1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/GlobalsModRef.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 23 #include "llvm/Analysis/ConstantFolding.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Pass.h" 35 #include "llvm/Support/CommandLine.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/raw_ostream.h" 38 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 39 #include "llvm/Transforms/Utils/Cloning.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 #include "llvm/Transforms/Utils/SSAUpdater.h" 42 #include <algorithm> 43 #include <memory> 44 using namespace llvm; 45 using namespace jumpthreading; 46 47 #define DEBUG_TYPE "jump-threading" 48 49 STATISTIC(NumThreads, "Number of jumps threaded"); 50 STATISTIC(NumFolds, "Number of terminators folded"); 51 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 52 53 static cl::opt<unsigned> 54 BBDuplicateThreshold("jump-threading-threshold", 55 cl::desc("Max block size to duplicate for jump threading"), 56 cl::init(6), cl::Hidden); 57 58 static cl::opt<unsigned> 59 ImplicationSearchThreshold( 60 "jump-threading-implication-search-threshold", 61 cl::desc("The number of predecessors to search for a stronger " 62 "condition to use to thread over a weaker condition"), 63 cl::init(3), cl::Hidden); 64 65 namespace { 66 /// This pass performs 'jump threading', which looks at blocks that have 67 /// multiple predecessors and multiple successors. If one or more of the 68 /// predecessors of the block can be proven to always jump to one of the 69 /// successors, we forward the edge from the predecessor to the successor by 70 /// duplicating the contents of this block. 71 /// 72 /// An example of when this can occur is code like this: 73 /// 74 /// if () { ... 75 /// X = 4; 76 /// } 77 /// if (X < 3) { 78 /// 79 /// In this case, the unconditional branch at the end of the first if can be 80 /// revectored to the false side of the second if. 81 /// 82 class JumpThreading : public FunctionPass { 83 JumpThreadingPass Impl; 84 85 public: 86 static char ID; // Pass identification 87 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 88 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 89 } 90 91 bool runOnFunction(Function &F) override; 92 93 void getAnalysisUsage(AnalysisUsage &AU) const override { 94 AU.addRequired<LazyValueInfoWrapperPass>(); 95 AU.addPreserved<LazyValueInfoWrapperPass>(); 96 AU.addPreserved<GlobalsAAWrapperPass>(); 97 AU.addRequired<TargetLibraryInfoWrapperPass>(); 98 } 99 100 void releaseMemory() override { Impl.releaseMemory(); } 101 }; 102 } 103 104 char JumpThreading::ID = 0; 105 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 106 "Jump Threading", false, false) 107 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 108 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 109 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 110 "Jump Threading", false, false) 111 112 // Public interface to the Jump Threading pass 113 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 114 115 JumpThreadingPass::JumpThreadingPass(int T) { 116 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 117 } 118 119 /// runOnFunction - Top level algorithm. 120 /// 121 bool JumpThreading::runOnFunction(Function &F) { 122 if (skipFunction(F)) 123 return false; 124 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 125 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 126 std::unique_ptr<BlockFrequencyInfo> BFI; 127 std::unique_ptr<BranchProbabilityInfo> BPI; 128 bool HasProfileData = F.getEntryCount().hasValue(); 129 if (HasProfileData) { 130 LoopInfo LI{DominatorTree(F)}; 131 BPI.reset(new BranchProbabilityInfo(F, LI)); 132 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 133 } 134 return Impl.runImpl(F, TLI, LVI, HasProfileData, std::move(BFI), 135 std::move(BPI)); 136 } 137 138 PreservedAnalyses JumpThreadingPass::run(Function &F, 139 FunctionAnalysisManager &AM) { 140 141 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 142 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 143 std::unique_ptr<BlockFrequencyInfo> BFI; 144 std::unique_ptr<BranchProbabilityInfo> BPI; 145 bool HasProfileData = F.getEntryCount().hasValue(); 146 if (HasProfileData) { 147 LoopInfo LI{DominatorTree(F)}; 148 BPI.reset(new BranchProbabilityInfo(F, LI)); 149 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 150 } 151 bool Changed = 152 runImpl(F, &TLI, &LVI, HasProfileData, std::move(BFI), std::move(BPI)); 153 154 if (!Changed) 155 return PreservedAnalyses::all(); 156 PreservedAnalyses PA; 157 PA.preserve<GlobalsAA>(); 158 return PA; 159 } 160 161 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 162 LazyValueInfo *LVI_, bool HasProfileData_, 163 std::unique_ptr<BlockFrequencyInfo> BFI_, 164 std::unique_ptr<BranchProbabilityInfo> BPI_) { 165 166 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 167 TLI = TLI_; 168 LVI = LVI_; 169 BFI.reset(); 170 BPI.reset(); 171 // When profile data is available, we need to update edge weights after 172 // successful jump threading, which requires both BPI and BFI being available. 173 HasProfileData = HasProfileData_; 174 auto *GuardDecl = F.getParent()->getFunction( 175 Intrinsic::getName(Intrinsic::experimental_guard)); 176 HasGuards = GuardDecl && !GuardDecl->use_empty(); 177 if (HasProfileData) { 178 BPI = std::move(BPI_); 179 BFI = std::move(BFI_); 180 } 181 182 // Remove unreachable blocks from function as they may result in infinite 183 // loop. We do threading if we found something profitable. Jump threading a 184 // branch can create other opportunities. If these opportunities form a cycle 185 // i.e. if any jump threading is undoing previous threading in the path, then 186 // we will loop forever. We take care of this issue by not jump threading for 187 // back edges. This works for normal cases but not for unreachable blocks as 188 // they may have cycle with no back edge. 189 bool EverChanged = false; 190 EverChanged |= removeUnreachableBlocks(F, LVI); 191 192 FindLoopHeaders(F); 193 194 bool Changed; 195 do { 196 Changed = false; 197 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 198 BasicBlock *BB = &*I; 199 // Thread all of the branches we can over this block. 200 while (ProcessBlock(BB)) 201 Changed = true; 202 203 ++I; 204 205 // If the block is trivially dead, zap it. This eliminates the successor 206 // edges which simplifies the CFG. 207 if (pred_empty(BB) && 208 BB != &BB->getParent()->getEntryBlock()) { 209 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 210 << "' with terminator: " << *BB->getTerminator() << '\n'); 211 LoopHeaders.erase(BB); 212 LVI->eraseBlock(BB); 213 DeleteDeadBlock(BB); 214 Changed = true; 215 continue; 216 } 217 218 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 219 220 // Can't thread an unconditional jump, but if the block is "almost 221 // empty", we can replace uses of it with uses of the successor and make 222 // this dead. 223 // We should not eliminate the loop header either, because eliminating 224 // a loop header might later prevent LoopSimplify from transforming nested 225 // loops into simplified form. 226 if (BI && BI->isUnconditional() && 227 BB != &BB->getParent()->getEntryBlock() && 228 // If the terminator is the only non-phi instruction, try to nuke it. 229 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB)) { 230 // FIXME: It is always conservatively correct to drop the info 231 // for a block even if it doesn't get erased. This isn't totally 232 // awesome, but it allows us to use AssertingVH to prevent nasty 233 // dangling pointer issues within LazyValueInfo. 234 LVI->eraseBlock(BB); 235 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 236 Changed = true; 237 } 238 } 239 EverChanged |= Changed; 240 } while (Changed); 241 242 LoopHeaders.clear(); 243 return EverChanged; 244 } 245 246 /// Return the cost of duplicating a piece of this block from first non-phi 247 /// and before StopAt instruction to thread across it. Stop scanning the block 248 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 249 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 250 Instruction *StopAt, 251 unsigned Threshold) { 252 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 253 /// Ignore PHI nodes, these will be flattened when duplication happens. 254 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 255 256 // FIXME: THREADING will delete values that are just used to compute the 257 // branch, so they shouldn't count against the duplication cost. 258 259 unsigned Bonus = 0; 260 if (BB->getTerminator() == StopAt) { 261 // Threading through a switch statement is particularly profitable. If this 262 // block ends in a switch, decrease its cost to make it more likely to 263 // happen. 264 if (isa<SwitchInst>(StopAt)) 265 Bonus = 6; 266 267 // The same holds for indirect branches, but slightly more so. 268 if (isa<IndirectBrInst>(StopAt)) 269 Bonus = 8; 270 } 271 272 // Bump the threshold up so the early exit from the loop doesn't skip the 273 // terminator-based Size adjustment at the end. 274 Threshold += Bonus; 275 276 // Sum up the cost of each instruction until we get to the terminator. Don't 277 // include the terminator because the copy won't include it. 278 unsigned Size = 0; 279 for (; &*I != StopAt; ++I) { 280 281 // Stop scanning the block if we've reached the threshold. 282 if (Size > Threshold) 283 return Size; 284 285 // Debugger intrinsics don't incur code size. 286 if (isa<DbgInfoIntrinsic>(I)) continue; 287 288 // If this is a pointer->pointer bitcast, it is free. 289 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 290 continue; 291 292 // Bail out if this instruction gives back a token type, it is not possible 293 // to duplicate it if it is used outside this BB. 294 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 295 return ~0U; 296 297 // All other instructions count for at least one unit. 298 ++Size; 299 300 // Calls are more expensive. If they are non-intrinsic calls, we model them 301 // as having cost of 4. If they are a non-vector intrinsic, we model them 302 // as having cost of 2 total, and if they are a vector intrinsic, we model 303 // them as having cost 1. 304 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 305 if (CI->cannotDuplicate() || CI->isConvergent()) 306 // Blocks with NoDuplicate are modelled as having infinite cost, so they 307 // are never duplicated. 308 return ~0U; 309 else if (!isa<IntrinsicInst>(CI)) 310 Size += 3; 311 else if (!CI->getType()->isVectorTy()) 312 Size += 1; 313 } 314 } 315 316 return Size > Bonus ? Size - Bonus : 0; 317 } 318 319 /// FindLoopHeaders - We do not want jump threading to turn proper loop 320 /// structures into irreducible loops. Doing this breaks up the loop nesting 321 /// hierarchy and pessimizes later transformations. To prevent this from 322 /// happening, we first have to find the loop headers. Here we approximate this 323 /// by finding targets of backedges in the CFG. 324 /// 325 /// Note that there definitely are cases when we want to allow threading of 326 /// edges across a loop header. For example, threading a jump from outside the 327 /// loop (the preheader) to an exit block of the loop is definitely profitable. 328 /// It is also almost always profitable to thread backedges from within the loop 329 /// to exit blocks, and is often profitable to thread backedges to other blocks 330 /// within the loop (forming a nested loop). This simple analysis is not rich 331 /// enough to track all of these properties and keep it up-to-date as the CFG 332 /// mutates, so we don't allow any of these transformations. 333 /// 334 void JumpThreadingPass::FindLoopHeaders(Function &F) { 335 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 336 FindFunctionBackedges(F, Edges); 337 338 for (const auto &Edge : Edges) 339 LoopHeaders.insert(Edge.second); 340 } 341 342 /// getKnownConstant - Helper method to determine if we can thread over a 343 /// terminator with the given value as its condition, and if so what value to 344 /// use for that. What kind of value this is depends on whether we want an 345 /// integer or a block address, but an undef is always accepted. 346 /// Returns null if Val is null or not an appropriate constant. 347 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 348 if (!Val) 349 return nullptr; 350 351 // Undef is "known" enough. 352 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 353 return U; 354 355 if (Preference == WantBlockAddress) 356 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 357 358 return dyn_cast<ConstantInt>(Val); 359 } 360 361 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 362 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 363 /// in any of our predecessors. If so, return the known list of value and pred 364 /// BB in the result vector. 365 /// 366 /// This returns true if there were any known values. 367 /// 368 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 369 Value *V, BasicBlock *BB, PredValueInfo &Result, 370 ConstantPreference Preference, Instruction *CxtI) { 371 // This method walks up use-def chains recursively. Because of this, we could 372 // get into an infinite loop going around loops in the use-def chain. To 373 // prevent this, keep track of what (value, block) pairs we've already visited 374 // and terminate the search if we loop back to them 375 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 376 return false; 377 378 // An RAII help to remove this pair from the recursion set once the recursion 379 // stack pops back out again. 380 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 381 382 // If V is a constant, then it is known in all predecessors. 383 if (Constant *KC = getKnownConstant(V, Preference)) { 384 for (BasicBlock *Pred : predecessors(BB)) 385 Result.push_back(std::make_pair(KC, Pred)); 386 387 return !Result.empty(); 388 } 389 390 // If V is a non-instruction value, or an instruction in a different block, 391 // then it can't be derived from a PHI. 392 Instruction *I = dyn_cast<Instruction>(V); 393 if (!I || I->getParent() != BB) { 394 395 // Okay, if this is a live-in value, see if it has a known value at the end 396 // of any of our predecessors. 397 // 398 // FIXME: This should be an edge property, not a block end property. 399 /// TODO: Per PR2563, we could infer value range information about a 400 /// predecessor based on its terminator. 401 // 402 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 403 // "I" is a non-local compare-with-a-constant instruction. This would be 404 // able to handle value inequalities better, for example if the compare is 405 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 406 // Perhaps getConstantOnEdge should be smart enough to do this? 407 408 for (BasicBlock *P : predecessors(BB)) { 409 // If the value is known by LazyValueInfo to be a constant in a 410 // predecessor, use that information to try to thread this block. 411 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 412 if (Constant *KC = getKnownConstant(PredCst, Preference)) 413 Result.push_back(std::make_pair(KC, P)); 414 } 415 416 return !Result.empty(); 417 } 418 419 /// If I is a PHI node, then we know the incoming values for any constants. 420 if (PHINode *PN = dyn_cast<PHINode>(I)) { 421 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 422 Value *InVal = PN->getIncomingValue(i); 423 if (Constant *KC = getKnownConstant(InVal, Preference)) { 424 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 425 } else { 426 Constant *CI = LVI->getConstantOnEdge(InVal, 427 PN->getIncomingBlock(i), 428 BB, CxtI); 429 if (Constant *KC = getKnownConstant(CI, Preference)) 430 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 431 } 432 } 433 434 return !Result.empty(); 435 } 436 437 // Handle Cast instructions. Only see through Cast when the source operand is 438 // PHI or Cmp and the source type is i1 to save the compilation time. 439 if (CastInst *CI = dyn_cast<CastInst>(I)) { 440 Value *Source = CI->getOperand(0); 441 if (!Source->getType()->isIntegerTy(1)) 442 return false; 443 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 444 return false; 445 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 446 if (Result.empty()) 447 return false; 448 449 // Convert the known values. 450 for (auto &R : Result) 451 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 452 453 return true; 454 } 455 456 PredValueInfoTy LHSVals, RHSVals; 457 458 // Handle some boolean conditions. 459 if (I->getType()->getPrimitiveSizeInBits() == 1) { 460 assert(Preference == WantInteger && "One-bit non-integer type?"); 461 // X | true -> true 462 // X & false -> false 463 if (I->getOpcode() == Instruction::Or || 464 I->getOpcode() == Instruction::And) { 465 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 466 WantInteger, CxtI); 467 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 468 WantInteger, CxtI); 469 470 if (LHSVals.empty() && RHSVals.empty()) 471 return false; 472 473 ConstantInt *InterestingVal; 474 if (I->getOpcode() == Instruction::Or) 475 InterestingVal = ConstantInt::getTrue(I->getContext()); 476 else 477 InterestingVal = ConstantInt::getFalse(I->getContext()); 478 479 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 480 481 // Scan for the sentinel. If we find an undef, force it to the 482 // interesting value: x|undef -> true and x&undef -> false. 483 for (const auto &LHSVal : LHSVals) 484 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 485 Result.emplace_back(InterestingVal, LHSVal.second); 486 LHSKnownBBs.insert(LHSVal.second); 487 } 488 for (const auto &RHSVal : RHSVals) 489 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 490 // If we already inferred a value for this block on the LHS, don't 491 // re-add it. 492 if (!LHSKnownBBs.count(RHSVal.second)) 493 Result.emplace_back(InterestingVal, RHSVal.second); 494 } 495 496 return !Result.empty(); 497 } 498 499 // Handle the NOT form of XOR. 500 if (I->getOpcode() == Instruction::Xor && 501 isa<ConstantInt>(I->getOperand(1)) && 502 cast<ConstantInt>(I->getOperand(1))->isOne()) { 503 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 504 WantInteger, CxtI); 505 if (Result.empty()) 506 return false; 507 508 // Invert the known values. 509 for (auto &R : Result) 510 R.first = ConstantExpr::getNot(R.first); 511 512 return true; 513 } 514 515 // Try to simplify some other binary operator values. 516 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 517 assert(Preference != WantBlockAddress 518 && "A binary operator creating a block address?"); 519 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 520 PredValueInfoTy LHSVals; 521 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 522 WantInteger, CxtI); 523 524 // Try to use constant folding to simplify the binary operator. 525 for (const auto &LHSVal : LHSVals) { 526 Constant *V = LHSVal.first; 527 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 528 529 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 530 Result.push_back(std::make_pair(KC, LHSVal.second)); 531 } 532 } 533 534 return !Result.empty(); 535 } 536 537 // Handle compare with phi operand, where the PHI is defined in this block. 538 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 539 assert(Preference == WantInteger && "Compares only produce integers"); 540 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 541 if (PN && PN->getParent() == BB) { 542 const DataLayout &DL = PN->getModule()->getDataLayout(); 543 // We can do this simplification if any comparisons fold to true or false. 544 // See if any do. 545 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 546 BasicBlock *PredBB = PN->getIncomingBlock(i); 547 Value *LHS = PN->getIncomingValue(i); 548 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 549 550 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 551 if (!Res) { 552 if (!isa<Constant>(RHS)) 553 continue; 554 555 LazyValueInfo::Tristate 556 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 557 cast<Constant>(RHS), PredBB, BB, 558 CxtI ? CxtI : Cmp); 559 if (ResT == LazyValueInfo::Unknown) 560 continue; 561 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 562 } 563 564 if (Constant *KC = getKnownConstant(Res, WantInteger)) 565 Result.push_back(std::make_pair(KC, PredBB)); 566 } 567 568 return !Result.empty(); 569 } 570 571 // If comparing a live-in value against a constant, see if we know the 572 // live-in value on any predecessors. 573 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 574 if (!isa<Instruction>(Cmp->getOperand(0)) || 575 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 576 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 577 578 for (BasicBlock *P : predecessors(BB)) { 579 // If the value is known by LazyValueInfo to be a constant in a 580 // predecessor, use that information to try to thread this block. 581 LazyValueInfo::Tristate Res = 582 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 583 RHSCst, P, BB, CxtI ? CxtI : Cmp); 584 if (Res == LazyValueInfo::Unknown) 585 continue; 586 587 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 588 Result.push_back(std::make_pair(ResC, P)); 589 } 590 591 return !Result.empty(); 592 } 593 594 // Try to find a constant value for the LHS of a comparison, 595 // and evaluate it statically if we can. 596 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 597 PredValueInfoTy LHSVals; 598 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 599 WantInteger, CxtI); 600 601 for (const auto &LHSVal : LHSVals) { 602 Constant *V = LHSVal.first; 603 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 604 V, CmpConst); 605 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 606 Result.push_back(std::make_pair(KC, LHSVal.second)); 607 } 608 609 return !Result.empty(); 610 } 611 } 612 } 613 614 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 615 // Handle select instructions where at least one operand is a known constant 616 // and we can figure out the condition value for any predecessor block. 617 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 618 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 619 PredValueInfoTy Conds; 620 if ((TrueVal || FalseVal) && 621 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 622 WantInteger, CxtI)) { 623 for (auto &C : Conds) { 624 Constant *Cond = C.first; 625 626 // Figure out what value to use for the condition. 627 bool KnownCond; 628 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 629 // A known boolean. 630 KnownCond = CI->isOne(); 631 } else { 632 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 633 // Either operand will do, so be sure to pick the one that's a known 634 // constant. 635 // FIXME: Do this more cleverly if both values are known constants? 636 KnownCond = (TrueVal != nullptr); 637 } 638 639 // See if the select has a known constant value for this predecessor. 640 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 641 Result.push_back(std::make_pair(Val, C.second)); 642 } 643 644 return !Result.empty(); 645 } 646 } 647 648 // If all else fails, see if LVI can figure out a constant value for us. 649 Constant *CI = LVI->getConstant(V, BB, CxtI); 650 if (Constant *KC = getKnownConstant(CI, Preference)) { 651 for (BasicBlock *Pred : predecessors(BB)) 652 Result.push_back(std::make_pair(KC, Pred)); 653 } 654 655 return !Result.empty(); 656 } 657 658 659 660 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 661 /// in an undefined jump, decide which block is best to revector to. 662 /// 663 /// Since we can pick an arbitrary destination, we pick the successor with the 664 /// fewest predecessors. This should reduce the in-degree of the others. 665 /// 666 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 667 TerminatorInst *BBTerm = BB->getTerminator(); 668 unsigned MinSucc = 0; 669 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 670 // Compute the successor with the minimum number of predecessors. 671 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 672 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 673 TestBB = BBTerm->getSuccessor(i); 674 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 675 if (NumPreds < MinNumPreds) { 676 MinSucc = i; 677 MinNumPreds = NumPreds; 678 } 679 } 680 681 return MinSucc; 682 } 683 684 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 685 if (!BB->hasAddressTaken()) return false; 686 687 // If the block has its address taken, it may be a tree of dead constants 688 // hanging off of it. These shouldn't keep the block alive. 689 BlockAddress *BA = BlockAddress::get(BB); 690 BA->removeDeadConstantUsers(); 691 return !BA->use_empty(); 692 } 693 694 /// ProcessBlock - If there are any predecessors whose control can be threaded 695 /// through to a successor, transform them now. 696 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 697 // If the block is trivially dead, just return and let the caller nuke it. 698 // This simplifies other transformations. 699 if (pred_empty(BB) && 700 BB != &BB->getParent()->getEntryBlock()) 701 return false; 702 703 // If this block has a single predecessor, and if that pred has a single 704 // successor, merge the blocks. This encourages recursive jump threading 705 // because now the condition in this block can be threaded through 706 // predecessors of our predecessor block. 707 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 708 const TerminatorInst *TI = SinglePred->getTerminator(); 709 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 710 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 711 // If SinglePred was a loop header, BB becomes one. 712 if (LoopHeaders.erase(SinglePred)) 713 LoopHeaders.insert(BB); 714 715 LVI->eraseBlock(SinglePred); 716 MergeBasicBlockIntoOnlyPred(BB); 717 718 return true; 719 } 720 } 721 722 if (TryToUnfoldSelectInCurrBB(BB)) 723 return true; 724 725 // Look if we can propagate guards to predecessors. 726 if (HasGuards && ProcessGuards(BB)) 727 return true; 728 729 // What kind of constant we're looking for. 730 ConstantPreference Preference = WantInteger; 731 732 // Look to see if the terminator is a conditional branch, switch or indirect 733 // branch, if not we can't thread it. 734 Value *Condition; 735 Instruction *Terminator = BB->getTerminator(); 736 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 737 // Can't thread an unconditional jump. 738 if (BI->isUnconditional()) return false; 739 Condition = BI->getCondition(); 740 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 741 Condition = SI->getCondition(); 742 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 743 // Can't thread indirect branch with no successors. 744 if (IB->getNumSuccessors() == 0) return false; 745 Condition = IB->getAddress()->stripPointerCasts(); 746 Preference = WantBlockAddress; 747 } else { 748 return false; // Must be an invoke. 749 } 750 751 // Run constant folding to see if we can reduce the condition to a simple 752 // constant. 753 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 754 Value *SimpleVal = 755 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 756 if (SimpleVal) { 757 I->replaceAllUsesWith(SimpleVal); 758 if (isInstructionTriviallyDead(I, TLI)) 759 I->eraseFromParent(); 760 Condition = SimpleVal; 761 } 762 } 763 764 // If the terminator is branching on an undef, we can pick any of the 765 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 766 if (isa<UndefValue>(Condition)) { 767 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 768 769 // Fold the branch/switch. 770 TerminatorInst *BBTerm = BB->getTerminator(); 771 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 772 if (i == BestSucc) continue; 773 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 774 } 775 776 DEBUG(dbgs() << " In block '" << BB->getName() 777 << "' folding undef terminator: " << *BBTerm << '\n'); 778 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 779 BBTerm->eraseFromParent(); 780 return true; 781 } 782 783 // If the terminator of this block is branching on a constant, simplify the 784 // terminator to an unconditional branch. This can occur due to threading in 785 // other blocks. 786 if (getKnownConstant(Condition, Preference)) { 787 DEBUG(dbgs() << " In block '" << BB->getName() 788 << "' folding terminator: " << *BB->getTerminator() << '\n'); 789 ++NumFolds; 790 ConstantFoldTerminator(BB, true); 791 return true; 792 } 793 794 Instruction *CondInst = dyn_cast<Instruction>(Condition); 795 796 // All the rest of our checks depend on the condition being an instruction. 797 if (!CondInst) { 798 // FIXME: Unify this with code below. 799 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 800 return true; 801 return false; 802 } 803 804 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 805 // If we're branching on a conditional, LVI might be able to determine 806 // it's value at the branch instruction. We only handle comparisons 807 // against a constant at this time. 808 // TODO: This should be extended to handle switches as well. 809 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 810 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 811 if (CondBr && CondConst && CondBr->isConditional()) { 812 LazyValueInfo::Tristate Ret = 813 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 814 CondConst, CondBr); 815 if (Ret != LazyValueInfo::Unknown) { 816 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 817 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 818 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 819 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 820 CondBr->eraseFromParent(); 821 if (CondCmp->use_empty()) 822 CondCmp->eraseFromParent(); 823 else if (CondCmp->getParent() == BB) { 824 // If the fact we just learned is true for all uses of the 825 // condition, replace it with a constant value 826 auto *CI = Ret == LazyValueInfo::True ? 827 ConstantInt::getTrue(CondCmp->getType()) : 828 ConstantInt::getFalse(CondCmp->getType()); 829 CondCmp->replaceAllUsesWith(CI); 830 CondCmp->eraseFromParent(); 831 } 832 return true; 833 } 834 } 835 836 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 837 return true; 838 } 839 840 // Check for some cases that are worth simplifying. Right now we want to look 841 // for loads that are used by a switch or by the condition for the branch. If 842 // we see one, check to see if it's partially redundant. If so, insert a PHI 843 // which can then be used to thread the values. 844 // 845 Value *SimplifyValue = CondInst; 846 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 847 if (isa<Constant>(CondCmp->getOperand(1))) 848 SimplifyValue = CondCmp->getOperand(0); 849 850 // TODO: There are other places where load PRE would be profitable, such as 851 // more complex comparisons. 852 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 853 if (SimplifyPartiallyRedundantLoad(LI)) 854 return true; 855 856 // Handle a variety of cases where we are branching on something derived from 857 // a PHI node in the current block. If we can prove that any predecessors 858 // compute a predictable value based on a PHI node, thread those predecessors. 859 // 860 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 861 return true; 862 863 // If this is an otherwise-unfoldable branch on a phi node in the current 864 // block, see if we can simplify. 865 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 866 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 867 return ProcessBranchOnPHI(PN); 868 869 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 870 if (CondInst->getOpcode() == Instruction::Xor && 871 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 872 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 873 874 // Search for a stronger dominating condition that can be used to simplify a 875 // conditional branch leaving BB. 876 if (ProcessImpliedCondition(BB)) 877 return true; 878 879 return false; 880 } 881 882 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 883 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 884 if (!BI || !BI->isConditional()) 885 return false; 886 887 Value *Cond = BI->getCondition(); 888 BasicBlock *CurrentBB = BB; 889 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 890 unsigned Iter = 0; 891 892 auto &DL = BB->getModule()->getDataLayout(); 893 894 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 895 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 896 if (!PBI || !PBI->isConditional()) 897 return false; 898 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 899 return false; 900 901 bool FalseDest = PBI->getSuccessor(1) == CurrentBB; 902 Optional<bool> Implication = 903 isImpliedCondition(PBI->getCondition(), Cond, DL, FalseDest); 904 if (Implication) { 905 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 906 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 907 BI->eraseFromParent(); 908 return true; 909 } 910 CurrentBB = CurrentPred; 911 CurrentPred = CurrentBB->getSinglePredecessor(); 912 } 913 914 return false; 915 } 916 917 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 918 /// load instruction, eliminate it by replacing it with a PHI node. This is an 919 /// important optimization that encourages jump threading, and needs to be run 920 /// interlaced with other jump threading tasks. 921 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 922 // Don't hack volatile and ordered loads. 923 if (!LI->isUnordered()) return false; 924 925 // If the load is defined in a block with exactly one predecessor, it can't be 926 // partially redundant. 927 BasicBlock *LoadBB = LI->getParent(); 928 if (LoadBB->getSinglePredecessor()) 929 return false; 930 931 // If the load is defined in an EH pad, it can't be partially redundant, 932 // because the edges between the invoke and the EH pad cannot have other 933 // instructions between them. 934 if (LoadBB->isEHPad()) 935 return false; 936 937 Value *LoadedPtr = LI->getOperand(0); 938 939 // If the loaded operand is defined in the LoadBB, it can't be available. 940 // TODO: Could do simple PHI translation, that would be fun :) 941 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 942 if (PtrOp->getParent() == LoadBB) 943 return false; 944 945 // Scan a few instructions up from the load, to see if it is obviously live at 946 // the entry to its block. 947 BasicBlock::iterator BBIt(LI); 948 bool IsLoadCSE; 949 if (Value *AvailableVal = 950 FindAvailableLoadedValue(LI, LoadBB, BBIt, DefMaxInstsToScan, nullptr, &IsLoadCSE)) { 951 // If the value of the load is locally available within the block, just use 952 // it. This frequently occurs for reg2mem'd allocas. 953 954 if (IsLoadCSE) { 955 LoadInst *NLI = cast<LoadInst>(AvailableVal); 956 combineMetadataForCSE(NLI, LI); 957 }; 958 959 // If the returned value is the load itself, replace with an undef. This can 960 // only happen in dead loops. 961 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 962 if (AvailableVal->getType() != LI->getType()) 963 AvailableVal = 964 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 965 LI->replaceAllUsesWith(AvailableVal); 966 LI->eraseFromParent(); 967 return true; 968 } 969 970 // Otherwise, if we scanned the whole block and got to the top of the block, 971 // we know the block is locally transparent to the load. If not, something 972 // might clobber its value. 973 if (BBIt != LoadBB->begin()) 974 return false; 975 976 // If all of the loads and stores that feed the value have the same AA tags, 977 // then we can propagate them onto any newly inserted loads. 978 AAMDNodes AATags; 979 LI->getAAMetadata(AATags); 980 981 SmallPtrSet<BasicBlock*, 8> PredsScanned; 982 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 983 AvailablePredsTy AvailablePreds; 984 BasicBlock *OneUnavailablePred = nullptr; 985 SmallVector<LoadInst*, 8> CSELoads; 986 987 // If we got here, the loaded value is transparent through to the start of the 988 // block. Check to see if it is available in any of the predecessor blocks. 989 for (BasicBlock *PredBB : predecessors(LoadBB)) { 990 // If we already scanned this predecessor, skip it. 991 if (!PredsScanned.insert(PredBB).second) 992 continue; 993 994 // Scan the predecessor to see if the value is available in the pred. 995 BBIt = PredBB->end(); 996 unsigned NumScanedInst = 0; 997 Value *PredAvailable = 998 FindAvailableLoadedValue(LI, PredBB, BBIt, DefMaxInstsToScan, nullptr, 999 &IsLoadCSE, &NumScanedInst); 1000 1001 // If PredBB has a single predecessor, continue scanning through the single 1002 // predecessor. 1003 BasicBlock *SinglePredBB = PredBB; 1004 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1005 NumScanedInst < DefMaxInstsToScan) { 1006 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1007 if (SinglePredBB) { 1008 BBIt = SinglePredBB->end(); 1009 PredAvailable = FindAvailableLoadedValue( 1010 LI, SinglePredBB, BBIt, (DefMaxInstsToScan - NumScanedInst), 1011 nullptr, &IsLoadCSE, &NumScanedInst); 1012 } 1013 } 1014 1015 if (!PredAvailable) { 1016 OneUnavailablePred = PredBB; 1017 continue; 1018 } 1019 1020 if (IsLoadCSE) 1021 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1022 1023 // If so, this load is partially redundant. Remember this info so that we 1024 // can create a PHI node. 1025 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1026 } 1027 1028 // If the loaded value isn't available in any predecessor, it isn't partially 1029 // redundant. 1030 if (AvailablePreds.empty()) return false; 1031 1032 // Okay, the loaded value is available in at least one (and maybe all!) 1033 // predecessors. If the value is unavailable in more than one unique 1034 // predecessor, we want to insert a merge block for those common predecessors. 1035 // This ensures that we only have to insert one reload, thus not increasing 1036 // code size. 1037 BasicBlock *UnavailablePred = nullptr; 1038 1039 // If there is exactly one predecessor where the value is unavailable, the 1040 // already computed 'OneUnavailablePred' block is it. If it ends in an 1041 // unconditional branch, we know that it isn't a critical edge. 1042 if (PredsScanned.size() == AvailablePreds.size()+1 && 1043 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1044 UnavailablePred = OneUnavailablePred; 1045 } else if (PredsScanned.size() != AvailablePreds.size()) { 1046 // Otherwise, we had multiple unavailable predecessors or we had a critical 1047 // edge from the one. 1048 SmallVector<BasicBlock*, 8> PredsToSplit; 1049 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1050 1051 for (const auto &AvailablePred : AvailablePreds) 1052 AvailablePredSet.insert(AvailablePred.first); 1053 1054 // Add all the unavailable predecessors to the PredsToSplit list. 1055 for (BasicBlock *P : predecessors(LoadBB)) { 1056 // If the predecessor is an indirect goto, we can't split the edge. 1057 if (isa<IndirectBrInst>(P->getTerminator())) 1058 return false; 1059 1060 if (!AvailablePredSet.count(P)) 1061 PredsToSplit.push_back(P); 1062 } 1063 1064 // Split them out to their own block. 1065 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1066 } 1067 1068 // If the value isn't available in all predecessors, then there will be 1069 // exactly one where it isn't available. Insert a load on that edge and add 1070 // it to the AvailablePreds list. 1071 if (UnavailablePred) { 1072 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1073 "Can't handle critical edge here!"); 1074 LoadInst *NewVal = 1075 new LoadInst(LoadedPtr, LI->getName() + ".pr", false, 1076 LI->getAlignment(), LI->getOrdering(), LI->getSynchScope(), 1077 UnavailablePred->getTerminator()); 1078 NewVal->setDebugLoc(LI->getDebugLoc()); 1079 if (AATags) 1080 NewVal->setAAMetadata(AATags); 1081 1082 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1083 } 1084 1085 // Now we know that each predecessor of this block has a value in 1086 // AvailablePreds, sort them for efficient access as we're walking the preds. 1087 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1088 1089 // Create a PHI node at the start of the block for the PRE'd load value. 1090 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1091 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1092 &LoadBB->front()); 1093 PN->takeName(LI); 1094 PN->setDebugLoc(LI->getDebugLoc()); 1095 1096 // Insert new entries into the PHI for each predecessor. A single block may 1097 // have multiple entries here. 1098 for (pred_iterator PI = PB; PI != PE; ++PI) { 1099 BasicBlock *P = *PI; 1100 AvailablePredsTy::iterator I = 1101 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1102 std::make_pair(P, (Value*)nullptr)); 1103 1104 assert(I != AvailablePreds.end() && I->first == P && 1105 "Didn't find entry for predecessor!"); 1106 1107 // If we have an available predecessor but it requires casting, insert the 1108 // cast in the predecessor and use the cast. Note that we have to update the 1109 // AvailablePreds vector as we go so that all of the PHI entries for this 1110 // predecessor use the same bitcast. 1111 Value *&PredV = I->second; 1112 if (PredV->getType() != LI->getType()) 1113 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1114 P->getTerminator()); 1115 1116 PN->addIncoming(PredV, I->first); 1117 } 1118 1119 for (LoadInst *PredLI : CSELoads) { 1120 combineMetadataForCSE(PredLI, LI); 1121 } 1122 1123 LI->replaceAllUsesWith(PN); 1124 LI->eraseFromParent(); 1125 1126 return true; 1127 } 1128 1129 /// FindMostPopularDest - The specified list contains multiple possible 1130 /// threadable destinations. Pick the one that occurs the most frequently in 1131 /// the list. 1132 static BasicBlock * 1133 FindMostPopularDest(BasicBlock *BB, 1134 const SmallVectorImpl<std::pair<BasicBlock*, 1135 BasicBlock*> > &PredToDestList) { 1136 assert(!PredToDestList.empty()); 1137 1138 // Determine popularity. If there are multiple possible destinations, we 1139 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1140 // blocks with known and real destinations to threading undef. We'll handle 1141 // them later if interesting. 1142 DenseMap<BasicBlock*, unsigned> DestPopularity; 1143 for (const auto &PredToDest : PredToDestList) 1144 if (PredToDest.second) 1145 DestPopularity[PredToDest.second]++; 1146 1147 // Find the most popular dest. 1148 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1149 BasicBlock *MostPopularDest = DPI->first; 1150 unsigned Popularity = DPI->second; 1151 SmallVector<BasicBlock*, 4> SamePopularity; 1152 1153 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1154 // If the popularity of this entry isn't higher than the popularity we've 1155 // seen so far, ignore it. 1156 if (DPI->second < Popularity) 1157 ; // ignore. 1158 else if (DPI->second == Popularity) { 1159 // If it is the same as what we've seen so far, keep track of it. 1160 SamePopularity.push_back(DPI->first); 1161 } else { 1162 // If it is more popular, remember it. 1163 SamePopularity.clear(); 1164 MostPopularDest = DPI->first; 1165 Popularity = DPI->second; 1166 } 1167 } 1168 1169 // Okay, now we know the most popular destination. If there is more than one 1170 // destination, we need to determine one. This is arbitrary, but we need 1171 // to make a deterministic decision. Pick the first one that appears in the 1172 // successor list. 1173 if (!SamePopularity.empty()) { 1174 SamePopularity.push_back(MostPopularDest); 1175 TerminatorInst *TI = BB->getTerminator(); 1176 for (unsigned i = 0; ; ++i) { 1177 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1178 1179 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1180 continue; 1181 1182 MostPopularDest = TI->getSuccessor(i); 1183 break; 1184 } 1185 } 1186 1187 // Okay, we have finally picked the most popular destination. 1188 return MostPopularDest; 1189 } 1190 1191 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1192 ConstantPreference Preference, 1193 Instruction *CxtI) { 1194 // If threading this would thread across a loop header, don't even try to 1195 // thread the edge. 1196 if (LoopHeaders.count(BB)) 1197 return false; 1198 1199 PredValueInfoTy PredValues; 1200 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1201 return false; 1202 1203 assert(!PredValues.empty() && 1204 "ComputeValueKnownInPredecessors returned true with no values"); 1205 1206 DEBUG(dbgs() << "IN BB: " << *BB; 1207 for (const auto &PredValue : PredValues) { 1208 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1209 << *PredValue.first 1210 << " for pred '" << PredValue.second->getName() << "'.\n"; 1211 }); 1212 1213 // Decide what we want to thread through. Convert our list of known values to 1214 // a list of known destinations for each pred. This also discards duplicate 1215 // predecessors and keeps track of the undefined inputs (which are represented 1216 // as a null dest in the PredToDestList). 1217 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1218 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1219 1220 BasicBlock *OnlyDest = nullptr; 1221 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1222 1223 for (const auto &PredValue : PredValues) { 1224 BasicBlock *Pred = PredValue.second; 1225 if (!SeenPreds.insert(Pred).second) 1226 continue; // Duplicate predecessor entry. 1227 1228 // If the predecessor ends with an indirect goto, we can't change its 1229 // destination. 1230 if (isa<IndirectBrInst>(Pred->getTerminator())) 1231 continue; 1232 1233 Constant *Val = PredValue.first; 1234 1235 BasicBlock *DestBB; 1236 if (isa<UndefValue>(Val)) 1237 DestBB = nullptr; 1238 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1239 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1240 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1241 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1242 } else { 1243 assert(isa<IndirectBrInst>(BB->getTerminator()) 1244 && "Unexpected terminator"); 1245 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1246 } 1247 1248 // If we have exactly one destination, remember it for efficiency below. 1249 if (PredToDestList.empty()) 1250 OnlyDest = DestBB; 1251 else if (OnlyDest != DestBB) 1252 OnlyDest = MultipleDestSentinel; 1253 1254 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1255 } 1256 1257 // If all edges were unthreadable, we fail. 1258 if (PredToDestList.empty()) 1259 return false; 1260 1261 // Determine which is the most common successor. If we have many inputs and 1262 // this block is a switch, we want to start by threading the batch that goes 1263 // to the most popular destination first. If we only know about one 1264 // threadable destination (the common case) we can avoid this. 1265 BasicBlock *MostPopularDest = OnlyDest; 1266 1267 if (MostPopularDest == MultipleDestSentinel) 1268 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1269 1270 // Now that we know what the most popular destination is, factor all 1271 // predecessors that will jump to it into a single predecessor. 1272 SmallVector<BasicBlock*, 16> PredsToFactor; 1273 for (const auto &PredToDest : PredToDestList) 1274 if (PredToDest.second == MostPopularDest) { 1275 BasicBlock *Pred = PredToDest.first; 1276 1277 // This predecessor may be a switch or something else that has multiple 1278 // edges to the block. Factor each of these edges by listing them 1279 // according to # occurrences in PredsToFactor. 1280 for (BasicBlock *Succ : successors(Pred)) 1281 if (Succ == BB) 1282 PredsToFactor.push_back(Pred); 1283 } 1284 1285 // If the threadable edges are branching on an undefined value, we get to pick 1286 // the destination that these predecessors should get to. 1287 if (!MostPopularDest) 1288 MostPopularDest = BB->getTerminator()-> 1289 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1290 1291 // Ok, try to thread it! 1292 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1293 } 1294 1295 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1296 /// a PHI node in the current block. See if there are any simplifications we 1297 /// can do based on inputs to the phi node. 1298 /// 1299 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1300 BasicBlock *BB = PN->getParent(); 1301 1302 // TODO: We could make use of this to do it once for blocks with common PHI 1303 // values. 1304 SmallVector<BasicBlock*, 1> PredBBs; 1305 PredBBs.resize(1); 1306 1307 // If any of the predecessor blocks end in an unconditional branch, we can 1308 // *duplicate* the conditional branch into that block in order to further 1309 // encourage jump threading and to eliminate cases where we have branch on a 1310 // phi of an icmp (branch on icmp is much better). 1311 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1312 BasicBlock *PredBB = PN->getIncomingBlock(i); 1313 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1314 if (PredBr->isUnconditional()) { 1315 PredBBs[0] = PredBB; 1316 // Try to duplicate BB into PredBB. 1317 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1318 return true; 1319 } 1320 } 1321 1322 return false; 1323 } 1324 1325 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1326 /// a xor instruction in the current block. See if there are any 1327 /// simplifications we can do based on inputs to the xor. 1328 /// 1329 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1330 BasicBlock *BB = BO->getParent(); 1331 1332 // If either the LHS or RHS of the xor is a constant, don't do this 1333 // optimization. 1334 if (isa<ConstantInt>(BO->getOperand(0)) || 1335 isa<ConstantInt>(BO->getOperand(1))) 1336 return false; 1337 1338 // If the first instruction in BB isn't a phi, we won't be able to infer 1339 // anything special about any particular predecessor. 1340 if (!isa<PHINode>(BB->front())) 1341 return false; 1342 1343 // If this BB is a landing pad, we won't be able to split the edge into it. 1344 if (BB->isEHPad()) 1345 return false; 1346 1347 // If we have a xor as the branch input to this block, and we know that the 1348 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1349 // the condition into the predecessor and fix that value to true, saving some 1350 // logical ops on that path and encouraging other paths to simplify. 1351 // 1352 // This copies something like this: 1353 // 1354 // BB: 1355 // %X = phi i1 [1], [%X'] 1356 // %Y = icmp eq i32 %A, %B 1357 // %Z = xor i1 %X, %Y 1358 // br i1 %Z, ... 1359 // 1360 // Into: 1361 // BB': 1362 // %Y = icmp ne i32 %A, %B 1363 // br i1 %Y, ... 1364 1365 PredValueInfoTy XorOpValues; 1366 bool isLHS = true; 1367 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1368 WantInteger, BO)) { 1369 assert(XorOpValues.empty()); 1370 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1371 WantInteger, BO)) 1372 return false; 1373 isLHS = false; 1374 } 1375 1376 assert(!XorOpValues.empty() && 1377 "ComputeValueKnownInPredecessors returned true with no values"); 1378 1379 // Scan the information to see which is most popular: true or false. The 1380 // predecessors can be of the set true, false, or undef. 1381 unsigned NumTrue = 0, NumFalse = 0; 1382 for (const auto &XorOpValue : XorOpValues) { 1383 if (isa<UndefValue>(XorOpValue.first)) 1384 // Ignore undefs for the count. 1385 continue; 1386 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1387 ++NumFalse; 1388 else 1389 ++NumTrue; 1390 } 1391 1392 // Determine which value to split on, true, false, or undef if neither. 1393 ConstantInt *SplitVal = nullptr; 1394 if (NumTrue > NumFalse) 1395 SplitVal = ConstantInt::getTrue(BB->getContext()); 1396 else if (NumTrue != 0 || NumFalse != 0) 1397 SplitVal = ConstantInt::getFalse(BB->getContext()); 1398 1399 // Collect all of the blocks that this can be folded into so that we can 1400 // factor this once and clone it once. 1401 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1402 for (const auto &XorOpValue : XorOpValues) { 1403 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1404 continue; 1405 1406 BlocksToFoldInto.push_back(XorOpValue.second); 1407 } 1408 1409 // If we inferred a value for all of the predecessors, then duplication won't 1410 // help us. However, we can just replace the LHS or RHS with the constant. 1411 if (BlocksToFoldInto.size() == 1412 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1413 if (!SplitVal) { 1414 // If all preds provide undef, just nuke the xor, because it is undef too. 1415 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1416 BO->eraseFromParent(); 1417 } else if (SplitVal->isZero()) { 1418 // If all preds provide 0, replace the xor with the other input. 1419 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1420 BO->eraseFromParent(); 1421 } else { 1422 // If all preds provide 1, set the computed value to 1. 1423 BO->setOperand(!isLHS, SplitVal); 1424 } 1425 1426 return true; 1427 } 1428 1429 // Try to duplicate BB into PredBB. 1430 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1431 } 1432 1433 1434 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1435 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1436 /// NewPred using the entries from OldPred (suitably mapped). 1437 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1438 BasicBlock *OldPred, 1439 BasicBlock *NewPred, 1440 DenseMap<Instruction*, Value*> &ValueMap) { 1441 for (BasicBlock::iterator PNI = PHIBB->begin(); 1442 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1443 // Ok, we have a PHI node. Figure out what the incoming value was for the 1444 // DestBlock. 1445 Value *IV = PN->getIncomingValueForBlock(OldPred); 1446 1447 // Remap the value if necessary. 1448 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1449 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1450 if (I != ValueMap.end()) 1451 IV = I->second; 1452 } 1453 1454 PN->addIncoming(IV, NewPred); 1455 } 1456 } 1457 1458 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1459 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1460 /// across BB. Transform the IR to reflect this change. 1461 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1462 const SmallVectorImpl<BasicBlock *> &PredBBs, 1463 BasicBlock *SuccBB) { 1464 // If threading to the same block as we come from, we would infinite loop. 1465 if (SuccBB == BB) { 1466 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1467 << "' - would thread to self!\n"); 1468 return false; 1469 } 1470 1471 // If threading this would thread across a loop header, don't thread the edge. 1472 // See the comments above FindLoopHeaders for justifications and caveats. 1473 if (LoopHeaders.count(BB)) { 1474 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1475 << "' to dest BB '" << SuccBB->getName() 1476 << "' - it might create an irreducible loop!\n"); 1477 return false; 1478 } 1479 1480 unsigned JumpThreadCost = 1481 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1482 if (JumpThreadCost > BBDupThreshold) { 1483 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1484 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1485 return false; 1486 } 1487 1488 // And finally, do it! Start by factoring the predecessors if needed. 1489 BasicBlock *PredBB; 1490 if (PredBBs.size() == 1) 1491 PredBB = PredBBs[0]; 1492 else { 1493 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1494 << " common predecessors.\n"); 1495 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1496 } 1497 1498 // And finally, do it! 1499 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1500 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1501 << ", across block:\n " 1502 << *BB << "\n"); 1503 1504 LVI->threadEdge(PredBB, BB, SuccBB); 1505 1506 // We are going to have to map operands from the original BB block to the new 1507 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1508 // account for entry from PredBB. 1509 DenseMap<Instruction*, Value*> ValueMapping; 1510 1511 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1512 BB->getName()+".thread", 1513 BB->getParent(), BB); 1514 NewBB->moveAfter(PredBB); 1515 1516 // Set the block frequency of NewBB. 1517 if (HasProfileData) { 1518 auto NewBBFreq = 1519 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1520 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1521 } 1522 1523 BasicBlock::iterator BI = BB->begin(); 1524 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1525 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1526 1527 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1528 // mapping and using it to remap operands in the cloned instructions. 1529 for (; !isa<TerminatorInst>(BI); ++BI) { 1530 Instruction *New = BI->clone(); 1531 New->setName(BI->getName()); 1532 NewBB->getInstList().push_back(New); 1533 ValueMapping[&*BI] = New; 1534 1535 // Remap operands to patch up intra-block references. 1536 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1537 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1538 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1539 if (I != ValueMapping.end()) 1540 New->setOperand(i, I->second); 1541 } 1542 } 1543 1544 // We didn't copy the terminator from BB over to NewBB, because there is now 1545 // an unconditional jump to SuccBB. Insert the unconditional jump. 1546 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1547 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1548 1549 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1550 // PHI nodes for NewBB now. 1551 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1552 1553 // If there were values defined in BB that are used outside the block, then we 1554 // now have to update all uses of the value to use either the original value, 1555 // the cloned value, or some PHI derived value. This can require arbitrary 1556 // PHI insertion, of which we are prepared to do, clean these up now. 1557 SSAUpdater SSAUpdate; 1558 SmallVector<Use*, 16> UsesToRename; 1559 for (Instruction &I : *BB) { 1560 // Scan all uses of this instruction to see if it is used outside of its 1561 // block, and if so, record them in UsesToRename. 1562 for (Use &U : I.uses()) { 1563 Instruction *User = cast<Instruction>(U.getUser()); 1564 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1565 if (UserPN->getIncomingBlock(U) == BB) 1566 continue; 1567 } else if (User->getParent() == BB) 1568 continue; 1569 1570 UsesToRename.push_back(&U); 1571 } 1572 1573 // If there are no uses outside the block, we're done with this instruction. 1574 if (UsesToRename.empty()) 1575 continue; 1576 1577 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1578 1579 // We found a use of I outside of BB. Rename all uses of I that are outside 1580 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1581 // with the two values we know. 1582 SSAUpdate.Initialize(I.getType(), I.getName()); 1583 SSAUpdate.AddAvailableValue(BB, &I); 1584 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1585 1586 while (!UsesToRename.empty()) 1587 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1588 DEBUG(dbgs() << "\n"); 1589 } 1590 1591 1592 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1593 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1594 // us to simplify any PHI nodes in BB. 1595 TerminatorInst *PredTerm = PredBB->getTerminator(); 1596 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1597 if (PredTerm->getSuccessor(i) == BB) { 1598 BB->removePredecessor(PredBB, true); 1599 PredTerm->setSuccessor(i, NewBB); 1600 } 1601 1602 // At this point, the IR is fully up to date and consistent. Do a quick scan 1603 // over the new instructions and zap any that are constants or dead. This 1604 // frequently happens because of phi translation. 1605 SimplifyInstructionsInBlock(NewBB, TLI); 1606 1607 // Update the edge weight from BB to SuccBB, which should be less than before. 1608 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1609 1610 // Threaded an edge! 1611 ++NumThreads; 1612 return true; 1613 } 1614 1615 /// Create a new basic block that will be the predecessor of BB and successor of 1616 /// all blocks in Preds. When profile data is available, update the frequency of 1617 /// this new block. 1618 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1619 ArrayRef<BasicBlock *> Preds, 1620 const char *Suffix) { 1621 // Collect the frequencies of all predecessors of BB, which will be used to 1622 // update the edge weight on BB->SuccBB. 1623 BlockFrequency PredBBFreq(0); 1624 if (HasProfileData) 1625 for (auto Pred : Preds) 1626 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1627 1628 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1629 1630 // Set the block frequency of the newly created PredBB, which is the sum of 1631 // frequencies of Preds. 1632 if (HasProfileData) 1633 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1634 return PredBB; 1635 } 1636 1637 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1638 const TerminatorInst *TI = BB->getTerminator(); 1639 assert(TI->getNumSuccessors() > 1 && "not a split"); 1640 1641 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1642 if (!WeightsNode) 1643 return false; 1644 1645 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1646 if (MDName->getString() != "branch_weights") 1647 return false; 1648 1649 // Ensure there are weights for all of the successors. Note that the first 1650 // operand to the metadata node is a name, not a weight. 1651 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 1652 } 1653 1654 /// Update the block frequency of BB and branch weight and the metadata on the 1655 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1656 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1657 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1658 BasicBlock *BB, 1659 BasicBlock *NewBB, 1660 BasicBlock *SuccBB) { 1661 if (!HasProfileData) 1662 return; 1663 1664 assert(BFI && BPI && "BFI & BPI should have been created here"); 1665 1666 // As the edge from PredBB to BB is deleted, we have to update the block 1667 // frequency of BB. 1668 auto BBOrigFreq = BFI->getBlockFreq(BB); 1669 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1670 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1671 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1672 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1673 1674 // Collect updated outgoing edges' frequencies from BB and use them to update 1675 // edge probabilities. 1676 SmallVector<uint64_t, 4> BBSuccFreq; 1677 for (BasicBlock *Succ : successors(BB)) { 1678 auto SuccFreq = (Succ == SuccBB) 1679 ? BB2SuccBBFreq - NewBBFreq 1680 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 1681 BBSuccFreq.push_back(SuccFreq.getFrequency()); 1682 } 1683 1684 uint64_t MaxBBSuccFreq = 1685 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 1686 1687 SmallVector<BranchProbability, 4> BBSuccProbs; 1688 if (MaxBBSuccFreq == 0) 1689 BBSuccProbs.assign(BBSuccFreq.size(), 1690 {1, static_cast<unsigned>(BBSuccFreq.size())}); 1691 else { 1692 for (uint64_t Freq : BBSuccFreq) 1693 BBSuccProbs.push_back( 1694 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 1695 // Normalize edge probabilities so that they sum up to one. 1696 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 1697 BBSuccProbs.end()); 1698 } 1699 1700 // Update edge probabilities in BPI. 1701 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 1702 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 1703 1704 // Update the profile metadata as well. 1705 // 1706 // Don't do this if the profile of the transformed blocks was statically 1707 // estimated. (This could occur despite the function having an entry 1708 // frequency in completely cold parts of the CFG.) 1709 // 1710 // In this case we don't want to suggest to subsequent passes that the 1711 // calculated weights are fully consistent. Consider this graph: 1712 // 1713 // check_1 1714 // 50% / | 1715 // eq_1 | 50% 1716 // \ | 1717 // check_2 1718 // 50% / | 1719 // eq_2 | 50% 1720 // \ | 1721 // check_3 1722 // 50% / | 1723 // eq_3 | 50% 1724 // \ | 1725 // 1726 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 1727 // the overall probabilities are inconsistent; the total probability that the 1728 // value is either 1, 2 or 3 is 150%. 1729 // 1730 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 1731 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 1732 // the loop exit edge. Then based solely on static estimation we would assume 1733 // the loop was extremely hot. 1734 // 1735 // FIXME this locally as well so that BPI and BFI are consistent as well. We 1736 // shouldn't make edges extremely likely or unlikely based solely on static 1737 // estimation. 1738 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 1739 SmallVector<uint32_t, 4> Weights; 1740 for (auto Prob : BBSuccProbs) 1741 Weights.push_back(Prob.getNumerator()); 1742 1743 auto TI = BB->getTerminator(); 1744 TI->setMetadata( 1745 LLVMContext::MD_prof, 1746 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 1747 } 1748 } 1749 1750 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1751 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1752 /// If we can duplicate the contents of BB up into PredBB do so now, this 1753 /// improves the odds that the branch will be on an analyzable instruction like 1754 /// a compare. 1755 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 1756 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 1757 assert(!PredBBs.empty() && "Can't handle an empty set"); 1758 1759 // If BB is a loop header, then duplicating this block outside the loop would 1760 // cause us to transform this into an irreducible loop, don't do this. 1761 // See the comments above FindLoopHeaders for justifications and caveats. 1762 if (LoopHeaders.count(BB)) { 1763 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1764 << "' into predecessor block '" << PredBBs[0]->getName() 1765 << "' - it might create an irreducible loop!\n"); 1766 return false; 1767 } 1768 1769 unsigned DuplicationCost = 1770 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1771 if (DuplicationCost > BBDupThreshold) { 1772 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1773 << "' - Cost is too high: " << DuplicationCost << "\n"); 1774 return false; 1775 } 1776 1777 // And finally, do it! Start by factoring the predecessors if needed. 1778 BasicBlock *PredBB; 1779 if (PredBBs.size() == 1) 1780 PredBB = PredBBs[0]; 1781 else { 1782 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1783 << " common predecessors.\n"); 1784 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1785 } 1786 1787 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1788 // of PredBB. 1789 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1790 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1791 << DuplicationCost << " block is:" << *BB << "\n"); 1792 1793 // Unless PredBB ends with an unconditional branch, split the edge so that we 1794 // can just clone the bits from BB into the end of the new PredBB. 1795 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1796 1797 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1798 PredBB = SplitEdge(PredBB, BB); 1799 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1800 } 1801 1802 // We are going to have to map operands from the original BB block into the 1803 // PredBB block. Evaluate PHI nodes in BB. 1804 DenseMap<Instruction*, Value*> ValueMapping; 1805 1806 BasicBlock::iterator BI = BB->begin(); 1807 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1808 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1809 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1810 // mapping and using it to remap operands in the cloned instructions. 1811 for (; BI != BB->end(); ++BI) { 1812 Instruction *New = BI->clone(); 1813 1814 // Remap operands to patch up intra-block references. 1815 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1816 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1817 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1818 if (I != ValueMapping.end()) 1819 New->setOperand(i, I->second); 1820 } 1821 1822 // If this instruction can be simplified after the operands are updated, 1823 // just use the simplified value instead. This frequently happens due to 1824 // phi translation. 1825 if (Value *IV = 1826 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1827 ValueMapping[&*BI] = IV; 1828 if (!New->mayHaveSideEffects()) { 1829 delete New; 1830 New = nullptr; 1831 } 1832 } else { 1833 ValueMapping[&*BI] = New; 1834 } 1835 if (New) { 1836 // Otherwise, insert the new instruction into the block. 1837 New->setName(BI->getName()); 1838 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 1839 } 1840 } 1841 1842 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1843 // add entries to the PHI nodes for branch from PredBB now. 1844 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1845 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1846 ValueMapping); 1847 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1848 ValueMapping); 1849 1850 // If there were values defined in BB that are used outside the block, then we 1851 // now have to update all uses of the value to use either the original value, 1852 // the cloned value, or some PHI derived value. This can require arbitrary 1853 // PHI insertion, of which we are prepared to do, clean these up now. 1854 SSAUpdater SSAUpdate; 1855 SmallVector<Use*, 16> UsesToRename; 1856 for (Instruction &I : *BB) { 1857 // Scan all uses of this instruction to see if it is used outside of its 1858 // block, and if so, record them in UsesToRename. 1859 for (Use &U : I.uses()) { 1860 Instruction *User = cast<Instruction>(U.getUser()); 1861 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1862 if (UserPN->getIncomingBlock(U) == BB) 1863 continue; 1864 } else if (User->getParent() == BB) 1865 continue; 1866 1867 UsesToRename.push_back(&U); 1868 } 1869 1870 // If there are no uses outside the block, we're done with this instruction. 1871 if (UsesToRename.empty()) 1872 continue; 1873 1874 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1875 1876 // We found a use of I outside of BB. Rename all uses of I that are outside 1877 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1878 // with the two values we know. 1879 SSAUpdate.Initialize(I.getType(), I.getName()); 1880 SSAUpdate.AddAvailableValue(BB, &I); 1881 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 1882 1883 while (!UsesToRename.empty()) 1884 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1885 DEBUG(dbgs() << "\n"); 1886 } 1887 1888 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1889 // that we nuked. 1890 BB->removePredecessor(PredBB, true); 1891 1892 // Remove the unconditional branch at the end of the PredBB block. 1893 OldPredBranch->eraseFromParent(); 1894 1895 ++NumDupes; 1896 return true; 1897 } 1898 1899 /// TryToUnfoldSelect - Look for blocks of the form 1900 /// bb1: 1901 /// %a = select 1902 /// br bb2 1903 /// 1904 /// bb2: 1905 /// %p = phi [%a, %bb1] ... 1906 /// %c = icmp %p 1907 /// br i1 %c 1908 /// 1909 /// And expand the select into a branch structure if one of its arms allows %c 1910 /// to be folded. This later enables threading from bb1 over bb2. 1911 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1912 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1913 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1914 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1915 1916 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1917 CondLHS->getParent() != BB) 1918 return false; 1919 1920 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1921 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1922 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1923 1924 // Look if one of the incoming values is a select in the corresponding 1925 // predecessor. 1926 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1927 continue; 1928 1929 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1930 if (!PredTerm || !PredTerm->isUnconditional()) 1931 continue; 1932 1933 // Now check if one of the select values would allow us to constant fold the 1934 // terminator in BB. We don't do the transform if both sides fold, those 1935 // cases will be threaded in any case. 1936 LazyValueInfo::Tristate LHSFolds = 1937 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1938 CondRHS, Pred, BB, CondCmp); 1939 LazyValueInfo::Tristate RHSFolds = 1940 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1941 CondRHS, Pred, BB, CondCmp); 1942 if ((LHSFolds != LazyValueInfo::Unknown || 1943 RHSFolds != LazyValueInfo::Unknown) && 1944 LHSFolds != RHSFolds) { 1945 // Expand the select. 1946 // 1947 // Pred -- 1948 // | v 1949 // | NewBB 1950 // | | 1951 // |----- 1952 // v 1953 // BB 1954 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1955 BB->getParent(), BB); 1956 // Move the unconditional branch to NewBB. 1957 PredTerm->removeFromParent(); 1958 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1959 // Create a conditional branch and update PHI nodes. 1960 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1961 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1962 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1963 // The select is now dead. 1964 SI->eraseFromParent(); 1965 1966 // Update any other PHI nodes in BB. 1967 for (BasicBlock::iterator BI = BB->begin(); 1968 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1969 if (Phi != CondLHS) 1970 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1971 return true; 1972 } 1973 } 1974 return false; 1975 } 1976 1977 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select in the same BB of the form 1978 /// bb: 1979 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 1980 /// %s = select p, trueval, falseval 1981 /// 1982 /// And expand the select into a branch structure. This later enables 1983 /// jump-threading over bb in this pass. 1984 /// 1985 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 1986 /// select if the associated PHI has at least one constant. If the unfolded 1987 /// select is not jump-threaded, it will be folded again in the later 1988 /// optimizations. 1989 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 1990 // If threading this would thread across a loop header, don't thread the edge. 1991 // See the comments above FindLoopHeaders for justifications and caveats. 1992 if (LoopHeaders.count(BB)) 1993 return false; 1994 1995 // Look for a Phi/Select pair in the same basic block. The Phi feeds the 1996 // condition of the Select and at least one of the incoming values is a 1997 // constant. 1998 for (BasicBlock::iterator BI = BB->begin(); 1999 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2000 unsigned NumPHIValues = PN->getNumIncomingValues(); 2001 if (NumPHIValues == 0 || !PN->hasOneUse()) 2002 continue; 2003 2004 SelectInst *SI = dyn_cast<SelectInst>(PN->user_back()); 2005 if (!SI || SI->getParent() != BB) 2006 continue; 2007 2008 Value *Cond = SI->getCondition(); 2009 if (!Cond || Cond != PN || !Cond->getType()->isIntegerTy(1)) 2010 continue; 2011 2012 bool HasConst = false; 2013 for (unsigned i = 0; i != NumPHIValues; ++i) { 2014 if (PN->getIncomingBlock(i) == BB) 2015 return false; 2016 if (isa<ConstantInt>(PN->getIncomingValue(i))) 2017 HasConst = true; 2018 } 2019 2020 if (HasConst) { 2021 // Expand the select. 2022 TerminatorInst *Term = 2023 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2024 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2025 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2026 NewPN->addIncoming(SI->getFalseValue(), BB); 2027 SI->replaceAllUsesWith(NewPN); 2028 SI->eraseFromParent(); 2029 return true; 2030 } 2031 } 2032 2033 return false; 2034 } 2035 2036 /// Try to propagate a guard from the current BB into one of its predecessors 2037 /// in case if another branch of execution implies that the condition of this 2038 /// guard is always true. Currently we only process the simplest case that 2039 /// looks like: 2040 /// 2041 /// Start: 2042 /// %cond = ... 2043 /// br i1 %cond, label %T1, label %F1 2044 /// T1: 2045 /// br label %Merge 2046 /// F1: 2047 /// br label %Merge 2048 /// Merge: 2049 /// %condGuard = ... 2050 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2051 /// 2052 /// And cond either implies condGuard or !condGuard. In this case all the 2053 /// instructions before the guard can be duplicated in both branches, and the 2054 /// guard is then threaded to one of them. 2055 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2056 using namespace PatternMatch; 2057 // We only want to deal with two predecessors. 2058 BasicBlock *Pred1, *Pred2; 2059 auto PI = pred_begin(BB), PE = pred_end(BB); 2060 if (PI == PE) 2061 return false; 2062 Pred1 = *PI++; 2063 if (PI == PE) 2064 return false; 2065 Pred2 = *PI++; 2066 if (PI != PE) 2067 return false; 2068 if (Pred1 == Pred2) 2069 return false; 2070 2071 // Try to thread one of the guards of the block. 2072 // TODO: Look up deeper than to immediate predecessor? 2073 auto *Parent = Pred1->getSinglePredecessor(); 2074 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2075 return false; 2076 2077 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2078 for (auto &I : *BB) 2079 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2080 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2081 return true; 2082 2083 return false; 2084 } 2085 2086 /// Try to propagate the guard from BB which is the lower block of a diamond 2087 /// to one of its branches, in case if diamond's condition implies guard's 2088 /// condition. 2089 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2090 BranchInst *BI) { 2091 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2092 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2093 Value *GuardCond = Guard->getArgOperand(0); 2094 Value *BranchCond = BI->getCondition(); 2095 BasicBlock *TrueDest = BI->getSuccessor(0); 2096 BasicBlock *FalseDest = BI->getSuccessor(1); 2097 2098 auto &DL = BB->getModule()->getDataLayout(); 2099 bool TrueDestIsSafe = false; 2100 bool FalseDestIsSafe = false; 2101 2102 // True dest is safe if BranchCond => GuardCond. 2103 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2104 if (Impl && *Impl) 2105 TrueDestIsSafe = true; 2106 else { 2107 // False dest is safe if !BranchCond => GuardCond. 2108 Impl = 2109 isImpliedCondition(BranchCond, GuardCond, DL, /* InvertAPred */ true); 2110 if (Impl && *Impl) 2111 FalseDestIsSafe = true; 2112 } 2113 2114 if (!TrueDestIsSafe && !FalseDestIsSafe) 2115 return false; 2116 2117 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2118 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2119 2120 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2121 Instruction *AfterGuard = Guard->getNextNode(); 2122 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2123 if (Cost > BBDupThreshold) 2124 return false; 2125 // Duplicate all instructions before the guard and the guard itself to the 2126 // branch where implication is not proved. 2127 GuardedBlock = DuplicateInstructionsInSplitBetween( 2128 BB, GuardedBlock, AfterGuard, GuardedMapping); 2129 assert(GuardedBlock && "Could not create the guarded block?"); 2130 // Duplicate all instructions before the guard in the unguarded branch. 2131 // Since we have successfully duplicated the guarded block and this block 2132 // has fewer instructions, we expect it to succeed. 2133 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2134 Guard, UnguardedMapping); 2135 assert(UnguardedBlock && "Could not create the unguarded block?"); 2136 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2137 << GuardedBlock->getName() << "\n"); 2138 2139 // Some instructions before the guard may still have uses. For them, we need 2140 // to create Phi nodes merging their copies in both guarded and unguarded 2141 // branches. Those instructions that have no uses can be just removed. 2142 SmallVector<Instruction *, 4> ToRemove; 2143 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2144 if (!isa<PHINode>(&*BI)) 2145 ToRemove.push_back(&*BI); 2146 2147 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2148 assert(InsertionPoint && "Empty block?"); 2149 // Substitute with Phis & remove. 2150 for (auto *Inst : reverse(ToRemove)) { 2151 if (!Inst->use_empty()) { 2152 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2153 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2154 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2155 NewPN->insertBefore(InsertionPoint); 2156 Inst->replaceAllUsesWith(NewPN); 2157 } 2158 Inst->eraseFromParent(); 2159 } 2160 return true; 2161 } 2162