1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/ValueMapper.h"
70 #include <algorithm>
71 #include <cassert>
72 #include <cstddef>
73 #include <cstdint>
74 #include <iterator>
75 #include <memory>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace jumpthreading;
80 
81 #define DEBUG_TYPE "jump-threading"
82 
83 STATISTIC(NumThreads, "Number of jumps threaded");
84 STATISTIC(NumFolds,   "Number of terminators folded");
85 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
86 
87 static cl::opt<unsigned>
88 BBDuplicateThreshold("jump-threading-threshold",
89           cl::desc("Max block size to duplicate for jump threading"),
90           cl::init(6), cl::Hidden);
91 
92 static cl::opt<unsigned>
93 ImplicationSearchThreshold(
94   "jump-threading-implication-search-threshold",
95   cl::desc("The number of predecessors to search for a stronger "
96            "condition to use to thread over a weaker condition"),
97   cl::init(3), cl::Hidden);
98 
99 static cl::opt<bool> PrintLVIAfterJumpThreading(
100     "print-lvi-after-jump-threading",
101     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
102     cl::Hidden);
103 
104 namespace {
105 
106   /// This pass performs 'jump threading', which looks at blocks that have
107   /// multiple predecessors and multiple successors.  If one or more of the
108   /// predecessors of the block can be proven to always jump to one of the
109   /// successors, we forward the edge from the predecessor to the successor by
110   /// duplicating the contents of this block.
111   ///
112   /// An example of when this can occur is code like this:
113   ///
114   ///   if () { ...
115   ///     X = 4;
116   ///   }
117   ///   if (X < 3) {
118   ///
119   /// In this case, the unconditional branch at the end of the first if can be
120   /// revectored to the false side of the second if.
121   class JumpThreading : public FunctionPass {
122     JumpThreadingPass Impl;
123 
124   public:
125     static char ID; // Pass identification
126 
127     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
128       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
129     }
130 
131     bool runOnFunction(Function &F) override;
132 
133     void getAnalysisUsage(AnalysisUsage &AU) const override {
134       AU.addRequired<DominatorTreeWrapperPass>();
135       AU.addPreserved<DominatorTreeWrapperPass>();
136       AU.addRequired<AAResultsWrapperPass>();
137       AU.addRequired<LazyValueInfoWrapperPass>();
138       AU.addPreserved<LazyValueInfoWrapperPass>();
139       AU.addPreserved<GlobalsAAWrapperPass>();
140       AU.addRequired<TargetLibraryInfoWrapperPass>();
141     }
142 
143     void releaseMemory() override { Impl.releaseMemory(); }
144   };
145 
146 } // end anonymous namespace
147 
148 char JumpThreading::ID = 0;
149 
150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
151                 "Jump Threading", false, false)
152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
156 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
157                 "Jump Threading", false, false)
158 
159 // Public interface to the Jump Threading pass
160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
161   return new JumpThreading(Threshold);
162 }
163 
164 JumpThreadingPass::JumpThreadingPass(int T) {
165   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
166 }
167 
168 // Update branch probability information according to conditional
169 // branch probablity. This is usually made possible for cloned branches
170 // in inline instances by the context specific profile in the caller.
171 // For instance,
172 //
173 //  [Block PredBB]
174 //  [Branch PredBr]
175 //  if (t) {
176 //     Block A;
177 //  } else {
178 //     Block B;
179 //  }
180 //
181 //  [Block BB]
182 //  cond = PN([true, %A], [..., %B]); // PHI node
183 //  [Branch CondBr]
184 //  if (cond) {
185 //    ...  // P(cond == true) = 1%
186 //  }
187 //
188 //  Here we know that when block A is taken, cond must be true, which means
189 //      P(cond == true | A) = 1
190 //
191 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
192 //                               P(cond == true | B) * P(B)
193 //  we get:
194 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
195 //
196 //  which gives us:
197 //     P(A) is less than P(cond == true), i.e.
198 //     P(t == true) <= P(cond == true)
199 //
200 //  In other words, if we know P(cond == true) is unlikely, we know
201 //  that P(t == true) is also unlikely.
202 //
203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
204   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
205   if (!CondBr)
206     return;
207 
208   BranchProbability BP;
209   uint64_t TrueWeight, FalseWeight;
210   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
211     return;
212 
213   // Returns the outgoing edge of the dominating predecessor block
214   // that leads to the PhiNode's incoming block:
215   auto GetPredOutEdge =
216       [](BasicBlock *IncomingBB,
217          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
218     auto *PredBB = IncomingBB;
219     auto *SuccBB = PhiBB;
220     while (true) {
221       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
222       if (PredBr && PredBr->isConditional())
223         return {PredBB, SuccBB};
224       auto *SinglePredBB = PredBB->getSinglePredecessor();
225       if (!SinglePredBB)
226         return {nullptr, nullptr};
227       SuccBB = PredBB;
228       PredBB = SinglePredBB;
229     }
230   };
231 
232   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
233     Value *PhiOpnd = PN->getIncomingValue(i);
234     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
235 
236     if (!CI || !CI->getType()->isIntegerTy(1))
237       continue;
238 
239     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
240                             TrueWeight, TrueWeight + FalseWeight)
241                       : BranchProbability::getBranchProbability(
242                             FalseWeight, TrueWeight + FalseWeight));
243 
244     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
245     if (!PredOutEdge.first)
246       return;
247 
248     BasicBlock *PredBB = PredOutEdge.first;
249     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
250 
251     uint64_t PredTrueWeight, PredFalseWeight;
252     // FIXME: We currently only set the profile data when it is missing.
253     // With PGO, this can be used to refine even existing profile data with
254     // context information. This needs to be done after more performance
255     // testing.
256     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
257       continue;
258 
259     // We can not infer anything useful when BP >= 50%, because BP is the
260     // upper bound probability value.
261     if (BP >= BranchProbability(50, 100))
262       continue;
263 
264     SmallVector<uint32_t, 2> Weights;
265     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
266       Weights.push_back(BP.getNumerator());
267       Weights.push_back(BP.getCompl().getNumerator());
268     } else {
269       Weights.push_back(BP.getCompl().getNumerator());
270       Weights.push_back(BP.getNumerator());
271     }
272     PredBr->setMetadata(LLVMContext::MD_prof,
273                         MDBuilder(PredBr->getParent()->getContext())
274                             .createBranchWeights(Weights));
275   }
276 }
277 
278 /// runOnFunction - Toplevel algorithm.
279 bool JumpThreading::runOnFunction(Function &F) {
280   if (skipFunction(F))
281     return false;
282   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
283   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
284   // DT if it's available.
285   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
286   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
287   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
288   DeferredDominance DDT(*DT);
289   std::unique_ptr<BlockFrequencyInfo> BFI;
290   std::unique_ptr<BranchProbabilityInfo> BPI;
291   bool HasProfileData = F.hasProfileData();
292   if (HasProfileData) {
293     LoopInfo LI{DominatorTree(F)};
294     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
295     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
296   }
297 
298   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
299                               std::move(BFI), std::move(BPI));
300   if (PrintLVIAfterJumpThreading) {
301     dbgs() << "LVI for function '" << F.getName() << "':\n";
302     LVI->printLVI(F, *DT, dbgs());
303   }
304   return Changed;
305 }
306 
307 PreservedAnalyses JumpThreadingPass::run(Function &F,
308                                          FunctionAnalysisManager &AM) {
309   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
310   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
311   // DT if it's available.
312   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
313   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
314   auto &AA = AM.getResult<AAManager>(F);
315   DeferredDominance DDT(DT);
316 
317   std::unique_ptr<BlockFrequencyInfo> BFI;
318   std::unique_ptr<BranchProbabilityInfo> BPI;
319   if (F.hasProfileData()) {
320     LoopInfo LI{DominatorTree(F)};
321     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
322     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
323   }
324 
325   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
326                          std::move(BFI), std::move(BPI));
327 
328   if (!Changed)
329     return PreservedAnalyses::all();
330   PreservedAnalyses PA;
331   PA.preserve<GlobalsAA>();
332   PA.preserve<DominatorTreeAnalysis>();
333   PA.preserve<LazyValueAnalysis>();
334   return PA;
335 }
336 
337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
338                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
339                                 DeferredDominance *DDT_, bool HasProfileData_,
340                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
341                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
342   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
343   TLI = TLI_;
344   LVI = LVI_;
345   AA = AA_;
346   DDT = DDT_;
347   BFI.reset();
348   BPI.reset();
349   // When profile data is available, we need to update edge weights after
350   // successful jump threading, which requires both BPI and BFI being available.
351   HasProfileData = HasProfileData_;
352   auto *GuardDecl = F.getParent()->getFunction(
353       Intrinsic::getName(Intrinsic::experimental_guard));
354   HasGuards = GuardDecl && !GuardDecl->use_empty();
355   if (HasProfileData) {
356     BPI = std::move(BPI_);
357     BFI = std::move(BFI_);
358   }
359 
360   // JumpThreading must not processes blocks unreachable from entry. It's a
361   // waste of compute time and can potentially lead to hangs.
362   SmallPtrSet<BasicBlock *, 16> Unreachable;
363   DominatorTree &DT = DDT->flush();
364   for (auto &BB : F)
365     if (!DT.isReachableFromEntry(&BB))
366       Unreachable.insert(&BB);
367 
368   FindLoopHeaders(F);
369 
370   bool EverChanged = false;
371   bool Changed;
372   do {
373     Changed = false;
374     for (auto &BB : F) {
375       if (Unreachable.count(&BB))
376         continue;
377       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
378         Changed = true;
379       // Stop processing BB if it's the entry or is now deleted. The following
380       // routines attempt to eliminate BB and locating a suitable replacement
381       // for the entry is non-trivial.
382       if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB))
383         continue;
384 
385       if (pred_empty(&BB)) {
386         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
387         // the instructions in it. We must remove BB to prevent invalid IR.
388         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
389                      << "' with terminator: " << *BB.getTerminator() << '\n');
390         LoopHeaders.erase(&BB);
391         LVI->eraseBlock(&BB);
392         DeleteDeadBlock(&BB, DDT);
393         Changed = true;
394         continue;
395       }
396 
397       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
398       // is "almost empty", we attempt to merge BB with its sole successor.
399       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
400       if (BI && BI->isUnconditional() &&
401           // The terminator must be the only non-phi instruction in BB.
402           BB.getFirstNonPHIOrDbg()->isTerminator() &&
403           // Don't alter Loop headers and latches to ensure another pass can
404           // detect and transform nested loops later.
405           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
406           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) {
407         // BB is valid for cleanup here because we passed in DDT. F remains
408         // BB's parent until a DDT->flush() event.
409         LVI->eraseBlock(&BB);
410         Changed = true;
411       }
412     }
413     EverChanged |= Changed;
414   } while (Changed);
415 
416   LoopHeaders.clear();
417   DDT->flush();
418   LVI->enableDT();
419   return EverChanged;
420 }
421 
422 // Replace uses of Cond with ToVal when safe to do so. If all uses are
423 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
424 // because we may incorrectly replace uses when guards/assumes are uses of
425 // of `Cond` and we used the guards/assume to reason about the `Cond` value
426 // at the end of block. RAUW unconditionally replaces all uses
427 // including the guards/assumes themselves and the uses before the
428 // guard/assume.
429 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
430   assert(Cond->getType() == ToVal->getType());
431   auto *BB = Cond->getParent();
432   // We can unconditionally replace all uses in non-local blocks (i.e. uses
433   // strictly dominated by BB), since LVI information is true from the
434   // terminator of BB.
435   replaceNonLocalUsesWith(Cond, ToVal);
436   for (Instruction &I : reverse(*BB)) {
437     // Reached the Cond whose uses we are trying to replace, so there are no
438     // more uses.
439     if (&I == Cond)
440       break;
441     // We only replace uses in instructions that are guaranteed to reach the end
442     // of BB, where we know Cond is ToVal.
443     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
444       break;
445     I.replaceUsesOfWith(Cond, ToVal);
446   }
447   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
448     Cond->eraseFromParent();
449 }
450 
451 /// Return the cost of duplicating a piece of this block from first non-phi
452 /// and before StopAt instruction to thread across it. Stop scanning the block
453 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
454 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
455                                              Instruction *StopAt,
456                                              unsigned Threshold) {
457   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
458   /// Ignore PHI nodes, these will be flattened when duplication happens.
459   BasicBlock::const_iterator I(BB->getFirstNonPHI());
460 
461   // FIXME: THREADING will delete values that are just used to compute the
462   // branch, so they shouldn't count against the duplication cost.
463 
464   unsigned Bonus = 0;
465   if (BB->getTerminator() == StopAt) {
466     // Threading through a switch statement is particularly profitable.  If this
467     // block ends in a switch, decrease its cost to make it more likely to
468     // happen.
469     if (isa<SwitchInst>(StopAt))
470       Bonus = 6;
471 
472     // The same holds for indirect branches, but slightly more so.
473     if (isa<IndirectBrInst>(StopAt))
474       Bonus = 8;
475   }
476 
477   // Bump the threshold up so the early exit from the loop doesn't skip the
478   // terminator-based Size adjustment at the end.
479   Threshold += Bonus;
480 
481   // Sum up the cost of each instruction until we get to the terminator.  Don't
482   // include the terminator because the copy won't include it.
483   unsigned Size = 0;
484   for (; &*I != StopAt; ++I) {
485 
486     // Stop scanning the block if we've reached the threshold.
487     if (Size > Threshold)
488       return Size;
489 
490     // Debugger intrinsics don't incur code size.
491     if (isa<DbgInfoIntrinsic>(I)) continue;
492 
493     // If this is a pointer->pointer bitcast, it is free.
494     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
495       continue;
496 
497     // Bail out if this instruction gives back a token type, it is not possible
498     // to duplicate it if it is used outside this BB.
499     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
500       return ~0U;
501 
502     // All other instructions count for at least one unit.
503     ++Size;
504 
505     // Calls are more expensive.  If they are non-intrinsic calls, we model them
506     // as having cost of 4.  If they are a non-vector intrinsic, we model them
507     // as having cost of 2 total, and if they are a vector intrinsic, we model
508     // them as having cost 1.
509     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
510       if (CI->cannotDuplicate() || CI->isConvergent())
511         // Blocks with NoDuplicate are modelled as having infinite cost, so they
512         // are never duplicated.
513         return ~0U;
514       else if (!isa<IntrinsicInst>(CI))
515         Size += 3;
516       else if (!CI->getType()->isVectorTy())
517         Size += 1;
518     }
519   }
520 
521   return Size > Bonus ? Size - Bonus : 0;
522 }
523 
524 /// FindLoopHeaders - We do not want jump threading to turn proper loop
525 /// structures into irreducible loops.  Doing this breaks up the loop nesting
526 /// hierarchy and pessimizes later transformations.  To prevent this from
527 /// happening, we first have to find the loop headers.  Here we approximate this
528 /// by finding targets of backedges in the CFG.
529 ///
530 /// Note that there definitely are cases when we want to allow threading of
531 /// edges across a loop header.  For example, threading a jump from outside the
532 /// loop (the preheader) to an exit block of the loop is definitely profitable.
533 /// It is also almost always profitable to thread backedges from within the loop
534 /// to exit blocks, and is often profitable to thread backedges to other blocks
535 /// within the loop (forming a nested loop).  This simple analysis is not rich
536 /// enough to track all of these properties and keep it up-to-date as the CFG
537 /// mutates, so we don't allow any of these transformations.
538 void JumpThreadingPass::FindLoopHeaders(Function &F) {
539   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
540   FindFunctionBackedges(F, Edges);
541 
542   for (const auto &Edge : Edges)
543     LoopHeaders.insert(Edge.second);
544 }
545 
546 /// getKnownConstant - Helper method to determine if we can thread over a
547 /// terminator with the given value as its condition, and if so what value to
548 /// use for that. What kind of value this is depends on whether we want an
549 /// integer or a block address, but an undef is always accepted.
550 /// Returns null if Val is null or not an appropriate constant.
551 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
552   if (!Val)
553     return nullptr;
554 
555   // Undef is "known" enough.
556   if (UndefValue *U = dyn_cast<UndefValue>(Val))
557     return U;
558 
559   if (Preference == WantBlockAddress)
560     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
561 
562   return dyn_cast<ConstantInt>(Val);
563 }
564 
565 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
566 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
567 /// in any of our predecessors.  If so, return the known list of value and pred
568 /// BB in the result vector.
569 ///
570 /// This returns true if there were any known values.
571 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
572     Value *V, BasicBlock *BB, PredValueInfo &Result,
573     ConstantPreference Preference, Instruction *CxtI) {
574   // This method walks up use-def chains recursively.  Because of this, we could
575   // get into an infinite loop going around loops in the use-def chain.  To
576   // prevent this, keep track of what (value, block) pairs we've already visited
577   // and terminate the search if we loop back to them
578   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
579     return false;
580 
581   // An RAII help to remove this pair from the recursion set once the recursion
582   // stack pops back out again.
583   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
584 
585   // If V is a constant, then it is known in all predecessors.
586   if (Constant *KC = getKnownConstant(V, Preference)) {
587     for (BasicBlock *Pred : predecessors(BB))
588       Result.push_back(std::make_pair(KC, Pred));
589 
590     return !Result.empty();
591   }
592 
593   // If V is a non-instruction value, or an instruction in a different block,
594   // then it can't be derived from a PHI.
595   Instruction *I = dyn_cast<Instruction>(V);
596   if (!I || I->getParent() != BB) {
597 
598     // Okay, if this is a live-in value, see if it has a known value at the end
599     // of any of our predecessors.
600     //
601     // FIXME: This should be an edge property, not a block end property.
602     /// TODO: Per PR2563, we could infer value range information about a
603     /// predecessor based on its terminator.
604     //
605     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
606     // "I" is a non-local compare-with-a-constant instruction.  This would be
607     // able to handle value inequalities better, for example if the compare is
608     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
609     // Perhaps getConstantOnEdge should be smart enough to do this?
610 
611     if (DDT->pending())
612       LVI->disableDT();
613     else
614       LVI->enableDT();
615     for (BasicBlock *P : predecessors(BB)) {
616       // If the value is known by LazyValueInfo to be a constant in a
617       // predecessor, use that information to try to thread this block.
618       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
619       if (Constant *KC = getKnownConstant(PredCst, Preference))
620         Result.push_back(std::make_pair(KC, P));
621     }
622 
623     return !Result.empty();
624   }
625 
626   /// If I is a PHI node, then we know the incoming values for any constants.
627   if (PHINode *PN = dyn_cast<PHINode>(I)) {
628     if (DDT->pending())
629       LVI->disableDT();
630     else
631       LVI->enableDT();
632     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
633       Value *InVal = PN->getIncomingValue(i);
634       if (Constant *KC = getKnownConstant(InVal, Preference)) {
635         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
636       } else {
637         Constant *CI = LVI->getConstantOnEdge(InVal,
638                                               PN->getIncomingBlock(i),
639                                               BB, CxtI);
640         if (Constant *KC = getKnownConstant(CI, Preference))
641           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
642       }
643     }
644 
645     return !Result.empty();
646   }
647 
648   // Handle Cast instructions.  Only see through Cast when the source operand is
649   // PHI or Cmp to save the compilation time.
650   if (CastInst *CI = dyn_cast<CastInst>(I)) {
651     Value *Source = CI->getOperand(0);
652     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
653       return false;
654     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
655     if (Result.empty())
656       return false;
657 
658     // Convert the known values.
659     for (auto &R : Result)
660       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
661 
662     return true;
663   }
664 
665   // Handle some boolean conditions.
666   if (I->getType()->getPrimitiveSizeInBits() == 1) {
667     assert(Preference == WantInteger && "One-bit non-integer type?");
668     // X | true -> true
669     // X & false -> false
670     if (I->getOpcode() == Instruction::Or ||
671         I->getOpcode() == Instruction::And) {
672       PredValueInfoTy LHSVals, RHSVals;
673 
674       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
675                                       WantInteger, CxtI);
676       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
677                                       WantInteger, CxtI);
678 
679       if (LHSVals.empty() && RHSVals.empty())
680         return false;
681 
682       ConstantInt *InterestingVal;
683       if (I->getOpcode() == Instruction::Or)
684         InterestingVal = ConstantInt::getTrue(I->getContext());
685       else
686         InterestingVal = ConstantInt::getFalse(I->getContext());
687 
688       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
689 
690       // Scan for the sentinel.  If we find an undef, force it to the
691       // interesting value: x|undef -> true and x&undef -> false.
692       for (const auto &LHSVal : LHSVals)
693         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
694           Result.emplace_back(InterestingVal, LHSVal.second);
695           LHSKnownBBs.insert(LHSVal.second);
696         }
697       for (const auto &RHSVal : RHSVals)
698         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
699           // If we already inferred a value for this block on the LHS, don't
700           // re-add it.
701           if (!LHSKnownBBs.count(RHSVal.second))
702             Result.emplace_back(InterestingVal, RHSVal.second);
703         }
704 
705       return !Result.empty();
706     }
707 
708     // Handle the NOT form of XOR.
709     if (I->getOpcode() == Instruction::Xor &&
710         isa<ConstantInt>(I->getOperand(1)) &&
711         cast<ConstantInt>(I->getOperand(1))->isOne()) {
712       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
713                                       WantInteger, CxtI);
714       if (Result.empty())
715         return false;
716 
717       // Invert the known values.
718       for (auto &R : Result)
719         R.first = ConstantExpr::getNot(R.first);
720 
721       return true;
722     }
723 
724   // Try to simplify some other binary operator values.
725   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
726     assert(Preference != WantBlockAddress
727             && "A binary operator creating a block address?");
728     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
729       PredValueInfoTy LHSVals;
730       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
731                                       WantInteger, CxtI);
732 
733       // Try to use constant folding to simplify the binary operator.
734       for (const auto &LHSVal : LHSVals) {
735         Constant *V = LHSVal.first;
736         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
737 
738         if (Constant *KC = getKnownConstant(Folded, WantInteger))
739           Result.push_back(std::make_pair(KC, LHSVal.second));
740       }
741     }
742 
743     return !Result.empty();
744   }
745 
746   // Handle compare with phi operand, where the PHI is defined in this block.
747   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
748     assert(Preference == WantInteger && "Compares only produce integers");
749     Type *CmpType = Cmp->getType();
750     Value *CmpLHS = Cmp->getOperand(0);
751     Value *CmpRHS = Cmp->getOperand(1);
752     CmpInst::Predicate Pred = Cmp->getPredicate();
753 
754     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
755     if (!PN)
756       PN = dyn_cast<PHINode>(CmpRHS);
757     if (PN && PN->getParent() == BB) {
758       const DataLayout &DL = PN->getModule()->getDataLayout();
759       // We can do this simplification if any comparisons fold to true or false.
760       // See if any do.
761       if (DDT->pending())
762         LVI->disableDT();
763       else
764         LVI->enableDT();
765       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
766         BasicBlock *PredBB = PN->getIncomingBlock(i);
767         Value *LHS, *RHS;
768         if (PN == CmpLHS) {
769           LHS = PN->getIncomingValue(i);
770           RHS = CmpRHS->DoPHITranslation(BB, PredBB);
771         } else {
772           LHS = CmpLHS->DoPHITranslation(BB, PredBB);
773           RHS = PN->getIncomingValue(i);
774         }
775         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
776         if (!Res) {
777           if (!isa<Constant>(RHS))
778             continue;
779 
780           // getPredicateOnEdge call will make no sense if LHS is defined in BB.
781           auto LHSInst = dyn_cast<Instruction>(LHS);
782           if (LHSInst && LHSInst->getParent() == BB)
783             continue;
784 
785           LazyValueInfo::Tristate
786             ResT = LVI->getPredicateOnEdge(Pred, LHS,
787                                            cast<Constant>(RHS), PredBB, BB,
788                                            CxtI ? CxtI : Cmp);
789           if (ResT == LazyValueInfo::Unknown)
790             continue;
791           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
792         }
793 
794         if (Constant *KC = getKnownConstant(Res, WantInteger))
795           Result.push_back(std::make_pair(KC, PredBB));
796       }
797 
798       return !Result.empty();
799     }
800 
801     // If comparing a live-in value against a constant, see if we know the
802     // live-in value on any predecessors.
803     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
804       Constant *CmpConst = cast<Constant>(CmpRHS);
805 
806       if (!isa<Instruction>(CmpLHS) ||
807           cast<Instruction>(CmpLHS)->getParent() != BB) {
808         if (DDT->pending())
809           LVI->disableDT();
810         else
811           LVI->enableDT();
812         for (BasicBlock *P : predecessors(BB)) {
813           // If the value is known by LazyValueInfo to be a constant in a
814           // predecessor, use that information to try to thread this block.
815           LazyValueInfo::Tristate Res =
816             LVI->getPredicateOnEdge(Pred, CmpLHS,
817                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
818           if (Res == LazyValueInfo::Unknown)
819             continue;
820 
821           Constant *ResC = ConstantInt::get(CmpType, Res);
822           Result.push_back(std::make_pair(ResC, P));
823         }
824 
825         return !Result.empty();
826       }
827 
828       // InstCombine can fold some forms of constant range checks into
829       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
830       // x as a live-in.
831       {
832         using namespace PatternMatch;
833 
834         Value *AddLHS;
835         ConstantInt *AddConst;
836         if (isa<ConstantInt>(CmpConst) &&
837             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
838           if (!isa<Instruction>(AddLHS) ||
839               cast<Instruction>(AddLHS)->getParent() != BB) {
840             if (DDT->pending())
841               LVI->disableDT();
842             else
843               LVI->enableDT();
844             for (BasicBlock *P : predecessors(BB)) {
845               // If the value is known by LazyValueInfo to be a ConstantRange in
846               // a predecessor, use that information to try to thread this
847               // block.
848               ConstantRange CR = LVI->getConstantRangeOnEdge(
849                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
850               // Propagate the range through the addition.
851               CR = CR.add(AddConst->getValue());
852 
853               // Get the range where the compare returns true.
854               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
855                   Pred, cast<ConstantInt>(CmpConst)->getValue());
856 
857               Constant *ResC;
858               if (CmpRange.contains(CR))
859                 ResC = ConstantInt::getTrue(CmpType);
860               else if (CmpRange.inverse().contains(CR))
861                 ResC = ConstantInt::getFalse(CmpType);
862               else
863                 continue;
864 
865               Result.push_back(std::make_pair(ResC, P));
866             }
867 
868             return !Result.empty();
869           }
870         }
871       }
872 
873       // Try to find a constant value for the LHS of a comparison,
874       // and evaluate it statically if we can.
875       PredValueInfoTy LHSVals;
876       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
877                                       WantInteger, CxtI);
878 
879       for (const auto &LHSVal : LHSVals) {
880         Constant *V = LHSVal.first;
881         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
882         if (Constant *KC = getKnownConstant(Folded, WantInteger))
883           Result.push_back(std::make_pair(KC, LHSVal.second));
884       }
885 
886       return !Result.empty();
887     }
888   }
889 
890   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
891     // Handle select instructions where at least one operand is a known constant
892     // and we can figure out the condition value for any predecessor block.
893     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
894     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
895     PredValueInfoTy Conds;
896     if ((TrueVal || FalseVal) &&
897         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
898                                         WantInteger, CxtI)) {
899       for (auto &C : Conds) {
900         Constant *Cond = C.first;
901 
902         // Figure out what value to use for the condition.
903         bool KnownCond;
904         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
905           // A known boolean.
906           KnownCond = CI->isOne();
907         } else {
908           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
909           // Either operand will do, so be sure to pick the one that's a known
910           // constant.
911           // FIXME: Do this more cleverly if both values are known constants?
912           KnownCond = (TrueVal != nullptr);
913         }
914 
915         // See if the select has a known constant value for this predecessor.
916         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
917           Result.push_back(std::make_pair(Val, C.second));
918       }
919 
920       return !Result.empty();
921     }
922   }
923 
924   // If all else fails, see if LVI can figure out a constant value for us.
925   if (DDT->pending())
926     LVI->disableDT();
927   else
928     LVI->enableDT();
929   Constant *CI = LVI->getConstant(V, BB, CxtI);
930   if (Constant *KC = getKnownConstant(CI, Preference)) {
931     for (BasicBlock *Pred : predecessors(BB))
932       Result.push_back(std::make_pair(KC, Pred));
933   }
934 
935   return !Result.empty();
936 }
937 
938 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
939 /// in an undefined jump, decide which block is best to revector to.
940 ///
941 /// Since we can pick an arbitrary destination, we pick the successor with the
942 /// fewest predecessors.  This should reduce the in-degree of the others.
943 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
944   TerminatorInst *BBTerm = BB->getTerminator();
945   unsigned MinSucc = 0;
946   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
947   // Compute the successor with the minimum number of predecessors.
948   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
949   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
950     TestBB = BBTerm->getSuccessor(i);
951     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
952     if (NumPreds < MinNumPreds) {
953       MinSucc = i;
954       MinNumPreds = NumPreds;
955     }
956   }
957 
958   return MinSucc;
959 }
960 
961 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
962   if (!BB->hasAddressTaken()) return false;
963 
964   // If the block has its address taken, it may be a tree of dead constants
965   // hanging off of it.  These shouldn't keep the block alive.
966   BlockAddress *BA = BlockAddress::get(BB);
967   BA->removeDeadConstantUsers();
968   return !BA->use_empty();
969 }
970 
971 /// ProcessBlock - If there are any predecessors whose control can be threaded
972 /// through to a successor, transform them now.
973 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
974   // If the block is trivially dead, just return and let the caller nuke it.
975   // This simplifies other transformations.
976   if (DDT->pendingDeletedBB(BB) ||
977       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
978     return false;
979 
980   // If this block has a single predecessor, and if that pred has a single
981   // successor, merge the blocks.  This encourages recursive jump threading
982   // because now the condition in this block can be threaded through
983   // predecessors of our predecessor block.
984   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
985     const TerminatorInst *TI = SinglePred->getTerminator();
986     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
987         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
988       // If SinglePred was a loop header, BB becomes one.
989       if (LoopHeaders.erase(SinglePred))
990         LoopHeaders.insert(BB);
991 
992       LVI->eraseBlock(SinglePred);
993       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
994 
995       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
996       // BB code within one basic block `BB`), we need to invalidate the LVI
997       // information associated with BB, because the LVI information need not be
998       // true for all of BB after the merge. For example,
999       // Before the merge, LVI info and code is as follows:
1000       // SinglePred: <LVI info1 for %p val>
1001       // %y = use of %p
1002       // call @exit() // need not transfer execution to successor.
1003       // assume(%p) // from this point on %p is true
1004       // br label %BB
1005       // BB: <LVI info2 for %p val, i.e. %p is true>
1006       // %x = use of %p
1007       // br label exit
1008       //
1009       // Note that this LVI info for blocks BB and SinglPred is correct for %p
1010       // (info2 and info1 respectively). After the merge and the deletion of the
1011       // LVI info1 for SinglePred. We have the following code:
1012       // BB: <LVI info2 for %p val>
1013       // %y = use of %p
1014       // call @exit()
1015       // assume(%p)
1016       // %x = use of %p <-- LVI info2 is correct from here onwards.
1017       // br label exit
1018       // LVI info2 for BB is incorrect at the beginning of BB.
1019 
1020       // Invalidate LVI information for BB if the LVI is not provably true for
1021       // all of BB.
1022       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1023         LVI->eraseBlock(BB);
1024       return true;
1025     }
1026   }
1027 
1028   if (TryToUnfoldSelectInCurrBB(BB))
1029     return true;
1030 
1031   // Look if we can propagate guards to predecessors.
1032   if (HasGuards && ProcessGuards(BB))
1033     return true;
1034 
1035   // What kind of constant we're looking for.
1036   ConstantPreference Preference = WantInteger;
1037 
1038   // Look to see if the terminator is a conditional branch, switch or indirect
1039   // branch, if not we can't thread it.
1040   Value *Condition;
1041   Instruction *Terminator = BB->getTerminator();
1042   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1043     // Can't thread an unconditional jump.
1044     if (BI->isUnconditional()) return false;
1045     Condition = BI->getCondition();
1046   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1047     Condition = SI->getCondition();
1048   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1049     // Can't thread indirect branch with no successors.
1050     if (IB->getNumSuccessors() == 0) return false;
1051     Condition = IB->getAddress()->stripPointerCasts();
1052     Preference = WantBlockAddress;
1053   } else {
1054     return false; // Must be an invoke.
1055   }
1056 
1057   // Run constant folding to see if we can reduce the condition to a simple
1058   // constant.
1059   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1060     Value *SimpleVal =
1061         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1062     if (SimpleVal) {
1063       I->replaceAllUsesWith(SimpleVal);
1064       if (isInstructionTriviallyDead(I, TLI))
1065         I->eraseFromParent();
1066       Condition = SimpleVal;
1067     }
1068   }
1069 
1070   // If the terminator is branching on an undef, we can pick any of the
1071   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1072   if (isa<UndefValue>(Condition)) {
1073     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1074     std::vector<DominatorTree::UpdateType> Updates;
1075 
1076     // Fold the branch/switch.
1077     TerminatorInst *BBTerm = BB->getTerminator();
1078     Updates.reserve(BBTerm->getNumSuccessors());
1079     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1080       if (i == BestSucc) continue;
1081       BasicBlock *Succ = BBTerm->getSuccessor(i);
1082       Succ->removePredecessor(BB, true);
1083       Updates.push_back({DominatorTree::Delete, BB, Succ});
1084     }
1085 
1086     DEBUG(dbgs() << "  In block '" << BB->getName()
1087           << "' folding undef terminator: " << *BBTerm << '\n');
1088     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1089     BBTerm->eraseFromParent();
1090     DDT->applyUpdates(Updates);
1091     return true;
1092   }
1093 
1094   // If the terminator of this block is branching on a constant, simplify the
1095   // terminator to an unconditional branch.  This can occur due to threading in
1096   // other blocks.
1097   if (getKnownConstant(Condition, Preference)) {
1098     DEBUG(dbgs() << "  In block '" << BB->getName()
1099           << "' folding terminator: " << *BB->getTerminator() << '\n');
1100     ++NumFolds;
1101     ConstantFoldTerminator(BB, true, nullptr, DDT);
1102     return true;
1103   }
1104 
1105   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1106 
1107   // All the rest of our checks depend on the condition being an instruction.
1108   if (!CondInst) {
1109     // FIXME: Unify this with code below.
1110     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1111       return true;
1112     return false;
1113   }
1114 
1115   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1116     // If we're branching on a conditional, LVI might be able to determine
1117     // it's value at the branch instruction.  We only handle comparisons
1118     // against a constant at this time.
1119     // TODO: This should be extended to handle switches as well.
1120     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1121     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1122     if (CondBr && CondConst) {
1123       // We should have returned as soon as we turn a conditional branch to
1124       // unconditional. Because its no longer interesting as far as jump
1125       // threading is concerned.
1126       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1127 
1128       if (DDT->pending())
1129         LVI->disableDT();
1130       else
1131         LVI->enableDT();
1132       LazyValueInfo::Tristate Ret =
1133         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1134                             CondConst, CondBr);
1135       if (Ret != LazyValueInfo::Unknown) {
1136         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1137         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1138         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1139         ToRemoveSucc->removePredecessor(BB, true);
1140         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1141         CondBr->eraseFromParent();
1142         if (CondCmp->use_empty())
1143           CondCmp->eraseFromParent();
1144         // We can safely replace *some* uses of the CondInst if it has
1145         // exactly one value as returned by LVI. RAUW is incorrect in the
1146         // presence of guards and assumes, that have the `Cond` as the use. This
1147         // is because we use the guards/assume to reason about the `Cond` value
1148         // at the end of block, but RAUW unconditionally replaces all uses
1149         // including the guards/assumes themselves and the uses before the
1150         // guard/assume.
1151         else if (CondCmp->getParent() == BB) {
1152           auto *CI = Ret == LazyValueInfo::True ?
1153             ConstantInt::getTrue(CondCmp->getType()) :
1154             ConstantInt::getFalse(CondCmp->getType());
1155           ReplaceFoldableUses(CondCmp, CI);
1156         }
1157         DDT->deleteEdge(BB, ToRemoveSucc);
1158         return true;
1159       }
1160 
1161       // We did not manage to simplify this branch, try to see whether
1162       // CondCmp depends on a known phi-select pattern.
1163       if (TryToUnfoldSelect(CondCmp, BB))
1164         return true;
1165     }
1166   }
1167 
1168   // Check for some cases that are worth simplifying.  Right now we want to look
1169   // for loads that are used by a switch or by the condition for the branch.  If
1170   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1171   // which can then be used to thread the values.
1172   Value *SimplifyValue = CondInst;
1173   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1174     if (isa<Constant>(CondCmp->getOperand(1)))
1175       SimplifyValue = CondCmp->getOperand(0);
1176 
1177   // TODO: There are other places where load PRE would be profitable, such as
1178   // more complex comparisons.
1179   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1180     if (SimplifyPartiallyRedundantLoad(LoadI))
1181       return true;
1182 
1183   // Before threading, try to propagate profile data backwards:
1184   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1185     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1186       updatePredecessorProfileMetadata(PN, BB);
1187 
1188   // Handle a variety of cases where we are branching on something derived from
1189   // a PHI node in the current block.  If we can prove that any predecessors
1190   // compute a predictable value based on a PHI node, thread those predecessors.
1191   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1192     return true;
1193 
1194   // If this is an otherwise-unfoldable branch on a phi node in the current
1195   // block, see if we can simplify.
1196   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1197     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1198       return ProcessBranchOnPHI(PN);
1199 
1200   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1201   if (CondInst->getOpcode() == Instruction::Xor &&
1202       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1203     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1204 
1205   // Search for a stronger dominating condition that can be used to simplify a
1206   // conditional branch leaving BB.
1207   if (ProcessImpliedCondition(BB))
1208     return true;
1209 
1210   return false;
1211 }
1212 
1213 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1214   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1215   if (!BI || !BI->isConditional())
1216     return false;
1217 
1218   Value *Cond = BI->getCondition();
1219   BasicBlock *CurrentBB = BB;
1220   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1221   unsigned Iter = 0;
1222 
1223   auto &DL = BB->getModule()->getDataLayout();
1224 
1225   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1226     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1227     if (!PBI || !PBI->isConditional())
1228       return false;
1229     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1230       return false;
1231 
1232     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1233     Optional<bool> Implication =
1234         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1235     if (Implication) {
1236       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1237       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1238       RemoveSucc->removePredecessor(BB);
1239       BranchInst::Create(KeepSucc, BI);
1240       BI->eraseFromParent();
1241       DDT->deleteEdge(BB, RemoveSucc);
1242       return true;
1243     }
1244     CurrentBB = CurrentPred;
1245     CurrentPred = CurrentBB->getSinglePredecessor();
1246   }
1247 
1248   return false;
1249 }
1250 
1251 /// Return true if Op is an instruction defined in the given block.
1252 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1253   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1254     if (OpInst->getParent() == BB)
1255       return true;
1256   return false;
1257 }
1258 
1259 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1260 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1261 /// This is an important optimization that encourages jump threading, and needs
1262 /// to be run interlaced with other jump threading tasks.
1263 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1264   // Don't hack volatile and ordered loads.
1265   if (!LoadI->isUnordered()) return false;
1266 
1267   // If the load is defined in a block with exactly one predecessor, it can't be
1268   // partially redundant.
1269   BasicBlock *LoadBB = LoadI->getParent();
1270   if (LoadBB->getSinglePredecessor())
1271     return false;
1272 
1273   // If the load is defined in an EH pad, it can't be partially redundant,
1274   // because the edges between the invoke and the EH pad cannot have other
1275   // instructions between them.
1276   if (LoadBB->isEHPad())
1277     return false;
1278 
1279   Value *LoadedPtr = LoadI->getOperand(0);
1280 
1281   // If the loaded operand is defined in the LoadBB and its not a phi,
1282   // it can't be available in predecessors.
1283   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1284     return false;
1285 
1286   // Scan a few instructions up from the load, to see if it is obviously live at
1287   // the entry to its block.
1288   BasicBlock::iterator BBIt(LoadI);
1289   bool IsLoadCSE;
1290   if (Value *AvailableVal = FindAvailableLoadedValue(
1291           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1292     // If the value of the load is locally available within the block, just use
1293     // it.  This frequently occurs for reg2mem'd allocas.
1294 
1295     if (IsLoadCSE) {
1296       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1297       combineMetadataForCSE(NLoadI, LoadI);
1298     };
1299 
1300     // If the returned value is the load itself, replace with an undef. This can
1301     // only happen in dead loops.
1302     if (AvailableVal == LoadI)
1303       AvailableVal = UndefValue::get(LoadI->getType());
1304     if (AvailableVal->getType() != LoadI->getType())
1305       AvailableVal = CastInst::CreateBitOrPointerCast(
1306           AvailableVal, LoadI->getType(), "", LoadI);
1307     LoadI->replaceAllUsesWith(AvailableVal);
1308     LoadI->eraseFromParent();
1309     return true;
1310   }
1311 
1312   // Otherwise, if we scanned the whole block and got to the top of the block,
1313   // we know the block is locally transparent to the load.  If not, something
1314   // might clobber its value.
1315   if (BBIt != LoadBB->begin())
1316     return false;
1317 
1318   // If all of the loads and stores that feed the value have the same AA tags,
1319   // then we can propagate them onto any newly inserted loads.
1320   AAMDNodes AATags;
1321   LoadI->getAAMetadata(AATags);
1322 
1323   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1324 
1325   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1326 
1327   AvailablePredsTy AvailablePreds;
1328   BasicBlock *OneUnavailablePred = nullptr;
1329   SmallVector<LoadInst*, 8> CSELoads;
1330 
1331   // If we got here, the loaded value is transparent through to the start of the
1332   // block.  Check to see if it is available in any of the predecessor blocks.
1333   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1334     // If we already scanned this predecessor, skip it.
1335     if (!PredsScanned.insert(PredBB).second)
1336       continue;
1337 
1338     BBIt = PredBB->end();
1339     unsigned NumScanedInst = 0;
1340     Value *PredAvailable = nullptr;
1341     // NOTE: We don't CSE load that is volatile or anything stronger than
1342     // unordered, that should have been checked when we entered the function.
1343     assert(LoadI->isUnordered() &&
1344            "Attempting to CSE volatile or atomic loads");
1345     // If this is a load on a phi pointer, phi-translate it and search
1346     // for available load/store to the pointer in predecessors.
1347     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1348     PredAvailable = FindAvailablePtrLoadStore(
1349         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1350         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1351 
1352     // If PredBB has a single predecessor, continue scanning through the
1353     // single precessor.
1354     BasicBlock *SinglePredBB = PredBB;
1355     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1356            NumScanedInst < DefMaxInstsToScan) {
1357       SinglePredBB = SinglePredBB->getSinglePredecessor();
1358       if (SinglePredBB) {
1359         BBIt = SinglePredBB->end();
1360         PredAvailable = FindAvailablePtrLoadStore(
1361             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1362             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1363             &NumScanedInst);
1364       }
1365     }
1366 
1367     if (!PredAvailable) {
1368       OneUnavailablePred = PredBB;
1369       continue;
1370     }
1371 
1372     if (IsLoadCSE)
1373       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1374 
1375     // If so, this load is partially redundant.  Remember this info so that we
1376     // can create a PHI node.
1377     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1378   }
1379 
1380   // If the loaded value isn't available in any predecessor, it isn't partially
1381   // redundant.
1382   if (AvailablePreds.empty()) return false;
1383 
1384   // Okay, the loaded value is available in at least one (and maybe all!)
1385   // predecessors.  If the value is unavailable in more than one unique
1386   // predecessor, we want to insert a merge block for those common predecessors.
1387   // This ensures that we only have to insert one reload, thus not increasing
1388   // code size.
1389   BasicBlock *UnavailablePred = nullptr;
1390 
1391   // If the value is unavailable in one of predecessors, we will end up
1392   // inserting a new instruction into them. It is only valid if all the
1393   // instructions before LoadI are guaranteed to pass execution to its
1394   // successor, or if LoadI is safe to speculate.
1395   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1396   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1397   // It requires domination tree analysis, so for this simple case it is an
1398   // overkill.
1399   if (PredsScanned.size() != AvailablePreds.size() &&
1400       !isSafeToSpeculativelyExecute(LoadI))
1401     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1402       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1403         return false;
1404 
1405   // If there is exactly one predecessor where the value is unavailable, the
1406   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1407   // unconditional branch, we know that it isn't a critical edge.
1408   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1409       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1410     UnavailablePred = OneUnavailablePred;
1411   } else if (PredsScanned.size() != AvailablePreds.size()) {
1412     // Otherwise, we had multiple unavailable predecessors or we had a critical
1413     // edge from the one.
1414     SmallVector<BasicBlock*, 8> PredsToSplit;
1415     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1416 
1417     for (const auto &AvailablePred : AvailablePreds)
1418       AvailablePredSet.insert(AvailablePred.first);
1419 
1420     // Add all the unavailable predecessors to the PredsToSplit list.
1421     for (BasicBlock *P : predecessors(LoadBB)) {
1422       // If the predecessor is an indirect goto, we can't split the edge.
1423       if (isa<IndirectBrInst>(P->getTerminator()))
1424         return false;
1425 
1426       if (!AvailablePredSet.count(P))
1427         PredsToSplit.push_back(P);
1428     }
1429 
1430     // Split them out to their own block.
1431     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1432   }
1433 
1434   // If the value isn't available in all predecessors, then there will be
1435   // exactly one where it isn't available.  Insert a load on that edge and add
1436   // it to the AvailablePreds list.
1437   if (UnavailablePred) {
1438     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1439            "Can't handle critical edge here!");
1440     LoadInst *NewVal =
1441         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1442                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1443                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1444                      UnavailablePred->getTerminator());
1445     NewVal->setDebugLoc(LoadI->getDebugLoc());
1446     if (AATags)
1447       NewVal->setAAMetadata(AATags);
1448 
1449     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1450   }
1451 
1452   // Now we know that each predecessor of this block has a value in
1453   // AvailablePreds, sort them for efficient access as we're walking the preds.
1454   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1455 
1456   // Create a PHI node at the start of the block for the PRE'd load value.
1457   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1458   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1459                                 &LoadBB->front());
1460   PN->takeName(LoadI);
1461   PN->setDebugLoc(LoadI->getDebugLoc());
1462 
1463   // Insert new entries into the PHI for each predecessor.  A single block may
1464   // have multiple entries here.
1465   for (pred_iterator PI = PB; PI != PE; ++PI) {
1466     BasicBlock *P = *PI;
1467     AvailablePredsTy::iterator I =
1468       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1469                        std::make_pair(P, (Value*)nullptr));
1470 
1471     assert(I != AvailablePreds.end() && I->first == P &&
1472            "Didn't find entry for predecessor!");
1473 
1474     // If we have an available predecessor but it requires casting, insert the
1475     // cast in the predecessor and use the cast. Note that we have to update the
1476     // AvailablePreds vector as we go so that all of the PHI entries for this
1477     // predecessor use the same bitcast.
1478     Value *&PredV = I->second;
1479     if (PredV->getType() != LoadI->getType())
1480       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1481                                                P->getTerminator());
1482 
1483     PN->addIncoming(PredV, I->first);
1484   }
1485 
1486   for (LoadInst *PredLoadI : CSELoads) {
1487     combineMetadataForCSE(PredLoadI, LoadI);
1488   }
1489 
1490   LoadI->replaceAllUsesWith(PN);
1491   LoadI->eraseFromParent();
1492 
1493   return true;
1494 }
1495 
1496 /// FindMostPopularDest - The specified list contains multiple possible
1497 /// threadable destinations.  Pick the one that occurs the most frequently in
1498 /// the list.
1499 static BasicBlock *
1500 FindMostPopularDest(BasicBlock *BB,
1501                     const SmallVectorImpl<std::pair<BasicBlock *,
1502                                           BasicBlock *>> &PredToDestList) {
1503   assert(!PredToDestList.empty());
1504 
1505   // Determine popularity.  If there are multiple possible destinations, we
1506   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1507   // blocks with known and real destinations to threading undef.  We'll handle
1508   // them later if interesting.
1509   DenseMap<BasicBlock*, unsigned> DestPopularity;
1510   for (const auto &PredToDest : PredToDestList)
1511     if (PredToDest.second)
1512       DestPopularity[PredToDest.second]++;
1513 
1514   if (DestPopularity.empty())
1515     return nullptr;
1516 
1517   // Find the most popular dest.
1518   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1519   BasicBlock *MostPopularDest = DPI->first;
1520   unsigned Popularity = DPI->second;
1521   SmallVector<BasicBlock*, 4> SamePopularity;
1522 
1523   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1524     // If the popularity of this entry isn't higher than the popularity we've
1525     // seen so far, ignore it.
1526     if (DPI->second < Popularity)
1527       ; // ignore.
1528     else if (DPI->second == Popularity) {
1529       // If it is the same as what we've seen so far, keep track of it.
1530       SamePopularity.push_back(DPI->first);
1531     } else {
1532       // If it is more popular, remember it.
1533       SamePopularity.clear();
1534       MostPopularDest = DPI->first;
1535       Popularity = DPI->second;
1536     }
1537   }
1538 
1539   // Okay, now we know the most popular destination.  If there is more than one
1540   // destination, we need to determine one.  This is arbitrary, but we need
1541   // to make a deterministic decision.  Pick the first one that appears in the
1542   // successor list.
1543   if (!SamePopularity.empty()) {
1544     SamePopularity.push_back(MostPopularDest);
1545     TerminatorInst *TI = BB->getTerminator();
1546     for (unsigned i = 0; ; ++i) {
1547       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1548 
1549       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1550         continue;
1551 
1552       MostPopularDest = TI->getSuccessor(i);
1553       break;
1554     }
1555   }
1556 
1557   // Okay, we have finally picked the most popular destination.
1558   return MostPopularDest;
1559 }
1560 
1561 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1562                                                ConstantPreference Preference,
1563                                                Instruction *CxtI) {
1564   // If threading this would thread across a loop header, don't even try to
1565   // thread the edge.
1566   if (LoopHeaders.count(BB))
1567     return false;
1568 
1569   PredValueInfoTy PredValues;
1570   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1571     return false;
1572 
1573   assert(!PredValues.empty() &&
1574          "ComputeValueKnownInPredecessors returned true with no values");
1575 
1576   DEBUG(dbgs() << "IN BB: " << *BB;
1577         for (const auto &PredValue : PredValues) {
1578           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1579             << *PredValue.first
1580             << " for pred '" << PredValue.second->getName() << "'.\n";
1581         });
1582 
1583   // Decide what we want to thread through.  Convert our list of known values to
1584   // a list of known destinations for each pred.  This also discards duplicate
1585   // predecessors and keeps track of the undefined inputs (which are represented
1586   // as a null dest in the PredToDestList).
1587   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1588   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1589 
1590   BasicBlock *OnlyDest = nullptr;
1591   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1592   Constant *OnlyVal = nullptr;
1593   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1594 
1595   unsigned PredWithKnownDest = 0;
1596   for (const auto &PredValue : PredValues) {
1597     BasicBlock *Pred = PredValue.second;
1598     if (!SeenPreds.insert(Pred).second)
1599       continue;  // Duplicate predecessor entry.
1600 
1601     Constant *Val = PredValue.first;
1602 
1603     BasicBlock *DestBB;
1604     if (isa<UndefValue>(Val))
1605       DestBB = nullptr;
1606     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1607       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1608       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1609     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1610       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1611       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1612     } else {
1613       assert(isa<IndirectBrInst>(BB->getTerminator())
1614               && "Unexpected terminator");
1615       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1616       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1617     }
1618 
1619     // If we have exactly one destination, remember it for efficiency below.
1620     if (PredToDestList.empty()) {
1621       OnlyDest = DestBB;
1622       OnlyVal = Val;
1623     } else {
1624       if (OnlyDest != DestBB)
1625         OnlyDest = MultipleDestSentinel;
1626       // It possible we have same destination, but different value, e.g. default
1627       // case in switchinst.
1628       if (Val != OnlyVal)
1629         OnlyVal = MultipleVal;
1630     }
1631 
1632     // We know where this predecessor is going.
1633     ++PredWithKnownDest;
1634 
1635     // If the predecessor ends with an indirect goto, we can't change its
1636     // destination.
1637     if (isa<IndirectBrInst>(Pred->getTerminator()))
1638       continue;
1639 
1640     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1641   }
1642 
1643   // If all edges were unthreadable, we fail.
1644   if (PredToDestList.empty())
1645     return false;
1646 
1647   // If all the predecessors go to a single known successor, we want to fold,
1648   // not thread. By doing so, we do not need to duplicate the current block and
1649   // also miss potential opportunities in case we dont/cant duplicate.
1650   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1651     if (PredWithKnownDest ==
1652         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1653       bool SeenFirstBranchToOnlyDest = false;
1654       std::vector <DominatorTree::UpdateType> Updates;
1655       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1656       for (BasicBlock *SuccBB : successors(BB)) {
1657         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1658           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1659         } else {
1660           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1661           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1662         }
1663       }
1664 
1665       // Finally update the terminator.
1666       TerminatorInst *Term = BB->getTerminator();
1667       BranchInst::Create(OnlyDest, Term);
1668       Term->eraseFromParent();
1669       DDT->applyUpdates(Updates);
1670 
1671       // If the condition is now dead due to the removal of the old terminator,
1672       // erase it.
1673       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1674         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1675           CondInst->eraseFromParent();
1676         // We can safely replace *some* uses of the CondInst if it has
1677         // exactly one value as returned by LVI. RAUW is incorrect in the
1678         // presence of guards and assumes, that have the `Cond` as the use. This
1679         // is because we use the guards/assume to reason about the `Cond` value
1680         // at the end of block, but RAUW unconditionally replaces all uses
1681         // including the guards/assumes themselves and the uses before the
1682         // guard/assume.
1683         else if (OnlyVal && OnlyVal != MultipleVal &&
1684                  CondInst->getParent() == BB)
1685           ReplaceFoldableUses(CondInst, OnlyVal);
1686       }
1687       return true;
1688     }
1689   }
1690 
1691   // Determine which is the most common successor.  If we have many inputs and
1692   // this block is a switch, we want to start by threading the batch that goes
1693   // to the most popular destination first.  If we only know about one
1694   // threadable destination (the common case) we can avoid this.
1695   BasicBlock *MostPopularDest = OnlyDest;
1696 
1697   if (MostPopularDest == MultipleDestSentinel) {
1698     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1699     // won't process them, but we might have other destination that are eligible
1700     // and we still want to process.
1701     erase_if(PredToDestList,
1702              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1703                return LoopHeaders.count(PredToDest.second) != 0;
1704              });
1705 
1706     if (PredToDestList.empty())
1707       return false;
1708 
1709     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1710   }
1711 
1712   // Now that we know what the most popular destination is, factor all
1713   // predecessors that will jump to it into a single predecessor.
1714   SmallVector<BasicBlock*, 16> PredsToFactor;
1715   for (const auto &PredToDest : PredToDestList)
1716     if (PredToDest.second == MostPopularDest) {
1717       BasicBlock *Pred = PredToDest.first;
1718 
1719       // This predecessor may be a switch or something else that has multiple
1720       // edges to the block.  Factor each of these edges by listing them
1721       // according to # occurrences in PredsToFactor.
1722       for (BasicBlock *Succ : successors(Pred))
1723         if (Succ == BB)
1724           PredsToFactor.push_back(Pred);
1725     }
1726 
1727   // If the threadable edges are branching on an undefined value, we get to pick
1728   // the destination that these predecessors should get to.
1729   if (!MostPopularDest)
1730     MostPopularDest = BB->getTerminator()->
1731                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1732 
1733   // Ok, try to thread it!
1734   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1735 }
1736 
1737 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1738 /// a PHI node in the current block.  See if there are any simplifications we
1739 /// can do based on inputs to the phi node.
1740 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1741   BasicBlock *BB = PN->getParent();
1742 
1743   // TODO: We could make use of this to do it once for blocks with common PHI
1744   // values.
1745   SmallVector<BasicBlock*, 1> PredBBs;
1746   PredBBs.resize(1);
1747 
1748   // If any of the predecessor blocks end in an unconditional branch, we can
1749   // *duplicate* the conditional branch into that block in order to further
1750   // encourage jump threading and to eliminate cases where we have branch on a
1751   // phi of an icmp (branch on icmp is much better).
1752   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1753     BasicBlock *PredBB = PN->getIncomingBlock(i);
1754     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1755       if (PredBr->isUnconditional()) {
1756         PredBBs[0] = PredBB;
1757         // Try to duplicate BB into PredBB.
1758         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1759           return true;
1760       }
1761   }
1762 
1763   return false;
1764 }
1765 
1766 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1767 /// a xor instruction in the current block.  See if there are any
1768 /// simplifications we can do based on inputs to the xor.
1769 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1770   BasicBlock *BB = BO->getParent();
1771 
1772   // If either the LHS or RHS of the xor is a constant, don't do this
1773   // optimization.
1774   if (isa<ConstantInt>(BO->getOperand(0)) ||
1775       isa<ConstantInt>(BO->getOperand(1)))
1776     return false;
1777 
1778   // If the first instruction in BB isn't a phi, we won't be able to infer
1779   // anything special about any particular predecessor.
1780   if (!isa<PHINode>(BB->front()))
1781     return false;
1782 
1783   // If this BB is a landing pad, we won't be able to split the edge into it.
1784   if (BB->isEHPad())
1785     return false;
1786 
1787   // If we have a xor as the branch input to this block, and we know that the
1788   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1789   // the condition into the predecessor and fix that value to true, saving some
1790   // logical ops on that path and encouraging other paths to simplify.
1791   //
1792   // This copies something like this:
1793   //
1794   //  BB:
1795   //    %X = phi i1 [1],  [%X']
1796   //    %Y = icmp eq i32 %A, %B
1797   //    %Z = xor i1 %X, %Y
1798   //    br i1 %Z, ...
1799   //
1800   // Into:
1801   //  BB':
1802   //    %Y = icmp ne i32 %A, %B
1803   //    br i1 %Y, ...
1804 
1805   PredValueInfoTy XorOpValues;
1806   bool isLHS = true;
1807   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1808                                        WantInteger, BO)) {
1809     assert(XorOpValues.empty());
1810     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1811                                          WantInteger, BO))
1812       return false;
1813     isLHS = false;
1814   }
1815 
1816   assert(!XorOpValues.empty() &&
1817          "ComputeValueKnownInPredecessors returned true with no values");
1818 
1819   // Scan the information to see which is most popular: true or false.  The
1820   // predecessors can be of the set true, false, or undef.
1821   unsigned NumTrue = 0, NumFalse = 0;
1822   for (const auto &XorOpValue : XorOpValues) {
1823     if (isa<UndefValue>(XorOpValue.first))
1824       // Ignore undefs for the count.
1825       continue;
1826     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1827       ++NumFalse;
1828     else
1829       ++NumTrue;
1830   }
1831 
1832   // Determine which value to split on, true, false, or undef if neither.
1833   ConstantInt *SplitVal = nullptr;
1834   if (NumTrue > NumFalse)
1835     SplitVal = ConstantInt::getTrue(BB->getContext());
1836   else if (NumTrue != 0 || NumFalse != 0)
1837     SplitVal = ConstantInt::getFalse(BB->getContext());
1838 
1839   // Collect all of the blocks that this can be folded into so that we can
1840   // factor this once and clone it once.
1841   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1842   for (const auto &XorOpValue : XorOpValues) {
1843     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1844       continue;
1845 
1846     BlocksToFoldInto.push_back(XorOpValue.second);
1847   }
1848 
1849   // If we inferred a value for all of the predecessors, then duplication won't
1850   // help us.  However, we can just replace the LHS or RHS with the constant.
1851   if (BlocksToFoldInto.size() ==
1852       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1853     if (!SplitVal) {
1854       // If all preds provide undef, just nuke the xor, because it is undef too.
1855       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1856       BO->eraseFromParent();
1857     } else if (SplitVal->isZero()) {
1858       // If all preds provide 0, replace the xor with the other input.
1859       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1860       BO->eraseFromParent();
1861     } else {
1862       // If all preds provide 1, set the computed value to 1.
1863       BO->setOperand(!isLHS, SplitVal);
1864     }
1865 
1866     return true;
1867   }
1868 
1869   // Try to duplicate BB into PredBB.
1870   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1871 }
1872 
1873 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1874 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1875 /// NewPred using the entries from OldPred (suitably mapped).
1876 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1877                                             BasicBlock *OldPred,
1878                                             BasicBlock *NewPred,
1879                                      DenseMap<Instruction*, Value*> &ValueMap) {
1880   for (PHINode &PN : PHIBB->phis()) {
1881     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1882     // DestBlock.
1883     Value *IV = PN.getIncomingValueForBlock(OldPred);
1884 
1885     // Remap the value if necessary.
1886     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1887       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1888       if (I != ValueMap.end())
1889         IV = I->second;
1890     }
1891 
1892     PN.addIncoming(IV, NewPred);
1893   }
1894 }
1895 
1896 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1897 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1898 /// across BB.  Transform the IR to reflect this change.
1899 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1900                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1901                                    BasicBlock *SuccBB) {
1902   // If threading to the same block as we come from, we would infinite loop.
1903   if (SuccBB == BB) {
1904     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1905           << "' - would thread to self!\n");
1906     return false;
1907   }
1908 
1909   // If threading this would thread across a loop header, don't thread the edge.
1910   // See the comments above FindLoopHeaders for justifications and caveats.
1911   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1912     DEBUG({
1913       bool BBIsHeader = LoopHeaders.count(BB);
1914       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1915       dbgs() << "  Not threading across "
1916           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1917           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1918           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1919     });
1920     return false;
1921   }
1922 
1923   unsigned JumpThreadCost =
1924       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1925   if (JumpThreadCost > BBDupThreshold) {
1926     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1927           << "' - Cost is too high: " << JumpThreadCost << "\n");
1928     return false;
1929   }
1930 
1931   // And finally, do it!  Start by factoring the predecessors if needed.
1932   BasicBlock *PredBB;
1933   if (PredBBs.size() == 1)
1934     PredBB = PredBBs[0];
1935   else {
1936     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1937           << " common predecessors.\n");
1938     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1939   }
1940 
1941   // And finally, do it!
1942   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1943         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1944         << ", across block:\n    "
1945         << *BB << "\n");
1946 
1947   if (DDT->pending())
1948     LVI->disableDT();
1949   else
1950     LVI->enableDT();
1951   LVI->threadEdge(PredBB, BB, SuccBB);
1952 
1953   // We are going to have to map operands from the original BB block to the new
1954   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1955   // account for entry from PredBB.
1956   DenseMap<Instruction*, Value*> ValueMapping;
1957 
1958   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1959                                          BB->getName()+".thread",
1960                                          BB->getParent(), BB);
1961   NewBB->moveAfter(PredBB);
1962 
1963   // Set the block frequency of NewBB.
1964   if (HasProfileData) {
1965     auto NewBBFreq =
1966         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1967     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1968   }
1969 
1970   BasicBlock::iterator BI = BB->begin();
1971   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1972     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1973 
1974   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1975   // mapping and using it to remap operands in the cloned instructions.
1976   for (; !isa<TerminatorInst>(BI); ++BI) {
1977     Instruction *New = BI->clone();
1978     New->setName(BI->getName());
1979     NewBB->getInstList().push_back(New);
1980     ValueMapping[&*BI] = New;
1981 
1982     // Remap operands to patch up intra-block references.
1983     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1984       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1985         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1986         if (I != ValueMapping.end())
1987           New->setOperand(i, I->second);
1988       }
1989   }
1990 
1991   // We didn't copy the terminator from BB over to NewBB, because there is now
1992   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1993   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1994   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1995 
1996   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1997   // PHI nodes for NewBB now.
1998   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1999 
2000   // If there were values defined in BB that are used outside the block, then we
2001   // now have to update all uses of the value to use either the original value,
2002   // the cloned value, or some PHI derived value.  This can require arbitrary
2003   // PHI insertion, of which we are prepared to do, clean these up now.
2004   SSAUpdater SSAUpdate;
2005   SmallVector<Use*, 16> UsesToRename;
2006   for (Instruction &I : *BB) {
2007     // Scan all uses of this instruction to see if it is used outside of its
2008     // block, and if so, record them in UsesToRename.
2009     for (Use &U : I.uses()) {
2010       Instruction *User = cast<Instruction>(U.getUser());
2011       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2012         if (UserPN->getIncomingBlock(U) == BB)
2013           continue;
2014       } else if (User->getParent() == BB)
2015         continue;
2016 
2017       UsesToRename.push_back(&U);
2018     }
2019 
2020     // If there are no uses outside the block, we're done with this instruction.
2021     if (UsesToRename.empty())
2022       continue;
2023 
2024     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2025 
2026     // We found a use of I outside of BB.  Rename all uses of I that are outside
2027     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2028     // with the two values we know.
2029     SSAUpdate.Initialize(I.getType(), I.getName());
2030     SSAUpdate.AddAvailableValue(BB, &I);
2031     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
2032 
2033     while (!UsesToRename.empty())
2034       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2035     DEBUG(dbgs() << "\n");
2036   }
2037 
2038   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
2039   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
2040   // us to simplify any PHI nodes in BB.
2041   TerminatorInst *PredTerm = PredBB->getTerminator();
2042   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2043     if (PredTerm->getSuccessor(i) == BB) {
2044       BB->removePredecessor(PredBB, true);
2045       PredTerm->setSuccessor(i, NewBB);
2046     }
2047 
2048   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2049                      {DominatorTree::Insert, PredBB, NewBB},
2050                      {DominatorTree::Delete, PredBB, BB}});
2051 
2052   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2053   // over the new instructions and zap any that are constants or dead.  This
2054   // frequently happens because of phi translation.
2055   SimplifyInstructionsInBlock(NewBB, TLI);
2056 
2057   // Update the edge weight from BB to SuccBB, which should be less than before.
2058   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2059 
2060   // Threaded an edge!
2061   ++NumThreads;
2062   return true;
2063 }
2064 
2065 /// Create a new basic block that will be the predecessor of BB and successor of
2066 /// all blocks in Preds. When profile data is available, update the frequency of
2067 /// this new block.
2068 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2069                                                ArrayRef<BasicBlock *> Preds,
2070                                                const char *Suffix) {
2071   SmallVector<BasicBlock *, 2> NewBBs;
2072 
2073   // Collect the frequencies of all predecessors of BB, which will be used to
2074   // update the edge weight of the result of splitting predecessors.
2075   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2076   if (HasProfileData)
2077     for (auto Pred : Preds)
2078       FreqMap.insert(std::make_pair(
2079           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2080 
2081   // In the case when BB is a LandingPad block we create 2 new predecessors
2082   // instead of just one.
2083   if (BB->isLandingPad()) {
2084     std::string NewName = std::string(Suffix) + ".split-lp";
2085     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2086   } else {
2087     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2088   }
2089 
2090   std::vector<DominatorTree::UpdateType> Updates;
2091   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2092   for (auto NewBB : NewBBs) {
2093     BlockFrequency NewBBFreq(0);
2094     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2095     for (auto Pred : predecessors(NewBB)) {
2096       Updates.push_back({DominatorTree::Delete, Pred, BB});
2097       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2098       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2099         NewBBFreq += FreqMap.lookup(Pred);
2100     }
2101     if (HasProfileData) // Apply the summed frequency to NewBB.
2102       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2103   }
2104 
2105   DDT->applyUpdates(Updates);
2106   return NewBBs[0];
2107 }
2108 
2109 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2110   const TerminatorInst *TI = BB->getTerminator();
2111   assert(TI->getNumSuccessors() > 1 && "not a split");
2112 
2113   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2114   if (!WeightsNode)
2115     return false;
2116 
2117   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2118   if (MDName->getString() != "branch_weights")
2119     return false;
2120 
2121   // Ensure there are weights for all of the successors. Note that the first
2122   // operand to the metadata node is a name, not a weight.
2123   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2124 }
2125 
2126 /// Update the block frequency of BB and branch weight and the metadata on the
2127 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2128 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2129 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2130                                                      BasicBlock *BB,
2131                                                      BasicBlock *NewBB,
2132                                                      BasicBlock *SuccBB) {
2133   if (!HasProfileData)
2134     return;
2135 
2136   assert(BFI && BPI && "BFI & BPI should have been created here");
2137 
2138   // As the edge from PredBB to BB is deleted, we have to update the block
2139   // frequency of BB.
2140   auto BBOrigFreq = BFI->getBlockFreq(BB);
2141   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2142   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2143   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2144   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2145 
2146   // Collect updated outgoing edges' frequencies from BB and use them to update
2147   // edge probabilities.
2148   SmallVector<uint64_t, 4> BBSuccFreq;
2149   for (BasicBlock *Succ : successors(BB)) {
2150     auto SuccFreq = (Succ == SuccBB)
2151                         ? BB2SuccBBFreq - NewBBFreq
2152                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2153     BBSuccFreq.push_back(SuccFreq.getFrequency());
2154   }
2155 
2156   uint64_t MaxBBSuccFreq =
2157       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2158 
2159   SmallVector<BranchProbability, 4> BBSuccProbs;
2160   if (MaxBBSuccFreq == 0)
2161     BBSuccProbs.assign(BBSuccFreq.size(),
2162                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2163   else {
2164     for (uint64_t Freq : BBSuccFreq)
2165       BBSuccProbs.push_back(
2166           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2167     // Normalize edge probabilities so that they sum up to one.
2168     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2169                                               BBSuccProbs.end());
2170   }
2171 
2172   // Update edge probabilities in BPI.
2173   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2174     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2175 
2176   // Update the profile metadata as well.
2177   //
2178   // Don't do this if the profile of the transformed blocks was statically
2179   // estimated.  (This could occur despite the function having an entry
2180   // frequency in completely cold parts of the CFG.)
2181   //
2182   // In this case we don't want to suggest to subsequent passes that the
2183   // calculated weights are fully consistent.  Consider this graph:
2184   //
2185   //                 check_1
2186   //             50% /  |
2187   //             eq_1   | 50%
2188   //                 \  |
2189   //                 check_2
2190   //             50% /  |
2191   //             eq_2   | 50%
2192   //                 \  |
2193   //                 check_3
2194   //             50% /  |
2195   //             eq_3   | 50%
2196   //                 \  |
2197   //
2198   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2199   // the overall probabilities are inconsistent; the total probability that the
2200   // value is either 1, 2 or 3 is 150%.
2201   //
2202   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2203   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2204   // the loop exit edge.  Then based solely on static estimation we would assume
2205   // the loop was extremely hot.
2206   //
2207   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2208   // shouldn't make edges extremely likely or unlikely based solely on static
2209   // estimation.
2210   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2211     SmallVector<uint32_t, 4> Weights;
2212     for (auto Prob : BBSuccProbs)
2213       Weights.push_back(Prob.getNumerator());
2214 
2215     auto TI = BB->getTerminator();
2216     TI->setMetadata(
2217         LLVMContext::MD_prof,
2218         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2219   }
2220 }
2221 
2222 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2223 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2224 /// If we can duplicate the contents of BB up into PredBB do so now, this
2225 /// improves the odds that the branch will be on an analyzable instruction like
2226 /// a compare.
2227 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2228     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2229   assert(!PredBBs.empty() && "Can't handle an empty set");
2230 
2231   // If BB is a loop header, then duplicating this block outside the loop would
2232   // cause us to transform this into an irreducible loop, don't do this.
2233   // See the comments above FindLoopHeaders for justifications and caveats.
2234   if (LoopHeaders.count(BB)) {
2235     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2236           << "' into predecessor block '" << PredBBs[0]->getName()
2237           << "' - it might create an irreducible loop!\n");
2238     return false;
2239   }
2240 
2241   unsigned DuplicationCost =
2242       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2243   if (DuplicationCost > BBDupThreshold) {
2244     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2245           << "' - Cost is too high: " << DuplicationCost << "\n");
2246     return false;
2247   }
2248 
2249   // And finally, do it!  Start by factoring the predecessors if needed.
2250   std::vector<DominatorTree::UpdateType> Updates;
2251   BasicBlock *PredBB;
2252   if (PredBBs.size() == 1)
2253     PredBB = PredBBs[0];
2254   else {
2255     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2256           << " common predecessors.\n");
2257     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2258   }
2259   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2260 
2261   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2262   // of PredBB.
2263   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2264         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2265         << DuplicationCost << " block is:" << *BB << "\n");
2266 
2267   // Unless PredBB ends with an unconditional branch, split the edge so that we
2268   // can just clone the bits from BB into the end of the new PredBB.
2269   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2270 
2271   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2272     BasicBlock *OldPredBB = PredBB;
2273     PredBB = SplitEdge(OldPredBB, BB);
2274     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2275     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2276     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2277     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2278   }
2279 
2280   // We are going to have to map operands from the original BB block into the
2281   // PredBB block.  Evaluate PHI nodes in BB.
2282   DenseMap<Instruction*, Value*> ValueMapping;
2283 
2284   BasicBlock::iterator BI = BB->begin();
2285   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2286     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2287   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2288   // mapping and using it to remap operands in the cloned instructions.
2289   for (; BI != BB->end(); ++BI) {
2290     Instruction *New = BI->clone();
2291 
2292     // Remap operands to patch up intra-block references.
2293     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2294       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2295         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2296         if (I != ValueMapping.end())
2297           New->setOperand(i, I->second);
2298       }
2299 
2300     // If this instruction can be simplified after the operands are updated,
2301     // just use the simplified value instead.  This frequently happens due to
2302     // phi translation.
2303     if (Value *IV = SimplifyInstruction(
2304             New,
2305             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2306       ValueMapping[&*BI] = IV;
2307       if (!New->mayHaveSideEffects()) {
2308         New->deleteValue();
2309         New = nullptr;
2310       }
2311     } else {
2312       ValueMapping[&*BI] = New;
2313     }
2314     if (New) {
2315       // Otherwise, insert the new instruction into the block.
2316       New->setName(BI->getName());
2317       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2318       // Update Dominance from simplified New instruction operands.
2319       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2320         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2321           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2322     }
2323   }
2324 
2325   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2326   // add entries to the PHI nodes for branch from PredBB now.
2327   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2328   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2329                                   ValueMapping);
2330   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2331                                   ValueMapping);
2332 
2333   // If there were values defined in BB that are used outside the block, then we
2334   // now have to update all uses of the value to use either the original value,
2335   // the cloned value, or some PHI derived value.  This can require arbitrary
2336   // PHI insertion, of which we are prepared to do, clean these up now.
2337   SSAUpdater SSAUpdate;
2338   SmallVector<Use*, 16> UsesToRename;
2339   for (Instruction &I : *BB) {
2340     // Scan all uses of this instruction to see if it is used outside of its
2341     // block, and if so, record them in UsesToRename.
2342     for (Use &U : I.uses()) {
2343       Instruction *User = cast<Instruction>(U.getUser());
2344       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2345         if (UserPN->getIncomingBlock(U) == BB)
2346           continue;
2347       } else if (User->getParent() == BB)
2348         continue;
2349 
2350       UsesToRename.push_back(&U);
2351     }
2352 
2353     // If there are no uses outside the block, we're done with this instruction.
2354     if (UsesToRename.empty())
2355       continue;
2356 
2357     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2358 
2359     // We found a use of I outside of BB.  Rename all uses of I that are outside
2360     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2361     // with the two values we know.
2362     SSAUpdate.Initialize(I.getType(), I.getName());
2363     SSAUpdate.AddAvailableValue(BB, &I);
2364     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2365 
2366     while (!UsesToRename.empty())
2367       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2368     DEBUG(dbgs() << "\n");
2369   }
2370 
2371   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2372   // that we nuked.
2373   BB->removePredecessor(PredBB, true);
2374 
2375   // Remove the unconditional branch at the end of the PredBB block.
2376   OldPredBranch->eraseFromParent();
2377   DDT->applyUpdates(Updates);
2378 
2379   ++NumDupes;
2380   return true;
2381 }
2382 
2383 /// TryToUnfoldSelect - Look for blocks of the form
2384 /// bb1:
2385 ///   %a = select
2386 ///   br bb2
2387 ///
2388 /// bb2:
2389 ///   %p = phi [%a, %bb1] ...
2390 ///   %c = icmp %p
2391 ///   br i1 %c
2392 ///
2393 /// And expand the select into a branch structure if one of its arms allows %c
2394 /// to be folded. This later enables threading from bb1 over bb2.
2395 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2396   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2397   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2398   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2399 
2400   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2401       CondLHS->getParent() != BB)
2402     return false;
2403 
2404   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2405     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2406     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2407 
2408     // Look if one of the incoming values is a select in the corresponding
2409     // predecessor.
2410     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2411       continue;
2412 
2413     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2414     if (!PredTerm || !PredTerm->isUnconditional())
2415       continue;
2416 
2417     // Now check if one of the select values would allow us to constant fold the
2418     // terminator in BB. We don't do the transform if both sides fold, those
2419     // cases will be threaded in any case.
2420     if (DDT->pending())
2421       LVI->disableDT();
2422     else
2423       LVI->enableDT();
2424     LazyValueInfo::Tristate LHSFolds =
2425         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2426                                 CondRHS, Pred, BB, CondCmp);
2427     LazyValueInfo::Tristate RHSFolds =
2428         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2429                                 CondRHS, Pred, BB, CondCmp);
2430     if ((LHSFolds != LazyValueInfo::Unknown ||
2431          RHSFolds != LazyValueInfo::Unknown) &&
2432         LHSFolds != RHSFolds) {
2433       // Expand the select.
2434       //
2435       // Pred --
2436       //  |    v
2437       //  |  NewBB
2438       //  |    |
2439       //  |-----
2440       //  v
2441       // BB
2442       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2443                                              BB->getParent(), BB);
2444       // Move the unconditional branch to NewBB.
2445       PredTerm->removeFromParent();
2446       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2447       // Create a conditional branch and update PHI nodes.
2448       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2449       CondLHS->setIncomingValue(I, SI->getFalseValue());
2450       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2451       // The select is now dead.
2452       SI->eraseFromParent();
2453 
2454       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2455                          {DominatorTree::Insert, Pred, NewBB}});
2456       // Update any other PHI nodes in BB.
2457       for (BasicBlock::iterator BI = BB->begin();
2458            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2459         if (Phi != CondLHS)
2460           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2461       return true;
2462     }
2463   }
2464   return false;
2465 }
2466 
2467 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2468 /// same BB in the form
2469 /// bb:
2470 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2471 ///   %s = select %p, trueval, falseval
2472 ///
2473 /// or
2474 ///
2475 /// bb:
2476 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2477 ///   %c = cmp %p, 0
2478 ///   %s = select %c, trueval, falseval
2479 ///
2480 /// And expand the select into a branch structure. This later enables
2481 /// jump-threading over bb in this pass.
2482 ///
2483 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2484 /// select if the associated PHI has at least one constant.  If the unfolded
2485 /// select is not jump-threaded, it will be folded again in the later
2486 /// optimizations.
2487 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2488   // If threading this would thread across a loop header, don't thread the edge.
2489   // See the comments above FindLoopHeaders for justifications and caveats.
2490   if (LoopHeaders.count(BB))
2491     return false;
2492 
2493   for (BasicBlock::iterator BI = BB->begin();
2494        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2495     // Look for a Phi having at least one constant incoming value.
2496     if (llvm::all_of(PN->incoming_values(),
2497                      [](Value *V) { return !isa<ConstantInt>(V); }))
2498       continue;
2499 
2500     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2501       // Check if SI is in BB and use V as condition.
2502       if (SI->getParent() != BB)
2503         return false;
2504       Value *Cond = SI->getCondition();
2505       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2506     };
2507 
2508     SelectInst *SI = nullptr;
2509     for (Use &U : PN->uses()) {
2510       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2511         // Look for a ICmp in BB that compares PN with a constant and is the
2512         // condition of a Select.
2513         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2514             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2515           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2516             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2517               SI = SelectI;
2518               break;
2519             }
2520       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2521         // Look for a Select in BB that uses PN as condtion.
2522         if (isUnfoldCandidate(SelectI, U.get())) {
2523           SI = SelectI;
2524           break;
2525         }
2526       }
2527     }
2528 
2529     if (!SI)
2530       continue;
2531     // Expand the select.
2532     TerminatorInst *Term =
2533         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2534     BasicBlock *SplitBB = SI->getParent();
2535     BasicBlock *NewBB = Term->getParent();
2536     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2537     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2538     NewPN->addIncoming(SI->getFalseValue(), BB);
2539     SI->replaceAllUsesWith(NewPN);
2540     SI->eraseFromParent();
2541     // NewBB and SplitBB are newly created blocks which require insertion.
2542     std::vector<DominatorTree::UpdateType> Updates;
2543     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2544     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2545     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2546     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2547     // BB's successors were moved to SplitBB, update DDT accordingly.
2548     for (auto *Succ : successors(SplitBB)) {
2549       Updates.push_back({DominatorTree::Delete, BB, Succ});
2550       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2551     }
2552     DDT->applyUpdates(Updates);
2553     return true;
2554   }
2555   return false;
2556 }
2557 
2558 /// Try to propagate a guard from the current BB into one of its predecessors
2559 /// in case if another branch of execution implies that the condition of this
2560 /// guard is always true. Currently we only process the simplest case that
2561 /// looks like:
2562 ///
2563 /// Start:
2564 ///   %cond = ...
2565 ///   br i1 %cond, label %T1, label %F1
2566 /// T1:
2567 ///   br label %Merge
2568 /// F1:
2569 ///   br label %Merge
2570 /// Merge:
2571 ///   %condGuard = ...
2572 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2573 ///
2574 /// And cond either implies condGuard or !condGuard. In this case all the
2575 /// instructions before the guard can be duplicated in both branches, and the
2576 /// guard is then threaded to one of them.
2577 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2578   using namespace PatternMatch;
2579 
2580   // We only want to deal with two predecessors.
2581   BasicBlock *Pred1, *Pred2;
2582   auto PI = pred_begin(BB), PE = pred_end(BB);
2583   if (PI == PE)
2584     return false;
2585   Pred1 = *PI++;
2586   if (PI == PE)
2587     return false;
2588   Pred2 = *PI++;
2589   if (PI != PE)
2590     return false;
2591   if (Pred1 == Pred2)
2592     return false;
2593 
2594   // Try to thread one of the guards of the block.
2595   // TODO: Look up deeper than to immediate predecessor?
2596   auto *Parent = Pred1->getSinglePredecessor();
2597   if (!Parent || Parent != Pred2->getSinglePredecessor())
2598     return false;
2599 
2600   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2601     for (auto &I : *BB)
2602       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2603         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2604           return true;
2605 
2606   return false;
2607 }
2608 
2609 /// Try to propagate the guard from BB which is the lower block of a diamond
2610 /// to one of its branches, in case if diamond's condition implies guard's
2611 /// condition.
2612 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2613                                     BranchInst *BI) {
2614   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2615   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2616   Value *GuardCond = Guard->getArgOperand(0);
2617   Value *BranchCond = BI->getCondition();
2618   BasicBlock *TrueDest = BI->getSuccessor(0);
2619   BasicBlock *FalseDest = BI->getSuccessor(1);
2620 
2621   auto &DL = BB->getModule()->getDataLayout();
2622   bool TrueDestIsSafe = false;
2623   bool FalseDestIsSafe = false;
2624 
2625   // True dest is safe if BranchCond => GuardCond.
2626   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2627   if (Impl && *Impl)
2628     TrueDestIsSafe = true;
2629   else {
2630     // False dest is safe if !BranchCond => GuardCond.
2631     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2632     if (Impl && *Impl)
2633       FalseDestIsSafe = true;
2634   }
2635 
2636   if (!TrueDestIsSafe && !FalseDestIsSafe)
2637     return false;
2638 
2639   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2640   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2641 
2642   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2643   Instruction *AfterGuard = Guard->getNextNode();
2644   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2645   if (Cost > BBDupThreshold)
2646     return false;
2647   // Duplicate all instructions before the guard and the guard itself to the
2648   // branch where implication is not proved.
2649   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2650       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2651   assert(GuardedBlock && "Could not create the guarded block?");
2652   // Duplicate all instructions before the guard in the unguarded branch.
2653   // Since we have successfully duplicated the guarded block and this block
2654   // has fewer instructions, we expect it to succeed.
2655   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2656       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2657   assert(UnguardedBlock && "Could not create the unguarded block?");
2658   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2659                << GuardedBlock->getName() << "\n");
2660   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2661   // PredBB and BB. We need to perform two inserts and one delete for each of
2662   // the above calls to update Dominators.
2663   DDT->applyUpdates(
2664       {// Guarded block split.
2665        {DominatorTree::Delete, PredGuardedBlock, BB},
2666        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2667        {DominatorTree::Insert, GuardedBlock, BB},
2668        // Unguarded block split.
2669        {DominatorTree::Delete, PredUnguardedBlock, BB},
2670        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2671        {DominatorTree::Insert, UnguardedBlock, BB}});
2672   // Some instructions before the guard may still have uses. For them, we need
2673   // to create Phi nodes merging their copies in both guarded and unguarded
2674   // branches. Those instructions that have no uses can be just removed.
2675   SmallVector<Instruction *, 4> ToRemove;
2676   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2677     if (!isa<PHINode>(&*BI))
2678       ToRemove.push_back(&*BI);
2679 
2680   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2681   assert(InsertionPoint && "Empty block?");
2682   // Substitute with Phis & remove.
2683   for (auto *Inst : reverse(ToRemove)) {
2684     if (!Inst->use_empty()) {
2685       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2686       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2687       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2688       NewPN->insertBefore(InsertionPoint);
2689       Inst->replaceAllUsesWith(NewPN);
2690     }
2691     Inst->eraseFromParent();
2692   }
2693   return true;
2694 }
2695