1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/Utils/Local.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/BasicBlock.h" 36 #include "llvm/IR/CFG.h" 37 #include "llvm/IR/Constant.h" 38 #include "llvm/IR/ConstantRange.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/InstrTypes.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/Intrinsics.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/PassManager.h" 53 #include "llvm/IR/PatternMatch.h" 54 #include "llvm/IR/Type.h" 55 #include "llvm/IR/Use.h" 56 #include "llvm/IR/User.h" 57 #include "llvm/IR/Value.h" 58 #include "llvm/Pass.h" 59 #include "llvm/Support/BlockFrequency.h" 60 #include "llvm/Support/BranchProbability.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CommandLine.h" 63 #include "llvm/Support/Debug.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include "llvm/Transforms/Scalar.h" 66 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 67 #include "llvm/Transforms/Utils/Cloning.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<DominatorTreeWrapperPass>(); 135 AU.addPreserved<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<GlobalsAAWrapperPass>(); 140 AU.addRequired<TargetLibraryInfoWrapperPass>(); 141 } 142 143 void releaseMemory() override { Impl.releaseMemory(); } 144 }; 145 146 } // end anonymous namespace 147 148 char JumpThreading::ID = 0; 149 150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 151 "Jump Threading", false, false) 152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 156 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 157 "Jump Threading", false, false) 158 159 // Public interface to the Jump Threading pass 160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 161 return new JumpThreading(Threshold); 162 } 163 164 JumpThreadingPass::JumpThreadingPass(int T) { 165 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 166 } 167 168 // Update branch probability information according to conditional 169 // branch probablity. This is usually made possible for cloned branches 170 // in inline instances by the context specific profile in the caller. 171 // For instance, 172 // 173 // [Block PredBB] 174 // [Branch PredBr] 175 // if (t) { 176 // Block A; 177 // } else { 178 // Block B; 179 // } 180 // 181 // [Block BB] 182 // cond = PN([true, %A], [..., %B]); // PHI node 183 // [Branch CondBr] 184 // if (cond) { 185 // ... // P(cond == true) = 1% 186 // } 187 // 188 // Here we know that when block A is taken, cond must be true, which means 189 // P(cond == true | A) = 1 190 // 191 // Given that P(cond == true) = P(cond == true | A) * P(A) + 192 // P(cond == true | B) * P(B) 193 // we get: 194 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 195 // 196 // which gives us: 197 // P(A) is less than P(cond == true), i.e. 198 // P(t == true) <= P(cond == true) 199 // 200 // In other words, if we know P(cond == true) is unlikely, we know 201 // that P(t == true) is also unlikely. 202 // 203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 204 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 205 if (!CondBr) 206 return; 207 208 BranchProbability BP; 209 uint64_t TrueWeight, FalseWeight; 210 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 211 return; 212 213 // Returns the outgoing edge of the dominating predecessor block 214 // that leads to the PhiNode's incoming block: 215 auto GetPredOutEdge = 216 [](BasicBlock *IncomingBB, 217 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 218 auto *PredBB = IncomingBB; 219 auto *SuccBB = PhiBB; 220 while (true) { 221 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 222 if (PredBr && PredBr->isConditional()) 223 return {PredBB, SuccBB}; 224 auto *SinglePredBB = PredBB->getSinglePredecessor(); 225 if (!SinglePredBB) 226 return {nullptr, nullptr}; 227 SuccBB = PredBB; 228 PredBB = SinglePredBB; 229 } 230 }; 231 232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 233 Value *PhiOpnd = PN->getIncomingValue(i); 234 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 235 236 if (!CI || !CI->getType()->isIntegerTy(1)) 237 continue; 238 239 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 240 TrueWeight, TrueWeight + FalseWeight) 241 : BranchProbability::getBranchProbability( 242 FalseWeight, TrueWeight + FalseWeight)); 243 244 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 245 if (!PredOutEdge.first) 246 return; 247 248 BasicBlock *PredBB = PredOutEdge.first; 249 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 250 251 uint64_t PredTrueWeight, PredFalseWeight; 252 // FIXME: We currently only set the profile data when it is missing. 253 // With PGO, this can be used to refine even existing profile data with 254 // context information. This needs to be done after more performance 255 // testing. 256 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 257 continue; 258 259 // We can not infer anything useful when BP >= 50%, because BP is the 260 // upper bound probability value. 261 if (BP >= BranchProbability(50, 100)) 262 continue; 263 264 SmallVector<uint32_t, 2> Weights; 265 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 266 Weights.push_back(BP.getNumerator()); 267 Weights.push_back(BP.getCompl().getNumerator()); 268 } else { 269 Weights.push_back(BP.getCompl().getNumerator()); 270 Weights.push_back(BP.getNumerator()); 271 } 272 PredBr->setMetadata(LLVMContext::MD_prof, 273 MDBuilder(PredBr->getParent()->getContext()) 274 .createBranchWeights(Weights)); 275 } 276 } 277 278 /// runOnFunction - Toplevel algorithm. 279 bool JumpThreading::runOnFunction(Function &F) { 280 if (skipFunction(F)) 281 return false; 282 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 283 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 284 // DT if it's available. 285 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 286 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 287 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 288 DeferredDominance DDT(*DT); 289 std::unique_ptr<BlockFrequencyInfo> BFI; 290 std::unique_ptr<BranchProbabilityInfo> BPI; 291 bool HasProfileData = F.hasProfileData(); 292 if (HasProfileData) { 293 LoopInfo LI{DominatorTree(F)}; 294 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 295 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 296 } 297 298 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData, 299 std::move(BFI), std::move(BPI)); 300 if (PrintLVIAfterJumpThreading) { 301 dbgs() << "LVI for function '" << F.getName() << "':\n"; 302 LVI->printLVI(F, *DT, dbgs()); 303 } 304 return Changed; 305 } 306 307 PreservedAnalyses JumpThreadingPass::run(Function &F, 308 FunctionAnalysisManager &AM) { 309 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 310 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 311 // DT if it's available. 312 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 313 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 314 auto &AA = AM.getResult<AAManager>(F); 315 DeferredDominance DDT(DT); 316 317 std::unique_ptr<BlockFrequencyInfo> BFI; 318 std::unique_ptr<BranchProbabilityInfo> BPI; 319 if (F.hasProfileData()) { 320 LoopInfo LI{DominatorTree(F)}; 321 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 322 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 323 } 324 325 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData, 326 std::move(BFI), std::move(BPI)); 327 328 if (!Changed) 329 return PreservedAnalyses::all(); 330 PreservedAnalyses PA; 331 PA.preserve<GlobalsAA>(); 332 PA.preserve<DominatorTreeAnalysis>(); 333 PA.preserve<LazyValueAnalysis>(); 334 return PA; 335 } 336 337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 338 LazyValueInfo *LVI_, AliasAnalysis *AA_, 339 DeferredDominance *DDT_, bool HasProfileData_, 340 std::unique_ptr<BlockFrequencyInfo> BFI_, 341 std::unique_ptr<BranchProbabilityInfo> BPI_) { 342 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 343 TLI = TLI_; 344 LVI = LVI_; 345 AA = AA_; 346 DDT = DDT_; 347 BFI.reset(); 348 BPI.reset(); 349 // When profile data is available, we need to update edge weights after 350 // successful jump threading, which requires both BPI and BFI being available. 351 HasProfileData = HasProfileData_; 352 auto *GuardDecl = F.getParent()->getFunction( 353 Intrinsic::getName(Intrinsic::experimental_guard)); 354 HasGuards = GuardDecl && !GuardDecl->use_empty(); 355 if (HasProfileData) { 356 BPI = std::move(BPI_); 357 BFI = std::move(BFI_); 358 } 359 360 // JumpThreading must not processes blocks unreachable from entry. It's a 361 // waste of compute time and can potentially lead to hangs. 362 SmallPtrSet<BasicBlock *, 16> Unreachable; 363 DominatorTree &DT = DDT->flush(); 364 for (auto &BB : F) 365 if (!DT.isReachableFromEntry(&BB)) 366 Unreachable.insert(&BB); 367 368 FindLoopHeaders(F); 369 370 bool EverChanged = false; 371 bool Changed; 372 do { 373 Changed = false; 374 for (auto &BB : F) { 375 if (Unreachable.count(&BB)) 376 continue; 377 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 378 Changed = true; 379 // Stop processing BB if it's the entry or is now deleted. The following 380 // routines attempt to eliminate BB and locating a suitable replacement 381 // for the entry is non-trivial. 382 if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB)) 383 continue; 384 385 if (pred_empty(&BB)) { 386 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 387 // the instructions in it. We must remove BB to prevent invalid IR. 388 DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 389 << "' with terminator: " << *BB.getTerminator() << '\n'); 390 LoopHeaders.erase(&BB); 391 LVI->eraseBlock(&BB); 392 DeleteDeadBlock(&BB, DDT); 393 Changed = true; 394 continue; 395 } 396 397 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 398 // is "almost empty", we attempt to merge BB with its sole successor. 399 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 400 if (BI && BI->isUnconditional() && 401 // The terminator must be the only non-phi instruction in BB. 402 BB.getFirstNonPHIOrDbg()->isTerminator() && 403 // Don't alter Loop headers and latches to ensure another pass can 404 // detect and transform nested loops later. 405 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 406 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) { 407 // BB is valid for cleanup here because we passed in DDT. F remains 408 // BB's parent until a DDT->flush() event. 409 LVI->eraseBlock(&BB); 410 Changed = true; 411 } 412 } 413 EverChanged |= Changed; 414 } while (Changed); 415 416 LoopHeaders.clear(); 417 DDT->flush(); 418 LVI->enableDT(); 419 return EverChanged; 420 } 421 422 // Replace uses of Cond with ToVal when safe to do so. If all uses are 423 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 424 // because we may incorrectly replace uses when guards/assumes are uses of 425 // of `Cond` and we used the guards/assume to reason about the `Cond` value 426 // at the end of block. RAUW unconditionally replaces all uses 427 // including the guards/assumes themselves and the uses before the 428 // guard/assume. 429 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 430 assert(Cond->getType() == ToVal->getType()); 431 auto *BB = Cond->getParent(); 432 // We can unconditionally replace all uses in non-local blocks (i.e. uses 433 // strictly dominated by BB), since LVI information is true from the 434 // terminator of BB. 435 replaceNonLocalUsesWith(Cond, ToVal); 436 for (Instruction &I : reverse(*BB)) { 437 // Reached the Cond whose uses we are trying to replace, so there are no 438 // more uses. 439 if (&I == Cond) 440 break; 441 // We only replace uses in instructions that are guaranteed to reach the end 442 // of BB, where we know Cond is ToVal. 443 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 444 break; 445 I.replaceUsesOfWith(Cond, ToVal); 446 } 447 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 448 Cond->eraseFromParent(); 449 } 450 451 /// Return the cost of duplicating a piece of this block from first non-phi 452 /// and before StopAt instruction to thread across it. Stop scanning the block 453 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 454 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 455 Instruction *StopAt, 456 unsigned Threshold) { 457 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 458 /// Ignore PHI nodes, these will be flattened when duplication happens. 459 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 460 461 // FIXME: THREADING will delete values that are just used to compute the 462 // branch, so they shouldn't count against the duplication cost. 463 464 unsigned Bonus = 0; 465 if (BB->getTerminator() == StopAt) { 466 // Threading through a switch statement is particularly profitable. If this 467 // block ends in a switch, decrease its cost to make it more likely to 468 // happen. 469 if (isa<SwitchInst>(StopAt)) 470 Bonus = 6; 471 472 // The same holds for indirect branches, but slightly more so. 473 if (isa<IndirectBrInst>(StopAt)) 474 Bonus = 8; 475 } 476 477 // Bump the threshold up so the early exit from the loop doesn't skip the 478 // terminator-based Size adjustment at the end. 479 Threshold += Bonus; 480 481 // Sum up the cost of each instruction until we get to the terminator. Don't 482 // include the terminator because the copy won't include it. 483 unsigned Size = 0; 484 for (; &*I != StopAt; ++I) { 485 486 // Stop scanning the block if we've reached the threshold. 487 if (Size > Threshold) 488 return Size; 489 490 // Debugger intrinsics don't incur code size. 491 if (isa<DbgInfoIntrinsic>(I)) continue; 492 493 // If this is a pointer->pointer bitcast, it is free. 494 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 495 continue; 496 497 // Bail out if this instruction gives back a token type, it is not possible 498 // to duplicate it if it is used outside this BB. 499 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 500 return ~0U; 501 502 // All other instructions count for at least one unit. 503 ++Size; 504 505 // Calls are more expensive. If they are non-intrinsic calls, we model them 506 // as having cost of 4. If they are a non-vector intrinsic, we model them 507 // as having cost of 2 total, and if they are a vector intrinsic, we model 508 // them as having cost 1. 509 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 510 if (CI->cannotDuplicate() || CI->isConvergent()) 511 // Blocks with NoDuplicate are modelled as having infinite cost, so they 512 // are never duplicated. 513 return ~0U; 514 else if (!isa<IntrinsicInst>(CI)) 515 Size += 3; 516 else if (!CI->getType()->isVectorTy()) 517 Size += 1; 518 } 519 } 520 521 return Size > Bonus ? Size - Bonus : 0; 522 } 523 524 /// FindLoopHeaders - We do not want jump threading to turn proper loop 525 /// structures into irreducible loops. Doing this breaks up the loop nesting 526 /// hierarchy and pessimizes later transformations. To prevent this from 527 /// happening, we first have to find the loop headers. Here we approximate this 528 /// by finding targets of backedges in the CFG. 529 /// 530 /// Note that there definitely are cases when we want to allow threading of 531 /// edges across a loop header. For example, threading a jump from outside the 532 /// loop (the preheader) to an exit block of the loop is definitely profitable. 533 /// It is also almost always profitable to thread backedges from within the loop 534 /// to exit blocks, and is often profitable to thread backedges to other blocks 535 /// within the loop (forming a nested loop). This simple analysis is not rich 536 /// enough to track all of these properties and keep it up-to-date as the CFG 537 /// mutates, so we don't allow any of these transformations. 538 void JumpThreadingPass::FindLoopHeaders(Function &F) { 539 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 540 FindFunctionBackedges(F, Edges); 541 542 for (const auto &Edge : Edges) 543 LoopHeaders.insert(Edge.second); 544 } 545 546 /// getKnownConstant - Helper method to determine if we can thread over a 547 /// terminator with the given value as its condition, and if so what value to 548 /// use for that. What kind of value this is depends on whether we want an 549 /// integer or a block address, but an undef is always accepted. 550 /// Returns null if Val is null or not an appropriate constant. 551 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 552 if (!Val) 553 return nullptr; 554 555 // Undef is "known" enough. 556 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 557 return U; 558 559 if (Preference == WantBlockAddress) 560 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 561 562 return dyn_cast<ConstantInt>(Val); 563 } 564 565 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 566 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 567 /// in any of our predecessors. If so, return the known list of value and pred 568 /// BB in the result vector. 569 /// 570 /// This returns true if there were any known values. 571 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 572 Value *V, BasicBlock *BB, PredValueInfo &Result, 573 ConstantPreference Preference, Instruction *CxtI) { 574 // This method walks up use-def chains recursively. Because of this, we could 575 // get into an infinite loop going around loops in the use-def chain. To 576 // prevent this, keep track of what (value, block) pairs we've already visited 577 // and terminate the search if we loop back to them 578 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 579 return false; 580 581 // An RAII help to remove this pair from the recursion set once the recursion 582 // stack pops back out again. 583 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 584 585 // If V is a constant, then it is known in all predecessors. 586 if (Constant *KC = getKnownConstant(V, Preference)) { 587 for (BasicBlock *Pred : predecessors(BB)) 588 Result.push_back(std::make_pair(KC, Pred)); 589 590 return !Result.empty(); 591 } 592 593 // If V is a non-instruction value, or an instruction in a different block, 594 // then it can't be derived from a PHI. 595 Instruction *I = dyn_cast<Instruction>(V); 596 if (!I || I->getParent() != BB) { 597 598 // Okay, if this is a live-in value, see if it has a known value at the end 599 // of any of our predecessors. 600 // 601 // FIXME: This should be an edge property, not a block end property. 602 /// TODO: Per PR2563, we could infer value range information about a 603 /// predecessor based on its terminator. 604 // 605 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 606 // "I" is a non-local compare-with-a-constant instruction. This would be 607 // able to handle value inequalities better, for example if the compare is 608 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 609 // Perhaps getConstantOnEdge should be smart enough to do this? 610 611 if (DDT->pending()) 612 LVI->disableDT(); 613 else 614 LVI->enableDT(); 615 for (BasicBlock *P : predecessors(BB)) { 616 // If the value is known by LazyValueInfo to be a constant in a 617 // predecessor, use that information to try to thread this block. 618 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 619 if (Constant *KC = getKnownConstant(PredCst, Preference)) 620 Result.push_back(std::make_pair(KC, P)); 621 } 622 623 return !Result.empty(); 624 } 625 626 /// If I is a PHI node, then we know the incoming values for any constants. 627 if (PHINode *PN = dyn_cast<PHINode>(I)) { 628 if (DDT->pending()) 629 LVI->disableDT(); 630 else 631 LVI->enableDT(); 632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 633 Value *InVal = PN->getIncomingValue(i); 634 if (Constant *KC = getKnownConstant(InVal, Preference)) { 635 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 636 } else { 637 Constant *CI = LVI->getConstantOnEdge(InVal, 638 PN->getIncomingBlock(i), 639 BB, CxtI); 640 if (Constant *KC = getKnownConstant(CI, Preference)) 641 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 642 } 643 } 644 645 return !Result.empty(); 646 } 647 648 // Handle Cast instructions. Only see through Cast when the source operand is 649 // PHI or Cmp to save the compilation time. 650 if (CastInst *CI = dyn_cast<CastInst>(I)) { 651 Value *Source = CI->getOperand(0); 652 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 653 return false; 654 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 655 if (Result.empty()) 656 return false; 657 658 // Convert the known values. 659 for (auto &R : Result) 660 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 661 662 return true; 663 } 664 665 // Handle some boolean conditions. 666 if (I->getType()->getPrimitiveSizeInBits() == 1) { 667 assert(Preference == WantInteger && "One-bit non-integer type?"); 668 // X | true -> true 669 // X & false -> false 670 if (I->getOpcode() == Instruction::Or || 671 I->getOpcode() == Instruction::And) { 672 PredValueInfoTy LHSVals, RHSVals; 673 674 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 675 WantInteger, CxtI); 676 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 677 WantInteger, CxtI); 678 679 if (LHSVals.empty() && RHSVals.empty()) 680 return false; 681 682 ConstantInt *InterestingVal; 683 if (I->getOpcode() == Instruction::Or) 684 InterestingVal = ConstantInt::getTrue(I->getContext()); 685 else 686 InterestingVal = ConstantInt::getFalse(I->getContext()); 687 688 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 689 690 // Scan for the sentinel. If we find an undef, force it to the 691 // interesting value: x|undef -> true and x&undef -> false. 692 for (const auto &LHSVal : LHSVals) 693 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 694 Result.emplace_back(InterestingVal, LHSVal.second); 695 LHSKnownBBs.insert(LHSVal.second); 696 } 697 for (const auto &RHSVal : RHSVals) 698 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 699 // If we already inferred a value for this block on the LHS, don't 700 // re-add it. 701 if (!LHSKnownBBs.count(RHSVal.second)) 702 Result.emplace_back(InterestingVal, RHSVal.second); 703 } 704 705 return !Result.empty(); 706 } 707 708 // Handle the NOT form of XOR. 709 if (I->getOpcode() == Instruction::Xor && 710 isa<ConstantInt>(I->getOperand(1)) && 711 cast<ConstantInt>(I->getOperand(1))->isOne()) { 712 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 713 WantInteger, CxtI); 714 if (Result.empty()) 715 return false; 716 717 // Invert the known values. 718 for (auto &R : Result) 719 R.first = ConstantExpr::getNot(R.first); 720 721 return true; 722 } 723 724 // Try to simplify some other binary operator values. 725 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 726 assert(Preference != WantBlockAddress 727 && "A binary operator creating a block address?"); 728 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 729 PredValueInfoTy LHSVals; 730 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 731 WantInteger, CxtI); 732 733 // Try to use constant folding to simplify the binary operator. 734 for (const auto &LHSVal : LHSVals) { 735 Constant *V = LHSVal.first; 736 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 737 738 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 739 Result.push_back(std::make_pair(KC, LHSVal.second)); 740 } 741 } 742 743 return !Result.empty(); 744 } 745 746 // Handle compare with phi operand, where the PHI is defined in this block. 747 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 748 assert(Preference == WantInteger && "Compares only produce integers"); 749 Type *CmpType = Cmp->getType(); 750 Value *CmpLHS = Cmp->getOperand(0); 751 Value *CmpRHS = Cmp->getOperand(1); 752 CmpInst::Predicate Pred = Cmp->getPredicate(); 753 754 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 755 if (!PN) 756 PN = dyn_cast<PHINode>(CmpRHS); 757 if (PN && PN->getParent() == BB) { 758 const DataLayout &DL = PN->getModule()->getDataLayout(); 759 // We can do this simplification if any comparisons fold to true or false. 760 // See if any do. 761 if (DDT->pending()) 762 LVI->disableDT(); 763 else 764 LVI->enableDT(); 765 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 766 BasicBlock *PredBB = PN->getIncomingBlock(i); 767 Value *LHS, *RHS; 768 if (PN == CmpLHS) { 769 LHS = PN->getIncomingValue(i); 770 RHS = CmpRHS->DoPHITranslation(BB, PredBB); 771 } else { 772 LHS = CmpLHS->DoPHITranslation(BB, PredBB); 773 RHS = PN->getIncomingValue(i); 774 } 775 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 776 if (!Res) { 777 if (!isa<Constant>(RHS)) 778 continue; 779 780 // getPredicateOnEdge call will make no sense if LHS is defined in BB. 781 auto LHSInst = dyn_cast<Instruction>(LHS); 782 if (LHSInst && LHSInst->getParent() == BB) 783 continue; 784 785 LazyValueInfo::Tristate 786 ResT = LVI->getPredicateOnEdge(Pred, LHS, 787 cast<Constant>(RHS), PredBB, BB, 788 CxtI ? CxtI : Cmp); 789 if (ResT == LazyValueInfo::Unknown) 790 continue; 791 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 792 } 793 794 if (Constant *KC = getKnownConstant(Res, WantInteger)) 795 Result.push_back(std::make_pair(KC, PredBB)); 796 } 797 798 return !Result.empty(); 799 } 800 801 // If comparing a live-in value against a constant, see if we know the 802 // live-in value on any predecessors. 803 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 804 Constant *CmpConst = cast<Constant>(CmpRHS); 805 806 if (!isa<Instruction>(CmpLHS) || 807 cast<Instruction>(CmpLHS)->getParent() != BB) { 808 if (DDT->pending()) 809 LVI->disableDT(); 810 else 811 LVI->enableDT(); 812 for (BasicBlock *P : predecessors(BB)) { 813 // If the value is known by LazyValueInfo to be a constant in a 814 // predecessor, use that information to try to thread this block. 815 LazyValueInfo::Tristate Res = 816 LVI->getPredicateOnEdge(Pred, CmpLHS, 817 CmpConst, P, BB, CxtI ? CxtI : Cmp); 818 if (Res == LazyValueInfo::Unknown) 819 continue; 820 821 Constant *ResC = ConstantInt::get(CmpType, Res); 822 Result.push_back(std::make_pair(ResC, P)); 823 } 824 825 return !Result.empty(); 826 } 827 828 // InstCombine can fold some forms of constant range checks into 829 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 830 // x as a live-in. 831 { 832 using namespace PatternMatch; 833 834 Value *AddLHS; 835 ConstantInt *AddConst; 836 if (isa<ConstantInt>(CmpConst) && 837 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 838 if (!isa<Instruction>(AddLHS) || 839 cast<Instruction>(AddLHS)->getParent() != BB) { 840 if (DDT->pending()) 841 LVI->disableDT(); 842 else 843 LVI->enableDT(); 844 for (BasicBlock *P : predecessors(BB)) { 845 // If the value is known by LazyValueInfo to be a ConstantRange in 846 // a predecessor, use that information to try to thread this 847 // block. 848 ConstantRange CR = LVI->getConstantRangeOnEdge( 849 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 850 // Propagate the range through the addition. 851 CR = CR.add(AddConst->getValue()); 852 853 // Get the range where the compare returns true. 854 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 855 Pred, cast<ConstantInt>(CmpConst)->getValue()); 856 857 Constant *ResC; 858 if (CmpRange.contains(CR)) 859 ResC = ConstantInt::getTrue(CmpType); 860 else if (CmpRange.inverse().contains(CR)) 861 ResC = ConstantInt::getFalse(CmpType); 862 else 863 continue; 864 865 Result.push_back(std::make_pair(ResC, P)); 866 } 867 868 return !Result.empty(); 869 } 870 } 871 } 872 873 // Try to find a constant value for the LHS of a comparison, 874 // and evaluate it statically if we can. 875 PredValueInfoTy LHSVals; 876 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 877 WantInteger, CxtI); 878 879 for (const auto &LHSVal : LHSVals) { 880 Constant *V = LHSVal.first; 881 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 882 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 883 Result.push_back(std::make_pair(KC, LHSVal.second)); 884 } 885 886 return !Result.empty(); 887 } 888 } 889 890 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 891 // Handle select instructions where at least one operand is a known constant 892 // and we can figure out the condition value for any predecessor block. 893 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 894 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 895 PredValueInfoTy Conds; 896 if ((TrueVal || FalseVal) && 897 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 898 WantInteger, CxtI)) { 899 for (auto &C : Conds) { 900 Constant *Cond = C.first; 901 902 // Figure out what value to use for the condition. 903 bool KnownCond; 904 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 905 // A known boolean. 906 KnownCond = CI->isOne(); 907 } else { 908 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 909 // Either operand will do, so be sure to pick the one that's a known 910 // constant. 911 // FIXME: Do this more cleverly if both values are known constants? 912 KnownCond = (TrueVal != nullptr); 913 } 914 915 // See if the select has a known constant value for this predecessor. 916 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 917 Result.push_back(std::make_pair(Val, C.second)); 918 } 919 920 return !Result.empty(); 921 } 922 } 923 924 // If all else fails, see if LVI can figure out a constant value for us. 925 if (DDT->pending()) 926 LVI->disableDT(); 927 else 928 LVI->enableDT(); 929 Constant *CI = LVI->getConstant(V, BB, CxtI); 930 if (Constant *KC = getKnownConstant(CI, Preference)) { 931 for (BasicBlock *Pred : predecessors(BB)) 932 Result.push_back(std::make_pair(KC, Pred)); 933 } 934 935 return !Result.empty(); 936 } 937 938 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 939 /// in an undefined jump, decide which block is best to revector to. 940 /// 941 /// Since we can pick an arbitrary destination, we pick the successor with the 942 /// fewest predecessors. This should reduce the in-degree of the others. 943 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 944 TerminatorInst *BBTerm = BB->getTerminator(); 945 unsigned MinSucc = 0; 946 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 947 // Compute the successor with the minimum number of predecessors. 948 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 949 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 950 TestBB = BBTerm->getSuccessor(i); 951 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 952 if (NumPreds < MinNumPreds) { 953 MinSucc = i; 954 MinNumPreds = NumPreds; 955 } 956 } 957 958 return MinSucc; 959 } 960 961 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 962 if (!BB->hasAddressTaken()) return false; 963 964 // If the block has its address taken, it may be a tree of dead constants 965 // hanging off of it. These shouldn't keep the block alive. 966 BlockAddress *BA = BlockAddress::get(BB); 967 BA->removeDeadConstantUsers(); 968 return !BA->use_empty(); 969 } 970 971 /// ProcessBlock - If there are any predecessors whose control can be threaded 972 /// through to a successor, transform them now. 973 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 974 // If the block is trivially dead, just return and let the caller nuke it. 975 // This simplifies other transformations. 976 if (DDT->pendingDeletedBB(BB) || 977 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 978 return false; 979 980 // If this block has a single predecessor, and if that pred has a single 981 // successor, merge the blocks. This encourages recursive jump threading 982 // because now the condition in this block can be threaded through 983 // predecessors of our predecessor block. 984 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 985 const TerminatorInst *TI = SinglePred->getTerminator(); 986 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 987 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 988 // If SinglePred was a loop header, BB becomes one. 989 if (LoopHeaders.erase(SinglePred)) 990 LoopHeaders.insert(BB); 991 992 LVI->eraseBlock(SinglePred); 993 MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT); 994 995 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 996 // BB code within one basic block `BB`), we need to invalidate the LVI 997 // information associated with BB, because the LVI information need not be 998 // true for all of BB after the merge. For example, 999 // Before the merge, LVI info and code is as follows: 1000 // SinglePred: <LVI info1 for %p val> 1001 // %y = use of %p 1002 // call @exit() // need not transfer execution to successor. 1003 // assume(%p) // from this point on %p is true 1004 // br label %BB 1005 // BB: <LVI info2 for %p val, i.e. %p is true> 1006 // %x = use of %p 1007 // br label exit 1008 // 1009 // Note that this LVI info for blocks BB and SinglPred is correct for %p 1010 // (info2 and info1 respectively). After the merge and the deletion of the 1011 // LVI info1 for SinglePred. We have the following code: 1012 // BB: <LVI info2 for %p val> 1013 // %y = use of %p 1014 // call @exit() 1015 // assume(%p) 1016 // %x = use of %p <-- LVI info2 is correct from here onwards. 1017 // br label exit 1018 // LVI info2 for BB is incorrect at the beginning of BB. 1019 1020 // Invalidate LVI information for BB if the LVI is not provably true for 1021 // all of BB. 1022 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1023 LVI->eraseBlock(BB); 1024 return true; 1025 } 1026 } 1027 1028 if (TryToUnfoldSelectInCurrBB(BB)) 1029 return true; 1030 1031 // Look if we can propagate guards to predecessors. 1032 if (HasGuards && ProcessGuards(BB)) 1033 return true; 1034 1035 // What kind of constant we're looking for. 1036 ConstantPreference Preference = WantInteger; 1037 1038 // Look to see if the terminator is a conditional branch, switch or indirect 1039 // branch, if not we can't thread it. 1040 Value *Condition; 1041 Instruction *Terminator = BB->getTerminator(); 1042 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1043 // Can't thread an unconditional jump. 1044 if (BI->isUnconditional()) return false; 1045 Condition = BI->getCondition(); 1046 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1047 Condition = SI->getCondition(); 1048 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1049 // Can't thread indirect branch with no successors. 1050 if (IB->getNumSuccessors() == 0) return false; 1051 Condition = IB->getAddress()->stripPointerCasts(); 1052 Preference = WantBlockAddress; 1053 } else { 1054 return false; // Must be an invoke. 1055 } 1056 1057 // Run constant folding to see if we can reduce the condition to a simple 1058 // constant. 1059 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1060 Value *SimpleVal = 1061 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1062 if (SimpleVal) { 1063 I->replaceAllUsesWith(SimpleVal); 1064 if (isInstructionTriviallyDead(I, TLI)) 1065 I->eraseFromParent(); 1066 Condition = SimpleVal; 1067 } 1068 } 1069 1070 // If the terminator is branching on an undef, we can pick any of the 1071 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1072 if (isa<UndefValue>(Condition)) { 1073 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1074 std::vector<DominatorTree::UpdateType> Updates; 1075 1076 // Fold the branch/switch. 1077 TerminatorInst *BBTerm = BB->getTerminator(); 1078 Updates.reserve(BBTerm->getNumSuccessors()); 1079 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1080 if (i == BestSucc) continue; 1081 BasicBlock *Succ = BBTerm->getSuccessor(i); 1082 Succ->removePredecessor(BB, true); 1083 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1084 } 1085 1086 DEBUG(dbgs() << " In block '" << BB->getName() 1087 << "' folding undef terminator: " << *BBTerm << '\n'); 1088 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1089 BBTerm->eraseFromParent(); 1090 DDT->applyUpdates(Updates); 1091 return true; 1092 } 1093 1094 // If the terminator of this block is branching on a constant, simplify the 1095 // terminator to an unconditional branch. This can occur due to threading in 1096 // other blocks. 1097 if (getKnownConstant(Condition, Preference)) { 1098 DEBUG(dbgs() << " In block '" << BB->getName() 1099 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1100 ++NumFolds; 1101 ConstantFoldTerminator(BB, true, nullptr, DDT); 1102 return true; 1103 } 1104 1105 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1106 1107 // All the rest of our checks depend on the condition being an instruction. 1108 if (!CondInst) { 1109 // FIXME: Unify this with code below. 1110 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1111 return true; 1112 return false; 1113 } 1114 1115 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1116 // If we're branching on a conditional, LVI might be able to determine 1117 // it's value at the branch instruction. We only handle comparisons 1118 // against a constant at this time. 1119 // TODO: This should be extended to handle switches as well. 1120 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1121 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1122 if (CondBr && CondConst) { 1123 // We should have returned as soon as we turn a conditional branch to 1124 // unconditional. Because its no longer interesting as far as jump 1125 // threading is concerned. 1126 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1127 1128 if (DDT->pending()) 1129 LVI->disableDT(); 1130 else 1131 LVI->enableDT(); 1132 LazyValueInfo::Tristate Ret = 1133 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1134 CondConst, CondBr); 1135 if (Ret != LazyValueInfo::Unknown) { 1136 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1137 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1138 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1139 ToRemoveSucc->removePredecessor(BB, true); 1140 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1141 CondBr->eraseFromParent(); 1142 if (CondCmp->use_empty()) 1143 CondCmp->eraseFromParent(); 1144 // We can safely replace *some* uses of the CondInst if it has 1145 // exactly one value as returned by LVI. RAUW is incorrect in the 1146 // presence of guards and assumes, that have the `Cond` as the use. This 1147 // is because we use the guards/assume to reason about the `Cond` value 1148 // at the end of block, but RAUW unconditionally replaces all uses 1149 // including the guards/assumes themselves and the uses before the 1150 // guard/assume. 1151 else if (CondCmp->getParent() == BB) { 1152 auto *CI = Ret == LazyValueInfo::True ? 1153 ConstantInt::getTrue(CondCmp->getType()) : 1154 ConstantInt::getFalse(CondCmp->getType()); 1155 ReplaceFoldableUses(CondCmp, CI); 1156 } 1157 DDT->deleteEdge(BB, ToRemoveSucc); 1158 return true; 1159 } 1160 1161 // We did not manage to simplify this branch, try to see whether 1162 // CondCmp depends on a known phi-select pattern. 1163 if (TryToUnfoldSelect(CondCmp, BB)) 1164 return true; 1165 } 1166 } 1167 1168 // Check for some cases that are worth simplifying. Right now we want to look 1169 // for loads that are used by a switch or by the condition for the branch. If 1170 // we see one, check to see if it's partially redundant. If so, insert a PHI 1171 // which can then be used to thread the values. 1172 Value *SimplifyValue = CondInst; 1173 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1174 if (isa<Constant>(CondCmp->getOperand(1))) 1175 SimplifyValue = CondCmp->getOperand(0); 1176 1177 // TODO: There are other places where load PRE would be profitable, such as 1178 // more complex comparisons. 1179 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1180 if (SimplifyPartiallyRedundantLoad(LoadI)) 1181 return true; 1182 1183 // Before threading, try to propagate profile data backwards: 1184 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1185 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1186 updatePredecessorProfileMetadata(PN, BB); 1187 1188 // Handle a variety of cases where we are branching on something derived from 1189 // a PHI node in the current block. If we can prove that any predecessors 1190 // compute a predictable value based on a PHI node, thread those predecessors. 1191 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1192 return true; 1193 1194 // If this is an otherwise-unfoldable branch on a phi node in the current 1195 // block, see if we can simplify. 1196 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1197 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1198 return ProcessBranchOnPHI(PN); 1199 1200 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1201 if (CondInst->getOpcode() == Instruction::Xor && 1202 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1203 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1204 1205 // Search for a stronger dominating condition that can be used to simplify a 1206 // conditional branch leaving BB. 1207 if (ProcessImpliedCondition(BB)) 1208 return true; 1209 1210 return false; 1211 } 1212 1213 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1214 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1215 if (!BI || !BI->isConditional()) 1216 return false; 1217 1218 Value *Cond = BI->getCondition(); 1219 BasicBlock *CurrentBB = BB; 1220 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1221 unsigned Iter = 0; 1222 1223 auto &DL = BB->getModule()->getDataLayout(); 1224 1225 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1226 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1227 if (!PBI || !PBI->isConditional()) 1228 return false; 1229 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1230 return false; 1231 1232 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1233 Optional<bool> Implication = 1234 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1235 if (Implication) { 1236 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1237 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1238 RemoveSucc->removePredecessor(BB); 1239 BranchInst::Create(KeepSucc, BI); 1240 BI->eraseFromParent(); 1241 DDT->deleteEdge(BB, RemoveSucc); 1242 return true; 1243 } 1244 CurrentBB = CurrentPred; 1245 CurrentPred = CurrentBB->getSinglePredecessor(); 1246 } 1247 1248 return false; 1249 } 1250 1251 /// Return true if Op is an instruction defined in the given block. 1252 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1253 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1254 if (OpInst->getParent() == BB) 1255 return true; 1256 return false; 1257 } 1258 1259 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1260 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1261 /// This is an important optimization that encourages jump threading, and needs 1262 /// to be run interlaced with other jump threading tasks. 1263 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1264 // Don't hack volatile and ordered loads. 1265 if (!LoadI->isUnordered()) return false; 1266 1267 // If the load is defined in a block with exactly one predecessor, it can't be 1268 // partially redundant. 1269 BasicBlock *LoadBB = LoadI->getParent(); 1270 if (LoadBB->getSinglePredecessor()) 1271 return false; 1272 1273 // If the load is defined in an EH pad, it can't be partially redundant, 1274 // because the edges between the invoke and the EH pad cannot have other 1275 // instructions between them. 1276 if (LoadBB->isEHPad()) 1277 return false; 1278 1279 Value *LoadedPtr = LoadI->getOperand(0); 1280 1281 // If the loaded operand is defined in the LoadBB and its not a phi, 1282 // it can't be available in predecessors. 1283 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1284 return false; 1285 1286 // Scan a few instructions up from the load, to see if it is obviously live at 1287 // the entry to its block. 1288 BasicBlock::iterator BBIt(LoadI); 1289 bool IsLoadCSE; 1290 if (Value *AvailableVal = FindAvailableLoadedValue( 1291 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1292 // If the value of the load is locally available within the block, just use 1293 // it. This frequently occurs for reg2mem'd allocas. 1294 1295 if (IsLoadCSE) { 1296 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1297 combineMetadataForCSE(NLoadI, LoadI); 1298 }; 1299 1300 // If the returned value is the load itself, replace with an undef. This can 1301 // only happen in dead loops. 1302 if (AvailableVal == LoadI) 1303 AvailableVal = UndefValue::get(LoadI->getType()); 1304 if (AvailableVal->getType() != LoadI->getType()) 1305 AvailableVal = CastInst::CreateBitOrPointerCast( 1306 AvailableVal, LoadI->getType(), "", LoadI); 1307 LoadI->replaceAllUsesWith(AvailableVal); 1308 LoadI->eraseFromParent(); 1309 return true; 1310 } 1311 1312 // Otherwise, if we scanned the whole block and got to the top of the block, 1313 // we know the block is locally transparent to the load. If not, something 1314 // might clobber its value. 1315 if (BBIt != LoadBB->begin()) 1316 return false; 1317 1318 // If all of the loads and stores that feed the value have the same AA tags, 1319 // then we can propagate them onto any newly inserted loads. 1320 AAMDNodes AATags; 1321 LoadI->getAAMetadata(AATags); 1322 1323 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1324 1325 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1326 1327 AvailablePredsTy AvailablePreds; 1328 BasicBlock *OneUnavailablePred = nullptr; 1329 SmallVector<LoadInst*, 8> CSELoads; 1330 1331 // If we got here, the loaded value is transparent through to the start of the 1332 // block. Check to see if it is available in any of the predecessor blocks. 1333 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1334 // If we already scanned this predecessor, skip it. 1335 if (!PredsScanned.insert(PredBB).second) 1336 continue; 1337 1338 BBIt = PredBB->end(); 1339 unsigned NumScanedInst = 0; 1340 Value *PredAvailable = nullptr; 1341 // NOTE: We don't CSE load that is volatile or anything stronger than 1342 // unordered, that should have been checked when we entered the function. 1343 assert(LoadI->isUnordered() && 1344 "Attempting to CSE volatile or atomic loads"); 1345 // If this is a load on a phi pointer, phi-translate it and search 1346 // for available load/store to the pointer in predecessors. 1347 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1348 PredAvailable = FindAvailablePtrLoadStore( 1349 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1350 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1351 1352 // If PredBB has a single predecessor, continue scanning through the 1353 // single precessor. 1354 BasicBlock *SinglePredBB = PredBB; 1355 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1356 NumScanedInst < DefMaxInstsToScan) { 1357 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1358 if (SinglePredBB) { 1359 BBIt = SinglePredBB->end(); 1360 PredAvailable = FindAvailablePtrLoadStore( 1361 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1362 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1363 &NumScanedInst); 1364 } 1365 } 1366 1367 if (!PredAvailable) { 1368 OneUnavailablePred = PredBB; 1369 continue; 1370 } 1371 1372 if (IsLoadCSE) 1373 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1374 1375 // If so, this load is partially redundant. Remember this info so that we 1376 // can create a PHI node. 1377 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1378 } 1379 1380 // If the loaded value isn't available in any predecessor, it isn't partially 1381 // redundant. 1382 if (AvailablePreds.empty()) return false; 1383 1384 // Okay, the loaded value is available in at least one (and maybe all!) 1385 // predecessors. If the value is unavailable in more than one unique 1386 // predecessor, we want to insert a merge block for those common predecessors. 1387 // This ensures that we only have to insert one reload, thus not increasing 1388 // code size. 1389 BasicBlock *UnavailablePred = nullptr; 1390 1391 // If the value is unavailable in one of predecessors, we will end up 1392 // inserting a new instruction into them. It is only valid if all the 1393 // instructions before LoadI are guaranteed to pass execution to its 1394 // successor, or if LoadI is safe to speculate. 1395 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1396 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1397 // It requires domination tree analysis, so for this simple case it is an 1398 // overkill. 1399 if (PredsScanned.size() != AvailablePreds.size() && 1400 !isSafeToSpeculativelyExecute(LoadI)) 1401 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1402 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1403 return false; 1404 1405 // If there is exactly one predecessor where the value is unavailable, the 1406 // already computed 'OneUnavailablePred' block is it. If it ends in an 1407 // unconditional branch, we know that it isn't a critical edge. 1408 if (PredsScanned.size() == AvailablePreds.size()+1 && 1409 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1410 UnavailablePred = OneUnavailablePred; 1411 } else if (PredsScanned.size() != AvailablePreds.size()) { 1412 // Otherwise, we had multiple unavailable predecessors or we had a critical 1413 // edge from the one. 1414 SmallVector<BasicBlock*, 8> PredsToSplit; 1415 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1416 1417 for (const auto &AvailablePred : AvailablePreds) 1418 AvailablePredSet.insert(AvailablePred.first); 1419 1420 // Add all the unavailable predecessors to the PredsToSplit list. 1421 for (BasicBlock *P : predecessors(LoadBB)) { 1422 // If the predecessor is an indirect goto, we can't split the edge. 1423 if (isa<IndirectBrInst>(P->getTerminator())) 1424 return false; 1425 1426 if (!AvailablePredSet.count(P)) 1427 PredsToSplit.push_back(P); 1428 } 1429 1430 // Split them out to their own block. 1431 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1432 } 1433 1434 // If the value isn't available in all predecessors, then there will be 1435 // exactly one where it isn't available. Insert a load on that edge and add 1436 // it to the AvailablePreds list. 1437 if (UnavailablePred) { 1438 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1439 "Can't handle critical edge here!"); 1440 LoadInst *NewVal = 1441 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1442 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1443 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1444 UnavailablePred->getTerminator()); 1445 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1446 if (AATags) 1447 NewVal->setAAMetadata(AATags); 1448 1449 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1450 } 1451 1452 // Now we know that each predecessor of this block has a value in 1453 // AvailablePreds, sort them for efficient access as we're walking the preds. 1454 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1455 1456 // Create a PHI node at the start of the block for the PRE'd load value. 1457 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1458 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1459 &LoadBB->front()); 1460 PN->takeName(LoadI); 1461 PN->setDebugLoc(LoadI->getDebugLoc()); 1462 1463 // Insert new entries into the PHI for each predecessor. A single block may 1464 // have multiple entries here. 1465 for (pred_iterator PI = PB; PI != PE; ++PI) { 1466 BasicBlock *P = *PI; 1467 AvailablePredsTy::iterator I = 1468 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1469 std::make_pair(P, (Value*)nullptr)); 1470 1471 assert(I != AvailablePreds.end() && I->first == P && 1472 "Didn't find entry for predecessor!"); 1473 1474 // If we have an available predecessor but it requires casting, insert the 1475 // cast in the predecessor and use the cast. Note that we have to update the 1476 // AvailablePreds vector as we go so that all of the PHI entries for this 1477 // predecessor use the same bitcast. 1478 Value *&PredV = I->second; 1479 if (PredV->getType() != LoadI->getType()) 1480 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1481 P->getTerminator()); 1482 1483 PN->addIncoming(PredV, I->first); 1484 } 1485 1486 for (LoadInst *PredLoadI : CSELoads) { 1487 combineMetadataForCSE(PredLoadI, LoadI); 1488 } 1489 1490 LoadI->replaceAllUsesWith(PN); 1491 LoadI->eraseFromParent(); 1492 1493 return true; 1494 } 1495 1496 /// FindMostPopularDest - The specified list contains multiple possible 1497 /// threadable destinations. Pick the one that occurs the most frequently in 1498 /// the list. 1499 static BasicBlock * 1500 FindMostPopularDest(BasicBlock *BB, 1501 const SmallVectorImpl<std::pair<BasicBlock *, 1502 BasicBlock *>> &PredToDestList) { 1503 assert(!PredToDestList.empty()); 1504 1505 // Determine popularity. If there are multiple possible destinations, we 1506 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1507 // blocks with known and real destinations to threading undef. We'll handle 1508 // them later if interesting. 1509 DenseMap<BasicBlock*, unsigned> DestPopularity; 1510 for (const auto &PredToDest : PredToDestList) 1511 if (PredToDest.second) 1512 DestPopularity[PredToDest.second]++; 1513 1514 if (DestPopularity.empty()) 1515 return nullptr; 1516 1517 // Find the most popular dest. 1518 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1519 BasicBlock *MostPopularDest = DPI->first; 1520 unsigned Popularity = DPI->second; 1521 SmallVector<BasicBlock*, 4> SamePopularity; 1522 1523 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1524 // If the popularity of this entry isn't higher than the popularity we've 1525 // seen so far, ignore it. 1526 if (DPI->second < Popularity) 1527 ; // ignore. 1528 else if (DPI->second == Popularity) { 1529 // If it is the same as what we've seen so far, keep track of it. 1530 SamePopularity.push_back(DPI->first); 1531 } else { 1532 // If it is more popular, remember it. 1533 SamePopularity.clear(); 1534 MostPopularDest = DPI->first; 1535 Popularity = DPI->second; 1536 } 1537 } 1538 1539 // Okay, now we know the most popular destination. If there is more than one 1540 // destination, we need to determine one. This is arbitrary, but we need 1541 // to make a deterministic decision. Pick the first one that appears in the 1542 // successor list. 1543 if (!SamePopularity.empty()) { 1544 SamePopularity.push_back(MostPopularDest); 1545 TerminatorInst *TI = BB->getTerminator(); 1546 for (unsigned i = 0; ; ++i) { 1547 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1548 1549 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1550 continue; 1551 1552 MostPopularDest = TI->getSuccessor(i); 1553 break; 1554 } 1555 } 1556 1557 // Okay, we have finally picked the most popular destination. 1558 return MostPopularDest; 1559 } 1560 1561 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1562 ConstantPreference Preference, 1563 Instruction *CxtI) { 1564 // If threading this would thread across a loop header, don't even try to 1565 // thread the edge. 1566 if (LoopHeaders.count(BB)) 1567 return false; 1568 1569 PredValueInfoTy PredValues; 1570 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1571 return false; 1572 1573 assert(!PredValues.empty() && 1574 "ComputeValueKnownInPredecessors returned true with no values"); 1575 1576 DEBUG(dbgs() << "IN BB: " << *BB; 1577 for (const auto &PredValue : PredValues) { 1578 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1579 << *PredValue.first 1580 << " for pred '" << PredValue.second->getName() << "'.\n"; 1581 }); 1582 1583 // Decide what we want to thread through. Convert our list of known values to 1584 // a list of known destinations for each pred. This also discards duplicate 1585 // predecessors and keeps track of the undefined inputs (which are represented 1586 // as a null dest in the PredToDestList). 1587 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1588 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1589 1590 BasicBlock *OnlyDest = nullptr; 1591 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1592 Constant *OnlyVal = nullptr; 1593 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1594 1595 unsigned PredWithKnownDest = 0; 1596 for (const auto &PredValue : PredValues) { 1597 BasicBlock *Pred = PredValue.second; 1598 if (!SeenPreds.insert(Pred).second) 1599 continue; // Duplicate predecessor entry. 1600 1601 Constant *Val = PredValue.first; 1602 1603 BasicBlock *DestBB; 1604 if (isa<UndefValue>(Val)) 1605 DestBB = nullptr; 1606 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1607 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1608 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1609 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1610 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1611 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1612 } else { 1613 assert(isa<IndirectBrInst>(BB->getTerminator()) 1614 && "Unexpected terminator"); 1615 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1616 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1617 } 1618 1619 // If we have exactly one destination, remember it for efficiency below. 1620 if (PredToDestList.empty()) { 1621 OnlyDest = DestBB; 1622 OnlyVal = Val; 1623 } else { 1624 if (OnlyDest != DestBB) 1625 OnlyDest = MultipleDestSentinel; 1626 // It possible we have same destination, but different value, e.g. default 1627 // case in switchinst. 1628 if (Val != OnlyVal) 1629 OnlyVal = MultipleVal; 1630 } 1631 1632 // We know where this predecessor is going. 1633 ++PredWithKnownDest; 1634 1635 // If the predecessor ends with an indirect goto, we can't change its 1636 // destination. 1637 if (isa<IndirectBrInst>(Pred->getTerminator())) 1638 continue; 1639 1640 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1641 } 1642 1643 // If all edges were unthreadable, we fail. 1644 if (PredToDestList.empty()) 1645 return false; 1646 1647 // If all the predecessors go to a single known successor, we want to fold, 1648 // not thread. By doing so, we do not need to duplicate the current block and 1649 // also miss potential opportunities in case we dont/cant duplicate. 1650 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1651 if (PredWithKnownDest == 1652 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1653 bool SeenFirstBranchToOnlyDest = false; 1654 std::vector <DominatorTree::UpdateType> Updates; 1655 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1656 for (BasicBlock *SuccBB : successors(BB)) { 1657 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1658 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1659 } else { 1660 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1661 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1662 } 1663 } 1664 1665 // Finally update the terminator. 1666 TerminatorInst *Term = BB->getTerminator(); 1667 BranchInst::Create(OnlyDest, Term); 1668 Term->eraseFromParent(); 1669 DDT->applyUpdates(Updates); 1670 1671 // If the condition is now dead due to the removal of the old terminator, 1672 // erase it. 1673 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1674 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1675 CondInst->eraseFromParent(); 1676 // We can safely replace *some* uses of the CondInst if it has 1677 // exactly one value as returned by LVI. RAUW is incorrect in the 1678 // presence of guards and assumes, that have the `Cond` as the use. This 1679 // is because we use the guards/assume to reason about the `Cond` value 1680 // at the end of block, but RAUW unconditionally replaces all uses 1681 // including the guards/assumes themselves and the uses before the 1682 // guard/assume. 1683 else if (OnlyVal && OnlyVal != MultipleVal && 1684 CondInst->getParent() == BB) 1685 ReplaceFoldableUses(CondInst, OnlyVal); 1686 } 1687 return true; 1688 } 1689 } 1690 1691 // Determine which is the most common successor. If we have many inputs and 1692 // this block is a switch, we want to start by threading the batch that goes 1693 // to the most popular destination first. If we only know about one 1694 // threadable destination (the common case) we can avoid this. 1695 BasicBlock *MostPopularDest = OnlyDest; 1696 1697 if (MostPopularDest == MultipleDestSentinel) { 1698 // Remove any loop headers from the Dest list, ThreadEdge conservatively 1699 // won't process them, but we might have other destination that are eligible 1700 // and we still want to process. 1701 erase_if(PredToDestList, 1702 [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) { 1703 return LoopHeaders.count(PredToDest.second) != 0; 1704 }); 1705 1706 if (PredToDestList.empty()) 1707 return false; 1708 1709 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1710 } 1711 1712 // Now that we know what the most popular destination is, factor all 1713 // predecessors that will jump to it into a single predecessor. 1714 SmallVector<BasicBlock*, 16> PredsToFactor; 1715 for (const auto &PredToDest : PredToDestList) 1716 if (PredToDest.second == MostPopularDest) { 1717 BasicBlock *Pred = PredToDest.first; 1718 1719 // This predecessor may be a switch or something else that has multiple 1720 // edges to the block. Factor each of these edges by listing them 1721 // according to # occurrences in PredsToFactor. 1722 for (BasicBlock *Succ : successors(Pred)) 1723 if (Succ == BB) 1724 PredsToFactor.push_back(Pred); 1725 } 1726 1727 // If the threadable edges are branching on an undefined value, we get to pick 1728 // the destination that these predecessors should get to. 1729 if (!MostPopularDest) 1730 MostPopularDest = BB->getTerminator()-> 1731 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1732 1733 // Ok, try to thread it! 1734 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1735 } 1736 1737 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1738 /// a PHI node in the current block. See if there are any simplifications we 1739 /// can do based on inputs to the phi node. 1740 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1741 BasicBlock *BB = PN->getParent(); 1742 1743 // TODO: We could make use of this to do it once for blocks with common PHI 1744 // values. 1745 SmallVector<BasicBlock*, 1> PredBBs; 1746 PredBBs.resize(1); 1747 1748 // If any of the predecessor blocks end in an unconditional branch, we can 1749 // *duplicate* the conditional branch into that block in order to further 1750 // encourage jump threading and to eliminate cases where we have branch on a 1751 // phi of an icmp (branch on icmp is much better). 1752 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1753 BasicBlock *PredBB = PN->getIncomingBlock(i); 1754 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1755 if (PredBr->isUnconditional()) { 1756 PredBBs[0] = PredBB; 1757 // Try to duplicate BB into PredBB. 1758 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1759 return true; 1760 } 1761 } 1762 1763 return false; 1764 } 1765 1766 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1767 /// a xor instruction in the current block. See if there are any 1768 /// simplifications we can do based on inputs to the xor. 1769 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1770 BasicBlock *BB = BO->getParent(); 1771 1772 // If either the LHS or RHS of the xor is a constant, don't do this 1773 // optimization. 1774 if (isa<ConstantInt>(BO->getOperand(0)) || 1775 isa<ConstantInt>(BO->getOperand(1))) 1776 return false; 1777 1778 // If the first instruction in BB isn't a phi, we won't be able to infer 1779 // anything special about any particular predecessor. 1780 if (!isa<PHINode>(BB->front())) 1781 return false; 1782 1783 // If this BB is a landing pad, we won't be able to split the edge into it. 1784 if (BB->isEHPad()) 1785 return false; 1786 1787 // If we have a xor as the branch input to this block, and we know that the 1788 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1789 // the condition into the predecessor and fix that value to true, saving some 1790 // logical ops on that path and encouraging other paths to simplify. 1791 // 1792 // This copies something like this: 1793 // 1794 // BB: 1795 // %X = phi i1 [1], [%X'] 1796 // %Y = icmp eq i32 %A, %B 1797 // %Z = xor i1 %X, %Y 1798 // br i1 %Z, ... 1799 // 1800 // Into: 1801 // BB': 1802 // %Y = icmp ne i32 %A, %B 1803 // br i1 %Y, ... 1804 1805 PredValueInfoTy XorOpValues; 1806 bool isLHS = true; 1807 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1808 WantInteger, BO)) { 1809 assert(XorOpValues.empty()); 1810 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1811 WantInteger, BO)) 1812 return false; 1813 isLHS = false; 1814 } 1815 1816 assert(!XorOpValues.empty() && 1817 "ComputeValueKnownInPredecessors returned true with no values"); 1818 1819 // Scan the information to see which is most popular: true or false. The 1820 // predecessors can be of the set true, false, or undef. 1821 unsigned NumTrue = 0, NumFalse = 0; 1822 for (const auto &XorOpValue : XorOpValues) { 1823 if (isa<UndefValue>(XorOpValue.first)) 1824 // Ignore undefs for the count. 1825 continue; 1826 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1827 ++NumFalse; 1828 else 1829 ++NumTrue; 1830 } 1831 1832 // Determine which value to split on, true, false, or undef if neither. 1833 ConstantInt *SplitVal = nullptr; 1834 if (NumTrue > NumFalse) 1835 SplitVal = ConstantInt::getTrue(BB->getContext()); 1836 else if (NumTrue != 0 || NumFalse != 0) 1837 SplitVal = ConstantInt::getFalse(BB->getContext()); 1838 1839 // Collect all of the blocks that this can be folded into so that we can 1840 // factor this once and clone it once. 1841 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1842 for (const auto &XorOpValue : XorOpValues) { 1843 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1844 continue; 1845 1846 BlocksToFoldInto.push_back(XorOpValue.second); 1847 } 1848 1849 // If we inferred a value for all of the predecessors, then duplication won't 1850 // help us. However, we can just replace the LHS or RHS with the constant. 1851 if (BlocksToFoldInto.size() == 1852 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1853 if (!SplitVal) { 1854 // If all preds provide undef, just nuke the xor, because it is undef too. 1855 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1856 BO->eraseFromParent(); 1857 } else if (SplitVal->isZero()) { 1858 // If all preds provide 0, replace the xor with the other input. 1859 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1860 BO->eraseFromParent(); 1861 } else { 1862 // If all preds provide 1, set the computed value to 1. 1863 BO->setOperand(!isLHS, SplitVal); 1864 } 1865 1866 return true; 1867 } 1868 1869 // Try to duplicate BB into PredBB. 1870 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1871 } 1872 1873 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1874 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1875 /// NewPred using the entries from OldPred (suitably mapped). 1876 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1877 BasicBlock *OldPred, 1878 BasicBlock *NewPred, 1879 DenseMap<Instruction*, Value*> &ValueMap) { 1880 for (PHINode &PN : PHIBB->phis()) { 1881 // Ok, we have a PHI node. Figure out what the incoming value was for the 1882 // DestBlock. 1883 Value *IV = PN.getIncomingValueForBlock(OldPred); 1884 1885 // Remap the value if necessary. 1886 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1887 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1888 if (I != ValueMap.end()) 1889 IV = I->second; 1890 } 1891 1892 PN.addIncoming(IV, NewPred); 1893 } 1894 } 1895 1896 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1897 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1898 /// across BB. Transform the IR to reflect this change. 1899 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1900 const SmallVectorImpl<BasicBlock *> &PredBBs, 1901 BasicBlock *SuccBB) { 1902 // If threading to the same block as we come from, we would infinite loop. 1903 if (SuccBB == BB) { 1904 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1905 << "' - would thread to self!\n"); 1906 return false; 1907 } 1908 1909 // If threading this would thread across a loop header, don't thread the edge. 1910 // See the comments above FindLoopHeaders for justifications and caveats. 1911 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1912 DEBUG({ 1913 bool BBIsHeader = LoopHeaders.count(BB); 1914 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1915 dbgs() << " Not threading across " 1916 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1917 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1918 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1919 }); 1920 return false; 1921 } 1922 1923 unsigned JumpThreadCost = 1924 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1925 if (JumpThreadCost > BBDupThreshold) { 1926 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1927 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1928 return false; 1929 } 1930 1931 // And finally, do it! Start by factoring the predecessors if needed. 1932 BasicBlock *PredBB; 1933 if (PredBBs.size() == 1) 1934 PredBB = PredBBs[0]; 1935 else { 1936 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1937 << " common predecessors.\n"); 1938 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1939 } 1940 1941 // And finally, do it! 1942 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1943 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1944 << ", across block:\n " 1945 << *BB << "\n"); 1946 1947 if (DDT->pending()) 1948 LVI->disableDT(); 1949 else 1950 LVI->enableDT(); 1951 LVI->threadEdge(PredBB, BB, SuccBB); 1952 1953 // We are going to have to map operands from the original BB block to the new 1954 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1955 // account for entry from PredBB. 1956 DenseMap<Instruction*, Value*> ValueMapping; 1957 1958 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1959 BB->getName()+".thread", 1960 BB->getParent(), BB); 1961 NewBB->moveAfter(PredBB); 1962 1963 // Set the block frequency of NewBB. 1964 if (HasProfileData) { 1965 auto NewBBFreq = 1966 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1967 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1968 } 1969 1970 BasicBlock::iterator BI = BB->begin(); 1971 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1972 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1973 1974 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1975 // mapping and using it to remap operands in the cloned instructions. 1976 for (; !isa<TerminatorInst>(BI); ++BI) { 1977 Instruction *New = BI->clone(); 1978 New->setName(BI->getName()); 1979 NewBB->getInstList().push_back(New); 1980 ValueMapping[&*BI] = New; 1981 1982 // Remap operands to patch up intra-block references. 1983 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1984 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1985 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1986 if (I != ValueMapping.end()) 1987 New->setOperand(i, I->second); 1988 } 1989 } 1990 1991 // We didn't copy the terminator from BB over to NewBB, because there is now 1992 // an unconditional jump to SuccBB. Insert the unconditional jump. 1993 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1994 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1995 1996 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1997 // PHI nodes for NewBB now. 1998 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1999 2000 // If there were values defined in BB that are used outside the block, then we 2001 // now have to update all uses of the value to use either the original value, 2002 // the cloned value, or some PHI derived value. This can require arbitrary 2003 // PHI insertion, of which we are prepared to do, clean these up now. 2004 SSAUpdater SSAUpdate; 2005 SmallVector<Use*, 16> UsesToRename; 2006 for (Instruction &I : *BB) { 2007 // Scan all uses of this instruction to see if it is used outside of its 2008 // block, and if so, record them in UsesToRename. 2009 for (Use &U : I.uses()) { 2010 Instruction *User = cast<Instruction>(U.getUser()); 2011 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2012 if (UserPN->getIncomingBlock(U) == BB) 2013 continue; 2014 } else if (User->getParent() == BB) 2015 continue; 2016 2017 UsesToRename.push_back(&U); 2018 } 2019 2020 // If there are no uses outside the block, we're done with this instruction. 2021 if (UsesToRename.empty()) 2022 continue; 2023 2024 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2025 2026 // We found a use of I outside of BB. Rename all uses of I that are outside 2027 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2028 // with the two values we know. 2029 SSAUpdate.Initialize(I.getType(), I.getName()); 2030 SSAUpdate.AddAvailableValue(BB, &I); 2031 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2032 2033 while (!UsesToRename.empty()) 2034 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2035 DEBUG(dbgs() << "\n"); 2036 } 2037 2038 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 2039 // NewBB instead of BB. This eliminates predecessors from BB, which requires 2040 // us to simplify any PHI nodes in BB. 2041 TerminatorInst *PredTerm = PredBB->getTerminator(); 2042 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2043 if (PredTerm->getSuccessor(i) == BB) { 2044 BB->removePredecessor(PredBB, true); 2045 PredTerm->setSuccessor(i, NewBB); 2046 } 2047 2048 DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2049 {DominatorTree::Insert, PredBB, NewBB}, 2050 {DominatorTree::Delete, PredBB, BB}}); 2051 2052 // At this point, the IR is fully up to date and consistent. Do a quick scan 2053 // over the new instructions and zap any that are constants or dead. This 2054 // frequently happens because of phi translation. 2055 SimplifyInstructionsInBlock(NewBB, TLI); 2056 2057 // Update the edge weight from BB to SuccBB, which should be less than before. 2058 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2059 2060 // Threaded an edge! 2061 ++NumThreads; 2062 return true; 2063 } 2064 2065 /// Create a new basic block that will be the predecessor of BB and successor of 2066 /// all blocks in Preds. When profile data is available, update the frequency of 2067 /// this new block. 2068 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2069 ArrayRef<BasicBlock *> Preds, 2070 const char *Suffix) { 2071 SmallVector<BasicBlock *, 2> NewBBs; 2072 2073 // Collect the frequencies of all predecessors of BB, which will be used to 2074 // update the edge weight of the result of splitting predecessors. 2075 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2076 if (HasProfileData) 2077 for (auto Pred : Preds) 2078 FreqMap.insert(std::make_pair( 2079 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2080 2081 // In the case when BB is a LandingPad block we create 2 new predecessors 2082 // instead of just one. 2083 if (BB->isLandingPad()) { 2084 std::string NewName = std::string(Suffix) + ".split-lp"; 2085 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2086 } else { 2087 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2088 } 2089 2090 std::vector<DominatorTree::UpdateType> Updates; 2091 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2092 for (auto NewBB : NewBBs) { 2093 BlockFrequency NewBBFreq(0); 2094 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2095 for (auto Pred : predecessors(NewBB)) { 2096 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2097 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2098 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2099 NewBBFreq += FreqMap.lookup(Pred); 2100 } 2101 if (HasProfileData) // Apply the summed frequency to NewBB. 2102 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2103 } 2104 2105 DDT->applyUpdates(Updates); 2106 return NewBBs[0]; 2107 } 2108 2109 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2110 const TerminatorInst *TI = BB->getTerminator(); 2111 assert(TI->getNumSuccessors() > 1 && "not a split"); 2112 2113 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2114 if (!WeightsNode) 2115 return false; 2116 2117 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2118 if (MDName->getString() != "branch_weights") 2119 return false; 2120 2121 // Ensure there are weights for all of the successors. Note that the first 2122 // operand to the metadata node is a name, not a weight. 2123 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2124 } 2125 2126 /// Update the block frequency of BB and branch weight and the metadata on the 2127 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2128 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2129 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2130 BasicBlock *BB, 2131 BasicBlock *NewBB, 2132 BasicBlock *SuccBB) { 2133 if (!HasProfileData) 2134 return; 2135 2136 assert(BFI && BPI && "BFI & BPI should have been created here"); 2137 2138 // As the edge from PredBB to BB is deleted, we have to update the block 2139 // frequency of BB. 2140 auto BBOrigFreq = BFI->getBlockFreq(BB); 2141 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2142 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2143 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2144 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2145 2146 // Collect updated outgoing edges' frequencies from BB and use them to update 2147 // edge probabilities. 2148 SmallVector<uint64_t, 4> BBSuccFreq; 2149 for (BasicBlock *Succ : successors(BB)) { 2150 auto SuccFreq = (Succ == SuccBB) 2151 ? BB2SuccBBFreq - NewBBFreq 2152 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2153 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2154 } 2155 2156 uint64_t MaxBBSuccFreq = 2157 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2158 2159 SmallVector<BranchProbability, 4> BBSuccProbs; 2160 if (MaxBBSuccFreq == 0) 2161 BBSuccProbs.assign(BBSuccFreq.size(), 2162 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2163 else { 2164 for (uint64_t Freq : BBSuccFreq) 2165 BBSuccProbs.push_back( 2166 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2167 // Normalize edge probabilities so that they sum up to one. 2168 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2169 BBSuccProbs.end()); 2170 } 2171 2172 // Update edge probabilities in BPI. 2173 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2174 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2175 2176 // Update the profile metadata as well. 2177 // 2178 // Don't do this if the profile of the transformed blocks was statically 2179 // estimated. (This could occur despite the function having an entry 2180 // frequency in completely cold parts of the CFG.) 2181 // 2182 // In this case we don't want to suggest to subsequent passes that the 2183 // calculated weights are fully consistent. Consider this graph: 2184 // 2185 // check_1 2186 // 50% / | 2187 // eq_1 | 50% 2188 // \ | 2189 // check_2 2190 // 50% / | 2191 // eq_2 | 50% 2192 // \ | 2193 // check_3 2194 // 50% / | 2195 // eq_3 | 50% 2196 // \ | 2197 // 2198 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2199 // the overall probabilities are inconsistent; the total probability that the 2200 // value is either 1, 2 or 3 is 150%. 2201 // 2202 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2203 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2204 // the loop exit edge. Then based solely on static estimation we would assume 2205 // the loop was extremely hot. 2206 // 2207 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2208 // shouldn't make edges extremely likely or unlikely based solely on static 2209 // estimation. 2210 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2211 SmallVector<uint32_t, 4> Weights; 2212 for (auto Prob : BBSuccProbs) 2213 Weights.push_back(Prob.getNumerator()); 2214 2215 auto TI = BB->getTerminator(); 2216 TI->setMetadata( 2217 LLVMContext::MD_prof, 2218 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2219 } 2220 } 2221 2222 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2223 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2224 /// If we can duplicate the contents of BB up into PredBB do so now, this 2225 /// improves the odds that the branch will be on an analyzable instruction like 2226 /// a compare. 2227 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2228 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2229 assert(!PredBBs.empty() && "Can't handle an empty set"); 2230 2231 // If BB is a loop header, then duplicating this block outside the loop would 2232 // cause us to transform this into an irreducible loop, don't do this. 2233 // See the comments above FindLoopHeaders for justifications and caveats. 2234 if (LoopHeaders.count(BB)) { 2235 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2236 << "' into predecessor block '" << PredBBs[0]->getName() 2237 << "' - it might create an irreducible loop!\n"); 2238 return false; 2239 } 2240 2241 unsigned DuplicationCost = 2242 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2243 if (DuplicationCost > BBDupThreshold) { 2244 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2245 << "' - Cost is too high: " << DuplicationCost << "\n"); 2246 return false; 2247 } 2248 2249 // And finally, do it! Start by factoring the predecessors if needed. 2250 std::vector<DominatorTree::UpdateType> Updates; 2251 BasicBlock *PredBB; 2252 if (PredBBs.size() == 1) 2253 PredBB = PredBBs[0]; 2254 else { 2255 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2256 << " common predecessors.\n"); 2257 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2258 } 2259 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2260 2261 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2262 // of PredBB. 2263 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2264 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2265 << DuplicationCost << " block is:" << *BB << "\n"); 2266 2267 // Unless PredBB ends with an unconditional branch, split the edge so that we 2268 // can just clone the bits from BB into the end of the new PredBB. 2269 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2270 2271 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2272 BasicBlock *OldPredBB = PredBB; 2273 PredBB = SplitEdge(OldPredBB, BB); 2274 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2275 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2276 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2277 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2278 } 2279 2280 // We are going to have to map operands from the original BB block into the 2281 // PredBB block. Evaluate PHI nodes in BB. 2282 DenseMap<Instruction*, Value*> ValueMapping; 2283 2284 BasicBlock::iterator BI = BB->begin(); 2285 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2286 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2287 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2288 // mapping and using it to remap operands in the cloned instructions. 2289 for (; BI != BB->end(); ++BI) { 2290 Instruction *New = BI->clone(); 2291 2292 // Remap operands to patch up intra-block references. 2293 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2294 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2295 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2296 if (I != ValueMapping.end()) 2297 New->setOperand(i, I->second); 2298 } 2299 2300 // If this instruction can be simplified after the operands are updated, 2301 // just use the simplified value instead. This frequently happens due to 2302 // phi translation. 2303 if (Value *IV = SimplifyInstruction( 2304 New, 2305 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2306 ValueMapping[&*BI] = IV; 2307 if (!New->mayHaveSideEffects()) { 2308 New->deleteValue(); 2309 New = nullptr; 2310 } 2311 } else { 2312 ValueMapping[&*BI] = New; 2313 } 2314 if (New) { 2315 // Otherwise, insert the new instruction into the block. 2316 New->setName(BI->getName()); 2317 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2318 // Update Dominance from simplified New instruction operands. 2319 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2320 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2321 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2322 } 2323 } 2324 2325 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2326 // add entries to the PHI nodes for branch from PredBB now. 2327 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2328 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2329 ValueMapping); 2330 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2331 ValueMapping); 2332 2333 // If there were values defined in BB that are used outside the block, then we 2334 // now have to update all uses of the value to use either the original value, 2335 // the cloned value, or some PHI derived value. This can require arbitrary 2336 // PHI insertion, of which we are prepared to do, clean these up now. 2337 SSAUpdater SSAUpdate; 2338 SmallVector<Use*, 16> UsesToRename; 2339 for (Instruction &I : *BB) { 2340 // Scan all uses of this instruction to see if it is used outside of its 2341 // block, and if so, record them in UsesToRename. 2342 for (Use &U : I.uses()) { 2343 Instruction *User = cast<Instruction>(U.getUser()); 2344 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2345 if (UserPN->getIncomingBlock(U) == BB) 2346 continue; 2347 } else if (User->getParent() == BB) 2348 continue; 2349 2350 UsesToRename.push_back(&U); 2351 } 2352 2353 // If there are no uses outside the block, we're done with this instruction. 2354 if (UsesToRename.empty()) 2355 continue; 2356 2357 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2358 2359 // We found a use of I outside of BB. Rename all uses of I that are outside 2360 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2361 // with the two values we know. 2362 SSAUpdate.Initialize(I.getType(), I.getName()); 2363 SSAUpdate.AddAvailableValue(BB, &I); 2364 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2365 2366 while (!UsesToRename.empty()) 2367 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2368 DEBUG(dbgs() << "\n"); 2369 } 2370 2371 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2372 // that we nuked. 2373 BB->removePredecessor(PredBB, true); 2374 2375 // Remove the unconditional branch at the end of the PredBB block. 2376 OldPredBranch->eraseFromParent(); 2377 DDT->applyUpdates(Updates); 2378 2379 ++NumDupes; 2380 return true; 2381 } 2382 2383 /// TryToUnfoldSelect - Look for blocks of the form 2384 /// bb1: 2385 /// %a = select 2386 /// br bb2 2387 /// 2388 /// bb2: 2389 /// %p = phi [%a, %bb1] ... 2390 /// %c = icmp %p 2391 /// br i1 %c 2392 /// 2393 /// And expand the select into a branch structure if one of its arms allows %c 2394 /// to be folded. This later enables threading from bb1 over bb2. 2395 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2396 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2397 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2398 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2399 2400 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2401 CondLHS->getParent() != BB) 2402 return false; 2403 2404 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2405 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2406 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2407 2408 // Look if one of the incoming values is a select in the corresponding 2409 // predecessor. 2410 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2411 continue; 2412 2413 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2414 if (!PredTerm || !PredTerm->isUnconditional()) 2415 continue; 2416 2417 // Now check if one of the select values would allow us to constant fold the 2418 // terminator in BB. We don't do the transform if both sides fold, those 2419 // cases will be threaded in any case. 2420 if (DDT->pending()) 2421 LVI->disableDT(); 2422 else 2423 LVI->enableDT(); 2424 LazyValueInfo::Tristate LHSFolds = 2425 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2426 CondRHS, Pred, BB, CondCmp); 2427 LazyValueInfo::Tristate RHSFolds = 2428 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2429 CondRHS, Pred, BB, CondCmp); 2430 if ((LHSFolds != LazyValueInfo::Unknown || 2431 RHSFolds != LazyValueInfo::Unknown) && 2432 LHSFolds != RHSFolds) { 2433 // Expand the select. 2434 // 2435 // Pred -- 2436 // | v 2437 // | NewBB 2438 // | | 2439 // |----- 2440 // v 2441 // BB 2442 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2443 BB->getParent(), BB); 2444 // Move the unconditional branch to NewBB. 2445 PredTerm->removeFromParent(); 2446 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2447 // Create a conditional branch and update PHI nodes. 2448 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2449 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2450 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2451 // The select is now dead. 2452 SI->eraseFromParent(); 2453 2454 DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2455 {DominatorTree::Insert, Pred, NewBB}}); 2456 // Update any other PHI nodes in BB. 2457 for (BasicBlock::iterator BI = BB->begin(); 2458 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2459 if (Phi != CondLHS) 2460 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2461 return true; 2462 } 2463 } 2464 return false; 2465 } 2466 2467 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2468 /// same BB in the form 2469 /// bb: 2470 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2471 /// %s = select %p, trueval, falseval 2472 /// 2473 /// or 2474 /// 2475 /// bb: 2476 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2477 /// %c = cmp %p, 0 2478 /// %s = select %c, trueval, falseval 2479 /// 2480 /// And expand the select into a branch structure. This later enables 2481 /// jump-threading over bb in this pass. 2482 /// 2483 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2484 /// select if the associated PHI has at least one constant. If the unfolded 2485 /// select is not jump-threaded, it will be folded again in the later 2486 /// optimizations. 2487 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2488 // If threading this would thread across a loop header, don't thread the edge. 2489 // See the comments above FindLoopHeaders for justifications and caveats. 2490 if (LoopHeaders.count(BB)) 2491 return false; 2492 2493 for (BasicBlock::iterator BI = BB->begin(); 2494 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2495 // Look for a Phi having at least one constant incoming value. 2496 if (llvm::all_of(PN->incoming_values(), 2497 [](Value *V) { return !isa<ConstantInt>(V); })) 2498 continue; 2499 2500 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2501 // Check if SI is in BB and use V as condition. 2502 if (SI->getParent() != BB) 2503 return false; 2504 Value *Cond = SI->getCondition(); 2505 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2506 }; 2507 2508 SelectInst *SI = nullptr; 2509 for (Use &U : PN->uses()) { 2510 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2511 // Look for a ICmp in BB that compares PN with a constant and is the 2512 // condition of a Select. 2513 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2514 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2515 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2516 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2517 SI = SelectI; 2518 break; 2519 } 2520 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2521 // Look for a Select in BB that uses PN as condtion. 2522 if (isUnfoldCandidate(SelectI, U.get())) { 2523 SI = SelectI; 2524 break; 2525 } 2526 } 2527 } 2528 2529 if (!SI) 2530 continue; 2531 // Expand the select. 2532 TerminatorInst *Term = 2533 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2534 BasicBlock *SplitBB = SI->getParent(); 2535 BasicBlock *NewBB = Term->getParent(); 2536 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2537 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2538 NewPN->addIncoming(SI->getFalseValue(), BB); 2539 SI->replaceAllUsesWith(NewPN); 2540 SI->eraseFromParent(); 2541 // NewBB and SplitBB are newly created blocks which require insertion. 2542 std::vector<DominatorTree::UpdateType> Updates; 2543 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2544 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2545 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2546 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2547 // BB's successors were moved to SplitBB, update DDT accordingly. 2548 for (auto *Succ : successors(SplitBB)) { 2549 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2550 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2551 } 2552 DDT->applyUpdates(Updates); 2553 return true; 2554 } 2555 return false; 2556 } 2557 2558 /// Try to propagate a guard from the current BB into one of its predecessors 2559 /// in case if another branch of execution implies that the condition of this 2560 /// guard is always true. Currently we only process the simplest case that 2561 /// looks like: 2562 /// 2563 /// Start: 2564 /// %cond = ... 2565 /// br i1 %cond, label %T1, label %F1 2566 /// T1: 2567 /// br label %Merge 2568 /// F1: 2569 /// br label %Merge 2570 /// Merge: 2571 /// %condGuard = ... 2572 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2573 /// 2574 /// And cond either implies condGuard or !condGuard. In this case all the 2575 /// instructions before the guard can be duplicated in both branches, and the 2576 /// guard is then threaded to one of them. 2577 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2578 using namespace PatternMatch; 2579 2580 // We only want to deal with two predecessors. 2581 BasicBlock *Pred1, *Pred2; 2582 auto PI = pred_begin(BB), PE = pred_end(BB); 2583 if (PI == PE) 2584 return false; 2585 Pred1 = *PI++; 2586 if (PI == PE) 2587 return false; 2588 Pred2 = *PI++; 2589 if (PI != PE) 2590 return false; 2591 if (Pred1 == Pred2) 2592 return false; 2593 2594 // Try to thread one of the guards of the block. 2595 // TODO: Look up deeper than to immediate predecessor? 2596 auto *Parent = Pred1->getSinglePredecessor(); 2597 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2598 return false; 2599 2600 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2601 for (auto &I : *BB) 2602 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2603 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2604 return true; 2605 2606 return false; 2607 } 2608 2609 /// Try to propagate the guard from BB which is the lower block of a diamond 2610 /// to one of its branches, in case if diamond's condition implies guard's 2611 /// condition. 2612 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2613 BranchInst *BI) { 2614 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2615 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2616 Value *GuardCond = Guard->getArgOperand(0); 2617 Value *BranchCond = BI->getCondition(); 2618 BasicBlock *TrueDest = BI->getSuccessor(0); 2619 BasicBlock *FalseDest = BI->getSuccessor(1); 2620 2621 auto &DL = BB->getModule()->getDataLayout(); 2622 bool TrueDestIsSafe = false; 2623 bool FalseDestIsSafe = false; 2624 2625 // True dest is safe if BranchCond => GuardCond. 2626 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2627 if (Impl && *Impl) 2628 TrueDestIsSafe = true; 2629 else { 2630 // False dest is safe if !BranchCond => GuardCond. 2631 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2632 if (Impl && *Impl) 2633 FalseDestIsSafe = true; 2634 } 2635 2636 if (!TrueDestIsSafe && !FalseDestIsSafe) 2637 return false; 2638 2639 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2640 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2641 2642 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2643 Instruction *AfterGuard = Guard->getNextNode(); 2644 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2645 if (Cost > BBDupThreshold) 2646 return false; 2647 // Duplicate all instructions before the guard and the guard itself to the 2648 // branch where implication is not proved. 2649 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2650 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2651 assert(GuardedBlock && "Could not create the guarded block?"); 2652 // Duplicate all instructions before the guard in the unguarded branch. 2653 // Since we have successfully duplicated the guarded block and this block 2654 // has fewer instructions, we expect it to succeed. 2655 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2656 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2657 assert(UnguardedBlock && "Could not create the unguarded block?"); 2658 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2659 << GuardedBlock->getName() << "\n"); 2660 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2661 // PredBB and BB. We need to perform two inserts and one delete for each of 2662 // the above calls to update Dominators. 2663 DDT->applyUpdates( 2664 {// Guarded block split. 2665 {DominatorTree::Delete, PredGuardedBlock, BB}, 2666 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2667 {DominatorTree::Insert, GuardedBlock, BB}, 2668 // Unguarded block split. 2669 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2670 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2671 {DominatorTree::Insert, UnguardedBlock, BB}}); 2672 // Some instructions before the guard may still have uses. For them, we need 2673 // to create Phi nodes merging their copies in both guarded and unguarded 2674 // branches. Those instructions that have no uses can be just removed. 2675 SmallVector<Instruction *, 4> ToRemove; 2676 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2677 if (!isa<PHINode>(&*BI)) 2678 ToRemove.push_back(&*BI); 2679 2680 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2681 assert(InsertionPoint && "Empty block?"); 2682 // Substitute with Phis & remove. 2683 for (auto *Inst : reverse(ToRemove)) { 2684 if (!Inst->use_empty()) { 2685 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2686 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2687 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2688 NewPN->insertBefore(InsertionPoint); 2689 Inst->replaceAllUsesWith(NewPN); 2690 } 2691 Inst->eraseFromParent(); 2692 } 2693 return true; 2694 } 2695