because we may incorrectly replace uses when guards/assumes are uses of 427 // of `Cond` and we used the guards/assume to reason about the `Cond` value 428 // at the end of block. RAUW unconditionally replaces all uses 429 // including the guards/assumes themselves and the uses before the 430 // guard/assume. 431 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 432 assert(Cond->getType() == ToVal->getType()); 433 auto *BB = Cond->getParent(); 434 // We can unconditionally replace all uses in non-local blocks (i.e. uses 435 // strictly dominated by BB), since LVI information is true from the 436 // terminator of BB. 437 replaceNonLocalUsesWith(Cond, ToVal); 438 for (Instruction &I : reverse(*BB)) { 439 // Reached the Cond whose uses we are trying to replace, so there are no 440 // more uses. 441 if (&I == Cond) 442 break; 443 // We only replace uses in instructions that are guaranteed to reach the end 444 // of BB, where we know Cond is ToVal. 445 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 446 break; 447 I.replaceUsesOfWith(Cond, ToVal); 448 } 449 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 450 Cond->eraseFromParent(); 451 } 452 453 /// Return the cost of duplicating a piece of this block from first non-phi 454 /// and before StopAt instruction to thread across it. Stop scanning the block 455 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 456 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 457 Instruction *StopAt, 458 unsigned Threshold) { 459 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 460 /// Ignore PHI nodes, these will be flattened when duplication happens. 461 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 462 463 // FIXME: THREADING will delete values that are just used to compute the 464 // branch, so they shouldn't count against the duplication cost. 465 466 unsigned Bonus = 0; 467 if (BB->getTerminator() == StopAt) { 468 // Threading through a switch statement is particularly profitable. If this 469 // block ends in a switch, decrease its cost to make it more likely to 470 // happen. 471 if (isa<SwitchInst>(StopAt)) 472 Bonus = 6; 473 474 // The same holds for indirect branches, but slightly more so. 475 if (isa<IndirectBrInst>(StopAt)) 476 Bonus = 8; 477 } 478 479 // Bump the threshold up so the early exit from the loop doesn't skip the 480 // terminator-based Size adjustment at the end. 481 Threshold += Bonus; 482 483 // Sum up the cost of each instruction until we get to the terminator. Don't 484 // include the terminator because the copy won't include it. 485 unsigned Size = 0; 486 for (; &*I != StopAt; ++I) { 487 488 // Stop scanning the block if we've reached the threshold. 489 if (Size > Threshold) 490 return Size; 491 492 // Debugger intrinsics don't incur code size. 493 if (isa<DbgInfoIntrinsic>(I)) continue; 494 495 // If this is a pointer->pointer bitcast, it is free. 496 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 497 continue; 498 499 // Bail out if this instruction gives back a token type, it is not possible 500 // to duplicate it if it is used outside this BB. 501 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 502 return ~0U; 503 504 // All other instructions count for at least one unit. 505 ++Size; 506 507 // Calls are more expensive. If they are non-intrinsic calls, we model them 508 // as having cost of 4. If they are a non-vector intrinsic, we model them 509 // as having cost of 2 total, and if they are a vector intrinsic, we model 510 // them as having cost 1. 511 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 512 if (CI->cannotDuplicate() || CI->isConvergent()) 513 // Blocks with NoDuplicate are modelled as having infinite cost, so they 514 // are never duplicated. 515 return ~0U; 516 else if (!isa<IntrinsicInst>(CI)) 517 Size += 3; 518 else if (!CI->getType()->isVectorTy()) 519 Size += 1; 520 } 521 } 522 523 return Size > Bonus ? Size - Bonus : 0; 524 } 525 526 /// FindLoopHeaders - We do not want jump threading to turn proper loop 527 /// structures into irreducible loops. Doing this breaks up the loop nesting 528 /// hierarchy and pessimizes later transformations. To prevent this from 529 /// happening, we first have to find the loop headers. Here we approximate this 530 /// by finding targets of backedges in the CFG. 531 /// 532 /// Note that there definitely are cases when we want to allow threading of 533 /// edges across a loop header. For example, threading a jump from outside the 534 /// loop (the preheader) to an exit block of the loop is definitely profitable. 535 /// It is also almost always profitable to thread backedges from within the loop 536 /// to exit blocks, and is often profitable to thread backedges to other blocks 537 /// within the loop (forming a nested loop). This simple analysis is not rich 538 /// enough to track all of these properties and keep it up-to-date as the CFG 539 /// mutates, so we don't allow any of these transformations. 540 void JumpThreadingPass::FindLoopHeaders(Function &F) { 541 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 542 FindFunctionBackedges(F, Edges); 543 544 for (const auto &Edge : Edges) 545 LoopHeaders.insert(Edge.second); 546 } 547 548 /// getKnownConstant - Helper method to determine if we can thread over a 549 /// terminator with the given value as its condition, and if so what value to 550 /// use for that. What kind of value this is depends on whether we want an 551 /// integer or a block address, but an undef is always accepted. 552 /// Returns null if Val is null or not an appropriate constant. 553 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 554 if (!Val) 555 return nullptr; 556 557 // Undef is "known" enough. 558 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 559 return U; 560 561 if (Preference == WantBlockAddress) 562 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 563 564 return dyn_cast<ConstantInt>(Val); 565 } 566 567 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 568 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 569 /// in any of our predecessors. If so, return the known list of value and pred 570 /// BB in the result vector. 571 /// 572 /// This returns true if there were any known values. 573 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 574 Value *V, BasicBlock *BB, PredValueInfo &Result, 575 ConstantPreference Preference, Instruction *CxtI) { 576 // This method walks up use-def chains recursively. Because of this, we could 577 // get into an infinite loop going around loops in the use-def chain. To 578 // prevent this, keep track of what (value, block) pairs we've already visited 579 // and terminate the search if we loop back to them 580 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 581 return false; 582 583 // An RAII help to remove this pair from the recursion set once the recursion 584 // stack pops back out again. 585 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 586 587 // If V is a constant, then it is known in all predecessors. 588 if (Constant *KC = getKnownConstant(V, Preference)) { 589 for (BasicBlock *Pred : predecessors(BB)) 590 Result.push_back(std::make_pair(KC, Pred)); 591 592 return !Result.empty(); 593 } 594 595 // If V is a non-instruction value, or an instruction in a different block, 596 // then it can't be derived from a PHI. 597 Instruction *I = dyn_cast<Instruction>(V); 598 if (!I || I->getParent() != BB) { 599 600 // Okay, if this is a live-in value, see if it has a known value at the end 601 // of any of our predecessors. 602 // 603 // FIXME: This should be an edge property, not a block end property. 604 /// TODO: Per PR2563, we could infer value range information about a 605 /// predecessor based on its terminator. 606 // 607 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 608 // "I" is a non-local compare-with-a-constant instruction. This would be 609 // able to handle value inequalities better, for example if the compare is 610 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 611 // Perhaps getConstantOnEdge should be smart enough to do this? 612 613 if (DDT->pending()) 614 LVI->disableDT(); 615 else 616 LVI->enableDT(); 617 for (BasicBlock *P : predecessors(BB)) { 618 // If the value is known by LazyValueInfo to be a constant in a 619 // predecessor, use that information to try to thread this block. 620 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 621 if (Constant *KC = getKnownConstant(PredCst, Preference)) 622 Result.push_back(std::make_pair(KC, P)); 623 } 624 625 return !Result.empty(); 626 } 627 628 /// If I is a PHI node, then we know the incoming values for any constants. 629 if (PHINode *PN = dyn_cast<PHINode>(I)) { 630 if (DDT->pending()) 631 LVI->disableDT(); 632 else 633 LVI->enableDT(); 634 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 635 Value *InVal = PN->getIncomingValue(i); 636 if (Constant *KC = getKnownConstant(InVal, Preference)) { 637 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 638 } else { 639 Constant *CI = LVI->getConstantOnEdge(InVal, 640 PN->getIncomingBlock(i), 641 BB, CxtI); 642 if (Constant *KC = getKnownConstant(CI, Preference)) 643 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 644 } 645 } 646 647 return !Result.empty(); 648 } 649 650 // Handle Cast instructions. Only see through Cast when the source operand is 651 // PHI or Cmp to save the compilation time. 652 if (CastInst *CI = dyn_cast<CastInst>(I)) { 653 Value *Source = CI->getOperand(0); 654 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 655 return false; 656 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 657 if (Result.empty()) 658 return false; 659 660 // Convert the known values. 661 for (auto &R : Result) 662 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 663 664 return true; 665 } 666 667 // Handle some boolean conditions. 668 if (I->getType()->getPrimitiveSizeInBits() == 1) { 669 assert(Preference == WantInteger && "One-bit non-integer type?"); 670 // X | true -> true 671 // X & false -> false 672 if (I->getOpcode() == Instruction::Or || 673 I->getOpcode() == Instruction::And) { 674 PredValueInfoTy LHSVals, RHSVals; 675 676 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 677 WantInteger, CxtI); 678 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 679 WantInteger, CxtI); 680 681 if (LHSVals.empty() && RHSVals.empty()) 682 return false; 683 684 ConstantInt *InterestingVal; 685 if (I->getOpcode() == Instruction::Or) 686 InterestingVal = ConstantInt::getTrue(I->getContext()); 687 else 688 InterestingVal = ConstantInt::getFalse(I->getContext()); 689 690 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 691 692 // Scan for the sentinel. If we find an undef, force it to the 693 // interesting value: x|undef -> true and x&undef -> false. 694 for (const auto &LHSVal : LHSVals) 695 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 696 Result.emplace_back(InterestingVal, LHSVal.second); 697 LHSKnownBBs.insert(LHSVal.second); 698 } 699 for (const auto &RHSVal : RHSVals) 700 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 701 // If we already inferred a value for this block on the LHS, don't 702 // re-add it. 703 if (!LHSKnownBBs.count(RHSVal.second)) 704 Result.emplace_back(InterestingVal, RHSVal.second); 705 } 706 707 return !Result.empty(); 708 } 709 710 // Handle the NOT form of XOR. 711 if (I->getOpcode() == Instruction::Xor && 712 isa<ConstantInt>(I->getOperand(1)) && 713 cast<ConstantInt>(I->getOperand(1))->isOne()) { 714 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 715 WantInteger, CxtI); 716 if (Result.empty()) 717 return false; 718 719 // Invert the known values. 720 for (auto &R : Result) 721 R.first = ConstantExpr::getNot(R.first); 722 723 return true; 724 } 725 726 // Try to simplify some other binary operator values. 727 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 728 assert(Preference != WantBlockAddress 729 && "A binary operator creating a block address?"); 730 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 731 PredValueInfoTy LHSVals; 732 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 733 WantInteger, CxtI); 734 735 // Try to use constant folding to simplify the binary operator. 736 for (const auto &LHSVal : LHSVals) { 737 Constant *V = LHSVal.first; 738 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 739 740 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 741 Result.push_back(std::make_pair(KC, LHSVal.second)); 742 } 743 } 744 745 return !Result.empty(); 746 } 747 748 // Handle compare with phi operand, where the PHI is defined in this block. 749 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 750 assert(Preference == WantInteger && "Compares only produce integers"); 751 Type *CmpType = Cmp->getType(); 752 Value *CmpLHS = Cmp->getOperand(0); 753 Value *CmpRHS = Cmp->getOperand(1); 754 CmpInst::Predicate Pred = Cmp->getPredicate(); 755 756 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 757 if (!PN) 758 PN = dyn_cast<PHINode>(CmpRHS); 759 if (PN && PN->getParent() == BB) { 760 const DataLayout &DL = PN->getModule()->getDataLayout(); 761 // We can do this simplification if any comparisons fold to true or false. 762 // See if any do. 763 if (DDT->pending()) 764 LVI->disableDT(); 765 else 766 LVI->enableDT(); 767 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 768 BasicBlock *PredBB = PN->getIncomingBlock(i); 769 Value *LHS, *RHS; 770 if (PN == CmpLHS) { 771 LHS = PN->getIncomingValue(i); 772 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 773 } else { 774 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 775 RHS = PN->getIncomingValue(i); 776 } 777 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 778 if (!Res) { 779 if (!isa<Constant>(RHS)) 780 continue; 781 782 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 783 auto LHSInst = dyn_cast<Instruction>(LHS); 784 if (LHSInst && LHSInst->getParent() == BB) 785 continue; 786 787 LazyValueInfo::Tristate 788 ResT = LVI->getPredicateOnEdge(Pred, LHS, 789 cast<Constant>(RHS), PredBB, BB, 790 CxtI ? CxtI : Cmp); 791 if (ResT == LazyValueInfo::Unknown) 792 continue; 793 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 794 } 795 796 if (Constant *KC = getKnownConstant(Res, WantInteger)) 797 Result.push_back(std::make_pair(KC, PredBB)); 798 } 799 800 return !Result.empty(); 801 } 802 803 // If comparing a live-in value against a constant, see if we know the 804 // live-in value on any predecessors. 805 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 806 Constant *CmpConst = cast<Constant>(CmpRHS); 807 808 if (!isa<Instruction>(CmpLHS) || 809 cast<Instruction>(CmpLHS)->getParent() != BB) { 810 if (DDT->pending()) 811 LVI->disableDT(); 812 else 813 LVI->enableDT(); 814 for (BasicBlock *P : predecessors(BB)) { 815 // If the value is known by LazyValueInfo to be a constant in a 816 // predecessor, use that information to try to thread this block. 817 LazyValueInfo::Tristate Res = 818 LVI->getPredicateOnEdge(Pred, CmpLHS, 819 CmpConst, P, BB, CxtI ? CxtI : Cmp); 820 if (Res == LazyValueInfo::Unknown) 821 continue; 822 823 Constant *ResC = ConstantInt::get(CmpType, Res); 824 Result.push_back(std::make_pair(ResC, P)); 825 } 826 827 return !Result.empty(); 828 } 829 830 // InstCombine can fold some forms of constant range checks into 831 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 832 // x as a live-in. 833 { 834 using namespace PatternMatch; 835 836 Value *AddLHS; 837 ConstantInt *AddConst; 838 if (isa<ConstantInt>(CmpConst) && 839 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 840 if (!isa<Instruction>(AddLHS) || 841 cast<Instruction>(AddLHS)->getParent() != BB) { 842 if (DDT->pending()) 843 LVI->disableDT(); 844 else 845 LVI->enableDT(); 846 for (BasicBlock *P : predecessors(BB)) { 847 // If the value is known by LazyValueInfo to be a ConstantRange in 848 // a predecessor, use that information to try to thread this 849 // block. 850 ConstantRange CR = LVI->getConstantRangeOnEdge( 851 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 852 // Propagate the range through the addition. 853 CR = CR.add(AddConst->getValue()); 854 855 // Get the range where the compare returns true. 856 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 857 Pred, cast<ConstantInt>(CmpConst)->getValue()); 858 859 Constant *ResC; 860 if (CmpRange.contains(CR)) 861 ResC = ConstantInt::getTrue(CmpType); 862 else if (CmpRange.inverse().contains(CR)) 863 ResC = ConstantInt::getFalse(CmpType); 864 else 865 continue; 866 867 Result.push_back(std::make_pair(ResC, P)); 868 } 869 870 return !Result.empty(); 871 } 872 } 873 } 874 875 // Try to find a constant value for the LHS of a comparison, 876 // and evaluate it statically if we can. 877 PredValueInfoTy LHSVals; 878 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 879 WantInteger, CxtI); 880 881 for (const auto &LHSVal : LHSVals) { 882 Constant *V = LHSVal.first; 883 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 884 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 885 Result.push_back(std::make_pair(KC, LHSVal.second)); 886 } 887 888 return !Result.empty(); 889 } 890 } 891 892 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 893 // Handle select instructions where at least one operand is a known constant 894 // and we can figure out the condition value for any predecessor block. 895 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 896 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 897 PredValueInfoTy Conds; 898 if ((TrueVal || FalseVal) && 899 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 900 WantInteger, CxtI)) { 901 for (auto &C : Conds) { 902 Constant *Cond = C.first; 903 904 // Figure out what value to use for the condition. 905 bool KnownCond; 906 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 907 // A known boolean. 908 KnownCond = CI->isOne(); 909 } else { 910 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 911 // Either operand will do, so be sure to pick the one that's a known 912 // constant. 913 // FIXME: Do this more cleverly if both values are known constants? 914 KnownCond = (TrueVal != nullptr); 915 } 916 917 // See if the select has a known constant value for this predecessor. 918 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 919 Result.push_back(std::make_pair(Val, C.second)); 920 } 921 922 return !Result.empty(); 923 } 924 } 925 926 // If all else fails, see if LVI can figure out a constant value for us. 927 if (DDT->pending()) 928 LVI->disableDT(); 929 else 930 LVI->enableDT(); 931 Constant *CI = LVI->getConstant(V, BB, CxtI); 932 if (Constant *KC = getKnownConstant(CI, Preference)) { 933 for (BasicBlock *Pred : predecessors(BB)) 934 Result.push_back(std::make_pair(KC, Pred)); 935 } 936 937 return !Result.empty(); 938 } 939 940 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 941 /// in an undefined jump, decide which block is best to revector to. 942 /// 943 /// Since we can pick an arbitrary destination, we pick the successor with the 944 /// fewest predecessors. This should reduce the in-degree of the others. 945 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 946 TerminatorInst *BBTerm = BB->getTerminator(); 947 unsigned MinSucc = 0; 948 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 949 // Compute the successor with the minimum number of predecessors. 950 unsigned MinNumPreds = pred_size(TestBB); 951 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 952 TestBB = BBTerm->getSuccessor(i); 953 unsigned NumPreds = pred_size(TestBB); 954 if (NumPreds < MinNumPreds) { 955 MinSucc = i; 956 MinNumPreds = NumPreds; 957 } 958 } 959 960 return MinSucc; 961 } 962 963 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 964 if (!BB->hasAddressTaken()) return false; 965 966 // If the block has its address taken, it may be a tree of dead constants 967 // hanging off of it. These shouldn't keep the block alive. 968 BlockAddress *BA = BlockAddress::get(BB); 969 BA->removeDeadConstantUsers(); 970 return !BA->use_empty(); 971 } 972 973 /// ProcessBlock - If there are any predecessors whose control can be threaded 974 /// through to a successor, transform them now. 975 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 976 // If the block is trivially dead, just return and let the caller nuke it. 977 // This simplifies other transformations. 978 if (DDT->pendingDeletedBB(BB) || 979 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 980 return false; 981 982 // If this block has a single predecessor, and if that pred has a single 983 // successor, merge the blocks. This encourages recursive jump threading 984 // because now the condition in this block can be threaded through 985 // predecessors of our predecessor block. 986 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 987 const TerminatorInst *TI = SinglePred->getTerminator(); 988 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 989 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 990 // If SinglePred was a loop header, BB becomes one. 991 if (LoopHeaders.erase(SinglePred)) 992 LoopHeaders.insert(BB); 993 994 LVI->eraseBlock(SinglePred); 995 MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT); 996 997 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 998 // BB code within one basic block `BB`), we need to invalidate the LVI 999 // information associated with BB, because the LVI information need not be 1000 // true for all of BB after the merge. For example, 1001 // Before the merge, LVI info and code is as follows: 1002 // SinglePred: <LVI info1 for %p val> 1003 // %y = use of %p 1004 // call @exit() // need not transfer execution to successor. 1005 // assume(%p) // from this point on %p is true 1006 // br label %BB 1007 // BB: <LVI info2 for %p val, i.e. %p is true> 1008 // %x = use of %p 1009 // br label exit 1010 // 1011 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1012 // (info2 and info1 respectively). After the merge and the deletion of the 1013 // LVI info1 for SinglePred. We have the following code: 1014 // BB: <LVI info2 for %p val> 1015 // %y = use of %p 1016 // call @exit() 1017 // assume(%p) 1018 // %x = use of %p <-- LVI info2 is correct from here onwards. 1019 // br label exit 1020 // LVI info2 for BB is incorrect at the beginning of BB. 1021 1022 // Invalidate LVI information for BB if the LVI is not provably true for 1023 // all of BB. 1024 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1025 LVI->eraseBlock(BB); 1026 return true; 1027 } 1028 } 1029 1030 if (TryToUnfoldSelectInCurrBB(BB)) 1031 return true; 1032 1033 // Look if we can propagate guards to predecessors. 1034 if (HasGuards && ProcessGuards(BB)) 1035 return true; 1036 1037 // What kind of constant we're looking for. 1038 ConstantPreference Preference = WantInteger; 1039 1040 // Look to see if the terminator is a conditional branch, switch or indirect 1041 // branch, if not we can't thread it. 1042 Value *Condition; 1043 Instruction *Terminator = BB->getTerminator(); 1044 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1045 // Can't thread an unconditional jump. 1046 if (BI->isUnconditional()) return false; 1047 Condition = BI->getCondition(); 1048 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1049 Condition = SI->getCondition(); 1050 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1051 // Can't thread indirect branch with no successors. 1052 if (IB->getNumSuccessors() == 0) return false; 1053 Condition = IB->getAddress()->stripPointerCasts(); 1054 Preference = WantBlockAddress; 1055 } else { 1056 return false; // Must be an invoke. 1057 } 1058 1059 // Run constant folding to see if we can reduce the condition to a simple 1060 // constant. 1061 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1062 Value *SimpleVal = 1063 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1064 if (SimpleVal) { 1065 I->replaceAllUsesWith(SimpleVal); 1066 if (isInstructionTriviallyDead(I, TLI)) 1067 I->eraseFromParent(); 1068 Condition = SimpleVal; 1069 } 1070 } 1071 1072 // If the terminator is branching on an undef, we can pick any of the 1073 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1074 if (isa<UndefValue>(Condition)) { 1075 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1076 std::vector<DominatorTree::UpdateType> Updates; 1077 1078 // Fold the branch/switch. 1079 TerminatorInst *BBTerm = BB->getTerminator(); 1080 Updates.reserve(BBTerm->getNumSuccessors()); 1081 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1082 if (i == BestSucc) continue; 1083 BasicBlock *Succ = BBTerm->getSuccessor(i); 1084 Succ->removePredecessor(BB, true); 1085 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1086 } 1087 1088 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1089 << "' folding undef terminator: " << *BBTerm << '\n'); 1090 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1091 BBTerm->eraseFromParent(); 1092 DDT->applyUpdates(Updates); 1093 return true; 1094 } 1095 1096 // If the terminator of this block is branching on a constant, simplify the 1097 // terminator to an unconditional branch. This can occur due to threading in 1098 // other blocks. 1099 if (getKnownConstant(Condition, Preference)) { 1100 LLVM_DEBUG(dbgs() << " In block '" << BB->getName() 1101 << "' folding terminator: " << *BB->getTerminator() 1102 << '\n'); 1103 ++NumFolds; 1104 ConstantFoldTerminator(BB, true, nullptr, DDT); 1105 return true; 1106 } 1107 1108 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1109 1110 // All the rest of our checks depend on the condition being an instruction. 1111 if (!CondInst) { 1112 // FIXME: Unify this with code below. 1113 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1114 return true; 1115 return false; 1116 } 1117 1118 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1119 // If we're branching on a conditional, LVI might be able to determine 1120 // it's value at the branch instruction. We only handle comparisons 1121 // against a constant at this time. 1122 // TODO: This should be extended to handle switches as well. 1123 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1124 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1125 if (CondBr && CondConst) { 1126 // We should have returned as soon as we turn a conditional branch to 1127 // unconditional. Because its no longer interesting as far as jump 1128 // threading is concerned. 1129 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1130 1131 if (DDT->pending()) 1132 LVI->disableDT(); 1133 else 1134 LVI->enableDT(); 1135 LazyValueInfo::Tristate Ret = 1136 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1137 CondConst, CondBr); 1138 if (Ret != LazyValueInfo::Unknown) { 1139 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1140 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1141 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1142 ToRemoveSucc->removePredecessor(BB, true); 1143 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1144 CondBr->eraseFromParent(); 1145 if (CondCmp->use_empty()) 1146 CondCmp->eraseFromParent(); 1147 // We can safely replace *some* uses of the CondInst if it has 1148 // exactly one value as returned by LVI. RAUW is incorrect in the 1149 // presence of guards and assumes, that have the `Cond` as the use. This 1150 // is because we use the guards/assume to reason about the `Cond` value 1151 // at the end of block, but RAUW unconditionally replaces all uses 1152 // including the guards/assumes themselves and the uses before the 1153 // guard/assume. 1154 else if (CondCmp->getParent() == BB) { 1155 auto *CI = Ret == LazyValueInfo::True ? 1156 ConstantInt::getTrue(CondCmp->getType()) : 1157 ConstantInt::getFalse(CondCmp->getType()); 1158 ReplaceFoldableUses(CondCmp, CI); 1159 } 1160 DDT->deleteEdge(BB, ToRemoveSucc); 1161 return true; 1162 } 1163 1164 // We did not manage to simplify this branch, try to see whether 1165 // CondCmp depends on a known phi-select pattern. 1166 if (TryToUnfoldSelect(CondCmp, BB)) 1167 return true; 1168 } 1169 } 1170 1171 // Check for some cases that are worth simplifying. Right now we want to look 1172 // for loads that are used by a switch or by the condition for the branch. If 1173 // we see one, check to see if it's partially redundant. If so, insert a PHI 1174 // which can then be used to thread the values. 1175 Value *SimplifyValue = CondInst; 1176 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1177 if (isa<Constant>(CondCmp->getOperand(1))) 1178 SimplifyValue = CondCmp->getOperand(0); 1179 1180 // TODO: There are other places where load PRE would be profitable, such as 1181 // more complex comparisons. 1182 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1183 if (SimplifyPartiallyRedundantLoad(LoadI)) 1184 return true; 1185 1186 // Before threading, try to propagate profile data backwards: 1187 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1188 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1189 updatePredecessorProfileMetadata(PN, BB); 1190 1191 // Handle a variety of cases where we are branching on something derived from 1192 // a PHI node in the current block. If we can prove that any predecessors 1193 // compute a predictable value based on a PHI node, thread those predecessors. 1194 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1195 return true; 1196 1197 // If this is an otherwise-unfoldable branch on a phi node in the current 1198 // block, see if we can simplify. 1199 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1200 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1201 return ProcessBranchOnPHI(PN); 1202 1203 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1204 if (CondInst->getOpcode() == Instruction::Xor && 1205 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1206 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1207 1208 // Search for a stronger dominating condition that can be used to simplify a 1209 // conditional branch leaving BB. 1210 if (ProcessImpliedCondition(BB)) 1211 return true; 1212 1213 return false; 1214 } 1215 1216 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1217 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1218 if (!BI || !BI->isConditional()) 1219 return false; 1220 1221 Value *Cond = BI->getCondition(); 1222 BasicBlock *CurrentBB = BB; 1223 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1224 unsigned Iter = 0; 1225 1226 auto &DL = BB->getModule()->getDataLayout(); 1227 1228 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1229 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1230 if (!PBI || !PBI->isConditional()) 1231 return false; 1232 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1233 return false; 1234 1235 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1236 Optional<bool> Implication = 1237 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1238 if (Implication) { 1239 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1240 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1241 RemoveSucc->removePredecessor(BB); 1242 BranchInst::Create(KeepSucc, BI); 1243 BI->eraseFromParent(); 1244 DDT->deleteEdge(BB, RemoveSucc); 1245 return true; 1246 } 1247 CurrentBB = CurrentPred; 1248 CurrentPred = CurrentBB->getSinglePredecessor(); 1249 } 1250 1251 return false; 1252 } 1253 1254 /// Return true if Op is an instruction defined in the given block. 1255 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1256 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1257 if (OpInst->getParent() == BB) 1258 return true; 1259 return false; 1260 } 1261 1262 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1263 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1264 /// This is an important optimization that encourages jump threading, and needs 1265 /// to be run interlaced with other jump threading tasks. 1266 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1267 // Don't hack volatile and ordered loads. 1268 if (!LoadI->isUnordered()) return false; 1269 1270 // If the load is defined in a block with exactly one predecessor, it can't be 1271 // partially redundant. 1272 BasicBlock *LoadBB = LoadI->getParent(); 1273 if (LoadBB->getSinglePredecessor()) 1274 return false; 1275 1276 // If the load is defined in an EH pad, it can't be partially redundant, 1277 // because the edges between the invoke and the EH pad cannot have other 1278 // instructions between them. 1279 if (LoadBB->isEHPad()) 1280 return false; 1281 1282 Value *LoadedPtr = LoadI->getOperand(0); 1283 1284 // If the loaded operand is defined in the LoadBB and its not a phi, 1285 // it can't be available in predecessors. 1286 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1287 return false; 1288 1289 // Scan a few instructions up from the load, to see if it is obviously live at 1290 // the entry to its block. 1291 BasicBlock::iterator BBIt(LoadI); 1292 bool IsLoadCSE; 1293 if (Value *AvailableVal = FindAvailableLoadedValue( 1294 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1295 // If the value of the load is locally available within the block, just use 1296 // it. This frequently occurs for reg2mem'd allocas. 1297 1298 if (IsLoadCSE) { 1299 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1300 combineMetadataForCSE(NLoadI, LoadI); 1301 }; 1302 1303 // If the returned value is the load itself, replace with an undef. This can 1304 // only happen in dead loops. 1305 if (AvailableVal == LoadI) 1306 AvailableVal = UndefValue::get(LoadI->getType()); 1307 if (AvailableVal->getType() != LoadI->getType()) 1308 AvailableVal = CastInst::CreateBitOrPointerCast( 1309 AvailableVal, LoadI->getType(), "", LoadI); 1310 LoadI->replaceAllUsesWith(AvailableVal); 1311 LoadI->eraseFromParent(); 1312 return true; 1313 } 1314 1315 // Otherwise, if we scanned the whole block and got to the top of the block, 1316 // we know the block is locally transparent to the load. If not, something 1317 // might clobber its value. 1318 if (BBIt != LoadBB->begin()) 1319 return false; 1320 1321 // If all of the loads and stores that feed the value have the same AA tags, 1322 // then we can propagate them onto any newly inserted loads. 1323 AAMDNodes AATags; 1324 LoadI->getAAMetadata(AATags); 1325 1326 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1327 1328 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1329 1330 AvailablePredsTy AvailablePreds; 1331 BasicBlock *OneUnavailablePred = nullptr; 1332 SmallVector<LoadInst*, 8> CSELoads; 1333 1334 // If we got here, the loaded value is transparent through to the start of the 1335 // block. Check to see if it is available in any of the predecessor blocks. 1336 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1337 // If we already scanned this predecessor, skip it. 1338 if (!PredsScanned.insert(PredBB).second) 1339 continue; 1340 1341 BBIt = PredBB->end(); 1342 unsigned NumScanedInst = 0; 1343 Value *PredAvailable = nullptr; 1344 // NOTE: We don't CSE load that is volatile or anything stronger than 1345 // unordered, that should have been checked when we entered the function. 1346 assert(LoadI->isUnordered() && 1347 "Attempting to CSE volatile or atomic loads"); 1348 // If this is a load on a phi pointer, phi-translate it and search 1349 // for available load/store to the pointer in predecessors. 1350 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1351 PredAvailable = FindAvailablePtrLoadStore( 1352 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1353 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1354 1355 // If PredBB has a single predecessor, continue scanning through the 1356 // single precessor. 1357 BasicBlock *SinglePredBB = PredBB; 1358 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1359 NumScanedInst < DefMaxInstsToScan) { 1360 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1361 if (SinglePredBB) { 1362 BBIt = SinglePredBB->end(); 1363 PredAvailable = FindAvailablePtrLoadStore( 1364 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1365 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1366 &NumScanedInst); 1367 } 1368 } 1369 1370 if (!PredAvailable) { 1371 OneUnavailablePred = PredBB; 1372 continue; 1373 } 1374 1375 if (IsLoadCSE) 1376 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1377 1378 // If so, this load is partially redundant. Remember this info so that we 1379 // can create a PHI node. 1380 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1381 } 1382 1383 // If the loaded value isn't available in any predecessor, it isn't partially 1384 // redundant. 1385 if (AvailablePreds.empty()) return false; 1386 1387 // Okay, the loaded value is available in at least one (and maybe all!) 1388 // predecessors. If the value is unavailable in more than one unique 1389 // predecessor, we want to insert a merge block for those common predecessors. 1390 // This ensures that we only have to insert one reload, thus not increasing 1391 // code size. 1392 BasicBlock *UnavailablePred = nullptr; 1393 1394 // If the value is unavailable in one of predecessors, we will end up 1395 // inserting a new instruction into them. It is only valid if all the 1396 // instructions before LoadI are guaranteed to pass execution to its 1397 // successor, or if LoadI is safe to speculate. 1398 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1399 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1400 // It requires domination tree analysis, so for this simple case it is an 1401 // overkill. 1402 if (PredsScanned.size() != AvailablePreds.size() && 1403 !isSafeToSpeculativelyExecute(LoadI)) 1404 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1405 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1406 return false; 1407 1408 // If there is exactly one predecessor where the value is unavailable, the 1409 // already computed 'OneUnavailablePred' block is it. If it ends in an 1410 // unconditional branch, we know that it isn't a critical edge. 1411 if (PredsScanned.size() == AvailablePreds.size()+1 && 1412 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1413 UnavailablePred = OneUnavailablePred; 1414 } else if (PredsScanned.size() != AvailablePreds.size()) { 1415 // Otherwise, we had multiple unavailable predecessors or we had a critical 1416 // edge from the one. 1417 SmallVector<BasicBlock*, 8> PredsToSplit; 1418 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1419 1420 for (const auto &AvailablePred : AvailablePreds) 1421 AvailablePredSet.insert(AvailablePred.first); 1422 1423 // Add all the unavailable predecessors to the PredsToSplit list. 1424 for (BasicBlock *P : predecessors(LoadBB)) { 1425 // If the predecessor is an indirect goto, we can't split the edge. 1426 if (isa<IndirectBrInst>(P->getTerminator())) 1427 return false; 1428 1429 if (!AvailablePredSet.count(P)) 1430 PredsToSplit.push_back(P); 1431 } 1432 1433 // Split them out to their own block. 1434 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1435 } 1436 1437 // If the value isn't available in all predecessors, then there will be 1438 // exactly one where it isn't available. Insert a load on that edge and add 1439 // it to the AvailablePreds list. 1440 if (UnavailablePred) { 1441 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1442 "Can't handle critical edge here!"); 1443 LoadInst *NewVal = 1444 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1445 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1446 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1447 UnavailablePred->getTerminator()); 1448 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1449 if (AATags) 1450 NewVal->setAAMetadata(AATags); 1451 1452 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1453 } 1454 1455 // Now we know that each predecessor of this block has a value in 1456 // AvailablePreds, sort them for efficient access as we're walking the preds. 1457 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1458 1459 // Create a PHI node at the start of the block for the PRE'd load value. 1460 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1461 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1462 &LoadBB->front()); 1463 PN->takeName(LoadI); 1464 PN->setDebugLoc(LoadI->getDebugLoc()); 1465 1466 // Insert new entries into the PHI for each predecessor. A single block may 1467 // have multiple entries here. 1468 for (pred_iterator PI = PB; PI != PE; ++PI) { 1469 BasicBlock *P = *PI; 1470 AvailablePredsTy::iterator I = 1471 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1472 std::make_pair(P, (Value*)nullptr)); 1473 1474 assert(I != AvailablePreds.end() && I->first == P && 1475 "Didn't find entry for predecessor!"); 1476 1477 // If we have an available predecessor but it requires casting, insert the 1478 // cast in the predecessor and use the cast. Note that we have to update the 1479 // AvailablePreds vector as we go so that all of the PHI entries for this 1480 // predecessor use the same bitcast. 1481 Value *&PredV = I->second; 1482 if (PredV->getType() != LoadI->getType()) 1483 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1484 P->getTerminator()); 1485 1486 PN->addIncoming(PredV, I->first); 1487 } 1488 1489 for (LoadInst *PredLoadI : CSELoads) { 1490 combineMetadataForCSE(PredLoadI, LoadI); 1491 } 1492 1493 LoadI->replaceAllUsesWith(PN); 1494 LoadI->eraseFromParent(); 1495 1496 return true; 1497 } 1498 1499 /// FindMostPopularDest - The specified list contains multiple possible 1500 /// threadable destinations. Pick the one that occurs the most frequently in 1501 /// the list. 1502 static BasicBlock * 1503 FindMostPopularDest(BasicBlock *BB, 1504 const SmallVectorImpl<std::pair<BasicBlock *, 1505 BasicBlock *>> &PredToDestList) { 1506 assert(!PredToDestList.empty()); 1507 1508 // Determine popularity. If there are multiple possible destinations, we 1509 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1510 // blocks with known and real destinations to threading undef. We'll handle 1511 // them later if interesting. 1512 DenseMap<BasicBlock*, unsigned> DestPopularity; 1513 for (const auto &PredToDest : PredToDestList) 1514 if (PredToDest.second) 1515 DestPopularity[PredToDest.second]++; 1516 1517 if (DestPopularity.empty()) 1518 return nullptr; 1519 1520 // Find the most popular dest. 1521 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1522 BasicBlock *MostPopularDest = DPI->first; 1523 unsigned Popularity = DPI->second; 1524 SmallVector<BasicBlock*, 4> SamePopularity; 1525 1526 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1527 // If the popularity of this entry isn't higher than the popularity we've 1528 // seen so far, ignore it. 1529 if (DPI->second < Popularity) 1530 ; // ignore. 1531 else if (DPI->second == Popularity) { 1532 // If it is the same as what we've seen so far, keep track of it. 1533 SamePopularity.push_back(DPI->first); 1534 } else { 1535 // If it is more popular, remember it. 1536 SamePopularity.clear(); 1537 MostPopularDest = DPI->first; 1538 Popularity = DPI->second; 1539 } 1540 } 1541 1542 // Okay, now we know the most popular destination. If there is more than one 1543 // destination, we need to determine one. This is arbitrary, but we need 1544 // to make a deterministic decision. Pick the first one that appears in the 1545 // successor list. 1546 if (!SamePopularity.empty()) { 1547 SamePopularity.push_back(MostPopularDest); 1548 TerminatorInst *TI = BB->getTerminator(); 1549 for (unsigned i = 0; ; ++i) { 1550 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1551 1552 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1553 continue; 1554 1555 MostPopularDest = TI->getSuccessor(i); 1556 break; 1557 } 1558 } 1559 1560 // Okay, we have finally picked the most popular destination. 1561 return MostPopularDest; 1562 } 1563 1564 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1565 ConstantPreference Preference, 1566 Instruction *CxtI) { 1567 // If threading this would thread across a loop header, don't even try to 1568 // thread the edge. 1569 if (LoopHeaders.count(BB)) 1570 return false; 1571 1572 PredValueInfoTy PredValues; 1573 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1574 return false; 1575 1576 assert(!PredValues.empty() && 1577 "ComputeValueKnownInPredecessors returned true with no values"); 1578 1579 LLVM_DEBUG(dbgs() << "IN BB: " << *BB; 1580 for (const auto &PredValue : PredValues) { 1581 dbgs() << " BB '" << BB->getName() 1582 << "': FOUND condition = " << *PredValue.first 1583 << " for pred '" << PredValue.second->getName() << "'.\n"; 1584 }); 1585 1586 // Decide what we want to thread through. Convert our list of known values to 1587 // a list of known destinations for each pred. This also discards duplicate 1588 // predecessors and keeps track of the undefined inputs (which are represented 1589 // as a null dest in the PredToDestList). 1590 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1591 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1592 1593 BasicBlock *OnlyDest = nullptr; 1594 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1595 Constant *OnlyVal = nullptr; 1596 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1597 1598 unsigned PredWithKnownDest = 0; 1599 for (const auto &PredValue : PredValues) { 1600 BasicBlock *Pred = PredValue.second; 1601 if (!SeenPreds.insert(Pred).second) 1602 continue; // Duplicate predecessor entry. 1603 1604 Constant *Val = PredValue.first; 1605 1606 BasicBlock *DestBB; 1607 if (isa<UndefValue>(Val)) 1608 DestBB = nullptr; 1609 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1610 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1611 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1612 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1613 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1614 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1615 } else { 1616 assert(isa<IndirectBrInst>(BB->getTerminator()) 1617 && "Unexpected terminator"); 1618 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1619 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1620 } 1621 1622 // If we have exactly one destination, remember it for efficiency below. 1623 if (PredToDestList.empty()) { 1624 OnlyDest = DestBB; 1625 OnlyVal = Val; 1626 } else { 1627 if (OnlyDest != DestBB) 1628 OnlyDest = MultipleDestSentinel; 1629 // It possible we have same destination, but different value, e.g. default 1630 // case in switchinst. 1631 if (Val != OnlyVal) 1632 OnlyVal = MultipleVal; 1633 } 1634 1635 // We know where this predecessor is going. 1636 ++PredWithKnownDest; 1637 1638 // If the predecessor ends with an indirect goto, we can't change its 1639 // destination. 1640 if (isa<IndirectBrInst>(Pred->getTerminator())) 1641 continue; 1642 1643 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1644 } 1645 1646 // If all edges were unthreadable, we fail. 1647 if (PredToDestList.empty()) 1648 return false; 1649 1650 // If all the predecessors go to a single known successor, we want to fold, 1651 // not thread. By doing so, we do not need to duplicate the current block and 1652 // also miss potential opportunities in case we dont/cant duplicate. 1653 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1654 if (PredWithKnownDest == (size_t)pred_size(BB)) { 1655 bool SeenFirstBranchToOnlyDest = false; 1656 std::vector <DominatorTree::UpdateType> Updates; 1657 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1658 for (BasicBlock *SuccBB : successors(BB)) { 1659 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1660 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1661 } else { 1662 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1663 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1664 } 1665 } 1666 1667 // Finally update the terminator. 1668 TerminatorInst *Term = BB->getTerminator(); 1669 BranchInst::Create(OnlyDest, Term); 1670 Term->eraseFromParent(); 1671 DDT->applyUpdates(Updates); 1672 1673 // If the condition is now dead due to the removal of the old terminator, 1674 // erase it. 1675 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1676 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1677 CondInst->eraseFromParent(); 1678 // We can safely replace *some* uses of the CondInst if it has 1679 // exactly one value as returned by LVI. RAUW is incorrect in the 1680 // presence of guards and assumes, that have the `Cond` as the use. This 1681 // is because we use the guards/assume to reason about the `Cond` value 1682 // at the end of block, but RAUW unconditionally replaces all uses 1683 // including the guards/assumes themselves and the uses before the 1684 // guard/assume. 1685 else if (OnlyVal && OnlyVal != MultipleVal && 1686 CondInst->getParent() == BB) 1687 ReplaceFoldableUses(CondInst, OnlyVal); 1688 } 1689 return true; 1690 } 1691 } 1692 1693 // Determine which is the most common successor. If we have many inputs and 1694 // this block is a switch, we want to start by threading the batch that goes 1695 // to the most popular destination first. If we only know about one 1696 // threadable destination (the common case) we can avoid this. 1697 BasicBlock *MostPopularDest = OnlyDest; 1698 1699 if (MostPopularDest == MultipleDestSentinel) { 1700 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1701 // won't process them, but we might have other destination that are eligible 1702 // and we still want to process. 1703 erase_if(PredToDestList, 1704 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1705 return LoopHeaders.count(PredToDest.second) != 0; 1706 }); 1707 1708 if (PredToDestList.empty()) 1709 return false; 1710 1711 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1712 } 1713 1714 // Now that we know what the most popular destination is, factor all 1715 // predecessors that will jump to it into a single predecessor. 1716 SmallVector<BasicBlock*, 16> PredsToFactor; 1717 for (const auto &PredToDest : PredToDestList) 1718 if (PredToDest.second == MostPopularDest) { 1719 BasicBlock *Pred = PredToDest.first; 1720 1721 // This predecessor may be a switch or something else that has multiple 1722 // edges to the block. Factor each of these edges by listing them 1723 // according to # occurrences in PredsToFactor. 1724 for (BasicBlock *Succ : successors(Pred)) 1725 if (Succ == BB) 1726 PredsToFactor.push_back(Pred); 1727 } 1728 1729 // If the threadable edges are branching on an undefined value, we get to pick 1730 // the destination that these predecessors should get to. 1731 if (!MostPopularDest) 1732 MostPopularDest = BB->getTerminator()-> 1733 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1734 1735 // Ok, try to thread it! 1736 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1737 } 1738 1739 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1740 /// a PHI node in the current block. See if there are any simplifications we 1741 /// can do based on inputs to the phi node. 1742 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1743 BasicBlock *BB = PN->getParent(); 1744 1745 // TODO: We could make use of this to do it once for blocks with common PHI 1746 // values. 1747 SmallVector<BasicBlock*, 1> PredBBs; 1748 PredBBs.resize(1); 1749 1750 // If any of the predecessor blocks end in an unconditional branch, we can 1751 // *duplicate* the conditional branch into that block in order to further 1752 // encourage jump threading and to eliminate cases where we have branch on a 1753 // phi of an icmp (branch on icmp is much better). 1754 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1755 BasicBlock *PredBB = PN->getIncomingBlock(i); 1756 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1757 if (PredBr->isUnconditional()) { 1758 PredBBs[0] = PredBB; 1759 // Try to duplicate BB into PredBB. 1760 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1761 return true; 1762 } 1763 } 1764 1765 return false; 1766 } 1767 1768 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1769 /// a xor instruction in the current block. See if there are any 1770 /// simplifications we can do based on inputs to the xor. 1771 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1772 BasicBlock *BB = BO->getParent(); 1773 1774 // If either the LHS or RHS of the xor is a constant, don't do this 1775 // optimization. 1776 if (isa<ConstantInt>(BO->getOperand(0)) || 1777 isa<ConstantInt>(BO->getOperand(1))) 1778 return false; 1779 1780 // If the first instruction in BB isn't a phi, we won't be able to infer 1781 // anything special about any particular predecessor. 1782 if (!isa<PHINode>(BB->front())) 1783 return false; 1784 1785 // If this BB is a landing pad, we won't be able to split the edge into it. 1786 if (BB->isEHPad()) 1787 return false; 1788 1789 // If we have a xor as the branch input to this block, and we know that the 1790 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1791 // the condition into the predecessor and fix that value to true, saving some 1792 // logical ops on that path and encouraging other paths to simplify. 1793 // 1794 // This copies something like this: 1795 // 1796 // BB: 1797 // %X = phi i1 [1], [%X'] 1798 // %Y = icmp eq i32 %A, %B 1799 // %Z = xor i1 %X, %Y 1800 // br i1 %Z, ... 1801 // 1802 // Into: 1803 // BB': 1804 // %Y = icmp ne i32 %A, %B 1805 // br i1 %Y, ... 1806 1807 PredValueInfoTy XorOpValues; 1808 bool isLHS = true; 1809 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1810 WantInteger, BO)) { 1811 assert(XorOpValues.empty()); 1812 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1813 WantInteger, BO)) 1814 return false; 1815 isLHS = false; 1816 } 1817 1818 assert(!XorOpValues.empty() && 1819 "ComputeValueKnownInPredecessors returned true with no values"); 1820 1821 // Scan the information to see which is most popular: true or false. The 1822 // predecessors can be of the set true, false, or undef. 1823 unsigned NumTrue = 0, NumFalse = 0; 1824 for (const auto &XorOpValue : XorOpValues) { 1825 if (isa<UndefValue>(XorOpValue.first)) 1826 // Ignore undefs for the count. 1827 continue; 1828 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1829 ++NumFalse; 1830 else 1831 ++NumTrue; 1832 } 1833 1834 // Determine which value to split on, true, false, or undef if neither. 1835 ConstantInt *SplitVal = nullptr; 1836 if (NumTrue > NumFalse) 1837 SplitVal = ConstantInt::getTrue(BB->getContext()); 1838 else if (NumTrue != 0 || NumFalse != 0) 1839 SplitVal = ConstantInt::getFalse(BB->getContext()); 1840 1841 // Collect all of the blocks that this can be folded into so that we can 1842 // factor this once and clone it once. 1843 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1844 for (const auto &XorOpValue : XorOpValues) { 1845 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1846 continue; 1847 1848 BlocksToFoldInto.push_back(XorOpValue.second); 1849 } 1850 1851 // If we inferred a value for all of the predecessors, then duplication won't 1852 // help us. However, we can just replace the LHS or RHS with the constant. 1853 if (BlocksToFoldInto.size() == 1854 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1855 if (!SplitVal) { 1856 // If all preds provide undef, just nuke the xor, because it is undef too. 1857 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1858 BO->eraseFromParent(); 1859 } else if (SplitVal->isZero()) { 1860 // If all preds provide 0, replace the xor with the other input. 1861 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1862 BO->eraseFromParent(); 1863 } else { 1864 // If all preds provide 1, set the computed value to 1. 1865 BO->setOperand(!isLHS, SplitVal); 1866 } 1867 1868 return true; 1869 } 1870 1871 // Try to duplicate BB into PredBB. 1872 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1873 } 1874 1875 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1876 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1877 /// NewPred using the entries from OldPred (suitably mapped). 1878 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1879 BasicBlock *OldPred, 1880 BasicBlock *NewPred, 1881 DenseMap<Instruction*, Value*> &ValueMap) { 1882 for (PHINode &PN : PHIBB->phis()) { 1883 // Ok, we have a PHI node. Figure out what the incoming value was for the 1884 // DestBlock. 1885 Value *IV = PN.getIncomingValueForBlock(OldPred); 1886 1887 // Remap the value if necessary. 1888 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1889 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1890 if (I != ValueMap.end()) 1891 IV = I->second; 1892 } 1893 1894 PN.addIncoming(IV, NewPred); 1895 } 1896 } 1897 1898 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1899 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1900 /// across BB. Transform the IR to reflect this change. 1901 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1902 const SmallVectorImpl<BasicBlock *> &PredBBs, 1903 BasicBlock *SuccBB) { 1904 // If threading to the same block as we come from, we would infinite loop. 1905 if (SuccBB == BB) { 1906 LLVM_DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1907 << "' - would thread to self!\n"); 1908 return false; 1909 } 1910 1911 // If threading this would thread across a loop header, don't thread the edge. 1912 // See the comments above FindLoopHeaders for justifications and caveats. 1913 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1914 LLVM_DEBUG({ 1915 bool BBIsHeader = LoopHeaders.count(BB); 1916 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1917 dbgs() << " Not threading across " 1918 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1919 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1920 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1921 }); 1922 return false; 1923 } 1924 1925 unsigned JumpThreadCost = 1926 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1927 if (JumpThreadCost > BBDupThreshold) { 1928 LLVM_DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1929 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1930 return false; 1931 } 1932 1933 // And finally, do it! Start by factoring the predecessors if needed. 1934 BasicBlock *PredBB; 1935 if (PredBBs.size() == 1) 1936 PredBB = PredBBs[0]; 1937 else { 1938 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1939 << " common predecessors.\n"); 1940 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1941 } 1942 1943 // And finally, do it! 1944 LLVM_DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() 1945 << "' to '" << SuccBB->getName() 1946 << "' with cost: " << JumpThreadCost 1947 << ", across block:\n " << *BB << "\n"); 1948 1949 if (DDT->pending()) 1950 LVI->disableDT(); 1951 else 1952 LVI->enableDT(); 1953 LVI->threadEdge(PredBB, BB, SuccBB); 1954 1955 // We are going to have to map operands from the original BB block to the new 1956 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1957 // account for entry from PredBB. 1958 DenseMap<Instruction*, Value*> ValueMapping; 1959 1960 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1961 BB->getName()+".thread", 1962 BB->getParent(), BB); 1963 NewBB->moveAfter(PredBB); 1964 1965 // Set the block frequency of NewBB. 1966 if (HasProfileData) { 1967 auto NewBBFreq = 1968 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1969 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1970 } 1971 1972 BasicBlock::iterator BI = BB->begin(); 1973 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1974 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1975 1976 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1977 // mapping and using it to remap operands in the cloned instructions. 1978 for (; !isa<TerminatorInst>(BI); ++BI) { 1979 Instruction *New = BI->clone(); 1980 New->setName(BI->getName()); 1981 NewBB->getInstList().push_back(New); 1982 ValueMapping[&*BI] = New; 1983 1984 // Remap operands to patch up intra-block references. 1985 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1986 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1987 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1988 if (I != ValueMapping.end()) 1989 New->setOperand(i, I->second); 1990 } 1991 } 1992 1993 // We didn't copy the terminator from BB over to NewBB, because there is now 1994 // an unconditional jump to SuccBB. Insert the unconditional jump. 1995 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1996 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1997 1998 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1999 // PHI nodes for NewBB now. 2000 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 2001 2002 // Update the terminator of PredBB to jump to NewBB instead of BB. This 2003 // eliminates predecessors from BB, which requires us to simplify any PHI 2004 // nodes in BB. 2005 TerminatorInst *PredTerm = PredBB->getTerminator(); 2006 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2007 if (PredTerm->getSuccessor(i) == BB) { 2008 BB->removePredecessor(PredBB, true); 2009 PredTerm->setSuccessor(i, NewBB); 2010 } 2011 2012 // If there were values defined in BB that are used outside the block, then we 2013 // now have to update all uses of the value to use either the original value, 2014 // the cloned value, or some PHI derived value. This can require arbitrary 2015 // PHI insertion, of which we are prepared to do, clean these up now. 2016 SSAUpdaterBulk SSAUpdate; 2017 2018 for (Instruction &I : *BB) { 2019 SmallVector<Use*, 16> UsesToRename; 2020 2021 // Scan all uses of this instruction to see if it is used outside of its 2022 // block, and if so, record them in UsesToRename. Also, skip phi operands 2023 // from PredBB - we'll remove them anyway. 2024 for (Use &U : I.uses()) { 2025 Instruction *User = cast<Instruction>(U.getUser()); 2026 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2027 if (UserPN->getIncomingBlock(U) == BB || 2028 UserPN->getIncomingBlock(U) == PredBB) 2029 continue; 2030 } else if (User->getParent() == BB) 2031 continue; 2032 2033 UsesToRename.push_back(&U); 2034 } 2035 2036 // If there are no uses outside the block, we're done with this instruction. 2037 if (UsesToRename.empty()) 2038 continue; 2039 unsigned VarNum = SSAUpdate.AddVariable(I.getName(), I.getType()); 2040 2041 // We found a use of I outside of BB - we need to rename all uses of I that 2042 // are outside its block to be uses of the appropriate PHI node etc. 2043 SSAUpdate.AddAvailableValue(VarNum, BB, &I); 2044 SSAUpdate.AddAvailableValue(VarNum, NewBB, ValueMapping[&I]); 2045 for (auto *U : UsesToRename) 2046 SSAUpdate.AddUse(VarNum, U); 2047 } 2048 2049 DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2050 {DominatorTree::Insert, PredBB, NewBB}, 2051 {DominatorTree::Delete, PredBB, BB}}); 2052 2053 // Apply all updates we queued with DDT and get the updated Dominator Tree. 2054 DominatorTree *DT = &DDT->flush(); 2055 SSAUpdate.RewriteAllUses(DT); 2056 2057 // At this point, the IR is fully up to date and consistent. Do a quick scan 2058 // over the new instructions and zap any that are constants or dead. This 2059 // frequently happens because of phi translation. 2060 SimplifyInstructionsInBlock(NewBB, TLI); 2061 2062 // Update the edge weight from BB to SuccBB, which should be less than before. 2063 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2064 2065 // Threaded an edge! 2066 ++NumThreads; 2067 return true; 2068 } 2069 2070 /// Create a new basic block that will be the predecessor of BB and successor of 2071 /// all blocks in Preds. When profile data is available, update the frequency of 2072 /// this new block. 2073 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2074 ArrayRef<BasicBlock *> Preds, 2075 const char *Suffix) { 2076 SmallVector<BasicBlock *, 2> NewBBs; 2077 2078 // Collect the frequencies of all predecessors of BB, which will be used to 2079 // update the edge weight of the result of splitting predecessors. 2080 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2081 if (HasProfileData) 2082 for (auto Pred : Preds) 2083 FreqMap.insert(std::make_pair( 2084 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2085 2086 // In the case when BB is a LandingPad block we create 2 new predecessors 2087 // instead of just one. 2088 if (BB->isLandingPad()) { 2089 std::string NewName = std::string(Suffix) + ".split-lp"; 2090 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2091 } else { 2092 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2093 } 2094 2095 std::vector<DominatorTree::UpdateType> Updates; 2096 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2097 for (auto NewBB : NewBBs) { 2098 BlockFrequency NewBBFreq(0); 2099 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2100 for (auto Pred : predecessors(NewBB)) { 2101 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2102 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2103 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2104 NewBBFreq += FreqMap.lookup(Pred); 2105 } 2106 if (HasProfileData) // Apply the summed frequency to NewBB. 2107 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2108 } 2109 2110 DDT->applyUpdates(Updates); 2111 return NewBBs[0]; 2112 } 2113 2114 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2115 const TerminatorInst *TI = BB->getTerminator(); 2116 assert(TI->getNumSuccessors() > 1 && "not a split"); 2117 2118 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2119 if (!WeightsNode) 2120 return false; 2121 2122 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2123 if (MDName->getString() != "branch_weights") 2124 return false; 2125 2126 // Ensure there are weights for all of the successors. Note that the first 2127 // operand to the metadata node is a name, not a weight. 2128 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2129 } 2130 2131 /// Update the block frequency of BB and branch weight and the metadata on the 2132 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2133 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2134 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2135 BasicBlock *BB, 2136 BasicBlock *NewBB, 2137 BasicBlock *SuccBB) { 2138 if (!HasProfileData) 2139 return; 2140 2141 assert(BFI && BPI && "BFI & BPI should have been created here"); 2142 2143 // As the edge from PredBB to BB is deleted, we have to update the block 2144 // frequency of BB. 2145 auto BBOrigFreq = BFI->getBlockFreq(BB); 2146 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2147 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2148 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2149 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2150 2151 // Collect updated outgoing edges' frequencies from BB and use them to update 2152 // edge probabilities. 2153 SmallVector<uint64_t, 4> BBSuccFreq; 2154 for (BasicBlock *Succ : successors(BB)) { 2155 auto SuccFreq = (Succ == SuccBB) 2156 ? BB2SuccBBFreq - NewBBFreq 2157 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2158 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2159 } 2160 2161 uint64_t MaxBBSuccFreq = 2162 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2163 2164 SmallVector<BranchProbability, 4> BBSuccProbs; 2165 if (MaxBBSuccFreq == 0) 2166 BBSuccProbs.assign(BBSuccFreq.size(), 2167 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2168 else { 2169 for (uint64_t Freq : BBSuccFreq) 2170 BBSuccProbs.push_back( 2171 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2172 // Normalize edge probabilities so that they sum up to one. 2173 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2174 BBSuccProbs.end()); 2175 } 2176 2177 // Update edge probabilities in BPI. 2178 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2179 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2180 2181 // Update the profile metadata as well. 2182 // 2183 // Don't do this if the profile of the transformed blocks was statically 2184 // estimated. (This could occur despite the function having an entry 2185 // frequency in completely cold parts of the CFG.) 2186 // 2187 // In this case we don't want to suggest to subsequent passes that the 2188 // calculated weights are fully consistent. Consider this graph: 2189 // 2190 // check_1 2191 // 50% / | 2192 // eq_1 | 50% 2193 // \ | 2194 // check_2 2195 // 50% / | 2196 // eq_2 | 50% 2197 // \ | 2198 // check_3 2199 // 50% / | 2200 // eq_3 | 50% 2201 // \ | 2202 // 2203 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2204 // the overall probabilities are inconsistent; the total probability that the 2205 // value is either 1, 2 or 3 is 150%. 2206 // 2207 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2208 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2209 // the loop exit edge. Then based solely on static estimation we would assume 2210 // the loop was extremely hot. 2211 // 2212 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2213 // shouldn't make edges extremely likely or unlikely based solely on static 2214 // estimation. 2215 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2216 SmallVector<uint32_t, 4> Weights; 2217 for (auto Prob : BBSuccProbs) 2218 Weights.push_back(Prob.getNumerator()); 2219 2220 auto TI = BB->getTerminator(); 2221 TI->setMetadata( 2222 LLVMContext::MD_prof, 2223 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2224 } 2225 } 2226 2227 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2228 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2229 /// If we can duplicate the contents of BB up into PredBB do so now, this 2230 /// improves the odds that the branch will be on an analyzable instruction like 2231 /// a compare. 2232 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2233 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2234 assert(!PredBBs.empty() && "Can't handle an empty set"); 2235 2236 // If BB is a loop header, then duplicating this block outside the loop would 2237 // cause us to transform this into an irreducible loop, don't do this. 2238 // See the comments above FindLoopHeaders for justifications and caveats. 2239 if (LoopHeaders.count(BB)) { 2240 LLVM_DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2241 << "' into predecessor block '" << PredBBs[0]->getName() 2242 << "' - it might create an irreducible loop!\n"); 2243 return false; 2244 } 2245 2246 unsigned DuplicationCost = 2247 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2248 if (DuplicationCost > BBDupThreshold) { 2249 LLVM_DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2250 << "' - Cost is too high: " << DuplicationCost << "\n"); 2251 return false; 2252 } 2253 2254 // And finally, do it! Start by factoring the predecessors if needed. 2255 std::vector<DominatorTree::UpdateType> Updates; 2256 BasicBlock *PredBB; 2257 if (PredBBs.size() == 1) 2258 PredBB = PredBBs[0]; 2259 else { 2260 LLVM_DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2261 << " common predecessors.\n"); 2262 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2263 } 2264 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2265 2266 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2267 // of PredBB. 2268 LLVM_DEBUG(dbgs() << " Duplicating block '" << BB->getName() 2269 << "' into end of '" << PredBB->getName() 2270 << "' to eliminate branch on phi. Cost: " 2271 << DuplicationCost << " block is:" << *BB << "\n"); 2272 2273 // Unless PredBB ends with an unconditional branch, split the edge so that we 2274 // can just clone the bits from BB into the end of the new PredBB. 2275 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2276 2277 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2278 BasicBlock *OldPredBB = PredBB; 2279 PredBB = SplitEdge(OldPredBB, BB); 2280 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2281 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2282 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2283 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2284 } 2285 2286 // We are going to have to map operands from the original BB block into the 2287 // PredBB block. Evaluate PHI nodes in BB. 2288 DenseMap<Instruction*, Value*> ValueMapping; 2289 2290 BasicBlock::iterator BI = BB->begin(); 2291 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2292 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2293 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2294 // mapping and using it to remap operands in the cloned instructions. 2295 for (; BI != BB->end(); ++BI) { 2296 Instruction *New = BI->clone(); 2297 2298 // Remap operands to patch up intra-block references. 2299 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2300 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2301 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2302 if (I != ValueMapping.end()) 2303 New->setOperand(i, I->second); 2304 } 2305 2306 // If this instruction can be simplified after the operands are updated, 2307 // just use the simplified value instead. This frequently happens due to 2308 // phi translation. 2309 if (Value *IV = SimplifyInstruction( 2310 New, 2311 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2312 ValueMapping[&*BI] = IV; 2313 if (!New->mayHaveSideEffects()) { 2314 New->deleteValue(); 2315 New = nullptr; 2316 } 2317 } else { 2318 ValueMapping[&*BI] = New; 2319 } 2320 if (New) { 2321 // Otherwise, insert the new instruction into the block. 2322 New->setName(BI->getName()); 2323 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2324 // Update Dominance from simplified New instruction operands. 2325 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2326 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2327 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2328 } 2329 } 2330 2331 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2332 // add entries to the PHI nodes for branch from PredBB now. 2333 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2334 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2335 ValueMapping); 2336 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2337 ValueMapping); 2338 2339 // If there were values defined in BB that are used outside the block, then we 2340 // now have to update all uses of the value to use either the original value, 2341 // the cloned value, or some PHI derived value. This can require arbitrary 2342 // PHI insertion, of which we are prepared to do, clean these up now. 2343 SSAUpdater SSAUpdate; 2344 SmallVector<Use*, 16> UsesToRename; 2345 for (Instruction &I : *BB) { 2346 // Scan all uses of this instruction to see if it is used outside of its 2347 // block, and if so, record them in UsesToRename. 2348 for (Use &U : I.uses()) { 2349 Instruction *User = cast<Instruction>(U.getUser()); 2350 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2351 if (UserPN->getIncomingBlock(U) == BB) 2352 continue; 2353 } else if (User->getParent() == BB) 2354 continue; 2355 2356 UsesToRename.push_back(&U); 2357 } 2358 2359 // If there are no uses outside the block, we're done with this instruction. 2360 if (UsesToRename.empty()) 2361 continue; 2362 2363 LLVM_DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2364 2365 // We found a use of I outside of BB. Rename all uses of I that are outside 2366 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2367 // with the two values we know. 2368 SSAUpdate.Initialize(I.getType(), I.getName()); 2369 SSAUpdate.AddAvailableValue(BB, &I); 2370 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2371 2372 while (!UsesToRename.empty()) 2373 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2374 LLVM_DEBUG(dbgs() << "\n"); 2375 } 2376 2377 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2378 // that we nuked. 2379 BB->removePredecessor(PredBB, true); 2380 2381 // Remove the unconditional branch at the end of the PredBB block. 2382 OldPredBranch->eraseFromParent(); 2383 DDT->applyUpdates(Updates); 2384 2385 ++NumDupes; 2386 return true; 2387 } 2388 2389 /// TryToUnfoldSelect - Look for blocks of the form 2390 /// bb1: 2391 /// %a = select 2392 /// br bb2 2393 /// 2394 /// bb2: 2395 /// %p = phi [%a, %bb1] ... 2396 /// %c = icmp %p 2397 /// br i1 %c 2398 /// 2399 /// And expand the select into a branch structure if one of its arms allows %c 2400 /// to be folded. This later enables threading from bb1 over bb2. 2401 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2402 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2403 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2404 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2405 2406 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2407 CondLHS->getParent() != BB) 2408 return false; 2409 2410 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2411 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2412 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2413 2414 // Look if one of the incoming values is a select in the corresponding 2415 // predecessor. 2416 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2417 continue; 2418 2419 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2420 if (!PredTerm || !PredTerm->isUnconditional()) 2421 continue; 2422 2423 // Now check if one of the select values would allow us to constant fold the 2424 // terminator in BB. We don't do the transform if both sides fold, those 2425 // cases will be threaded in any case. 2426 if (DDT->pending()) 2427 LVI->disableDT(); 2428 else 2429 LVI->enableDT(); 2430 LazyValueInfo::Tristate LHSFolds = 2431 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2432 CondRHS, Pred, BB, CondCmp); 2433 LazyValueInfo::Tristate RHSFolds = 2434 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2435 CondRHS, Pred, BB, CondCmp); 2436 if ((LHSFolds != LazyValueInfo::Unknown || 2437 RHSFolds != LazyValueInfo::Unknown) && 2438 LHSFolds != RHSFolds) { 2439 // Expand the select. 2440 // 2441 // Pred -- 2442 // | v 2443 // | NewBB 2444 // | | 2445 // |----- 2446 // v 2447 // BB 2448 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2449 BB->getParent(), BB); 2450 // Move the unconditional branch to NewBB. 2451 PredTerm->removeFromParent(); 2452 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2453 // Create a conditional branch and update PHI nodes. 2454 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2455 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2456 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2457 // The select is now dead. 2458 SI->eraseFromParent(); 2459 2460 DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2461 {DominatorTree::Insert, Pred, NewBB}}); 2462 // Update any other PHI nodes in BB. 2463 for (BasicBlock::iterator BI = BB->begin(); 2464 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2465 if (Phi != CondLHS) 2466 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2467 return true; 2468 } 2469 } 2470 return false; 2471 } 2472 2473 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2474 /// same BB in the form 2475 /// bb: 2476 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2477 /// %s = select %p, trueval, falseval 2478 /// 2479 /// or 2480 /// 2481 /// bb: 2482 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2483 /// %c = cmp %p, 0 2484 /// %s = select %c, trueval, falseval 2485 /// 2486 /// And expand the select into a branch structure. This later enables 2487 /// jump-threading over bb in this pass. 2488 /// 2489 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2490 /// select if the associated PHI has at least one constant. If the unfolded 2491 /// select is not jump-threaded, it will be folded again in the later 2492 /// optimizations. 2493 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2494 // If threading this would thread across a loop header, don't thread the edge. 2495 // See the comments above FindLoopHeaders for justifications and caveats. 2496 if (LoopHeaders.count(BB)) 2497 return false; 2498 2499 for (BasicBlock::iterator BI = BB->begin(); 2500 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2501 // Look for a Phi having at least one constant incoming value. 2502 if (llvm::all_of(PN->incoming_values(), 2503 [](Value *V) { return !isa<ConstantInt>(V); })) 2504 continue; 2505 2506 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2507 // Check if SI is in BB and use V as condition. 2508 if (SI->getParent() != BB) 2509 return false; 2510 Value *Cond = SI->getCondition(); 2511 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2512 }; 2513 2514 SelectInst *SI = nullptr; 2515 for (Use &U : PN->uses()) { 2516 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2517 // Look for a ICmp in BB that compares PN with a constant and is the 2518 // condition of a Select. 2519 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2520 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2521 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2522 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2523 SI = SelectI; 2524 break; 2525 } 2526 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2527 // Look for a Select in BB that uses PN as condtion. 2528 if (isUnfoldCandidate(SelectI, U.get())) { 2529 SI = SelectI; 2530 break; 2531 } 2532 } 2533 } 2534 2535 if (!SI) 2536 continue; 2537 // Expand the select. 2538 TerminatorInst *Term = 2539 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2540 BasicBlock *SplitBB = SI->getParent(); 2541 BasicBlock *NewBB = Term->getParent(); 2542 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2543 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2544 NewPN->addIncoming(SI->getFalseValue(), BB); 2545 SI->replaceAllUsesWith(NewPN); 2546 SI->eraseFromParent(); 2547 // NewBB and SplitBB are newly created blocks which require insertion. 2548 std::vector<DominatorTree::UpdateType> Updates; 2549 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2550 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2551 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2552 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2553 // BB's successors were moved to SplitBB, update DDT accordingly. 2554 for (auto *Succ : successors(SplitBB)) { 2555 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2556 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2557 } 2558 DDT->applyUpdates(Updates); 2559 return true; 2560 } 2561 return false; 2562 } 2563 2564 /// Try to propagate a guard from the current BB into one of its predecessors 2565 /// in case if another branch of execution implies that the condition of this 2566 /// guard is always true. Currently we only process the simplest case that 2567 /// looks like: 2568 /// 2569 /// Start: 2570 /// %cond = ... 2571 /// br i1 %cond, label %T1, label %F1 2572 /// T1: 2573 /// br label %Merge 2574 /// F1: 2575 /// br label %Merge 2576 /// Merge: 2577 /// %condGuard = ... 2578 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2579 /// 2580 /// And cond either implies condGuard or !condGuard. In this case all the 2581 /// instructions before the guard can be duplicated in both branches, and the 2582 /// guard is then threaded to one of them. 2583 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2584 using namespace PatternMatch; 2585 2586 // We only want to deal with two predecessors. 2587 BasicBlock *Pred1, *Pred2; 2588 auto PI = pred_begin(BB), PE = pred_end(BB); 2589 if (PI == PE) 2590 return false; 2591 Pred1 = *PI++; 2592 if (PI == PE) 2593 return false; 2594 Pred2 = *PI++; 2595 if (PI != PE) 2596 return false; 2597 if (Pred1 == Pred2) 2598 return false; 2599 2600 // Try to thread one of the guards of the block. 2601 // TODO: Look up deeper than to immediate predecessor? 2602 auto *Parent = Pred1->getSinglePredecessor(); 2603 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2604 return false; 2605 2606 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2607 for (auto &I : *BB) 2608 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2609 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2610 return true; 2611 2612 return false; 2613 } 2614 2615 /// Try to propagate the guard from BB which is the lower block of a diamond 2616 /// to one of its branches, in case if diamond's condition implies guard's 2617 /// condition. 2618 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2619 BranchInst *BI) { 2620 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2621 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2622 Value *GuardCond = Guard->getArgOperand(0); 2623 Value *BranchCond = BI->getCondition(); 2624 BasicBlock *TrueDest = BI->getSuccessor(0); 2625 BasicBlock *FalseDest = BI->getSuccessor(1); 2626 2627 auto &DL = BB->getModule()->getDataLayout(); 2628 bool TrueDestIsSafe = false; 2629 bool FalseDestIsSafe = false; 2630 2631 // True dest is safe if BranchCond => GuardCond. 2632 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2633 if (Impl && *Impl) 2634 TrueDestIsSafe = true; 2635 else { 2636 // False dest is safe if !BranchCond => GuardCond. 2637 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2638 if (Impl && *Impl) 2639 FalseDestIsSafe = true; 2640 } 2641 2642 if (!TrueDestIsSafe && !FalseDestIsSafe) 2643 return false; 2644 2645 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2646 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2647 2648 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2649 Instruction *AfterGuard = Guard->getNextNode(); 2650 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2651 if (Cost > BBDupThreshold) 2652 return false; 2653 // Duplicate all instructions before the guard and the guard itself to the 2654 // branch where implication is not proved. 2655 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2656 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2657 assert(GuardedBlock && "Could not create the guarded block?"); 2658 // Duplicate all instructions before the guard in the unguarded branch. 2659 // Since we have successfully duplicated the guarded block and this block 2660 // has fewer instructions, we expect it to succeed. 2661 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2662 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2663 assert(UnguardedBlock && "Could not create the unguarded block?"); 2664 LLVM_DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2665 << GuardedBlock->getName() << "\n"); 2666 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2667 // PredBB and BB. We need to perform two inserts and one delete for each of 2668 // the above calls to update Dominators. 2669 DDT->applyUpdates( 2670 {// Guarded block split. 2671 {DominatorTree::Delete, PredGuardedBlock, BB}, 2672 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2673 {DominatorTree::Insert, GuardedBlock, BB}, 2674 // Unguarded block split. 2675 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2676 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2677 {DominatorTree::Insert, UnguardedBlock, BB}}); 2678 // Some instructions before the guard may still have uses. For them, we need 2679 // to create Phi nodes merging their copies in both guarded and unguarded 2680 // branches. Those instructions that have no uses can be just removed. 2681 SmallVector<Instruction *, 4> ToRemove; 2682 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2683 if (!isa<PHINode>(&*BI)) 2684 ToRemove.push_back(&*BI); 2685 2686 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2687 assert(InsertionPoint && "Empty block?"); 2688 // Substitute with Phis & remove. 2689 for (auto *Inst : reverse(ToRemove)) { 2690 if (!Inst->use_empty()) { 2691 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2692 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2693 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2694 NewPN->insertBefore(InsertionPoint); 2695 Inst->replaceAllUsesWith(NewPN); 2696 } 2697 Inst->eraseFromParent(); 2698 } 2699 return true; 2700 } 2701