1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/BlockFrequencyInfo.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/CFG.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/GlobalsModRef.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/LazyValueInfo.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/Analysis/Utils/Local.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CFG.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/PassManager.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/BlockFrequency.h"
60 #include "llvm/Support/BranchProbability.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Scalar.h"
66 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
67 #include "llvm/Transforms/Utils/Cloning.h"
68 #include "llvm/Transforms/Utils/SSAUpdater.h"
69 #include "llvm/Transforms/Utils/SSAUpdaterBulk.h"
70 #include "llvm/Transforms/Utils/ValueMapper.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstddef>
74 #include <cstdint>
75 #include <iterator>
76 #include <memory>
77 #include <utility>
78 
79 using namespace llvm;
80 using namespace jumpthreading;
81 
82 #define DEBUG_TYPE "jump-threading"
83 
84 STATISTIC(NumThreads, "Number of jumps threaded");
85 STATISTIC(NumFolds,   "Number of terminators folded");
86 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
87 
88 static cl::opt<unsigned>
89 BBDuplicateThreshold("jump-threading-threshold",
90           cl::desc("Max block size to duplicate for jump threading"),
91           cl::init(6), cl::Hidden);
92 
93 static cl::opt<unsigned>
94 ImplicationSearchThreshold(
95   "jump-threading-implication-search-threshold",
96   cl::desc("The number of predecessors to search for a stronger "
97            "condition to use to thread over a weaker condition"),
98   cl::init(3), cl::Hidden);
99 
100 static cl::opt<bool> PrintLVIAfterJumpThreading(
101     "print-lvi-after-jump-threading",
102     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
103     cl::Hidden);
104 
105 namespace {
106 
107   /// This pass performs 'jump threading', which looks at blocks that have
108   /// multiple predecessors and multiple successors.  If one or more of the
109   /// predecessors of the block can be proven to always jump to one of the
110   /// successors, we forward the edge from the predecessor to the successor by
111   /// duplicating the contents of this block.
112   ///
113   /// An example of when this can occur is code like this:
114   ///
115   ///   if () { ...
116   ///     X = 4;
117   ///   }
118   ///   if (X < 3) {
119   ///
120   /// In this case, the unconditional branch at the end of the first if can be
121   /// revectored to the false side of the second if.
122   class JumpThreading : public FunctionPass {
123     JumpThreadingPass Impl;
124 
125   public:
126     static char ID; // Pass identification
127 
128     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
129       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
130     }
131 
132     bool runOnFunction(Function &F) override;
133 
134     void getAnalysisUsage(AnalysisUsage &AU) const override {
135       AU.addRequired<DominatorTreeWrapperPass>();
136       AU.addPreserved<DominatorTreeWrapperPass>();
137       AU.addRequired<AAResultsWrapperPass>();
138       AU.addRequired<LazyValueInfoWrapperPass>();
139       AU.addPreserved<LazyValueInfoWrapperPass>();
140       AU.addPreserved<GlobalsAAWrapperPass>();
141       AU.addRequired<TargetLibraryInfoWrapperPass>();
142     }
143 
144     void releaseMemory() override { Impl.releaseMemory(); }
145   };
146 
147 } // end anonymous namespace
148 
149 char JumpThreading::ID = 0;
150 
151 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
152                 "Jump Threading", false, false)
153 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
156 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
157 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
158                 "Jump Threading", false, false)
159 
160 // Public interface to the Jump Threading pass
161 FunctionPass *llvm::createJumpThreadingPass(int Threshold) {
162   return new JumpThreading(Threshold);
163 }
164 
165 JumpThreadingPass::JumpThreadingPass(int T) {
166   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
167 }
168 
169 // Update branch probability information according to conditional
170 // branch probablity. This is usually made possible for cloned branches
171 // in inline instances by the context specific profile in the caller.
172 // For instance,
173 //
174 //  [Block PredBB]
175 //  [Branch PredBr]
176 //  if (t) {
177 //     Block A;
178 //  } else {
179 //     Block B;
180 //  }
181 //
182 //  [Block BB]
183 //  cond = PN([true, %A], [..., %B]); // PHI node
184 //  [Branch CondBr]
185 //  if (cond) {
186 //    ...  // P(cond == true) = 1%
187 //  }
188 //
189 //  Here we know that when block A is taken, cond must be true, which means
190 //      P(cond == true | A) = 1
191 //
192 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
193 //                               P(cond == true | B) * P(B)
194 //  we get:
195 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
196 //
197 //  which gives us:
198 //     P(A) is less than P(cond == true), i.e.
199 //     P(t == true) <= P(cond == true)
200 //
201 //  In other words, if we know P(cond == true) is unlikely, we know
202 //  that P(t == true) is also unlikely.
203 //
204 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
205   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
206   if (!CondBr)
207     return;
208 
209   BranchProbability BP;
210   uint64_t TrueWeight, FalseWeight;
211   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
212     return;
213 
214   // Returns the outgoing edge of the dominating predecessor block
215   // that leads to the PhiNode's incoming block:
216   auto GetPredOutEdge =
217       [](BasicBlock *IncomingBB,
218          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
219     auto *PredBB = IncomingBB;
220     auto *SuccBB = PhiBB;
221     while (true) {
222       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
223       if (PredBr && PredBr->isConditional())
224         return {PredBB, SuccBB};
225       auto *SinglePredBB = PredBB->getSinglePredecessor();
226       if (!SinglePredBB)
227         return {nullptr, nullptr};
228       SuccBB = PredBB;
229       PredBB = SinglePredBB;
230     }
231   };
232 
233   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
234     Value *PhiOpnd = PN->getIncomingValue(i);
235     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
236 
237     if (!CI || !CI->getType()->isIntegerTy(1))
238       continue;
239 
240     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
241                             TrueWeight, TrueWeight + FalseWeight)
242                       : BranchProbability::getBranchProbability(
243                             FalseWeight, TrueWeight + FalseWeight));
244 
245     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
246     if (!PredOutEdge.first)
247       return;
248 
249     BasicBlock *PredBB = PredOutEdge.first;
250     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
251 
252     uint64_t PredTrueWeight, PredFalseWeight;
253     // FIXME: We currently only set the profile data when it is missing.
254     // With PGO, this can be used to refine even existing profile data with
255     // context information. This needs to be done after more performance
256     // testing.
257     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
258       continue;
259 
260     // We can not infer anything useful when BP >= 50%, because BP is the
261     // upper bound probability value.
262     if (BP >= BranchProbability(50, 100))
263       continue;
264 
265     SmallVector<uint32_t, 2> Weights;
266     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
267       Weights.push_back(BP.getNumerator());
268       Weights.push_back(BP.getCompl().getNumerator());
269     } else {
270       Weights.push_back(BP.getCompl().getNumerator());
271       Weights.push_back(BP.getNumerator());
272     }
273     PredBr->setMetadata(LLVMContext::MD_prof,
274                         MDBuilder(PredBr->getParent()->getContext())
275                             .createBranchWeights(Weights));
276   }
277 }
278 
279 /// runOnFunction - Toplevel algorithm.
280 bool JumpThreading::runOnFunction(Function &F) {
281   if (skipFunction(F))
282     return false;
283   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
284   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
285   // DT if it's available.
286   auto DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
287   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
288   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
289   DeferredDominance DDT(*DT);
290   std::unique_ptr<BlockFrequencyInfo> BFI;
291   std::unique_ptr<BranchProbabilityInfo> BPI;
292   bool HasProfileData = F.hasProfileData();
293   if (HasProfileData) {
294     LoopInfo LI{DominatorTree(F)};
295     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
296     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
297   }
298 
299   bool Changed = Impl.runImpl(F, TLI, LVI, AA, &DDT, HasProfileData,
300                               std::move(BFI), std::move(BPI));
301   if (PrintLVIAfterJumpThreading) {
302     dbgs() << "LVI for function '" << F.getName() << "':\n";
303     LVI->printLVI(F, *DT, dbgs());
304   }
305   return Changed;
306 }
307 
308 PreservedAnalyses JumpThreadingPass::run(Function &F,
309                                          FunctionAnalysisManager &AM) {
310   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
311   // Get DT analysis before LVI. When LVI is initialized it conditionally adds
312   // DT if it's available.
313   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
314   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
315   auto &AA = AM.getResult<AAManager>(F);
316   DeferredDominance DDT(DT);
317 
318   std::unique_ptr<BlockFrequencyInfo> BFI;
319   std::unique_ptr<BranchProbabilityInfo> BPI;
320   if (F.hasProfileData()) {
321     LoopInfo LI{DominatorTree(F)};
322     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
323     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
324   }
325 
326   bool Changed = runImpl(F, &TLI, &LVI, &AA, &DDT, HasProfileData,
327                          std::move(BFI), std::move(BPI));
328 
329   if (!Changed)
330     return PreservedAnalyses::all();
331   PreservedAnalyses PA;
332   PA.preserve<GlobalsAA>();
333   PA.preserve<DominatorTreeAnalysis>();
334   PA.preserve<LazyValueAnalysis>();
335   return PA;
336 }
337 
338 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
339                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
340                                 DeferredDominance *DDT_, bool HasProfileData_,
341                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
342                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
343   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
344   TLI = TLI_;
345   LVI = LVI_;
346   AA = AA_;
347   DDT = DDT_;
348   BFI.reset();
349   BPI.reset();
350   // When profile data is available, we need to update edge weights after
351   // successful jump threading, which requires both BPI and BFI being available.
352   HasProfileData = HasProfileData_;
353   auto *GuardDecl = F.getParent()->getFunction(
354       Intrinsic::getName(Intrinsic::experimental_guard));
355   HasGuards = GuardDecl && !GuardDecl->use_empty();
356   if (HasProfileData) {
357     BPI = std::move(BPI_);
358     BFI = std::move(BFI_);
359   }
360 
361   // JumpThreading must not processes blocks unreachable from entry. It's a
362   // waste of compute time and can potentially lead to hangs.
363   SmallPtrSet<BasicBlock *, 16> Unreachable;
364   DominatorTree &DT = DDT->flush();
365   for (auto &BB : F)
366     if (!DT.isReachableFromEntry(&BB))
367       Unreachable.insert(&BB);
368 
369   FindLoopHeaders(F);
370 
371   bool EverChanged = false;
372   bool Changed;
373   do {
374     Changed = false;
375     for (auto &BB : F) {
376       if (Unreachable.count(&BB))
377         continue;
378       while (ProcessBlock(&BB)) // Thread all of the branches we can over BB.
379         Changed = true;
380       // Stop processing BB if it's the entry or is now deleted. The following
381       // routines attempt to eliminate BB and locating a suitable replacement
382       // for the entry is non-trivial.
383       if (&BB == &F.getEntryBlock() || DDT->pendingDeletedBB(&BB))
384         continue;
385 
386       if (pred_empty(&BB)) {
387         // When ProcessBlock makes BB unreachable it doesn't bother to fix up
388         // the instructions in it. We must remove BB to prevent invalid IR.
389         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB.getName()
390                      << "' with terminator: " << *BB.getTerminator() << '\n');
391         LoopHeaders.erase(&BB);
392         LVI->eraseBlock(&BB);
393         DeleteDeadBlock(&BB, DDT);
394         Changed = true;
395         continue;
396       }
397 
398       // ProcessBlock doesn't thread BBs with unconditional TIs. However, if BB
399       // is "almost empty", we attempt to merge BB with its sole successor.
400       auto *BI = dyn_cast<BranchInst>(BB.getTerminator());
401       if (BI && BI->isUnconditional() &&
402           // The terminator must be the only non-phi instruction in BB.
403           BB.getFirstNonPHIOrDbg()->isTerminator() &&
404           // Don't alter Loop headers and latches to ensure another pass can
405           // detect and transform nested loops later.
406           !LoopHeaders.count(&BB) && !LoopHeaders.count(BI->getSuccessor(0)) &&
407           TryToSimplifyUncondBranchFromEmptyBlock(&BB, DDT)) {
408         // BB is valid for cleanup here because we passed in DDT. F remains
409         // BB's parent until a DDT->flush() event.
410         LVI->eraseBlock(&BB);
411         Changed = true;
412       }
413     }
414     EverChanged |= Changed;
415   } while (Changed);
416 
417   LoopHeaders.clear();
418   DDT->flush();
419   LVI->enableDT();
420   return EverChanged;
421 }
422 
423 // Replace uses of Cond with ToVal when safe to do so. If all uses are
424 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
425 // because we may incorrectly replace uses when guards/assumes are uses of
426 // of `Cond` and we used the guards/assume to reason about the `Cond` value
427 // at the end of block. RAUW unconditionally replaces all uses
428 // including the guards/assumes themselves and the uses before the
429 // guard/assume.
430 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
431   assert(Cond->getType() == ToVal->getType());
432   auto *BB = Cond->getParent();
433   // We can unconditionally replace all uses in non-local blocks (i.e. uses
434   // strictly dominated by BB), since LVI information is true from the
435   // terminator of BB.
436   replaceNonLocalUsesWith(Cond, ToVal);
437   for (Instruction &I : reverse(*BB)) {
438     // Reached the Cond whose uses we are trying to replace, so there are no
439     // more uses.
440     if (&I == Cond)
441       break;
442     // We only replace uses in instructions that are guaranteed to reach the end
443     // of BB, where we know Cond is ToVal.
444     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
445       break;
446     I.replaceUsesOfWith(Cond, ToVal);
447   }
448   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
449     Cond->eraseFromParent();
450 }
451 
452 /// Return the cost of duplicating a piece of this block from first non-phi
453 /// and before StopAt instruction to thread across it. Stop scanning the block
454 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
455 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
456                                              Instruction *StopAt,
457                                              unsigned Threshold) {
458   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
459   /// Ignore PHI nodes, these will be flattened when duplication happens.
460   BasicBlock::const_iterator I(BB->getFirstNonPHI());
461 
462   // FIXME: THREADING will delete values that are just used to compute the
463   // branch, so they shouldn't count against the duplication cost.
464 
465   unsigned Bonus = 0;
466   if (BB->getTerminator() == StopAt) {
467     // Threading through a switch statement is particularly profitable.  If this
468     // block ends in a switch, decrease its cost to make it more likely to
469     // happen.
470     if (isa<SwitchInst>(StopAt))
471       Bonus = 6;
472 
473     // The same holds for indirect branches, but slightly more so.
474     if (isa<IndirectBrInst>(StopAt))
475       Bonus = 8;
476   }
477 
478   // Bump the threshold up so the early exit from the loop doesn't skip the
479   // terminator-based Size adjustment at the end.
480   Threshold += Bonus;
481 
482   // Sum up the cost of each instruction until we get to the terminator.  Don't
483   // include the terminator because the copy won't include it.
484   unsigned Size = 0;
485   for (; &*I != StopAt; ++I) {
486 
487     // Stop scanning the block if we've reached the threshold.
488     if (Size > Threshold)
489       return Size;
490 
491     // Debugger intrinsics don't incur code size.
492     if (isa<DbgInfoIntrinsic>(I)) continue;
493 
494     // If this is a pointer->pointer bitcast, it is free.
495     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
496       continue;
497 
498     // Bail out if this instruction gives back a token type, it is not possible
499     // to duplicate it if it is used outside this BB.
500     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
501       return ~0U;
502 
503     // All other instructions count for at least one unit.
504     ++Size;
505 
506     // Calls are more expensive.  If they are non-intrinsic calls, we model them
507     // as having cost of 4.  If they are a non-vector intrinsic, we model them
508     // as having cost of 2 total, and if they are a vector intrinsic, we model
509     // them as having cost 1.
510     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
511       if (CI->cannotDuplicate() || CI->isConvergent())
512         // Blocks with NoDuplicate are modelled as having infinite cost, so they
513         // are never duplicated.
514         return ~0U;
515       else if (!isa<IntrinsicInst>(CI))
516         Size += 3;
517       else if (!CI->getType()->isVectorTy())
518         Size += 1;
519     }
520   }
521 
522   return Size > Bonus ? Size - Bonus : 0;
523 }
524 
525 /// FindLoopHeaders - We do not want jump threading to turn proper loop
526 /// structures into irreducible loops.  Doing this breaks up the loop nesting
527 /// hierarchy and pessimizes later transformations.  To prevent this from
528 /// happening, we first have to find the loop headers.  Here we approximate this
529 /// by finding targets of backedges in the CFG.
530 ///
531 /// Note that there definitely are cases when we want to allow threading of
532 /// edges across a loop header.  For example, threading a jump from outside the
533 /// loop (the preheader) to an exit block of the loop is definitely profitable.
534 /// It is also almost always profitable to thread backedges from within the loop
535 /// to exit blocks, and is often profitable to thread backedges to other blocks
536 /// within the loop (forming a nested loop).  This simple analysis is not rich
537 /// enough to track all of these properties and keep it up-to-date as the CFG
538 /// mutates, so we don't allow any of these transformations.
539 void JumpThreadingPass::FindLoopHeaders(Function &F) {
540   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
541   FindFunctionBackedges(F, Edges);
542 
543   for (const auto &Edge : Edges)
544     LoopHeaders.insert(Edge.second);
545 }
546 
547 /// getKnownConstant - Helper method to determine if we can thread over a
548 /// terminator with the given value as its condition, and if so what value to
549 /// use for that. What kind of value this is depends on whether we want an
550 /// integer or a block address, but an undef is always accepted.
551 /// Returns null if Val is null or not an appropriate constant.
552 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
553   if (!Val)
554     return nullptr;
555 
556   // Undef is "known" enough.
557   if (UndefValue *U = dyn_cast<UndefValue>(Val))
558     return U;
559 
560   if (Preference == WantBlockAddress)
561     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
562 
563   return dyn_cast<ConstantInt>(Val);
564 }
565 
566 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
567 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
568 /// in any of our predecessors.  If so, return the known list of value and pred
569 /// BB in the result vector.
570 ///
571 /// This returns true if there were any known values.
572 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
573     Value *V, BasicBlock *BB, PredValueInfo &Result,
574     ConstantPreference Preference, Instruction *CxtI) {
575   // This method walks up use-def chains recursively.  Because of this, we could
576   // get into an infinite loop going around loops in the use-def chain.  To
577   // prevent this, keep track of what (value, block) pairs we've already visited
578   // and terminate the search if we loop back to them
579   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
580     return false;
581 
582   // An RAII help to remove this pair from the recursion set once the recursion
583   // stack pops back out again.
584   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
585 
586   // If V is a constant, then it is known in all predecessors.
587   if (Constant *KC = getKnownConstant(V, Preference)) {
588     for (BasicBlock *Pred : predecessors(BB))
589       Result.push_back(std::make_pair(KC, Pred));
590 
591     return !Result.empty();
592   }
593 
594   // If V is a non-instruction value, or an instruction in a different block,
595   // then it can't be derived from a PHI.
596   Instruction *I = dyn_cast<Instruction>(V);
597   if (!I || I->getParent() != BB) {
598 
599     // Okay, if this is a live-in value, see if it has a known value at the end
600     // of any of our predecessors.
601     //
602     // FIXME: This should be an edge property, not a block end property.
603     /// TODO: Per PR2563, we could infer value range information about a
604     /// predecessor based on its terminator.
605     //
606     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
607     // "I" is a non-local compare-with-a-constant instruction.  This would be
608     // able to handle value inequalities better, for example if the compare is
609     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
610     // Perhaps getConstantOnEdge should be smart enough to do this?
611 
612     if (DDT->pending())
613       LVI->disableDT();
614     else
615       LVI->enableDT();
616     for (BasicBlock *P : predecessors(BB)) {
617       // If the value is known by LazyValueInfo to be a constant in a
618       // predecessor, use that information to try to thread this block.
619       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
620       if (Constant *KC = getKnownConstant(PredCst, Preference))
621         Result.push_back(std::make_pair(KC, P));
622     }
623 
624     return !Result.empty();
625   }
626 
627   /// If I is a PHI node, then we know the incoming values for any constants.
628   if (PHINode *PN = dyn_cast<PHINode>(I)) {
629     if (DDT->pending())
630       LVI->disableDT();
631     else
632       LVI->enableDT();
633     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
634       Value *InVal = PN->getIncomingValue(i);
635       if (Constant *KC = getKnownConstant(InVal, Preference)) {
636         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
637       } else {
638         Constant *CI = LVI->getConstantOnEdge(InVal,
639                                               PN->getIncomingBlock(i),
640                                               BB, CxtI);
641         if (Constant *KC = getKnownConstant(CI, Preference))
642           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
643       }
644     }
645 
646     return !Result.empty();
647   }
648 
649   // Handle Cast instructions.  Only see through Cast when the source operand is
650   // PHI or Cmp to save the compilation time.
651   if (CastInst *CI = dyn_cast<CastInst>(I)) {
652     Value *Source = CI->getOperand(0);
653     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
654       return false;
655     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
656     if (Result.empty())
657       return false;
658 
659     // Convert the known values.
660     for (auto &R : Result)
661       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
662 
663     return true;
664   }
665 
666   // Handle some boolean conditions.
667   if (I->getType()->getPrimitiveSizeInBits() == 1) {
668     assert(Preference == WantInteger && "One-bit non-integer type?");
669     // X | true -> true
670     // X & false -> false
671     if (I->getOpcode() == Instruction::Or ||
672         I->getOpcode() == Instruction::And) {
673       PredValueInfoTy LHSVals, RHSVals;
674 
675       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
676                                       WantInteger, CxtI);
677       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
678                                       WantInteger, CxtI);
679 
680       if (LHSVals.empty() && RHSVals.empty())
681         return false;
682 
683       ConstantInt *InterestingVal;
684       if (I->getOpcode() == Instruction::Or)
685         InterestingVal = ConstantInt::getTrue(I->getContext());
686       else
687         InterestingVal = ConstantInt::getFalse(I->getContext());
688 
689       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
690 
691       // Scan for the sentinel.  If we find an undef, force it to the
692       // interesting value: x|undef -> true and x&undef -> false.
693       for (const auto &LHSVal : LHSVals)
694         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
695           Result.emplace_back(InterestingVal, LHSVal.second);
696           LHSKnownBBs.insert(LHSVal.second);
697         }
698       for (const auto &RHSVal : RHSVals)
699         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
700           // If we already inferred a value for this block on the LHS, don't
701           // re-add it.
702           if (!LHSKnownBBs.count(RHSVal.second))
703             Result.emplace_back(InterestingVal, RHSVal.second);
704         }
705 
706       return !Result.empty();
707     }
708 
709     // Handle the NOT form of XOR.
710     if (I->getOpcode() == Instruction::Xor &&
711         isa<ConstantInt>(I->getOperand(1)) &&
712         cast<ConstantInt>(I->getOperand(1))->isOne()) {
713       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
714                                       WantInteger, CxtI);
715       if (Result.empty())
716         return false;
717 
718       // Invert the known values.
719       for (auto &R : Result)
720         R.first = ConstantExpr::getNot(R.first);
721 
722       return true;
723     }
724 
725   // Try to simplify some other binary operator values.
726   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
727     assert(Preference != WantBlockAddress
728             && "A binary operator creating a block address?");
729     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
730       PredValueInfoTy LHSVals;
731       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
732                                       WantInteger, CxtI);
733 
734       // Try to use constant folding to simplify the binary operator.
735       for (const auto &LHSVal : LHSVals) {
736         Constant *V = LHSVal.first;
737         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
738 
739         if (Constant *KC = getKnownConstant(Folded, WantInteger))
740           Result.push_back(std::make_pair(KC, LHSVal.second));
741       }
742     }
743 
744     return !Result.empty();
745   }
746 
747   // Handle compare with phi operand, where the PHI is defined in this block.
748   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
749     assert(Preference == WantInteger && "Compares only produce integers");
750     Type *CmpType = Cmp->getType();
751     Value *CmpLHS = Cmp->getOperand(0);
752     Value *CmpRHS = Cmp->getOperand(1);
753     CmpInst::Predicate Pred = Cmp->getPredicate();
754 
755     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
756     if (PN && PN->getParent() == BB) {
757       const DataLayout &DL = PN->getModule()->getDataLayout();
758       // We can do this simplification if any comparisons fold to true or false.
759       // See if any do.
760       if (DDT->pending())
761         LVI->disableDT();
762       else
763         LVI->enableDT();
764       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
765         BasicBlock *PredBB = PN->getIncomingBlock(i);
766         Value *LHS = PN->getIncomingValue(i);
767         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
768 
769         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
770         if (!Res) {
771           if (!isa<Constant>(RHS))
772             continue;
773 
774           LazyValueInfo::Tristate
775             ResT = LVI->getPredicateOnEdge(Pred, LHS,
776                                            cast<Constant>(RHS), PredBB, BB,
777                                            CxtI ? CxtI : Cmp);
778           if (ResT == LazyValueInfo::Unknown)
779             continue;
780           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
781         }
782 
783         if (Constant *KC = getKnownConstant(Res, WantInteger))
784           Result.push_back(std::make_pair(KC, PredBB));
785       }
786 
787       return !Result.empty();
788     }
789 
790     // If comparing a live-in value against a constant, see if we know the
791     // live-in value on any predecessors.
792     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
793       Constant *CmpConst = cast<Constant>(CmpRHS);
794 
795       if (!isa<Instruction>(CmpLHS) ||
796           cast<Instruction>(CmpLHS)->getParent() != BB) {
797         if (DDT->pending())
798           LVI->disableDT();
799         else
800           LVI->enableDT();
801         for (BasicBlock *P : predecessors(BB)) {
802           // If the value is known by LazyValueInfo to be a constant in a
803           // predecessor, use that information to try to thread this block.
804           LazyValueInfo::Tristate Res =
805             LVI->getPredicateOnEdge(Pred, CmpLHS,
806                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
807           if (Res == LazyValueInfo::Unknown)
808             continue;
809 
810           Constant *ResC = ConstantInt::get(CmpType, Res);
811           Result.push_back(std::make_pair(ResC, P));
812         }
813 
814         return !Result.empty();
815       }
816 
817       // InstCombine can fold some forms of constant range checks into
818       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
819       // x as a live-in.
820       {
821         using namespace PatternMatch;
822 
823         Value *AddLHS;
824         ConstantInt *AddConst;
825         if (isa<ConstantInt>(CmpConst) &&
826             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
827           if (!isa<Instruction>(AddLHS) ||
828               cast<Instruction>(AddLHS)->getParent() != BB) {
829             if (DDT->pending())
830               LVI->disableDT();
831             else
832               LVI->enableDT();
833             for (BasicBlock *P : predecessors(BB)) {
834               // If the value is known by LazyValueInfo to be a ConstantRange in
835               // a predecessor, use that information to try to thread this
836               // block.
837               ConstantRange CR = LVI->getConstantRangeOnEdge(
838                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
839               // Propagate the range through the addition.
840               CR = CR.add(AddConst->getValue());
841 
842               // Get the range where the compare returns true.
843               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
844                   Pred, cast<ConstantInt>(CmpConst)->getValue());
845 
846               Constant *ResC;
847               if (CmpRange.contains(CR))
848                 ResC = ConstantInt::getTrue(CmpType);
849               else if (CmpRange.inverse().contains(CR))
850                 ResC = ConstantInt::getFalse(CmpType);
851               else
852                 continue;
853 
854               Result.push_back(std::make_pair(ResC, P));
855             }
856 
857             return !Result.empty();
858           }
859         }
860       }
861 
862       // Try to find a constant value for the LHS of a comparison,
863       // and evaluate it statically if we can.
864       PredValueInfoTy LHSVals;
865       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
866                                       WantInteger, CxtI);
867 
868       for (const auto &LHSVal : LHSVals) {
869         Constant *V = LHSVal.first;
870         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
871         if (Constant *KC = getKnownConstant(Folded, WantInteger))
872           Result.push_back(std::make_pair(KC, LHSVal.second));
873       }
874 
875       return !Result.empty();
876     }
877   }
878 
879   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
880     // Handle select instructions where at least one operand is a known constant
881     // and we can figure out the condition value for any predecessor block.
882     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
883     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
884     PredValueInfoTy Conds;
885     if ((TrueVal || FalseVal) &&
886         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
887                                         WantInteger, CxtI)) {
888       for (auto &C : Conds) {
889         Constant *Cond = C.first;
890 
891         // Figure out what value to use for the condition.
892         bool KnownCond;
893         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
894           // A known boolean.
895           KnownCond = CI->isOne();
896         } else {
897           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
898           // Either operand will do, so be sure to pick the one that's a known
899           // constant.
900           // FIXME: Do this more cleverly if both values are known constants?
901           KnownCond = (TrueVal != nullptr);
902         }
903 
904         // See if the select has a known constant value for this predecessor.
905         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
906           Result.push_back(std::make_pair(Val, C.second));
907       }
908 
909       return !Result.empty();
910     }
911   }
912 
913   // If all else fails, see if LVI can figure out a constant value for us.
914   if (DDT->pending())
915     LVI->disableDT();
916   else
917     LVI->enableDT();
918   Constant *CI = LVI->getConstant(V, BB, CxtI);
919   if (Constant *KC = getKnownConstant(CI, Preference)) {
920     for (BasicBlock *Pred : predecessors(BB))
921       Result.push_back(std::make_pair(KC, Pred));
922   }
923 
924   return !Result.empty();
925 }
926 
927 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
928 /// in an undefined jump, decide which block is best to revector to.
929 ///
930 /// Since we can pick an arbitrary destination, we pick the successor with the
931 /// fewest predecessors.  This should reduce the in-degree of the others.
932 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
933   TerminatorInst *BBTerm = BB->getTerminator();
934   unsigned MinSucc = 0;
935   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
936   // Compute the successor with the minimum number of predecessors.
937   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
938   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
939     TestBB = BBTerm->getSuccessor(i);
940     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
941     if (NumPreds < MinNumPreds) {
942       MinSucc = i;
943       MinNumPreds = NumPreds;
944     }
945   }
946 
947   return MinSucc;
948 }
949 
950 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
951   if (!BB->hasAddressTaken()) return false;
952 
953   // If the block has its address taken, it may be a tree of dead constants
954   // hanging off of it.  These shouldn't keep the block alive.
955   BlockAddress *BA = BlockAddress::get(BB);
956   BA->removeDeadConstantUsers();
957   return !BA->use_empty();
958 }
959 
960 /// ProcessBlock - If there are any predecessors whose control can be threaded
961 /// through to a successor, transform them now.
962 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
963   // If the block is trivially dead, just return and let the caller nuke it.
964   // This simplifies other transformations.
965   if (DDT->pendingDeletedBB(BB) ||
966       (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()))
967     return false;
968 
969   // If this block has a single predecessor, and if that pred has a single
970   // successor, merge the blocks.  This encourages recursive jump threading
971   // because now the condition in this block can be threaded through
972   // predecessors of our predecessor block.
973   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
974     const TerminatorInst *TI = SinglePred->getTerminator();
975     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
976         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
977       // If SinglePred was a loop header, BB becomes one.
978       if (LoopHeaders.erase(SinglePred))
979         LoopHeaders.insert(BB);
980 
981       LVI->eraseBlock(SinglePred);
982       MergeBasicBlockIntoOnlyPred(BB, nullptr, DDT);
983 
984       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
985       // BB code within one basic block `BB`), we need to invalidate the LVI
986       // information associated with BB, because the LVI information need not be
987       // true for all of BB after the merge. For example,
988       // Before the merge, LVI info and code is as follows:
989       // SinglePred: <LVI info1 for %p val>
990       // %y = use of %p
991       // call @exit() // need not transfer execution to successor.
992       // assume(%p) // from this point on %p is true
993       // br label %BB
994       // BB: <LVI info2 for %p val, i.e. %p is true>
995       // %x = use of %p
996       // br label exit
997       //
998       // Note that this LVI info for blocks BB and SinglPred is correct for %p
999       // (info2 and info1 respectively). After the merge and the deletion of the
1000       // LVI info1 for SinglePred. We have the following code:
1001       // BB: <LVI info2 for %p val>
1002       // %y = use of %p
1003       // call @exit()
1004       // assume(%p)
1005       // %x = use of %p <-- LVI info2 is correct from here onwards.
1006       // br label exit
1007       // LVI info2 for BB is incorrect at the beginning of BB.
1008 
1009       // Invalidate LVI information for BB if the LVI is not provably true for
1010       // all of BB.
1011       if (!isGuaranteedToTransferExecutionToSuccessor(BB))
1012         LVI->eraseBlock(BB);
1013       return true;
1014     }
1015   }
1016 
1017   if (TryToUnfoldSelectInCurrBB(BB))
1018     return true;
1019 
1020   // Look if we can propagate guards to predecessors.
1021   if (HasGuards && ProcessGuards(BB))
1022     return true;
1023 
1024   // What kind of constant we're looking for.
1025   ConstantPreference Preference = WantInteger;
1026 
1027   // Look to see if the terminator is a conditional branch, switch or indirect
1028   // branch, if not we can't thread it.
1029   Value *Condition;
1030   Instruction *Terminator = BB->getTerminator();
1031   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
1032     // Can't thread an unconditional jump.
1033     if (BI->isUnconditional()) return false;
1034     Condition = BI->getCondition();
1035   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
1036     Condition = SI->getCondition();
1037   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
1038     // Can't thread indirect branch with no successors.
1039     if (IB->getNumSuccessors() == 0) return false;
1040     Condition = IB->getAddress()->stripPointerCasts();
1041     Preference = WantBlockAddress;
1042   } else {
1043     return false; // Must be an invoke.
1044   }
1045 
1046   // Run constant folding to see if we can reduce the condition to a simple
1047   // constant.
1048   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
1049     Value *SimpleVal =
1050         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
1051     if (SimpleVal) {
1052       I->replaceAllUsesWith(SimpleVal);
1053       if (isInstructionTriviallyDead(I, TLI))
1054         I->eraseFromParent();
1055       Condition = SimpleVal;
1056     }
1057   }
1058 
1059   // If the terminator is branching on an undef, we can pick any of the
1060   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1061   if (isa<UndefValue>(Condition)) {
1062     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1063     std::vector<DominatorTree::UpdateType> Updates;
1064 
1065     // Fold the branch/switch.
1066     TerminatorInst *BBTerm = BB->getTerminator();
1067     Updates.reserve(BBTerm->getNumSuccessors());
1068     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1069       if (i == BestSucc) continue;
1070       BasicBlock *Succ = BBTerm->getSuccessor(i);
1071       Succ->removePredecessor(BB, true);
1072       Updates.push_back({DominatorTree::Delete, BB, Succ});
1073     }
1074 
1075     DEBUG(dbgs() << "  In block '" << BB->getName()
1076           << "' folding undef terminator: " << *BBTerm << '\n');
1077     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1078     BBTerm->eraseFromParent();
1079     DDT->applyUpdates(Updates);
1080     return true;
1081   }
1082 
1083   // If the terminator of this block is branching on a constant, simplify the
1084   // terminator to an unconditional branch.  This can occur due to threading in
1085   // other blocks.
1086   if (getKnownConstant(Condition, Preference)) {
1087     DEBUG(dbgs() << "  In block '" << BB->getName()
1088           << "' folding terminator: " << *BB->getTerminator() << '\n');
1089     ++NumFolds;
1090     ConstantFoldTerminator(BB, true, nullptr, DDT);
1091     return true;
1092   }
1093 
1094   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1095 
1096   // All the rest of our checks depend on the condition being an instruction.
1097   if (!CondInst) {
1098     // FIXME: Unify this with code below.
1099     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1100       return true;
1101     return false;
1102   }
1103 
1104   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1105     // If we're branching on a conditional, LVI might be able to determine
1106     // it's value at the branch instruction.  We only handle comparisons
1107     // against a constant at this time.
1108     // TODO: This should be extended to handle switches as well.
1109     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1110     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1111     if (CondBr && CondConst) {
1112       // We should have returned as soon as we turn a conditional branch to
1113       // unconditional. Because its no longer interesting as far as jump
1114       // threading is concerned.
1115       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1116 
1117       if (DDT->pending())
1118         LVI->disableDT();
1119       else
1120         LVI->enableDT();
1121       LazyValueInfo::Tristate Ret =
1122         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1123                             CondConst, CondBr);
1124       if (Ret != LazyValueInfo::Unknown) {
1125         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1126         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1127         BasicBlock *ToRemoveSucc = CondBr->getSuccessor(ToRemove);
1128         ToRemoveSucc->removePredecessor(BB, true);
1129         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1130         CondBr->eraseFromParent();
1131         if (CondCmp->use_empty())
1132           CondCmp->eraseFromParent();
1133         // We can safely replace *some* uses of the CondInst if it has
1134         // exactly one value as returned by LVI. RAUW is incorrect in the
1135         // presence of guards and assumes, that have the `Cond` as the use. This
1136         // is because we use the guards/assume to reason about the `Cond` value
1137         // at the end of block, but RAUW unconditionally replaces all uses
1138         // including the guards/assumes themselves and the uses before the
1139         // guard/assume.
1140         else if (CondCmp->getParent() == BB) {
1141           auto *CI = Ret == LazyValueInfo::True ?
1142             ConstantInt::getTrue(CondCmp->getType()) :
1143             ConstantInt::getFalse(CondCmp->getType());
1144           ReplaceFoldableUses(CondCmp, CI);
1145         }
1146         DDT->deleteEdge(BB, ToRemoveSucc);
1147         return true;
1148       }
1149 
1150       // We did not manage to simplify this branch, try to see whether
1151       // CondCmp depends on a known phi-select pattern.
1152       if (TryToUnfoldSelect(CondCmp, BB))
1153         return true;
1154     }
1155   }
1156 
1157   // Check for some cases that are worth simplifying.  Right now we want to look
1158   // for loads that are used by a switch or by the condition for the branch.  If
1159   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1160   // which can then be used to thread the values.
1161   Value *SimplifyValue = CondInst;
1162   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1163     if (isa<Constant>(CondCmp->getOperand(1)))
1164       SimplifyValue = CondCmp->getOperand(0);
1165 
1166   // TODO: There are other places where load PRE would be profitable, such as
1167   // more complex comparisons.
1168   if (LoadInst *LoadI = dyn_cast<LoadInst>(SimplifyValue))
1169     if (SimplifyPartiallyRedundantLoad(LoadI))
1170       return true;
1171 
1172   // Before threading, try to propagate profile data backwards:
1173   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1174     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1175       updatePredecessorProfileMetadata(PN, BB);
1176 
1177   // Handle a variety of cases where we are branching on something derived from
1178   // a PHI node in the current block.  If we can prove that any predecessors
1179   // compute a predictable value based on a PHI node, thread those predecessors.
1180   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1181     return true;
1182 
1183   // If this is an otherwise-unfoldable branch on a phi node in the current
1184   // block, see if we can simplify.
1185   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1186     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1187       return ProcessBranchOnPHI(PN);
1188 
1189   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1190   if (CondInst->getOpcode() == Instruction::Xor &&
1191       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1192     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1193 
1194   // Search for a stronger dominating condition that can be used to simplify a
1195   // conditional branch leaving BB.
1196   if (ProcessImpliedCondition(BB))
1197     return true;
1198 
1199   return false;
1200 }
1201 
1202 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1203   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1204   if (!BI || !BI->isConditional())
1205     return false;
1206 
1207   Value *Cond = BI->getCondition();
1208   BasicBlock *CurrentBB = BB;
1209   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1210   unsigned Iter = 0;
1211 
1212   auto &DL = BB->getModule()->getDataLayout();
1213 
1214   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1215     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1216     if (!PBI || !PBI->isConditional())
1217       return false;
1218     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1219       return false;
1220 
1221     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1222     Optional<bool> Implication =
1223         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1224     if (Implication) {
1225       BasicBlock *KeepSucc = BI->getSuccessor(*Implication ? 0 : 1);
1226       BasicBlock *RemoveSucc = BI->getSuccessor(*Implication ? 1 : 0);
1227       RemoveSucc->removePredecessor(BB);
1228       BranchInst::Create(KeepSucc, BI);
1229       BI->eraseFromParent();
1230       DDT->deleteEdge(BB, RemoveSucc);
1231       return true;
1232     }
1233     CurrentBB = CurrentPred;
1234     CurrentPred = CurrentBB->getSinglePredecessor();
1235   }
1236 
1237   return false;
1238 }
1239 
1240 /// Return true if Op is an instruction defined in the given block.
1241 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1242   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1243     if (OpInst->getParent() == BB)
1244       return true;
1245   return false;
1246 }
1247 
1248 /// SimplifyPartiallyRedundantLoad - If LoadI is an obviously partially
1249 /// redundant load instruction, eliminate it by replacing it with a PHI node.
1250 /// This is an important optimization that encourages jump threading, and needs
1251 /// to be run interlaced with other jump threading tasks.
1252 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LoadI) {
1253   // Don't hack volatile and ordered loads.
1254   if (!LoadI->isUnordered()) return false;
1255 
1256   // If the load is defined in a block with exactly one predecessor, it can't be
1257   // partially redundant.
1258   BasicBlock *LoadBB = LoadI->getParent();
1259   if (LoadBB->getSinglePredecessor())
1260     return false;
1261 
1262   // If the load is defined in an EH pad, it can't be partially redundant,
1263   // because the edges between the invoke and the EH pad cannot have other
1264   // instructions between them.
1265   if (LoadBB->isEHPad())
1266     return false;
1267 
1268   Value *LoadedPtr = LoadI->getOperand(0);
1269 
1270   // If the loaded operand is defined in the LoadBB and its not a phi,
1271   // it can't be available in predecessors.
1272   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1273     return false;
1274 
1275   // Scan a few instructions up from the load, to see if it is obviously live at
1276   // the entry to its block.
1277   BasicBlock::iterator BBIt(LoadI);
1278   bool IsLoadCSE;
1279   if (Value *AvailableVal = FindAvailableLoadedValue(
1280           LoadI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1281     // If the value of the load is locally available within the block, just use
1282     // it.  This frequently occurs for reg2mem'd allocas.
1283 
1284     if (IsLoadCSE) {
1285       LoadInst *NLoadI = cast<LoadInst>(AvailableVal);
1286       combineMetadataForCSE(NLoadI, LoadI);
1287     };
1288 
1289     // If the returned value is the load itself, replace with an undef. This can
1290     // only happen in dead loops.
1291     if (AvailableVal == LoadI)
1292       AvailableVal = UndefValue::get(LoadI->getType());
1293     if (AvailableVal->getType() != LoadI->getType())
1294       AvailableVal = CastInst::CreateBitOrPointerCast(
1295           AvailableVal, LoadI->getType(), "", LoadI);
1296     LoadI->replaceAllUsesWith(AvailableVal);
1297     LoadI->eraseFromParent();
1298     return true;
1299   }
1300 
1301   // Otherwise, if we scanned the whole block and got to the top of the block,
1302   // we know the block is locally transparent to the load.  If not, something
1303   // might clobber its value.
1304   if (BBIt != LoadBB->begin())
1305     return false;
1306 
1307   // If all of the loads and stores that feed the value have the same AA tags,
1308   // then we can propagate them onto any newly inserted loads.
1309   AAMDNodes AATags;
1310   LoadI->getAAMetadata(AATags);
1311 
1312   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1313 
1314   using AvailablePredsTy = SmallVector<std::pair<BasicBlock *, Value *>, 8>;
1315 
1316   AvailablePredsTy AvailablePreds;
1317   BasicBlock *OneUnavailablePred = nullptr;
1318   SmallVector<LoadInst*, 8> CSELoads;
1319 
1320   // If we got here, the loaded value is transparent through to the start of the
1321   // block.  Check to see if it is available in any of the predecessor blocks.
1322   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1323     // If we already scanned this predecessor, skip it.
1324     if (!PredsScanned.insert(PredBB).second)
1325       continue;
1326 
1327     BBIt = PredBB->end();
1328     unsigned NumScanedInst = 0;
1329     Value *PredAvailable = nullptr;
1330     // NOTE: We don't CSE load that is volatile or anything stronger than
1331     // unordered, that should have been checked when we entered the function.
1332     assert(LoadI->isUnordered() &&
1333            "Attempting to CSE volatile or atomic loads");
1334     // If this is a load on a phi pointer, phi-translate it and search
1335     // for available load/store to the pointer in predecessors.
1336     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1337     PredAvailable = FindAvailablePtrLoadStore(
1338         Ptr, LoadI->getType(), LoadI->isAtomic(), PredBB, BBIt,
1339         DefMaxInstsToScan, AA, &IsLoadCSE, &NumScanedInst);
1340 
1341     // If PredBB has a single predecessor, continue scanning through the
1342     // single precessor.
1343     BasicBlock *SinglePredBB = PredBB;
1344     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1345            NumScanedInst < DefMaxInstsToScan) {
1346       SinglePredBB = SinglePredBB->getSinglePredecessor();
1347       if (SinglePredBB) {
1348         BBIt = SinglePredBB->end();
1349         PredAvailable = FindAvailablePtrLoadStore(
1350             Ptr, LoadI->getType(), LoadI->isAtomic(), SinglePredBB, BBIt,
1351             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1352             &NumScanedInst);
1353       }
1354     }
1355 
1356     if (!PredAvailable) {
1357       OneUnavailablePred = PredBB;
1358       continue;
1359     }
1360 
1361     if (IsLoadCSE)
1362       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1363 
1364     // If so, this load is partially redundant.  Remember this info so that we
1365     // can create a PHI node.
1366     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1367   }
1368 
1369   // If the loaded value isn't available in any predecessor, it isn't partially
1370   // redundant.
1371   if (AvailablePreds.empty()) return false;
1372 
1373   // Okay, the loaded value is available in at least one (and maybe all!)
1374   // predecessors.  If the value is unavailable in more than one unique
1375   // predecessor, we want to insert a merge block for those common predecessors.
1376   // This ensures that we only have to insert one reload, thus not increasing
1377   // code size.
1378   BasicBlock *UnavailablePred = nullptr;
1379 
1380   // If the value is unavailable in one of predecessors, we will end up
1381   // inserting a new instruction into them. It is only valid if all the
1382   // instructions before LoadI are guaranteed to pass execution to its
1383   // successor, or if LoadI is safe to speculate.
1384   // TODO: If this logic becomes more complex, and we will perform PRE insertion
1385   // farther than to a predecessor, we need to reuse the code from GVN's PRE.
1386   // It requires domination tree analysis, so for this simple case it is an
1387   // overkill.
1388   if (PredsScanned.size() != AvailablePreds.size() &&
1389       !isSafeToSpeculativelyExecute(LoadI))
1390     for (auto I = LoadBB->begin(); &*I != LoadI; ++I)
1391       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
1392         return false;
1393 
1394   // If there is exactly one predecessor where the value is unavailable, the
1395   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1396   // unconditional branch, we know that it isn't a critical edge.
1397   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1398       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1399     UnavailablePred = OneUnavailablePred;
1400   } else if (PredsScanned.size() != AvailablePreds.size()) {
1401     // Otherwise, we had multiple unavailable predecessors or we had a critical
1402     // edge from the one.
1403     SmallVector<BasicBlock*, 8> PredsToSplit;
1404     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1405 
1406     for (const auto &AvailablePred : AvailablePreds)
1407       AvailablePredSet.insert(AvailablePred.first);
1408 
1409     // Add all the unavailable predecessors to the PredsToSplit list.
1410     for (BasicBlock *P : predecessors(LoadBB)) {
1411       // If the predecessor is an indirect goto, we can't split the edge.
1412       if (isa<IndirectBrInst>(P->getTerminator()))
1413         return false;
1414 
1415       if (!AvailablePredSet.count(P))
1416         PredsToSplit.push_back(P);
1417     }
1418 
1419     // Split them out to their own block.
1420     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1421   }
1422 
1423   // If the value isn't available in all predecessors, then there will be
1424   // exactly one where it isn't available.  Insert a load on that edge and add
1425   // it to the AvailablePreds list.
1426   if (UnavailablePred) {
1427     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1428            "Can't handle critical edge here!");
1429     LoadInst *NewVal =
1430         new LoadInst(LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1431                      LoadI->getName() + ".pr", false, LoadI->getAlignment(),
1432                      LoadI->getOrdering(), LoadI->getSyncScopeID(),
1433                      UnavailablePred->getTerminator());
1434     NewVal->setDebugLoc(LoadI->getDebugLoc());
1435     if (AATags)
1436       NewVal->setAAMetadata(AATags);
1437 
1438     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1439   }
1440 
1441   // Now we know that each predecessor of this block has a value in
1442   // AvailablePreds, sort them for efficient access as we're walking the preds.
1443   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1444 
1445   // Create a PHI node at the start of the block for the PRE'd load value.
1446   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1447   PHINode *PN = PHINode::Create(LoadI->getType(), std::distance(PB, PE), "",
1448                                 &LoadBB->front());
1449   PN->takeName(LoadI);
1450   PN->setDebugLoc(LoadI->getDebugLoc());
1451 
1452   // Insert new entries into the PHI for each predecessor.  A single block may
1453   // have multiple entries here.
1454   for (pred_iterator PI = PB; PI != PE; ++PI) {
1455     BasicBlock *P = *PI;
1456     AvailablePredsTy::iterator I =
1457       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1458                        std::make_pair(P, (Value*)nullptr));
1459 
1460     assert(I != AvailablePreds.end() && I->first == P &&
1461            "Didn't find entry for predecessor!");
1462 
1463     // If we have an available predecessor but it requires casting, insert the
1464     // cast in the predecessor and use the cast. Note that we have to update the
1465     // AvailablePreds vector as we go so that all of the PHI entries for this
1466     // predecessor use the same bitcast.
1467     Value *&PredV = I->second;
1468     if (PredV->getType() != LoadI->getType())
1469       PredV = CastInst::CreateBitOrPointerCast(PredV, LoadI->getType(), "",
1470                                                P->getTerminator());
1471 
1472     PN->addIncoming(PredV, I->first);
1473   }
1474 
1475   for (LoadInst *PredLoadI : CSELoads) {
1476     combineMetadataForCSE(PredLoadI, LoadI);
1477   }
1478 
1479   LoadI->replaceAllUsesWith(PN);
1480   LoadI->eraseFromParent();
1481 
1482   return true;
1483 }
1484 
1485 /// FindMostPopularDest - The specified list contains multiple possible
1486 /// threadable destinations.  Pick the one that occurs the most frequently in
1487 /// the list.
1488 static BasicBlock *
1489 FindMostPopularDest(BasicBlock *BB,
1490                     const SmallVectorImpl<std::pair<BasicBlock *,
1491                                           BasicBlock *>> &PredToDestList) {
1492   assert(!PredToDestList.empty());
1493 
1494   // Determine popularity.  If there are multiple possible destinations, we
1495   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1496   // blocks with known and real destinations to threading undef.  We'll handle
1497   // them later if interesting.
1498   DenseMap<BasicBlock*, unsigned> DestPopularity;
1499   for (const auto &PredToDest : PredToDestList)
1500     if (PredToDest.second)
1501       DestPopularity[PredToDest.second]++;
1502 
1503   if (DestPopularity.empty())
1504     return nullptr;
1505 
1506   // Find the most popular dest.
1507   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1508   BasicBlock *MostPopularDest = DPI->first;
1509   unsigned Popularity = DPI->second;
1510   SmallVector<BasicBlock*, 4> SamePopularity;
1511 
1512   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1513     // If the popularity of this entry isn't higher than the popularity we've
1514     // seen so far, ignore it.
1515     if (DPI->second < Popularity)
1516       ; // ignore.
1517     else if (DPI->second == Popularity) {
1518       // If it is the same as what we've seen so far, keep track of it.
1519       SamePopularity.push_back(DPI->first);
1520     } else {
1521       // If it is more popular, remember it.
1522       SamePopularity.clear();
1523       MostPopularDest = DPI->first;
1524       Popularity = DPI->second;
1525     }
1526   }
1527 
1528   // Okay, now we know the most popular destination.  If there is more than one
1529   // destination, we need to determine one.  This is arbitrary, but we need
1530   // to make a deterministic decision.  Pick the first one that appears in the
1531   // successor list.
1532   if (!SamePopularity.empty()) {
1533     SamePopularity.push_back(MostPopularDest);
1534     TerminatorInst *TI = BB->getTerminator();
1535     for (unsigned i = 0; ; ++i) {
1536       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1537 
1538       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1539         continue;
1540 
1541       MostPopularDest = TI->getSuccessor(i);
1542       break;
1543     }
1544   }
1545 
1546   // Okay, we have finally picked the most popular destination.
1547   return MostPopularDest;
1548 }
1549 
1550 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1551                                                ConstantPreference Preference,
1552                                                Instruction *CxtI) {
1553   // If threading this would thread across a loop header, don't even try to
1554   // thread the edge.
1555   if (LoopHeaders.count(BB))
1556     return false;
1557 
1558   PredValueInfoTy PredValues;
1559   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1560     return false;
1561 
1562   assert(!PredValues.empty() &&
1563          "ComputeValueKnownInPredecessors returned true with no values");
1564 
1565   DEBUG(dbgs() << "IN BB: " << *BB;
1566         for (const auto &PredValue : PredValues) {
1567           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1568             << *PredValue.first
1569             << " for pred '" << PredValue.second->getName() << "'.\n";
1570         });
1571 
1572   // Decide what we want to thread through.  Convert our list of known values to
1573   // a list of known destinations for each pred.  This also discards duplicate
1574   // predecessors and keeps track of the undefined inputs (which are represented
1575   // as a null dest in the PredToDestList).
1576   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1577   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1578 
1579   BasicBlock *OnlyDest = nullptr;
1580   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1581   Constant *OnlyVal = nullptr;
1582   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1583 
1584   unsigned PredWithKnownDest = 0;
1585   for (const auto &PredValue : PredValues) {
1586     BasicBlock *Pred = PredValue.second;
1587     if (!SeenPreds.insert(Pred).second)
1588       continue;  // Duplicate predecessor entry.
1589 
1590     Constant *Val = PredValue.first;
1591 
1592     BasicBlock *DestBB;
1593     if (isa<UndefValue>(Val))
1594       DestBB = nullptr;
1595     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1596       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1597       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1598     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1599       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1600       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1601     } else {
1602       assert(isa<IndirectBrInst>(BB->getTerminator())
1603               && "Unexpected terminator");
1604       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1605       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1606     }
1607 
1608     // If we have exactly one destination, remember it for efficiency below.
1609     if (PredToDestList.empty()) {
1610       OnlyDest = DestBB;
1611       OnlyVal = Val;
1612     } else {
1613       if (OnlyDest != DestBB)
1614         OnlyDest = MultipleDestSentinel;
1615       // It possible we have same destination, but different value, e.g. default
1616       // case in switchinst.
1617       if (Val != OnlyVal)
1618         OnlyVal = MultipleVal;
1619     }
1620 
1621     // We know where this predecessor is going.
1622     ++PredWithKnownDest;
1623 
1624     // If the predecessor ends with an indirect goto, we can't change its
1625     // destination.
1626     if (isa<IndirectBrInst>(Pred->getTerminator()))
1627       continue;
1628 
1629     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1630   }
1631 
1632   // If all edges were unthreadable, we fail.
1633   if (PredToDestList.empty())
1634     return false;
1635 
1636   // If all the predecessors go to a single known successor, we want to fold,
1637   // not thread. By doing so, we do not need to duplicate the current block and
1638   // also miss potential opportunities in case we dont/cant duplicate.
1639   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1640     if (PredWithKnownDest ==
1641         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1642       bool SeenFirstBranchToOnlyDest = false;
1643       std::vector <DominatorTree::UpdateType> Updates;
1644       Updates.reserve(BB->getTerminator()->getNumSuccessors() - 1);
1645       for (BasicBlock *SuccBB : successors(BB)) {
1646         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) {
1647           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1648         } else {
1649           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1650           Updates.push_back({DominatorTree::Delete, BB, SuccBB});
1651         }
1652       }
1653 
1654       // Finally update the terminator.
1655       TerminatorInst *Term = BB->getTerminator();
1656       BranchInst::Create(OnlyDest, Term);
1657       Term->eraseFromParent();
1658       DDT->applyUpdates(Updates);
1659 
1660       // If the condition is now dead due to the removal of the old terminator,
1661       // erase it.
1662       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1663         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1664           CondInst->eraseFromParent();
1665         // We can safely replace *some* uses of the CondInst if it has
1666         // exactly one value as returned by LVI. RAUW is incorrect in the
1667         // presence of guards and assumes, that have the `Cond` as the use. This
1668         // is because we use the guards/assume to reason about the `Cond` value
1669         // at the end of block, but RAUW unconditionally replaces all uses
1670         // including the guards/assumes themselves and the uses before the
1671         // guard/assume.
1672         else if (OnlyVal && OnlyVal != MultipleVal &&
1673                  CondInst->getParent() == BB)
1674           ReplaceFoldableUses(CondInst, OnlyVal);
1675       }
1676       return true;
1677     }
1678   }
1679 
1680   // Determine which is the most common successor.  If we have many inputs and
1681   // this block is a switch, we want to start by threading the batch that goes
1682   // to the most popular destination first.  If we only know about one
1683   // threadable destination (the common case) we can avoid this.
1684   BasicBlock *MostPopularDest = OnlyDest;
1685 
1686   if (MostPopularDest == MultipleDestSentinel) {
1687     // Remove any loop headers from the Dest list, ThreadEdge conservatively
1688     // won't process them, but we might have other destination that are eligible
1689     // and we still want to process.
1690     erase_if(PredToDestList,
1691              [&](const std::pair<BasicBlock *, BasicBlock *> &PredToDest) {
1692                return LoopHeaders.count(PredToDest.second) != 0;
1693              });
1694 
1695     if (PredToDestList.empty())
1696       return false;
1697 
1698     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1699   }
1700 
1701   // Now that we know what the most popular destination is, factor all
1702   // predecessors that will jump to it into a single predecessor.
1703   SmallVector<BasicBlock*, 16> PredsToFactor;
1704   for (const auto &PredToDest : PredToDestList)
1705     if (PredToDest.second == MostPopularDest) {
1706       BasicBlock *Pred = PredToDest.first;
1707 
1708       // This predecessor may be a switch or something else that has multiple
1709       // edges to the block.  Factor each of these edges by listing them
1710       // according to # occurrences in PredsToFactor.
1711       for (BasicBlock *Succ : successors(Pred))
1712         if (Succ == BB)
1713           PredsToFactor.push_back(Pred);
1714     }
1715 
1716   // If the threadable edges are branching on an undefined value, we get to pick
1717   // the destination that these predecessors should get to.
1718   if (!MostPopularDest)
1719     MostPopularDest = BB->getTerminator()->
1720                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1721 
1722   // Ok, try to thread it!
1723   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1724 }
1725 
1726 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1727 /// a PHI node in the current block.  See if there are any simplifications we
1728 /// can do based on inputs to the phi node.
1729 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1730   BasicBlock *BB = PN->getParent();
1731 
1732   // TODO: We could make use of this to do it once for blocks with common PHI
1733   // values.
1734   SmallVector<BasicBlock*, 1> PredBBs;
1735   PredBBs.resize(1);
1736 
1737   // If any of the predecessor blocks end in an unconditional branch, we can
1738   // *duplicate* the conditional branch into that block in order to further
1739   // encourage jump threading and to eliminate cases where we have branch on a
1740   // phi of an icmp (branch on icmp is much better).
1741   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1742     BasicBlock *PredBB = PN->getIncomingBlock(i);
1743     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1744       if (PredBr->isUnconditional()) {
1745         PredBBs[0] = PredBB;
1746         // Try to duplicate BB into PredBB.
1747         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1748           return true;
1749       }
1750   }
1751 
1752   return false;
1753 }
1754 
1755 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1756 /// a xor instruction in the current block.  See if there are any
1757 /// simplifications we can do based on inputs to the xor.
1758 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1759   BasicBlock *BB = BO->getParent();
1760 
1761   // If either the LHS or RHS of the xor is a constant, don't do this
1762   // optimization.
1763   if (isa<ConstantInt>(BO->getOperand(0)) ||
1764       isa<ConstantInt>(BO->getOperand(1)))
1765     return false;
1766 
1767   // If the first instruction in BB isn't a phi, we won't be able to infer
1768   // anything special about any particular predecessor.
1769   if (!isa<PHINode>(BB->front()))
1770     return false;
1771 
1772   // If this BB is a landing pad, we won't be able to split the edge into it.
1773   if (BB->isEHPad())
1774     return false;
1775 
1776   // If we have a xor as the branch input to this block, and we know that the
1777   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1778   // the condition into the predecessor and fix that value to true, saving some
1779   // logical ops on that path and encouraging other paths to simplify.
1780   //
1781   // This copies something like this:
1782   //
1783   //  BB:
1784   //    %X = phi i1 [1],  [%X']
1785   //    %Y = icmp eq i32 %A, %B
1786   //    %Z = xor i1 %X, %Y
1787   //    br i1 %Z, ...
1788   //
1789   // Into:
1790   //  BB':
1791   //    %Y = icmp ne i32 %A, %B
1792   //    br i1 %Y, ...
1793 
1794   PredValueInfoTy XorOpValues;
1795   bool isLHS = true;
1796   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1797                                        WantInteger, BO)) {
1798     assert(XorOpValues.empty());
1799     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1800                                          WantInteger, BO))
1801       return false;
1802     isLHS = false;
1803   }
1804 
1805   assert(!XorOpValues.empty() &&
1806          "ComputeValueKnownInPredecessors returned true with no values");
1807 
1808   // Scan the information to see which is most popular: true or false.  The
1809   // predecessors can be of the set true, false, or undef.
1810   unsigned NumTrue = 0, NumFalse = 0;
1811   for (const auto &XorOpValue : XorOpValues) {
1812     if (isa<UndefValue>(XorOpValue.first))
1813       // Ignore undefs for the count.
1814       continue;
1815     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1816       ++NumFalse;
1817     else
1818       ++NumTrue;
1819   }
1820 
1821   // Determine which value to split on, true, false, or undef if neither.
1822   ConstantInt *SplitVal = nullptr;
1823   if (NumTrue > NumFalse)
1824     SplitVal = ConstantInt::getTrue(BB->getContext());
1825   else if (NumTrue != 0 || NumFalse != 0)
1826     SplitVal = ConstantInt::getFalse(BB->getContext());
1827 
1828   // Collect all of the blocks that this can be folded into so that we can
1829   // factor this once and clone it once.
1830   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1831   for (const auto &XorOpValue : XorOpValues) {
1832     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1833       continue;
1834 
1835     BlocksToFoldInto.push_back(XorOpValue.second);
1836   }
1837 
1838   // If we inferred a value for all of the predecessors, then duplication won't
1839   // help us.  However, we can just replace the LHS or RHS with the constant.
1840   if (BlocksToFoldInto.size() ==
1841       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1842     if (!SplitVal) {
1843       // If all preds provide undef, just nuke the xor, because it is undef too.
1844       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1845       BO->eraseFromParent();
1846     } else if (SplitVal->isZero()) {
1847       // If all preds provide 0, replace the xor with the other input.
1848       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1849       BO->eraseFromParent();
1850     } else {
1851       // If all preds provide 1, set the computed value to 1.
1852       BO->setOperand(!isLHS, SplitVal);
1853     }
1854 
1855     return true;
1856   }
1857 
1858   // Try to duplicate BB into PredBB.
1859   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1860 }
1861 
1862 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1863 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1864 /// NewPred using the entries from OldPred (suitably mapped).
1865 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1866                                             BasicBlock *OldPred,
1867                                             BasicBlock *NewPred,
1868                                      DenseMap<Instruction*, Value*> &ValueMap) {
1869   for (PHINode &PN : PHIBB->phis()) {
1870     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1871     // DestBlock.
1872     Value *IV = PN.getIncomingValueForBlock(OldPred);
1873 
1874     // Remap the value if necessary.
1875     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1876       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1877       if (I != ValueMap.end())
1878         IV = I->second;
1879     }
1880 
1881     PN.addIncoming(IV, NewPred);
1882   }
1883 }
1884 
1885 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1886 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1887 /// across BB.  Transform the IR to reflect this change.
1888 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1889                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1890                                    BasicBlock *SuccBB) {
1891   // If threading to the same block as we come from, we would infinite loop.
1892   if (SuccBB == BB) {
1893     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1894           << "' - would thread to self!\n");
1895     return false;
1896   }
1897 
1898   // If threading this would thread across a loop header, don't thread the edge.
1899   // See the comments above FindLoopHeaders for justifications and caveats.
1900   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1901     DEBUG({
1902       bool BBIsHeader = LoopHeaders.count(BB);
1903       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1904       dbgs() << "  Not threading across "
1905           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1906           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1907           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1908     });
1909     return false;
1910   }
1911 
1912   unsigned JumpThreadCost =
1913       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1914   if (JumpThreadCost > BBDupThreshold) {
1915     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1916           << "' - Cost is too high: " << JumpThreadCost << "\n");
1917     return false;
1918   }
1919 
1920   // And finally, do it!  Start by factoring the predecessors if needed.
1921   BasicBlock *PredBB;
1922   if (PredBBs.size() == 1)
1923     PredBB = PredBBs[0];
1924   else {
1925     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1926           << " common predecessors.\n");
1927     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1928   }
1929 
1930   // And finally, do it!
1931   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1932         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1933         << ", across block:\n    "
1934         << *BB << "\n");
1935 
1936   if (DDT->pending())
1937     LVI->disableDT();
1938   else
1939     LVI->enableDT();
1940   LVI->threadEdge(PredBB, BB, SuccBB);
1941 
1942   // We are going to have to map operands from the original BB block to the new
1943   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1944   // account for entry from PredBB.
1945   DenseMap<Instruction*, Value*> ValueMapping;
1946 
1947   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1948                                          BB->getName()+".thread",
1949                                          BB->getParent(), BB);
1950   NewBB->moveAfter(PredBB);
1951 
1952   // Set the block frequency of NewBB.
1953   if (HasProfileData) {
1954     auto NewBBFreq =
1955         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1956     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1957   }
1958 
1959   BasicBlock::iterator BI = BB->begin();
1960   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1961     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1962 
1963   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1964   // mapping and using it to remap operands in the cloned instructions.
1965   for (; !isa<TerminatorInst>(BI); ++BI) {
1966     Instruction *New = BI->clone();
1967     New->setName(BI->getName());
1968     NewBB->getInstList().push_back(New);
1969     ValueMapping[&*BI] = New;
1970 
1971     // Remap operands to patch up intra-block references.
1972     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1973       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1974         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1975         if (I != ValueMapping.end())
1976           New->setOperand(i, I->second);
1977       }
1978   }
1979 
1980   // We didn't copy the terminator from BB over to NewBB, because there is now
1981   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1982   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1983   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1984 
1985   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1986   // PHI nodes for NewBB now.
1987   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1988 
1989   // If there were values defined in BB that are used outside the block, then we
1990   // now have to update all uses of the value to use either the original value,
1991   // the cloned value, or some PHI derived value.  This can require arbitrary
1992   // PHI insertion, of which we are prepared to do, clean these up now.
1993   SSAUpdaterBulk SSAUpdate;
1994   SmallVector<Use*, 16> UsesToRename;
1995 
1996   unsigned VarNum = 0;
1997   for (Instruction &I : *BB) {
1998     UsesToRename.clear();
1999 
2000     // Scan all uses of this instruction to see if it is used outside of its
2001     // block, and if so, record them in UsesToRename.
2002     for (Use &U : I.uses()) {
2003       Instruction *User = cast<Instruction>(U.getUser());
2004       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2005         if (UserPN->getIncomingBlock(U) == BB)
2006           continue;
2007       } else if (User->getParent() == BB)
2008         continue;
2009 
2010       UsesToRename.push_back(&U);
2011     }
2012 
2013     // If there are no uses outside the block, we're done with this instruction.
2014     if (UsesToRename.empty())
2015       continue;
2016     SSAUpdate.AddVariable(VarNum, I.getName(), I.getType());
2017 
2018     // We found a use of I outside of BB - we need to rename all uses of I that
2019     // are outside its block to be uses of the appropriate PHI node etc.
2020     SSAUpdate.AddAvailableValue(VarNum, BB, &I);
2021     SSAUpdate.AddAvailableValue(VarNum, NewBB, ValueMapping[&I]);
2022     for (auto U : UsesToRename)
2023       SSAUpdate.AddUse(VarNum, U);
2024     VarNum++;
2025   }
2026 
2027   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
2028   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
2029   // us to simplify any PHI nodes in BB.
2030   TerminatorInst *PredTerm = PredBB->getTerminator();
2031   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
2032     if (PredTerm->getSuccessor(i) == BB) {
2033       BB->removePredecessor(PredBB, true);
2034       PredTerm->setSuccessor(i, NewBB);
2035     }
2036 
2037   DDT->applyUpdates({{DominatorTree::Insert, NewBB, SuccBB},
2038                      {DominatorTree::Insert, PredBB, NewBB},
2039                      {DominatorTree::Delete, PredBB, BB}});
2040 
2041   // Apply all updates we queued with DDT and get the updated Dominator Tree.
2042   DominatorTree *DT = &DDT->flush();
2043   SSAUpdate.RewriteAllUses(DT);
2044 
2045   // At this point, the IR is fully up to date and consistent.  Do a quick scan
2046   // over the new instructions and zap any that are constants or dead.  This
2047   // frequently happens because of phi translation.
2048   SimplifyInstructionsInBlock(NewBB, TLI);
2049 
2050   // Update the edge weight from BB to SuccBB, which should be less than before.
2051   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
2052 
2053   // Threaded an edge!
2054   ++NumThreads;
2055   return true;
2056 }
2057 
2058 /// Create a new basic block that will be the predecessor of BB and successor of
2059 /// all blocks in Preds. When profile data is available, update the frequency of
2060 /// this new block.
2061 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
2062                                                ArrayRef<BasicBlock *> Preds,
2063                                                const char *Suffix) {
2064   SmallVector<BasicBlock *, 2> NewBBs;
2065 
2066   // Collect the frequencies of all predecessors of BB, which will be used to
2067   // update the edge weight of the result of splitting predecessors.
2068   DenseMap<BasicBlock *, BlockFrequency> FreqMap;
2069   if (HasProfileData)
2070     for (auto Pred : Preds)
2071       FreqMap.insert(std::make_pair(
2072           Pred, BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB)));
2073 
2074   // In the case when BB is a LandingPad block we create 2 new predecessors
2075   // instead of just one.
2076   if (BB->isLandingPad()) {
2077     std::string NewName = std::string(Suffix) + ".split-lp";
2078     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs);
2079   } else {
2080     NewBBs.push_back(SplitBlockPredecessors(BB, Preds, Suffix));
2081   }
2082 
2083   std::vector<DominatorTree::UpdateType> Updates;
2084   Updates.reserve((2 * Preds.size()) + NewBBs.size());
2085   for (auto NewBB : NewBBs) {
2086     BlockFrequency NewBBFreq(0);
2087     Updates.push_back({DominatorTree::Insert, NewBB, BB});
2088     for (auto Pred : predecessors(NewBB)) {
2089       Updates.push_back({DominatorTree::Delete, Pred, BB});
2090       Updates.push_back({DominatorTree::Insert, Pred, NewBB});
2091       if (HasProfileData) // Update frequencies between Pred -> NewBB.
2092         NewBBFreq += FreqMap.lookup(Pred);
2093     }
2094     if (HasProfileData) // Apply the summed frequency to NewBB.
2095       BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
2096   }
2097 
2098   DDT->applyUpdates(Updates);
2099   return NewBBs[0];
2100 }
2101 
2102 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
2103   const TerminatorInst *TI = BB->getTerminator();
2104   assert(TI->getNumSuccessors() > 1 && "not a split");
2105 
2106   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
2107   if (!WeightsNode)
2108     return false;
2109 
2110   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
2111   if (MDName->getString() != "branch_weights")
2112     return false;
2113 
2114   // Ensure there are weights for all of the successors. Note that the first
2115   // operand to the metadata node is a name, not a weight.
2116   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
2117 }
2118 
2119 /// Update the block frequency of BB and branch weight and the metadata on the
2120 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
2121 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
2122 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
2123                                                      BasicBlock *BB,
2124                                                      BasicBlock *NewBB,
2125                                                      BasicBlock *SuccBB) {
2126   if (!HasProfileData)
2127     return;
2128 
2129   assert(BFI && BPI && "BFI & BPI should have been created here");
2130 
2131   // As the edge from PredBB to BB is deleted, we have to update the block
2132   // frequency of BB.
2133   auto BBOrigFreq = BFI->getBlockFreq(BB);
2134   auto NewBBFreq = BFI->getBlockFreq(NewBB);
2135   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
2136   auto BBNewFreq = BBOrigFreq - NewBBFreq;
2137   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
2138 
2139   // Collect updated outgoing edges' frequencies from BB and use them to update
2140   // edge probabilities.
2141   SmallVector<uint64_t, 4> BBSuccFreq;
2142   for (BasicBlock *Succ : successors(BB)) {
2143     auto SuccFreq = (Succ == SuccBB)
2144                         ? BB2SuccBBFreq - NewBBFreq
2145                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2146     BBSuccFreq.push_back(SuccFreq.getFrequency());
2147   }
2148 
2149   uint64_t MaxBBSuccFreq =
2150       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2151 
2152   SmallVector<BranchProbability, 4> BBSuccProbs;
2153   if (MaxBBSuccFreq == 0)
2154     BBSuccProbs.assign(BBSuccFreq.size(),
2155                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2156   else {
2157     for (uint64_t Freq : BBSuccFreq)
2158       BBSuccProbs.push_back(
2159           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2160     // Normalize edge probabilities so that they sum up to one.
2161     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2162                                               BBSuccProbs.end());
2163   }
2164 
2165   // Update edge probabilities in BPI.
2166   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2167     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2168 
2169   // Update the profile metadata as well.
2170   //
2171   // Don't do this if the profile of the transformed blocks was statically
2172   // estimated.  (This could occur despite the function having an entry
2173   // frequency in completely cold parts of the CFG.)
2174   //
2175   // In this case we don't want to suggest to subsequent passes that the
2176   // calculated weights are fully consistent.  Consider this graph:
2177   //
2178   //                 check_1
2179   //             50% /  |
2180   //             eq_1   | 50%
2181   //                 \  |
2182   //                 check_2
2183   //             50% /  |
2184   //             eq_2   | 50%
2185   //                 \  |
2186   //                 check_3
2187   //             50% /  |
2188   //             eq_3   | 50%
2189   //                 \  |
2190   //
2191   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2192   // the overall probabilities are inconsistent; the total probability that the
2193   // value is either 1, 2 or 3 is 150%.
2194   //
2195   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2196   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2197   // the loop exit edge.  Then based solely on static estimation we would assume
2198   // the loop was extremely hot.
2199   //
2200   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2201   // shouldn't make edges extremely likely or unlikely based solely on static
2202   // estimation.
2203   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2204     SmallVector<uint32_t, 4> Weights;
2205     for (auto Prob : BBSuccProbs)
2206       Weights.push_back(Prob.getNumerator());
2207 
2208     auto TI = BB->getTerminator();
2209     TI->setMetadata(
2210         LLVMContext::MD_prof,
2211         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2212   }
2213 }
2214 
2215 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2216 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2217 /// If we can duplicate the contents of BB up into PredBB do so now, this
2218 /// improves the odds that the branch will be on an analyzable instruction like
2219 /// a compare.
2220 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2221     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2222   assert(!PredBBs.empty() && "Can't handle an empty set");
2223 
2224   // If BB is a loop header, then duplicating this block outside the loop would
2225   // cause us to transform this into an irreducible loop, don't do this.
2226   // See the comments above FindLoopHeaders for justifications and caveats.
2227   if (LoopHeaders.count(BB)) {
2228     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2229           << "' into predecessor block '" << PredBBs[0]->getName()
2230           << "' - it might create an irreducible loop!\n");
2231     return false;
2232   }
2233 
2234   unsigned DuplicationCost =
2235       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2236   if (DuplicationCost > BBDupThreshold) {
2237     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2238           << "' - Cost is too high: " << DuplicationCost << "\n");
2239     return false;
2240   }
2241 
2242   // And finally, do it!  Start by factoring the predecessors if needed.
2243   std::vector<DominatorTree::UpdateType> Updates;
2244   BasicBlock *PredBB;
2245   if (PredBBs.size() == 1)
2246     PredBB = PredBBs[0];
2247   else {
2248     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2249           << " common predecessors.\n");
2250     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2251   }
2252   Updates.push_back({DominatorTree::Delete, PredBB, BB});
2253 
2254   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2255   // of PredBB.
2256   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2257         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2258         << DuplicationCost << " block is:" << *BB << "\n");
2259 
2260   // Unless PredBB ends with an unconditional branch, split the edge so that we
2261   // can just clone the bits from BB into the end of the new PredBB.
2262   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2263 
2264   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2265     BasicBlock *OldPredBB = PredBB;
2266     PredBB = SplitEdge(OldPredBB, BB);
2267     Updates.push_back({DominatorTree::Insert, OldPredBB, PredBB});
2268     Updates.push_back({DominatorTree::Insert, PredBB, BB});
2269     Updates.push_back({DominatorTree::Delete, OldPredBB, BB});
2270     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2271   }
2272 
2273   // We are going to have to map operands from the original BB block into the
2274   // PredBB block.  Evaluate PHI nodes in BB.
2275   DenseMap<Instruction*, Value*> ValueMapping;
2276 
2277   BasicBlock::iterator BI = BB->begin();
2278   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2279     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2280   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2281   // mapping and using it to remap operands in the cloned instructions.
2282   for (; BI != BB->end(); ++BI) {
2283     Instruction *New = BI->clone();
2284 
2285     // Remap operands to patch up intra-block references.
2286     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2287       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2288         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2289         if (I != ValueMapping.end())
2290           New->setOperand(i, I->second);
2291       }
2292 
2293     // If this instruction can be simplified after the operands are updated,
2294     // just use the simplified value instead.  This frequently happens due to
2295     // phi translation.
2296     if (Value *IV = SimplifyInstruction(
2297             New,
2298             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2299       ValueMapping[&*BI] = IV;
2300       if (!New->mayHaveSideEffects()) {
2301         New->deleteValue();
2302         New = nullptr;
2303       }
2304     } else {
2305       ValueMapping[&*BI] = New;
2306     }
2307     if (New) {
2308       // Otherwise, insert the new instruction into the block.
2309       New->setName(BI->getName());
2310       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2311       // Update Dominance from simplified New instruction operands.
2312       for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2313         if (BasicBlock *SuccBB = dyn_cast<BasicBlock>(New->getOperand(i)))
2314           Updates.push_back({DominatorTree::Insert, PredBB, SuccBB});
2315     }
2316   }
2317 
2318   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2319   // add entries to the PHI nodes for branch from PredBB now.
2320   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2321   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2322                                   ValueMapping);
2323   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2324                                   ValueMapping);
2325 
2326   // If there were values defined in BB that are used outside the block, then we
2327   // now have to update all uses of the value to use either the original value,
2328   // the cloned value, or some PHI derived value.  This can require arbitrary
2329   // PHI insertion, of which we are prepared to do, clean these up now.
2330   SSAUpdater SSAUpdate;
2331   SmallVector<Use*, 16> UsesToRename;
2332   for (Instruction &I : *BB) {
2333     // Scan all uses of this instruction to see if it is used outside of its
2334     // block, and if so, record them in UsesToRename.
2335     for (Use &U : I.uses()) {
2336       Instruction *User = cast<Instruction>(U.getUser());
2337       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2338         if (UserPN->getIncomingBlock(U) == BB)
2339           continue;
2340       } else if (User->getParent() == BB)
2341         continue;
2342 
2343       UsesToRename.push_back(&U);
2344     }
2345 
2346     // If there are no uses outside the block, we're done with this instruction.
2347     if (UsesToRename.empty())
2348       continue;
2349 
2350     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2351 
2352     // We found a use of I outside of BB.  Rename all uses of I that are outside
2353     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2354     // with the two values we know.
2355     SSAUpdate.Initialize(I.getType(), I.getName());
2356     SSAUpdate.AddAvailableValue(BB, &I);
2357     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2358 
2359     while (!UsesToRename.empty())
2360       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2361     DEBUG(dbgs() << "\n");
2362   }
2363 
2364   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2365   // that we nuked.
2366   BB->removePredecessor(PredBB, true);
2367 
2368   // Remove the unconditional branch at the end of the PredBB block.
2369   OldPredBranch->eraseFromParent();
2370   DDT->applyUpdates(Updates);
2371 
2372   ++NumDupes;
2373   return true;
2374 }
2375 
2376 /// TryToUnfoldSelect - Look for blocks of the form
2377 /// bb1:
2378 ///   %a = select
2379 ///   br bb2
2380 ///
2381 /// bb2:
2382 ///   %p = phi [%a, %bb1] ...
2383 ///   %c = icmp %p
2384 ///   br i1 %c
2385 ///
2386 /// And expand the select into a branch structure if one of its arms allows %c
2387 /// to be folded. This later enables threading from bb1 over bb2.
2388 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2389   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2390   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2391   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2392 
2393   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2394       CondLHS->getParent() != BB)
2395     return false;
2396 
2397   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2398     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2399     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2400 
2401     // Look if one of the incoming values is a select in the corresponding
2402     // predecessor.
2403     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2404       continue;
2405 
2406     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2407     if (!PredTerm || !PredTerm->isUnconditional())
2408       continue;
2409 
2410     // Now check if one of the select values would allow us to constant fold the
2411     // terminator in BB. We don't do the transform if both sides fold, those
2412     // cases will be threaded in any case.
2413     if (DDT->pending())
2414       LVI->disableDT();
2415     else
2416       LVI->enableDT();
2417     LazyValueInfo::Tristate LHSFolds =
2418         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2419                                 CondRHS, Pred, BB, CondCmp);
2420     LazyValueInfo::Tristate RHSFolds =
2421         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2422                                 CondRHS, Pred, BB, CondCmp);
2423     if ((LHSFolds != LazyValueInfo::Unknown ||
2424          RHSFolds != LazyValueInfo::Unknown) &&
2425         LHSFolds != RHSFolds) {
2426       // Expand the select.
2427       //
2428       // Pred --
2429       //  |    v
2430       //  |  NewBB
2431       //  |    |
2432       //  |-----
2433       //  v
2434       // BB
2435       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2436                                              BB->getParent(), BB);
2437       // Move the unconditional branch to NewBB.
2438       PredTerm->removeFromParent();
2439       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2440       // Create a conditional branch and update PHI nodes.
2441       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2442       CondLHS->setIncomingValue(I, SI->getFalseValue());
2443       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2444       // The select is now dead.
2445       SI->eraseFromParent();
2446 
2447       DDT->applyUpdates({{DominatorTree::Insert, NewBB, BB},
2448                          {DominatorTree::Insert, Pred, NewBB}});
2449       // Update any other PHI nodes in BB.
2450       for (BasicBlock::iterator BI = BB->begin();
2451            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2452         if (Phi != CondLHS)
2453           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2454       return true;
2455     }
2456   }
2457   return false;
2458 }
2459 
2460 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2461 /// same BB in the form
2462 /// bb:
2463 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2464 ///   %s = select %p, trueval, falseval
2465 ///
2466 /// or
2467 ///
2468 /// bb:
2469 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2470 ///   %c = cmp %p, 0
2471 ///   %s = select %c, trueval, falseval
2472 ///
2473 /// And expand the select into a branch structure. This later enables
2474 /// jump-threading over bb in this pass.
2475 ///
2476 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2477 /// select if the associated PHI has at least one constant.  If the unfolded
2478 /// select is not jump-threaded, it will be folded again in the later
2479 /// optimizations.
2480 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2481   // If threading this would thread across a loop header, don't thread the edge.
2482   // See the comments above FindLoopHeaders for justifications and caveats.
2483   if (LoopHeaders.count(BB))
2484     return false;
2485 
2486   for (BasicBlock::iterator BI = BB->begin();
2487        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2488     // Look for a Phi having at least one constant incoming value.
2489     if (llvm::all_of(PN->incoming_values(),
2490                      [](Value *V) { return !isa<ConstantInt>(V); }))
2491       continue;
2492 
2493     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2494       // Check if SI is in BB and use V as condition.
2495       if (SI->getParent() != BB)
2496         return false;
2497       Value *Cond = SI->getCondition();
2498       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2499     };
2500 
2501     SelectInst *SI = nullptr;
2502     for (Use &U : PN->uses()) {
2503       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2504         // Look for a ICmp in BB that compares PN with a constant and is the
2505         // condition of a Select.
2506         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2507             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2508           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2509             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2510               SI = SelectI;
2511               break;
2512             }
2513       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2514         // Look for a Select in BB that uses PN as condtion.
2515         if (isUnfoldCandidate(SelectI, U.get())) {
2516           SI = SelectI;
2517           break;
2518         }
2519       }
2520     }
2521 
2522     if (!SI)
2523       continue;
2524     // Expand the select.
2525     TerminatorInst *Term =
2526         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2527     BasicBlock *SplitBB = SI->getParent();
2528     BasicBlock *NewBB = Term->getParent();
2529     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2530     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2531     NewPN->addIncoming(SI->getFalseValue(), BB);
2532     SI->replaceAllUsesWith(NewPN);
2533     SI->eraseFromParent();
2534     // NewBB and SplitBB are newly created blocks which require insertion.
2535     std::vector<DominatorTree::UpdateType> Updates;
2536     Updates.reserve((2 * SplitBB->getTerminator()->getNumSuccessors()) + 3);
2537     Updates.push_back({DominatorTree::Insert, BB, SplitBB});
2538     Updates.push_back({DominatorTree::Insert, BB, NewBB});
2539     Updates.push_back({DominatorTree::Insert, NewBB, SplitBB});
2540     // BB's successors were moved to SplitBB, update DDT accordingly.
2541     for (auto *Succ : successors(SplitBB)) {
2542       Updates.push_back({DominatorTree::Delete, BB, Succ});
2543       Updates.push_back({DominatorTree::Insert, SplitBB, Succ});
2544     }
2545     DDT->applyUpdates(Updates);
2546     return true;
2547   }
2548   return false;
2549 }
2550 
2551 /// Try to propagate a guard from the current BB into one of its predecessors
2552 /// in case if another branch of execution implies that the condition of this
2553 /// guard is always true. Currently we only process the simplest case that
2554 /// looks like:
2555 ///
2556 /// Start:
2557 ///   %cond = ...
2558 ///   br i1 %cond, label %T1, label %F1
2559 /// T1:
2560 ///   br label %Merge
2561 /// F1:
2562 ///   br label %Merge
2563 /// Merge:
2564 ///   %condGuard = ...
2565 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2566 ///
2567 /// And cond either implies condGuard or !condGuard. In this case all the
2568 /// instructions before the guard can be duplicated in both branches, and the
2569 /// guard is then threaded to one of them.
2570 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2571   using namespace PatternMatch;
2572 
2573   // We only want to deal with two predecessors.
2574   BasicBlock *Pred1, *Pred2;
2575   auto PI = pred_begin(BB), PE = pred_end(BB);
2576   if (PI == PE)
2577     return false;
2578   Pred1 = *PI++;
2579   if (PI == PE)
2580     return false;
2581   Pred2 = *PI++;
2582   if (PI != PE)
2583     return false;
2584   if (Pred1 == Pred2)
2585     return false;
2586 
2587   // Try to thread one of the guards of the block.
2588   // TODO: Look up deeper than to immediate predecessor?
2589   auto *Parent = Pred1->getSinglePredecessor();
2590   if (!Parent || Parent != Pred2->getSinglePredecessor())
2591     return false;
2592 
2593   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2594     for (auto &I : *BB)
2595       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2596         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2597           return true;
2598 
2599   return false;
2600 }
2601 
2602 /// Try to propagate the guard from BB which is the lower block of a diamond
2603 /// to one of its branches, in case if diamond's condition implies guard's
2604 /// condition.
2605 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2606                                     BranchInst *BI) {
2607   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2608   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2609   Value *GuardCond = Guard->getArgOperand(0);
2610   Value *BranchCond = BI->getCondition();
2611   BasicBlock *TrueDest = BI->getSuccessor(0);
2612   BasicBlock *FalseDest = BI->getSuccessor(1);
2613 
2614   auto &DL = BB->getModule()->getDataLayout();
2615   bool TrueDestIsSafe = false;
2616   bool FalseDestIsSafe = false;
2617 
2618   // True dest is safe if BranchCond => GuardCond.
2619   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2620   if (Impl && *Impl)
2621     TrueDestIsSafe = true;
2622   else {
2623     // False dest is safe if !BranchCond => GuardCond.
2624     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2625     if (Impl && *Impl)
2626       FalseDestIsSafe = true;
2627   }
2628 
2629   if (!TrueDestIsSafe && !FalseDestIsSafe)
2630     return false;
2631 
2632   BasicBlock *PredUnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2633   BasicBlock *PredGuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2634 
2635   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2636   Instruction *AfterGuard = Guard->getNextNode();
2637   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2638   if (Cost > BBDupThreshold)
2639     return false;
2640   // Duplicate all instructions before the guard and the guard itself to the
2641   // branch where implication is not proved.
2642   BasicBlock *GuardedBlock = DuplicateInstructionsInSplitBetween(
2643       BB, PredGuardedBlock, AfterGuard, GuardedMapping);
2644   assert(GuardedBlock && "Could not create the guarded block?");
2645   // Duplicate all instructions before the guard in the unguarded branch.
2646   // Since we have successfully duplicated the guarded block and this block
2647   // has fewer instructions, we expect it to succeed.
2648   BasicBlock *UnguardedBlock = DuplicateInstructionsInSplitBetween(
2649       BB, PredUnguardedBlock, Guard, UnguardedMapping);
2650   assert(UnguardedBlock && "Could not create the unguarded block?");
2651   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2652                << GuardedBlock->getName() << "\n");
2653   // DuplicateInstructionsInSplitBetween inserts a new block "BB.split" between
2654   // PredBB and BB. We need to perform two inserts and one delete for each of
2655   // the above calls to update Dominators.
2656   DDT->applyUpdates(
2657       {// Guarded block split.
2658        {DominatorTree::Delete, PredGuardedBlock, BB},
2659        {DominatorTree::Insert, PredGuardedBlock, GuardedBlock},
2660        {DominatorTree::Insert, GuardedBlock, BB},
2661        // Unguarded block split.
2662        {DominatorTree::Delete, PredUnguardedBlock, BB},
2663        {DominatorTree::Insert, PredUnguardedBlock, UnguardedBlock},
2664        {DominatorTree::Insert, UnguardedBlock, BB}});
2665   // Some instructions before the guard may still have uses. For them, we need
2666   // to create Phi nodes merging their copies in both guarded and unguarded
2667   // branches. Those instructions that have no uses can be just removed.
2668   SmallVector<Instruction *, 4> ToRemove;
2669   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2670     if (!isa<PHINode>(&*BI))
2671       ToRemove.push_back(&*BI);
2672 
2673   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2674   assert(InsertionPoint && "Empty block?");
2675   // Substitute with Phis & remove.
2676   for (auto *Inst : reverse(ToRemove)) {
2677     if (!Inst->use_empty()) {
2678       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2679       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2680       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2681       NewPN->insertBefore(InsertionPoint);
2682       Inst->replaceAllUsesWith(NewPN);
2683     }
2684     Inst->eraseFromParent();
2685   }
2686   return true;
2687 }
2688