1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 #include "llvm/Transforms/Utils/SSAUpdater.h"
43 #include <algorithm>
44 #include <memory>
45 using namespace llvm;
46 using namespace jumpthreading;
47 
48 #define DEBUG_TYPE "jump-threading"
49 
50 STATISTIC(NumThreads, "Number of jumps threaded");
51 STATISTIC(NumFolds,   "Number of terminators folded");
52 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
53 
54 static cl::opt<unsigned>
55 BBDuplicateThreshold("jump-threading-threshold",
56           cl::desc("Max block size to duplicate for jump threading"),
57           cl::init(6), cl::Hidden);
58 
59 static cl::opt<unsigned>
60 ImplicationSearchThreshold(
61   "jump-threading-implication-search-threshold",
62   cl::desc("The number of predecessors to search for a stronger "
63            "condition to use to thread over a weaker condition"),
64   cl::init(3), cl::Hidden);
65 
66 namespace {
67   /// This pass performs 'jump threading', which looks at blocks that have
68   /// multiple predecessors and multiple successors.  If one or more of the
69   /// predecessors of the block can be proven to always jump to one of the
70   /// successors, we forward the edge from the predecessor to the successor by
71   /// duplicating the contents of this block.
72   ///
73   /// An example of when this can occur is code like this:
74   ///
75   ///   if () { ...
76   ///     X = 4;
77   ///   }
78   ///   if (X < 3) {
79   ///
80   /// In this case, the unconditional branch at the end of the first if can be
81   /// revectored to the false side of the second if.
82   ///
83   class JumpThreading : public FunctionPass {
84     JumpThreadingPass Impl;
85 
86   public:
87     static char ID; // Pass identification
88     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
89       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
90     }
91 
92     bool runOnFunction(Function &F) override;
93 
94     void getAnalysisUsage(AnalysisUsage &AU) const override {
95       AU.addRequired<AAResultsWrapperPass>();
96       AU.addRequired<LazyValueInfoWrapperPass>();
97       AU.addPreserved<LazyValueInfoWrapperPass>();
98       AU.addPreserved<GlobalsAAWrapperPass>();
99       AU.addRequired<TargetLibraryInfoWrapperPass>();
100     }
101 
102     void releaseMemory() override { Impl.releaseMemory(); }
103   };
104 }
105 
106 char JumpThreading::ID = 0;
107 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
108                 "Jump Threading", false, false)
109 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
110 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
111 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
112 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
113                 "Jump Threading", false, false)
114 
115 // Public interface to the Jump Threading pass
116 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
117 
118 JumpThreadingPass::JumpThreadingPass(int T) {
119   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
120 }
121 
122 /// runOnFunction - Top level algorithm.
123 ///
124 bool JumpThreading::runOnFunction(Function &F) {
125   if (skipFunction(F))
126     return false;
127   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
128   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
129   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
130   std::unique_ptr<BlockFrequencyInfo> BFI;
131   std::unique_ptr<BranchProbabilityInfo> BPI;
132   bool HasProfileData = F.getEntryCount().hasValue();
133   if (HasProfileData) {
134     LoopInfo LI{DominatorTree(F)};
135     BPI.reset(new BranchProbabilityInfo(F, LI));
136     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
137   }
138 
139   return Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI),
140                       std::move(BPI));
141 }
142 
143 PreservedAnalyses JumpThreadingPass::run(Function &F,
144                                          FunctionAnalysisManager &AM) {
145 
146   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
147   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
148   auto &AA = AM.getResult<AAManager>(F);
149 
150   std::unique_ptr<BlockFrequencyInfo> BFI;
151   std::unique_ptr<BranchProbabilityInfo> BPI;
152   bool HasProfileData = F.getEntryCount().hasValue();
153   if (HasProfileData) {
154     LoopInfo LI{DominatorTree(F)};
155     BPI.reset(new BranchProbabilityInfo(F, LI));
156     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
157   }
158 
159   bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI),
160                          std::move(BPI));
161 
162   if (!Changed)
163     return PreservedAnalyses::all();
164   PreservedAnalyses PA;
165   PA.preserve<GlobalsAA>();
166   return PA;
167 }
168 
169 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
170                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
171                                 bool HasProfileData_,
172                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
173                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
174 
175   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
176   TLI = TLI_;
177   LVI = LVI_;
178   AA = AA_;
179   BFI.reset();
180   BPI.reset();
181   // When profile data is available, we need to update edge weights after
182   // successful jump threading, which requires both BPI and BFI being available.
183   HasProfileData = HasProfileData_;
184   auto *GuardDecl = F.getParent()->getFunction(
185       Intrinsic::getName(Intrinsic::experimental_guard));
186   HasGuards = GuardDecl && !GuardDecl->use_empty();
187   if (HasProfileData) {
188     BPI = std::move(BPI_);
189     BFI = std::move(BFI_);
190   }
191 
192   // Remove unreachable blocks from function as they may result in infinite
193   // loop. We do threading if we found something profitable. Jump threading a
194   // branch can create other opportunities. If these opportunities form a cycle
195   // i.e. if any jump threading is undoing previous threading in the path, then
196   // we will loop forever. We take care of this issue by not jump threading for
197   // back edges. This works for normal cases but not for unreachable blocks as
198   // they may have cycle with no back edge.
199   bool EverChanged = false;
200   EverChanged |= removeUnreachableBlocks(F, LVI);
201 
202   FindLoopHeaders(F);
203 
204   bool Changed;
205   do {
206     Changed = false;
207     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
208       BasicBlock *BB = &*I;
209       // Thread all of the branches we can over this block.
210       while (ProcessBlock(BB))
211         Changed = true;
212 
213       ++I;
214 
215       // If the block is trivially dead, zap it.  This eliminates the successor
216       // edges which simplifies the CFG.
217       if (pred_empty(BB) &&
218           BB != &BB->getParent()->getEntryBlock()) {
219         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
220               << "' with terminator: " << *BB->getTerminator() << '\n');
221         LoopHeaders.erase(BB);
222         LVI->eraseBlock(BB);
223         DeleteDeadBlock(BB);
224         Changed = true;
225         continue;
226       }
227 
228       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
229 
230       // Can't thread an unconditional jump, but if the block is "almost
231       // empty", we can replace uses of it with uses of the successor and make
232       // this dead.
233       // We should not eliminate the loop header either, because eliminating
234       // a loop header might later prevent LoopSimplify from transforming nested
235       // loops into simplified form.
236       if (BI && BI->isUnconditional() &&
237           BB != &BB->getParent()->getEntryBlock() &&
238           // If the terminator is the only non-phi instruction, try to nuke it.
239           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
240         // FIXME: It is always conservatively correct to drop the info
241         // for a block even if it doesn't get erased.  This isn't totally
242         // awesome, but it allows us to use AssertingVH to prevent nasty
243         // dangling pointer issues within LazyValueInfo.
244         LVI->eraseBlock(BB);
245         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
246           Changed = true;
247       }
248     }
249     EverChanged |= Changed;
250   } while (Changed);
251 
252   LoopHeaders.clear();
253   return EverChanged;
254 }
255 
256 /// Return the cost of duplicating a piece of this block from first non-phi
257 /// and before StopAt instruction to thread across it. Stop scanning the block
258 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
259 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
260                                              Instruction *StopAt,
261                                              unsigned Threshold) {
262   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
263   /// Ignore PHI nodes, these will be flattened when duplication happens.
264   BasicBlock::const_iterator I(BB->getFirstNonPHI());
265 
266   // FIXME: THREADING will delete values that are just used to compute the
267   // branch, so they shouldn't count against the duplication cost.
268 
269   unsigned Bonus = 0;
270   if (BB->getTerminator() == StopAt) {
271     // Threading through a switch statement is particularly profitable.  If this
272     // block ends in a switch, decrease its cost to make it more likely to
273     // happen.
274     if (isa<SwitchInst>(StopAt))
275       Bonus = 6;
276 
277     // The same holds for indirect branches, but slightly more so.
278     if (isa<IndirectBrInst>(StopAt))
279       Bonus = 8;
280   }
281 
282   // Bump the threshold up so the early exit from the loop doesn't skip the
283   // terminator-based Size adjustment at the end.
284   Threshold += Bonus;
285 
286   // Sum up the cost of each instruction until we get to the terminator.  Don't
287   // include the terminator because the copy won't include it.
288   unsigned Size = 0;
289   for (; &*I != StopAt; ++I) {
290 
291     // Stop scanning the block if we've reached the threshold.
292     if (Size > Threshold)
293       return Size;
294 
295     // Debugger intrinsics don't incur code size.
296     if (isa<DbgInfoIntrinsic>(I)) continue;
297 
298     // If this is a pointer->pointer bitcast, it is free.
299     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
300       continue;
301 
302     // Bail out if this instruction gives back a token type, it is not possible
303     // to duplicate it if it is used outside this BB.
304     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
305       return ~0U;
306 
307     // All other instructions count for at least one unit.
308     ++Size;
309 
310     // Calls are more expensive.  If they are non-intrinsic calls, we model them
311     // as having cost of 4.  If they are a non-vector intrinsic, we model them
312     // as having cost of 2 total, and if they are a vector intrinsic, we model
313     // them as having cost 1.
314     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
315       if (CI->cannotDuplicate() || CI->isConvergent())
316         // Blocks with NoDuplicate are modelled as having infinite cost, so they
317         // are never duplicated.
318         return ~0U;
319       else if (!isa<IntrinsicInst>(CI))
320         Size += 3;
321       else if (!CI->getType()->isVectorTy())
322         Size += 1;
323     }
324   }
325 
326   return Size > Bonus ? Size - Bonus : 0;
327 }
328 
329 /// FindLoopHeaders - We do not want jump threading to turn proper loop
330 /// structures into irreducible loops.  Doing this breaks up the loop nesting
331 /// hierarchy and pessimizes later transformations.  To prevent this from
332 /// happening, we first have to find the loop headers.  Here we approximate this
333 /// by finding targets of backedges in the CFG.
334 ///
335 /// Note that there definitely are cases when we want to allow threading of
336 /// edges across a loop header.  For example, threading a jump from outside the
337 /// loop (the preheader) to an exit block of the loop is definitely profitable.
338 /// It is also almost always profitable to thread backedges from within the loop
339 /// to exit blocks, and is often profitable to thread backedges to other blocks
340 /// within the loop (forming a nested loop).  This simple analysis is not rich
341 /// enough to track all of these properties and keep it up-to-date as the CFG
342 /// mutates, so we don't allow any of these transformations.
343 ///
344 void JumpThreadingPass::FindLoopHeaders(Function &F) {
345   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
346   FindFunctionBackedges(F, Edges);
347 
348   for (const auto &Edge : Edges)
349     LoopHeaders.insert(Edge.second);
350 }
351 
352 /// getKnownConstant - Helper method to determine if we can thread over a
353 /// terminator with the given value as its condition, and if so what value to
354 /// use for that. What kind of value this is depends on whether we want an
355 /// integer or a block address, but an undef is always accepted.
356 /// Returns null if Val is null or not an appropriate constant.
357 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
358   if (!Val)
359     return nullptr;
360 
361   // Undef is "known" enough.
362   if (UndefValue *U = dyn_cast<UndefValue>(Val))
363     return U;
364 
365   if (Preference == WantBlockAddress)
366     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
367 
368   return dyn_cast<ConstantInt>(Val);
369 }
370 
371 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
372 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
373 /// in any of our predecessors.  If so, return the known list of value and pred
374 /// BB in the result vector.
375 ///
376 /// This returns true if there were any known values.
377 ///
378 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
379     Value *V, BasicBlock *BB, PredValueInfo &Result,
380     ConstantPreference Preference, Instruction *CxtI) {
381   // This method walks up use-def chains recursively.  Because of this, we could
382   // get into an infinite loop going around loops in the use-def chain.  To
383   // prevent this, keep track of what (value, block) pairs we've already visited
384   // and terminate the search if we loop back to them
385   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
386     return false;
387 
388   // An RAII help to remove this pair from the recursion set once the recursion
389   // stack pops back out again.
390   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
391 
392   // If V is a constant, then it is known in all predecessors.
393   if (Constant *KC = getKnownConstant(V, Preference)) {
394     for (BasicBlock *Pred : predecessors(BB))
395       Result.push_back(std::make_pair(KC, Pred));
396 
397     return !Result.empty();
398   }
399 
400   // If V is a non-instruction value, or an instruction in a different block,
401   // then it can't be derived from a PHI.
402   Instruction *I = dyn_cast<Instruction>(V);
403   if (!I || I->getParent() != BB) {
404 
405     // Okay, if this is a live-in value, see if it has a known value at the end
406     // of any of our predecessors.
407     //
408     // FIXME: This should be an edge property, not a block end property.
409     /// TODO: Per PR2563, we could infer value range information about a
410     /// predecessor based on its terminator.
411     //
412     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
413     // "I" is a non-local compare-with-a-constant instruction.  This would be
414     // able to handle value inequalities better, for example if the compare is
415     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
416     // Perhaps getConstantOnEdge should be smart enough to do this?
417 
418     for (BasicBlock *P : predecessors(BB)) {
419       // If the value is known by LazyValueInfo to be a constant in a
420       // predecessor, use that information to try to thread this block.
421       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
422       if (Constant *KC = getKnownConstant(PredCst, Preference))
423         Result.push_back(std::make_pair(KC, P));
424     }
425 
426     return !Result.empty();
427   }
428 
429   /// If I is a PHI node, then we know the incoming values for any constants.
430   if (PHINode *PN = dyn_cast<PHINode>(I)) {
431     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
432       Value *InVal = PN->getIncomingValue(i);
433       if (Constant *KC = getKnownConstant(InVal, Preference)) {
434         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
435       } else {
436         Constant *CI = LVI->getConstantOnEdge(InVal,
437                                               PN->getIncomingBlock(i),
438                                               BB, CxtI);
439         if (Constant *KC = getKnownConstant(CI, Preference))
440           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
441       }
442     }
443 
444     return !Result.empty();
445   }
446 
447   // Handle Cast instructions.  Only see through Cast when the source operand is
448   // PHI or Cmp and the source type is i1 to save the compilation time.
449   if (CastInst *CI = dyn_cast<CastInst>(I)) {
450     Value *Source = CI->getOperand(0);
451     if (!Source->getType()->isIntegerTy(1))
452       return false;
453     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
454       return false;
455     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
456     if (Result.empty())
457       return false;
458 
459     // Convert the known values.
460     for (auto &R : Result)
461       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
462 
463     return true;
464   }
465 
466   PredValueInfoTy LHSVals, RHSVals;
467 
468   // Handle some boolean conditions.
469   if (I->getType()->getPrimitiveSizeInBits() == 1) {
470     assert(Preference == WantInteger && "One-bit non-integer type?");
471     // X | true -> true
472     // X & false -> false
473     if (I->getOpcode() == Instruction::Or ||
474         I->getOpcode() == Instruction::And) {
475       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
476                                       WantInteger, CxtI);
477       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
478                                       WantInteger, CxtI);
479 
480       if (LHSVals.empty() && RHSVals.empty())
481         return false;
482 
483       ConstantInt *InterestingVal;
484       if (I->getOpcode() == Instruction::Or)
485         InterestingVal = ConstantInt::getTrue(I->getContext());
486       else
487         InterestingVal = ConstantInt::getFalse(I->getContext());
488 
489       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
490 
491       // Scan for the sentinel.  If we find an undef, force it to the
492       // interesting value: x|undef -> true and x&undef -> false.
493       for (const auto &LHSVal : LHSVals)
494         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
495           Result.emplace_back(InterestingVal, LHSVal.second);
496           LHSKnownBBs.insert(LHSVal.second);
497         }
498       for (const auto &RHSVal : RHSVals)
499         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
500           // If we already inferred a value for this block on the LHS, don't
501           // re-add it.
502           if (!LHSKnownBBs.count(RHSVal.second))
503             Result.emplace_back(InterestingVal, RHSVal.second);
504         }
505 
506       return !Result.empty();
507     }
508 
509     // Handle the NOT form of XOR.
510     if (I->getOpcode() == Instruction::Xor &&
511         isa<ConstantInt>(I->getOperand(1)) &&
512         cast<ConstantInt>(I->getOperand(1))->isOne()) {
513       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
514                                       WantInteger, CxtI);
515       if (Result.empty())
516         return false;
517 
518       // Invert the known values.
519       for (auto &R : Result)
520         R.first = ConstantExpr::getNot(R.first);
521 
522       return true;
523     }
524 
525   // Try to simplify some other binary operator values.
526   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
527     assert(Preference != WantBlockAddress
528             && "A binary operator creating a block address?");
529     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
530       PredValueInfoTy LHSVals;
531       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
532                                       WantInteger, CxtI);
533 
534       // Try to use constant folding to simplify the binary operator.
535       for (const auto &LHSVal : LHSVals) {
536         Constant *V = LHSVal.first;
537         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
538 
539         if (Constant *KC = getKnownConstant(Folded, WantInteger))
540           Result.push_back(std::make_pair(KC, LHSVal.second));
541       }
542     }
543 
544     return !Result.empty();
545   }
546 
547   // Handle compare with phi operand, where the PHI is defined in this block.
548   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
549     assert(Preference == WantInteger && "Compares only produce integers");
550     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
551     if (PN && PN->getParent() == BB) {
552       const DataLayout &DL = PN->getModule()->getDataLayout();
553       // We can do this simplification if any comparisons fold to true or false.
554       // See if any do.
555       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
556         BasicBlock *PredBB = PN->getIncomingBlock(i);
557         Value *LHS = PN->getIncomingValue(i);
558         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
559 
560         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, {DL});
561         if (!Res) {
562           if (!isa<Constant>(RHS))
563             continue;
564 
565           LazyValueInfo::Tristate
566             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
567                                            cast<Constant>(RHS), PredBB, BB,
568                                            CxtI ? CxtI : Cmp);
569           if (ResT == LazyValueInfo::Unknown)
570             continue;
571           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
572         }
573 
574         if (Constant *KC = getKnownConstant(Res, WantInteger))
575           Result.push_back(std::make_pair(KC, PredBB));
576       }
577 
578       return !Result.empty();
579     }
580 
581     // If comparing a live-in value against a constant, see if we know the
582     // live-in value on any predecessors.
583     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
584       if (!isa<Instruction>(Cmp->getOperand(0)) ||
585           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
586         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
587 
588         for (BasicBlock *P : predecessors(BB)) {
589           // If the value is known by LazyValueInfo to be a constant in a
590           // predecessor, use that information to try to thread this block.
591           LazyValueInfo::Tristate Res =
592             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
593                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
594           if (Res == LazyValueInfo::Unknown)
595             continue;
596 
597           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
598           Result.push_back(std::make_pair(ResC, P));
599         }
600 
601         return !Result.empty();
602       }
603 
604       // Try to find a constant value for the LHS of a comparison,
605       // and evaluate it statically if we can.
606       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
607         PredValueInfoTy LHSVals;
608         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
609                                         WantInteger, CxtI);
610 
611         for (const auto &LHSVal : LHSVals) {
612           Constant *V = LHSVal.first;
613           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
614                                                       V, CmpConst);
615           if (Constant *KC = getKnownConstant(Folded, WantInteger))
616             Result.push_back(std::make_pair(KC, LHSVal.second));
617         }
618 
619         return !Result.empty();
620       }
621     }
622   }
623 
624   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
625     // Handle select instructions where at least one operand is a known constant
626     // and we can figure out the condition value for any predecessor block.
627     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
628     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
629     PredValueInfoTy Conds;
630     if ((TrueVal || FalseVal) &&
631         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
632                                         WantInteger, CxtI)) {
633       for (auto &C : Conds) {
634         Constant *Cond = C.first;
635 
636         // Figure out what value to use for the condition.
637         bool KnownCond;
638         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
639           // A known boolean.
640           KnownCond = CI->isOne();
641         } else {
642           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
643           // Either operand will do, so be sure to pick the one that's a known
644           // constant.
645           // FIXME: Do this more cleverly if both values are known constants?
646           KnownCond = (TrueVal != nullptr);
647         }
648 
649         // See if the select has a known constant value for this predecessor.
650         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
651           Result.push_back(std::make_pair(Val, C.second));
652       }
653 
654       return !Result.empty();
655     }
656   }
657 
658   // If all else fails, see if LVI can figure out a constant value for us.
659   Constant *CI = LVI->getConstant(V, BB, CxtI);
660   if (Constant *KC = getKnownConstant(CI, Preference)) {
661     for (BasicBlock *Pred : predecessors(BB))
662       Result.push_back(std::make_pair(KC, Pred));
663   }
664 
665   return !Result.empty();
666 }
667 
668 
669 
670 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
671 /// in an undefined jump, decide which block is best to revector to.
672 ///
673 /// Since we can pick an arbitrary destination, we pick the successor with the
674 /// fewest predecessors.  This should reduce the in-degree of the others.
675 ///
676 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
677   TerminatorInst *BBTerm = BB->getTerminator();
678   unsigned MinSucc = 0;
679   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
680   // Compute the successor with the minimum number of predecessors.
681   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
682   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
683     TestBB = BBTerm->getSuccessor(i);
684     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
685     if (NumPreds < MinNumPreds) {
686       MinSucc = i;
687       MinNumPreds = NumPreds;
688     }
689   }
690 
691   return MinSucc;
692 }
693 
694 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
695   if (!BB->hasAddressTaken()) return false;
696 
697   // If the block has its address taken, it may be a tree of dead constants
698   // hanging off of it.  These shouldn't keep the block alive.
699   BlockAddress *BA = BlockAddress::get(BB);
700   BA->removeDeadConstantUsers();
701   return !BA->use_empty();
702 }
703 
704 /// ProcessBlock - If there are any predecessors whose control can be threaded
705 /// through to a successor, transform them now.
706 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
707   // If the block is trivially dead, just return and let the caller nuke it.
708   // This simplifies other transformations.
709   if (pred_empty(BB) &&
710       BB != &BB->getParent()->getEntryBlock())
711     return false;
712 
713   // If this block has a single predecessor, and if that pred has a single
714   // successor, merge the blocks.  This encourages recursive jump threading
715   // because now the condition in this block can be threaded through
716   // predecessors of our predecessor block.
717   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
718     const TerminatorInst *TI = SinglePred->getTerminator();
719     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
720         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
721       // If SinglePred was a loop header, BB becomes one.
722       if (LoopHeaders.erase(SinglePred))
723         LoopHeaders.insert(BB);
724 
725       LVI->eraseBlock(SinglePred);
726       MergeBasicBlockIntoOnlyPred(BB);
727 
728       return true;
729     }
730   }
731 
732   if (TryToUnfoldSelectInCurrBB(BB))
733     return true;
734 
735   // Look if we can propagate guards to predecessors.
736   if (HasGuards && ProcessGuards(BB))
737     return true;
738 
739   // What kind of constant we're looking for.
740   ConstantPreference Preference = WantInteger;
741 
742   // Look to see if the terminator is a conditional branch, switch or indirect
743   // branch, if not we can't thread it.
744   Value *Condition;
745   Instruction *Terminator = BB->getTerminator();
746   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
747     // Can't thread an unconditional jump.
748     if (BI->isUnconditional()) return false;
749     Condition = BI->getCondition();
750   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
751     Condition = SI->getCondition();
752   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
753     // Can't thread indirect branch with no successors.
754     if (IB->getNumSuccessors() == 0) return false;
755     Condition = IB->getAddress()->stripPointerCasts();
756     Preference = WantBlockAddress;
757   } else {
758     return false; // Must be an invoke.
759   }
760 
761   // Run constant folding to see if we can reduce the condition to a simple
762   // constant.
763   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
764     Value *SimpleVal =
765         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
766     if (SimpleVal) {
767       I->replaceAllUsesWith(SimpleVal);
768       if (isInstructionTriviallyDead(I, TLI))
769         I->eraseFromParent();
770       Condition = SimpleVal;
771     }
772   }
773 
774   // If the terminator is branching on an undef, we can pick any of the
775   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
776   if (isa<UndefValue>(Condition)) {
777     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
778 
779     // Fold the branch/switch.
780     TerminatorInst *BBTerm = BB->getTerminator();
781     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
782       if (i == BestSucc) continue;
783       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
784     }
785 
786     DEBUG(dbgs() << "  In block '" << BB->getName()
787           << "' folding undef terminator: " << *BBTerm << '\n');
788     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
789     BBTerm->eraseFromParent();
790     return true;
791   }
792 
793   // If the terminator of this block is branching on a constant, simplify the
794   // terminator to an unconditional branch.  This can occur due to threading in
795   // other blocks.
796   if (getKnownConstant(Condition, Preference)) {
797     DEBUG(dbgs() << "  In block '" << BB->getName()
798           << "' folding terminator: " << *BB->getTerminator() << '\n');
799     ++NumFolds;
800     ConstantFoldTerminator(BB, true);
801     return true;
802   }
803 
804   Instruction *CondInst = dyn_cast<Instruction>(Condition);
805 
806   // All the rest of our checks depend on the condition being an instruction.
807   if (!CondInst) {
808     // FIXME: Unify this with code below.
809     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
810       return true;
811     return false;
812   }
813 
814   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
815     // If we're branching on a conditional, LVI might be able to determine
816     // it's value at the branch instruction.  We only handle comparisons
817     // against a constant at this time.
818     // TODO: This should be extended to handle switches as well.
819     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
820     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
821     if (CondBr && CondConst) {
822       // We should have returned as soon as we turn a conditional branch to
823       // unconditional. Because its no longer interesting as far as jump
824       // threading is concerned.
825       assert(CondBr->isConditional() && "Threading on unconditional terminator");
826 
827       LazyValueInfo::Tristate Ret =
828         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
829                             CondConst, CondBr);
830       if (Ret != LazyValueInfo::Unknown) {
831         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
832         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
833         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
834         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
835         CondBr->eraseFromParent();
836         if (CondCmp->use_empty())
837           CondCmp->eraseFromParent();
838         else if (CondCmp->getParent() == BB) {
839           // If the fact we just learned is true for all uses of the
840           // condition, replace it with a constant value
841           auto *CI = Ret == LazyValueInfo::True ?
842             ConstantInt::getTrue(CondCmp->getType()) :
843             ConstantInt::getFalse(CondCmp->getType());
844           CondCmp->replaceAllUsesWith(CI);
845           CondCmp->eraseFromParent();
846         }
847         return true;
848       }
849 
850       // We did not manage to simplify this branch, try to see whether
851       // CondCmp depends on a known phi-select pattern.
852       if (TryToUnfoldSelect(CondCmp, BB))
853         return true;
854     }
855   }
856 
857   // Check for some cases that are worth simplifying.  Right now we want to look
858   // for loads that are used by a switch or by the condition for the branch.  If
859   // we see one, check to see if it's partially redundant.  If so, insert a PHI
860   // which can then be used to thread the values.
861   //
862   Value *SimplifyValue = CondInst;
863   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
864     if (isa<Constant>(CondCmp->getOperand(1)))
865       SimplifyValue = CondCmp->getOperand(0);
866 
867   // TODO: There are other places where load PRE would be profitable, such as
868   // more complex comparisons.
869   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
870     if (SimplifyPartiallyRedundantLoad(LI))
871       return true;
872 
873   // Handle a variety of cases where we are branching on something derived from
874   // a PHI node in the current block.  If we can prove that any predecessors
875   // compute a predictable value based on a PHI node, thread those predecessors.
876   //
877   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
878     return true;
879 
880   // If this is an otherwise-unfoldable branch on a phi node in the current
881   // block, see if we can simplify.
882   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
883     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
884       return ProcessBranchOnPHI(PN);
885 
886   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
887   if (CondInst->getOpcode() == Instruction::Xor &&
888       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
889     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
890 
891   // Search for a stronger dominating condition that can be used to simplify a
892   // conditional branch leaving BB.
893   if (ProcessImpliedCondition(BB))
894     return true;
895 
896   return false;
897 }
898 
899 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
900   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
901   if (!BI || !BI->isConditional())
902     return false;
903 
904   Value *Cond = BI->getCondition();
905   BasicBlock *CurrentBB = BB;
906   BasicBlock *CurrentPred = BB->getSinglePredecessor();
907   unsigned Iter = 0;
908 
909   auto &DL = BB->getModule()->getDataLayout();
910 
911   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
912     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
913     if (!PBI || !PBI->isConditional())
914       return false;
915     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
916       return false;
917 
918     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
919     Optional<bool> Implication =
920       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
921     if (Implication) {
922       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
923       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
924       BI->eraseFromParent();
925       return true;
926     }
927     CurrentBB = CurrentPred;
928     CurrentPred = CurrentBB->getSinglePredecessor();
929   }
930 
931   return false;
932 }
933 
934 /// Return true if Op is an instruction defined in the given block.
935 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
936   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
937     if (OpInst->getParent() == BB)
938       return true;
939   return false;
940 }
941 
942 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
943 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
944 /// important optimization that encourages jump threading, and needs to be run
945 /// interlaced with other jump threading tasks.
946 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
947   // Don't hack volatile and ordered loads.
948   if (!LI->isUnordered()) return false;
949 
950   // If the load is defined in a block with exactly one predecessor, it can't be
951   // partially redundant.
952   BasicBlock *LoadBB = LI->getParent();
953   if (LoadBB->getSinglePredecessor())
954     return false;
955 
956   // If the load is defined in an EH pad, it can't be partially redundant,
957   // because the edges between the invoke and the EH pad cannot have other
958   // instructions between them.
959   if (LoadBB->isEHPad())
960     return false;
961 
962   Value *LoadedPtr = LI->getOperand(0);
963 
964   // If the loaded operand is defined in the LoadBB and its not a phi,
965   // it can't be available in predecessors.
966   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
967     return false;
968 
969   // Scan a few instructions up from the load, to see if it is obviously live at
970   // the entry to its block.
971   BasicBlock::iterator BBIt(LI);
972   bool IsLoadCSE;
973   if (Value *AvailableVal = FindAvailableLoadedValue(
974           LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
975     // If the value of the load is locally available within the block, just use
976     // it.  This frequently occurs for reg2mem'd allocas.
977 
978     if (IsLoadCSE) {
979       LoadInst *NLI = cast<LoadInst>(AvailableVal);
980       combineMetadataForCSE(NLI, LI);
981     };
982 
983     // If the returned value is the load itself, replace with an undef. This can
984     // only happen in dead loops.
985     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
986     if (AvailableVal->getType() != LI->getType())
987       AvailableVal =
988           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
989     LI->replaceAllUsesWith(AvailableVal);
990     LI->eraseFromParent();
991     return true;
992   }
993 
994   // Otherwise, if we scanned the whole block and got to the top of the block,
995   // we know the block is locally transparent to the load.  If not, something
996   // might clobber its value.
997   if (BBIt != LoadBB->begin())
998     return false;
999 
1000   // If all of the loads and stores that feed the value have the same AA tags,
1001   // then we can propagate them onto any newly inserted loads.
1002   AAMDNodes AATags;
1003   LI->getAAMetadata(AATags);
1004 
1005   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1006   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
1007   AvailablePredsTy AvailablePreds;
1008   BasicBlock *OneUnavailablePred = nullptr;
1009   SmallVector<LoadInst*, 8> CSELoads;
1010 
1011   // If we got here, the loaded value is transparent through to the start of the
1012   // block.  Check to see if it is available in any of the predecessor blocks.
1013   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1014     // If we already scanned this predecessor, skip it.
1015     if (!PredsScanned.insert(PredBB).second)
1016       continue;
1017 
1018     BBIt = PredBB->end();
1019     unsigned NumScanedInst = 0;
1020     Value *PredAvailable = nullptr;
1021     // NOTE: We don't CSE load that is volatile or anything stronger than
1022     // unordered, that should have been checked when we entered the function.
1023     assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads");
1024     // If this is a load on a phi pointer, phi-translate it and search
1025     // for available load/store to the pointer in predecessors.
1026     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1027     PredAvailable = FindAvailablePtrLoadStore(
1028         Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1029         AA, &IsLoadCSE, &NumScanedInst);
1030 
1031     // If PredBB has a single predecessor, continue scanning through the
1032     // single precessor.
1033     BasicBlock *SinglePredBB = PredBB;
1034     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1035            NumScanedInst < DefMaxInstsToScan) {
1036       SinglePredBB = SinglePredBB->getSinglePredecessor();
1037       if (SinglePredBB) {
1038         BBIt = SinglePredBB->end();
1039         PredAvailable = FindAvailablePtrLoadStore(
1040             Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt,
1041             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1042             &NumScanedInst);
1043       }
1044     }
1045 
1046     if (!PredAvailable) {
1047       OneUnavailablePred = PredBB;
1048       continue;
1049     }
1050 
1051     if (IsLoadCSE)
1052       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1053 
1054     // If so, this load is partially redundant.  Remember this info so that we
1055     // can create a PHI node.
1056     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1057   }
1058 
1059   // If the loaded value isn't available in any predecessor, it isn't partially
1060   // redundant.
1061   if (AvailablePreds.empty()) return false;
1062 
1063   // Okay, the loaded value is available in at least one (and maybe all!)
1064   // predecessors.  If the value is unavailable in more than one unique
1065   // predecessor, we want to insert a merge block for those common predecessors.
1066   // This ensures that we only have to insert one reload, thus not increasing
1067   // code size.
1068   BasicBlock *UnavailablePred = nullptr;
1069 
1070   // If there is exactly one predecessor where the value is unavailable, the
1071   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1072   // unconditional branch, we know that it isn't a critical edge.
1073   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1074       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1075     UnavailablePred = OneUnavailablePred;
1076   } else if (PredsScanned.size() != AvailablePreds.size()) {
1077     // Otherwise, we had multiple unavailable predecessors or we had a critical
1078     // edge from the one.
1079     SmallVector<BasicBlock*, 8> PredsToSplit;
1080     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1081 
1082     for (const auto &AvailablePred : AvailablePreds)
1083       AvailablePredSet.insert(AvailablePred.first);
1084 
1085     // Add all the unavailable predecessors to the PredsToSplit list.
1086     for (BasicBlock *P : predecessors(LoadBB)) {
1087       // If the predecessor is an indirect goto, we can't split the edge.
1088       if (isa<IndirectBrInst>(P->getTerminator()))
1089         return false;
1090 
1091       if (!AvailablePredSet.count(P))
1092         PredsToSplit.push_back(P);
1093     }
1094 
1095     // Split them out to their own block.
1096     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1097   }
1098 
1099   // If the value isn't available in all predecessors, then there will be
1100   // exactly one where it isn't available.  Insert a load on that edge and add
1101   // it to the AvailablePreds list.
1102   if (UnavailablePred) {
1103     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1104            "Can't handle critical edge here!");
1105     LoadInst *NewVal = new LoadInst(
1106         LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1107         LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(),
1108         LI->getSynchScope(), UnavailablePred->getTerminator());
1109     NewVal->setDebugLoc(LI->getDebugLoc());
1110     if (AATags)
1111       NewVal->setAAMetadata(AATags);
1112 
1113     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1114   }
1115 
1116   // Now we know that each predecessor of this block has a value in
1117   // AvailablePreds, sort them for efficient access as we're walking the preds.
1118   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1119 
1120   // Create a PHI node at the start of the block for the PRE'd load value.
1121   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1122   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1123                                 &LoadBB->front());
1124   PN->takeName(LI);
1125   PN->setDebugLoc(LI->getDebugLoc());
1126 
1127   // Insert new entries into the PHI for each predecessor.  A single block may
1128   // have multiple entries here.
1129   for (pred_iterator PI = PB; PI != PE; ++PI) {
1130     BasicBlock *P = *PI;
1131     AvailablePredsTy::iterator I =
1132       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1133                        std::make_pair(P, (Value*)nullptr));
1134 
1135     assert(I != AvailablePreds.end() && I->first == P &&
1136            "Didn't find entry for predecessor!");
1137 
1138     // If we have an available predecessor but it requires casting, insert the
1139     // cast in the predecessor and use the cast. Note that we have to update the
1140     // AvailablePreds vector as we go so that all of the PHI entries for this
1141     // predecessor use the same bitcast.
1142     Value *&PredV = I->second;
1143     if (PredV->getType() != LI->getType())
1144       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1145                                                P->getTerminator());
1146 
1147     PN->addIncoming(PredV, I->first);
1148   }
1149 
1150   for (LoadInst *PredLI : CSELoads) {
1151     combineMetadataForCSE(PredLI, LI);
1152   }
1153 
1154   LI->replaceAllUsesWith(PN);
1155   LI->eraseFromParent();
1156 
1157   return true;
1158 }
1159 
1160 /// FindMostPopularDest - The specified list contains multiple possible
1161 /// threadable destinations.  Pick the one that occurs the most frequently in
1162 /// the list.
1163 static BasicBlock *
1164 FindMostPopularDest(BasicBlock *BB,
1165                     const SmallVectorImpl<std::pair<BasicBlock*,
1166                                   BasicBlock*> > &PredToDestList) {
1167   assert(!PredToDestList.empty());
1168 
1169   // Determine popularity.  If there are multiple possible destinations, we
1170   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1171   // blocks with known and real destinations to threading undef.  We'll handle
1172   // them later if interesting.
1173   DenseMap<BasicBlock*, unsigned> DestPopularity;
1174   for (const auto &PredToDest : PredToDestList)
1175     if (PredToDest.second)
1176       DestPopularity[PredToDest.second]++;
1177 
1178   // Find the most popular dest.
1179   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1180   BasicBlock *MostPopularDest = DPI->first;
1181   unsigned Popularity = DPI->second;
1182   SmallVector<BasicBlock*, 4> SamePopularity;
1183 
1184   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1185     // If the popularity of this entry isn't higher than the popularity we've
1186     // seen so far, ignore it.
1187     if (DPI->second < Popularity)
1188       ; // ignore.
1189     else if (DPI->second == Popularity) {
1190       // If it is the same as what we've seen so far, keep track of it.
1191       SamePopularity.push_back(DPI->first);
1192     } else {
1193       // If it is more popular, remember it.
1194       SamePopularity.clear();
1195       MostPopularDest = DPI->first;
1196       Popularity = DPI->second;
1197     }
1198   }
1199 
1200   // Okay, now we know the most popular destination.  If there is more than one
1201   // destination, we need to determine one.  This is arbitrary, but we need
1202   // to make a deterministic decision.  Pick the first one that appears in the
1203   // successor list.
1204   if (!SamePopularity.empty()) {
1205     SamePopularity.push_back(MostPopularDest);
1206     TerminatorInst *TI = BB->getTerminator();
1207     for (unsigned i = 0; ; ++i) {
1208       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1209 
1210       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1211         continue;
1212 
1213       MostPopularDest = TI->getSuccessor(i);
1214       break;
1215     }
1216   }
1217 
1218   // Okay, we have finally picked the most popular destination.
1219   return MostPopularDest;
1220 }
1221 
1222 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1223                                                ConstantPreference Preference,
1224                                                Instruction *CxtI) {
1225   // If threading this would thread across a loop header, don't even try to
1226   // thread the edge.
1227   if (LoopHeaders.count(BB))
1228     return false;
1229 
1230   PredValueInfoTy PredValues;
1231   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1232     return false;
1233 
1234   assert(!PredValues.empty() &&
1235          "ComputeValueKnownInPredecessors returned true with no values");
1236 
1237   DEBUG(dbgs() << "IN BB: " << *BB;
1238         for (const auto &PredValue : PredValues) {
1239           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1240             << *PredValue.first
1241             << " for pred '" << PredValue.second->getName() << "'.\n";
1242         });
1243 
1244   // Decide what we want to thread through.  Convert our list of known values to
1245   // a list of known destinations for each pred.  This also discards duplicate
1246   // predecessors and keeps track of the undefined inputs (which are represented
1247   // as a null dest in the PredToDestList).
1248   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1249   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1250 
1251   BasicBlock *OnlyDest = nullptr;
1252   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1253   Constant *OnlyVal = nullptr;
1254   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1255 
1256   unsigned PredWithKnownDest = 0;
1257   for (const auto &PredValue : PredValues) {
1258     BasicBlock *Pred = PredValue.second;
1259     if (!SeenPreds.insert(Pred).second)
1260       continue;  // Duplicate predecessor entry.
1261 
1262     Constant *Val = PredValue.first;
1263 
1264     BasicBlock *DestBB;
1265     if (isa<UndefValue>(Val))
1266       DestBB = nullptr;
1267     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1268       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1269       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1270     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1271       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1272       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1273     } else {
1274       assert(isa<IndirectBrInst>(BB->getTerminator())
1275               && "Unexpected terminator");
1276       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1277       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1278     }
1279 
1280     // If we have exactly one destination, remember it for efficiency below.
1281     if (PredToDestList.empty()) {
1282       OnlyDest = DestBB;
1283       OnlyVal = Val;
1284     } else {
1285       if (OnlyDest != DestBB)
1286         OnlyDest = MultipleDestSentinel;
1287       // It possible we have same destination, but different value, e.g. default
1288       // case in switchinst.
1289       if (Val != OnlyVal)
1290         OnlyVal = MultipleVal;
1291     }
1292 
1293     // We know where this predecessor is going.
1294     ++PredWithKnownDest;
1295 
1296     // If the predecessor ends with an indirect goto, we can't change its
1297     // destination.
1298     if (isa<IndirectBrInst>(Pred->getTerminator()))
1299       continue;
1300 
1301     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1302   }
1303 
1304   // If all edges were unthreadable, we fail.
1305   if (PredToDestList.empty())
1306     return false;
1307 
1308   // If all the predecessors go to a single known successor, we want to fold,
1309   // not thread. By doing so, we do not need to duplicate the current block and
1310   // also miss potential opportunities in case we dont/cant duplicate.
1311   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1312     if (PredWithKnownDest ==
1313         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1314       bool SeenFirstBranchToOnlyDest = false;
1315       for (BasicBlock *SuccBB : successors(BB)) {
1316         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest)
1317           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1318         else
1319           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1320       }
1321 
1322       // Finally update the terminator.
1323       TerminatorInst *Term = BB->getTerminator();
1324       BranchInst::Create(OnlyDest, Term);
1325       Term->eraseFromParent();
1326 
1327       // If the condition is now dead due to the removal of the old terminator,
1328       // erase it.
1329       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1330         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1331           CondInst->eraseFromParent();
1332         else if (OnlyVal && OnlyVal != MultipleVal &&
1333                  CondInst->getParent() == BB) {
1334           // If we just learned Cond is the same value for all uses of the
1335           // condition, replace it with a constant value
1336           CondInst->replaceAllUsesWith(OnlyVal);
1337           if (!CondInst->mayHaveSideEffects())
1338             CondInst->eraseFromParent();
1339         }
1340       }
1341       return true;
1342     }
1343   }
1344 
1345   // Determine which is the most common successor.  If we have many inputs and
1346   // this block is a switch, we want to start by threading the batch that goes
1347   // to the most popular destination first.  If we only know about one
1348   // threadable destination (the common case) we can avoid this.
1349   BasicBlock *MostPopularDest = OnlyDest;
1350 
1351   if (MostPopularDest == MultipleDestSentinel)
1352     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1353 
1354   // Now that we know what the most popular destination is, factor all
1355   // predecessors that will jump to it into a single predecessor.
1356   SmallVector<BasicBlock*, 16> PredsToFactor;
1357   for (const auto &PredToDest : PredToDestList)
1358     if (PredToDest.second == MostPopularDest) {
1359       BasicBlock *Pred = PredToDest.first;
1360 
1361       // This predecessor may be a switch or something else that has multiple
1362       // edges to the block.  Factor each of these edges by listing them
1363       // according to # occurrences in PredsToFactor.
1364       for (BasicBlock *Succ : successors(Pred))
1365         if (Succ == BB)
1366           PredsToFactor.push_back(Pred);
1367     }
1368 
1369   // If the threadable edges are branching on an undefined value, we get to pick
1370   // the destination that these predecessors should get to.
1371   if (!MostPopularDest)
1372     MostPopularDest = BB->getTerminator()->
1373                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1374 
1375   // Ok, try to thread it!
1376   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1377 }
1378 
1379 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1380 /// a PHI node in the current block.  See if there are any simplifications we
1381 /// can do based on inputs to the phi node.
1382 ///
1383 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1384   BasicBlock *BB = PN->getParent();
1385 
1386   // TODO: We could make use of this to do it once for blocks with common PHI
1387   // values.
1388   SmallVector<BasicBlock*, 1> PredBBs;
1389   PredBBs.resize(1);
1390 
1391   // If any of the predecessor blocks end in an unconditional branch, we can
1392   // *duplicate* the conditional branch into that block in order to further
1393   // encourage jump threading and to eliminate cases where we have branch on a
1394   // phi of an icmp (branch on icmp is much better).
1395   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1396     BasicBlock *PredBB = PN->getIncomingBlock(i);
1397     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1398       if (PredBr->isUnconditional()) {
1399         PredBBs[0] = PredBB;
1400         // Try to duplicate BB into PredBB.
1401         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1402           return true;
1403       }
1404   }
1405 
1406   return false;
1407 }
1408 
1409 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1410 /// a xor instruction in the current block.  See if there are any
1411 /// simplifications we can do based on inputs to the xor.
1412 ///
1413 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1414   BasicBlock *BB = BO->getParent();
1415 
1416   // If either the LHS or RHS of the xor is a constant, don't do this
1417   // optimization.
1418   if (isa<ConstantInt>(BO->getOperand(0)) ||
1419       isa<ConstantInt>(BO->getOperand(1)))
1420     return false;
1421 
1422   // If the first instruction in BB isn't a phi, we won't be able to infer
1423   // anything special about any particular predecessor.
1424   if (!isa<PHINode>(BB->front()))
1425     return false;
1426 
1427   // If this BB is a landing pad, we won't be able to split the edge into it.
1428   if (BB->isEHPad())
1429     return false;
1430 
1431   // If we have a xor as the branch input to this block, and we know that the
1432   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1433   // the condition into the predecessor and fix that value to true, saving some
1434   // logical ops on that path and encouraging other paths to simplify.
1435   //
1436   // This copies something like this:
1437   //
1438   //  BB:
1439   //    %X = phi i1 [1],  [%X']
1440   //    %Y = icmp eq i32 %A, %B
1441   //    %Z = xor i1 %X, %Y
1442   //    br i1 %Z, ...
1443   //
1444   // Into:
1445   //  BB':
1446   //    %Y = icmp ne i32 %A, %B
1447   //    br i1 %Y, ...
1448 
1449   PredValueInfoTy XorOpValues;
1450   bool isLHS = true;
1451   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1452                                        WantInteger, BO)) {
1453     assert(XorOpValues.empty());
1454     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1455                                          WantInteger, BO))
1456       return false;
1457     isLHS = false;
1458   }
1459 
1460   assert(!XorOpValues.empty() &&
1461          "ComputeValueKnownInPredecessors returned true with no values");
1462 
1463   // Scan the information to see which is most popular: true or false.  The
1464   // predecessors can be of the set true, false, or undef.
1465   unsigned NumTrue = 0, NumFalse = 0;
1466   for (const auto &XorOpValue : XorOpValues) {
1467     if (isa<UndefValue>(XorOpValue.first))
1468       // Ignore undefs for the count.
1469       continue;
1470     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1471       ++NumFalse;
1472     else
1473       ++NumTrue;
1474   }
1475 
1476   // Determine which value to split on, true, false, or undef if neither.
1477   ConstantInt *SplitVal = nullptr;
1478   if (NumTrue > NumFalse)
1479     SplitVal = ConstantInt::getTrue(BB->getContext());
1480   else if (NumTrue != 0 || NumFalse != 0)
1481     SplitVal = ConstantInt::getFalse(BB->getContext());
1482 
1483   // Collect all of the blocks that this can be folded into so that we can
1484   // factor this once and clone it once.
1485   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1486   for (const auto &XorOpValue : XorOpValues) {
1487     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1488       continue;
1489 
1490     BlocksToFoldInto.push_back(XorOpValue.second);
1491   }
1492 
1493   // If we inferred a value for all of the predecessors, then duplication won't
1494   // help us.  However, we can just replace the LHS or RHS with the constant.
1495   if (BlocksToFoldInto.size() ==
1496       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1497     if (!SplitVal) {
1498       // If all preds provide undef, just nuke the xor, because it is undef too.
1499       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1500       BO->eraseFromParent();
1501     } else if (SplitVal->isZero()) {
1502       // If all preds provide 0, replace the xor with the other input.
1503       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1504       BO->eraseFromParent();
1505     } else {
1506       // If all preds provide 1, set the computed value to 1.
1507       BO->setOperand(!isLHS, SplitVal);
1508     }
1509 
1510     return true;
1511   }
1512 
1513   // Try to duplicate BB into PredBB.
1514   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1515 }
1516 
1517 
1518 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1519 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1520 /// NewPred using the entries from OldPred (suitably mapped).
1521 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1522                                             BasicBlock *OldPred,
1523                                             BasicBlock *NewPred,
1524                                      DenseMap<Instruction*, Value*> &ValueMap) {
1525   for (BasicBlock::iterator PNI = PHIBB->begin();
1526        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1527     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1528     // DestBlock.
1529     Value *IV = PN->getIncomingValueForBlock(OldPred);
1530 
1531     // Remap the value if necessary.
1532     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1533       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1534       if (I != ValueMap.end())
1535         IV = I->second;
1536     }
1537 
1538     PN->addIncoming(IV, NewPred);
1539   }
1540 }
1541 
1542 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1543 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1544 /// across BB.  Transform the IR to reflect this change.
1545 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1546                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1547                                    BasicBlock *SuccBB) {
1548   // If threading to the same block as we come from, we would infinite loop.
1549   if (SuccBB == BB) {
1550     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1551           << "' - would thread to self!\n");
1552     return false;
1553   }
1554 
1555   // If threading this would thread across a loop header, don't thread the edge.
1556   // See the comments above FindLoopHeaders for justifications and caveats.
1557   if (LoopHeaders.count(BB)) {
1558     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1559           << "' to dest BB '" << SuccBB->getName()
1560           << "' - it might create an irreducible loop!\n");
1561     return false;
1562   }
1563 
1564   unsigned JumpThreadCost =
1565       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1566   if (JumpThreadCost > BBDupThreshold) {
1567     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1568           << "' - Cost is too high: " << JumpThreadCost << "\n");
1569     return false;
1570   }
1571 
1572   // And finally, do it!  Start by factoring the predecessors if needed.
1573   BasicBlock *PredBB;
1574   if (PredBBs.size() == 1)
1575     PredBB = PredBBs[0];
1576   else {
1577     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1578           << " common predecessors.\n");
1579     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1580   }
1581 
1582   // And finally, do it!
1583   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1584         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1585         << ", across block:\n    "
1586         << *BB << "\n");
1587 
1588   LVI->threadEdge(PredBB, BB, SuccBB);
1589 
1590   // We are going to have to map operands from the original BB block to the new
1591   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1592   // account for entry from PredBB.
1593   DenseMap<Instruction*, Value*> ValueMapping;
1594 
1595   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1596                                          BB->getName()+".thread",
1597                                          BB->getParent(), BB);
1598   NewBB->moveAfter(PredBB);
1599 
1600   // Set the block frequency of NewBB.
1601   if (HasProfileData) {
1602     auto NewBBFreq =
1603         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1604     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1605   }
1606 
1607   BasicBlock::iterator BI = BB->begin();
1608   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1609     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1610 
1611   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1612   // mapping and using it to remap operands in the cloned instructions.
1613   for (; !isa<TerminatorInst>(BI); ++BI) {
1614     Instruction *New = BI->clone();
1615     New->setName(BI->getName());
1616     NewBB->getInstList().push_back(New);
1617     ValueMapping[&*BI] = New;
1618 
1619     // Remap operands to patch up intra-block references.
1620     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1621       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1622         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1623         if (I != ValueMapping.end())
1624           New->setOperand(i, I->second);
1625       }
1626   }
1627 
1628   // We didn't copy the terminator from BB over to NewBB, because there is now
1629   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1630   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1631   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1632 
1633   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1634   // PHI nodes for NewBB now.
1635   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1636 
1637   // If there were values defined in BB that are used outside the block, then we
1638   // now have to update all uses of the value to use either the original value,
1639   // the cloned value, or some PHI derived value.  This can require arbitrary
1640   // PHI insertion, of which we are prepared to do, clean these up now.
1641   SSAUpdater SSAUpdate;
1642   SmallVector<Use*, 16> UsesToRename;
1643   for (Instruction &I : *BB) {
1644     // Scan all uses of this instruction to see if it is used outside of its
1645     // block, and if so, record them in UsesToRename.
1646     for (Use &U : I.uses()) {
1647       Instruction *User = cast<Instruction>(U.getUser());
1648       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1649         if (UserPN->getIncomingBlock(U) == BB)
1650           continue;
1651       } else if (User->getParent() == BB)
1652         continue;
1653 
1654       UsesToRename.push_back(&U);
1655     }
1656 
1657     // If there are no uses outside the block, we're done with this instruction.
1658     if (UsesToRename.empty())
1659       continue;
1660 
1661     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1662 
1663     // We found a use of I outside of BB.  Rename all uses of I that are outside
1664     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1665     // with the two values we know.
1666     SSAUpdate.Initialize(I.getType(), I.getName());
1667     SSAUpdate.AddAvailableValue(BB, &I);
1668     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1669 
1670     while (!UsesToRename.empty())
1671       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1672     DEBUG(dbgs() << "\n");
1673   }
1674 
1675 
1676   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1677   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1678   // us to simplify any PHI nodes in BB.
1679   TerminatorInst *PredTerm = PredBB->getTerminator();
1680   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1681     if (PredTerm->getSuccessor(i) == BB) {
1682       BB->removePredecessor(PredBB, true);
1683       PredTerm->setSuccessor(i, NewBB);
1684     }
1685 
1686   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1687   // over the new instructions and zap any that are constants or dead.  This
1688   // frequently happens because of phi translation.
1689   SimplifyInstructionsInBlock(NewBB, TLI);
1690 
1691   // Update the edge weight from BB to SuccBB, which should be less than before.
1692   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1693 
1694   // Threaded an edge!
1695   ++NumThreads;
1696   return true;
1697 }
1698 
1699 /// Create a new basic block that will be the predecessor of BB and successor of
1700 /// all blocks in Preds. When profile data is available, update the frequency of
1701 /// this new block.
1702 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1703                                                ArrayRef<BasicBlock *> Preds,
1704                                                const char *Suffix) {
1705   // Collect the frequencies of all predecessors of BB, which will be used to
1706   // update the edge weight on BB->SuccBB.
1707   BlockFrequency PredBBFreq(0);
1708   if (HasProfileData)
1709     for (auto Pred : Preds)
1710       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1711 
1712   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1713 
1714   // Set the block frequency of the newly created PredBB, which is the sum of
1715   // frequencies of Preds.
1716   if (HasProfileData)
1717     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1718   return PredBB;
1719 }
1720 
1721 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
1722   const TerminatorInst *TI = BB->getTerminator();
1723   assert(TI->getNumSuccessors() > 1 && "not a split");
1724 
1725   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
1726   if (!WeightsNode)
1727     return false;
1728 
1729   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
1730   if (MDName->getString() != "branch_weights")
1731     return false;
1732 
1733   // Ensure there are weights for all of the successors. Note that the first
1734   // operand to the metadata node is a name, not a weight.
1735   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
1736 }
1737 
1738 /// Update the block frequency of BB and branch weight and the metadata on the
1739 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1740 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1741 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1742                                                      BasicBlock *BB,
1743                                                      BasicBlock *NewBB,
1744                                                      BasicBlock *SuccBB) {
1745   if (!HasProfileData)
1746     return;
1747 
1748   assert(BFI && BPI && "BFI & BPI should have been created here");
1749 
1750   // As the edge from PredBB to BB is deleted, we have to update the block
1751   // frequency of BB.
1752   auto BBOrigFreq = BFI->getBlockFreq(BB);
1753   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1754   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1755   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1756   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1757 
1758   // Collect updated outgoing edges' frequencies from BB and use them to update
1759   // edge probabilities.
1760   SmallVector<uint64_t, 4> BBSuccFreq;
1761   for (BasicBlock *Succ : successors(BB)) {
1762     auto SuccFreq = (Succ == SuccBB)
1763                         ? BB2SuccBBFreq - NewBBFreq
1764                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1765     BBSuccFreq.push_back(SuccFreq.getFrequency());
1766   }
1767 
1768   uint64_t MaxBBSuccFreq =
1769       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1770 
1771   SmallVector<BranchProbability, 4> BBSuccProbs;
1772   if (MaxBBSuccFreq == 0)
1773     BBSuccProbs.assign(BBSuccFreq.size(),
1774                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1775   else {
1776     for (uint64_t Freq : BBSuccFreq)
1777       BBSuccProbs.push_back(
1778           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1779     // Normalize edge probabilities so that they sum up to one.
1780     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1781                                               BBSuccProbs.end());
1782   }
1783 
1784   // Update edge probabilities in BPI.
1785   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1786     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1787 
1788   // Update the profile metadata as well.
1789   //
1790   // Don't do this if the profile of the transformed blocks was statically
1791   // estimated.  (This could occur despite the function having an entry
1792   // frequency in completely cold parts of the CFG.)
1793   //
1794   // In this case we don't want to suggest to subsequent passes that the
1795   // calculated weights are fully consistent.  Consider this graph:
1796   //
1797   //                 check_1
1798   //             50% /  |
1799   //             eq_1   | 50%
1800   //                 \  |
1801   //                 check_2
1802   //             50% /  |
1803   //             eq_2   | 50%
1804   //                 \  |
1805   //                 check_3
1806   //             50% /  |
1807   //             eq_3   | 50%
1808   //                 \  |
1809   //
1810   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
1811   // the overall probabilities are inconsistent; the total probability that the
1812   // value is either 1, 2 or 3 is 150%.
1813   //
1814   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
1815   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
1816   // the loop exit edge.  Then based solely on static estimation we would assume
1817   // the loop was extremely hot.
1818   //
1819   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
1820   // shouldn't make edges extremely likely or unlikely based solely on static
1821   // estimation.
1822   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
1823     SmallVector<uint32_t, 4> Weights;
1824     for (auto Prob : BBSuccProbs)
1825       Weights.push_back(Prob.getNumerator());
1826 
1827     auto TI = BB->getTerminator();
1828     TI->setMetadata(
1829         LLVMContext::MD_prof,
1830         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1831   }
1832 }
1833 
1834 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1835 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1836 /// If we can duplicate the contents of BB up into PredBB do so now, this
1837 /// improves the odds that the branch will be on an analyzable instruction like
1838 /// a compare.
1839 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1840     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1841   assert(!PredBBs.empty() && "Can't handle an empty set");
1842 
1843   // If BB is a loop header, then duplicating this block outside the loop would
1844   // cause us to transform this into an irreducible loop, don't do this.
1845   // See the comments above FindLoopHeaders for justifications and caveats.
1846   if (LoopHeaders.count(BB)) {
1847     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1848           << "' into predecessor block '" << PredBBs[0]->getName()
1849           << "' - it might create an irreducible loop!\n");
1850     return false;
1851   }
1852 
1853   unsigned DuplicationCost =
1854       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1855   if (DuplicationCost > BBDupThreshold) {
1856     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1857           << "' - Cost is too high: " << DuplicationCost << "\n");
1858     return false;
1859   }
1860 
1861   // And finally, do it!  Start by factoring the predecessors if needed.
1862   BasicBlock *PredBB;
1863   if (PredBBs.size() == 1)
1864     PredBB = PredBBs[0];
1865   else {
1866     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1867           << " common predecessors.\n");
1868     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1869   }
1870 
1871   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1872   // of PredBB.
1873   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1874         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1875         << DuplicationCost << " block is:" << *BB << "\n");
1876 
1877   // Unless PredBB ends with an unconditional branch, split the edge so that we
1878   // can just clone the bits from BB into the end of the new PredBB.
1879   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1880 
1881   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1882     PredBB = SplitEdge(PredBB, BB);
1883     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1884   }
1885 
1886   // We are going to have to map operands from the original BB block into the
1887   // PredBB block.  Evaluate PHI nodes in BB.
1888   DenseMap<Instruction*, Value*> ValueMapping;
1889 
1890   BasicBlock::iterator BI = BB->begin();
1891   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1892     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1893   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1894   // mapping and using it to remap operands in the cloned instructions.
1895   for (; BI != BB->end(); ++BI) {
1896     Instruction *New = BI->clone();
1897 
1898     // Remap operands to patch up intra-block references.
1899     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1900       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1901         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1902         if (I != ValueMapping.end())
1903           New->setOperand(i, I->second);
1904       }
1905 
1906     // If this instruction can be simplified after the operands are updated,
1907     // just use the simplified value instead.  This frequently happens due to
1908     // phi translation.
1909     if (Value *IV = SimplifyInstruction(
1910             New,
1911             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
1912       ValueMapping[&*BI] = IV;
1913       if (!New->mayHaveSideEffects()) {
1914         delete New;
1915         New = nullptr;
1916       }
1917     } else {
1918       ValueMapping[&*BI] = New;
1919     }
1920     if (New) {
1921       // Otherwise, insert the new instruction into the block.
1922       New->setName(BI->getName());
1923       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1924     }
1925   }
1926 
1927   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1928   // add entries to the PHI nodes for branch from PredBB now.
1929   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1930   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1931                                   ValueMapping);
1932   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1933                                   ValueMapping);
1934 
1935   // If there were values defined in BB that are used outside the block, then we
1936   // now have to update all uses of the value to use either the original value,
1937   // the cloned value, or some PHI derived value.  This can require arbitrary
1938   // PHI insertion, of which we are prepared to do, clean these up now.
1939   SSAUpdater SSAUpdate;
1940   SmallVector<Use*, 16> UsesToRename;
1941   for (Instruction &I : *BB) {
1942     // Scan all uses of this instruction to see if it is used outside of its
1943     // block, and if so, record them in UsesToRename.
1944     for (Use &U : I.uses()) {
1945       Instruction *User = cast<Instruction>(U.getUser());
1946       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1947         if (UserPN->getIncomingBlock(U) == BB)
1948           continue;
1949       } else if (User->getParent() == BB)
1950         continue;
1951 
1952       UsesToRename.push_back(&U);
1953     }
1954 
1955     // If there are no uses outside the block, we're done with this instruction.
1956     if (UsesToRename.empty())
1957       continue;
1958 
1959     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1960 
1961     // We found a use of I outside of BB.  Rename all uses of I that are outside
1962     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1963     // with the two values we know.
1964     SSAUpdate.Initialize(I.getType(), I.getName());
1965     SSAUpdate.AddAvailableValue(BB, &I);
1966     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1967 
1968     while (!UsesToRename.empty())
1969       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1970     DEBUG(dbgs() << "\n");
1971   }
1972 
1973   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1974   // that we nuked.
1975   BB->removePredecessor(PredBB, true);
1976 
1977   // Remove the unconditional branch at the end of the PredBB block.
1978   OldPredBranch->eraseFromParent();
1979 
1980   ++NumDupes;
1981   return true;
1982 }
1983 
1984 /// TryToUnfoldSelect - Look for blocks of the form
1985 /// bb1:
1986 ///   %a = select
1987 ///   br bb2
1988 ///
1989 /// bb2:
1990 ///   %p = phi [%a, %bb1] ...
1991 ///   %c = icmp %p
1992 ///   br i1 %c
1993 ///
1994 /// And expand the select into a branch structure if one of its arms allows %c
1995 /// to be folded. This later enables threading from bb1 over bb2.
1996 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1997   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1998   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1999   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2000 
2001   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2002       CondLHS->getParent() != BB)
2003     return false;
2004 
2005   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2006     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2007     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2008 
2009     // Look if one of the incoming values is a select in the corresponding
2010     // predecessor.
2011     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2012       continue;
2013 
2014     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2015     if (!PredTerm || !PredTerm->isUnconditional())
2016       continue;
2017 
2018     // Now check if one of the select values would allow us to constant fold the
2019     // terminator in BB. We don't do the transform if both sides fold, those
2020     // cases will be threaded in any case.
2021     LazyValueInfo::Tristate LHSFolds =
2022         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2023                                 CondRHS, Pred, BB, CondCmp);
2024     LazyValueInfo::Tristate RHSFolds =
2025         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2026                                 CondRHS, Pred, BB, CondCmp);
2027     if ((LHSFolds != LazyValueInfo::Unknown ||
2028          RHSFolds != LazyValueInfo::Unknown) &&
2029         LHSFolds != RHSFolds) {
2030       // Expand the select.
2031       //
2032       // Pred --
2033       //  |    v
2034       //  |  NewBB
2035       //  |    |
2036       //  |-----
2037       //  v
2038       // BB
2039       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2040                                              BB->getParent(), BB);
2041       // Move the unconditional branch to NewBB.
2042       PredTerm->removeFromParent();
2043       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2044       // Create a conditional branch and update PHI nodes.
2045       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2046       CondLHS->setIncomingValue(I, SI->getFalseValue());
2047       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2048       // The select is now dead.
2049       SI->eraseFromParent();
2050 
2051       // Update any other PHI nodes in BB.
2052       for (BasicBlock::iterator BI = BB->begin();
2053            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2054         if (Phi != CondLHS)
2055           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2056       return true;
2057     }
2058   }
2059   return false;
2060 }
2061 
2062 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
2063 /// bb:
2064 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2065 ///   %s = select p, trueval, falseval
2066 ///
2067 /// And expand the select into a branch structure. This later enables
2068 /// jump-threading over bb in this pass.
2069 ///
2070 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2071 /// select if the associated PHI has at least one constant.  If the unfolded
2072 /// select is not jump-threaded, it will be folded again in the later
2073 /// optimizations.
2074 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2075   // If threading this would thread across a loop header, don't thread the edge.
2076   // See the comments above FindLoopHeaders for justifications and caveats.
2077   if (LoopHeaders.count(BB))
2078     return false;
2079 
2080   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
2081   // condition of the Select and at least one of the incoming values is a
2082   // constant.
2083   for (BasicBlock::iterator BI = BB->begin();
2084        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2085     unsigned NumPHIValues = PN->getNumIncomingValues();
2086     if (NumPHIValues == 0 || !PN->hasOneUse())
2087       continue;
2088 
2089     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
2090     if (!SI || SI->getParent() != BB)
2091       continue;
2092 
2093     Value *Cond = SI->getCondition();
2094     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
2095       continue;
2096 
2097     bool HasConst = false;
2098     for (unsigned i = 0; i != NumPHIValues; ++i) {
2099       if (PN->getIncomingBlock(i) == BB)
2100         return false;
2101       if (isa<ConstantInt>(PN->getIncomingValue(i)))
2102         HasConst = true;
2103     }
2104 
2105     if (HasConst) {
2106       // Expand the select.
2107       TerminatorInst *Term =
2108           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2109       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2110       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2111       NewPN->addIncoming(SI->getFalseValue(), BB);
2112       SI->replaceAllUsesWith(NewPN);
2113       SI->eraseFromParent();
2114       return true;
2115     }
2116   }
2117 
2118   return false;
2119 }
2120 
2121 /// Try to propagate a guard from the current BB into one of its predecessors
2122 /// in case if another branch of execution implies that the condition of this
2123 /// guard is always true. Currently we only process the simplest case that
2124 /// looks like:
2125 ///
2126 /// Start:
2127 ///   %cond = ...
2128 ///   br i1 %cond, label %T1, label %F1
2129 /// T1:
2130 ///   br label %Merge
2131 /// F1:
2132 ///   br label %Merge
2133 /// Merge:
2134 ///   %condGuard = ...
2135 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2136 ///
2137 /// And cond either implies condGuard or !condGuard. In this case all the
2138 /// instructions before the guard can be duplicated in both branches, and the
2139 /// guard is then threaded to one of them.
2140 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2141   using namespace PatternMatch;
2142   // We only want to deal with two predecessors.
2143   BasicBlock *Pred1, *Pred2;
2144   auto PI = pred_begin(BB), PE = pred_end(BB);
2145   if (PI == PE)
2146     return false;
2147   Pred1 = *PI++;
2148   if (PI == PE)
2149     return false;
2150   Pred2 = *PI++;
2151   if (PI != PE)
2152     return false;
2153   if (Pred1 == Pred2)
2154     return false;
2155 
2156   // Try to thread one of the guards of the block.
2157   // TODO: Look up deeper than to immediate predecessor?
2158   auto *Parent = Pred1->getSinglePredecessor();
2159   if (!Parent || Parent != Pred2->getSinglePredecessor())
2160     return false;
2161 
2162   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2163     for (auto &I : *BB)
2164       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2165         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2166           return true;
2167 
2168   return false;
2169 }
2170 
2171 /// Try to propagate the guard from BB which is the lower block of a diamond
2172 /// to one of its branches, in case if diamond's condition implies guard's
2173 /// condition.
2174 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2175                                     BranchInst *BI) {
2176   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2177   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2178   Value *GuardCond = Guard->getArgOperand(0);
2179   Value *BranchCond = BI->getCondition();
2180   BasicBlock *TrueDest = BI->getSuccessor(0);
2181   BasicBlock *FalseDest = BI->getSuccessor(1);
2182 
2183   auto &DL = BB->getModule()->getDataLayout();
2184   bool TrueDestIsSafe = false;
2185   bool FalseDestIsSafe = false;
2186 
2187   // True dest is safe if BranchCond => GuardCond.
2188   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2189   if (Impl && *Impl)
2190     TrueDestIsSafe = true;
2191   else {
2192     // False dest is safe if !BranchCond => GuardCond.
2193     Impl =
2194         isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true);
2195     if (Impl && *Impl)
2196       FalseDestIsSafe = true;
2197   }
2198 
2199   if (!TrueDestIsSafe && !FalseDestIsSafe)
2200     return false;
2201 
2202   BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2203   BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2204 
2205   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2206   Instruction *AfterGuard = Guard->getNextNode();
2207   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2208   if (Cost > BBDupThreshold)
2209     return false;
2210   // Duplicate all instructions before the guard and the guard itself to the
2211   // branch where implication is not proved.
2212   GuardedBlock = DuplicateInstructionsInSplitBetween(
2213       BB, GuardedBlock, AfterGuard, GuardedMapping);
2214   assert(GuardedBlock && "Could not create the guarded block?");
2215   // Duplicate all instructions before the guard in the unguarded branch.
2216   // Since we have successfully duplicated the guarded block and this block
2217   // has fewer instructions, we expect it to succeed.
2218   UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
2219                                                        Guard, UnguardedMapping);
2220   assert(UnguardedBlock && "Could not create the unguarded block?");
2221   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2222                << GuardedBlock->getName() << "\n");
2223 
2224   // Some instructions before the guard may still have uses. For them, we need
2225   // to create Phi nodes merging their copies in both guarded and unguarded
2226   // branches. Those instructions that have no uses can be just removed.
2227   SmallVector<Instruction *, 4> ToRemove;
2228   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2229     if (!isa<PHINode>(&*BI))
2230       ToRemove.push_back(&*BI);
2231 
2232   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2233   assert(InsertionPoint && "Empty block?");
2234   // Substitute with Phis & remove.
2235   for (auto *Inst : reverse(ToRemove)) {
2236     if (!Inst->use_empty()) {
2237       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2238       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2239       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2240       NewPN->insertBefore(InsertionPoint);
2241       Inst->replaceAllUsesWith(NewPN);
2242     }
2243     Inst->eraseFromParent();
2244   }
2245   return true;
2246 }
2247