1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/Transforms/Scalar.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/GlobalsModRef.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
23 #include "llvm/Analysis/ConstantFolding.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/MDBuilder.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 #include "llvm/Transforms/Utils/SSAUpdater.h"
42 #include <algorithm>
43 #include <memory>
44 using namespace llvm;
45 using namespace jumpthreading;
46 
47 #define DEBUG_TYPE "jump-threading"
48 
49 STATISTIC(NumThreads, "Number of jumps threaded");
50 STATISTIC(NumFolds,   "Number of terminators folded");
51 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
52 
53 static cl::opt<unsigned>
54 BBDuplicateThreshold("jump-threading-threshold",
55           cl::desc("Max block size to duplicate for jump threading"),
56           cl::init(6), cl::Hidden);
57 
58 static cl::opt<unsigned>
59 ImplicationSearchThreshold(
60   "jump-threading-implication-search-threshold",
61   cl::desc("The number of predecessors to search for a stronger "
62            "condition to use to thread over a weaker condition"),
63   cl::init(3), cl::Hidden);
64 
65 namespace {
66   /// This pass performs 'jump threading', which looks at blocks that have
67   /// multiple predecessors and multiple successors.  If one or more of the
68   /// predecessors of the block can be proven to always jump to one of the
69   /// successors, we forward the edge from the predecessor to the successor by
70   /// duplicating the contents of this block.
71   ///
72   /// An example of when this can occur is code like this:
73   ///
74   ///   if () { ...
75   ///     X = 4;
76   ///   }
77   ///   if (X < 3) {
78   ///
79   /// In this case, the unconditional branch at the end of the first if can be
80   /// revectored to the false side of the second if.
81   ///
82   class JumpThreading : public FunctionPass {
83     JumpThreadingPass Impl;
84 
85   public:
86     static char ID; // Pass identification
87     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
88       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
89     }
90 
91     bool runOnFunction(Function &F) override;
92 
93     void getAnalysisUsage(AnalysisUsage &AU) const override {
94       AU.addRequired<LazyValueInfoWrapperPass>();
95       AU.addPreserved<LazyValueInfoWrapperPass>();
96       AU.addPreserved<GlobalsAAWrapperPass>();
97       AU.addRequired<TargetLibraryInfoWrapperPass>();
98     }
99 
100     void releaseMemory() override { Impl.releaseMemory(); }
101   };
102 }
103 
104 char JumpThreading::ID = 0;
105 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
106                 "Jump Threading", false, false)
107 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
109 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
110                 "Jump Threading", false, false)
111 
112 // Public interface to the Jump Threading pass
113 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
114 
115 JumpThreadingPass::JumpThreadingPass(int T) {
116   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
117 }
118 
119 /// runOnFunction - Top level algorithm.
120 ///
121 bool JumpThreading::runOnFunction(Function &F) {
122   if (skipFunction(F))
123     return false;
124   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
125   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
126   std::unique_ptr<BlockFrequencyInfo> BFI;
127   std::unique_ptr<BranchProbabilityInfo> BPI;
128   bool HasProfileData = F.getEntryCount().hasValue();
129   if (HasProfileData) {
130     LoopInfo LI{DominatorTree(F)};
131     BPI.reset(new BranchProbabilityInfo(F, LI));
132     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
133   }
134   return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI),
135                       std::move(BPI));
136 }
137 
138 PreservedAnalyses JumpThreadingPass::run(Function &F,
139                                          FunctionAnalysisManager &AM) {
140 
141   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
142   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
143   std::unique_ptr<BlockFrequencyInfo> BFI;
144   std::unique_ptr<BranchProbabilityInfo> BPI;
145   bool HasProfileData = F.getEntryCount().hasValue();
146   if (HasProfileData) {
147     LoopInfo LI{DominatorTree(F)};
148     BPI.reset(new BranchProbabilityInfo(F, LI));
149     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
150   }
151   bool Changed =
152       runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI));
153 
154   if (!Changed)
155     return PreservedAnalyses::all();
156   PreservedAnalyses PA;
157   PA.preserve<GlobalsAA>();
158   return PA;
159 }
160 
161 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
162                                 LazyValueInfo *LVI_, bool HasProfileData_,
163                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
164                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
165 
166   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
167   TLI = TLI_;
168   LVI = LVI_;
169   BFI.reset();
170   BPI.reset();
171   // When profile data is available, we need to update edge weights after
172   // successful jump threading, which requires both BPI and BFI being available.
173   HasProfileData = HasProfileData_;
174   auto *GuardDecl = F.getParent()->getFunction(
175       Intrinsic::getName(Intrinsic::experimental_guard));
176   HasGuards = GuardDecl && !GuardDecl->use_empty();
177   if (HasProfileData) {
178     BPI = std::move(BPI_);
179     BFI = std::move(BFI_);
180   }
181 
182   // Remove unreachable blocks from function as they may result in infinite
183   // loop. We do threading if we found something profitable. Jump threading a
184   // branch can create other opportunities. If these opportunities form a cycle
185   // i.e. if any jump threading is undoing previous threading in the path, then
186   // we will loop forever. We take care of this issue by not jump threading for
187   // back edges. This works for normal cases but not for unreachable blocks as
188   // they may have cycle with no back edge.
189   bool EverChanged = false;
190   EverChanged |= removeUnreachableBlocks(F, LVI);
191 
192   FindLoopHeaders(F);
193 
194   bool Changed;
195   do {
196     Changed = false;
197     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
198       BasicBlock *BB = &*I;
199       // Thread all of the branches we can over this block.
200       while (ProcessBlock(BB))
201         Changed = true;
202 
203       ++I;
204 
205       // If the block is trivially dead, zap it.  This eliminates the successor
206       // edges which simplifies the CFG.
207       if (pred_empty(BB) &&
208           BB != &BB->getParent()->getEntryBlock()) {
209         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
210               << "' with terminator: " << *BB->getTerminator() << '\n');
211         LoopHeaders.erase(BB);
212         LVI->eraseBlock(BB);
213         DeleteDeadBlock(BB);
214         Changed = true;
215         continue;
216       }
217 
218       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
219 
220       // Can't thread an unconditional jump, but if the block is "almost
221       // empty", we can replace uses of it with uses of the successor and make
222       // this dead.
223       // We should not eliminate the loop header either, because eliminating
224       // a loop header might later prevent LoopSimplify from transforming nested
225       // loops into simplified form.
226       if (BI && BI->isUnconditional() &&
227           BB != &BB->getParent()->getEntryBlock() &&
228           // If the terminator is the only non-phi instruction, try to nuke it.
229           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) {
230         // FIXME: It is always conservatively correct to drop the info
231         // for a block even if it doesn't get erased.  This isn't totally
232         // awesome, but it allows us to use AssertingVH to prevent nasty
233         // dangling pointer issues within LazyValueInfo.
234         LVI->eraseBlock(BB);
235         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
236           Changed = true;
237       }
238     }
239     EverChanged |= Changed;
240   } while (Changed);
241 
242   LoopHeaders.clear();
243   return EverChanged;
244 }
245 
246 /// Return the cost of duplicating a piece of this block from first non-phi
247 /// and before StopAt instruction to thread across it. Stop scanning the block
248 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
249 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
250                                              Instruction *StopAt,
251                                              unsigned Threshold) {
252   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
253   /// Ignore PHI nodes, these will be flattened when duplication happens.
254   BasicBlock::const_iterator I(BB->getFirstNonPHI());
255 
256   // FIXME: THREADING will delete values that are just used to compute the
257   // branch, so they shouldn't count against the duplication cost.
258 
259   unsigned Bonus = 0;
260   if (BB->getTerminator() == StopAt) {
261     // Threading through a switch statement is particularly profitable.  If this
262     // block ends in a switch, decrease its cost to make it more likely to
263     // happen.
264     if (isa<SwitchInst>(StopAt))
265       Bonus = 6;
266 
267     // The same holds for indirect branches, but slightly more so.
268     if (isa<IndirectBrInst>(StopAt))
269       Bonus = 8;
270   }
271 
272   // Bump the threshold up so the early exit from the loop doesn't skip the
273   // terminator-based Size adjustment at the end.
274   Threshold += Bonus;
275 
276   // Sum up the cost of each instruction until we get to the terminator.  Don't
277   // include the terminator because the copy won't include it.
278   unsigned Size = 0;
279   for (; &*I != StopAt; ++I) {
280 
281     // Stop scanning the block if we've reached the threshold.
282     if (Size > Threshold)
283       return Size;
284 
285     // Debugger intrinsics don't incur code size.
286     if (isa<DbgInfoIntrinsic>(I)) continue;
287 
288     // If this is a pointer->pointer bitcast, it is free.
289     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
290       continue;
291 
292     // Bail out if this instruction gives back a token type, it is not possible
293     // to duplicate it if it is used outside this BB.
294     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
295       return ~0U;
296 
297     // All other instructions count for at least one unit.
298     ++Size;
299 
300     // Calls are more expensive.  If they are non-intrinsic calls, we model them
301     // as having cost of 4.  If they are a non-vector intrinsic, we model them
302     // as having cost of 2 total, and if they are a vector intrinsic, we model
303     // them as having cost 1.
304     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
305       if (CI->cannotDuplicate() || CI->isConvergent())
306         // Blocks with NoDuplicate are modelled as having infinite cost, so they
307         // are never duplicated.
308         return ~0U;
309       else if (!isa<IntrinsicInst>(CI))
310         Size += 3;
311       else if (!CI->getType()->isVectorTy())
312         Size += 1;
313     }
314   }
315 
316   return Size > Bonus ? Size - Bonus : 0;
317 }
318 
319 /// FindLoopHeaders - We do not want jump threading to turn proper loop
320 /// structures into irreducible loops.  Doing this breaks up the loop nesting
321 /// hierarchy and pessimizes later transformations.  To prevent this from
322 /// happening, we first have to find the loop headers.  Here we approximate this
323 /// by finding targets of backedges in the CFG.
324 ///
325 /// Note that there definitely are cases when we want to allow threading of
326 /// edges across a loop header.  For example, threading a jump from outside the
327 /// loop (the preheader) to an exit block of the loop is definitely profitable.
328 /// It is also almost always profitable to thread backedges from within the loop
329 /// to exit blocks, and is often profitable to thread backedges to other blocks
330 /// within the loop (forming a nested loop).  This simple analysis is not rich
331 /// enough to track all of these properties and keep it up-to-date as the CFG
332 /// mutates, so we don't allow any of these transformations.
333 ///
334 void JumpThreadingPass::FindLoopHeaders(Function &F) {
335   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
336   FindFunctionBackedges(F, Edges);
337 
338   for (const auto &Edge : Edges)
339     LoopHeaders.insert(Edge.second);
340 }
341 
342 /// getKnownConstant - Helper method to determine if we can thread over a
343 /// terminator with the given value as its condition, and if so what value to
344 /// use for that. What kind of value this is depends on whether we want an
345 /// integer or a block address, but an undef is always accepted.
346 /// Returns null if Val is null or not an appropriate constant.
347 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
348   if (!Val)
349     return nullptr;
350 
351   // Undef is "known" enough.
352   if (UndefValue *U = dyn_cast<UndefValue>(Val))
353     return U;
354 
355   if (Preference == WantBlockAddress)
356     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
357 
358   return dyn_cast<ConstantInt>(Val);
359 }
360 
361 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
362 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
363 /// in any of our predecessors.  If so, return the known list of value and pred
364 /// BB in the result vector.
365 ///
366 /// This returns true if there were any known values.
367 ///
368 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
369     Value *V, BasicBlock *BB, PredValueInfo &Result,
370     ConstantPreference Preference, Instruction *CxtI) {
371   // This method walks up use-def chains recursively.  Because of this, we could
372   // get into an infinite loop going around loops in the use-def chain.  To
373   // prevent this, keep track of what (value, block) pairs we've already visited
374   // and terminate the search if we loop back to them
375   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
376     return false;
377 
378   // An RAII help to remove this pair from the recursion set once the recursion
379   // stack pops back out again.
380   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
381 
382   // If V is a constant, then it is known in all predecessors.
383   if (Constant *KC = getKnownConstant(V, Preference)) {
384     for (BasicBlock *Pred : predecessors(BB))
385       Result.push_back(std::make_pair(KC, Pred));
386 
387     return !Result.empty();
388   }
389 
390   // If V is a non-instruction value, or an instruction in a different block,
391   // then it can't be derived from a PHI.
392   Instruction *I = dyn_cast<Instruction>(V);
393   if (!I || I->getParent() != BB) {
394 
395     // Okay, if this is a live-in value, see if it has a known value at the end
396     // of any of our predecessors.
397     //
398     // FIXME: This should be an edge property, not a block end property.
399     /// TODO: Per PR2563, we could infer value range information about a
400     /// predecessor based on its terminator.
401     //
402     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
403     // "I" is a non-local compare-with-a-constant instruction.  This would be
404     // able to handle value inequalities better, for example if the compare is
405     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
406     // Perhaps getConstantOnEdge should be smart enough to do this?
407 
408     for (BasicBlock *P : predecessors(BB)) {
409       // If the value is known by LazyValueInfo to be a constant in a
410       // predecessor, use that information to try to thread this block.
411       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
412       if (Constant *KC = getKnownConstant(PredCst, Preference))
413         Result.push_back(std::make_pair(KC, P));
414     }
415 
416     return !Result.empty();
417   }
418 
419   /// If I is a PHI node, then we know the incoming values for any constants.
420   if (PHINode *PN = dyn_cast<PHINode>(I)) {
421     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
422       Value *InVal = PN->getIncomingValue(i);
423       if (Constant *KC = getKnownConstant(InVal, Preference)) {
424         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
425       } else {
426         Constant *CI = LVI->getConstantOnEdge(InVal,
427                                               PN->getIncomingBlock(i),
428                                               BB, CxtI);
429         if (Constant *KC = getKnownConstant(CI, Preference))
430           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
431       }
432     }
433 
434     return !Result.empty();
435   }
436 
437   // Handle Cast instructions.  Only see through Cast when the source operand is
438   // PHI or Cmp and the source type is i1 to save the compilation time.
439   if (CastInst *CI = dyn_cast<CastInst>(I)) {
440     Value *Source = CI->getOperand(0);
441     if (!Source->getType()->isIntegerTy(1))
442       return false;
443     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
444       return false;
445     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
446     if (Result.empty())
447       return false;
448 
449     // Convert the known values.
450     for (auto &R : Result)
451       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
452 
453     return true;
454   }
455 
456   PredValueInfoTy LHSVals, RHSVals;
457 
458   // Handle some boolean conditions.
459   if (I->getType()->getPrimitiveSizeInBits() == 1) {
460     assert(Preference == WantInteger && "One-bit non-integer type?");
461     // X | true -> true
462     // X & false -> false
463     if (I->getOpcode() == Instruction::Or ||
464         I->getOpcode() == Instruction::And) {
465       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
466                                       WantInteger, CxtI);
467       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
468                                       WantInteger, CxtI);
469 
470       if (LHSVals.empty() && RHSVals.empty())
471         return false;
472 
473       ConstantInt *InterestingVal;
474       if (I->getOpcode() == Instruction::Or)
475         InterestingVal = ConstantInt::getTrue(I->getContext());
476       else
477         InterestingVal = ConstantInt::getFalse(I->getContext());
478 
479       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
480 
481       // Scan for the sentinel.  If we find an undef, force it to the
482       // interesting value: x|undef -> true and x&undef -> false.
483       for (const auto &LHSVal : LHSVals)
484         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
485           Result.emplace_back(InterestingVal, LHSVal.second);
486           LHSKnownBBs.insert(LHSVal.second);
487         }
488       for (const auto &RHSVal : RHSVals)
489         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
490           // If we already inferred a value for this block on the LHS, don't
491           // re-add it.
492           if (!LHSKnownBBs.count(RHSVal.second))
493             Result.emplace_back(InterestingVal, RHSVal.second);
494         }
495 
496       return !Result.empty();
497     }
498 
499     // Handle the NOT form of XOR.
500     if (I->getOpcode() == Instruction::Xor &&
501         isa<ConstantInt>(I->getOperand(1)) &&
502         cast<ConstantInt>(I->getOperand(1))->isOne()) {
503       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
504                                       WantInteger, CxtI);
505       if (Result.empty())
506         return false;
507 
508       // Invert the known values.
509       for (auto &R : Result)
510         R.first = ConstantExpr::getNot(R.first);
511 
512       return true;
513     }
514 
515   // Try to simplify some other binary operator values.
516   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
517     assert(Preference != WantBlockAddress
518             && "A binary operator creating a block address?");
519     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
520       PredValueInfoTy LHSVals;
521       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
522                                       WantInteger, CxtI);
523 
524       // Try to use constant folding to simplify the binary operator.
525       for (const auto &LHSVal : LHSVals) {
526         Constant *V = LHSVal.first;
527         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
528 
529         if (Constant *KC = getKnownConstant(Folded, WantInteger))
530           Result.push_back(std::make_pair(KC, LHSVal.second));
531       }
532     }
533 
534     return !Result.empty();
535   }
536 
537   // Handle compare with phi operand, where the PHI is defined in this block.
538   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
539     assert(Preference == WantInteger && "Compares only produce integers");
540     PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
541     if (PN && PN->getParent() == BB) {
542       const DataLayout &DL = PN->getModule()->getDataLayout();
543       // We can do this simplification if any comparisons fold to true or false.
544       // See if any do.
545       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
546         BasicBlock *PredBB = PN->getIncomingBlock(i);
547         Value *LHS = PN->getIncomingValue(i);
548         Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
549 
550         Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL);
551         if (!Res) {
552           if (!isa<Constant>(RHS))
553             continue;
554 
555           LazyValueInfo::Tristate
556             ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS,
557                                            cast<Constant>(RHS), PredBB, BB,
558                                            CxtI ? CxtI : Cmp);
559           if (ResT == LazyValueInfo::Unknown)
560             continue;
561           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
562         }
563 
564         if (Constant *KC = getKnownConstant(Res, WantInteger))
565           Result.push_back(std::make_pair(KC, PredBB));
566       }
567 
568       return !Result.empty();
569     }
570 
571     // If comparing a live-in value against a constant, see if we know the
572     // live-in value on any predecessors.
573     if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) {
574       if (!isa<Instruction>(Cmp->getOperand(0)) ||
575           cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) {
576         Constant *RHSCst = cast<Constant>(Cmp->getOperand(1));
577 
578         for (BasicBlock *P : predecessors(BB)) {
579           // If the value is known by LazyValueInfo to be a constant in a
580           // predecessor, use that information to try to thread this block.
581           LazyValueInfo::Tristate Res =
582             LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0),
583                                     RHSCst, P, BB, CxtI ? CxtI : Cmp);
584           if (Res == LazyValueInfo::Unknown)
585             continue;
586 
587           Constant *ResC = ConstantInt::get(Cmp->getType(), Res);
588           Result.push_back(std::make_pair(ResC, P));
589         }
590 
591         return !Result.empty();
592       }
593 
594       // Try to find a constant value for the LHS of a comparison,
595       // and evaluate it statically if we can.
596       if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) {
597         PredValueInfoTy LHSVals;
598         ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
599                                         WantInteger, CxtI);
600 
601         for (const auto &LHSVal : LHSVals) {
602           Constant *V = LHSVal.first;
603           Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(),
604                                                       V, CmpConst);
605           if (Constant *KC = getKnownConstant(Folded, WantInteger))
606             Result.push_back(std::make_pair(KC, LHSVal.second));
607         }
608 
609         return !Result.empty();
610       }
611     }
612   }
613 
614   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
615     // Handle select instructions where at least one operand is a known constant
616     // and we can figure out the condition value for any predecessor block.
617     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
618     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
619     PredValueInfoTy Conds;
620     if ((TrueVal || FalseVal) &&
621         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
622                                         WantInteger, CxtI)) {
623       for (auto &C : Conds) {
624         Constant *Cond = C.first;
625 
626         // Figure out what value to use for the condition.
627         bool KnownCond;
628         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
629           // A known boolean.
630           KnownCond = CI->isOne();
631         } else {
632           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
633           // Either operand will do, so be sure to pick the one that's a known
634           // constant.
635           // FIXME: Do this more cleverly if both values are known constants?
636           KnownCond = (TrueVal != nullptr);
637         }
638 
639         // See if the select has a known constant value for this predecessor.
640         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
641           Result.push_back(std::make_pair(Val, C.second));
642       }
643 
644       return !Result.empty();
645     }
646   }
647 
648   // If all else fails, see if LVI can figure out a constant value for us.
649   Constant *CI = LVI->getConstant(V, BB, CxtI);
650   if (Constant *KC = getKnownConstant(CI, Preference)) {
651     for (BasicBlock *Pred : predecessors(BB))
652       Result.push_back(std::make_pair(KC, Pred));
653   }
654 
655   return !Result.empty();
656 }
657 
658 
659 
660 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
661 /// in an undefined jump, decide which block is best to revector to.
662 ///
663 /// Since we can pick an arbitrary destination, we pick the successor with the
664 /// fewest predecessors.  This should reduce the in-degree of the others.
665 ///
666 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
667   TerminatorInst *BBTerm = BB->getTerminator();
668   unsigned MinSucc = 0;
669   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
670   // Compute the successor with the minimum number of predecessors.
671   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
672   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
673     TestBB = BBTerm->getSuccessor(i);
674     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
675     if (NumPreds < MinNumPreds) {
676       MinSucc = i;
677       MinNumPreds = NumPreds;
678     }
679   }
680 
681   return MinSucc;
682 }
683 
684 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
685   if (!BB->hasAddressTaken()) return false;
686 
687   // If the block has its address taken, it may be a tree of dead constants
688   // hanging off of it.  These shouldn't keep the block alive.
689   BlockAddress *BA = BlockAddress::get(BB);
690   BA->removeDeadConstantUsers();
691   return !BA->use_empty();
692 }
693 
694 /// ProcessBlock - If there are any predecessors whose control can be threaded
695 /// through to a successor, transform them now.
696 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
697   // If the block is trivially dead, just return and let the caller nuke it.
698   // This simplifies other transformations.
699   if (pred_empty(BB) &&
700       BB != &BB->getParent()->getEntryBlock())
701     return false;
702 
703   // If this block has a single predecessor, and if that pred has a single
704   // successor, merge the blocks.  This encourages recursive jump threading
705   // because now the condition in this block can be threaded through
706   // predecessors of our predecessor block.
707   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
708     const TerminatorInst *TI = SinglePred->getTerminator();
709     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
710         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
711       // If SinglePred was a loop header, BB becomes one.
712       if (LoopHeaders.erase(SinglePred))
713         LoopHeaders.insert(BB);
714 
715       LVI->eraseBlock(SinglePred);
716       MergeBasicBlockIntoOnlyPred(BB);
717 
718       return true;
719     }
720   }
721 
722   if (TryToUnfoldSelectInCurrBB(BB))
723     return true;
724 
725   // Look if we can propagate guards to predecessors.
726   if (HasGuards && ProcessGuards(BB))
727     return true;
728 
729   // What kind of constant we're looking for.
730   ConstantPreference Preference = WantInteger;
731 
732   // Look to see if the terminator is a conditional branch, switch or indirect
733   // branch, if not we can't thread it.
734   Value *Condition;
735   Instruction *Terminator = BB->getTerminator();
736   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
737     // Can't thread an unconditional jump.
738     if (BI->isUnconditional()) return false;
739     Condition = BI->getCondition();
740   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
741     Condition = SI->getCondition();
742   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
743     // Can't thread indirect branch with no successors.
744     if (IB->getNumSuccessors() == 0) return false;
745     Condition = IB->getAddress()->stripPointerCasts();
746     Preference = WantBlockAddress;
747   } else {
748     return false; // Must be an invoke.
749   }
750 
751   // Run constant folding to see if we can reduce the condition to a simple
752   // constant.
753   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
754     Value *SimpleVal =
755         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
756     if (SimpleVal) {
757       I->replaceAllUsesWith(SimpleVal);
758       if (isInstructionTriviallyDead(I, TLI))
759         I->eraseFromParent();
760       Condition = SimpleVal;
761     }
762   }
763 
764   // If the terminator is branching on an undef, we can pick any of the
765   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
766   if (isa<UndefValue>(Condition)) {
767     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
768 
769     // Fold the branch/switch.
770     TerminatorInst *BBTerm = BB->getTerminator();
771     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
772       if (i == BestSucc) continue;
773       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
774     }
775 
776     DEBUG(dbgs() << "  In block '" << BB->getName()
777           << "' folding undef terminator: " << *BBTerm << '\n');
778     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
779     BBTerm->eraseFromParent();
780     return true;
781   }
782 
783   // If the terminator of this block is branching on a constant, simplify the
784   // terminator to an unconditional branch.  This can occur due to threading in
785   // other blocks.
786   if (getKnownConstant(Condition, Preference)) {
787     DEBUG(dbgs() << "  In block '" << BB->getName()
788           << "' folding terminator: " << *BB->getTerminator() << '\n');
789     ++NumFolds;
790     ConstantFoldTerminator(BB, true);
791     return true;
792   }
793 
794   Instruction *CondInst = dyn_cast<Instruction>(Condition);
795 
796   // All the rest of our checks depend on the condition being an instruction.
797   if (!CondInst) {
798     // FIXME: Unify this with code below.
799     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
800       return true;
801     return false;
802   }
803 
804   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
805     // If we're branching on a conditional, LVI might be able to determine
806     // it's value at the branch instruction.  We only handle comparisons
807     // against a constant at this time.
808     // TODO: This should be extended to handle switches as well.
809     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
810     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
811     if (CondBr && CondConst && CondBr->isConditional()) {
812       LazyValueInfo::Tristate Ret =
813         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
814                             CondConst, CondBr);
815       if (Ret != LazyValueInfo::Unknown) {
816         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
817         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
818         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
819         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
820         CondBr->eraseFromParent();
821         if (CondCmp->use_empty())
822           CondCmp->eraseFromParent();
823         else if (CondCmp->getParent() == BB) {
824           // If the fact we just learned is true for all uses of the
825           // condition, replace it with a constant value
826           auto *CI = Ret == LazyValueInfo::True ?
827             ConstantInt::getTrue(CondCmp->getType()) :
828             ConstantInt::getFalse(CondCmp->getType());
829           CondCmp->replaceAllUsesWith(CI);
830           CondCmp->eraseFromParent();
831         }
832         return true;
833       }
834     }
835 
836     if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB))
837       return true;
838   }
839 
840   // Check for some cases that are worth simplifying.  Right now we want to look
841   // for loads that are used by a switch or by the condition for the branch.  If
842   // we see one, check to see if it's partially redundant.  If so, insert a PHI
843   // which can then be used to thread the values.
844   //
845   Value *SimplifyValue = CondInst;
846   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
847     if (isa<Constant>(CondCmp->getOperand(1)))
848       SimplifyValue = CondCmp->getOperand(0);
849 
850   // TODO: There are other places where load PRE would be profitable, such as
851   // more complex comparisons.
852   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
853     if (SimplifyPartiallyRedundantLoad(LI))
854       return true;
855 
856   // Handle a variety of cases where we are branching on something derived from
857   // a PHI node in the current block.  If we can prove that any predecessors
858   // compute a predictable value based on a PHI node, thread those predecessors.
859   //
860   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
861     return true;
862 
863   // If this is an otherwise-unfoldable branch on a phi node in the current
864   // block, see if we can simplify.
865   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
866     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
867       return ProcessBranchOnPHI(PN);
868 
869   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
870   if (CondInst->getOpcode() == Instruction::Xor &&
871       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
872     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
873 
874   // Search for a stronger dominating condition that can be used to simplify a
875   // conditional branch leaving BB.
876   if (ProcessImpliedCondition(BB))
877     return true;
878 
879   return false;
880 }
881 
882 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
883   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
884   if (!BI || !BI->isConditional())
885     return false;
886 
887   Value *Cond = BI->getCondition();
888   BasicBlock *CurrentBB = BB;
889   BasicBlock *CurrentPred = BB->getSinglePredecessor();
890   unsigned Iter = 0;
891 
892   auto &DL = BB->getModule()->getDataLayout();
893 
894   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
895     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
896     if (!PBI || !PBI->isConditional())
897       return false;
898     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
899       return false;
900 
901     bool FalseDest = PBI->getSuccessor(1) == CurrentBB;
902     Optional<bool> Implication =
903       isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest);
904     if (Implication) {
905       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
906       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
907       BI->eraseFromParent();
908       return true;
909     }
910     CurrentBB = CurrentPred;
911     CurrentPred = CurrentBB->getSinglePredecessor();
912   }
913 
914   return false;
915 }
916 
917 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
918 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
919 /// important optimization that encourages jump threading, and needs to be run
920 /// interlaced with other jump threading tasks.
921 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
922   // Don't hack volatile and ordered loads.
923   if (!LI->isUnordered()) return false;
924 
925   // If the load is defined in a block with exactly one predecessor, it can't be
926   // partially redundant.
927   BasicBlock *LoadBB = LI->getParent();
928   if (LoadBB->getSinglePredecessor())
929     return false;
930 
931   // If the load is defined in an EH pad, it can't be partially redundant,
932   // because the edges between the invoke and the EH pad cannot have other
933   // instructions between them.
934   if (LoadBB->isEHPad())
935     return false;
936 
937   Value *LoadedPtr = LI->getOperand(0);
938 
939   // If the loaded operand is defined in the LoadBB, it can't be available.
940   // TODO: Could do simple PHI translation, that would be fun :)
941   if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
942     if (PtrOp->getParent() == LoadBB)
943       return false;
944 
945   // Scan a few instructions up from the load, to see if it is obviously live at
946   // the entry to its block.
947   BasicBlock::iterator BBIt(LI);
948   bool IsLoadCSE;
949   if (Value *AvailableVal =
950         FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan, nullptr, &IsLoadCSE)) {
951     // If the value of the load is locally available within the block, just use
952     // it.  This frequently occurs for reg2mem'd allocas.
953 
954     if (IsLoadCSE) {
955       LoadInst *NLI = cast<LoadInst>(AvailableVal);
956       combineMetadataForCSE(NLI, LI);
957     };
958 
959     // If the returned value is the load itself, replace with an undef. This can
960     // only happen in dead loops.
961     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
962     if (AvailableVal->getType() != LI->getType())
963       AvailableVal =
964           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
965     LI->replaceAllUsesWith(AvailableVal);
966     LI->eraseFromParent();
967     return true;
968   }
969 
970   // Otherwise, if we scanned the whole block and got to the top of the block,
971   // we know the block is locally transparent to the load.  If not, something
972   // might clobber its value.
973   if (BBIt != LoadBB->begin())
974     return false;
975 
976   // If all of the loads and stores that feed the value have the same AA tags,
977   // then we can propagate them onto any newly inserted loads.
978   AAMDNodes AATags;
979   LI->getAAMetadata(AATags);
980 
981   SmallPtrSet<BasicBlock*, 8> PredsScanned;
982   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
983   AvailablePredsTy AvailablePreds;
984   BasicBlock *OneUnavailablePred = nullptr;
985   SmallVector<LoadInst*, 8> CSELoads;
986 
987   // If we got here, the loaded value is transparent through to the start of the
988   // block.  Check to see if it is available in any of the predecessor blocks.
989   for (BasicBlock *PredBB : predecessors(LoadBB)) {
990     // If we already scanned this predecessor, skip it.
991     if (!PredsScanned.insert(PredBB).second)
992       continue;
993 
994     // Scan the predecessor to see if the value is available in the pred.
995     BBIt = PredBB->end();
996     unsigned NumScanedInst = 0;
997     Value *PredAvailable =
998         FindAvailableLoadedValue(LI, PredBB, BBIt, DefMaxInstsToScan, nullptr,
999                                  &IsLoadCSE, &NumScanedInst);
1000 
1001     // If PredBB has a single predecessor, continue scanning through the single
1002     // predecessor.
1003     BasicBlock *SinglePredBB = PredBB;
1004     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1005            NumScanedInst < DefMaxInstsToScan) {
1006       SinglePredBB = SinglePredBB->getSinglePredecessor();
1007       if (SinglePredBB) {
1008         BBIt = SinglePredBB->end();
1009         PredAvailable = FindAvailableLoadedValue(
1010             LI, SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst),
1011             nullptr, &IsLoadCSE, &NumScanedInst);
1012       }
1013     }
1014 
1015     if (!PredAvailable) {
1016       OneUnavailablePred = PredBB;
1017       continue;
1018     }
1019 
1020     if (IsLoadCSE)
1021       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1022 
1023     // If so, this load is partially redundant.  Remember this info so that we
1024     // can create a PHI node.
1025     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1026   }
1027 
1028   // If the loaded value isn't available in any predecessor, it isn't partially
1029   // redundant.
1030   if (AvailablePreds.empty()) return false;
1031 
1032   // Okay, the loaded value is available in at least one (and maybe all!)
1033   // predecessors.  If the value is unavailable in more than one unique
1034   // predecessor, we want to insert a merge block for those common predecessors.
1035   // This ensures that we only have to insert one reload, thus not increasing
1036   // code size.
1037   BasicBlock *UnavailablePred = nullptr;
1038 
1039   // If there is exactly one predecessor where the value is unavailable, the
1040   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1041   // unconditional branch, we know that it isn't a critical edge.
1042   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1043       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1044     UnavailablePred = OneUnavailablePred;
1045   } else if (PredsScanned.size() != AvailablePreds.size()) {
1046     // Otherwise, we had multiple unavailable predecessors or we had a critical
1047     // edge from the one.
1048     SmallVector<BasicBlock*, 8> PredsToSplit;
1049     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1050 
1051     for (const auto &AvailablePred : AvailablePreds)
1052       AvailablePredSet.insert(AvailablePred.first);
1053 
1054     // Add all the unavailable predecessors to the PredsToSplit list.
1055     for (BasicBlock *P : predecessors(LoadBB)) {
1056       // If the predecessor is an indirect goto, we can't split the edge.
1057       if (isa<IndirectBrInst>(P->getTerminator()))
1058         return false;
1059 
1060       if (!AvailablePredSet.count(P))
1061         PredsToSplit.push_back(P);
1062     }
1063 
1064     // Split them out to their own block.
1065     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1066   }
1067 
1068   // If the value isn't available in all predecessors, then there will be
1069   // exactly one where it isn't available.  Insert a load on that edge and add
1070   // it to the AvailablePreds list.
1071   if (UnavailablePred) {
1072     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1073            "Can't handle critical edge here!");
1074     LoadInst *NewVal =
1075         new LoadInst(LoadedPtr, LI->getName() + ".pr", false,
1076                      LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(),
1077                      UnavailablePred->getTerminator());
1078     NewVal->setDebugLoc(LI->getDebugLoc());
1079     if (AATags)
1080       NewVal->setAAMetadata(AATags);
1081 
1082     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1083   }
1084 
1085   // Now we know that each predecessor of this block has a value in
1086   // AvailablePreds, sort them for efficient access as we're walking the preds.
1087   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1088 
1089   // Create a PHI node at the start of the block for the PRE'd load value.
1090   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1091   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1092                                 &LoadBB->front());
1093   PN->takeName(LI);
1094   PN->setDebugLoc(LI->getDebugLoc());
1095 
1096   // Insert new entries into the PHI for each predecessor.  A single block may
1097   // have multiple entries here.
1098   for (pred_iterator PI = PB; PI != PE; ++PI) {
1099     BasicBlock *P = *PI;
1100     AvailablePredsTy::iterator I =
1101       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1102                        std::make_pair(P, (Value*)nullptr));
1103 
1104     assert(I != AvailablePreds.end() && I->first == P &&
1105            "Didn't find entry for predecessor!");
1106 
1107     // If we have an available predecessor but it requires casting, insert the
1108     // cast in the predecessor and use the cast. Note that we have to update the
1109     // AvailablePreds vector as we go so that all of the PHI entries for this
1110     // predecessor use the same bitcast.
1111     Value *&PredV = I->second;
1112     if (PredV->getType() != LI->getType())
1113       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1114                                                P->getTerminator());
1115 
1116     PN->addIncoming(PredV, I->first);
1117   }
1118 
1119   for (LoadInst *PredLI : CSELoads) {
1120     combineMetadataForCSE(PredLI, LI);
1121   }
1122 
1123   LI->replaceAllUsesWith(PN);
1124   LI->eraseFromParent();
1125 
1126   return true;
1127 }
1128 
1129 /// FindMostPopularDest - The specified list contains multiple possible
1130 /// threadable destinations.  Pick the one that occurs the most frequently in
1131 /// the list.
1132 static BasicBlock *
1133 FindMostPopularDest(BasicBlock *BB,
1134                     const SmallVectorImpl<std::pair<BasicBlock*,
1135                                   BasicBlock*> > &PredToDestList) {
1136   assert(!PredToDestList.empty());
1137 
1138   // Determine popularity.  If there are multiple possible destinations, we
1139   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1140   // blocks with known and real destinations to threading undef.  We'll handle
1141   // them later if interesting.
1142   DenseMap<BasicBlock*, unsigned> DestPopularity;
1143   for (const auto &PredToDest : PredToDestList)
1144     if (PredToDest.second)
1145       DestPopularity[PredToDest.second]++;
1146 
1147   // Find the most popular dest.
1148   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1149   BasicBlock *MostPopularDest = DPI->first;
1150   unsigned Popularity = DPI->second;
1151   SmallVector<BasicBlock*, 4> SamePopularity;
1152 
1153   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1154     // If the popularity of this entry isn't higher than the popularity we've
1155     // seen so far, ignore it.
1156     if (DPI->second < Popularity)
1157       ; // ignore.
1158     else if (DPI->second == Popularity) {
1159       // If it is the same as what we've seen so far, keep track of it.
1160       SamePopularity.push_back(DPI->first);
1161     } else {
1162       // If it is more popular, remember it.
1163       SamePopularity.clear();
1164       MostPopularDest = DPI->first;
1165       Popularity = DPI->second;
1166     }
1167   }
1168 
1169   // Okay, now we know the most popular destination.  If there is more than one
1170   // destination, we need to determine one.  This is arbitrary, but we need
1171   // to make a deterministic decision.  Pick the first one that appears in the
1172   // successor list.
1173   if (!SamePopularity.empty()) {
1174     SamePopularity.push_back(MostPopularDest);
1175     TerminatorInst *TI = BB->getTerminator();
1176     for (unsigned i = 0; ; ++i) {
1177       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1178 
1179       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1180         continue;
1181 
1182       MostPopularDest = TI->getSuccessor(i);
1183       break;
1184     }
1185   }
1186 
1187   // Okay, we have finally picked the most popular destination.
1188   return MostPopularDest;
1189 }
1190 
1191 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1192                                                ConstantPreference Preference,
1193                                                Instruction *CxtI) {
1194   // If threading this would thread across a loop header, don't even try to
1195   // thread the edge.
1196   if (LoopHeaders.count(BB))
1197     return false;
1198 
1199   PredValueInfoTy PredValues;
1200   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1201     return false;
1202 
1203   assert(!PredValues.empty() &&
1204          "ComputeValueKnownInPredecessors returned true with no values");
1205 
1206   DEBUG(dbgs() << "IN BB: " << *BB;
1207         for (const auto &PredValue : PredValues) {
1208           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1209             << *PredValue.first
1210             << " for pred '" << PredValue.second->getName() << "'.\n";
1211         });
1212 
1213   // Decide what we want to thread through.  Convert our list of known values to
1214   // a list of known destinations for each pred.  This also discards duplicate
1215   // predecessors and keeps track of the undefined inputs (which are represented
1216   // as a null dest in the PredToDestList).
1217   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1218   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1219 
1220   BasicBlock *OnlyDest = nullptr;
1221   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1222 
1223   for (const auto &PredValue : PredValues) {
1224     BasicBlock *Pred = PredValue.second;
1225     if (!SeenPreds.insert(Pred).second)
1226       continue;  // Duplicate predecessor entry.
1227 
1228     // If the predecessor ends with an indirect goto, we can't change its
1229     // destination.
1230     if (isa<IndirectBrInst>(Pred->getTerminator()))
1231       continue;
1232 
1233     Constant *Val = PredValue.first;
1234 
1235     BasicBlock *DestBB;
1236     if (isa<UndefValue>(Val))
1237       DestBB = nullptr;
1238     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
1239       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1240     else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1241       DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor();
1242     } else {
1243       assert(isa<IndirectBrInst>(BB->getTerminator())
1244               && "Unexpected terminator");
1245       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1246     }
1247 
1248     // If we have exactly one destination, remember it for efficiency below.
1249     if (PredToDestList.empty())
1250       OnlyDest = DestBB;
1251     else if (OnlyDest != DestBB)
1252       OnlyDest = MultipleDestSentinel;
1253 
1254     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1255   }
1256 
1257   // If all edges were unthreadable, we fail.
1258   if (PredToDestList.empty())
1259     return false;
1260 
1261   // Determine which is the most common successor.  If we have many inputs and
1262   // this block is a switch, we want to start by threading the batch that goes
1263   // to the most popular destination first.  If we only know about one
1264   // threadable destination (the common case) we can avoid this.
1265   BasicBlock *MostPopularDest = OnlyDest;
1266 
1267   if (MostPopularDest == MultipleDestSentinel)
1268     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1269 
1270   // Now that we know what the most popular destination is, factor all
1271   // predecessors that will jump to it into a single predecessor.
1272   SmallVector<BasicBlock*, 16> PredsToFactor;
1273   for (const auto &PredToDest : PredToDestList)
1274     if (PredToDest.second == MostPopularDest) {
1275       BasicBlock *Pred = PredToDest.first;
1276 
1277       // This predecessor may be a switch or something else that has multiple
1278       // edges to the block.  Factor each of these edges by listing them
1279       // according to # occurrences in PredsToFactor.
1280       for (BasicBlock *Succ : successors(Pred))
1281         if (Succ == BB)
1282           PredsToFactor.push_back(Pred);
1283     }
1284 
1285   // If the threadable edges are branching on an undefined value, we get to pick
1286   // the destination that these predecessors should get to.
1287   if (!MostPopularDest)
1288     MostPopularDest = BB->getTerminator()->
1289                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1290 
1291   // Ok, try to thread it!
1292   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1293 }
1294 
1295 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1296 /// a PHI node in the current block.  See if there are any simplifications we
1297 /// can do based on inputs to the phi node.
1298 ///
1299 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1300   BasicBlock *BB = PN->getParent();
1301 
1302   // TODO: We could make use of this to do it once for blocks with common PHI
1303   // values.
1304   SmallVector<BasicBlock*, 1> PredBBs;
1305   PredBBs.resize(1);
1306 
1307   // If any of the predecessor blocks end in an unconditional branch, we can
1308   // *duplicate* the conditional branch into that block in order to further
1309   // encourage jump threading and to eliminate cases where we have branch on a
1310   // phi of an icmp (branch on icmp is much better).
1311   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1312     BasicBlock *PredBB = PN->getIncomingBlock(i);
1313     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1314       if (PredBr->isUnconditional()) {
1315         PredBBs[0] = PredBB;
1316         // Try to duplicate BB into PredBB.
1317         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1318           return true;
1319       }
1320   }
1321 
1322   return false;
1323 }
1324 
1325 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1326 /// a xor instruction in the current block.  See if there are any
1327 /// simplifications we can do based on inputs to the xor.
1328 ///
1329 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1330   BasicBlock *BB = BO->getParent();
1331 
1332   // If either the LHS or RHS of the xor is a constant, don't do this
1333   // optimization.
1334   if (isa<ConstantInt>(BO->getOperand(0)) ||
1335       isa<ConstantInt>(BO->getOperand(1)))
1336     return false;
1337 
1338   // If the first instruction in BB isn't a phi, we won't be able to infer
1339   // anything special about any particular predecessor.
1340   if (!isa<PHINode>(BB->front()))
1341     return false;
1342 
1343   // If this BB is a landing pad, we won't be able to split the edge into it.
1344   if (BB->isEHPad())
1345     return false;
1346 
1347   // If we have a xor as the branch input to this block, and we know that the
1348   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1349   // the condition into the predecessor and fix that value to true, saving some
1350   // logical ops on that path and encouraging other paths to simplify.
1351   //
1352   // This copies something like this:
1353   //
1354   //  BB:
1355   //    %X = phi i1 [1],  [%X']
1356   //    %Y = icmp eq i32 %A, %B
1357   //    %Z = xor i1 %X, %Y
1358   //    br i1 %Z, ...
1359   //
1360   // Into:
1361   //  BB':
1362   //    %Y = icmp ne i32 %A, %B
1363   //    br i1 %Y, ...
1364 
1365   PredValueInfoTy XorOpValues;
1366   bool isLHS = true;
1367   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1368                                        WantInteger, BO)) {
1369     assert(XorOpValues.empty());
1370     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1371                                          WantInteger, BO))
1372       return false;
1373     isLHS = false;
1374   }
1375 
1376   assert(!XorOpValues.empty() &&
1377          "ComputeValueKnownInPredecessors returned true with no values");
1378 
1379   // Scan the information to see which is most popular: true or false.  The
1380   // predecessors can be of the set true, false, or undef.
1381   unsigned NumTrue = 0, NumFalse = 0;
1382   for (const auto &XorOpValue : XorOpValues) {
1383     if (isa<UndefValue>(XorOpValue.first))
1384       // Ignore undefs for the count.
1385       continue;
1386     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1387       ++NumFalse;
1388     else
1389       ++NumTrue;
1390   }
1391 
1392   // Determine which value to split on, true, false, or undef if neither.
1393   ConstantInt *SplitVal = nullptr;
1394   if (NumTrue > NumFalse)
1395     SplitVal = ConstantInt::getTrue(BB->getContext());
1396   else if (NumTrue != 0 || NumFalse != 0)
1397     SplitVal = ConstantInt::getFalse(BB->getContext());
1398 
1399   // Collect all of the blocks that this can be folded into so that we can
1400   // factor this once and clone it once.
1401   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1402   for (const auto &XorOpValue : XorOpValues) {
1403     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1404       continue;
1405 
1406     BlocksToFoldInto.push_back(XorOpValue.second);
1407   }
1408 
1409   // If we inferred a value for all of the predecessors, then duplication won't
1410   // help us.  However, we can just replace the LHS or RHS with the constant.
1411   if (BlocksToFoldInto.size() ==
1412       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1413     if (!SplitVal) {
1414       // If all preds provide undef, just nuke the xor, because it is undef too.
1415       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1416       BO->eraseFromParent();
1417     } else if (SplitVal->isZero()) {
1418       // If all preds provide 0, replace the xor with the other input.
1419       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1420       BO->eraseFromParent();
1421     } else {
1422       // If all preds provide 1, set the computed value to 1.
1423       BO->setOperand(!isLHS, SplitVal);
1424     }
1425 
1426     return true;
1427   }
1428 
1429   // Try to duplicate BB into PredBB.
1430   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1431 }
1432 
1433 
1434 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1435 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1436 /// NewPred using the entries from OldPred (suitably mapped).
1437 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1438                                             BasicBlock *OldPred,
1439                                             BasicBlock *NewPred,
1440                                      DenseMap<Instruction*, Value*> &ValueMap) {
1441   for (BasicBlock::iterator PNI = PHIBB->begin();
1442        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1443     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1444     // DestBlock.
1445     Value *IV = PN->getIncomingValueForBlock(OldPred);
1446 
1447     // Remap the value if necessary.
1448     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1449       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1450       if (I != ValueMap.end())
1451         IV = I->second;
1452     }
1453 
1454     PN->addIncoming(IV, NewPred);
1455   }
1456 }
1457 
1458 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1459 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1460 /// across BB.  Transform the IR to reflect this change.
1461 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1462                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1463                                    BasicBlock *SuccBB) {
1464   // If threading to the same block as we come from, we would infinite loop.
1465   if (SuccBB == BB) {
1466     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1467           << "' - would thread to self!\n");
1468     return false;
1469   }
1470 
1471   // If threading this would thread across a loop header, don't thread the edge.
1472   // See the comments above FindLoopHeaders for justifications and caveats.
1473   if (LoopHeaders.count(BB)) {
1474     DEBUG(dbgs() << "  Not threading across loop header BB '" << BB->getName()
1475           << "' to dest BB '" << SuccBB->getName()
1476           << "' - it might create an irreducible loop!\n");
1477     return false;
1478   }
1479 
1480   unsigned JumpThreadCost =
1481       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1482   if (JumpThreadCost > BBDupThreshold) {
1483     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1484           << "' - Cost is too high: " << JumpThreadCost << "\n");
1485     return false;
1486   }
1487 
1488   // And finally, do it!  Start by factoring the predecessors if needed.
1489   BasicBlock *PredBB;
1490   if (PredBBs.size() == 1)
1491     PredBB = PredBBs[0];
1492   else {
1493     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1494           << " common predecessors.\n");
1495     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1496   }
1497 
1498   // And finally, do it!
1499   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1500         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1501         << ", across block:\n    "
1502         << *BB << "\n");
1503 
1504   LVI->threadEdge(PredBB, BB, SuccBB);
1505 
1506   // We are going to have to map operands from the original BB block to the new
1507   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1508   // account for entry from PredBB.
1509   DenseMap<Instruction*, Value*> ValueMapping;
1510 
1511   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1512                                          BB->getName()+".thread",
1513                                          BB->getParent(), BB);
1514   NewBB->moveAfter(PredBB);
1515 
1516   // Set the block frequency of NewBB.
1517   if (HasProfileData) {
1518     auto NewBBFreq =
1519         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1520     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1521   }
1522 
1523   BasicBlock::iterator BI = BB->begin();
1524   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1525     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1526 
1527   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1528   // mapping and using it to remap operands in the cloned instructions.
1529   for (; !isa<TerminatorInst>(BI); ++BI) {
1530     Instruction *New = BI->clone();
1531     New->setName(BI->getName());
1532     NewBB->getInstList().push_back(New);
1533     ValueMapping[&*BI] = New;
1534 
1535     // Remap operands to patch up intra-block references.
1536     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1537       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1538         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1539         if (I != ValueMapping.end())
1540           New->setOperand(i, I->second);
1541       }
1542   }
1543 
1544   // We didn't copy the terminator from BB over to NewBB, because there is now
1545   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1546   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1547   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1548 
1549   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1550   // PHI nodes for NewBB now.
1551   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1552 
1553   // If there were values defined in BB that are used outside the block, then we
1554   // now have to update all uses of the value to use either the original value,
1555   // the cloned value, or some PHI derived value.  This can require arbitrary
1556   // PHI insertion, of which we are prepared to do, clean these up now.
1557   SSAUpdater SSAUpdate;
1558   SmallVector<Use*, 16> UsesToRename;
1559   for (Instruction &I : *BB) {
1560     // Scan all uses of this instruction to see if it is used outside of its
1561     // block, and if so, record them in UsesToRename.
1562     for (Use &U : I.uses()) {
1563       Instruction *User = cast<Instruction>(U.getUser());
1564       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1565         if (UserPN->getIncomingBlock(U) == BB)
1566           continue;
1567       } else if (User->getParent() == BB)
1568         continue;
1569 
1570       UsesToRename.push_back(&U);
1571     }
1572 
1573     // If there are no uses outside the block, we're done with this instruction.
1574     if (UsesToRename.empty())
1575       continue;
1576 
1577     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1578 
1579     // We found a use of I outside of BB.  Rename all uses of I that are outside
1580     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1581     // with the two values we know.
1582     SSAUpdate.Initialize(I.getType(), I.getName());
1583     SSAUpdate.AddAvailableValue(BB, &I);
1584     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1585 
1586     while (!UsesToRename.empty())
1587       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1588     DEBUG(dbgs() << "\n");
1589   }
1590 
1591 
1592   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1593   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1594   // us to simplify any PHI nodes in BB.
1595   TerminatorInst *PredTerm = PredBB->getTerminator();
1596   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1597     if (PredTerm->getSuccessor(i) == BB) {
1598       BB->removePredecessor(PredBB, true);
1599       PredTerm->setSuccessor(i, NewBB);
1600     }
1601 
1602   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1603   // over the new instructions and zap any that are constants or dead.  This
1604   // frequently happens because of phi translation.
1605   SimplifyInstructionsInBlock(NewBB, TLI);
1606 
1607   // Update the edge weight from BB to SuccBB, which should be less than before.
1608   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1609 
1610   // Threaded an edge!
1611   ++NumThreads;
1612   return true;
1613 }
1614 
1615 /// Create a new basic block that will be the predecessor of BB and successor of
1616 /// all blocks in Preds. When profile data is available, update the frequency of
1617 /// this new block.
1618 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1619                                                ArrayRef<BasicBlock *> Preds,
1620                                                const char *Suffix) {
1621   // Collect the frequencies of all predecessors of BB, which will be used to
1622   // update the edge weight on BB->SuccBB.
1623   BlockFrequency PredBBFreq(0);
1624   if (HasProfileData)
1625     for (auto Pred : Preds)
1626       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1627 
1628   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1629 
1630   // Set the block frequency of the newly created PredBB, which is the sum of
1631   // frequencies of Preds.
1632   if (HasProfileData)
1633     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1634   return PredBB;
1635 }
1636 
1637 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
1638   const TerminatorInst *TI = BB->getTerminator();
1639   assert(TI->getNumSuccessors() > 1 && "not a split");
1640 
1641   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
1642   if (!WeightsNode)
1643     return false;
1644 
1645   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
1646   if (MDName->getString() != "branch_weights")
1647     return false;
1648 
1649   // Ensure there are weights for all of the successors. Note that the first
1650   // operand to the metadata node is a name, not a weight.
1651   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
1652 }
1653 
1654 /// Update the block frequency of BB and branch weight and the metadata on the
1655 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1656 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1657 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1658                                                      BasicBlock *BB,
1659                                                      BasicBlock *NewBB,
1660                                                      BasicBlock *SuccBB) {
1661   if (!HasProfileData)
1662     return;
1663 
1664   assert(BFI && BPI && "BFI & BPI should have been created here");
1665 
1666   // As the edge from PredBB to BB is deleted, we have to update the block
1667   // frequency of BB.
1668   auto BBOrigFreq = BFI->getBlockFreq(BB);
1669   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1670   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1671   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1672   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1673 
1674   // Collect updated outgoing edges' frequencies from BB and use them to update
1675   // edge probabilities.
1676   SmallVector<uint64_t, 4> BBSuccFreq;
1677   for (BasicBlock *Succ : successors(BB)) {
1678     auto SuccFreq = (Succ == SuccBB)
1679                         ? BB2SuccBBFreq - NewBBFreq
1680                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
1681     BBSuccFreq.push_back(SuccFreq.getFrequency());
1682   }
1683 
1684   uint64_t MaxBBSuccFreq =
1685       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
1686 
1687   SmallVector<BranchProbability, 4> BBSuccProbs;
1688   if (MaxBBSuccFreq == 0)
1689     BBSuccProbs.assign(BBSuccFreq.size(),
1690                        {1, static_cast<unsigned>(BBSuccFreq.size())});
1691   else {
1692     for (uint64_t Freq : BBSuccFreq)
1693       BBSuccProbs.push_back(
1694           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
1695     // Normalize edge probabilities so that they sum up to one.
1696     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
1697                                               BBSuccProbs.end());
1698   }
1699 
1700   // Update edge probabilities in BPI.
1701   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
1702     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
1703 
1704   // Update the profile metadata as well.
1705   //
1706   // Don't do this if the profile of the transformed blocks was statically
1707   // estimated.  (This could occur despite the function having an entry
1708   // frequency in completely cold parts of the CFG.)
1709   //
1710   // In this case we don't want to suggest to subsequent passes that the
1711   // calculated weights are fully consistent.  Consider this graph:
1712   //
1713   //                 check_1
1714   //             50% /  |
1715   //             eq_1   | 50%
1716   //                 \  |
1717   //                 check_2
1718   //             50% /  |
1719   //             eq_2   | 50%
1720   //                 \  |
1721   //                 check_3
1722   //             50% /  |
1723   //             eq_3   | 50%
1724   //                 \  |
1725   //
1726   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
1727   // the overall probabilities are inconsistent; the total probability that the
1728   // value is either 1, 2 or 3 is 150%.
1729   //
1730   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
1731   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
1732   // the loop exit edge.  Then based solely on static estimation we would assume
1733   // the loop was extremely hot.
1734   //
1735   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
1736   // shouldn't make edges extremely likely or unlikely based solely on static
1737   // estimation.
1738   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
1739     SmallVector<uint32_t, 4> Weights;
1740     for (auto Prob : BBSuccProbs)
1741       Weights.push_back(Prob.getNumerator());
1742 
1743     auto TI = BB->getTerminator();
1744     TI->setMetadata(
1745         LLVMContext::MD_prof,
1746         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
1747   }
1748 }
1749 
1750 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1751 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1752 /// If we can duplicate the contents of BB up into PredBB do so now, this
1753 /// improves the odds that the branch will be on an analyzable instruction like
1754 /// a compare.
1755 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
1756     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
1757   assert(!PredBBs.empty() && "Can't handle an empty set");
1758 
1759   // If BB is a loop header, then duplicating this block outside the loop would
1760   // cause us to transform this into an irreducible loop, don't do this.
1761   // See the comments above FindLoopHeaders for justifications and caveats.
1762   if (LoopHeaders.count(BB)) {
1763     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
1764           << "' into predecessor block '" << PredBBs[0]->getName()
1765           << "' - it might create an irreducible loop!\n");
1766     return false;
1767   }
1768 
1769   unsigned DuplicationCost =
1770       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1771   if (DuplicationCost > BBDupThreshold) {
1772     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
1773           << "' - Cost is too high: " << DuplicationCost << "\n");
1774     return false;
1775   }
1776 
1777   // And finally, do it!  Start by factoring the predecessors if needed.
1778   BasicBlock *PredBB;
1779   if (PredBBs.size() == 1)
1780     PredBB = PredBBs[0];
1781   else {
1782     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1783           << " common predecessors.\n");
1784     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1785   }
1786 
1787   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
1788   // of PredBB.
1789   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
1790         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
1791         << DuplicationCost << " block is:" << *BB << "\n");
1792 
1793   // Unless PredBB ends with an unconditional branch, split the edge so that we
1794   // can just clone the bits from BB into the end of the new PredBB.
1795   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
1796 
1797   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
1798     PredBB = SplitEdge(PredBB, BB);
1799     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1800   }
1801 
1802   // We are going to have to map operands from the original BB block into the
1803   // PredBB block.  Evaluate PHI nodes in BB.
1804   DenseMap<Instruction*, Value*> ValueMapping;
1805 
1806   BasicBlock::iterator BI = BB->begin();
1807   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1808     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1809   // Clone the non-phi instructions of BB into PredBB, keeping track of the
1810   // mapping and using it to remap operands in the cloned instructions.
1811   for (; BI != BB->end(); ++BI) {
1812     Instruction *New = BI->clone();
1813 
1814     // Remap operands to patch up intra-block references.
1815     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1816       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1817         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1818         if (I != ValueMapping.end())
1819           New->setOperand(i, I->second);
1820       }
1821 
1822     // If this instruction can be simplified after the operands are updated,
1823     // just use the simplified value instead.  This frequently happens due to
1824     // phi translation.
1825     if (Value *IV =
1826             SimplifyInstruction(New, BB->getModule()->getDataLayout())) {
1827       ValueMapping[&*BI] = IV;
1828       if (!New->mayHaveSideEffects()) {
1829         delete New;
1830         New = nullptr;
1831       }
1832     } else {
1833       ValueMapping[&*BI] = New;
1834     }
1835     if (New) {
1836       // Otherwise, insert the new instruction into the block.
1837       New->setName(BI->getName());
1838       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
1839     }
1840   }
1841 
1842   // Check to see if the targets of the branch had PHI nodes. If so, we need to
1843   // add entries to the PHI nodes for branch from PredBB now.
1844   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1845   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1846                                   ValueMapping);
1847   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1848                                   ValueMapping);
1849 
1850   // If there were values defined in BB that are used outside the block, then we
1851   // now have to update all uses of the value to use either the original value,
1852   // the cloned value, or some PHI derived value.  This can require arbitrary
1853   // PHI insertion, of which we are prepared to do, clean these up now.
1854   SSAUpdater SSAUpdate;
1855   SmallVector<Use*, 16> UsesToRename;
1856   for (Instruction &I : *BB) {
1857     // Scan all uses of this instruction to see if it is used outside of its
1858     // block, and if so, record them in UsesToRename.
1859     for (Use &U : I.uses()) {
1860       Instruction *User = cast<Instruction>(U.getUser());
1861       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1862         if (UserPN->getIncomingBlock(U) == BB)
1863           continue;
1864       } else if (User->getParent() == BB)
1865         continue;
1866 
1867       UsesToRename.push_back(&U);
1868     }
1869 
1870     // If there are no uses outside the block, we're done with this instruction.
1871     if (UsesToRename.empty())
1872       continue;
1873 
1874     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1875 
1876     // We found a use of I outside of BB.  Rename all uses of I that are outside
1877     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1878     // with the two values we know.
1879     SSAUpdate.Initialize(I.getType(), I.getName());
1880     SSAUpdate.AddAvailableValue(BB, &I);
1881     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
1882 
1883     while (!UsesToRename.empty())
1884       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1885     DEBUG(dbgs() << "\n");
1886   }
1887 
1888   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1889   // that we nuked.
1890   BB->removePredecessor(PredBB, true);
1891 
1892   // Remove the unconditional branch at the end of the PredBB block.
1893   OldPredBranch->eraseFromParent();
1894 
1895   ++NumDupes;
1896   return true;
1897 }
1898 
1899 /// TryToUnfoldSelect - Look for blocks of the form
1900 /// bb1:
1901 ///   %a = select
1902 ///   br bb2
1903 ///
1904 /// bb2:
1905 ///   %p = phi [%a, %bb1] ...
1906 ///   %c = icmp %p
1907 ///   br i1 %c
1908 ///
1909 /// And expand the select into a branch structure if one of its arms allows %c
1910 /// to be folded. This later enables threading from bb1 over bb2.
1911 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
1912   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1913   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
1914   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
1915 
1916   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
1917       CondLHS->getParent() != BB)
1918     return false;
1919 
1920   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
1921     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
1922     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
1923 
1924     // Look if one of the incoming values is a select in the corresponding
1925     // predecessor.
1926     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
1927       continue;
1928 
1929     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
1930     if (!PredTerm || !PredTerm->isUnconditional())
1931       continue;
1932 
1933     // Now check if one of the select values would allow us to constant fold the
1934     // terminator in BB. We don't do the transform if both sides fold, those
1935     // cases will be threaded in any case.
1936     LazyValueInfo::Tristate LHSFolds =
1937         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
1938                                 CondRHS, Pred, BB, CondCmp);
1939     LazyValueInfo::Tristate RHSFolds =
1940         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
1941                                 CondRHS, Pred, BB, CondCmp);
1942     if ((LHSFolds != LazyValueInfo::Unknown ||
1943          RHSFolds != LazyValueInfo::Unknown) &&
1944         LHSFolds != RHSFolds) {
1945       // Expand the select.
1946       //
1947       // Pred --
1948       //  |    v
1949       //  |  NewBB
1950       //  |    |
1951       //  |-----
1952       //  v
1953       // BB
1954       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
1955                                              BB->getParent(), BB);
1956       // Move the unconditional branch to NewBB.
1957       PredTerm->removeFromParent();
1958       NewBB->getInstList().insert(NewBB->end(), PredTerm);
1959       // Create a conditional branch and update PHI nodes.
1960       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
1961       CondLHS->setIncomingValue(I, SI->getFalseValue());
1962       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
1963       // The select is now dead.
1964       SI->eraseFromParent();
1965 
1966       // Update any other PHI nodes in BB.
1967       for (BasicBlock::iterator BI = BB->begin();
1968            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
1969         if (Phi != CondLHS)
1970           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
1971       return true;
1972     }
1973   }
1974   return false;
1975 }
1976 
1977 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form
1978 /// bb:
1979 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
1980 ///   %s = select p, trueval, falseval
1981 ///
1982 /// And expand the select into a branch structure. This later enables
1983 /// jump-threading over bb in this pass.
1984 ///
1985 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
1986 /// select if the associated PHI has at least one constant.  If the unfolded
1987 /// select is not jump-threaded, it will be folded again in the later
1988 /// optimizations.
1989 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
1990   // If threading this would thread across a loop header, don't thread the edge.
1991   // See the comments above FindLoopHeaders for justifications and caveats.
1992   if (LoopHeaders.count(BB))
1993     return false;
1994 
1995   // Look for a Phi/Select pair in the same basic block.  The Phi feeds the
1996   // condition of the Select and at least one of the incoming values is a
1997   // constant.
1998   for (BasicBlock::iterator BI = BB->begin();
1999        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2000     unsigned NumPHIValues = PN->getNumIncomingValues();
2001     if (NumPHIValues == 0 || !PN->hasOneUse())
2002       continue;
2003 
2004     SelectInst *SI = dyn_cast<SelectInst>(PN->user_back());
2005     if (!SI || SI->getParent() != BB)
2006       continue;
2007 
2008     Value *Cond = SI->getCondition();
2009     if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1))
2010       continue;
2011 
2012     bool HasConst = false;
2013     for (unsigned i = 0; i != NumPHIValues; ++i) {
2014       if (PN->getIncomingBlock(i) == BB)
2015         return false;
2016       if (isa<ConstantInt>(PN->getIncomingValue(i)))
2017         HasConst = true;
2018     }
2019 
2020     if (HasConst) {
2021       // Expand the select.
2022       TerminatorInst *Term =
2023           SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2024       PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2025       NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2026       NewPN->addIncoming(SI->getFalseValue(), BB);
2027       SI->replaceAllUsesWith(NewPN);
2028       SI->eraseFromParent();
2029       return true;
2030     }
2031   }
2032 
2033   return false;
2034 }
2035 
2036 /// Try to propagate a guard from the current BB into one of its predecessors
2037 /// in case if another branch of execution implies that the condition of this
2038 /// guard is always true. Currently we only process the simplest case that
2039 /// looks like:
2040 ///
2041 /// Start:
2042 ///   %cond = ...
2043 ///   br i1 %cond, label %T1, label %F1
2044 /// T1:
2045 ///   br label %Merge
2046 /// F1:
2047 ///   br label %Merge
2048 /// Merge:
2049 ///   %condGuard = ...
2050 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2051 ///
2052 /// And cond either implies condGuard or !condGuard. In this case all the
2053 /// instructions before the guard can be duplicated in both branches, and the
2054 /// guard is then threaded to one of them.
2055 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2056   using namespace PatternMatch;
2057   // We only want to deal with two predecessors.
2058   BasicBlock *Pred1, *Pred2;
2059   auto PI = pred_begin(BB), PE = pred_end(BB);
2060   if (PI == PE)
2061     return false;
2062   Pred1 = *PI++;
2063   if (PI == PE)
2064     return false;
2065   Pred2 = *PI++;
2066   if (PI != PE)
2067     return false;
2068   if (Pred1 == Pred2)
2069     return false;
2070 
2071   // Try to thread one of the guards of the block.
2072   // TODO: Look up deeper than to immediate predecessor?
2073   auto *Parent = Pred1->getSinglePredecessor();
2074   if (!Parent || Parent != Pred2->getSinglePredecessor())
2075     return false;
2076 
2077   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2078     for (auto &I : *BB)
2079       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2080         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2081           return true;
2082 
2083   return false;
2084 }
2085 
2086 /// Try to propagate the guard from BB which is the lower block of a diamond
2087 /// to one of its branches, in case if diamond's condition implies guard's
2088 /// condition.
2089 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2090                                     BranchInst *BI) {
2091   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2092   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2093   Value *GuardCond = Guard->getArgOperand(0);
2094   Value *BranchCond = BI->getCondition();
2095   BasicBlock *TrueDest = BI->getSuccessor(0);
2096   BasicBlock *FalseDest = BI->getSuccessor(1);
2097 
2098   auto &DL = BB->getModule()->getDataLayout();
2099   bool TrueDestIsSafe = false;
2100   bool FalseDestIsSafe = false;
2101 
2102   // True dest is safe if BranchCond => GuardCond.
2103   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2104   if (Impl && *Impl)
2105     TrueDestIsSafe = true;
2106   else {
2107     // False dest is safe if !BranchCond => GuardCond.
2108     Impl =
2109         isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true);
2110     if (Impl && *Impl)
2111       FalseDestIsSafe = true;
2112   }
2113 
2114   if (!TrueDestIsSafe && !FalseDestIsSafe)
2115     return false;
2116 
2117   BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2118   BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2119 
2120   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2121   Instruction *AfterGuard = Guard->getNextNode();
2122   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2123   if (Cost > BBDupThreshold)
2124     return false;
2125   // Duplicate all instructions before the guard and the guard itself to the
2126   // branch where implication is not proved.
2127   GuardedBlock = DuplicateInstructionsInSplitBetween(
2128       BB, GuardedBlock, AfterGuard, GuardedMapping);
2129   assert(GuardedBlock && "Could not create the guarded block?");
2130   // Duplicate all instructions before the guard in the unguarded branch.
2131   // Since we have successfully duplicated the guarded block and this block
2132   // has fewer instructions, we expect it to succeed.
2133   UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
2134                                                        Guard, UnguardedMapping);
2135   assert(UnguardedBlock && "Could not create the unguarded block?");
2136   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2137                << GuardedBlock->getName() << "\n");
2138 
2139   // Some instructions before the guard may still have uses. For them, we need
2140   // to create Phi nodes merging their copies in both guarded and unguarded
2141   // branches. Those instructions that have no uses can be just removed.
2142   SmallVector<Instruction *, 4> ToRemove;
2143   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2144     if (!isa<PHINode>(&*BI))
2145       ToRemove.push_back(&*BI);
2146 
2147   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2148   assert(InsertionPoint && "Empty block?");
2149   // Substitute with Phis & remove.
2150   for (auto *Inst : reverse(ToRemove)) {
2151     if (!Inst->use_empty()) {
2152       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2153       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2154       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2155       NewPN->insertBefore(InsertionPoint);
2156       Inst->replaceAllUsesWith(NewPN);
2157     }
2158     Inst->eraseFromParent();
2159   }
2160   return true;
2161 }
2162