1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include <algorithm>
43 #include <memory>
44 using namespace llvm;
45 using namespace jumpthreading;
46 
47 #define DEBUG_TYPE "jump-threading"
48 
49 STATISTIC(NumThreads, "Number of jumps threaded");
50 STATISTIC(NumFolds,   "Number of terminators folded");
51 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
52 
53 static cl::opt<unsigned>
54 BBDuplicateThreshold("jump-threading-threshold",
55           cl::desc("Max block size to duplicate for jump threading"),
56           cl::init(6), cl::Hidden);
57 
58 static cl::opt<unsigned>
59 ImplicationSearchThreshold(
60   "jump-threading-implication-search-threshold",
61   cl::desc("The number of predecessors to search for a stronger "
62            "condition to use to thread over a weaker condition"),
63   cl::init(3), cl::Hidden);
64 
65 namespace {
66   /// This pass performs 'jump threading', which looks at blocks that have
67   /// multiple predecessors and multiple successors.  If one or more of the
68   /// predecessors of the block can be proven to always jump to one of the
69   /// successors, we forward the edge from the predecessor to the successor by
70   /// duplicating the contents of this block.
71   ///
72   /// An example of when this can occur is code like this:
73   ///
74   ///   if () { ...
75   ///     X = 4;
76   ///   }
77   ///   if (X < 3) {
78   ///
79   /// In this case, the unconditional branch at the end of the first if can be
80   /// revectored to the false side of the second if.
81   ///
82   class JumpThreading : public FunctionPass {
83     JumpThreadingPass Impl;
84 
85   public:
86     static char ID; // Pass identification
87     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
88       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
89     }
90 
91     bool runOnFunction(Function &F) override;
92 
93     void getAnalysisUsage(AnalysisUsage &AU) const override {
94       AU.addRequired<LazyValueInfoWrapperPass>();
95       AU.addPreserved<LazyValueInfoWrapperPass>();
96       AU.addPreserved<GlobalsAAWrapperPass>();
97       AU.addRequired<TargetLibraryInfoWrapperPass>();
98     }
99 
100     void releaseMemory() override { Impl.releaseMemory(); }
101   };
102 }
103 
104 char JumpThreading::ID = 0;
105 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
106                 "Jump Threading", false, false)
107 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
109 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
110                 "Jump Threading", false, false)
111 
112 // Public interface to the Jump Threading pass
113 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
114 
115 JumpThreadingPass::JumpThreadingPass(int T) {
116   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
117 }
118 
119 /// runOnFunction - Top level algorithm.
120 ///
121 bool JumpThreading::runOnFunction(Function &F) {
122   if (skipFunction(F))
123     return false;
124   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
125   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
126   std::unique_ptr<BlockFrequencyInfo> BFI;
127   std::unique_ptr<BranchProbabilityInfo> BPI;
128   bool HasProfileData = F.getEntryCount().hasValue();
129   if (HasProfileData) {
130     LoopInfo LI{DominatorTree(F)};
131     BPI.reset(new BranchProbabilityInfo(F, LI));
132     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
133   }
134   return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI),
135                       std::move(BPI));
136 }
137 
138 PreservedAnalyses JumpThreadingPass::run(Function &F,
139                                          FunctionAnalysisManager &AM) {
140 
141   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
142   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
143   std::unique_ptr<BlockFrequencyInfo> BFI;
144   std::unique_ptr<BranchProbabilityInfo> BPI;
145   bool HasProfileData = F.getEntryCount().hasValue();
146   if (HasProfileData) {
147     LoopInfo LI{DominatorTree(F)};
148     BPI.reset(new BranchProbabilityInfo(F, LI));
149     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
150   }
151   bool Changed =
152       runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI));
153 
154   if (!Changed)
155     return PreservedAnalyses::all();
156   PreservedAnalyses PA;
157   PA.preserve<GlobalsAA>();
158   return PA;
159 }
160 
161 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
162                                 LazyValueInfo *LVI_, bool HasProfileData_,
163                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
164                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
165 
166   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
167   TLI = TLI_;
168   LVI = LVI_;
169   BFI.reset();
170   BPI.reset();
171   // When profile data is available, we need to update edge weights after
172   // successful jump threading, which requires both BPI and BFI being available.
173   HasProfileData = HasProfileData_;
174   auto *GuardDecl = F.getParent()->getFunction(
175       Intrinsic::getName(Intrinsic::experimental_guard));
176   HasGuards = GuardDecl && !GuardDecl->use_empty();
177   if (HasProfileData) {
178     BPI = std::move(BPI_);
179     BFI = std::move(BFI_);
180   }
181 
182   // Remove unreachable blocks from function as they may result in infinite
183   // loop. We do threading if we found something profitable. Jump threading a
184   // branch can create other opportunities. If these opportunities form a cycle
185   // i.e. if any jump threading is undoing previous threading in the path, then
186   // we will loop forever. We take care of this issue by not jump threading for
187   // back edges. This works for normal cases but not for unreachable blocks as
188   // they may have cycle with no back edge.
189   bool EverChanged = false;
190   EverChanged |= removeUnreachableBlocks(F, LVI);
191 
192   FindLoopHeaders(F);
193 
194   bool Changed;
195   do {
196     Changed = false;
197     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
198       BasicBlock *BB = &*I;
199       // Thread all of the branches we can over this block.
200       while (ProcessBlock(BB))
201         Changed = true;
202 
203       ++I;
204 
205       // If the block is trivially dead, zap it.  This eliminates the successor
206       // edges which simplifies the CFG.
207       if (pred_empty(BB) &&
208           BB != &BB->getParent()->getEntryBlock()) {
209         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
210               << "' with terminator: " << *BB->getTerminator() << '\n');
211         LoopHeaders.erase(BB);
212         LVI->eraseBlock(BB);
213         DeleteDeadBlock(BB);
214         Changed = true;
215         continue;
216       }
217 
218       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
219 
220       // Can't thread an unconditional jump, but if the block is "almost
221       // empty", we can replace uses of it with uses of the successor and make
222       // this dead.
223       // We should not eliminate the loop header either, because eliminating
224       // a loop header might later prevent LoopSimplify from transforming nested
225       // loops into simplified form.
226       if (BI && BI->isUnconditional() &&
227           BB != &BB->getParent()->getEntryBlock() &&
228           // If the terminator is the only non-phi instruction, try to nuke it.
229           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
230         // FIXME: It is always conservatively correct to drop the info
231         // for a block even if it doesn't get erased.  This isn't totally
232         // awesome, but it allows us to use AssertingVH to prevent nasty
233         // dangling pointer issues within LazyValueInfo.
234         LVI->eraseBlock(BB);
235         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
236           Changed = true;
237       }
238     }
239     EverChanged |= Changed;
240   } while (Changed);
241 
242   LoopHeaders.clear();
243   return EverChanged;
244 }
245 
246 /// Return the cost of duplicating a piece of this block from first non-phi
247 /// and before StopAt instruction to thread across it. Stop scanning the block
248 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
249 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
250                                              Instruction *StopAt,
251                                              unsigned Threshold) {
252   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
253   /// Ignore PHI nodes, these will be flattened when duplication happens.
254   BasicBlock::const_iterator I(BB->getFirstNonPHI());
255 
256   // FIXME: THREADING will delete values that are just used to compute the
257   // branch, so they shouldn't count against the duplication cost.
258 
259   unsigned Bonus = 0;
260   if (BB->getTerminator() == StopAt) {
261     // Threading through a switch statement is particularly profitable.  If this
262     // block ends in a switch, decrease its cost to make it more likely to
263     // happen.
264     if (isa<SwitchInst>(StopAt))
265       Bonus = 6;
266 
267     // The same holds for indirect branches, but slightly more so.
268     if (isa<IndirectBrInst>(StopAt))
269       Bonus = 8;
270   }
271 
272   // Bump the threshold up so the early exit from the loop doesn't skip the
273   // terminator-based Size adjustment at the end.
274   Threshold += Bonus;
275 
276   // Sum up the cost of each instruction until we get to the terminator.  Don't
277   // include the terminator because the copy won't include it.
278   unsigned Size = 0;
279   for (; &*I != StopAt; ++I) {
280 
281     // Stop scanning the block if we've reached the threshold.
282     if (Size > Threshold)
283       return Size;
284 
285     // Debugger intrinsics don't incur code size.
286     if (isa<DbgInfoIntrinsic>(I)) continue;
287 
288     // If this is a pointer->pointer bitcast, it is free.
289     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
290       continue;
291 
292     // Bail out if this instruction gives back a token type, it is not possible
293     // to duplicate it if it is used outside this BB.
294     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
295       return ~0U;
296 
297     // All other instructions count for at least one unit.
298     ++Size;
299 
300     // Calls are more expensive.  If they are non-intrinsic calls, we model them
301     // as having cost of 4.  If they are a non-vector intrinsic, we model them
302     // as having cost of 2 total, and if they are a vector intrinsic, we model
303     // them as having cost 1.
304     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
305       if (CI->cannotDuplicate() || CI->isConvergent())
306         // Blocks with NoDuplicate are modelled as having infinite cost, so they
307         // are never duplicated.
308         return ~0U;
309       else if (!isa<IntrinsicInst>(CI))
310         Size += 3;
311       else if (!CI->getType()->isVectorTy())
312         Size += 1;
313     }
314   }
315 
316   return Size > Bonus ? Size - Bonus : 0;
317 }
318 
319 /// FindLoopHeaders - We do not want jump threading to turn proper loop
320 /// structures into irreducible loops.  Doing this breaks up the loop nesting
321 /// hierarchy and pessimizes later transformations.  To prevent this from
322 /// happening, we first have to find the loop headers.  Here we approximate this
323 /// by finding targets of backedges in the CFG.
324 ///
325 /// Note that there definitely are cases when we want to allow threading of
326 /// edges across a loop header.  For example, threading a jump from outside the
327 /// loop (the preheader) to an exit block of the loop is definitely profitable.
328 /// It is also almost always profitable to thread backedges from within the loop
329 /// to exit blocks, and is often profitable to thread backedges to other blocks
330 /// within the loop (forming a nested loop).  This simple analysis is not rich
331 /// enough to track all of these properties and keep it up-to-date as the CFG
332 /// mutates, so we don't allow any of these transformations.
333 ///
334 void JumpThreadingPass::FindLoopHeaders(Function &F) {
335   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
336   FindFunctionBackedges(F, Edges);
337 
338   for (const auto &Edge : Edges)
339     LoopHeaders.insert(Edge.second);
340 }
341 
342 /// getKnownConstant - Helper method to determine if we can thread over a
343 /// terminator with the given value as its condition, and if so what value to
344 /// use for that. What kind of value this is depends on whether we want an
345 /// integer or a block address, but an undef is always accepted.
346 /// Returns null if Val is null or not an appropriate constant.
347 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
348   if (!Val)
349     return nullptr;
350 
351   // Undef is "known" enough.
352   if (UndefValue *U = dyn_cast<UndefValue>(Val))
353     return U;
354 
355   if (Preference == WantBlockAddress)
356     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
357 
358   return dyn_cast<ConstantInt>(Val);
359 }
360 
361 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
362 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
363 /// in any of our predecessors.  If so, return the known list of value and pred
364 /// BB in the result vector.
365 ///
366 /// This returns true if there were any known values.
367 ///
368 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
369     Value *V, BasicBlock *BB, PredValueInfo &Result,
370     ConstantPreference Preference, Instruction *CxtI) {
371   // This method walks up use-def chains recursively.  Because of this, we could
372   // get into an infinite loop going around loops in the use-def chain.  To
373   // prevent this, keep track of what (value, block) pairs we've already visited
374   // and terminate the search if we loop back to them
375   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
376     return false;
377 
378   // An RAII help to remove this pair from the recursion set once the recursion
379   // stack pops back out again.
380   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
381 
382   // If V is a constant, then it is known in all predecessors.
383   if (Constant *KC = getKnownConstant(V, Preference)) {
384     for (BasicBlock *Pred : predecessors(BB))
385       Result.push_back(std::make_pair(KC, Pred));
386 
387     return !Result.empty();
388   }
389 
390   // If V is a non-instruction value, or an instruction in a different block,
391   // then it can't be derived from a PHI.
392   Instruction *I = dyn_cast<Instruction>(V);
393   if (!I || I->getParent() != BB) {
394 
395     // Okay, if this is a live-in value, see if it has a known value at the end
396     // of any of our predecessors.
397     //
398     // FIXME: This should be an edge property, not a block end property.
399     /// TODO: Per PR2563, we could infer value range information about a
400     /// predecessor based on its terminator.
401     //
402     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
403     // "I" is a non-local compare-with-a-constant instruction.  This would be
404     // able to handle value inequalities better, for example if the compare is
405     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
406     // Perhaps getConstantOnEdge should be smart enough to do this?
407 
408     for (BasicBlock *P : predecessors(BB)) {
409       // If the value is known by LazyValueInfo to be a constant in a
410       // predecessor, use that information to try to thread this block.
411       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
412       if (Constant *KC = getKnownConstant(PredCst, Preference))
413         Result.push_back(std::make_pair(KC, P));
414     }
415 
416     return !Result.empty();
417   }
418 
419   /// If I is a PHI node, then we know the incoming values for any constants.
420   if (PHINode *PN = dyn_cast<PHINode>(I)) {
421     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
422       Value *InVal = PN->getIncomingValue(i);
423       if (Constant *KC = getKnownConstant(InVal, Preference)) {
424         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
425       } else {
426         Constant *CI = LVI->getConstantOnEdge(InVal,
427                                               PN->getIncomingBlock(i),
428                                               BB, CxtI);
429         if (Constant *KC = getKnownConstant(CI, Preference))
430           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
431       }
432     }
433 
434     return !Result.empty();
435   }
436 
437   // Handle Cast instructions.  Only see through Cast when the source operand is
438   // PHI or Cmp and the source type is i1 to save the compilation time.
439   if (CastInst *CI = dyn_cast<CastInst>(I)) {
440     Value *Source = CI->getOperand(0);
441     if (!Source->getType()->isIntegerTy(1))
442       return false;
443     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
444       return false;
445     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
446     if (Result.empty())
447       return false;
448 
449     // Convert the known values.
450     for (auto &R : Result)
451       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
452 
453     return true;
454   }
455 
456   PredValueInfoTy LHSVals, RHSVals;
457 
458   // Handle some boolean conditions.
459   if (I->getType()->getPrimitiveSizeInBits() == 1) {
460     assert(Preference == WantInteger && "One-bit non-integer type?");
461     // X | true -> true
462     // X & false -> false
463     if (I->getOpcode() == Instruction::Or ||
464         I->getOpcode() == Instruction::And) {
465       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
466                                       WantInteger, CxtI);
467       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
468                                       WantInteger, CxtI);
469 
470       if (LHSVals.empty() && RHSVals.empty())
471         return false;
472 
473       ConstantInt *InterestingVal;
474       if (I->getOpcode() == Instruction::Or)
475         InterestingVal = ConstantInt::getTrue(I->getContext());
476       else
477         InterestingVal = ConstantInt::getFalse(I->getContext());
478 
479       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
480 
481       // Scan for the sentinel.  If we find an undef, force it to the
482       // interesting value: x|undef -> true and x&undef -> false.
483       for (const auto &LHSVal : LHSVals)
484         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
485           Result.emplace_back(InterestingVal, LHSVal.second);
486           LHSKnownBBs.insert(LHSVal.second);
487         }
488       for (const auto &RHSVal : RHSVals)
489         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
490           // If we already inferred a value for this block on the LHS, don't
491           // re-add it.
492           if (!LHSKnownBBs.count(RHSVal.second))
493             Result.emplace_back(InterestingVal, RHSVal.second);
494         }
495 
496       return !Result.empty();
497     }
498 
499     // Handle the NOT form of XOR.
500     if (I->getOpcode() == Instruction::Xor &&
501         isa<ConstantInt>(I->getOperand(1)) &&
502         cast<ConstantInt>(I->getOperand(1))->isOne()) {
503       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
504                                       WantInteger, CxtI);
505       if (Result.empty())
506         return false;
507 
508       // Invert the known values.
509       for (auto &R : Result)
510         R.first = ConstantExpr::getNot(R.first);
511 
512       return true;
513     }
514 
515   // Try to simplify some other binary operator values.
516   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
517     assert(Preference != WantBlockAddress
518             && "A binary operator creating a block address?");
519     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
520       PredValueInfoTy LHSVals;
521       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
522                                       WantInteger, CxtI);
523 
524       // Try to use constant folding to simplify the binary operator.
525       for (const auto &LHSVal : LHSVals) {
526         Constant *V = LHSVal.first;
527         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
528 
529         if (Constant *KC = getKnownConstant(Folded, WantInteger))
530           Result.push_back(std::make_pair(KC, LHSVal.second));
531       }
532     }
533 
534     return !Result.empty();
535   }
536 
537   // Handle compare with phi operand, where the PHI is defined in this block.
538   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
539     assert(Preference == WantInteger && "Compares only produce integers");
540     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
541     if (PN && PN->getParent() == BB) {
542       const DataLayout &DL = PN->getModule()->getDataLayout();
543       // We can do this simplification if any comparisons fold to true or false.
544       // See if any do.
545       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
546         BasicBlock *PredBB = PN->getIncomingBlock(i);
547         Value *LHS = PN->getIncomingValue(i);
548         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
549 
550         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
551         if (!Res) {
552           if (!isa<Constant>(RHS))
553             continue;
554 
555           LazyValueInfo::Tristate
556             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
557                                            cast<Constant>(RHS), PredBB, BB,
558                                            CxtI ? CxtI : Cmp);
559           if (ResT == LazyValueInfo::Unknown)
560             continue;
561           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
562         }
563 
564         if (Constant *KC = getKnownConstant(Res, WantInteger))
565           Result.push_back(std::make_pair(KC, PredBB));
566       }
567 
568       return !Result.empty();
569     }
570 
571     // If comparing a live-in value against a constant, see if we know the
572     // live-in value on any predecessors.
573     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
574       if (!isa<Instruction>(Cmp->getOperand(0)) ||
575           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
576         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
577 
578         for (BasicBlock *P : predecessors(BB)) {
579           // If the value is known by LazyValueInfo to be a constant in a
580           // predecessor, use that information to try to thread this block.
581           LazyValueInfo::Tristate Res =
582             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
583                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
584           if (Res == LazyValueInfo::Unknown)
585             continue;
586 
587           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
588           Result.push_back(std::make_pair(ResC, P));
589         }
590 
591         return !Result.empty();
592       }
593 
594       // Try to find a constant value for the LHS of a comparison,
595       // and evaluate it statically if we can.
596       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
597         PredValueInfoTy LHSVals;
598         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
599                                         WantInteger, CxtI);
600 
601         for (const auto &LHSVal : LHSVals) {
602           Constant *V = LHSVal.first;
603           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
604                                                       V, CmpConst);
605           if (Constant *KC = getKnownConstant(Folded, WantInteger))
606             Result.push_back(std::make_pair(KC, LHSVal.second));
607         }
608 
609         return !Result.empty();
610       }
611     }
612   }
613 
614   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
615     // Handle select instructions where at least one operand is a known constant
616     // and we can figure out the condition value for any predecessor block.
617     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
618     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
619     PredValueInfoTy Conds;
620     if ((TrueVal || FalseVal) &&
621         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
622                                         WantInteger, CxtI)) {
623       for (auto &C : Conds) {
624         Constant *Cond = C.first;
625 
626         // Figure out what value to use for the condition.
627         bool KnownCond;
628         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
629           // A known boolean.
630           KnownCond = CI->isOne();
631         } else {
632           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
633           // Either operand will do, so be sure to pick the one that's a known
634           // constant.
635           // FIXME: Do this more cleverly if both values are known constants?
636           KnownCond = (TrueVal != nullptr);
637         }
638 
639         // See if the select has a known constant value for this predecessor.
640         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
641           Result.push_back(std::make_pair(Val, C.second));
642       }
643 
644       return !Result.empty();
645     }
646   }
647 
648   // If all else fails, see if LVI can figure out a constant value for us.
649   Constant *CI = LVI->getConstant(V, BB, CxtI);
650   if (Constant *KC = getKnownConstant(CI, Preference)) {
651     for (BasicBlock *Pred : predecessors(BB))
652       Result.push_back(std::make_pair(KC, Pred));
653   }
654 
655   return !Result.empty();
656 }
657 
658 
659 
660 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
661 /// in an undefined jump, decide which block is best to revector to.
662 ///
663 /// Since we can pick an arbitrary destination, we pick the successor with the
664 /// fewest predecessors.  This should reduce the in-degree of the others.
665 ///
666 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
667   TerminatorInst *BBTerm = BB->getTerminator();
668   unsigned MinSucc = 0;
669   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
670   // Compute the successor with the minimum number of predecessors.
671   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
672   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
673     TestBB = BBTerm->getSuccessor(i);
674     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
675     if (NumPreds < MinNumPreds) {
676       MinSucc = i;
677       MinNumPreds = NumPreds;
678     }
679   }
680 
681   return MinSucc;
682 }
683 
684 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
685   if (!BB->hasAddressTaken()) return false;
686 
687   // If the block has its address taken, it may be a tree of dead constants
688   // hanging off of it.  These shouldn't keep the block alive.
689   BlockAddress *BA = BlockAddress::get(BB);
690   BA->removeDeadConstantUsers();
691   return !BA->use_empty();
692 }
693 
694 /// ProcessBlock - If there are any predecessors whose control can be threaded
695 /// through to a successor, transform them now.
696 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
697   // If the block is trivially dead, just return and let the caller nuke it.
698   // This simplifies other transformations.
699   if (pred_empty(BB) &&
700       BB != &BB->getParent()->getEntryBlock())
701     return false;
702 
703   // If this block has a single predecessor, and if that pred has a single
704   // successor, merge the blocks.  This encourages recursive jump threading
705   // because now the condition in this block can be threaded through
706   // predecessors of our predecessor block.
707   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
708     const TerminatorInst *TI = SinglePred->getTerminator();
709     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
710         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
711       // If SinglePred was a loop header, BB becomes one.
712       if (LoopHeaders.erase(SinglePred))
713         LoopHeaders.insert(BB);
714 
715       LVI->eraseBlock(SinglePred);
716       MergeBasicBlockIntoOnlyPred(BB);
717 
718       return true;
719     }
720   }
721 
722   if (TryToUnfoldSelectInCurrBB(BB))
723     return true;
724 
725   // Look if we can propagate guards to predecessors.
726   if (HasGuards && ProcessGuards(BB))
727     return true;
728 
729   // What kind of constant we're looking for.
730   ConstantPreference Preference = WantInteger;
731 
732   // Look to see if the terminator is a conditional branch, switch or indirect
733   // branch, if not we can't thread it.
734   Value *Condition;
735   Instruction *Terminator = BB->getTerminator();
736   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
737     // Can't thread an unconditional jump.
738     if (BI->isUnconditional()) return false;
739     Condition = BI->getCondition();
740   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
741     Condition = SI->getCondition();
742   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
743     // Can't thread indirect branch with no successors.
744     if (IB->getNumSuccessors() == 0) return false;
745     Condition = IB->getAddress()->stripPointerCasts();
746     Preference = WantBlockAddress;
747   } else {
748     return false; // Must be an invoke.
749   }
750 
751   // Run constant folding to see if we can reduce the condition to a simple
752   // constant.
753   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
754     Value *SimpleVal =
755         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
756     if (SimpleVal) {
757       I->replaceAllUsesWith(SimpleVal);
758       if (isInstructionTriviallyDead(I, TLI))
759         I->eraseFromParent();
760       Condition = SimpleVal;
761     }
762   }
763 
764   // If the terminator is branching on an undef, we can pick any of the
765   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
766   if (isa<UndefValue>(Condition)) {
767     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
768 
769     // Fold the branch/switch.
770     TerminatorInst *BBTerm = BB->getTerminator();
771     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
772       if (i == BestSucc) continue;
773       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
774     }
775 
776     DEBUG(dbgs() << "  In block '" << BB->getName()
777           << "' folding undef terminator: " << *BBTerm << '\n');
778     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
779     BBTerm->eraseFromParent();
780     return true;
781   }
782 
783   // If the terminator of this block is branching on a constant, simplify the
784   // terminator to an unconditional branch.  This can occur due to threading in
785   // other blocks.
786   if (getKnownConstant(Condition, Preference)) {
787     DEBUG(dbgs() << "  In block '" << BB->getName()
788           << "' folding terminator: " << *BB->getTerminator() << '\n');
789     ++NumFolds;
790     ConstantFoldTerminator(BB, true);
791     return true;
792   }
793 
794   Instruction *CondInst = dyn_cast<Instruction>(Condition);
795 
796   // All the rest of our checks depend on the condition being an instruction.
797   if (!CondInst) {
798     // FIXME: Unify this with code below.
799     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
800       return true;
801     return false;
802   }
803 
804 
805   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
806     // If we're branching on a conditional, LVI might be able to determine
807     // it's value at the branch instruction.  We only handle comparisons
808     // against a constant at this time.
809     // TODO: This should be extended to handle switches as well.
810     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
811     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
812     if (CondBr && CondConst && CondBr->isConditional()) {
813       LazyValueInfo::Tristate Ret =
814         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
815                             CondConst, CondBr);
816       if (Ret != LazyValueInfo::Unknown) {
817         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
818         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
819         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
820         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
821         CondBr->eraseFromParent();
822         if (CondCmp->use_empty())
823           CondCmp->eraseFromParent();
824         else if (CondCmp->getParent() == BB) {
825           // If the fact we just learned is true for all uses of the
826           // condition, replace it with a constant value
827           auto *CI = Ret == LazyValueInfo::True ?
828             ConstantInt::getTrue(CondCmp->getType()) :
829             ConstantInt::getFalse(CondCmp->getType());
830           CondCmp->replaceAllUsesWith(CI);
831           CondCmp->eraseFromParent();
832         }
833         return true;
834       }
835     }
836 
837     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
838       return true;
839   }
840 
841   // Check for some cases that are worth simplifying.  Right now we want to look
842   // for loads that are used by a switch or by the condition for the branch.  If
843   // we see one, check to see if it's partially redundant.  If so, insert a PHI
844   // which can then be used to thread the values.
845   //
846   Value *SimplifyValue = CondInst;
847   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
848     if (isa<Constant>(CondCmp->getOperand(1)))
849       SimplifyValue = CondCmp->getOperand(0);
850 
851   // TODO: There are other places where load PRE would be profitable, such as
852   // more complex comparisons.
853   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
854     if (SimplifyPartiallyRedundantLoad(LI))
855       return true;
856 
857 
858   // Handle a variety of cases where we are branching on something derived from
859   // a PHI node in the current block.  If we can prove that any predecessors
860   // compute a predictable value based on a PHI node, thread those predecessors.
861   //
862   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
863     return true;
864 
865   // If this is an otherwise-unfoldable branch on a phi node in the current
866   // block, see if we can simplify.
867   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
868     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
869       return ProcessBranchOnPHI(PN);
870 
871 
872   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
873   if (CondInst->getOpcode() == Instruction::Xor &&
874       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
875     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
876 
877   // Search for a stronger dominating condition that can be used to simplify a
878   // conditional branch leaving BB.
879   if (ProcessImpliedCondition(BB))
880     return true;
881 
882   return false;
883 }
884 
885 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
886   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
887   if (!BI || !BI->isConditional())
888     return false;
889 
890   Value *Cond = BI->getCondition();
891   BasicBlock *CurrentBB = BB;
892   BasicBlock *CurrentPred = BB->getSinglePredecessor();
893   unsigned Iter = 0;
894 
895   auto &DL = BB->getModule()->getDataLayout();
896 
897   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
898     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
899     if (!PBI || !PBI->isConditional())
900       return false;
901     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
902       return false;
903 
904     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
905     Optional<bool> Implication =
906       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
907     if (Implication) {
908       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
909       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
910       BI->eraseFromParent();
911       return true;
912     }
913     CurrentBB = CurrentPred;
914     CurrentPred = CurrentBB->getSinglePredecessor();
915   }
916 
917   return false;
918 }
919 
920 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
921 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
922 /// important optimization that encourages jump threading, and needs to be run
923 /// interlaced with other jump threading tasks.
924 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
925   // Don't hack volatile and ordered loads.
926   if (!LI->isUnordered()) return false;
927 
928   // If the load is defined in a block with exactly one predecessor, it can't be
929   // partially redundant.
930   BasicBlock *LoadBB = LI->getParent();
931   if (LoadBB->getSinglePredecessor())
932     return false;
933 
934   // If the load is defined in an EH pad, it can't be partially redundant,
935   // because the edges between the invoke and the EH pad cannot have other
936   // instructions between them.
937   if (LoadBB->isEHPad())
938     return false;
939 
940   Value *LoadedPtr = LI->getOperand(0);
941 
942   // If the loaded operand is defined in the LoadBB, it can't be available.
943   // TODO: Could do simple PHI translation, that would be fun :)
944   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
945     if (PtrOp->getParent() == LoadBB)
946       return false;
947 
948   // Scan a few instructions up from the load, to see if it is obviously live at
949   // the entry to its block.
950   BasicBlock::iterator BBIt(LI);
951   bool IsLoadCSE;
952   if (Value *AvailableVal =
953         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan, nullptr, &IsLoadCSE)) {
954     // If the value of the load is locally available within the block, just use
955     // it.  This frequently occurs for reg2mem'd allocas.
956 
957     if (IsLoadCSE) {
958       LoadInst *NLI = cast<LoadInst>(AvailableVal);
959       combineMetadataForCSE(NLI, LI);
960     };
961 
962     // If the returned value is the load itself, replace with an undef. This can
963     // only happen in dead loops.
964     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
965     if (AvailableVal->getType() != LI->getType())
966       AvailableVal =
967           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
968     LI->replaceAllUsesWith(AvailableVal);
969     LI->eraseFromParent();
970     return true;
971   }
972 
973   // Otherwise, if we scanned the whole block and got to the top of the block,
974   // we know the block is locally transparent to the load.  If not, something
975   // might clobber its value.
976   if (BBIt != LoadBB->begin())
977     return false;
978 
979   // If all of the loads and stores that feed the value have the same AA tags,
980   // then we can propagate them onto any newly inserted loads.
981   AAMDNodes AATags;
982   LI->getAAMetadata(AATags);
983 
984   SmallPtrSet<BasicBlock*, 8> PredsScanned;
985   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
986   AvailablePredsTy AvailablePreds;
987   BasicBlock *OneUnavailablePred = nullptr;
988   SmallVector<LoadInst*, 8> CSELoads;
989 
990   // If we got here, the loaded value is transparent through to the start of the
991   // block.  Check to see if it is available in any of the predecessor blocks.
992   for (BasicBlock *PredBB : predecessors(LoadBB)) {
993     // If we already scanned this predecessor, skip it.
994     if (!PredsScanned.insert(PredBB).second)
995       continue;
996 
997     // Scan the predecessor to see if the value is available in the pred.
998     BBIt = PredBB->end();
999     unsigned NumScanedInst = 0;
1000     Value *PredAvailable =
1001         FindAvailableLoadedValue(LI, PredBB, BBIt, DefMaxInstsToScan, nullptr,
1002                                  &IsLoadCSE, &NumScanedInst);
1003 
1004     // If PredBB has a single predecessor, continue scanning through the single
1005     // precessor.
1006     BasicBlock *SinglePredBB = PredBB;
1007     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1008            NumScanedInst < DefMaxInstsToScan) {
1009       SinglePredBB = SinglePredBB->getSinglePredecessor();
1010       if (SinglePredBB) {
1011         BBIt = SinglePredBB->end();
1012         PredAvailable = FindAvailableLoadedValue(
1013             LI, SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst),
1014             nullptr, &IsLoadCSE, &NumScanedInst);
1015       }
1016     }
1017 
1018     if (!PredAvailable) {
1019       OneUnavailablePred = PredBB;
1020       continue;
1021     }
1022 
1023     if (IsLoadCSE)
1024       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1025 
1026     // If so, this load is partially redundant.  Remember this info so that we
1027     // can create a PHI node.
1028     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1029   }
1030 
1031   // If the loaded value isn't available in any predecessor, it isn't partially
1032   // redundant.
1033   if (AvailablePreds.empty()) return false;
1034 
1035   // Okay, the loaded value is available in at least one (and maybe all!)
1036   // predecessors.  If the value is unavailable in more than one unique
1037   // predecessor, we want to insert a merge block for those common predecessors.
1038   // This ensures that we only have to insert one reload, thus not increasing
1039   // code size.
1040   BasicBlock *UnavailablePred = nullptr;
1041 
1042   // If there is exactly one predecessor where the value is unavailable, the
1043   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1044   // unconditional branch, we know that it isn't a critical edge.
1045   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1046       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1047     UnavailablePred = OneUnavailablePred;
1048   } else if (PredsScanned.size() != AvailablePreds.size()) {
1049     // Otherwise, we had multiple unavailable predecessors or we had a critical
1050     // edge from the one.
1051     SmallVector<BasicBlock*, 8> PredsToSplit;
1052     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1053 
1054     for (const auto &AvailablePred : AvailablePreds)
1055       AvailablePredSet.insert(AvailablePred.first);
1056 
1057     // Add all the unavailable predecessors to the PredsToSplit list.
1058     for (BasicBlock *P : predecessors(LoadBB)) {
1059       // If the predecessor is an indirect goto, we can't split the edge.
1060       if (isa<IndirectBrInst>(P->getTerminator()))
1061         return false;
1062 
1063       if (!AvailablePredSet.count(P))
1064         PredsToSplit.push_back(P);
1065     }
1066 
1067     // Split them out to their own block.
1068     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1069   }
1070 
1071   // If the value isn't available in all predecessors, then there will be
1072   // exactly one where it isn't available.  Insert a load on that edge and add
1073   // it to the AvailablePreds list.
1074   if (UnavailablePred) {
1075     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1076            "Can't handle critical edge here!");
1077     LoadInst *NewVal =
1078         new LoadInst(LoadedPtr, LI->getName() + ".pr", false,
1079                      LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(),
1080                      UnavailablePred->getTerminator());
1081     NewVal->setDebugLoc(LI->getDebugLoc());
1082     if (AATags)
1083       NewVal->setAAMetadata(AATags);
1084 
1085     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1086   }
1087 
1088   // Now we know that each predecessor of this block has a value in
1089   // AvailablePreds, sort them for efficient access as we're walking the preds.
1090   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1091 
1092   // Create a PHI node at the start of the block for the PRE'd load value.
1093   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1094   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1095                                 &LoadBB->front());
1096   PN->takeName(LI);
1097   PN->setDebugLoc(LI->getDebugLoc());
1098 
1099   // Insert new entries into the PHI for each predecessor.  A single block may
1100   // have multiple entries here.
1101   for (pred_iterator PI = PB; PI != PE; ++PI) {
1102     BasicBlock *P = *PI;
1103     AvailablePredsTy::iterator I =
1104       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1105                        std::make_pair(P, (Value*)nullptr));
1106 
1107     assert(I != AvailablePreds.end() && I->first == P &&
1108            "Didn't find entry for predecessor!");
1109 
1110     // If we have an available predecessor but it requires casting, insert the
1111     // cast in the predecessor and use the cast. Note that we have to update the
1112     // AvailablePreds vector as we go so that all of the PHI entries for this
1113     // predecessor use the same bitcast.
1114     Value *&PredV = I->second;
1115     if (PredV->getType() != LI->getType())
1116       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1117                                                P->getTerminator());
1118 
1119     PN->addIncoming(PredV, I->first);
1120   }
1121 
1122   for (LoadInst *PredLI : CSELoads) {
1123     combineMetadataForCSE(PredLI, LI);
1124   }
1125 
1126   LI->replaceAllUsesWith(PN);
1127   LI->eraseFromParent();
1128 
1129   return true;
1130 }
1131 
1132 /// FindMostPopularDest - The specified list contains multiple possible
1133 /// threadable destinations.  Pick the one that occurs the most frequently in
1134 /// the list.
1135 static BasicBlock *
1136 FindMostPopularDest(BasicBlock *BB,
1137                     const SmallVectorImpl<std::pair<BasicBlock*,
1138                                   BasicBlock*> > &PredToDestList) {
1139   assert(!PredToDestList.empty());
1140 
1141   // Determine popularity.  If there are multiple possible destinations, we
1142   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1143   // blocks with known and real destinations to threading undef.  We'll handle
1144   // them later if interesting.
1145   DenseMap<BasicBlock*, unsigned> DestPopularity;
1146   for (const auto &PredToDest : PredToDestList)
1147     if (PredToDest.second)
1148       DestPopularity[PredToDest.second]++;
1149 
1150   // Find the most popular dest.
1151   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1152   BasicBlock *MostPopularDest = DPI->first;
1153   unsigned Popularity = DPI->second;
1154   SmallVector<BasicBlock*, 4> SamePopularity;
1155 
1156   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1157     // If the popularity of this entry isn't higher than the popularity we've
1158     // seen so far, ignore it.
1159     if (DPI->second < Popularity)
1160       ; // ignore.
1161     else if (DPI->second == Popularity) {
1162       // If it is the same as what we've seen so far, keep track of it.
1163       SamePopularity.push_back(DPI->first);
1164     } else {
1165       // If it is more popular, remember it.
1166       SamePopularity.clear();
1167       MostPopularDest = DPI->first;
1168       Popularity = DPI->second;
1169     }
1170   }
1171 
1172   // Okay, now we know the most popular destination.  If there is more than one
1173   // destination, we need to determine one.  This is arbitrary, but we need
1174   // to make a deterministic decision.  Pick the first one that appears in the
1175   // successor list.
1176   if (!SamePopularity.empty()) {
1177     SamePopularity.push_back(MostPopularDest);
1178     TerminatorInst *TI = BB->getTerminator();
1179     for (unsigned i = 0; ; ++i) {
1180       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1181 
1182       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1183         continue;
1184 
1185       MostPopularDest = TI->getSuccessor(i);
1186       break;
1187     }
1188   }
1189 
1190   // Okay, we have finally picked the most popular destination.
1191   return MostPopularDest;
1192 }
1193 
1194 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1195                                                ConstantPreference Preference,
1196                                                Instruction *CxtI) {
1197   // If threading this would thread across a loop header, don't even try to
1198   // thread the edge.
1199   if (LoopHeaders.count(BB))
1200     return false;
1201 
1202   PredValueInfoTy PredValues;
1203   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1204     return false;
1205 
1206   assert(!PredValues.empty() &&
1207          "ComputeValueKnownInPredecessors returned true with no values");
1208 
1209   DEBUG(dbgs() << "IN BB: " << *BB;
1210         for (const auto &PredValue : PredValues) {
1211           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1212             << *PredValue.first
1213             << " for pred '" << PredValue.second->getName() << "'.\n";
1214         });
1215 
1216   // Decide what we want to thread through.  Convert our list of known values to
1217   // a list of known destinations for each pred.  This also discards duplicate
1218   // predecessors and keeps track of the undefined inputs (which are represented
1219   // as a null dest in the PredToDestList).
1220   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1221   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1222 
1223   BasicBlock *OnlyDest = nullptr;
1224   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1225 
1226   for (const auto &PredValue : PredValues) {
1227     BasicBlock *Pred = PredValue.second;
1228     if (!SeenPreds.insert(Pred).second)
1229       continue;  // Duplicate predecessor entry.
1230 
1231     // If the predecessor ends with an indirect goto, we can't change its
1232     // destination.
1233     if (isa<IndirectBrInst>(Pred->getTerminator()))
1234       continue;
1235 
1236     Constant *Val = PredValue.first;
1237 
1238     BasicBlock *DestBB;
1239     if (isa<UndefValue>(Val))
1240       DestBB = nullptr;
1241     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1242       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1243     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1244       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1245     } else {
1246       assert(isa<IndirectBrInst>(BB->getTerminator())
1247               && "Unexpected terminator");
1248       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1249     }
1250 
1251     // If we have exactly one destination, remember it for efficiency below.
1252     if (PredToDestList.empty())
1253       OnlyDest = DestBB;
1254     else if (OnlyDest != DestBB)
1255       OnlyDest = MultipleDestSentinel;
1256 
1257     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1258   }
1259 
1260   // If all edges were unthreadable, we fail.
1261   if (PredToDestList.empty())
1262     return false;
1263 
1264   // Determine which is the most common successor.  If we have many inputs and
1265   // this block is a switch, we want to start by threading the batch that goes
1266   // to the most popular destination first.  If we only know about one
1267   // threadable destination (the common case) we can avoid this.
1268   BasicBlock *MostPopularDest = OnlyDest;
1269 
1270   if (MostPopularDest == MultipleDestSentinel)
1271     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1272 
1273   // Now that we know what the most popular destination is, factor all
1274   // predecessors that will jump to it into a single predecessor.
1275   SmallVector<BasicBlock*, 16> PredsToFactor;
1276   for (const auto &PredToDest : PredToDestList)
1277     if (PredToDest.second == MostPopularDest) {
1278       BasicBlock *Pred = PredToDest.first;
1279 
1280       // This predecessor may be a switch or something else that has multiple
1281       // edges to the block.  Factor each of these edges by listing them
1282       // according to # occurrences in PredsToFactor.
1283       for (BasicBlock *Succ : successors(Pred))
1284         if (Succ == BB)
1285           PredsToFactor.push_back(Pred);
1286     }
1287 
1288   // If the threadable edges are branching on an undefined value, we get to pick
1289   // the destination that these predecessors should get to.
1290   if (!MostPopularDest)
1291     MostPopularDest = BB->getTerminator()->
1292                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1293 
1294   // Ok, try to thread it!
1295   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1296 }
1297 
1298 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1299 /// a PHI node in the current block.  See if there are any simplifications we
1300 /// can do based on inputs to the phi node.
1301 ///
1302 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1303   BasicBlock *BB = PN->getParent();
1304 
1305   // TODO: We could make use of this to do it once for blocks with common PHI
1306   // values.
1307   SmallVector<BasicBlock*, 1> PredBBs;
1308   PredBBs.resize(1);
1309 
1310   // If any of the predecessor blocks end in an unconditional branch, we can
1311   // *duplicate* the conditional branch into that block in order to further
1312   // encourage jump threading and to eliminate cases where we have branch on a
1313   // phi of an icmp (branch on icmp is much better).
1314   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1315     BasicBlock *PredBB = PN->getIncomingBlock(i);
1316     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1317       if (PredBr->isUnconditional()) {
1318         PredBBs[0] = PredBB;
1319         // Try to duplicate BB into PredBB.
1320         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1321           return true;
1322       }
1323   }
1324 
1325   return false;
1326 }
1327 
1328 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1329 /// a xor instruction in the current block.  See if there are any
1330 /// simplifications we can do based on inputs to the xor.
1331 ///
1332 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1333   BasicBlock *BB = BO->getParent();
1334 
1335   // If either the LHS or RHS of the xor is a constant, don't do this
1336   // optimization.
1337   if (isa<ConstantInt>(BO->getOperand(0)) ||
1338       isa<ConstantInt>(BO->getOperand(1)))
1339     return false;
1340 
1341   // If the first instruction in BB isn't a phi, we won't be able to infer
1342   // anything special about any particular predecessor.
1343   if (!isa<PHINode>(BB->front()))
1344     return false;
1345 
1346   // If this BB is a landing pad, we won't be able to split the edge into it.
1347   if (BB->isEHPad())
1348     return false;
1349 
1350   // If we have a xor as the branch input to this block, and we know that the
1351   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1352   // the condition into the predecessor and fix that value to true, saving some
1353   // logical ops on that path and encouraging other paths to simplify.
1354   //
1355   // This copies something like this:
1356   //
1357   //  BB:
1358   //    %X = phi i1 [1],  [%X']
1359   //    %Y = icmp eq i32 %A, %B
1360   //    %Z = xor i1 %X, %Y
1361   //    br i1 %Z, ...
1362   //
1363   // Into:
1364   //  BB':
1365   //    %Y = icmp ne i32 %A, %B
1366   //    br i1 %Y, ...
1367 
1368   PredValueInfoTy XorOpValues;
1369   bool isLHS = true;
1370   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1371                                        WantInteger, BO)) {
1372     assert(XorOpValues.empty());
1373     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1374                                          WantInteger, BO))
1375       return false;
1376     isLHS = false;
1377   }
1378 
1379   assert(!XorOpValues.empty() &&
1380          "ComputeValueKnownInPredecessors returned true with no values");
1381 
1382   // Scan the information to see which is most popular: true or false.  The
1383   // predecessors can be of the set true, false, or undef.
1384   unsigned NumTrue = 0, NumFalse = 0;
1385   for (const auto &XorOpValue : XorOpValues) {
1386     if (isa<UndefValue>(XorOpValue.first))
1387       // Ignore undefs for the count.
1388       continue;
1389     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1390       ++NumFalse;
1391     else
1392       ++NumTrue;
1393   }
1394 
1395   // Determine which value to split on, true, false, or undef if neither.
1396   ConstantInt *SplitVal = nullptr;
1397   if (NumTrue > NumFalse)
1398     SplitVal = ConstantInt::getTrue(BB->getContext());
1399   else if (NumTrue != 0 || NumFalse != 0)
1400     SplitVal = ConstantInt::getFalse(BB->getContext());
1401 
1402   // Collect all of the blocks that this can be folded into so that we can
1403   // factor this once and clone it once.
1404   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1405   for (const auto &XorOpValue : XorOpValues) {
1406     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1407       continue;
1408 
1409     BlocksToFoldInto.push_back(XorOpValue.second);
1410   }
1411 
1412   // If we inferred a value for all of the predecessors, then duplication won't
1413   // help us.  However, we can just replace the LHS or RHS with the constant.
1414   if (BlocksToFoldInto.size() ==
1415       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1416     if (!SplitVal) {
1417       // If all preds provide undef, just nuke the xor, because it is undef too.
1418       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1419       BO->eraseFromParent();
1420     } else if (SplitVal->isZero()) {
1421       // If all preds provide 0, replace the xor with the other input.
1422       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1423       BO->eraseFromParent();
1424     } else {
1425       // If all preds provide 1, set the computed value to 1.
1426       BO->setOperand(!isLHS, SplitVal);
1427     }
1428 
1429     return true;
1430   }
1431 
1432   // Try to duplicate BB into PredBB.
1433   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1434 }
1435 
1436 
1437 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1438 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1439 /// NewPred using the entries from OldPred (suitably mapped).
1440 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1441                                             BasicBlock *OldPred,
1442                                             BasicBlock *NewPred,
1443                                      DenseMap<Instruction*, Value*> &ValueMap) {
1444   for (BasicBlock::iterator PNI = PHIBB->begin();
1445        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1446     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1447     // DestBlock.
1448     Value *IV = PN->getIncomingValueForBlock(OldPred);
1449 
1450     // Remap the value if necessary.
1451     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1452       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1453       if (I != ValueMap.end())
1454         IV = I->second;
1455     }
1456 
1457     PN->addIncoming(IV, NewPred);
1458   }
1459 }
1460 
1461 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1462 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1463 /// across BB.  Transform the IR to reflect this change.
1464 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1465                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1466                                    BasicBlock *SuccBB) {
1467   // If threading to the same block as we come from, we would infinite loop.
1468   if (SuccBB == BB) {
1469     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1470           << "' - would thread to self!\n");
1471     return false;
1472   }
1473 
1474   // If threading this would thread across a loop header, don't thread the edge.
1475   // See the comments above FindLoopHeaders for justifications and caveats.
1476   if (LoopHeaders.count(BB)) {
1477     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1478           << "' to dest BB '" << SuccBB->getName()
1479           << "' - it might create an irreducible loop!\n");
1480     return false;
1481   }
1482 
1483   unsigned JumpThreadCost =
1484       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1485   if (JumpThreadCost > BBDupThreshold) {
1486     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1487           << "' - Cost is too high: " << JumpThreadCost << "\n");
1488     return false;
1489   }
1490 
1491   // And finally, do it!  Start by factoring the predecessors if needed.
1492   BasicBlock *PredBB;
1493   if (PredBBs.size() == 1)
1494     PredBB = PredBBs[0];
1495   else {
1496     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1497           << " common predecessors.\n");
1498     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1499   }
1500 
1501   // And finally, do it!
1502   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1503         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1504         << ", across block:\n    "
1505         << *BB << "\n");
1506 
1507   LVI->threadEdge(PredBB, BB, SuccBB);
1508 
1509   // We are going to have to map operands from the original BB block to the new
1510   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1511   // account for entry from PredBB.
1512   DenseMap<Instruction*, Value*> ValueMapping;
1513 
1514   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1515                                          BB->getName()+".thread",
1516                                          BB->getParent(), BB);
1517   NewBB->moveAfter(PredBB);
1518 
1519   // Set the block frequency of NewBB.
1520   if (HasProfileData) {
1521     auto NewBBFreq =
1522         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1523     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1524   }
1525 
1526   BasicBlock::iterator BI = BB->begin();
1527   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1528     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1529 
1530   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1531   // mapping and using it to remap operands in the cloned instructions.
1532   for (; !isa<TerminatorInst>(BI); ++BI) {
1533     Instruction *New = BI->clone();
1534     New->setName(BI->getName());
1535     NewBB->getInstList().push_back(New);
1536     ValueMapping[&*BI] = New;
1537 
1538     // Remap operands to patch up intra-block references.
1539     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1540       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1541         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1542         if (I != ValueMapping.end())
1543           New->setOperand(i, I->second);
1544       }
1545   }
1546 
1547   // We didn't copy the terminator from BB over to NewBB, because there is now
1548   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1549   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1550   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1551 
1552   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1553   // PHI nodes for NewBB now.
1554   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1555 
1556   // If there were values defined in BB that are used outside the block, then we
1557   // now have to update all uses of the value to use either the original value,
1558   // the cloned value, or some PHI derived value.  This can require arbitrary
1559   // PHI insertion, of which we are prepared to do, clean these up now.
1560   SSAUpdater SSAUpdate;
1561   SmallVector<Use*, 16> UsesToRename;
1562   for (Instruction &I : *BB) {
1563     // Scan all uses of this instruction to see if it is used outside of its
1564     // block, and if so, record them in UsesToRename.
1565     for (Use &U : I.uses()) {
1566       Instruction *User = cast<Instruction>(U.getUser());
1567       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1568         if (UserPN->getIncomingBlock(U) == BB)
1569           continue;
1570       } else if (User->getParent() == BB)
1571         continue;
1572 
1573       UsesToRename.push_back(&U);
1574     }
1575 
1576     // If there are no uses outside the block, we're done with this instruction.
1577     if (UsesToRename.empty())
1578       continue;
1579 
1580     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1581 
1582     // We found a use of I outside of BB.  Rename all uses of I that are outside
1583     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1584     // with the two values we know.
1585     SSAUpdate.Initialize(I.getType(), I.getName());
1586     SSAUpdate.AddAvailableValue(BB, &I);
1587     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1588 
1589     while (!UsesToRename.empty())
1590       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1591     DEBUG(dbgs() << "\n");
1592   }
1593 
1594 
1595   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1596   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1597   // us to simplify any PHI nodes in BB.
1598   TerminatorInst *PredTerm = PredBB->getTerminator();
1599   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1600     if (PredTerm->getSuccessor(i) == BB) {
1601       BB->removePredecessor(PredBB, true);
1602       PredTerm->setSuccessor(i, NewBB);
1603     }
1604 
1605   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1606   // over the new instructions and zap any that are constants or dead.  This
1607   // frequently happens because of phi translation.
1608   SimplifyInstructionsInBlock(NewBB, TLI);
1609 
1610   // Update the edge weight from BB to SuccBB, which should be less than before.
1611   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1612 
1613   // Threaded an edge!
1614   ++NumThreads;
1615   return true;
1616 }
1617 
1618 /// Create a new basic block that will be the predecessor of BB and successor of
1619 /// all blocks in Preds. When profile data is available, update the frequency of
1620 /// this new block.
1621 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1622                                                ArrayRef<BasicBlock *> Preds,
1623                                                const char *Suffix) {
1624   // Collect the frequencies of all predecessors of BB, which will be used to
1625   // update the edge weight on BB->SuccBB.
1626   BlockFrequency PredBBFreq(0);
1627   if (HasProfileData)
1628     for (auto Pred : Preds)
1629       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1630 
1631   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1632 
1633   // Set the block frequency of the newly created PredBB, which is the sum of
1634   // frequencies of Preds.
1635   if (HasProfileData)
1636     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1637   return PredBB;
1638 }
1639 
1640 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
1641   const TerminatorInst *TI = BB->getTerminator();
1642   assert(TI->getNumSuccessors() > 1 && "not a split");
1643 
1644   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
1645   if (!WeightsNode)
1646     return false;
1647 
1648   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
1649   if (MDName->getString() != "branch_weights")
1650     return false;
1651 
1652   // Ensure there are weights for all of the successors. Note that the first
1653   // operand to the metadata node is a name, not a weight.
1654   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
1655 }
1656 
1657 /// Update the block frequency of BB and branch weight and the metadata on the
1658 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1659 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1660 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1661                                                      BasicBlock *BB,
1662                                                      BasicBlock *NewBB,
1663                                                      BasicBlock *SuccBB) {
1664   if (!HasProfileData)
1665     return;
1666 
1667   assert(BFI && BPI && "BFI & BPI should have been created here");
1668 
1669   // As the edge from PredBB to BB is deleted, we have to update the block
1670   // frequency of BB.
1671   auto BBOrigFreq = BFI->getBlockFreq(BB);
1672   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1673   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1674   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1675   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1676 
1677   // Collect updated outgoing edges' frequencies from BB and use them to update
1678   // edge probabilities.
1679   SmallVector<uint64_t, 4> BBSuccFreq;
1680   for (BasicBlock *Succ : successors(BB)) {
1681     auto SuccFreq = (Succ == SuccBB)
1682                         ? BB2SuccBBFreq - NewBBFreq
1683                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1684     BBSuccFreq.push_back(SuccFreq.getFrequency());
1685   }
1686 
1687   uint64_t MaxBBSuccFreq =
1688       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1689 
1690   SmallVector<BranchProbability, 4> BBSuccProbs;
1691   if (MaxBBSuccFreq == 0)
1692     BBSuccProbs.assign(BBSuccFreq.size(),
1693                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1694   else {
1695     for (uint64_t Freq : BBSuccFreq)
1696       BBSuccProbs.push_back(
1697           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1698     // Normalize edge probabilities so that they sum up to one.
1699     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1700                                               BBSuccProbs.end());
1701   }
1702 
1703   // Update edge probabilities in BPI.
1704   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1705     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1706 
1707   // Update the profile metadata as well.
1708   //
1709   // Don't do this if the profile of the transformed blocks was statically
1710   // estimated.  (This could occur despite the function having an entry
1711   // frequency in completely cold parts of the CFG.)
1712   //
1713   // In this case we don't want to suggest to subsequent passes that the
1714   // calculated weights are fully consistent.  Consider this graph:
1715   //
1716   //                 check_1
1717   //             50% /  |
1718   //             eq_1   | 50%
1719   //                 \  |
1720   //                 check_2
1721   //             50% /  |
1722   //             eq_2   | 50%
1723   //                 \  |
1724   //                 check_3
1725   //             50% /  |
1726   //             eq_3   | 50%
1727   //                 \  |
1728   //
1729   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
1730   // the overall probabilities are inconsistent; the total probability that the
1731   // value is either 1, 2 or 3 is 150%.
1732   //
1733   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
1734   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
1735   // the loop exit edge.  Then based solely on static estimation we would assume
1736   // the loop was extremely hot.
1737   //
1738   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
1739   // shouldn't make edges extremely likely or unlikely based solely on static
1740   // estimation.
1741   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
1742     SmallVector<uint32_t, 4> Weights;
1743     for (auto Prob : BBSuccProbs)
1744       Weights.push_back(Prob.getNumerator());
1745 
1746     auto TI = BB->getTerminator();
1747     TI->setMetadata(
1748         LLVMContext::MD_prof,
1749         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1750   }
1751 }
1752 
1753 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1754 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1755 /// If we can duplicate the contents of BB up into PredBB do so now, this
1756 /// improves the odds that the branch will be on an analyzable instruction like
1757 /// a compare.
1758 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1759     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1760   assert(!PredBBs.empty() && "Can't handle an empty set");
1761 
1762   // If BB is a loop header, then duplicating this block outside the loop would
1763   // cause us to transform this into an irreducible loop, don't do this.
1764   // See the comments above FindLoopHeaders for justifications and caveats.
1765   if (LoopHeaders.count(BB)) {
1766     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1767           << "' into predecessor block '" << PredBBs[0]->getName()
1768           << "' - it might create an irreducible loop!\n");
1769     return false;
1770   }
1771 
1772   unsigned DuplicationCost =
1773       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1774   if (DuplicationCost > BBDupThreshold) {
1775     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1776           << "' - Cost is too high: " << DuplicationCost << "\n");
1777     return false;
1778   }
1779 
1780   // And finally, do it!  Start by factoring the predecessors if needed.
1781   BasicBlock *PredBB;
1782   if (PredBBs.size() == 1)
1783     PredBB = PredBBs[0];
1784   else {
1785     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1786           << " common predecessors.\n");
1787     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1788   }
1789 
1790   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1791   // of PredBB.
1792   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1793         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1794         << DuplicationCost << " block is:" << *BB << "\n");
1795 
1796   // Unless PredBB ends with an unconditional branch, split the edge so that we
1797   // can just clone the bits from BB into the end of the new PredBB.
1798   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1799 
1800   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1801     PredBB = SplitEdge(PredBB, BB);
1802     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1803   }
1804 
1805   // We are going to have to map operands from the original BB block into the
1806   // PredBB block.  Evaluate PHI nodes in BB.
1807   DenseMap<Instruction*, Value*> ValueMapping;
1808 
1809   BasicBlock::iterator BI = BB->begin();
1810   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1811     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1812   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1813   // mapping and using it to remap operands in the cloned instructions.
1814   for (; BI != BB->end(); ++BI) {
1815     Instruction *New = BI->clone();
1816 
1817     // Remap operands to patch up intra-block references.
1818     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1819       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1820         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1821         if (I != ValueMapping.end())
1822           New->setOperand(i, I->second);
1823       }
1824 
1825     // If this instruction can be simplified after the operands are updated,
1826     // just use the simplified value instead.  This frequently happens due to
1827     // phi translation.
1828     if (Value *IV =
1829             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1830       ValueMapping[&*BI] = IV;
1831       if (!New->mayHaveSideEffects()) {
1832         delete New;
1833         New = nullptr;
1834       }
1835     } else {
1836       ValueMapping[&*BI] = New;
1837     }
1838     if (New) {
1839       // Otherwise, insert the new instruction into the block.
1840       New->setName(BI->getName());
1841       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1842     }
1843   }
1844 
1845   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1846   // add entries to the PHI nodes for branch from PredBB now.
1847   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1848   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1849                                   ValueMapping);
1850   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1851                                   ValueMapping);
1852 
1853   // If there were values defined in BB that are used outside the block, then we
1854   // now have to update all uses of the value to use either the original value,
1855   // the cloned value, or some PHI derived value.  This can require arbitrary
1856   // PHI insertion, of which we are prepared to do, clean these up now.
1857   SSAUpdater SSAUpdate;
1858   SmallVector<Use*, 16> UsesToRename;
1859   for (Instruction &I : *BB) {
1860     // Scan all uses of this instruction to see if it is used outside of its
1861     // block, and if so, record them in UsesToRename.
1862     for (Use &U : I.uses()) {
1863       Instruction *User = cast<Instruction>(U.getUser());
1864       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1865         if (UserPN->getIncomingBlock(U) == BB)
1866           continue;
1867       } else if (User->getParent() == BB)
1868         continue;
1869 
1870       UsesToRename.push_back(&U);
1871     }
1872 
1873     // If there are no uses outside the block, we're done with this instruction.
1874     if (UsesToRename.empty())
1875       continue;
1876 
1877     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1878 
1879     // We found a use of I outside of BB.  Rename all uses of I that are outside
1880     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1881     // with the two values we know.
1882     SSAUpdate.Initialize(I.getType(), I.getName());
1883     SSAUpdate.AddAvailableValue(BB, &I);
1884     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1885 
1886     while (!UsesToRename.empty())
1887       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1888     DEBUG(dbgs() << "\n");
1889   }
1890 
1891   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1892   // that we nuked.
1893   BB->removePredecessor(PredBB, true);
1894 
1895   // Remove the unconditional branch at the end of the PredBB block.
1896   OldPredBranch->eraseFromParent();
1897 
1898   ++NumDupes;
1899   return true;
1900 }
1901 
1902 /// TryToUnfoldSelect - Look for blocks of the form
1903 /// bb1:
1904 ///   %a = select
1905 ///   br bb
1906 ///
1907 /// bb2:
1908 ///   %p = phi [%a, %bb] ...
1909 ///   %c = icmp %p
1910 ///   br i1 %c
1911 ///
1912 /// And expand the select into a branch structure if one of its arms allows %c
1913 /// to be folded. This later enables threading from bb1 over bb2.
1914 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1915   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1916   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1917   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1918 
1919   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1920       CondLHS->getParent() != BB)
1921     return false;
1922 
1923   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1924     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1925     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1926 
1927     // Look if one of the incoming values is a select in the corresponding
1928     // predecessor.
1929     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1930       continue;
1931 
1932     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1933     if (!PredTerm || !PredTerm->isUnconditional())
1934       continue;
1935 
1936     // Now check if one of the select values would allow us to constant fold the
1937     // terminator in BB. We don't do the transform if both sides fold, those
1938     // cases will be threaded in any case.
1939     LazyValueInfo::Tristate LHSFolds =
1940         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1941                                 CondRHS, Pred, BB, CondCmp);
1942     LazyValueInfo::Tristate RHSFolds =
1943         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1944                                 CondRHS, Pred, BB, CondCmp);
1945     if ((LHSFolds != LazyValueInfo::Unknown ||
1946          RHSFolds != LazyValueInfo::Unknown) &&
1947         LHSFolds != RHSFolds) {
1948       // Expand the select.
1949       //
1950       // Pred --
1951       //  |    v
1952       //  |  NewBB
1953       //  |    |
1954       //  |-----
1955       //  v
1956       // BB
1957       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1958                                              BB->getParent(), BB);
1959       // Move the unconditional branch to NewBB.
1960       PredTerm->removeFromParent();
1961       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1962       // Create a conditional branch and update PHI nodes.
1963       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1964       CondLHS->setIncomingValue(I, SI->getFalseValue());
1965       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1966       // The select is now dead.
1967       SI->eraseFromParent();
1968 
1969       // Update any other PHI nodes in BB.
1970       for (BasicBlock::iterator BI = BB->begin();
1971            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1972         if (Phi != CondLHS)
1973           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1974       return true;
1975     }
1976   }
1977   return false;
1978 }
1979 
1980 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1981 /// bb:
1982 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1983 ///   %s = select p, trueval, falseval
1984 ///
1985 /// And expand the select into a branch structure. This later enables
1986 /// jump-threading over bb in this pass.
1987 ///
1988 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1989 /// select if the associated PHI has at least one constant.  If the unfolded
1990 /// select is not jump-threaded, it will be folded again in the later
1991 /// optimizations.
1992 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1993   // If threading this would thread across a loop header, don't thread the edge.
1994   // See the comments above FindLoopHeaders for justifications and caveats.
1995   if (LoopHeaders.count(BB))
1996     return false;
1997 
1998   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1999   // condition of the Select and at least one of the incoming values is a
2000   // constant.
2001   for (BasicBlock::iterator BI = BB->begin();
2002        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2003     unsigned NumPHIValues = PN->getNumIncomingValues();
2004     if (NumPHIValues == 0 || !PN->hasOneUse())
2005       continue;
2006 
2007     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
2008     if (!SI || SI->getParent() != BB)
2009       continue;
2010 
2011     Value *Cond = SI->getCondition();
2012     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
2013       continue;
2014 
2015     bool HasConst = false;
2016     for (unsigned i = 0; i != NumPHIValues; ++i) {
2017       if (PN->getIncomingBlock(i) == BB)
2018         return false;
2019       if (isa<ConstantInt>(PN->getIncomingValue(i)))
2020         HasConst = true;
2021     }
2022 
2023     if (HasConst) {
2024       // Expand the select.
2025       TerminatorInst *Term =
2026           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2027       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2028       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2029       NewPN->addIncoming(SI->getFalseValue(), BB);
2030       SI->replaceAllUsesWith(NewPN);
2031       SI->eraseFromParent();
2032       return true;
2033     }
2034   }
2035 
2036   return false;
2037 }
2038 
2039 /// Try to propagate a guard from the current BB into one of its predecessors
2040 /// in case if another branch of execution implies that the condition of this
2041 /// guard is always true. Currently we only process the simplest case that
2042 /// looks like:
2043 ///
2044 /// Start:
2045 ///   %cond = ...
2046 ///   br i1 %cond, label %T1, label %F1
2047 /// T1:
2048 ///   br label %Merge
2049 /// F1:
2050 ///   br label %Merge
2051 /// Merge:
2052 ///   %condGuard = ...
2053 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2054 ///
2055 /// And cond either implies condGuard or !condGuard. In this case all the
2056 /// instructions before the guard can be duplicated in both branches, and the
2057 /// guard is then threaded to one of them.
2058 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2059   using namespace PatternMatch;
2060   // We only want to deal with two predecessors.
2061   BasicBlock *Pred1, *Pred2;
2062   auto PI = pred_begin(BB), PE = pred_end(BB);
2063   if (PI == PE)
2064     return false;
2065   Pred1 = *PI++;
2066   if (PI == PE)
2067     return false;
2068   Pred2 = *PI++;
2069   if (PI != PE)
2070     return false;
2071   if (Pred1 == Pred2)
2072     return false;
2073 
2074   // Try to thread one of the guards of the block.
2075   // TODO: Look up deeper than to immediate predecessor?
2076   auto *Parent = Pred1->getSinglePredecessor();
2077   if (!Parent || Parent != Pred2->getSinglePredecessor())
2078     return false;
2079 
2080   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2081     for (auto &I : *BB)
2082       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2083         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2084           return true;
2085 
2086   return false;
2087 }
2088 
2089 /// Try to propagate the guard from BB which is the lower block of a diamond
2090 /// to one of its branches, in case if diamond's condition implies guard's
2091 /// condition.
2092 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2093                                     BranchInst *BI) {
2094   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2095   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2096   Value *GuardCond = Guard->getArgOperand(0);
2097   Value *BranchCond = BI->getCondition();
2098   BasicBlock *TrueDest = BI->getSuccessor(0);
2099   BasicBlock *FalseDest = BI->getSuccessor(1);
2100 
2101   auto &DL = BB->getModule()->getDataLayout();
2102   bool TrueDestIsSafe = false;
2103   bool FalseDestIsSafe = false;
2104 
2105   // True dest is safe if BranchCond => GuardCond.
2106   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2107   if (Impl && *Impl)
2108     TrueDestIsSafe = true;
2109   else {
2110     // False dest is safe if !BranchCond => GuardCond.
2111     Impl =
2112         isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true);
2113     if (Impl && *Impl)
2114       FalseDestIsSafe = true;
2115   }
2116 
2117   if (!TrueDestIsSafe && !FalseDestIsSafe)
2118     return false;
2119 
2120   BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2121   BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2122 
2123   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2124   Instruction *AfterGuard = Guard->getNextNode();
2125   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2126   if (Cost > BBDupThreshold)
2127     return false;
2128   // Duplicate all instructions before the guard and the guard itself to the
2129   // branch where implication is not proved.
2130   GuardedBlock = DuplicateInstructionsInSplitBetween(
2131       BB, GuardedBlock, AfterGuard, GuardedMapping);
2132   assert(GuardedBlock && "Could not create the guarded block?");
2133   // Duplicate all instructions before the guard in the unguarded branch.
2134   // Since we have successfully duplicated the guarded block and this block
2135   // has fewer instructions, we expect it to succeed.
2136   UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
2137                                                        Guard, UnguardedMapping);
2138   assert(UnguardedBlock && "Could not create the unguarded block?");
2139   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2140                << GuardedBlock->getName() << "\n");
2141 
2142   // Some instructions before the guard may still have uses. For them, we need
2143   // to create Phi nodes merging their copies in both guarded and unguarded
2144   // branches. Those instructions that have no uses can be just removed.
2145   SmallVector<Instruction *, 4> ToRemove;
2146   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2147     if (!isa<PHINode>(&*BI))
2148       ToRemove.push_back(&*BI);
2149 
2150   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2151   assert(InsertionPoint && "Empty block?");
2152   // Substitute with Phis & remove.
2153   for (auto *Inst : reverse(ToRemove)) {
2154     if (!Inst->use_empty()) {
2155       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2156       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2157       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2158       NewPN->insertBefore(InsertionPoint);
2159       Inst->replaceAllUsesWith(NewPN);
2160     }
2161     Inst->eraseFromParent();
2162   }
2163   return true;
2164 }
2165