1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/BlockFrequencyInfo.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/CFG.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/GlobalsModRef.h" 28 #include "llvm/Analysis/InstructionSimplify.h" 29 #include "llvm/Analysis/LazyValueInfo.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/TargetLibraryInfo.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/BasicBlock.h" 35 #include "llvm/IR/CFG.h" 36 #include "llvm/IR/Constant.h" 37 #include "llvm/IR/ConstantRange.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/InstrTypes.h" 43 #include "llvm/IR/Instruction.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/MDBuilder.h" 49 #include "llvm/IR/Metadata.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/PassManager.h" 52 #include "llvm/IR/PatternMatch.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/Pass.h" 58 #include "llvm/Support/BlockFrequency.h" 59 #include "llvm/Support/BranchProbability.h" 60 #include "llvm/Support/Casting.h" 61 #include "llvm/Support/CommandLine.h" 62 #include "llvm/Support/Debug.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Transforms/Scalar.h" 65 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 66 #include "llvm/Transforms/Utils/Cloning.h" 67 #include "llvm/Transforms/Utils/Local.h" 68 #include "llvm/Transforms/Utils/SSAUpdater.h" 69 #include "llvm/Transforms/Utils/ValueMapper.h" 70 #include <algorithm> 71 #include <cassert> 72 #include <cstddef> 73 #include <cstdint> 74 #include <iterator> 75 #include <memory> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace jumpthreading; 80 81 #define DEBUG_TYPE "jump-threading" 82 83 STATISTIC(NumThreads, "Number of jumps threaded"); 84 STATISTIC(NumFolds, "Number of terminators folded"); 85 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 86 87 static cl::opt<unsigned> 88 BBDuplicateThreshold("jump-threading-threshold", 89 cl::desc("Max block size to duplicate for jump threading"), 90 cl::init(6), cl::Hidden); 91 92 static cl::opt<unsigned> 93 ImplicationSearchThreshold( 94 "jump-threading-implication-search-threshold", 95 cl::desc("The number of predecessors to search for a stronger " 96 "condition to use to thread over a weaker condition"), 97 cl::init(3), cl::Hidden); 98 99 static cl::opt<bool> PrintLVIAfterJumpThreading( 100 "print-lvi-after-jump-threading", 101 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 102 cl::Hidden); 103 104 namespace { 105 106 /// This pass performs 'jump threading', which looks at blocks that have 107 /// multiple predecessors and multiple successors. If one or more of the 108 /// predecessors of the block can be proven to always jump to one of the 109 /// successors, we forward the edge from the predecessor to the successor by 110 /// duplicating the contents of this block. 111 /// 112 /// An example of when this can occur is code like this: 113 /// 114 /// if () { ... 115 /// X = 4; 116 /// } 117 /// if (X < 3) { 118 /// 119 /// In this case, the unconditional branch at the end of the first if can be 120 /// revectored to the false side of the second if. 121 class JumpThreading : public FunctionPass { 122 JumpThreadingPass Impl; 123 124 public: 125 static char ID; // Pass identification 126 127 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 128 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 129 } 130 131 bool runOnFunction(Function &F) override; 132 133 void getAnalysisUsage(AnalysisUsage &AU) const override { 134 AU.addRequired<DominatorTreeWrapperPass>(); 135 AU.addPreserved<DominatorTreeWrapperPass>(); 136 AU.addRequired<AAResultsWrapperPass>(); 137 AU.addRequired<LazyValueInfoWrapperPass>(); 138 AU.addPreserved<LazyValueInfoWrapperPass>(); 139 AU.addPreserved<GlobalsAAWrapperPass>(); 140 AU.addRequired<TargetLibraryInfoWrapperPass>(); 141 } 142 143 void releaseMemory() override { Impl.releaseMemory(); } 144 }; 145 146 } // end anonymous namespace 147 148 char JumpThreading::ID = 0; 149 150 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 151 "Jump Threading", false, false) 152 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 155 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 156 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 157 "Jump Threading", false, false) 158 159 // Public interface to the Jump Threading pass 160 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { 161 return new JumpThreading(Threshold); 162 } 163 164 JumpThreadingPass::JumpThreadingPass(int T) { 165 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 166 } 167 168 // Update branch probability information according to conditional 169 // branch probablity. This is usually made possible for cloned branches 170 // in inline instances by the context specific profile in the caller. 171 // For instance, 172 // 173 // [Block PredBB] 174 // [Branch PredBr] 175 // if (t) { 176 // Block A; 177 // } else { 178 // Block B; 179 // } 180 // 181 // [Block BB] 182 // cond = PN([true, %A], [..., %B]); // PHI node 183 // [Branch CondBr] 184 // if (cond) { 185 // ... // P(cond == true) = 1% 186 // } 187 // 188 // Here we know that when block A is taken, cond must be true, which means 189 // P(cond == true | A) = 1 190 // 191 // Given that P(cond == true) = P(cond == true | A) * P(A) + 192 // P(cond == true | B) * P(B) 193 // we get: 194 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 195 // 196 // which gives us: 197 // P(A) is less than P(cond == true), i.e. 198 // P(t == true) <= P(cond == true) 199 // 200 // In other words, if we know P(cond == true) is unlikely, we know 201 // that P(t == true) is also unlikely. 202 // 203 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 204 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 205 if (!CondBr) 206 return; 207 208 BranchProbability BP; 209 uint64_t TrueWeight, FalseWeight; 210 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 211 return; 212 213 // Returns the outgoing edge of the dominating predecessor block 214 // that leads to the PhiNode's incoming block: 215 auto GetPredOutEdge = 216 [](BasicBlock *IncomingBB, 217 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 218 auto *PredBB = IncomingBB; 219 auto *SuccBB = PhiBB; 220 while (true) { 221 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 222 if (PredBr && PredBr->isConditional()) 223 return {PredBB, SuccBB}; 224 auto *SinglePredBB = PredBB->getSinglePredecessor(); 225 if (!SinglePredBB) 226 return {nullptr, nullptr}; 227 SuccBB = PredBB; 228 PredBB = SinglePredBB; 229 } 230 }; 231 232 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 233 Value *PhiOpnd = PN->getIncomingValue(i); 234 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 235 236 if (!CI || !CI->getType()->isIntegerTy(1)) 237 continue; 238 239 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 240 TrueWeight, TrueWeight + FalseWeight) 241 : BranchProbability::getBranchProbability( 242 FalseWeight, TrueWeight + FalseWeight)); 243 244 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 245 if (!PredOutEdge.first) 246 return; 247 248 BasicBlock *PredBB = PredOutEdge.first; 249 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 250 251 uint64_t PredTrueWeight, PredFalseWeight; 252 // FIXME: We currently only set the profile data when it is missing. 253 // With PGO, this can be used to refine even existing profile data with 254 // context information. This needs to be done after more performance 255 // testing. 256 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 257 continue; 258 259 // We can not infer anything useful when BP >= 50%, because BP is the 260 // upper bound probability value. 261 if (BP >= BranchProbability(50, 100)) 262 continue; 263 264 SmallVector<uint32_t, 2> Weights; 265 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 266 Weights.push_back(BP.getNumerator()); 267 Weights.push_back(BP.getCompl().getNumerator()); 268 } else { 269 Weights.push_back(BP.getCompl().getNumerator()); 270 Weights.push_back(BP.getNumerator()); 271 } 272 PredBr->setMetadata(LLVMContext::MD_prof, 273 MDBuilder(PredBr->getParent()->getContext()) 274 .createBranchWeights(Weights)); 275 } 276 } 277 278 /// runOnFunction - Toplevel algorithm. 279 bool JumpThreading::runOnFunction(Function &F) { 280 if (skipFunction(F)) 281 return false; 282 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 283 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 284 // DT if it's available. 285 auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 286 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 287 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 288 DeferredDominance DDT(*DT); 289 std::unique_ptr<BlockFrequencyInfo> BFI; 290 std::unique_ptr<BranchProbabilityInfo> BPI; 291 bool HasProfileData = F.hasProfileData(); 292 if (HasProfileData) { 293 LoopInfo LI{DominatorTree(F)}; 294 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 295 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 296 } 297 298 bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData, 299 std::move(BFI), std::move(BPI)); 300 if (PrintLVIAfterJumpThreading) { 301 dbgs() << "LVI for function '" << F.getName() << "':\n"; 302 LVI->printLVI(F, *DT, dbgs()); 303 } 304 return Changed; 305 } 306 307 PreservedAnalyses JumpThreadingPass::run(Function &F, 308 FunctionAnalysisManager &AM) { 309 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 310 // Get DT analysis before LVI. When LVI is initialized it conditionally adds 311 // DT if it's available. 312 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 313 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 314 auto &AA = AM.getResult<AAManager>(F); 315 DeferredDominance DDT(DT); 316 317 std::unique_ptr<BlockFrequencyInfo> BFI; 318 std::unique_ptr<BranchProbabilityInfo> BPI; 319 if (F.hasProfileData()) { 320 LoopInfo LI{DominatorTree(F)}; 321 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 322 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 323 } 324 325 bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData, 326 std::move(BFI), std::move(BPI)); 327 328 if (!Changed) 329 return PreservedAnalyses::all(); 330 PreservedAnalyses PA; 331 PA.preserve<GlobalsAA>(); 332 PA.preserve<DominatorTreeAnalysis>(); 333 PA.preserve<LazyValueAnalysis>(); 334 return PA; 335 } 336 337 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 338 LazyValueInfo *LVI_, AliasAnalysis *AA_, 339 DeferredDominance *DDT_, bool HasProfileData_, 340 std::unique_ptr<BlockFrequencyInfo> BFI_, 341 std::unique_ptr<BranchProbabilityInfo> BPI_) { 342 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 343 TLI = TLI_; 344 LVI = LVI_; 345 AA = AA_; 346 DDT = DDT_; 347 BFI.reset(); 348 BPI.reset(); 349 // When profile data is available, we need to update edge weights after 350 // successful jump threading, which requires both BPI and BFI being available. 351 HasProfileData = HasProfileData_; 352 auto *GuardDecl = F.getParent()->getFunction( 353 Intrinsic::getName(Intrinsic::experimental_guard)); 354 HasGuards = GuardDecl && !GuardDecl->use_empty(); 355 if (HasProfileData) { 356 BPI = std::move(BPI_); 357 BFI = std::move(BFI_); 358 } 359 360 // JumpThreading must not processes blocks unreachable from entry. It's a 361 // waste of compute time and can potentially lead to hangs. 362 SmallPtrSet<BasicBlock *, 16> Unreachable; 363 DominatorTree &DT = DDT->flush(); 364 for (auto &BB : F) 365 if (!DT.isReachableFromEntry(&BB)) 366 Unreachable.insert(&BB); 367 368 FindLoopHeaders(F); 369 370 bool EverChanged = false; 371 bool Changed; 372 do { 373 Changed = false; 374 for (auto &BB : F) { 375 if (Unreachable.count(&BB)) 376 continue; 377 while (ProcessBlock(&BB)) // Thread all of the branches we can over BB. 378 Changed = true; 379 // Stop processing BB if it's the entry or is now deleted. The following 380 // routines attempt to eliminate BB and locating a suitable replacement 381 // for the entry is non-trivial. 382 if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB)) 383 continue; 384 385 if (pred_empty(&BB)) { 386 // When ProcessBlock makes BB unreachable it doesn't bother to fix up 387 // the instructions in it. We must remove BB to prevent invalid IR. 388 DEBUG(dbgs() << " JT: Deleting dead block '" << BB.getName() 389 << "' with terminator: " << *BB.getTerminator() << '\n'); 390 LoopHeaders.erase(&BB); 391 LVI->eraseBlock(&BB); 392 DeleteDeadBlock(&BB, DDT); 393 Changed = true; 394 continue; 395 } 396 397 // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB 398 // is "almost empty", we attempt to merge BB with its sole successor. 399 auto *BI = dyn_cast<BranchInst>(BB.getTerminator()); 400 if (BI && BI->isUnconditional() && 401 // The terminator must be the only non-phi instruction in BB. 402 BB.getFirstNonPHIOrDbg()->isTerminator() && 403 // Don't alter Loop headers and latches to ensure another pass can 404 // detect and transform nested loops later. 405 !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) && 406 TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) { 407 // BB is valid for cleanup here because we passed in DDT. F remains 408 // BB's parent until a DDT->flush() event. 409 LVI->eraseBlock(&BB); 410 Changed = true; 411 } 412 } 413 EverChanged |= Changed; 414 } while (Changed); 415 416 LoopHeaders.clear(); 417 DDT->flush(); 418 LVI->enableDT(); 419 return EverChanged; 420 } 421 422 // Replace uses of Cond with ToVal when safe to do so. If all uses are 423 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 424 // because we may incorrectly replace uses when guards/assumes are uses of 425 // of `Cond` and we used the guards/assume to reason about the `Cond` value 426 // at the end of block. RAUW unconditionally replaces all uses 427 // including the guards/assumes themselves and the uses before the 428 // guard/assume. 429 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 430 assert(Cond->getType() == ToVal->getType()); 431 auto *BB = Cond->getParent(); 432 // We can unconditionally replace all uses in non-local blocks (i.e. uses 433 // strictly dominated by BB), since LVI information is true from the 434 // terminator of BB. 435 replaceNonLocalUsesWith(Cond, ToVal); 436 for (Instruction &I : reverse(*BB)) { 437 // Reached the Cond whose uses we are trying to replace, so there are no 438 // more uses. 439 if (&I == Cond) 440 break; 441 // We only replace uses in instructions that are guaranteed to reach the end 442 // of BB, where we know Cond is ToVal. 443 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 444 break; 445 I.replaceUsesOfWith(Cond, ToVal); 446 } 447 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 448 Cond->eraseFromParent(); 449 } 450 451 /// Return the cost of duplicating a piece of this block from first non-phi 452 /// and before StopAt instruction to thread across it. Stop scanning the block 453 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 454 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 455 Instruction *StopAt, 456 unsigned Threshold) { 457 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 458 /// Ignore PHI nodes, these will be flattened when duplication happens. 459 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 460 461 // FIXME: THREADING will delete values that are just used to compute the 462 // branch, so they shouldn't count against the duplication cost. 463 464 unsigned Bonus = 0; 465 if (BB->getTerminator() == StopAt) { 466 // Threading through a switch statement is particularly profitable. If this 467 // block ends in a switch, decrease its cost to make it more likely to 468 // happen. 469 if (isa<SwitchInst>(StopAt)) 470 Bonus = 6; 471 472 // The same holds for indirect branches, but slightly more so. 473 if (isa<IndirectBrInst>(StopAt)) 474 Bonus = 8; 475 } 476 477 // Bump the threshold up so the early exit from the loop doesn't skip the 478 // terminator-based Size adjustment at the end. 479 Threshold += Bonus; 480 481 // Sum up the cost of each instruction until we get to the terminator. Don't 482 // include the terminator because the copy won't include it. 483 unsigned Size = 0; 484 for (; &*I != StopAt; ++I) { 485 486 // Stop scanning the block if we've reached the threshold. 487 if (Size > Threshold) 488 return Size; 489 490 // Debugger intrinsics don't incur code size. 491 if (isa<DbgInfoIntrinsic>(I)) continue; 492 493 // If this is a pointer->pointer bitcast, it is free. 494 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 495 continue; 496 497 // Bail out if this instruction gives back a token type, it is not possible 498 // to duplicate it if it is used outside this BB. 499 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 500 return ~0U; 501 502 // All other instructions count for at least one unit. 503 ++Size; 504 505 // Calls are more expensive. If they are non-intrinsic calls, we model them 506 // as having cost of 4. If they are a non-vector intrinsic, we model them 507 // as having cost of 2 total, and if they are a vector intrinsic, we model 508 // them as having cost 1. 509 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 510 if (CI->cannotDuplicate() || CI->isConvergent()) 511 // Blocks with NoDuplicate are modelled as having infinite cost, so they 512 // are never duplicated. 513 return ~0U; 514 else if (!isa<IntrinsicInst>(CI)) 515 Size += 3; 516 else if (!CI->getType()->isVectorTy()) 517 Size += 1; 518 } 519 } 520 521 return Size > Bonus ? Size - Bonus : 0; 522 } 523 524 /// FindLoopHeaders - We do not want jump threading to turn proper loop 525 /// structures into irreducible loops. Doing this breaks up the loop nesting 526 /// hierarchy and pessimizes later transformations. To prevent this from 527 /// happening, we first have to find the loop headers. Here we approximate this 528 /// by finding targets of backedges in the CFG. 529 /// 530 /// Note that there definitely are cases when we want to allow threading of 531 /// edges across a loop header. For example, threading a jump from outside the 532 /// loop (the preheader) to an exit block of the loop is definitely profitable. 533 /// It is also almost always profitable to thread backedges from within the loop 534 /// to exit blocks, and is often profitable to thread backedges to other blocks 535 /// within the loop (forming a nested loop). This simple analysis is not rich 536 /// enough to track all of these properties and keep it up-to-date as the CFG 537 /// mutates, so we don't allow any of these transformations. 538 void JumpThreadingPass::FindLoopHeaders(Function &F) { 539 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 540 FindFunctionBackedges(F, Edges); 541 542 for (const auto &Edge : Edges) 543 LoopHeaders.insert(Edge.second); 544 } 545 546 /// getKnownConstant - Helper method to determine if we can thread over a 547 /// terminator with the given value as its condition, and if so what value to 548 /// use for that. What kind of value this is depends on whether we want an 549 /// integer or a block address, but an undef is always accepted. 550 /// Returns null if Val is null or not an appropriate constant. 551 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 552 if (!Val) 553 return nullptr; 554 555 // Undef is "known" enough. 556 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 557 return U; 558 559 if (Preference == WantBlockAddress) 560 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 561 562 return dyn_cast<ConstantInt>(Val); 563 } 564 565 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 566 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 567 /// in any of our predecessors. If so, return the known list of value and pred 568 /// BB in the result vector. 569 /// 570 /// This returns true if there were any known values. 571 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 572 Value *V, BasicBlock *BB, PredValueInfo &Result, 573 ConstantPreference Preference, Instruction *CxtI) { 574 // This method walks up use-def chains recursively. Because of this, we could 575 // get into an infinite loop going around loops in the use-def chain. To 576 // prevent this, keep track of what (value, block) pairs we've already visited 577 // and terminate the search if we loop back to them 578 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 579 return false; 580 581 // An RAII help to remove this pair from the recursion set once the recursion 582 // stack pops back out again. 583 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 584 585 // If V is a constant, then it is known in all predecessors. 586 if (Constant *KC = getKnownConstant(V, Preference)) { 587 for (BasicBlock *Pred : predecessors(BB)) 588 Result.push_back(std::make_pair(KC, Pred)); 589 590 return !Result.empty(); 591 } 592 593 // If V is a non-instruction value, or an instruction in a different block, 594 // then it can't be derived from a PHI. 595 Instruction *I = dyn_cast<Instruction>(V); 596 if (!I || I->getParent() != BB) { 597 598 // Okay, if this is a live-in value, see if it has a known value at the end 599 // of any of our predecessors. 600 // 601 // FIXME: This should be an edge property, not a block end property. 602 /// TODO: Per PR2563, we could infer value range information about a 603 /// predecessor based on its terminator. 604 // 605 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 606 // "I" is a non-local compare-with-a-constant instruction. This would be 607 // able to handle value inequalities better, for example if the compare is 608 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 609 // Perhaps getConstantOnEdge should be smart enough to do this? 610 611 if (DDT->pending()) 612 LVI->disableDT(); 613 else 614 LVI->enableDT(); 615 for (BasicBlock *P : predecessors(BB)) { 616 // If the value is known by LazyValueInfo to be a constant in a 617 // predecessor, use that information to try to thread this block. 618 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 619 if (Constant *KC = getKnownConstant(PredCst, Preference)) 620 Result.push_back(std::make_pair(KC, P)); 621 } 622 623 return !Result.empty(); 624 } 625 626 /// If I is a PHI node, then we know the incoming values for any constants. 627 if (PHINode *PN = dyn_cast<PHINode>(I)) { 628 if (DDT->pending()) 629 LVI->disableDT(); 630 else 631 LVI->enableDT(); 632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 633 Value *InVal = PN->getIncomingValue(i); 634 if (Constant *KC = getKnownConstant(InVal, Preference)) { 635 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 636 } else { 637 Constant *CI = LVI->getConstantOnEdge(InVal, 638 PN->getIncomingBlock(i), 639 BB, CxtI); 640 if (Constant *KC = getKnownConstant(CI, Preference)) 641 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 642 } 643 } 644 645 return !Result.empty(); 646 } 647 648 // Handle Cast instructions. Only see through Cast when the source operand is 649 // PHI or Cmp to save the compilation time. 650 if (CastInst *CI = dyn_cast<CastInst>(I)) { 651 Value *Source = CI->getOperand(0); 652 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 653 return false; 654 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 655 if (Result.empty()) 656 return false; 657 658 // Convert the known values. 659 for (auto &R : Result) 660 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 661 662 return true; 663 } 664 665 // Handle some boolean conditions. 666 if (I->getType()->getPrimitiveSizeInBits() == 1) { 667 assert(Preference == WantInteger && "One-bit non-integer type?"); 668 // X | true -> true 669 // X & false -> false 670 if (I->getOpcode() == Instruction::Or || 671 I->getOpcode() == Instruction::And) { 672 PredValueInfoTy LHSVals, RHSVals; 673 674 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 675 WantInteger, CxtI); 676 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 677 WantInteger, CxtI); 678 679 if (LHSVals.empty() && RHSVals.empty()) 680 return false; 681 682 ConstantInt *InterestingVal; 683 if (I->getOpcode() == Instruction::Or) 684 InterestingVal = ConstantInt::getTrue(I->getContext()); 685 else 686 InterestingVal = ConstantInt::getFalse(I->getContext()); 687 688 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 689 690 // Scan for the sentinel. If we find an undef, force it to the 691 // interesting value: x|undef -> true and x&undef -> false. 692 for (const auto &LHSVal : LHSVals) 693 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 694 Result.emplace_back(InterestingVal, LHSVal.second); 695 LHSKnownBBs.insert(LHSVal.second); 696 } 697 for (const auto &RHSVal : RHSVals) 698 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 699 // If we already inferred a value for this block on the LHS, don't 700 // re-add it. 701 if (!LHSKnownBBs.count(RHSVal.second)) 702 Result.emplace_back(InterestingVal, RHSVal.second); 703 } 704 705 return !Result.empty(); 706 } 707 708 // Handle the NOT form of XOR. 709 if (I->getOpcode() == Instruction::Xor && 710 isa<ConstantInt>(I->getOperand(1)) && 711 cast<ConstantInt>(I->getOperand(1))->isOne()) { 712 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 713 WantInteger, CxtI); 714 if (Result.empty()) 715 return false; 716 717 // Invert the known values. 718 for (auto &R : Result) 719 R.first = ConstantExpr::getNot(R.first); 720 721 return true; 722 } 723 724 // Try to simplify some other binary operator values. 725 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 726 assert(Preference != WantBlockAddress 727 && "A binary operator creating a block address?"); 728 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 729 PredValueInfoTy LHSVals; 730 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 731 WantInteger, CxtI); 732 733 // Try to use constant folding to simplify the binary operator. 734 for (const auto &LHSVal : LHSVals) { 735 Constant *V = LHSVal.first; 736 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 737 738 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 739 Result.push_back(std::make_pair(KC, LHSVal.second)); 740 } 741 } 742 743 return !Result.empty(); 744 } 745 746 // Handle compare with phi operand, where the PHI is defined in this block. 747 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 748 assert(Preference == WantInteger && "Compares only produce integers"); 749 Type *CmpType = Cmp->getType(); 750 Value *CmpLHS = Cmp->getOperand(0); 751 Value *CmpRHS = Cmp->getOperand(1); 752 CmpInst::Predicate Pred = Cmp->getPredicate(); 753 754 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 755 if (PN && PN->getParent() == BB) { 756 const DataLayout &DL = PN->getModule()->getDataLayout(); 757 // We can do this simplification if any comparisons fold to true or false. 758 // See if any do. 759 if (DDT->pending()) 760 LVI->disableDT(); 761 else 762 LVI->enableDT(); 763 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 764 BasicBlock *PredBB = PN->getIncomingBlock(i); 765 Value *LHS = PN->getIncomingValue(i); 766 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 767 768 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 769 if (!Res) { 770 if (!isa<Constant>(RHS)) 771 continue; 772 773 LazyValueInfo::Tristate 774 ResT = LVI->getPredicateOnEdge(Pred, LHS, 775 cast<Constant>(RHS), PredBB, BB, 776 CxtI ? CxtI : Cmp); 777 if (ResT == LazyValueInfo::Unknown) 778 continue; 779 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 780 } 781 782 if (Constant *KC = getKnownConstant(Res, WantInteger)) 783 Result.push_back(std::make_pair(KC, PredBB)); 784 } 785 786 return !Result.empty(); 787 } 788 789 // If comparing a live-in value against a constant, see if we know the 790 // live-in value on any predecessors. 791 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 792 Constant *CmpConst = cast<Constant>(CmpRHS); 793 794 if (!isa<Instruction>(CmpLHS) || 795 cast<Instruction>(CmpLHS)->getParent() != BB) { 796 if (DDT->pending()) 797 LVI->disableDT(); 798 else 799 LVI->enableDT(); 800 for (BasicBlock *P : predecessors(BB)) { 801 // If the value is known by LazyValueInfo to be a constant in a 802 // predecessor, use that information to try to thread this block. 803 LazyValueInfo::Tristate Res = 804 LVI->getPredicateOnEdge(Pred, CmpLHS, 805 CmpConst, P, BB, CxtI ? CxtI : Cmp); 806 if (Res == LazyValueInfo::Unknown) 807 continue; 808 809 Constant *ResC = ConstantInt::get(CmpType, Res); 810 Result.push_back(std::make_pair(ResC, P)); 811 } 812 813 return !Result.empty(); 814 } 815 816 // InstCombine can fold some forms of constant range checks into 817 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 818 // x as a live-in. 819 { 820 using namespace PatternMatch; 821 822 Value *AddLHS; 823 ConstantInt *AddConst; 824 if (isa<ConstantInt>(CmpConst) && 825 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 826 if (!isa<Instruction>(AddLHS) || 827 cast<Instruction>(AddLHS)->getParent() != BB) { 828 if (DDT->pending()) 829 LVI->disableDT(); 830 else 831 LVI->enableDT(); 832 for (BasicBlock *P : predecessors(BB)) { 833 // If the value is known by LazyValueInfo to be a ConstantRange in 834 // a predecessor, use that information to try to thread this 835 // block. 836 ConstantRange CR = LVI->getConstantRangeOnEdge( 837 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 838 // Propagate the range through the addition. 839 CR = CR.add(AddConst->getValue()); 840 841 // Get the range where the compare returns true. 842 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 843 Pred, cast<ConstantInt>(CmpConst)->getValue()); 844 845 Constant *ResC; 846 if (CmpRange.contains(CR)) 847 ResC = ConstantInt::getTrue(CmpType); 848 else if (CmpRange.inverse().contains(CR)) 849 ResC = ConstantInt::getFalse(CmpType); 850 else 851 continue; 852 853 Result.push_back(std::make_pair(ResC, P)); 854 } 855 856 return !Result.empty(); 857 } 858 } 859 } 860 861 // Try to find a constant value for the LHS of a comparison, 862 // and evaluate it statically if we can. 863 PredValueInfoTy LHSVals; 864 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 865 WantInteger, CxtI); 866 867 for (const auto &LHSVal : LHSVals) { 868 Constant *V = LHSVal.first; 869 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 870 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 871 Result.push_back(std::make_pair(KC, LHSVal.second)); 872 } 873 874 return !Result.empty(); 875 } 876 } 877 878 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 879 // Handle select instructions where at least one operand is a known constant 880 // and we can figure out the condition value for any predecessor block. 881 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 882 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 883 PredValueInfoTy Conds; 884 if ((TrueVal || FalseVal) && 885 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 886 WantInteger, CxtI)) { 887 for (auto &C : Conds) { 888 Constant *Cond = C.first; 889 890 // Figure out what value to use for the condition. 891 bool KnownCond; 892 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 893 // A known boolean. 894 KnownCond = CI->isOne(); 895 } else { 896 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 897 // Either operand will do, so be sure to pick the one that's a known 898 // constant. 899 // FIXME: Do this more cleverly if both values are known constants? 900 KnownCond = (TrueVal != nullptr); 901 } 902 903 // See if the select has a known constant value for this predecessor. 904 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 905 Result.push_back(std::make_pair(Val, C.second)); 906 } 907 908 return !Result.empty(); 909 } 910 } 911 912 // If all else fails, see if LVI can figure out a constant value for us. 913 if (DDT->pending()) 914 LVI->disableDT(); 915 else 916 LVI->enableDT(); 917 Constant *CI = LVI->getConstant(V, BB, CxtI); 918 if (Constant *KC = getKnownConstant(CI, Preference)) { 919 for (BasicBlock *Pred : predecessors(BB)) 920 Result.push_back(std::make_pair(KC, Pred)); 921 } 922 923 return !Result.empty(); 924 } 925 926 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 927 /// in an undefined jump, decide which block is best to revector to. 928 /// 929 /// Since we can pick an arbitrary destination, we pick the successor with the 930 /// fewest predecessors. This should reduce the in-degree of the others. 931 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 932 TerminatorInst *BBTerm = BB->getTerminator(); 933 unsigned MinSucc = 0; 934 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 935 // Compute the successor with the minimum number of predecessors. 936 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 937 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 938 TestBB = BBTerm->getSuccessor(i); 939 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 940 if (NumPreds < MinNumPreds) { 941 MinSucc = i; 942 MinNumPreds = NumPreds; 943 } 944 } 945 946 return MinSucc; 947 } 948 949 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 950 if (!BB->hasAddressTaken()) return false; 951 952 // If the block has its address taken, it may be a tree of dead constants 953 // hanging off of it. These shouldn't keep the block alive. 954 BlockAddress *BA = BlockAddress::get(BB); 955 BA->removeDeadConstantUsers(); 956 return !BA->use_empty(); 957 } 958 959 /// ProcessBlock - If there are any predecessors whose control can be threaded 960 /// through to a successor, transform them now. 961 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 962 // If the block is trivially dead, just return and let the caller nuke it. 963 // This simplifies other transformations. 964 if (DDT->pendingDeletedBB(BB) || 965 (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock())) 966 return false; 967 968 // If this block has a single predecessor, and if that pred has a single 969 // successor, merge the blocks. This encourages recursive jump threading 970 // because now the condition in this block can be threaded through 971 // predecessors of our predecessor block. 972 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 973 const TerminatorInst *TI = SinglePred->getTerminator(); 974 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 975 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 976 // If SinglePred was a loop header, BB becomes one. 977 if (LoopHeaders.erase(SinglePred)) 978 LoopHeaders.insert(BB); 979 980 LVI->eraseBlock(SinglePred); 981 MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT); 982 983 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 984 // BB code within one basic block `BB`), we need to invalidate the LVI 985 // information associated with BB, because the LVI information need not be 986 // true for all of BB after the merge. For example, 987 // Before the merge, LVI info and code is as follows: 988 // SinglePred: <LVI info1 for %p val> 989 // %y = use of %p 990 // call @exit() // need not transfer execution to successor. 991 // assume(%p) // from this point on %p is true 992 // br label %BB 993 // BB: <LVI info2 for %p val, i.e. %p is true> 994 // %x = use of %p 995 // br label exit 996 // 997 // Note that this LVI info for blocks BB and SinglPred is correct for %p 998 // (info2 and info1 respectively). After the merge and the deletion of the 999 // LVI info1 for SinglePred. We have the following code: 1000 // BB: <LVI info2 for %p val> 1001 // %y = use of %p 1002 // call @exit() 1003 // assume(%p) 1004 // %x = use of %p <-- LVI info2 is correct from here onwards. 1005 // br label exit 1006 // LVI info2 for BB is incorrect at the beginning of BB. 1007 1008 // Invalidate LVI information for BB if the LVI is not provably true for 1009 // all of BB. 1010 if (!isGuaranteedToTransferExecutionToSuccessor(BB)) 1011 LVI->eraseBlock(BB); 1012 return true; 1013 } 1014 } 1015 1016 if (TryToUnfoldSelectInCurrBB(BB)) 1017 return true; 1018 1019 // Look if we can propagate guards to predecessors. 1020 if (HasGuards && ProcessGuards(BB)) 1021 return true; 1022 1023 // What kind of constant we're looking for. 1024 ConstantPreference Preference = WantInteger; 1025 1026 // Look to see if the terminator is a conditional branch, switch or indirect 1027 // branch, if not we can't thread it. 1028 Value *Condition; 1029 Instruction *Terminator = BB->getTerminator(); 1030 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 1031 // Can't thread an unconditional jump. 1032 if (BI->isUnconditional()) return false; 1033 Condition = BI->getCondition(); 1034 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 1035 Condition = SI->getCondition(); 1036 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 1037 // Can't thread indirect branch with no successors. 1038 if (IB->getNumSuccessors() == 0) return false; 1039 Condition = IB->getAddress()->stripPointerCasts(); 1040 Preference = WantBlockAddress; 1041 } else { 1042 return false; // Must be an invoke. 1043 } 1044 1045 // Run constant folding to see if we can reduce the condition to a simple 1046 // constant. 1047 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 1048 Value *SimpleVal = 1049 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 1050 if (SimpleVal) { 1051 I->replaceAllUsesWith(SimpleVal); 1052 if (isInstructionTriviallyDead(I, TLI)) 1053 I->eraseFromParent(); 1054 Condition = SimpleVal; 1055 } 1056 } 1057 1058 // If the terminator is branching on an undef, we can pick any of the 1059 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1060 if (isa<UndefValue>(Condition)) { 1061 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1062 std::vector<DominatorTree::UpdateType> Updates; 1063 1064 // Fold the branch/switch. 1065 TerminatorInst *BBTerm = BB->getTerminator(); 1066 Updates.reserve(BBTerm->getNumSuccessors()); 1067 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1068 if (i == BestSucc) continue; 1069 BasicBlock *Succ = BBTerm->getSuccessor(i); 1070 Succ->removePredecessor(BB, true); 1071 Updates.push_back({DominatorTree::Delete, BB, Succ}); 1072 } 1073 1074 DEBUG(dbgs() << " In block '" << BB->getName() 1075 << "' folding undef terminator: " << *BBTerm << '\n'); 1076 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1077 BBTerm->eraseFromParent(); 1078 DDT->applyUpdates(Updates); 1079 return true; 1080 } 1081 1082 // If the terminator of this block is branching on a constant, simplify the 1083 // terminator to an unconditional branch. This can occur due to threading in 1084 // other blocks. 1085 if (getKnownConstant(Condition, Preference)) { 1086 DEBUG(dbgs() << " In block '" << BB->getName() 1087 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1088 ++NumFolds; 1089 ConstantFoldTerminator(BB, true, nullptr, DDT); 1090 return true; 1091 } 1092 1093 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1094 1095 // All the rest of our checks depend on the condition being an instruction. 1096 if (!CondInst) { 1097 // FIXME: Unify this with code below. 1098 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1099 return true; 1100 return false; 1101 } 1102 1103 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1104 // If we're branching on a conditional, LVI might be able to determine 1105 // it's value at the branch instruction. We only handle comparisons 1106 // against a constant at this time. 1107 // TODO: This should be extended to handle switches as well. 1108 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1109 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1110 if (CondBr && CondConst) { 1111 // We should have returned as soon as we turn a conditional branch to 1112 // unconditional. Because its no longer interesting as far as jump 1113 // threading is concerned. 1114 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1115 1116 if (DDT->pending()) 1117 LVI->disableDT(); 1118 else 1119 LVI->enableDT(); 1120 LazyValueInfo::Tristate Ret = 1121 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1122 CondConst, CondBr); 1123 if (Ret != LazyValueInfo::Unknown) { 1124 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1125 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1126 BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove); 1127 ToRemoveSucc->removePredecessor(BB, true); 1128 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1129 CondBr->eraseFromParent(); 1130 if (CondCmp->use_empty()) 1131 CondCmp->eraseFromParent(); 1132 // We can safely replace *some* uses of the CondInst if it has 1133 // exactly one value as returned by LVI. RAUW is incorrect in the 1134 // presence of guards and assumes, that have the `Cond` as the use. This 1135 // is because we use the guards/assume to reason about the `Cond` value 1136 // at the end of block, but RAUW unconditionally replaces all uses 1137 // including the guards/assumes themselves and the uses before the 1138 // guard/assume. 1139 else if (CondCmp->getParent() == BB) { 1140 auto *CI = Ret == LazyValueInfo::True ? 1141 ConstantInt::getTrue(CondCmp->getType()) : 1142 ConstantInt::getFalse(CondCmp->getType()); 1143 ReplaceFoldableUses(CondCmp, CI); 1144 } 1145 DDT->deleteEdge(BB, ToRemoveSucc); 1146 return true; 1147 } 1148 1149 // We did not manage to simplify this branch, try to see whether 1150 // CondCmp depends on a known phi-select pattern. 1151 if (TryToUnfoldSelect(CondCmp, BB)) 1152 return true; 1153 } 1154 } 1155 1156 // Check for some cases that are worth simplifying. Right now we want to look 1157 // for loads that are used by a switch or by the condition for the branch. If 1158 // we see one, check to see if it's partially redundant. If so, insert a PHI 1159 // which can then be used to thread the values. 1160 Value *SimplifyValue = CondInst; 1161 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1162 if (isa<Constant>(CondCmp->getOperand(1))) 1163 SimplifyValue = CondCmp->getOperand(0); 1164 1165 // TODO: There are other places where load PRE would be profitable, such as 1166 // more complex comparisons. 1167 if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue)) 1168 if (SimplifyPartiallyRedundantLoad(LoadI)) 1169 return true; 1170 1171 // Before threading, try to propagate profile data backwards: 1172 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1173 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1174 updatePredecessorProfileMetadata(PN, BB); 1175 1176 // Handle a variety of cases where we are branching on something derived from 1177 // a PHI node in the current block. If we can prove that any predecessors 1178 // compute a predictable value based on a PHI node, thread those predecessors. 1179 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1180 return true; 1181 1182 // If this is an otherwise-unfoldable branch on a phi node in the current 1183 // block, see if we can simplify. 1184 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1185 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1186 return ProcessBranchOnPHI(PN); 1187 1188 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1189 if (CondInst->getOpcode() == Instruction::Xor && 1190 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1191 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1192 1193 // Search for a stronger dominating condition that can be used to simplify a 1194 // conditional branch leaving BB. 1195 if (ProcessImpliedCondition(BB)) 1196 return true; 1197 1198 return false; 1199 } 1200 1201 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1202 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1203 if (!BI || !BI->isConditional()) 1204 return false; 1205 1206 Value *Cond = BI->getCondition(); 1207 BasicBlock *CurrentBB = BB; 1208 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1209 unsigned Iter = 0; 1210 1211 auto &DL = BB->getModule()->getDataLayout(); 1212 1213 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1214 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1215 if (!PBI || !PBI->isConditional()) 1216 return false; 1217 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1218 return false; 1219 1220 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1221 Optional<bool> Implication = 1222 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1223 if (Implication) { 1224 BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1); 1225 BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0); 1226 RemoveSucc->removePredecessor(BB); 1227 BranchInst::Create(KeepSucc, BI); 1228 BI->eraseFromParent(); 1229 DDT->deleteEdge(BB, RemoveSucc); 1230 return true; 1231 } 1232 CurrentBB = CurrentPred; 1233 CurrentPred = CurrentBB->getSinglePredecessor(); 1234 } 1235 1236 return false; 1237 } 1238 1239 /// Return true if Op is an instruction defined in the given block. 1240 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1241 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1242 if (OpInst->getParent() == BB) 1243 return true; 1244 return false; 1245 } 1246 1247 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially 1248 /// redundant load instruction, eliminate it by replacing it with a PHI node. 1249 /// This is an important optimization that encourages jump threading, and needs 1250 /// to be run interlaced with other jump threading tasks. 1251 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) { 1252 // Don't hack volatile and ordered loads. 1253 if (!LoadI->isUnordered()) return false; 1254 1255 // If the load is defined in a block with exactly one predecessor, it can't be 1256 // partially redundant. 1257 BasicBlock *LoadBB = LoadI->getParent(); 1258 if (LoadBB->getSinglePredecessor()) 1259 return false; 1260 1261 // If the load is defined in an EH pad, it can't be partially redundant, 1262 // because the edges between the invoke and the EH pad cannot have other 1263 // instructions between them. 1264 if (LoadBB->isEHPad()) 1265 return false; 1266 1267 Value *LoadedPtr = LoadI->getOperand(0); 1268 1269 // If the loaded operand is defined in the LoadBB and its not a phi, 1270 // it can't be available in predecessors. 1271 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1272 return false; 1273 1274 // Scan a few instructions up from the load, to see if it is obviously live at 1275 // the entry to its block. 1276 BasicBlock::iterator BBIt(LoadI); 1277 bool IsLoadCSE; 1278 if (Value *AvailableVal = FindAvailableLoadedValue( 1279 LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1280 // If the value of the load is locally available within the block, just use 1281 // it. This frequently occurs for reg2mem'd allocas. 1282 1283 if (IsLoadCSE) { 1284 LoadInst *NLoadI = cast<LoadInst>(AvailableVal); 1285 combineMetadataForCSE(NLoadI, LoadI); 1286 }; 1287 1288 // If the returned value is the load itself, replace with an undef. This can 1289 // only happen in dead loops. 1290 if (AvailableVal == LoadI) 1291 AvailableVal = UndefValue::get(LoadI->getType()); 1292 if (AvailableVal->getType() != LoadI->getType()) 1293 AvailableVal = CastInst::CreateBitOrPointerCast( 1294 AvailableVal, LoadI->getType(), "", LoadI); 1295 LoadI->replaceAllUsesWith(AvailableVal); 1296 LoadI->eraseFromParent(); 1297 return true; 1298 } 1299 1300 // Otherwise, if we scanned the whole block and got to the top of the block, 1301 // we know the block is locally transparent to the load. If not, something 1302 // might clobber its value. 1303 if (BBIt != LoadBB->begin()) 1304 return false; 1305 1306 // If all of the loads and stores that feed the value have the same AA tags, 1307 // then we can propagate them onto any newly inserted loads. 1308 AAMDNodes AATags; 1309 LoadI->getAAMetadata(AATags); 1310 1311 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1312 1313 using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>; 1314 1315 AvailablePredsTy AvailablePreds; 1316 BasicBlock *OneUnavailablePred = nullptr; 1317 SmallVector<LoadInst*, 8> CSELoads; 1318 1319 // If we got here, the loaded value is transparent through to the start of the 1320 // block. Check to see if it is available in any of the predecessor blocks. 1321 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1322 // If we already scanned this predecessor, skip it. 1323 if (!PredsScanned.insert(PredBB).second) 1324 continue; 1325 1326 BBIt = PredBB->end(); 1327 unsigned NumScanedInst = 0; 1328 Value *PredAvailable = nullptr; 1329 // NOTE: We don't CSE load that is volatile or anything stronger than 1330 // unordered, that should have been checked when we entered the function. 1331 assert(LoadI->isUnordered() && 1332 "Attempting to CSE volatile or atomic loads"); 1333 // If this is a load on a phi pointer, phi-translate it and search 1334 // for available load/store to the pointer in predecessors. 1335 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1336 PredAvailable = FindAvailablePtrLoadStore( 1337 Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt, 1338 DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst); 1339 1340 // If PredBB has a single predecessor, continue scanning through the 1341 // single precessor. 1342 BasicBlock *SinglePredBB = PredBB; 1343 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1344 NumScanedInst < DefMaxInstsToScan) { 1345 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1346 if (SinglePredBB) { 1347 BBIt = SinglePredBB->end(); 1348 PredAvailable = FindAvailablePtrLoadStore( 1349 Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt, 1350 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1351 &NumScanedInst); 1352 } 1353 } 1354 1355 if (!PredAvailable) { 1356 OneUnavailablePred = PredBB; 1357 continue; 1358 } 1359 1360 if (IsLoadCSE) 1361 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1362 1363 // If so, this load is partially redundant. Remember this info so that we 1364 // can create a PHI node. 1365 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1366 } 1367 1368 // If the loaded value isn't available in any predecessor, it isn't partially 1369 // redundant. 1370 if (AvailablePreds.empty()) return false; 1371 1372 // Okay, the loaded value is available in at least one (and maybe all!) 1373 // predecessors. If the value is unavailable in more than one unique 1374 // predecessor, we want to insert a merge block for those common predecessors. 1375 // This ensures that we only have to insert one reload, thus not increasing 1376 // code size. 1377 BasicBlock *UnavailablePred = nullptr; 1378 1379 // If the value is unavailable in one of predecessors, we will end up 1380 // inserting a new instruction into them. It is only valid if all the 1381 // instructions before LoadI are guaranteed to pass execution to its 1382 // successor, or if LoadI is safe to speculate. 1383 // TODO: If this logic becomes more complex, and we will perform PRE insertion 1384 // farther than to a predecessor, we need to reuse the code from GVN's PRE. 1385 // It requires domination tree analysis, so for this simple case it is an 1386 // overkill. 1387 if (PredsScanned.size() != AvailablePreds.size() && 1388 !isSafeToSpeculativelyExecute(LoadI)) 1389 for (auto I = LoadBB->begin(); &*I != LoadI; ++I) 1390 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 1391 return false; 1392 1393 // If there is exactly one predecessor where the value is unavailable, the 1394 // already computed 'OneUnavailablePred' block is it. If it ends in an 1395 // unconditional branch, we know that it isn't a critical edge. 1396 if (PredsScanned.size() == AvailablePreds.size()+1 && 1397 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1398 UnavailablePred = OneUnavailablePred; 1399 } else if (PredsScanned.size() != AvailablePreds.size()) { 1400 // Otherwise, we had multiple unavailable predecessors or we had a critical 1401 // edge from the one. 1402 SmallVector<BasicBlock*, 8> PredsToSplit; 1403 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1404 1405 for (const auto &AvailablePred : AvailablePreds) 1406 AvailablePredSet.insert(AvailablePred.first); 1407 1408 // Add all the unavailable predecessors to the PredsToSplit list. 1409 for (BasicBlock *P : predecessors(LoadBB)) { 1410 // If the predecessor is an indirect goto, we can't split the edge. 1411 if (isa<IndirectBrInst>(P->getTerminator())) 1412 return false; 1413 1414 if (!AvailablePredSet.count(P)) 1415 PredsToSplit.push_back(P); 1416 } 1417 1418 // Split them out to their own block. 1419 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1420 } 1421 1422 // If the value isn't available in all predecessors, then there will be 1423 // exactly one where it isn't available. Insert a load on that edge and add 1424 // it to the AvailablePreds list. 1425 if (UnavailablePred) { 1426 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1427 "Can't handle critical edge here!"); 1428 LoadInst *NewVal = 1429 new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1430 LoadI->getName() + ".pr", false, LoadI->getAlignment(), 1431 LoadI->getOrdering(), LoadI->getSyncScopeID(), 1432 UnavailablePred->getTerminator()); 1433 NewVal->setDebugLoc(LoadI->getDebugLoc()); 1434 if (AATags) 1435 NewVal->setAAMetadata(AATags); 1436 1437 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1438 } 1439 1440 // Now we know that each predecessor of this block has a value in 1441 // AvailablePreds, sort them for efficient access as we're walking the preds. 1442 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1443 1444 // Create a PHI node at the start of the block for the PRE'd load value. 1445 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1446 PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "", 1447 &LoadBB->front()); 1448 PN->takeName(LoadI); 1449 PN->setDebugLoc(LoadI->getDebugLoc()); 1450 1451 // Insert new entries into the PHI for each predecessor. A single block may 1452 // have multiple entries here. 1453 for (pred_iterator PI = PB; PI != PE; ++PI) { 1454 BasicBlock *P = *PI; 1455 AvailablePredsTy::iterator I = 1456 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1457 std::make_pair(P, (Value*)nullptr)); 1458 1459 assert(I != AvailablePreds.end() && I->first == P && 1460 "Didn't find entry for predecessor!"); 1461 1462 // If we have an available predecessor but it requires casting, insert the 1463 // cast in the predecessor and use the cast. Note that we have to update the 1464 // AvailablePreds vector as we go so that all of the PHI entries for this 1465 // predecessor use the same bitcast. 1466 Value *&PredV = I->second; 1467 if (PredV->getType() != LoadI->getType()) 1468 PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "", 1469 P->getTerminator()); 1470 1471 PN->addIncoming(PredV, I->first); 1472 } 1473 1474 for (LoadInst *PredLoadI : CSELoads) { 1475 combineMetadataForCSE(PredLoadI, LoadI); 1476 } 1477 1478 LoadI->replaceAllUsesWith(PN); 1479 LoadI->eraseFromParent(); 1480 1481 return true; 1482 } 1483 1484 /// FindMostPopularDest - The specified list contains multiple possible 1485 /// threadable destinations. Pick the one that occurs the most frequently in 1486 /// the list. 1487 static BasicBlock * 1488 FindMostPopularDest(BasicBlock *BB, 1489 const SmallVectorImpl<std::pair<BasicBlock *, 1490 BasicBlock *>> &PredToDestList) { 1491 assert(!PredToDestList.empty()); 1492 1493 // Determine popularity. If there are multiple possible destinations, we 1494 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1495 // blocks with known and real destinations to threading undef. We'll handle 1496 // them later if interesting. 1497 DenseMap<BasicBlock*, unsigned> DestPopularity; 1498 for (const auto &PredToDest : PredToDestList) 1499 if (PredToDest.second) 1500 DestPopularity[PredToDest.second]++; 1501 1502 // Find the most popular dest. 1503 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1504 BasicBlock *MostPopularDest = DPI->first; 1505 unsigned Popularity = DPI->second; 1506 SmallVector<BasicBlock*, 4> SamePopularity; 1507 1508 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1509 // If the popularity of this entry isn't higher than the popularity we've 1510 // seen so far, ignore it. 1511 if (DPI->second < Popularity) 1512 ; // ignore. 1513 else if (DPI->second == Popularity) { 1514 // If it is the same as what we've seen so far, keep track of it. 1515 SamePopularity.push_back(DPI->first); 1516 } else { 1517 // If it is more popular, remember it. 1518 SamePopularity.clear(); 1519 MostPopularDest = DPI->first; 1520 Popularity = DPI->second; 1521 } 1522 } 1523 1524 // Okay, now we know the most popular destination. If there is more than one 1525 // destination, we need to determine one. This is arbitrary, but we need 1526 // to make a deterministic decision. Pick the first one that appears in the 1527 // successor list. 1528 if (!SamePopularity.empty()) { 1529 SamePopularity.push_back(MostPopularDest); 1530 TerminatorInst *TI = BB->getTerminator(); 1531 for (unsigned i = 0; ; ++i) { 1532 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1533 1534 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1535 continue; 1536 1537 MostPopularDest = TI->getSuccessor(i); 1538 break; 1539 } 1540 } 1541 1542 // Okay, we have finally picked the most popular destination. 1543 return MostPopularDest; 1544 } 1545 1546 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1547 ConstantPreference Preference, 1548 Instruction *CxtI) { 1549 // If threading this would thread across a loop header, don't even try to 1550 // thread the edge. 1551 if (LoopHeaders.count(BB)) 1552 return false; 1553 1554 PredValueInfoTy PredValues; 1555 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1556 return false; 1557 1558 assert(!PredValues.empty() && 1559 "ComputeValueKnownInPredecessors returned true with no values"); 1560 1561 DEBUG(dbgs() << "IN BB: " << *BB; 1562 for (const auto &PredValue : PredValues) { 1563 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1564 << *PredValue.first 1565 << " for pred '" << PredValue.second->getName() << "'.\n"; 1566 }); 1567 1568 // Decide what we want to thread through. Convert our list of known values to 1569 // a list of known destinations for each pred. This also discards duplicate 1570 // predecessors and keeps track of the undefined inputs (which are represented 1571 // as a null dest in the PredToDestList). 1572 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1573 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1574 1575 BasicBlock *OnlyDest = nullptr; 1576 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1577 Constant *OnlyVal = nullptr; 1578 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1579 1580 unsigned PredWithKnownDest = 0; 1581 for (const auto &PredValue : PredValues) { 1582 BasicBlock *Pred = PredValue.second; 1583 if (!SeenPreds.insert(Pred).second) 1584 continue; // Duplicate predecessor entry. 1585 1586 Constant *Val = PredValue.first; 1587 1588 BasicBlock *DestBB; 1589 if (isa<UndefValue>(Val)) 1590 DestBB = nullptr; 1591 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1592 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1593 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1594 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1595 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1596 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1597 } else { 1598 assert(isa<IndirectBrInst>(BB->getTerminator()) 1599 && "Unexpected terminator"); 1600 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1601 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1602 } 1603 1604 // If we have exactly one destination, remember it for efficiency below. 1605 if (PredToDestList.empty()) { 1606 OnlyDest = DestBB; 1607 OnlyVal = Val; 1608 } else { 1609 if (OnlyDest != DestBB) 1610 OnlyDest = MultipleDestSentinel; 1611 // It possible we have same destination, but different value, e.g. default 1612 // case in switchinst. 1613 if (Val != OnlyVal) 1614 OnlyVal = MultipleVal; 1615 } 1616 1617 // We know where this predecessor is going. 1618 ++PredWithKnownDest; 1619 1620 // If the predecessor ends with an indirect goto, we can't change its 1621 // destination. 1622 if (isa<IndirectBrInst>(Pred->getTerminator())) 1623 continue; 1624 1625 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1626 } 1627 1628 // If all edges were unthreadable, we fail. 1629 if (PredToDestList.empty()) 1630 return false; 1631 1632 // If all the predecessors go to a single known successor, we want to fold, 1633 // not thread. By doing so, we do not need to duplicate the current block and 1634 // also miss potential opportunities in case we dont/cant duplicate. 1635 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1636 if (PredWithKnownDest == 1637 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1638 bool SeenFirstBranchToOnlyDest = false; 1639 std::vector <DominatorTree::UpdateType> Updates; 1640 Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1); 1641 for (BasicBlock *SuccBB : successors(BB)) { 1642 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) { 1643 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1644 } else { 1645 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1646 Updates.push_back({DominatorTree::Delete, BB, SuccBB}); 1647 } 1648 } 1649 1650 // Finally update the terminator. 1651 TerminatorInst *Term = BB->getTerminator(); 1652 BranchInst::Create(OnlyDest, Term); 1653 Term->eraseFromParent(); 1654 DDT->applyUpdates(Updates); 1655 1656 // If the condition is now dead due to the removal of the old terminator, 1657 // erase it. 1658 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1659 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1660 CondInst->eraseFromParent(); 1661 // We can safely replace *some* uses of the CondInst if it has 1662 // exactly one value as returned by LVI. RAUW is incorrect in the 1663 // presence of guards and assumes, that have the `Cond` as the use. This 1664 // is because we use the guards/assume to reason about the `Cond` value 1665 // at the end of block, but RAUW unconditionally replaces all uses 1666 // including the guards/assumes themselves and the uses before the 1667 // guard/assume. 1668 else if (OnlyVal && OnlyVal != MultipleVal && 1669 CondInst->getParent() == BB) 1670 ReplaceFoldableUses(CondInst, OnlyVal); 1671 } 1672 return true; 1673 } 1674 } 1675 1676 // Determine which is the most common successor. If we have many inputs and 1677 // this block is a switch, we want to start by threading the batch that goes 1678 // to the most popular destination first. If we only know about one 1679 // threadable destination (the common case) we can avoid this. 1680 BasicBlock *MostPopularDest = OnlyDest; 1681 1682 if (MostPopularDest == MultipleDestSentinel) 1683 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1684 1685 // Now that we know what the most popular destination is, factor all 1686 // predecessors that will jump to it into a single predecessor. 1687 SmallVector<BasicBlock*, 16> PredsToFactor; 1688 for (const auto &PredToDest : PredToDestList) 1689 if (PredToDest.second == MostPopularDest) { 1690 BasicBlock *Pred = PredToDest.first; 1691 1692 // This predecessor may be a switch or something else that has multiple 1693 // edges to the block. Factor each of these edges by listing them 1694 // according to # occurrences in PredsToFactor. 1695 for (BasicBlock *Succ : successors(Pred)) 1696 if (Succ == BB) 1697 PredsToFactor.push_back(Pred); 1698 } 1699 1700 // If the threadable edges are branching on an undefined value, we get to pick 1701 // the destination that these predecessors should get to. 1702 if (!MostPopularDest) 1703 MostPopularDest = BB->getTerminator()-> 1704 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1705 1706 // Ok, try to thread it! 1707 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1708 } 1709 1710 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1711 /// a PHI node in the current block. See if there are any simplifications we 1712 /// can do based on inputs to the phi node. 1713 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1714 BasicBlock *BB = PN->getParent(); 1715 1716 // TODO: We could make use of this to do it once for blocks with common PHI 1717 // values. 1718 SmallVector<BasicBlock*, 1> PredBBs; 1719 PredBBs.resize(1); 1720 1721 // If any of the predecessor blocks end in an unconditional branch, we can 1722 // *duplicate* the conditional branch into that block in order to further 1723 // encourage jump threading and to eliminate cases where we have branch on a 1724 // phi of an icmp (branch on icmp is much better). 1725 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1726 BasicBlock *PredBB = PN->getIncomingBlock(i); 1727 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1728 if (PredBr->isUnconditional()) { 1729 PredBBs[0] = PredBB; 1730 // Try to duplicate BB into PredBB. 1731 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1732 return true; 1733 } 1734 } 1735 1736 return false; 1737 } 1738 1739 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1740 /// a xor instruction in the current block. See if there are any 1741 /// simplifications we can do based on inputs to the xor. 1742 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1743 BasicBlock *BB = BO->getParent(); 1744 1745 // If either the LHS or RHS of the xor is a constant, don't do this 1746 // optimization. 1747 if (isa<ConstantInt>(BO->getOperand(0)) || 1748 isa<ConstantInt>(BO->getOperand(1))) 1749 return false; 1750 1751 // If the first instruction in BB isn't a phi, we won't be able to infer 1752 // anything special about any particular predecessor. 1753 if (!isa<PHINode>(BB->front())) 1754 return false; 1755 1756 // If this BB is a landing pad, we won't be able to split the edge into it. 1757 if (BB->isEHPad()) 1758 return false; 1759 1760 // If we have a xor as the branch input to this block, and we know that the 1761 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1762 // the condition into the predecessor and fix that value to true, saving some 1763 // logical ops on that path and encouraging other paths to simplify. 1764 // 1765 // This copies something like this: 1766 // 1767 // BB: 1768 // %X = phi i1 [1], [%X'] 1769 // %Y = icmp eq i32 %A, %B 1770 // %Z = xor i1 %X, %Y 1771 // br i1 %Z, ... 1772 // 1773 // Into: 1774 // BB': 1775 // %Y = icmp ne i32 %A, %B 1776 // br i1 %Y, ... 1777 1778 PredValueInfoTy XorOpValues; 1779 bool isLHS = true; 1780 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1781 WantInteger, BO)) { 1782 assert(XorOpValues.empty()); 1783 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1784 WantInteger, BO)) 1785 return false; 1786 isLHS = false; 1787 } 1788 1789 assert(!XorOpValues.empty() && 1790 "ComputeValueKnownInPredecessors returned true with no values"); 1791 1792 // Scan the information to see which is most popular: true or false. The 1793 // predecessors can be of the set true, false, or undef. 1794 unsigned NumTrue = 0, NumFalse = 0; 1795 for (const auto &XorOpValue : XorOpValues) { 1796 if (isa<UndefValue>(XorOpValue.first)) 1797 // Ignore undefs for the count. 1798 continue; 1799 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1800 ++NumFalse; 1801 else 1802 ++NumTrue; 1803 } 1804 1805 // Determine which value to split on, true, false, or undef if neither. 1806 ConstantInt *SplitVal = nullptr; 1807 if (NumTrue > NumFalse) 1808 SplitVal = ConstantInt::getTrue(BB->getContext()); 1809 else if (NumTrue != 0 || NumFalse != 0) 1810 SplitVal = ConstantInt::getFalse(BB->getContext()); 1811 1812 // Collect all of the blocks that this can be folded into so that we can 1813 // factor this once and clone it once. 1814 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1815 for (const auto &XorOpValue : XorOpValues) { 1816 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1817 continue; 1818 1819 BlocksToFoldInto.push_back(XorOpValue.second); 1820 } 1821 1822 // If we inferred a value for all of the predecessors, then duplication won't 1823 // help us. However, we can just replace the LHS or RHS with the constant. 1824 if (BlocksToFoldInto.size() == 1825 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1826 if (!SplitVal) { 1827 // If all preds provide undef, just nuke the xor, because it is undef too. 1828 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1829 BO->eraseFromParent(); 1830 } else if (SplitVal->isZero()) { 1831 // If all preds provide 0, replace the xor with the other input. 1832 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1833 BO->eraseFromParent(); 1834 } else { 1835 // If all preds provide 1, set the computed value to 1. 1836 BO->setOperand(!isLHS, SplitVal); 1837 } 1838 1839 return true; 1840 } 1841 1842 // Try to duplicate BB into PredBB. 1843 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1844 } 1845 1846 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1847 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1848 /// NewPred using the entries from OldPred (suitably mapped). 1849 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1850 BasicBlock *OldPred, 1851 BasicBlock *NewPred, 1852 DenseMap<Instruction*, Value*> &ValueMap) { 1853 for (PHINode &PN : PHIBB->phis()) { 1854 // Ok, we have a PHI node. Figure out what the incoming value was for the 1855 // DestBlock. 1856 Value *IV = PN.getIncomingValueForBlock(OldPred); 1857 1858 // Remap the value if necessary. 1859 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1860 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1861 if (I != ValueMap.end()) 1862 IV = I->second; 1863 } 1864 1865 PN.addIncoming(IV, NewPred); 1866 } 1867 } 1868 1869 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1870 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1871 /// across BB. Transform the IR to reflect this change. 1872 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1873 const SmallVectorImpl<BasicBlock *> &PredBBs, 1874 BasicBlock *SuccBB) { 1875 // If threading to the same block as we come from, we would infinite loop. 1876 if (SuccBB == BB) { 1877 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1878 << "' - would thread to self!\n"); 1879 return false; 1880 } 1881 1882 // If threading this would thread across a loop header, don't thread the edge. 1883 // See the comments above FindLoopHeaders for justifications and caveats. 1884 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1885 DEBUG({ 1886 bool BBIsHeader = LoopHeaders.count(BB); 1887 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1888 dbgs() << " Not threading across " 1889 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1890 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1891 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1892 }); 1893 return false; 1894 } 1895 1896 unsigned JumpThreadCost = 1897 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1898 if (JumpThreadCost > BBDupThreshold) { 1899 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1900 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1901 return false; 1902 } 1903 1904 // And finally, do it! Start by factoring the predecessors if needed. 1905 BasicBlock *PredBB; 1906 if (PredBBs.size() == 1) 1907 PredBB = PredBBs[0]; 1908 else { 1909 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1910 << " common predecessors.\n"); 1911 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1912 } 1913 1914 // And finally, do it! 1915 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1916 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1917 << ", across block:\n " 1918 << *BB << "\n"); 1919 1920 if (DDT->pending()) 1921 LVI->disableDT(); 1922 else 1923 LVI->enableDT(); 1924 LVI->threadEdge(PredBB, BB, SuccBB); 1925 1926 // We are going to have to map operands from the original BB block to the new 1927 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1928 // account for entry from PredBB. 1929 DenseMap<Instruction*, Value*> ValueMapping; 1930 1931 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1932 BB->getName()+".thread", 1933 BB->getParent(), BB); 1934 NewBB->moveAfter(PredBB); 1935 1936 // Set the block frequency of NewBB. 1937 if (HasProfileData) { 1938 auto NewBBFreq = 1939 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1940 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1941 } 1942 1943 BasicBlock::iterator BI = BB->begin(); 1944 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1945 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1946 1947 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1948 // mapping and using it to remap operands in the cloned instructions. 1949 for (; !isa<TerminatorInst>(BI); ++BI) { 1950 Instruction *New = BI->clone(); 1951 New->setName(BI->getName()); 1952 NewBB->getInstList().push_back(New); 1953 ValueMapping[&*BI] = New; 1954 1955 // Remap operands to patch up intra-block references. 1956 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1957 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1958 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1959 if (I != ValueMapping.end()) 1960 New->setOperand(i, I->second); 1961 } 1962 } 1963 1964 // We didn't copy the terminator from BB over to NewBB, because there is now 1965 // an unconditional jump to SuccBB. Insert the unconditional jump. 1966 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1967 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1968 1969 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1970 // PHI nodes for NewBB now. 1971 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1972 1973 // If there were values defined in BB that are used outside the block, then we 1974 // now have to update all uses of the value to use either the original value, 1975 // the cloned value, or some PHI derived value. This can require arbitrary 1976 // PHI insertion, of which we are prepared to do, clean these up now. 1977 SSAUpdater SSAUpdate; 1978 SmallVector<Use*, 16> UsesToRename; 1979 for (Instruction &I : *BB) { 1980 // Scan all uses of this instruction to see if it is used outside of its 1981 // block, and if so, record them in UsesToRename. 1982 for (Use &U : I.uses()) { 1983 Instruction *User = cast<Instruction>(U.getUser()); 1984 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1985 if (UserPN->getIncomingBlock(U) == BB) 1986 continue; 1987 } else if (User->getParent() == BB) 1988 continue; 1989 1990 UsesToRename.push_back(&U); 1991 } 1992 1993 // If there are no uses outside the block, we're done with this instruction. 1994 if (UsesToRename.empty()) 1995 continue; 1996 1997 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1998 1999 // We found a use of I outside of BB. Rename all uses of I that are outside 2000 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2001 // with the two values we know. 2002 SSAUpdate.Initialize(I.getType(), I.getName()); 2003 SSAUpdate.AddAvailableValue(BB, &I); 2004 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 2005 2006 while (!UsesToRename.empty()) 2007 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2008 DEBUG(dbgs() << "\n"); 2009 } 2010 2011 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 2012 // NewBB instead of BB. This eliminates predecessors from BB, which requires 2013 // us to simplify any PHI nodes in BB. 2014 TerminatorInst *PredTerm = PredBB->getTerminator(); 2015 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 2016 if (PredTerm->getSuccessor(i) == BB) { 2017 BB->removePredecessor(PredBB, true); 2018 PredTerm->setSuccessor(i, NewBB); 2019 } 2020 2021 DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB}, 2022 {DominatorTree::Insert, PredBB, NewBB}, 2023 {DominatorTree::Delete, PredBB, BB}}); 2024 2025 // At this point, the IR is fully up to date and consistent. Do a quick scan 2026 // over the new instructions and zap any that are constants or dead. This 2027 // frequently happens because of phi translation. 2028 SimplifyInstructionsInBlock(NewBB, TLI); 2029 2030 // Update the edge weight from BB to SuccBB, which should be less than before. 2031 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 2032 2033 // Threaded an edge! 2034 ++NumThreads; 2035 return true; 2036 } 2037 2038 /// Create a new basic block that will be the predecessor of BB and successor of 2039 /// all blocks in Preds. When profile data is available, update the frequency of 2040 /// this new block. 2041 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 2042 ArrayRef<BasicBlock *> Preds, 2043 const char *Suffix) { 2044 SmallVector<BasicBlock *, 2> NewBBs; 2045 2046 // Collect the frequencies of all predecessors of BB, which will be used to 2047 // update the edge weight of the result of splitting predecessors. 2048 DenseMap<BasicBlock *, BlockFrequency> FreqMap; 2049 if (HasProfileData) 2050 for (auto Pred : Preds) 2051 FreqMap.insert(std::make_pair( 2052 Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB))); 2053 2054 // In the case when BB is a LandingPad block we create 2 new predecessors 2055 // instead of just one. 2056 if (BB->isLandingPad()) { 2057 std::string NewName = std::string(Suffix) + ".split-lp"; 2058 SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs); 2059 } else { 2060 NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix)); 2061 } 2062 2063 std::vector<DominatorTree::UpdateType> Updates; 2064 Updates.reserve((2 * Preds.size()) + NewBBs.size()); 2065 for (auto NewBB : NewBBs) { 2066 BlockFrequency NewBBFreq(0); 2067 Updates.push_back({DominatorTree::Insert, NewBB, BB}); 2068 for (auto Pred : predecessors(NewBB)) { 2069 Updates.push_back({DominatorTree::Delete, Pred, BB}); 2070 Updates.push_back({DominatorTree::Insert, Pred, NewBB}); 2071 if (HasProfileData) // Update frequencies between Pred -> NewBB. 2072 NewBBFreq += FreqMap.lookup(Pred); 2073 } 2074 if (HasProfileData) // Apply the summed frequency to NewBB. 2075 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 2076 } 2077 2078 DDT->applyUpdates(Updates); 2079 return NewBBs[0]; 2080 } 2081 2082 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 2083 const TerminatorInst *TI = BB->getTerminator(); 2084 assert(TI->getNumSuccessors() > 1 && "not a split"); 2085 2086 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 2087 if (!WeightsNode) 2088 return false; 2089 2090 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 2091 if (MDName->getString() != "branch_weights") 2092 return false; 2093 2094 // Ensure there are weights for all of the successors. Note that the first 2095 // operand to the metadata node is a name, not a weight. 2096 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 2097 } 2098 2099 /// Update the block frequency of BB and branch weight and the metadata on the 2100 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 2101 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 2102 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 2103 BasicBlock *BB, 2104 BasicBlock *NewBB, 2105 BasicBlock *SuccBB) { 2106 if (!HasProfileData) 2107 return; 2108 2109 assert(BFI && BPI && "BFI & BPI should have been created here"); 2110 2111 // As the edge from PredBB to BB is deleted, we have to update the block 2112 // frequency of BB. 2113 auto BBOrigFreq = BFI->getBlockFreq(BB); 2114 auto NewBBFreq = BFI->getBlockFreq(NewBB); 2115 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 2116 auto BBNewFreq = BBOrigFreq - NewBBFreq; 2117 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 2118 2119 // Collect updated outgoing edges' frequencies from BB and use them to update 2120 // edge probabilities. 2121 SmallVector<uint64_t, 4> BBSuccFreq; 2122 for (BasicBlock *Succ : successors(BB)) { 2123 auto SuccFreq = (Succ == SuccBB) 2124 ? BB2SuccBBFreq - NewBBFreq 2125 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2126 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2127 } 2128 2129 uint64_t MaxBBSuccFreq = 2130 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2131 2132 SmallVector<BranchProbability, 4> BBSuccProbs; 2133 if (MaxBBSuccFreq == 0) 2134 BBSuccProbs.assign(BBSuccFreq.size(), 2135 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2136 else { 2137 for (uint64_t Freq : BBSuccFreq) 2138 BBSuccProbs.push_back( 2139 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2140 // Normalize edge probabilities so that they sum up to one. 2141 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2142 BBSuccProbs.end()); 2143 } 2144 2145 // Update edge probabilities in BPI. 2146 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2147 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2148 2149 // Update the profile metadata as well. 2150 // 2151 // Don't do this if the profile of the transformed blocks was statically 2152 // estimated. (This could occur despite the function having an entry 2153 // frequency in completely cold parts of the CFG.) 2154 // 2155 // In this case we don't want to suggest to subsequent passes that the 2156 // calculated weights are fully consistent. Consider this graph: 2157 // 2158 // check_1 2159 // 50% / | 2160 // eq_1 | 50% 2161 // \ | 2162 // check_2 2163 // 50% / | 2164 // eq_2 | 50% 2165 // \ | 2166 // check_3 2167 // 50% / | 2168 // eq_3 | 50% 2169 // \ | 2170 // 2171 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2172 // the overall probabilities are inconsistent; the total probability that the 2173 // value is either 1, 2 or 3 is 150%. 2174 // 2175 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2176 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2177 // the loop exit edge. Then based solely on static estimation we would assume 2178 // the loop was extremely hot. 2179 // 2180 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2181 // shouldn't make edges extremely likely or unlikely based solely on static 2182 // estimation. 2183 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2184 SmallVector<uint32_t, 4> Weights; 2185 for (auto Prob : BBSuccProbs) 2186 Weights.push_back(Prob.getNumerator()); 2187 2188 auto TI = BB->getTerminator(); 2189 TI->setMetadata( 2190 LLVMContext::MD_prof, 2191 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2192 } 2193 } 2194 2195 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2196 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2197 /// If we can duplicate the contents of BB up into PredBB do so now, this 2198 /// improves the odds that the branch will be on an analyzable instruction like 2199 /// a compare. 2200 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2201 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2202 assert(!PredBBs.empty() && "Can't handle an empty set"); 2203 2204 // If BB is a loop header, then duplicating this block outside the loop would 2205 // cause us to transform this into an irreducible loop, don't do this. 2206 // See the comments above FindLoopHeaders for justifications and caveats. 2207 if (LoopHeaders.count(BB)) { 2208 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2209 << "' into predecessor block '" << PredBBs[0]->getName() 2210 << "' - it might create an irreducible loop!\n"); 2211 return false; 2212 } 2213 2214 unsigned DuplicationCost = 2215 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2216 if (DuplicationCost > BBDupThreshold) { 2217 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2218 << "' - Cost is too high: " << DuplicationCost << "\n"); 2219 return false; 2220 } 2221 2222 // And finally, do it! Start by factoring the predecessors if needed. 2223 std::vector<DominatorTree::UpdateType> Updates; 2224 BasicBlock *PredBB; 2225 if (PredBBs.size() == 1) 2226 PredBB = PredBBs[0]; 2227 else { 2228 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2229 << " common predecessors.\n"); 2230 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2231 } 2232 Updates.push_back({DominatorTree::Delete, PredBB, BB}); 2233 2234 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2235 // of PredBB. 2236 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2237 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2238 << DuplicationCost << " block is:" << *BB << "\n"); 2239 2240 // Unless PredBB ends with an unconditional branch, split the edge so that we 2241 // can just clone the bits from BB into the end of the new PredBB. 2242 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2243 2244 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2245 BasicBlock *OldPredBB = PredBB; 2246 PredBB = SplitEdge(OldPredBB, BB); 2247 Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB}); 2248 Updates.push_back({DominatorTree::Insert, PredBB, BB}); 2249 Updates.push_back({DominatorTree::Delete, OldPredBB, BB}); 2250 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2251 } 2252 2253 // We are going to have to map operands from the original BB block into the 2254 // PredBB block. Evaluate PHI nodes in BB. 2255 DenseMap<Instruction*, Value*> ValueMapping; 2256 2257 BasicBlock::iterator BI = BB->begin(); 2258 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2259 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2260 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2261 // mapping and using it to remap operands in the cloned instructions. 2262 for (; BI != BB->end(); ++BI) { 2263 Instruction *New = BI->clone(); 2264 2265 // Remap operands to patch up intra-block references. 2266 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2267 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2268 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2269 if (I != ValueMapping.end()) 2270 New->setOperand(i, I->second); 2271 } 2272 2273 // If this instruction can be simplified after the operands are updated, 2274 // just use the simplified value instead. This frequently happens due to 2275 // phi translation. 2276 if (Value *IV = SimplifyInstruction( 2277 New, 2278 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2279 ValueMapping[&*BI] = IV; 2280 if (!New->mayHaveSideEffects()) { 2281 New->deleteValue(); 2282 New = nullptr; 2283 } 2284 } else { 2285 ValueMapping[&*BI] = New; 2286 } 2287 if (New) { 2288 // Otherwise, insert the new instruction into the block. 2289 New->setName(BI->getName()); 2290 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2291 // Update Dominance from simplified New instruction operands. 2292 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2293 if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i))) 2294 Updates.push_back({DominatorTree::Insert, PredBB, SuccBB}); 2295 } 2296 } 2297 2298 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2299 // add entries to the PHI nodes for branch from PredBB now. 2300 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2301 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2302 ValueMapping); 2303 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2304 ValueMapping); 2305 2306 // If there were values defined in BB that are used outside the block, then we 2307 // now have to update all uses of the value to use either the original value, 2308 // the cloned value, or some PHI derived value. This can require arbitrary 2309 // PHI insertion, of which we are prepared to do, clean these up now. 2310 SSAUpdater SSAUpdate; 2311 SmallVector<Use*, 16> UsesToRename; 2312 for (Instruction &I : *BB) { 2313 // Scan all uses of this instruction to see if it is used outside of its 2314 // block, and if so, record them in UsesToRename. 2315 for (Use &U : I.uses()) { 2316 Instruction *User = cast<Instruction>(U.getUser()); 2317 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2318 if (UserPN->getIncomingBlock(U) == BB) 2319 continue; 2320 } else if (User->getParent() == BB) 2321 continue; 2322 2323 UsesToRename.push_back(&U); 2324 } 2325 2326 // If there are no uses outside the block, we're done with this instruction. 2327 if (UsesToRename.empty()) 2328 continue; 2329 2330 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2331 2332 // We found a use of I outside of BB. Rename all uses of I that are outside 2333 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2334 // with the two values we know. 2335 SSAUpdate.Initialize(I.getType(), I.getName()); 2336 SSAUpdate.AddAvailableValue(BB, &I); 2337 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2338 2339 while (!UsesToRename.empty()) 2340 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2341 DEBUG(dbgs() << "\n"); 2342 } 2343 2344 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2345 // that we nuked. 2346 BB->removePredecessor(PredBB, true); 2347 2348 // Remove the unconditional branch at the end of the PredBB block. 2349 OldPredBranch->eraseFromParent(); 2350 DDT->applyUpdates(Updates); 2351 2352 ++NumDupes; 2353 return true; 2354 } 2355 2356 /// TryToUnfoldSelect - Look for blocks of the form 2357 /// bb1: 2358 /// %a = select 2359 /// br bb2 2360 /// 2361 /// bb2: 2362 /// %p = phi [%a, %bb1] ... 2363 /// %c = icmp %p 2364 /// br i1 %c 2365 /// 2366 /// And expand the select into a branch structure if one of its arms allows %c 2367 /// to be folded. This later enables threading from bb1 over bb2. 2368 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2369 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2370 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2371 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2372 2373 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2374 CondLHS->getParent() != BB) 2375 return false; 2376 2377 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2378 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2379 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2380 2381 // Look if one of the incoming values is a select in the corresponding 2382 // predecessor. 2383 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2384 continue; 2385 2386 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2387 if (!PredTerm || !PredTerm->isUnconditional()) 2388 continue; 2389 2390 // Now check if one of the select values would allow us to constant fold the 2391 // terminator in BB. We don't do the transform if both sides fold, those 2392 // cases will be threaded in any case. 2393 if (DDT->pending()) 2394 LVI->disableDT(); 2395 else 2396 LVI->enableDT(); 2397 LazyValueInfo::Tristate LHSFolds = 2398 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2399 CondRHS, Pred, BB, CondCmp); 2400 LazyValueInfo::Tristate RHSFolds = 2401 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2402 CondRHS, Pred, BB, CondCmp); 2403 if ((LHSFolds != LazyValueInfo::Unknown || 2404 RHSFolds != LazyValueInfo::Unknown) && 2405 LHSFolds != RHSFolds) { 2406 // Expand the select. 2407 // 2408 // Pred -- 2409 // | v 2410 // | NewBB 2411 // | | 2412 // |----- 2413 // v 2414 // BB 2415 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2416 BB->getParent(), BB); 2417 // Move the unconditional branch to NewBB. 2418 PredTerm->removeFromParent(); 2419 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2420 // Create a conditional branch and update PHI nodes. 2421 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2422 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2423 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2424 // The select is now dead. 2425 SI->eraseFromParent(); 2426 2427 DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB}, 2428 {DominatorTree::Insert, Pred, NewBB}}); 2429 // Update any other PHI nodes in BB. 2430 for (BasicBlock::iterator BI = BB->begin(); 2431 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2432 if (Phi != CondLHS) 2433 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2434 return true; 2435 } 2436 } 2437 return false; 2438 } 2439 2440 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2441 /// same BB in the form 2442 /// bb: 2443 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2444 /// %s = select %p, trueval, falseval 2445 /// 2446 /// or 2447 /// 2448 /// bb: 2449 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2450 /// %c = cmp %p, 0 2451 /// %s = select %c, trueval, falseval 2452 /// 2453 /// And expand the select into a branch structure. This later enables 2454 /// jump-threading over bb in this pass. 2455 /// 2456 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2457 /// select if the associated PHI has at least one constant. If the unfolded 2458 /// select is not jump-threaded, it will be folded again in the later 2459 /// optimizations. 2460 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2461 // If threading this would thread across a loop header, don't thread the edge. 2462 // See the comments above FindLoopHeaders for justifications and caveats. 2463 if (LoopHeaders.count(BB)) 2464 return false; 2465 2466 for (BasicBlock::iterator BI = BB->begin(); 2467 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2468 // Look for a Phi having at least one constant incoming value. 2469 if (llvm::all_of(PN->incoming_values(), 2470 [](Value *V) { return !isa<ConstantInt>(V); })) 2471 continue; 2472 2473 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2474 // Check if SI is in BB and use V as condition. 2475 if (SI->getParent() != BB) 2476 return false; 2477 Value *Cond = SI->getCondition(); 2478 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2479 }; 2480 2481 SelectInst *SI = nullptr; 2482 for (Use &U : PN->uses()) { 2483 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2484 // Look for a ICmp in BB that compares PN with a constant and is the 2485 // condition of a Select. 2486 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2487 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2488 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2489 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2490 SI = SelectI; 2491 break; 2492 } 2493 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2494 // Look for a Select in BB that uses PN as condtion. 2495 if (isUnfoldCandidate(SelectI, U.get())) { 2496 SI = SelectI; 2497 break; 2498 } 2499 } 2500 } 2501 2502 if (!SI) 2503 continue; 2504 // Expand the select. 2505 TerminatorInst *Term = 2506 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2507 BasicBlock *SplitBB = SI->getParent(); 2508 BasicBlock *NewBB = Term->getParent(); 2509 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2510 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2511 NewPN->addIncoming(SI->getFalseValue(), BB); 2512 SI->replaceAllUsesWith(NewPN); 2513 SI->eraseFromParent(); 2514 // NewBB and SplitBB are newly created blocks which require insertion. 2515 std::vector<DominatorTree::UpdateType> Updates; 2516 Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3); 2517 Updates.push_back({DominatorTree::Insert, BB, SplitBB}); 2518 Updates.push_back({DominatorTree::Insert, BB, NewBB}); 2519 Updates.push_back({DominatorTree::Insert, NewBB, SplitBB}); 2520 // BB's successors were moved to SplitBB, update DDT accordingly. 2521 for (auto *Succ : successors(SplitBB)) { 2522 Updates.push_back({DominatorTree::Delete, BB, Succ}); 2523 Updates.push_back({DominatorTree::Insert, SplitBB, Succ}); 2524 } 2525 DDT->applyUpdates(Updates); 2526 return true; 2527 } 2528 return false; 2529 } 2530 2531 /// Try to propagate a guard from the current BB into one of its predecessors 2532 /// in case if another branch of execution implies that the condition of this 2533 /// guard is always true. Currently we only process the simplest case that 2534 /// looks like: 2535 /// 2536 /// Start: 2537 /// %cond = ... 2538 /// br i1 %cond, label %T1, label %F1 2539 /// T1: 2540 /// br label %Merge 2541 /// F1: 2542 /// br label %Merge 2543 /// Merge: 2544 /// %condGuard = ... 2545 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2546 /// 2547 /// And cond either implies condGuard or !condGuard. In this case all the 2548 /// instructions before the guard can be duplicated in both branches, and the 2549 /// guard is then threaded to one of them. 2550 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2551 using namespace PatternMatch; 2552 2553 // We only want to deal with two predecessors. 2554 BasicBlock *Pred1, *Pred2; 2555 auto PI = pred_begin(BB), PE = pred_end(BB); 2556 if (PI == PE) 2557 return false; 2558 Pred1 = *PI++; 2559 if (PI == PE) 2560 return false; 2561 Pred2 = *PI++; 2562 if (PI != PE) 2563 return false; 2564 if (Pred1 == Pred2) 2565 return false; 2566 2567 // Try to thread one of the guards of the block. 2568 // TODO: Look up deeper than to immediate predecessor? 2569 auto *Parent = Pred1->getSinglePredecessor(); 2570 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2571 return false; 2572 2573 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2574 for (auto &I : *BB) 2575 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2576 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2577 return true; 2578 2579 return false; 2580 } 2581 2582 /// Try to propagate the guard from BB which is the lower block of a diamond 2583 /// to one of its branches, in case if diamond's condition implies guard's 2584 /// condition. 2585 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2586 BranchInst *BI) { 2587 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2588 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2589 Value *GuardCond = Guard->getArgOperand(0); 2590 Value *BranchCond = BI->getCondition(); 2591 BasicBlock *TrueDest = BI->getSuccessor(0); 2592 BasicBlock *FalseDest = BI->getSuccessor(1); 2593 2594 auto &DL = BB->getModule()->getDataLayout(); 2595 bool TrueDestIsSafe = false; 2596 bool FalseDestIsSafe = false; 2597 2598 // True dest is safe if BranchCond => GuardCond. 2599 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2600 if (Impl && *Impl) 2601 TrueDestIsSafe = true; 2602 else { 2603 // False dest is safe if !BranchCond => GuardCond. 2604 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2605 if (Impl && *Impl) 2606 FalseDestIsSafe = true; 2607 } 2608 2609 if (!TrueDestIsSafe && !FalseDestIsSafe) 2610 return false; 2611 2612 BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2613 BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2614 2615 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2616 Instruction *AfterGuard = Guard->getNextNode(); 2617 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2618 if (Cost > BBDupThreshold) 2619 return false; 2620 // Duplicate all instructions before the guard and the guard itself to the 2621 // branch where implication is not proved. 2622 BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween( 2623 BB, PredGuardedBlock, AfterGuard, GuardedMapping); 2624 assert(GuardedBlock && "Could not create the guarded block?"); 2625 // Duplicate all instructions before the guard in the unguarded branch. 2626 // Since we have successfully duplicated the guarded block and this block 2627 // has fewer instructions, we expect it to succeed. 2628 BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween( 2629 BB, PredUnguardedBlock, Guard, UnguardedMapping); 2630 assert(UnguardedBlock && "Could not create the unguarded block?"); 2631 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2632 << GuardedBlock->getName() << "\n"); 2633 // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between 2634 // PredBB and BB. We need to perform two inserts and one delete for each of 2635 // the above calls to update Dominators. 2636 DDT->applyUpdates( 2637 {// Guarded block split. 2638 {DominatorTree::Delete, PredGuardedBlock, BB}, 2639 {DominatorTree::Insert, PredGuardedBlock, GuardedBlock}, 2640 {DominatorTree::Insert, GuardedBlock, BB}, 2641 // Unguarded block split. 2642 {DominatorTree::Delete, PredUnguardedBlock, BB}, 2643 {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock}, 2644 {DominatorTree::Insert, UnguardedBlock, BB}}); 2645 // Some instructions before the guard may still have uses. For them, we need 2646 // to create Phi nodes merging their copies in both guarded and unguarded 2647 // branches. Those instructions that have no uses can be just removed. 2648 SmallVector<Instruction *, 4> ToRemove; 2649 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2650 if (!isa<PHINode>(&*BI)) 2651 ToRemove.push_back(&*BI); 2652 2653 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2654 assert(InsertionPoint && "Empty block?"); 2655 // Substitute with Phis & remove. 2656 for (auto *Inst : reverse(ToRemove)) { 2657 if (!Inst->use_empty()) { 2658 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2659 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2660 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2661 NewPN->insertBefore(InsertionPoint); 2662 Inst->replaceAllUsesWith(NewPN); 2663 } 2664 Inst->eraseFromParent(); 2665 } 2666 return true; 2667 } 2668