1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include <algorithm> 43 #include <memory> 44 using namespace llvm; 45 using namespace jumpthreading; 46 47 #define DEBUG_TYPE "jump-threading" 48 49 STATISTIC(NumThreads, "Number of jumps threaded"); 50 STATISTIC(NumFolds, "Number of terminators folded"); 51 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 52 53 static cl::opt<unsigned> 54 BBDuplicateThreshold("jump-threading-threshold", 55 cl::desc("Max block size to duplicate for jump threading"), 56 cl::init(6), cl::Hidden); 57 58 static cl::opt<unsigned> 59 ImplicationSearchThreshold( 60 "jump-threading-implication-search-threshold", 61 cl::desc("The number of predecessors to search for a stronger " 62 "condition to use to thread over a weaker condition"), 63 cl::init(3), cl::Hidden); 64 65 namespace { 66 /// This pass performs 'jump threading', which looks at blocks that have 67 /// multiple predecessors and multiple successors. If one or more of the 68 /// predecessors of the block can be proven to always jump to one of the 69 /// successors, we forward the edge from the predecessor to the successor by 70 /// duplicating the contents of this block. 71 /// 72 /// An example of when this can occur is code like this: 73 /// 74 /// if () { ... 75 /// X = 4; 76 /// } 77 /// if (X < 3) { 78 /// 79 /// In this case, the unconditional branch at the end of the first if can be 80 /// revectored to the false side of the second if. 81 /// 82 class JumpThreading : public FunctionPass { 83 JumpThreadingPass Impl; 84 85 public: 86 static char ID; // Pass identification 87 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 88 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool runOnFunction(Function &F) override; 92 93 void getAnalysisUsage(AnalysisUsage &AU) const override { 94 AU.addRequired<LazyValueInfoWrapperPass>(); 95 AU.addPreserved<LazyValueInfoWrapperPass>(); 96 AU.addPreserved<GlobalsAAWrapperPass>(); 97 AU.addRequired<TargetLibraryInfoWrapperPass>(); 98 } 99 100 void releaseMemory() override { Impl.releaseMemory(); } 101 }; 102 } 103 104 char JumpThreading::ID = 0; 105 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 106 "Jump Threading", false, false) 107 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 109 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 110 "Jump Threading", false, false) 111 112 // Public interface to the Jump Threading pass 113 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 114 115 JumpThreadingPass::JumpThreadingPass(int T) { 116 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 117 } 118 119 /// runOnFunction - Top level algorithm. 120 /// 121 bool JumpThreading::runOnFunction(Function &F) { 122 if (skipFunction(F)) 123 return false; 124 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 125 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 126 std::unique_ptr<BlockFrequencyInfo> BFI; 127 std::unique_ptr<BranchProbabilityInfo> BPI; 128 bool HasProfileData = F.getEntryCount().hasValue(); 129 if (HasProfileData) { 130 LoopInfo LI{DominatorTree(F)}; 131 BPI.reset(new BranchProbabilityInfo(F, LI)); 132 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 133 } 134 return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI), 135 std::move(BPI)); 136 } 137 138 PreservedAnalyses JumpThreadingPass::run(Function &F, 139 FunctionAnalysisManager &AM) { 140 141 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 142 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 143 std::unique_ptr<BlockFrequencyInfo> BFI; 144 std::unique_ptr<BranchProbabilityInfo> BPI; 145 bool HasProfileData = F.getEntryCount().hasValue(); 146 if (HasProfileData) { 147 LoopInfo LI{DominatorTree(F)}; 148 BPI.reset(new BranchProbabilityInfo(F, LI)); 149 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 150 } 151 bool Changed = 152 runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI)); 153 154 if (!Changed) 155 return PreservedAnalyses::all(); 156 PreservedAnalyses PA; 157 PA.preserve<GlobalsAA>(); 158 return PA; 159 } 160 161 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 162 LazyValueInfo *LVI_, bool HasProfileData_, 163 std::unique_ptr<BlockFrequencyInfo> BFI_, 164 std::unique_ptr<BranchProbabilityInfo> BPI_) { 165 166 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 167 TLI = TLI_; 168 LVI = LVI_; 169 BFI.reset(); 170 BPI.reset(); 171 // When profile data is available, we need to update edge weights after 172 // successful jump threading, which requires both BPI and BFI being available. 173 HasProfileData = HasProfileData_; 174 auto *GuardDecl = F.getParent()->getFunction( 175 Intrinsic::getName(Intrinsic::experimental_guard)); 176 HasGuards = GuardDecl && !GuardDecl->use_empty(); 177 if (HasProfileData) { 178 BPI = std::move(BPI_); 179 BFI = std::move(BFI_); 180 } 181 182 // Remove unreachable blocks from function as they may result in infinite 183 // loop. We do threading if we found something profitable. Jump threading a 184 // branch can create other opportunities. If these opportunities form a cycle 185 // i.e. if any jump threading is undoing previous threading in the path, then 186 // we will loop forever. We take care of this issue by not jump threading for 187 // back edges. This works for normal cases but not for unreachable blocks as 188 // they may have cycle with no back edge. 189 bool EverChanged = false; 190 EverChanged |= removeUnreachableBlocks(F, LVI); 191 192 FindLoopHeaders(F); 193 194 bool Changed; 195 do { 196 Changed = false; 197 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 198 BasicBlock *BB = &*I; 199 // Thread all of the branches we can over this block. 200 while (ProcessBlock(BB)) 201 Changed = true; 202 203 ++I; 204 205 // If the block is trivially dead, zap it. This eliminates the successor 206 // edges which simplifies the CFG. 207 if (pred_empty(BB) && 208 BB != &BB->getParent()->getEntryBlock()) { 209 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 210 << "' with terminator: " << *BB->getTerminator() << '\n'); 211 LoopHeaders.erase(BB); 212 LVI->eraseBlock(BB); 213 DeleteDeadBlock(BB); 214 Changed = true; 215 continue; 216 } 217 218 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 219 220 // Can't thread an unconditional jump, but if the block is "almost 221 // empty", we can replace uses of it with uses of the successor and make 222 // this dead. 223 // We should not eliminate the loop header either, because eliminating 224 // a loop header might later prevent LoopSimplify from transforming nested 225 // loops into simplified form. 226 if (BI && BI->isUnconditional() && 227 BB != &BB->getParent()->getEntryBlock() && 228 // If the terminator is the only non-phi instruction, try to nuke it. 229 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) { 230 // FIXME: It is always conservatively correct to drop the info 231 // for a block even if it doesn't get erased. This isn't totally 232 // awesome, but it allows us to use AssertingVH to prevent nasty 233 // dangling pointer issues within LazyValueInfo. 234 LVI->eraseBlock(BB); 235 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 236 Changed = true; 237 } 238 } 239 EverChanged |= Changed; 240 } while (Changed); 241 242 LoopHeaders.clear(); 243 return EverChanged; 244 } 245 246 /// Return the cost of duplicating a piece of this block from first non-phi 247 /// and before StopAt instruction to thread across it. Stop scanning the block 248 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 249 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 250 Instruction *StopAt, 251 unsigned Threshold) { 252 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 253 /// Ignore PHI nodes, these will be flattened when duplication happens. 254 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 255 256 // FIXME: THREADING will delete values that are just used to compute the 257 // branch, so they shouldn't count against the duplication cost. 258 259 unsigned Bonus = 0; 260 if (BB->getTerminator() == StopAt) { 261 // Threading through a switch statement is particularly profitable. If this 262 // block ends in a switch, decrease its cost to make it more likely to 263 // happen. 264 if (isa<SwitchInst>(StopAt)) 265 Bonus = 6; 266 267 // The same holds for indirect branches, but slightly more so. 268 if (isa<IndirectBrInst>(StopAt)) 269 Bonus = 8; 270 } 271 272 // Bump the threshold up so the early exit from the loop doesn't skip the 273 // terminator-based Size adjustment at the end. 274 Threshold += Bonus; 275 276 // Sum up the cost of each instruction until we get to the terminator. Don't 277 // include the terminator because the copy won't include it. 278 unsigned Size = 0; 279 for (; &*I != StopAt; ++I) { 280 281 // Stop scanning the block if we've reached the threshold. 282 if (Size > Threshold) 283 return Size; 284 285 // Debugger intrinsics don't incur code size. 286 if (isa<DbgInfoIntrinsic>(I)) continue; 287 288 // If this is a pointer->pointer bitcast, it is free. 289 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 290 continue; 291 292 // Bail out if this instruction gives back a token type, it is not possible 293 // to duplicate it if it is used outside this BB. 294 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 295 return ~0U; 296 297 // All other instructions count for at least one unit. 298 ++Size; 299 300 // Calls are more expensive. If they are non-intrinsic calls, we model them 301 // as having cost of 4. If they are a non-vector intrinsic, we model them 302 // as having cost of 2 total, and if they are a vector intrinsic, we model 303 // them as having cost 1. 304 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 305 if (CI->cannotDuplicate() || CI->isConvergent()) 306 // Blocks with NoDuplicate are modelled as having infinite cost, so they 307 // are never duplicated. 308 return ~0U; 309 else if (!isa<IntrinsicInst>(CI)) 310 Size += 3; 311 else if (!CI->getType()->isVectorTy()) 312 Size += 1; 313 } 314 } 315 316 return Size > Bonus ? Size - Bonus : 0; 317 } 318 319 /// FindLoopHeaders - We do not want jump threading to turn proper loop 320 /// structures into irreducible loops. Doing this breaks up the loop nesting 321 /// hierarchy and pessimizes later transformations. To prevent this from 322 /// happening, we first have to find the loop headers. Here we approximate this 323 /// by finding targets of backedges in the CFG. 324 /// 325 /// Note that there definitely are cases when we want to allow threading of 326 /// edges across a loop header. For example, threading a jump from outside the 327 /// loop (the preheader) to an exit block of the loop is definitely profitable. 328 /// It is also almost always profitable to thread backedges from within the loop 329 /// to exit blocks, and is often profitable to thread backedges to other blocks 330 /// within the loop (forming a nested loop). This simple analysis is not rich 331 /// enough to track all of these properties and keep it up-to-date as the CFG 332 /// mutates, so we don't allow any of these transformations. 333 /// 334 void JumpThreadingPass::FindLoopHeaders(Function &F) { 335 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 336 FindFunctionBackedges(F, Edges); 337 338 for (const auto &Edge : Edges) 339 LoopHeaders.insert(Edge.second); 340 } 341 342 /// getKnownConstant - Helper method to determine if we can thread over a 343 /// terminator with the given value as its condition, and if so what value to 344 /// use for that. What kind of value this is depends on whether we want an 345 /// integer or a block address, but an undef is always accepted. 346 /// Returns null if Val is null or not an appropriate constant. 347 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 348 if (!Val) 349 return nullptr; 350 351 // Undef is "known" enough. 352 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 353 return U; 354 355 if (Preference == WantBlockAddress) 356 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 357 358 return dyn_cast<ConstantInt>(Val); 359 } 360 361 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 362 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 363 /// in any of our predecessors. If so, return the known list of value and pred 364 /// BB in the result vector. 365 /// 366 /// This returns true if there were any known values. 367 /// 368 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 369 Value *V, BasicBlock *BB, PredValueInfo &Result, 370 ConstantPreference Preference, Instruction *CxtI) { 371 // This method walks up use-def chains recursively. Because of this, we could 372 // get into an infinite loop going around loops in the use-def chain. To 373 // prevent this, keep track of what (value, block) pairs we've already visited 374 // and terminate the search if we loop back to them 375 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 376 return false; 377 378 // An RAII help to remove this pair from the recursion set once the recursion 379 // stack pops back out again. 380 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 381 382 // If V is a constant, then it is known in all predecessors. 383 if (Constant *KC = getKnownConstant(V, Preference)) { 384 for (BasicBlock *Pred : predecessors(BB)) 385 Result.push_back(std::make_pair(KC, Pred)); 386 387 return !Result.empty(); 388 } 389 390 // If V is a non-instruction value, or an instruction in a different block, 391 // then it can't be derived from a PHI. 392 Instruction *I = dyn_cast<Instruction>(V); 393 if (!I || I->getParent() != BB) { 394 395 // Okay, if this is a live-in value, see if it has a known value at the end 396 // of any of our predecessors. 397 // 398 // FIXME: This should be an edge property, not a block end property. 399 /// TODO: Per PR2563, we could infer value range information about a 400 /// predecessor based on its terminator. 401 // 402 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 403 // "I" is a non-local compare-with-a-constant instruction. This would be 404 // able to handle value inequalities better, for example if the compare is 405 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 406 // Perhaps getConstantOnEdge should be smart enough to do this? 407 408 for (BasicBlock *P : predecessors(BB)) { 409 // If the value is known by LazyValueInfo to be a constant in a 410 // predecessor, use that information to try to thread this block. 411 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 412 if (Constant *KC = getKnownConstant(PredCst, Preference)) 413 Result.push_back(std::make_pair(KC, P)); 414 } 415 416 return !Result.empty(); 417 } 418 419 /// If I is a PHI node, then we know the incoming values for any constants. 420 if (PHINode *PN = dyn_cast<PHINode>(I)) { 421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 422 Value *InVal = PN->getIncomingValue(i); 423 if (Constant *KC = getKnownConstant(InVal, Preference)) { 424 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 425 } else { 426 Constant *CI = LVI->getConstantOnEdge(InVal, 427 PN->getIncomingBlock(i), 428 BB, CxtI); 429 if (Constant *KC = getKnownConstant(CI, Preference)) 430 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 431 } 432 } 433 434 return !Result.empty(); 435 } 436 437 // Handle Cast instructions. Only see through Cast when the source operand is 438 // PHI or Cmp and the source type is i1 to save the compilation time. 439 if (CastInst *CI = dyn_cast<CastInst>(I)) { 440 Value *Source = CI->getOperand(0); 441 if (!Source->getType()->isIntegerTy(1)) 442 return false; 443 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 444 return false; 445 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 446 if (Result.empty()) 447 return false; 448 449 // Convert the known values. 450 for (auto &R : Result) 451 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 452 453 return true; 454 } 455 456 PredValueInfoTy LHSVals, RHSVals; 457 458 // Handle some boolean conditions. 459 if (I->getType()->getPrimitiveSizeInBits() == 1) { 460 assert(Preference == WantInteger && "One-bit non-integer type?"); 461 // X | true -> true 462 // X & false -> false 463 if (I->getOpcode() == Instruction::Or || 464 I->getOpcode() == Instruction::And) { 465 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 466 WantInteger, CxtI); 467 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 468 WantInteger, CxtI); 469 470 if (LHSVals.empty() && RHSVals.empty()) 471 return false; 472 473 ConstantInt *InterestingVal; 474 if (I->getOpcode() == Instruction::Or) 475 InterestingVal = ConstantInt::getTrue(I->getContext()); 476 else 477 InterestingVal = ConstantInt::getFalse(I->getContext()); 478 479 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 480 481 // Scan for the sentinel. If we find an undef, force it to the 482 // interesting value: x|undef -> true and x&undef -> false. 483 for (const auto &LHSVal : LHSVals) 484 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 485 Result.emplace_back(InterestingVal, LHSVal.second); 486 LHSKnownBBs.insert(LHSVal.second); 487 } 488 for (const auto &RHSVal : RHSVals) 489 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 490 // If we already inferred a value for this block on the LHS, don't 491 // re-add it. 492 if (!LHSKnownBBs.count(RHSVal.second)) 493 Result.emplace_back(InterestingVal, RHSVal.second); 494 } 495 496 return !Result.empty(); 497 } 498 499 // Handle the NOT form of XOR. 500 if (I->getOpcode() == Instruction::Xor && 501 isa<ConstantInt>(I->getOperand(1)) && 502 cast<ConstantInt>(I->getOperand(1))->isOne()) { 503 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 504 WantInteger, CxtI); 505 if (Result.empty()) 506 return false; 507 508 // Invert the known values. 509 for (auto &R : Result) 510 R.first = ConstantExpr::getNot(R.first); 511 512 return true; 513 } 514 515 // Try to simplify some other binary operator values. 516 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 517 assert(Preference != WantBlockAddress 518 && "A binary operator creating a block address?"); 519 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 520 PredValueInfoTy LHSVals; 521 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 522 WantInteger, CxtI); 523 524 // Try to use constant folding to simplify the binary operator. 525 for (const auto &LHSVal : LHSVals) { 526 Constant *V = LHSVal.first; 527 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 528 529 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 530 Result.push_back(std::make_pair(KC, LHSVal.second)); 531 } 532 } 533 534 return !Result.empty(); 535 } 536 537 // Handle compare with phi operand, where the PHI is defined in this block. 538 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 539 assert(Preference == WantInteger && "Compares only produce integers"); 540 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 541 if (PN && PN->getParent() == BB) { 542 const DataLayout &DL = PN->getModule()->getDataLayout(); 543 // We can do this simplification if any comparisons fold to true or false. 544 // See if any do. 545 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 546 BasicBlock *PredBB = PN->getIncomingBlock(i); 547 Value *LHS = PN->getIncomingValue(i); 548 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 549 550 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 551 if (!Res) { 552 if (!isa<Constant>(RHS)) 553 continue; 554 555 LazyValueInfo::Tristate 556 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 557 cast<Constant>(RHS), PredBB, BB, 558 CxtI ? CxtI : Cmp); 559 if (ResT == LazyValueInfo::Unknown) 560 continue; 561 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 562 } 563 564 if (Constant *KC = getKnownConstant(Res, WantInteger)) 565 Result.push_back(std::make_pair(KC, PredBB)); 566 } 567 568 return !Result.empty(); 569 } 570 571 // If comparing a live-in value against a constant, see if we know the 572 // live-in value on any predecessors. 573 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 574 if (!isa<Instruction>(Cmp->getOperand(0)) || 575 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 576 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 577 578 for (BasicBlock *P : predecessors(BB)) { 579 // If the value is known by LazyValueInfo to be a constant in a 580 // predecessor, use that information to try to thread this block. 581 LazyValueInfo::Tristate Res = 582 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 583 RHSCst, P, BB, CxtI ? CxtI : Cmp); 584 if (Res == LazyValueInfo::Unknown) 585 continue; 586 587 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 588 Result.push_back(std::make_pair(ResC, P)); 589 } 590 591 return !Result.empty(); 592 } 593 594 // Try to find a constant value for the LHS of a comparison, 595 // and evaluate it statically if we can. 596 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 597 PredValueInfoTy LHSVals; 598 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 599 WantInteger, CxtI); 600 601 for (const auto &LHSVal : LHSVals) { 602 Constant *V = LHSVal.first; 603 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 604 V, CmpConst); 605 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 606 Result.push_back(std::make_pair(KC, LHSVal.second)); 607 } 608 609 return !Result.empty(); 610 } 611 } 612 } 613 614 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 615 // Handle select instructions where at least one operand is a known constant 616 // and we can figure out the condition value for any predecessor block. 617 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 618 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 619 PredValueInfoTy Conds; 620 if ((TrueVal || FalseVal) && 621 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 622 WantInteger, CxtI)) { 623 for (auto &C : Conds) { 624 Constant *Cond = C.first; 625 626 // Figure out what value to use for the condition. 627 bool KnownCond; 628 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 629 // A known boolean. 630 KnownCond = CI->isOne(); 631 } else { 632 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 633 // Either operand will do, so be sure to pick the one that's a known 634 // constant. 635 // FIXME: Do this more cleverly if both values are known constants? 636 KnownCond = (TrueVal != nullptr); 637 } 638 639 // See if the select has a known constant value for this predecessor. 640 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 641 Result.push_back(std::make_pair(Val, C.second)); 642 } 643 644 return !Result.empty(); 645 } 646 } 647 648 // If all else fails, see if LVI can figure out a constant value for us. 649 Constant *CI = LVI->getConstant(V, BB, CxtI); 650 if (Constant *KC = getKnownConstant(CI, Preference)) { 651 for (BasicBlock *Pred : predecessors(BB)) 652 Result.push_back(std::make_pair(KC, Pred)); 653 } 654 655 return !Result.empty(); 656 } 657 658 659 660 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 661 /// in an undefined jump, decide which block is best to revector to. 662 /// 663 /// Since we can pick an arbitrary destination, we pick the successor with the 664 /// fewest predecessors. This should reduce the in-degree of the others. 665 /// 666 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 667 TerminatorInst *BBTerm = BB->getTerminator(); 668 unsigned MinSucc = 0; 669 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 670 // Compute the successor with the minimum number of predecessors. 671 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 672 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 673 TestBB = BBTerm->getSuccessor(i); 674 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 675 if (NumPreds < MinNumPreds) { 676 MinSucc = i; 677 MinNumPreds = NumPreds; 678 } 679 } 680 681 return MinSucc; 682 } 683 684 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 685 if (!BB->hasAddressTaken()) return false; 686 687 // If the block has its address taken, it may be a tree of dead constants 688 // hanging off of it. These shouldn't keep the block alive. 689 BlockAddress *BA = BlockAddress::get(BB); 690 BA->removeDeadConstantUsers(); 691 return !BA->use_empty(); 692 } 693 694 /// ProcessBlock - If there are any predecessors whose control can be threaded 695 /// through to a successor, transform them now. 696 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 697 // If the block is trivially dead, just return and let the caller nuke it. 698 // This simplifies other transformations. 699 if (pred_empty(BB) && 700 BB != &BB->getParent()->getEntryBlock()) 701 return false; 702 703 // If this block has a single predecessor, and if that pred has a single 704 // successor, merge the blocks. This encourages recursive jump threading 705 // because now the condition in this block can be threaded through 706 // predecessors of our predecessor block. 707 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 708 const TerminatorInst *TI = SinglePred->getTerminator(); 709 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 710 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 711 // If SinglePred was a loop header, BB becomes one. 712 if (LoopHeaders.erase(SinglePred)) 713 LoopHeaders.insert(BB); 714 715 LVI->eraseBlock(SinglePred); 716 MergeBasicBlockIntoOnlyPred(BB); 717 718 return true; 719 } 720 } 721 722 if (TryToUnfoldSelectInCurrBB(BB)) 723 return true; 724 725 // Look if we can propagate guards to predecessors. 726 if (HasGuards && ProcessGuards(BB)) 727 return true; 728 729 // What kind of constant we're looking for. 730 ConstantPreference Preference = WantInteger; 731 732 // Look to see if the terminator is a conditional branch, switch or indirect 733 // branch, if not we can't thread it. 734 Value *Condition; 735 Instruction *Terminator = BB->getTerminator(); 736 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 737 // Can't thread an unconditional jump. 738 if (BI->isUnconditional()) return false; 739 Condition = BI->getCondition(); 740 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 741 Condition = SI->getCondition(); 742 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 743 // Can't thread indirect branch with no successors. 744 if (IB->getNumSuccessors() == 0) return false; 745 Condition = IB->getAddress()->stripPointerCasts(); 746 Preference = WantBlockAddress; 747 } else { 748 return false; // Must be an invoke. 749 } 750 751 // Run constant folding to see if we can reduce the condition to a simple 752 // constant. 753 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 754 Value *SimpleVal = 755 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 756 if (SimpleVal) { 757 I->replaceAllUsesWith(SimpleVal); 758 if (isInstructionTriviallyDead(I, TLI)) 759 I->eraseFromParent(); 760 Condition = SimpleVal; 761 } 762 } 763 764 // If the terminator is branching on an undef, we can pick any of the 765 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 766 if (isa<UndefValue>(Condition)) { 767 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 768 769 // Fold the branch/switch. 770 TerminatorInst *BBTerm = BB->getTerminator(); 771 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 772 if (i == BestSucc) continue; 773 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 774 } 775 776 DEBUG(dbgs() << " In block '" << BB->getName() 777 << "' folding undef terminator: " << *BBTerm << '\n'); 778 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 779 BBTerm->eraseFromParent(); 780 return true; 781 } 782 783 // If the terminator of this block is branching on a constant, simplify the 784 // terminator to an unconditional branch. This can occur due to threading in 785 // other blocks. 786 if (getKnownConstant(Condition, Preference)) { 787 DEBUG(dbgs() << " In block '" << BB->getName() 788 << "' folding terminator: " << *BB->getTerminator() << '\n'); 789 ++NumFolds; 790 ConstantFoldTerminator(BB, true); 791 return true; 792 } 793 794 Instruction *CondInst = dyn_cast<Instruction>(Condition); 795 796 // All the rest of our checks depend on the condition being an instruction. 797 if (!CondInst) { 798 // FIXME: Unify this with code below. 799 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 800 return true; 801 return false; 802 } 803 804 805 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 806 // If we're branching on a conditional, LVI might be able to determine 807 // it's value at the branch instruction. We only handle comparisons 808 // against a constant at this time. 809 // TODO: This should be extended to handle switches as well. 810 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 811 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 812 if (CondBr && CondConst && CondBr->isConditional()) { 813 LazyValueInfo::Tristate Ret = 814 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 815 CondConst, CondBr); 816 if (Ret != LazyValueInfo::Unknown) { 817 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 818 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 819 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 820 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 821 CondBr->eraseFromParent(); 822 if (CondCmp->use_empty()) 823 CondCmp->eraseFromParent(); 824 else if (CondCmp->getParent() == BB) { 825 // If the fact we just learned is true for all uses of the 826 // condition, replace it with a constant value 827 auto *CI = Ret == LazyValueInfo::True ? 828 ConstantInt::getTrue(CondCmp->getType()) : 829 ConstantInt::getFalse(CondCmp->getType()); 830 CondCmp->replaceAllUsesWith(CI); 831 CondCmp->eraseFromParent(); 832 } 833 return true; 834 } 835 } 836 837 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 838 return true; 839 } 840 841 // Check for some cases that are worth simplifying. Right now we want to look 842 // for loads that are used by a switch or by the condition for the branch. If 843 // we see one, check to see if it's partially redundant. If so, insert a PHI 844 // which can then be used to thread the values. 845 // 846 Value *SimplifyValue = CondInst; 847 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 848 if (isa<Constant>(CondCmp->getOperand(1))) 849 SimplifyValue = CondCmp->getOperand(0); 850 851 // TODO: There are other places where load PRE would be profitable, such as 852 // more complex comparisons. 853 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 854 if (SimplifyPartiallyRedundantLoad(LI)) 855 return true; 856 857 858 // Handle a variety of cases where we are branching on something derived from 859 // a PHI node in the current block. If we can prove that any predecessors 860 // compute a predictable value based on a PHI node, thread those predecessors. 861 // 862 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 863 return true; 864 865 // If this is an otherwise-unfoldable branch on a phi node in the current 866 // block, see if we can simplify. 867 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 868 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 869 return ProcessBranchOnPHI(PN); 870 871 872 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 873 if (CondInst->getOpcode() == Instruction::Xor && 874 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 875 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 876 877 // Search for a stronger dominating condition that can be used to simplify a 878 // conditional branch leaving BB. 879 if (ProcessImpliedCondition(BB)) 880 return true; 881 882 return false; 883 } 884 885 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 886 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 887 if (!BI || !BI->isConditional()) 888 return false; 889 890 Value *Cond = BI->getCondition(); 891 BasicBlock *CurrentBB = BB; 892 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 893 unsigned Iter = 0; 894 895 auto &DL = BB->getModule()->getDataLayout(); 896 897 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 898 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 899 if (!PBI || !PBI->isConditional()) 900 return false; 901 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 902 return false; 903 904 bool FalseDest = PBI->getSuccessor(1) == CurrentBB; 905 Optional<bool> Implication = 906 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest); 907 if (Implication) { 908 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 909 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 910 BI->eraseFromParent(); 911 return true; 912 } 913 CurrentBB = CurrentPred; 914 CurrentPred = CurrentBB->getSinglePredecessor(); 915 } 916 917 return false; 918 } 919 920 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 921 /// load instruction, eliminate it by replacing it with a PHI node. This is an 922 /// important optimization that encourages jump threading, and needs to be run 923 /// interlaced with other jump threading tasks. 924 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 925 // Don't hack volatile and ordered loads. 926 if (!LI->isUnordered()) return false; 927 928 // If the load is defined in a block with exactly one predecessor, it can't be 929 // partially redundant. 930 BasicBlock *LoadBB = LI->getParent(); 931 if (LoadBB->getSinglePredecessor()) 932 return false; 933 934 // If the load is defined in an EH pad, it can't be partially redundant, 935 // because the edges between the invoke and the EH pad cannot have other 936 // instructions between them. 937 if (LoadBB->isEHPad()) 938 return false; 939 940 Value *LoadedPtr = LI->getOperand(0); 941 942 // If the loaded operand is defined in the LoadBB, it can't be available. 943 // TODO: Could do simple PHI translation, that would be fun :) 944 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 945 if (PtrOp->getParent() == LoadBB) 946 return false; 947 948 // Scan a few instructions up from the load, to see if it is obviously live at 949 // the entry to its block. 950 BasicBlock::iterator BBIt(LI); 951 bool IsLoadCSE; 952 if (Value *AvailableVal = 953 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan, nullptr, &IsLoadCSE)) { 954 // If the value of the load is locally available within the block, just use 955 // it. This frequently occurs for reg2mem'd allocas. 956 957 if (IsLoadCSE) { 958 LoadInst *NLI = cast<LoadInst>(AvailableVal); 959 combineMetadataForCSE(NLI, LI); 960 }; 961 962 // If the returned value is the load itself, replace with an undef. This can 963 // only happen in dead loops. 964 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 965 if (AvailableVal->getType() != LI->getType()) 966 AvailableVal = 967 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 968 LI->replaceAllUsesWith(AvailableVal); 969 LI->eraseFromParent(); 970 return true; 971 } 972 973 // Otherwise, if we scanned the whole block and got to the top of the block, 974 // we know the block is locally transparent to the load. If not, something 975 // might clobber its value. 976 if (BBIt != LoadBB->begin()) 977 return false; 978 979 // If all of the loads and stores that feed the value have the same AA tags, 980 // then we can propagate them onto any newly inserted loads. 981 AAMDNodes AATags; 982 LI->getAAMetadata(AATags); 983 984 SmallPtrSet<BasicBlock*, 8> PredsScanned; 985 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 986 AvailablePredsTy AvailablePreds; 987 BasicBlock *OneUnavailablePred = nullptr; 988 SmallVector<LoadInst*, 8> CSELoads; 989 990 // If we got here, the loaded value is transparent through to the start of the 991 // block. Check to see if it is available in any of the predecessor blocks. 992 for (BasicBlock *PredBB : predecessors(LoadBB)) { 993 // If we already scanned this predecessor, skip it. 994 if (!PredsScanned.insert(PredBB).second) 995 continue; 996 997 // Scan the predecessor to see if the value is available in the pred. 998 BBIt = PredBB->end(); 999 unsigned NumScanedInst = 0; 1000 Value *PredAvailable = 1001 FindAvailableLoadedValue(LI, PredBB, BBIt, DefMaxInstsToScan, nullptr, 1002 &IsLoadCSE, &NumScanedInst); 1003 1004 // If PredBB has a single predecessor, continue scanning through the single 1005 // precessor. 1006 BasicBlock *SinglePredBB = PredBB; 1007 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1008 NumScanedInst < DefMaxInstsToScan) { 1009 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1010 if (SinglePredBB) { 1011 BBIt = SinglePredBB->end(); 1012 PredAvailable = FindAvailableLoadedValue( 1013 LI, SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst), 1014 nullptr, &IsLoadCSE, &NumScanedInst); 1015 } 1016 } 1017 1018 if (!PredAvailable) { 1019 OneUnavailablePred = PredBB; 1020 continue; 1021 } 1022 1023 if (IsLoadCSE) 1024 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1025 1026 // If so, this load is partially redundant. Remember this info so that we 1027 // can create a PHI node. 1028 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1029 } 1030 1031 // If the loaded value isn't available in any predecessor, it isn't partially 1032 // redundant. 1033 if (AvailablePreds.empty()) return false; 1034 1035 // Okay, the loaded value is available in at least one (and maybe all!) 1036 // predecessors. If the value is unavailable in more than one unique 1037 // predecessor, we want to insert a merge block for those common predecessors. 1038 // This ensures that we only have to insert one reload, thus not increasing 1039 // code size. 1040 BasicBlock *UnavailablePred = nullptr; 1041 1042 // If there is exactly one predecessor where the value is unavailable, the 1043 // already computed 'OneUnavailablePred' block is it. If it ends in an 1044 // unconditional branch, we know that it isn't a critical edge. 1045 if (PredsScanned.size() == AvailablePreds.size()+1 && 1046 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1047 UnavailablePred = OneUnavailablePred; 1048 } else if (PredsScanned.size() != AvailablePreds.size()) { 1049 // Otherwise, we had multiple unavailable predecessors or we had a critical 1050 // edge from the one. 1051 SmallVector<BasicBlock*, 8> PredsToSplit; 1052 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1053 1054 for (const auto &AvailablePred : AvailablePreds) 1055 AvailablePredSet.insert(AvailablePred.first); 1056 1057 // Add all the unavailable predecessors to the PredsToSplit list. 1058 for (BasicBlock *P : predecessors(LoadBB)) { 1059 // If the predecessor is an indirect goto, we can't split the edge. 1060 if (isa<IndirectBrInst>(P->getTerminator())) 1061 return false; 1062 1063 if (!AvailablePredSet.count(P)) 1064 PredsToSplit.push_back(P); 1065 } 1066 1067 // Split them out to their own block. 1068 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1069 } 1070 1071 // If the value isn't available in all predecessors, then there will be 1072 // exactly one where it isn't available. Insert a load on that edge and add 1073 // it to the AvailablePreds list. 1074 if (UnavailablePred) { 1075 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1076 "Can't handle critical edge here!"); 1077 LoadInst *NewVal = 1078 new LoadInst(LoadedPtr, LI->getName() + ".pr", false, 1079 LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(), 1080 UnavailablePred->getTerminator()); 1081 NewVal->setDebugLoc(LI->getDebugLoc()); 1082 if (AATags) 1083 NewVal->setAAMetadata(AATags); 1084 1085 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1086 } 1087 1088 // Now we know that each predecessor of this block has a value in 1089 // AvailablePreds, sort them for efficient access as we're walking the preds. 1090 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1091 1092 // Create a PHI node at the start of the block for the PRE'd load value. 1093 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1094 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1095 &LoadBB->front()); 1096 PN->takeName(LI); 1097 PN->setDebugLoc(LI->getDebugLoc()); 1098 1099 // Insert new entries into the PHI for each predecessor. A single block may 1100 // have multiple entries here. 1101 for (pred_iterator PI = PB; PI != PE; ++PI) { 1102 BasicBlock *P = *PI; 1103 AvailablePredsTy::iterator I = 1104 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1105 std::make_pair(P, (Value*)nullptr)); 1106 1107 assert(I != AvailablePreds.end() && I->first == P && 1108 "Didn't find entry for predecessor!"); 1109 1110 // If we have an available predecessor but it requires casting, insert the 1111 // cast in the predecessor and use the cast. Note that we have to update the 1112 // AvailablePreds vector as we go so that all of the PHI entries for this 1113 // predecessor use the same bitcast. 1114 Value *&PredV = I->second; 1115 if (PredV->getType() != LI->getType()) 1116 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1117 P->getTerminator()); 1118 1119 PN->addIncoming(PredV, I->first); 1120 } 1121 1122 for (LoadInst *PredLI : CSELoads) { 1123 combineMetadataForCSE(PredLI, LI); 1124 } 1125 1126 LI->replaceAllUsesWith(PN); 1127 LI->eraseFromParent(); 1128 1129 return true; 1130 } 1131 1132 /// FindMostPopularDest - The specified list contains multiple possible 1133 /// threadable destinations. Pick the one that occurs the most frequently in 1134 /// the list. 1135 static BasicBlock * 1136 FindMostPopularDest(BasicBlock *BB, 1137 const SmallVectorImpl<std::pair<BasicBlock*, 1138 BasicBlock*> > &PredToDestList) { 1139 assert(!PredToDestList.empty()); 1140 1141 // Determine popularity. If there are multiple possible destinations, we 1142 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1143 // blocks with known and real destinations to threading undef. We'll handle 1144 // them later if interesting. 1145 DenseMap<BasicBlock*, unsigned> DestPopularity; 1146 for (const auto &PredToDest : PredToDestList) 1147 if (PredToDest.second) 1148 DestPopularity[PredToDest.second]++; 1149 1150 // Find the most popular dest. 1151 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1152 BasicBlock *MostPopularDest = DPI->first; 1153 unsigned Popularity = DPI->second; 1154 SmallVector<BasicBlock*, 4> SamePopularity; 1155 1156 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1157 // If the popularity of this entry isn't higher than the popularity we've 1158 // seen so far, ignore it. 1159 if (DPI->second < Popularity) 1160 ; // ignore. 1161 else if (DPI->second == Popularity) { 1162 // If it is the same as what we've seen so far, keep track of it. 1163 SamePopularity.push_back(DPI->first); 1164 } else { 1165 // If it is more popular, remember it. 1166 SamePopularity.clear(); 1167 MostPopularDest = DPI->first; 1168 Popularity = DPI->second; 1169 } 1170 } 1171 1172 // Okay, now we know the most popular destination. If there is more than one 1173 // destination, we need to determine one. This is arbitrary, but we need 1174 // to make a deterministic decision. Pick the first one that appears in the 1175 // successor list. 1176 if (!SamePopularity.empty()) { 1177 SamePopularity.push_back(MostPopularDest); 1178 TerminatorInst *TI = BB->getTerminator(); 1179 for (unsigned i = 0; ; ++i) { 1180 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1181 1182 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1183 continue; 1184 1185 MostPopularDest = TI->getSuccessor(i); 1186 break; 1187 } 1188 } 1189 1190 // Okay, we have finally picked the most popular destination. 1191 return MostPopularDest; 1192 } 1193 1194 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1195 ConstantPreference Preference, 1196 Instruction *CxtI) { 1197 // If threading this would thread across a loop header, don't even try to 1198 // thread the edge. 1199 if (LoopHeaders.count(BB)) 1200 return false; 1201 1202 PredValueInfoTy PredValues; 1203 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1204 return false; 1205 1206 assert(!PredValues.empty() && 1207 "ComputeValueKnownInPredecessors returned true with no values"); 1208 1209 DEBUG(dbgs() << "IN BB: " << *BB; 1210 for (const auto &PredValue : PredValues) { 1211 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1212 << *PredValue.first 1213 << " for pred '" << PredValue.second->getName() << "'.\n"; 1214 }); 1215 1216 // Decide what we want to thread through. Convert our list of known values to 1217 // a list of known destinations for each pred. This also discards duplicate 1218 // predecessors and keeps track of the undefined inputs (which are represented 1219 // as a null dest in the PredToDestList). 1220 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1221 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1222 1223 BasicBlock *OnlyDest = nullptr; 1224 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1225 1226 for (const auto &PredValue : PredValues) { 1227 BasicBlock *Pred = PredValue.second; 1228 if (!SeenPreds.insert(Pred).second) 1229 continue; // Duplicate predecessor entry. 1230 1231 // If the predecessor ends with an indirect goto, we can't change its 1232 // destination. 1233 if (isa<IndirectBrInst>(Pred->getTerminator())) 1234 continue; 1235 1236 Constant *Val = PredValue.first; 1237 1238 BasicBlock *DestBB; 1239 if (isa<UndefValue>(Val)) 1240 DestBB = nullptr; 1241 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1242 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1243 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1244 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1245 } else { 1246 assert(isa<IndirectBrInst>(BB->getTerminator()) 1247 && "Unexpected terminator"); 1248 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1249 } 1250 1251 // If we have exactly one destination, remember it for efficiency below. 1252 if (PredToDestList.empty()) 1253 OnlyDest = DestBB; 1254 else if (OnlyDest != DestBB) 1255 OnlyDest = MultipleDestSentinel; 1256 1257 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1258 } 1259 1260 // If all edges were unthreadable, we fail. 1261 if (PredToDestList.empty()) 1262 return false; 1263 1264 // Determine which is the most common successor. If we have many inputs and 1265 // this block is a switch, we want to start by threading the batch that goes 1266 // to the most popular destination first. If we only know about one 1267 // threadable destination (the common case) we can avoid this. 1268 BasicBlock *MostPopularDest = OnlyDest; 1269 1270 if (MostPopularDest == MultipleDestSentinel) 1271 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1272 1273 // Now that we know what the most popular destination is, factor all 1274 // predecessors that will jump to it into a single predecessor. 1275 SmallVector<BasicBlock*, 16> PredsToFactor; 1276 for (const auto &PredToDest : PredToDestList) 1277 if (PredToDest.second == MostPopularDest) { 1278 BasicBlock *Pred = PredToDest.first; 1279 1280 // This predecessor may be a switch or something else that has multiple 1281 // edges to the block. Factor each of these edges by listing them 1282 // according to # occurrences in PredsToFactor. 1283 for (BasicBlock *Succ : successors(Pred)) 1284 if (Succ == BB) 1285 PredsToFactor.push_back(Pred); 1286 } 1287 1288 // If the threadable edges are branching on an undefined value, we get to pick 1289 // the destination that these predecessors should get to. 1290 if (!MostPopularDest) 1291 MostPopularDest = BB->getTerminator()-> 1292 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1293 1294 // Ok, try to thread it! 1295 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1296 } 1297 1298 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1299 /// a PHI node in the current block. See if there are any simplifications we 1300 /// can do based on inputs to the phi node. 1301 /// 1302 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1303 BasicBlock *BB = PN->getParent(); 1304 1305 // TODO: We could make use of this to do it once for blocks with common PHI 1306 // values. 1307 SmallVector<BasicBlock*, 1> PredBBs; 1308 PredBBs.resize(1); 1309 1310 // If any of the predecessor blocks end in an unconditional branch, we can 1311 // *duplicate* the conditional branch into that block in order to further 1312 // encourage jump threading and to eliminate cases where we have branch on a 1313 // phi of an icmp (branch on icmp is much better). 1314 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1315 BasicBlock *PredBB = PN->getIncomingBlock(i); 1316 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1317 if (PredBr->isUnconditional()) { 1318 PredBBs[0] = PredBB; 1319 // Try to duplicate BB into PredBB. 1320 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1321 return true; 1322 } 1323 } 1324 1325 return false; 1326 } 1327 1328 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1329 /// a xor instruction in the current block. See if there are any 1330 /// simplifications we can do based on inputs to the xor. 1331 /// 1332 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1333 BasicBlock *BB = BO->getParent(); 1334 1335 // If either the LHS or RHS of the xor is a constant, don't do this 1336 // optimization. 1337 if (isa<ConstantInt>(BO->getOperand(0)) || 1338 isa<ConstantInt>(BO->getOperand(1))) 1339 return false; 1340 1341 // If the first instruction in BB isn't a phi, we won't be able to infer 1342 // anything special about any particular predecessor. 1343 if (!isa<PHINode>(BB->front())) 1344 return false; 1345 1346 // If this BB is a landing pad, we won't be able to split the edge into it. 1347 if (BB->isEHPad()) 1348 return false; 1349 1350 // If we have a xor as the branch input to this block, and we know that the 1351 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1352 // the condition into the predecessor and fix that value to true, saving some 1353 // logical ops on that path and encouraging other paths to simplify. 1354 // 1355 // This copies something like this: 1356 // 1357 // BB: 1358 // %X = phi i1 [1], [%X'] 1359 // %Y = icmp eq i32 %A, %B 1360 // %Z = xor i1 %X, %Y 1361 // br i1 %Z, ... 1362 // 1363 // Into: 1364 // BB': 1365 // %Y = icmp ne i32 %A, %B 1366 // br i1 %Y, ... 1367 1368 PredValueInfoTy XorOpValues; 1369 bool isLHS = true; 1370 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1371 WantInteger, BO)) { 1372 assert(XorOpValues.empty()); 1373 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1374 WantInteger, BO)) 1375 return false; 1376 isLHS = false; 1377 } 1378 1379 assert(!XorOpValues.empty() && 1380 "ComputeValueKnownInPredecessors returned true with no values"); 1381 1382 // Scan the information to see which is most popular: true or false. The 1383 // predecessors can be of the set true, false, or undef. 1384 unsigned NumTrue = 0, NumFalse = 0; 1385 for (const auto &XorOpValue : XorOpValues) { 1386 if (isa<UndefValue>(XorOpValue.first)) 1387 // Ignore undefs for the count. 1388 continue; 1389 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1390 ++NumFalse; 1391 else 1392 ++NumTrue; 1393 } 1394 1395 // Determine which value to split on, true, false, or undef if neither. 1396 ConstantInt *SplitVal = nullptr; 1397 if (NumTrue > NumFalse) 1398 SplitVal = ConstantInt::getTrue(BB->getContext()); 1399 else if (NumTrue != 0 || NumFalse != 0) 1400 SplitVal = ConstantInt::getFalse(BB->getContext()); 1401 1402 // Collect all of the blocks that this can be folded into so that we can 1403 // factor this once and clone it once. 1404 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1405 for (const auto &XorOpValue : XorOpValues) { 1406 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1407 continue; 1408 1409 BlocksToFoldInto.push_back(XorOpValue.second); 1410 } 1411 1412 // If we inferred a value for all of the predecessors, then duplication won't 1413 // help us. However, we can just replace the LHS or RHS with the constant. 1414 if (BlocksToFoldInto.size() == 1415 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1416 if (!SplitVal) { 1417 // If all preds provide undef, just nuke the xor, because it is undef too. 1418 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1419 BO->eraseFromParent(); 1420 } else if (SplitVal->isZero()) { 1421 // If all preds provide 0, replace the xor with the other input. 1422 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1423 BO->eraseFromParent(); 1424 } else { 1425 // If all preds provide 1, set the computed value to 1. 1426 BO->setOperand(!isLHS, SplitVal); 1427 } 1428 1429 return true; 1430 } 1431 1432 // Try to duplicate BB into PredBB. 1433 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1434 } 1435 1436 1437 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1438 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1439 /// NewPred using the entries from OldPred (suitably mapped). 1440 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1441 BasicBlock *OldPred, 1442 BasicBlock *NewPred, 1443 DenseMap<Instruction*, Value*> &ValueMap) { 1444 for (BasicBlock::iterator PNI = PHIBB->begin(); 1445 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1446 // Ok, we have a PHI node. Figure out what the incoming value was for the 1447 // DestBlock. 1448 Value *IV = PN->getIncomingValueForBlock(OldPred); 1449 1450 // Remap the value if necessary. 1451 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1452 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1453 if (I != ValueMap.end()) 1454 IV = I->second; 1455 } 1456 1457 PN->addIncoming(IV, NewPred); 1458 } 1459 } 1460 1461 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1462 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1463 /// across BB. Transform the IR to reflect this change. 1464 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1465 const SmallVectorImpl<BasicBlock *> &PredBBs, 1466 BasicBlock *SuccBB) { 1467 // If threading to the same block as we come from, we would infinite loop. 1468 if (SuccBB == BB) { 1469 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1470 << "' - would thread to self!\n"); 1471 return false; 1472 } 1473 1474 // If threading this would thread across a loop header, don't thread the edge. 1475 // See the comments above FindLoopHeaders for justifications and caveats. 1476 if (LoopHeaders.count(BB)) { 1477 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1478 << "' to dest BB '" << SuccBB->getName() 1479 << "' - it might create an irreducible loop!\n"); 1480 return false; 1481 } 1482 1483 unsigned JumpThreadCost = 1484 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1485 if (JumpThreadCost > BBDupThreshold) { 1486 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1487 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1488 return false; 1489 } 1490 1491 // And finally, do it! Start by factoring the predecessors if needed. 1492 BasicBlock *PredBB; 1493 if (PredBBs.size() == 1) 1494 PredBB = PredBBs[0]; 1495 else { 1496 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1497 << " common predecessors.\n"); 1498 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1499 } 1500 1501 // And finally, do it! 1502 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1503 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1504 << ", across block:\n " 1505 << *BB << "\n"); 1506 1507 LVI->threadEdge(PredBB, BB, SuccBB); 1508 1509 // We are going to have to map operands from the original BB block to the new 1510 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1511 // account for entry from PredBB. 1512 DenseMap<Instruction*, Value*> ValueMapping; 1513 1514 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1515 BB->getName()+".thread", 1516 BB->getParent(), BB); 1517 NewBB->moveAfter(PredBB); 1518 1519 // Set the block frequency of NewBB. 1520 if (HasProfileData) { 1521 auto NewBBFreq = 1522 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1523 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1524 } 1525 1526 BasicBlock::iterator BI = BB->begin(); 1527 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1528 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1529 1530 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1531 // mapping and using it to remap operands in the cloned instructions. 1532 for (; !isa<TerminatorInst>(BI); ++BI) { 1533 Instruction *New = BI->clone(); 1534 New->setName(BI->getName()); 1535 NewBB->getInstList().push_back(New); 1536 ValueMapping[&*BI] = New; 1537 1538 // Remap operands to patch up intra-block references. 1539 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1540 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1541 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1542 if (I != ValueMapping.end()) 1543 New->setOperand(i, I->second); 1544 } 1545 } 1546 1547 // We didn't copy the terminator from BB over to NewBB, because there is now 1548 // an unconditional jump to SuccBB. Insert the unconditional jump. 1549 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1550 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1551 1552 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1553 // PHI nodes for NewBB now. 1554 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1555 1556 // If there were values defined in BB that are used outside the block, then we 1557 // now have to update all uses of the value to use either the original value, 1558 // the cloned value, or some PHI derived value. This can require arbitrary 1559 // PHI insertion, of which we are prepared to do, clean these up now. 1560 SSAUpdater SSAUpdate; 1561 SmallVector<Use*, 16> UsesToRename; 1562 for (Instruction &I : *BB) { 1563 // Scan all uses of this instruction to see if it is used outside of its 1564 // block, and if so, record them in UsesToRename. 1565 for (Use &U : I.uses()) { 1566 Instruction *User = cast<Instruction>(U.getUser()); 1567 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1568 if (UserPN->getIncomingBlock(U) == BB) 1569 continue; 1570 } else if (User->getParent() == BB) 1571 continue; 1572 1573 UsesToRename.push_back(&U); 1574 } 1575 1576 // If there are no uses outside the block, we're done with this instruction. 1577 if (UsesToRename.empty()) 1578 continue; 1579 1580 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1581 1582 // We found a use of I outside of BB. Rename all uses of I that are outside 1583 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1584 // with the two values we know. 1585 SSAUpdate.Initialize(I.getType(), I.getName()); 1586 SSAUpdate.AddAvailableValue(BB, &I); 1587 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1588 1589 while (!UsesToRename.empty()) 1590 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1591 DEBUG(dbgs() << "\n"); 1592 } 1593 1594 1595 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1596 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1597 // us to simplify any PHI nodes in BB. 1598 TerminatorInst *PredTerm = PredBB->getTerminator(); 1599 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1600 if (PredTerm->getSuccessor(i) == BB) { 1601 BB->removePredecessor(PredBB, true); 1602 PredTerm->setSuccessor(i, NewBB); 1603 } 1604 1605 // At this point, the IR is fully up to date and consistent. Do a quick scan 1606 // over the new instructions and zap any that are constants or dead. This 1607 // frequently happens because of phi translation. 1608 SimplifyInstructionsInBlock(NewBB, TLI); 1609 1610 // Update the edge weight from BB to SuccBB, which should be less than before. 1611 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1612 1613 // Threaded an edge! 1614 ++NumThreads; 1615 return true; 1616 } 1617 1618 /// Create a new basic block that will be the predecessor of BB and successor of 1619 /// all blocks in Preds. When profile data is available, update the frequency of 1620 /// this new block. 1621 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1622 ArrayRef<BasicBlock *> Preds, 1623 const char *Suffix) { 1624 // Collect the frequencies of all predecessors of BB, which will be used to 1625 // update the edge weight on BB->SuccBB. 1626 BlockFrequency PredBBFreq(0); 1627 if (HasProfileData) 1628 for (auto Pred : Preds) 1629 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1630 1631 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1632 1633 // Set the block frequency of the newly created PredBB, which is the sum of 1634 // frequencies of Preds. 1635 if (HasProfileData) 1636 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1637 return PredBB; 1638 } 1639 1640 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1641 const TerminatorInst *TI = BB->getTerminator(); 1642 assert(TI->getNumSuccessors() > 1 && "not a split"); 1643 1644 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1645 if (!WeightsNode) 1646 return false; 1647 1648 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1649 if (MDName->getString() != "branch_weights") 1650 return false; 1651 1652 // Ensure there are weights for all of the successors. Note that the first 1653 // operand to the metadata node is a name, not a weight. 1654 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 1655 } 1656 1657 /// Update the block frequency of BB and branch weight and the metadata on the 1658 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1659 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1660 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1661 BasicBlock *BB, 1662 BasicBlock *NewBB, 1663 BasicBlock *SuccBB) { 1664 if (!HasProfileData) 1665 return; 1666 1667 assert(BFI && BPI && "BFI & BPI should have been created here"); 1668 1669 // As the edge from PredBB to BB is deleted, we have to update the block 1670 // frequency of BB. 1671 auto BBOrigFreq = BFI->getBlockFreq(BB); 1672 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1673 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1674 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1675 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1676 1677 // Collect updated outgoing edges' frequencies from BB and use them to update 1678 // edge probabilities. 1679 SmallVector<uint64_t, 4> BBSuccFreq; 1680 for (BasicBlock *Succ : successors(BB)) { 1681 auto SuccFreq = (Succ == SuccBB) 1682 ? BB2SuccBBFreq - NewBBFreq 1683 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1684 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1685 } 1686 1687 uint64_t MaxBBSuccFreq = 1688 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1689 1690 SmallVector<BranchProbability, 4> BBSuccProbs; 1691 if (MaxBBSuccFreq == 0) 1692 BBSuccProbs.assign(BBSuccFreq.size(), 1693 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1694 else { 1695 for (uint64_t Freq : BBSuccFreq) 1696 BBSuccProbs.push_back( 1697 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1698 // Normalize edge probabilities so that they sum up to one. 1699 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1700 BBSuccProbs.end()); 1701 } 1702 1703 // Update edge probabilities in BPI. 1704 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1705 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1706 1707 // Update the profile metadata as well. 1708 // 1709 // Don't do this if the profile of the transformed blocks was statically 1710 // estimated. (This could occur despite the function having an entry 1711 // frequency in completely cold parts of the CFG.) 1712 // 1713 // In this case we don't want to suggest to subsequent passes that the 1714 // calculated weights are fully consistent. Consider this graph: 1715 // 1716 // check_1 1717 // 50% / | 1718 // eq_1 | 50% 1719 // \ | 1720 // check_2 1721 // 50% / | 1722 // eq_2 | 50% 1723 // \ | 1724 // check_3 1725 // 50% / | 1726 // eq_3 | 50% 1727 // \ | 1728 // 1729 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 1730 // the overall probabilities are inconsistent; the total probability that the 1731 // value is either 1, 2 or 3 is 150%. 1732 // 1733 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 1734 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 1735 // the loop exit edge. Then based solely on static estimation we would assume 1736 // the loop was extremely hot. 1737 // 1738 // FIXME this locally as well so that BPI and BFI are consistent as well. We 1739 // shouldn't make edges extremely likely or unlikely based solely on static 1740 // estimation. 1741 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 1742 SmallVector<uint32_t, 4> Weights; 1743 for (auto Prob : BBSuccProbs) 1744 Weights.push_back(Prob.getNumerator()); 1745 1746 auto TI = BB->getTerminator(); 1747 TI->setMetadata( 1748 LLVMContext::MD_prof, 1749 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1750 } 1751 } 1752 1753 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1754 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1755 /// If we can duplicate the contents of BB up into PredBB do so now, this 1756 /// improves the odds that the branch will be on an analyzable instruction like 1757 /// a compare. 1758 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1759 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1760 assert(!PredBBs.empty() && "Can't handle an empty set"); 1761 1762 // If BB is a loop header, then duplicating this block outside the loop would 1763 // cause us to transform this into an irreducible loop, don't do this. 1764 // See the comments above FindLoopHeaders for justifications and caveats. 1765 if (LoopHeaders.count(BB)) { 1766 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1767 << "' into predecessor block '" << PredBBs[0]->getName() 1768 << "' - it might create an irreducible loop!\n"); 1769 return false; 1770 } 1771 1772 unsigned DuplicationCost = 1773 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1774 if (DuplicationCost > BBDupThreshold) { 1775 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1776 << "' - Cost is too high: " << DuplicationCost << "\n"); 1777 return false; 1778 } 1779 1780 // And finally, do it! Start by factoring the predecessors if needed. 1781 BasicBlock *PredBB; 1782 if (PredBBs.size() == 1) 1783 PredBB = PredBBs[0]; 1784 else { 1785 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1786 << " common predecessors.\n"); 1787 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1788 } 1789 1790 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1791 // of PredBB. 1792 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1793 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1794 << DuplicationCost << " block is:" << *BB << "\n"); 1795 1796 // Unless PredBB ends with an unconditional branch, split the edge so that we 1797 // can just clone the bits from BB into the end of the new PredBB. 1798 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1799 1800 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1801 PredBB = SplitEdge(PredBB, BB); 1802 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1803 } 1804 1805 // We are going to have to map operands from the original BB block into the 1806 // PredBB block. Evaluate PHI nodes in BB. 1807 DenseMap<Instruction*, Value*> ValueMapping; 1808 1809 BasicBlock::iterator BI = BB->begin(); 1810 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1811 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1812 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1813 // mapping and using it to remap operands in the cloned instructions. 1814 for (; BI != BB->end(); ++BI) { 1815 Instruction *New = BI->clone(); 1816 1817 // Remap operands to patch up intra-block references. 1818 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1819 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1820 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1821 if (I != ValueMapping.end()) 1822 New->setOperand(i, I->second); 1823 } 1824 1825 // If this instruction can be simplified after the operands are updated, 1826 // just use the simplified value instead. This frequently happens due to 1827 // phi translation. 1828 if (Value *IV = 1829 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1830 ValueMapping[&*BI] = IV; 1831 if (!New->mayHaveSideEffects()) { 1832 delete New; 1833 New = nullptr; 1834 } 1835 } else { 1836 ValueMapping[&*BI] = New; 1837 } 1838 if (New) { 1839 // Otherwise, insert the new instruction into the block. 1840 New->setName(BI->getName()); 1841 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1842 } 1843 } 1844 1845 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1846 // add entries to the PHI nodes for branch from PredBB now. 1847 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1848 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1849 ValueMapping); 1850 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1851 ValueMapping); 1852 1853 // If there were values defined in BB that are used outside the block, then we 1854 // now have to update all uses of the value to use either the original value, 1855 // the cloned value, or some PHI derived value. This can require arbitrary 1856 // PHI insertion, of which we are prepared to do, clean these up now. 1857 SSAUpdater SSAUpdate; 1858 SmallVector<Use*, 16> UsesToRename; 1859 for (Instruction &I : *BB) { 1860 // Scan all uses of this instruction to see if it is used outside of its 1861 // block, and if so, record them in UsesToRename. 1862 for (Use &U : I.uses()) { 1863 Instruction *User = cast<Instruction>(U.getUser()); 1864 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1865 if (UserPN->getIncomingBlock(U) == BB) 1866 continue; 1867 } else if (User->getParent() == BB) 1868 continue; 1869 1870 UsesToRename.push_back(&U); 1871 } 1872 1873 // If there are no uses outside the block, we're done with this instruction. 1874 if (UsesToRename.empty()) 1875 continue; 1876 1877 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1878 1879 // We found a use of I outside of BB. Rename all uses of I that are outside 1880 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1881 // with the two values we know. 1882 SSAUpdate.Initialize(I.getType(), I.getName()); 1883 SSAUpdate.AddAvailableValue(BB, &I); 1884 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1885 1886 while (!UsesToRename.empty()) 1887 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1888 DEBUG(dbgs() << "\n"); 1889 } 1890 1891 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1892 // that we nuked. 1893 BB->removePredecessor(PredBB, true); 1894 1895 // Remove the unconditional branch at the end of the PredBB block. 1896 OldPredBranch->eraseFromParent(); 1897 1898 ++NumDupes; 1899 return true; 1900 } 1901 1902 /// TryToUnfoldSelect - Look for blocks of the form 1903 /// bb1: 1904 /// %a = select 1905 /// br bb 1906 /// 1907 /// bb2: 1908 /// %p = phi [%a, %bb] ... 1909 /// %c = icmp %p 1910 /// br i1 %c 1911 /// 1912 /// And expand the select into a branch structure if one of its arms allows %c 1913 /// to be folded. This later enables threading from bb1 over bb2. 1914 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1915 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1916 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1917 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1918 1919 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1920 CondLHS->getParent() != BB) 1921 return false; 1922 1923 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1924 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1925 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1926 1927 // Look if one of the incoming values is a select in the corresponding 1928 // predecessor. 1929 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1930 continue; 1931 1932 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1933 if (!PredTerm || !PredTerm->isUnconditional()) 1934 continue; 1935 1936 // Now check if one of the select values would allow us to constant fold the 1937 // terminator in BB. We don't do the transform if both sides fold, those 1938 // cases will be threaded in any case. 1939 LazyValueInfo::Tristate LHSFolds = 1940 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1941 CondRHS, Pred, BB, CondCmp); 1942 LazyValueInfo::Tristate RHSFolds = 1943 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1944 CondRHS, Pred, BB, CondCmp); 1945 if ((LHSFolds != LazyValueInfo::Unknown || 1946 RHSFolds != LazyValueInfo::Unknown) && 1947 LHSFolds != RHSFolds) { 1948 // Expand the select. 1949 // 1950 // Pred -- 1951 // | v 1952 // | NewBB 1953 // | | 1954 // |----- 1955 // v 1956 // BB 1957 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1958 BB->getParent(), BB); 1959 // Move the unconditional branch to NewBB. 1960 PredTerm->removeFromParent(); 1961 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1962 // Create a conditional branch and update PHI nodes. 1963 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1964 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1965 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1966 // The select is now dead. 1967 SI->eraseFromParent(); 1968 1969 // Update any other PHI nodes in BB. 1970 for (BasicBlock::iterator BI = BB->begin(); 1971 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1972 if (Phi != CondLHS) 1973 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1974 return true; 1975 } 1976 } 1977 return false; 1978 } 1979 1980 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1981 /// bb: 1982 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1983 /// %s = select p, trueval, falseval 1984 /// 1985 /// And expand the select into a branch structure. This later enables 1986 /// jump-threading over bb in this pass. 1987 /// 1988 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1989 /// select if the associated PHI has at least one constant. If the unfolded 1990 /// select is not jump-threaded, it will be folded again in the later 1991 /// optimizations. 1992 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1993 // If threading this would thread across a loop header, don't thread the edge. 1994 // See the comments above FindLoopHeaders for justifications and caveats. 1995 if (LoopHeaders.count(BB)) 1996 return false; 1997 1998 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1999 // condition of the Select and at least one of the incoming values is a 2000 // constant. 2001 for (BasicBlock::iterator BI = BB->begin(); 2002 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2003 unsigned NumPHIValues = PN->getNumIncomingValues(); 2004 if (NumPHIValues == 0 || !PN->hasOneUse()) 2005 continue; 2006 2007 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 2008 if (!SI || SI->getParent() != BB) 2009 continue; 2010 2011 Value *Cond = SI->getCondition(); 2012 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 2013 continue; 2014 2015 bool HasConst = false; 2016 for (unsigned i = 0; i != NumPHIValues; ++i) { 2017 if (PN->getIncomingBlock(i) == BB) 2018 return false; 2019 if (isa<ConstantInt>(PN->getIncomingValue(i))) 2020 HasConst = true; 2021 } 2022 2023 if (HasConst) { 2024 // Expand the select. 2025 TerminatorInst *Term = 2026 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2027 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2028 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2029 NewPN->addIncoming(SI->getFalseValue(), BB); 2030 SI->replaceAllUsesWith(NewPN); 2031 SI->eraseFromParent(); 2032 return true; 2033 } 2034 } 2035 2036 return false; 2037 } 2038 2039 /// Try to propagate a guard from the current BB into one of its predecessors 2040 /// in case if another branch of execution implies that the condition of this 2041 /// guard is always true. Currently we only process the simplest case that 2042 /// looks like: 2043 /// 2044 /// Start: 2045 /// %cond = ... 2046 /// br i1 %cond, label %T1, label %F1 2047 /// T1: 2048 /// br label %Merge 2049 /// F1: 2050 /// br label %Merge 2051 /// Merge: 2052 /// %condGuard = ... 2053 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2054 /// 2055 /// And cond either implies condGuard or !condGuard. In this case all the 2056 /// instructions before the guard can be duplicated in both branches, and the 2057 /// guard is then threaded to one of them. 2058 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2059 using namespace PatternMatch; 2060 // We only want to deal with two predecessors. 2061 BasicBlock *Pred1, *Pred2; 2062 auto PI = pred_begin(BB), PE = pred_end(BB); 2063 if (PI == PE) 2064 return false; 2065 Pred1 = *PI++; 2066 if (PI == PE) 2067 return false; 2068 Pred2 = *PI++; 2069 if (PI != PE) 2070 return false; 2071 if (Pred1 == Pred2) 2072 return false; 2073 2074 // Try to thread one of the guards of the block. 2075 // TODO: Look up deeper than to immediate predecessor? 2076 auto *Parent = Pred1->getSinglePredecessor(); 2077 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2078 return false; 2079 2080 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2081 for (auto &I : *BB) 2082 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2083 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2084 return true; 2085 2086 return false; 2087 } 2088 2089 /// Try to propagate the guard from BB which is the lower block of a diamond 2090 /// to one of its branches, in case if diamond's condition implies guard's 2091 /// condition. 2092 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2093 BranchInst *BI) { 2094 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2095 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2096 Value *GuardCond = Guard->getArgOperand(0); 2097 Value *BranchCond = BI->getCondition(); 2098 BasicBlock *TrueDest = BI->getSuccessor(0); 2099 BasicBlock *FalseDest = BI->getSuccessor(1); 2100 2101 auto &DL = BB->getModule()->getDataLayout(); 2102 bool TrueDestIsSafe = false; 2103 bool FalseDestIsSafe = false; 2104 2105 // True dest is safe if BranchCond => GuardCond. 2106 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2107 if (Impl && *Impl) 2108 TrueDestIsSafe = true; 2109 else { 2110 // False dest is safe if !BranchCond => GuardCond. 2111 Impl = 2112 isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true); 2113 if (Impl && *Impl) 2114 FalseDestIsSafe = true; 2115 } 2116 2117 if (!TrueDestIsSafe && !FalseDestIsSafe) 2118 return false; 2119 2120 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2121 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2122 2123 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2124 Instruction *AfterGuard = Guard->getNextNode(); 2125 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2126 if (Cost > BBDupThreshold) 2127 return false; 2128 // Duplicate all instructions before the guard and the guard itself to the 2129 // branch where implication is not proved. 2130 GuardedBlock = DuplicateInstructionsInSplitBetween( 2131 BB, GuardedBlock, AfterGuard, GuardedMapping); 2132 assert(GuardedBlock && "Could not create the guarded block?"); 2133 // Duplicate all instructions before the guard in the unguarded branch. 2134 // Since we have successfully duplicated the guarded block and this block 2135 // has fewer instructions, we expect it to succeed. 2136 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2137 Guard, UnguardedMapping); 2138 assert(UnguardedBlock && "Could not create the unguarded block?"); 2139 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2140 << GuardedBlock->getName() << "\n"); 2141 2142 // Some instructions before the guard may still have uses. For them, we need 2143 // to create Phi nodes merging their copies in both guarded and unguarded 2144 // branches. Those instructions that have no uses can be just removed. 2145 SmallVector<Instruction *, 4> ToRemove; 2146 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2147 if (!isa<PHINode>(&*BI)) 2148 ToRemove.push_back(&*BI); 2149 2150 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2151 assert(InsertionPoint && "Empty block?"); 2152 // Substitute with Phis & remove. 2153 for (auto *Inst : reverse(ToRemove)) { 2154 if (!Inst->use_empty()) { 2155 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2156 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2157 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2158 NewPN->insertBefore(InsertionPoint); 2159 Inst->replaceAllUsesWith(NewPN); 2160 } 2161 Inst->eraseFromParent(); 2162 } 2163 return true; 2164 } 2165