1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar/JumpThreading.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BlockFrequencyInfoImpl.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/GlobalsModRef.h" 24 #include "llvm/Analysis/InstructionSimplify.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/LoopInfo.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/IR/ConstantRange.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/MDBuilder.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/Pass.h" 36 #include "llvm/Support/CommandLine.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include "llvm/Transforms/Scalar.h" 40 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 41 #include "llvm/Transforms/Utils/Cloning.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 #include "llvm/Transforms/Utils/SSAUpdater.h" 44 #include <algorithm> 45 #include <memory> 46 using namespace llvm; 47 using namespace jumpthreading; 48 49 #define DEBUG_TYPE "jump-threading" 50 51 STATISTIC(NumThreads, "Number of jumps threaded"); 52 STATISTIC(NumFolds, "Number of terminators folded"); 53 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 54 55 static cl::opt<unsigned> 56 BBDuplicateThreshold("jump-threading-threshold", 57 cl::desc("Max block size to duplicate for jump threading"), 58 cl::init(6), cl::Hidden); 59 60 static cl::opt<unsigned> 61 ImplicationSearchThreshold( 62 "jump-threading-implication-search-threshold", 63 cl::desc("The number of predecessors to search for a stronger " 64 "condition to use to thread over a weaker condition"), 65 cl::init(3), cl::Hidden); 66 67 static cl::opt<bool> PrintLVIAfterJumpThreading( 68 "print-lvi-after-jump-threading", 69 cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false), 70 cl::Hidden); 71 72 namespace { 73 /// This pass performs 'jump threading', which looks at blocks that have 74 /// multiple predecessors and multiple successors. If one or more of the 75 /// predecessors of the block can be proven to always jump to one of the 76 /// successors, we forward the edge from the predecessor to the successor by 77 /// duplicating the contents of this block. 78 /// 79 /// An example of when this can occur is code like this: 80 /// 81 /// if () { ... 82 /// X = 4; 83 /// } 84 /// if (X < 3) { 85 /// 86 /// In this case, the unconditional branch at the end of the first if can be 87 /// revectored to the false side of the second if. 88 /// 89 class JumpThreading : public FunctionPass { 90 JumpThreadingPass Impl; 91 92 public: 93 static char ID; // Pass identification 94 JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) { 95 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 96 } 97 98 bool runOnFunction(Function &F) override; 99 100 void getAnalysisUsage(AnalysisUsage &AU) const override { 101 if (PrintLVIAfterJumpThreading) 102 AU.addRequired<DominatorTreeWrapperPass>(); 103 AU.addRequired<AAResultsWrapperPass>(); 104 AU.addRequired<LazyValueInfoWrapperPass>(); 105 AU.addPreserved<GlobalsAAWrapperPass>(); 106 AU.addRequired<TargetLibraryInfoWrapperPass>(); 107 } 108 109 void releaseMemory() override { Impl.releaseMemory(); } 110 }; 111 } 112 113 char JumpThreading::ID = 0; 114 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 115 "Jump Threading", false, false) 116 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass) 117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 118 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 119 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 120 "Jump Threading", false, false) 121 122 // Public interface to the Jump Threading pass 123 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 124 125 JumpThreadingPass::JumpThreadingPass(int T) { 126 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 127 } 128 129 // Update branch probability information according to conditional 130 // branch probablity. This is usually made possible for cloned branches 131 // in inline instances by the context specific profile in the caller. 132 // For instance, 133 // 134 // [Block PredBB] 135 // [Branch PredBr] 136 // if (t) { 137 // Block A; 138 // } else { 139 // Block B; 140 // } 141 // 142 // [Block BB] 143 // cond = PN([true, %A], [..., %B]); // PHI node 144 // [Branch CondBr] 145 // if (cond) { 146 // ... // P(cond == true) = 1% 147 // } 148 // 149 // Here we know that when block A is taken, cond must be true, which means 150 // P(cond == true | A) = 1 151 // 152 // Given that P(cond == true) = P(cond == true | A) * P(A) + 153 // P(cond == true | B) * P(B) 154 // we get 155 // P(cond == true ) = P(A) + P(cond == true | B) * P(B) 156 // 157 // which gives us: 158 // P(A) <= P(c == true), i.e. 159 // P(t == true) <= P(cond == true) 160 // 161 // In other words, if we know P(cond == true), we know that P(t == true) 162 // can not be greater than 1%. 163 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) { 164 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 165 if (!CondBr) 166 return; 167 168 BranchProbability BP; 169 uint64_t TrueWeight, FalseWeight; 170 if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight)) 171 return; 172 173 // Returns the outgoing edge of the dominating predecessor block 174 // that leads to the PhiNode's incoming block: 175 auto GetPredOutEdge = 176 [](BasicBlock *IncomingBB, 177 BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> { 178 auto *PredBB = IncomingBB; 179 auto *SuccBB = PhiBB; 180 for (;;) { 181 BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()); 182 if (PredBr && PredBr->isConditional()) 183 return {PredBB, SuccBB}; 184 auto *SinglePredBB = PredBB->getSinglePredecessor(); 185 if (!SinglePredBB) 186 return {nullptr, nullptr}; 187 SuccBB = PredBB; 188 PredBB = SinglePredBB; 189 } 190 }; 191 192 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 193 Value *PhiOpnd = PN->getIncomingValue(i); 194 ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd); 195 196 if (!CI || !CI->getType()->isIntegerTy(1)) 197 continue; 198 199 BP = (CI->isOne() ? BranchProbability::getBranchProbability( 200 TrueWeight, TrueWeight + FalseWeight) 201 : BranchProbability::getBranchProbability( 202 FalseWeight, TrueWeight + FalseWeight)); 203 204 auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB); 205 if (!PredOutEdge.first) 206 return; 207 208 BasicBlock *PredBB = PredOutEdge.first; 209 BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator()); 210 211 uint64_t PredTrueWeight, PredFalseWeight; 212 // FIXME: We currently only set the profile data when it is missing. 213 // With PGO, this can be used to refine even existing profile data with 214 // context information. This needs to be done after more performance 215 // testing. 216 if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight)) 217 continue; 218 219 // We can not infer anything useful when BP >= 50%, because BP is the 220 // upper bound probability value. 221 if (BP >= BranchProbability(50, 100)) 222 continue; 223 224 SmallVector<uint32_t, 2> Weights; 225 if (PredBr->getSuccessor(0) == PredOutEdge.second) { 226 Weights.push_back(BP.getNumerator()); 227 Weights.push_back(BP.getCompl().getNumerator()); 228 } else { 229 Weights.push_back(BP.getCompl().getNumerator()); 230 Weights.push_back(BP.getNumerator()); 231 } 232 PredBr->setMetadata(LLVMContext::MD_prof, 233 MDBuilder(PredBr->getParent()->getContext()) 234 .createBranchWeights(Weights)); 235 } 236 } 237 238 /// runOnFunction - Toplevel algorithm. 239 /// 240 bool JumpThreading::runOnFunction(Function &F) { 241 if (skipFunction(F)) 242 return false; 243 auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 244 auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI(); 245 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 246 std::unique_ptr<BlockFrequencyInfo> BFI; 247 std::unique_ptr<BranchProbabilityInfo> BPI; 248 bool HasProfileData = F.getEntryCount().hasValue(); 249 if (HasProfileData) { 250 LoopInfo LI{DominatorTree(F)}; 251 BPI.reset(new BranchProbabilityInfo(F, LI, TLI)); 252 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 253 } 254 255 bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI), 256 std::move(BPI)); 257 if (PrintLVIAfterJumpThreading) { 258 dbgs() << "LVI for function '" << F.getName() << "':\n"; 259 LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 260 dbgs()); 261 } 262 return Changed; 263 } 264 265 PreservedAnalyses JumpThreadingPass::run(Function &F, 266 FunctionAnalysisManager &AM) { 267 268 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 269 auto &LVI = AM.getResult<LazyValueAnalysis>(F); 270 auto &AA = AM.getResult<AAManager>(F); 271 272 std::unique_ptr<BlockFrequencyInfo> BFI; 273 std::unique_ptr<BranchProbabilityInfo> BPI; 274 bool HasProfileData = F.getEntryCount().hasValue(); 275 if (HasProfileData) { 276 LoopInfo LI{DominatorTree(F)}; 277 BPI.reset(new BranchProbabilityInfo(F, LI, &TLI)); 278 BFI.reset(new BlockFrequencyInfo(F, *BPI, LI)); 279 } 280 281 bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI), 282 std::move(BPI)); 283 284 if (!Changed) 285 return PreservedAnalyses::all(); 286 PreservedAnalyses PA; 287 PA.preserve<GlobalsAA>(); 288 return PA; 289 } 290 291 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_, 292 LazyValueInfo *LVI_, AliasAnalysis *AA_, 293 bool HasProfileData_, 294 std::unique_ptr<BlockFrequencyInfo> BFI_, 295 std::unique_ptr<BranchProbabilityInfo> BPI_) { 296 297 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 298 TLI = TLI_; 299 LVI = LVI_; 300 AA = AA_; 301 BFI.reset(); 302 BPI.reset(); 303 // When profile data is available, we need to update edge weights after 304 // successful jump threading, which requires both BPI and BFI being available. 305 HasProfileData = HasProfileData_; 306 auto *GuardDecl = F.getParent()->getFunction( 307 Intrinsic::getName(Intrinsic::experimental_guard)); 308 HasGuards = GuardDecl && !GuardDecl->use_empty(); 309 if (HasProfileData) { 310 BPI = std::move(BPI_); 311 BFI = std::move(BFI_); 312 } 313 314 // Remove unreachable blocks from function as they may result in infinite 315 // loop. We do threading if we found something profitable. Jump threading a 316 // branch can create other opportunities. If these opportunities form a cycle 317 // i.e. if any jump threading is undoing previous threading in the path, then 318 // we will loop forever. We take care of this issue by not jump threading for 319 // back edges. This works for normal cases but not for unreachable blocks as 320 // they may have cycle with no back edge. 321 bool EverChanged = false; 322 EverChanged |= removeUnreachableBlocks(F, LVI); 323 324 FindLoopHeaders(F); 325 326 bool Changed; 327 do { 328 Changed = false; 329 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 330 BasicBlock *BB = &*I; 331 // Thread all of the branches we can over this block. 332 while (ProcessBlock(BB)) 333 Changed = true; 334 335 ++I; 336 337 // If the block is trivially dead, zap it. This eliminates the successor 338 // edges which simplifies the CFG. 339 if (pred_empty(BB) && 340 BB != &BB->getParent()->getEntryBlock()) { 341 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 342 << "' with terminator: " << *BB->getTerminator() << '\n'); 343 LoopHeaders.erase(BB); 344 LVI->eraseBlock(BB); 345 DeleteDeadBlock(BB); 346 Changed = true; 347 continue; 348 } 349 350 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 351 352 // Can't thread an unconditional jump, but if the block is "almost 353 // empty", we can replace uses of it with uses of the successor and make 354 // this dead. 355 // We should not eliminate the loop header or latch either, because 356 // eliminating a loop header or latch might later prevent LoopSimplify 357 // from transforming nested loops into simplified form. We will rely on 358 // later passes in backend to clean up empty blocks. 359 if (BI && BI->isUnconditional() && 360 BB != &BB->getParent()->getEntryBlock() && 361 // If the terminator is the only non-phi instruction, try to nuke it. 362 BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) && 363 !LoopHeaders.count(BI->getSuccessor(0))) { 364 // FIXME: It is always conservatively correct to drop the info 365 // for a block even if it doesn't get erased. This isn't totally 366 // awesome, but it allows us to use AssertingVH to prevent nasty 367 // dangling pointer issues within LazyValueInfo. 368 LVI->eraseBlock(BB); 369 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) 370 Changed = true; 371 } 372 } 373 EverChanged |= Changed; 374 } while (Changed); 375 376 LoopHeaders.clear(); 377 return EverChanged; 378 } 379 380 // Replace uses of Cond with ToVal when safe to do so. If all uses are 381 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond 382 // because we may incorrectly replace uses when guards/assumes are uses of 383 // of `Cond` and we used the guards/assume to reason about the `Cond` value 384 // at the end of block. RAUW unconditionally replaces all uses 385 // including the guards/assumes themselves and the uses before the 386 // guard/assume. 387 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) { 388 assert(Cond->getType() == ToVal->getType()); 389 auto *BB = Cond->getParent(); 390 // We can unconditionally replace all uses in non-local blocks (i.e. uses 391 // strictly dominated by BB), since LVI information is true from the 392 // terminator of BB. 393 replaceNonLocalUsesWith(Cond, ToVal); 394 for (Instruction &I : reverse(*BB)) { 395 // Reached the Cond whose uses we are trying to replace, so there are no 396 // more uses. 397 if (&I == Cond) 398 break; 399 // We only replace uses in instructions that are guaranteed to reach the end 400 // of BB, where we know Cond is ToVal. 401 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 402 break; 403 I.replaceUsesOfWith(Cond, ToVal); 404 } 405 if (Cond->use_empty() && !Cond->mayHaveSideEffects()) 406 Cond->eraseFromParent(); 407 } 408 409 /// Return the cost of duplicating a piece of this block from first non-phi 410 /// and before StopAt instruction to thread across it. Stop scanning the block 411 /// when exceeding the threshold. If duplication is impossible, returns ~0U. 412 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB, 413 Instruction *StopAt, 414 unsigned Threshold) { 415 assert(StopAt->getParent() == BB && "Not an instruction from proper BB?"); 416 /// Ignore PHI nodes, these will be flattened when duplication happens. 417 BasicBlock::const_iterator I(BB->getFirstNonPHI()); 418 419 // FIXME: THREADING will delete values that are just used to compute the 420 // branch, so they shouldn't count against the duplication cost. 421 422 unsigned Bonus = 0; 423 if (BB->getTerminator() == StopAt) { 424 // Threading through a switch statement is particularly profitable. If this 425 // block ends in a switch, decrease its cost to make it more likely to 426 // happen. 427 if (isa<SwitchInst>(StopAt)) 428 Bonus = 6; 429 430 // The same holds for indirect branches, but slightly more so. 431 if (isa<IndirectBrInst>(StopAt)) 432 Bonus = 8; 433 } 434 435 // Bump the threshold up so the early exit from the loop doesn't skip the 436 // terminator-based Size adjustment at the end. 437 Threshold += Bonus; 438 439 // Sum up the cost of each instruction until we get to the terminator. Don't 440 // include the terminator because the copy won't include it. 441 unsigned Size = 0; 442 for (; &*I != StopAt; ++I) { 443 444 // Stop scanning the block if we've reached the threshold. 445 if (Size > Threshold) 446 return Size; 447 448 // Debugger intrinsics don't incur code size. 449 if (isa<DbgInfoIntrinsic>(I)) continue; 450 451 // If this is a pointer->pointer bitcast, it is free. 452 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 453 continue; 454 455 // Bail out if this instruction gives back a token type, it is not possible 456 // to duplicate it if it is used outside this BB. 457 if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB)) 458 return ~0U; 459 460 // All other instructions count for at least one unit. 461 ++Size; 462 463 // Calls are more expensive. If they are non-intrinsic calls, we model them 464 // as having cost of 4. If they are a non-vector intrinsic, we model them 465 // as having cost of 2 total, and if they are a vector intrinsic, we model 466 // them as having cost 1. 467 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 468 if (CI->cannotDuplicate() || CI->isConvergent()) 469 // Blocks with NoDuplicate are modelled as having infinite cost, so they 470 // are never duplicated. 471 return ~0U; 472 else if (!isa<IntrinsicInst>(CI)) 473 Size += 3; 474 else if (!CI->getType()->isVectorTy()) 475 Size += 1; 476 } 477 } 478 479 return Size > Bonus ? Size - Bonus : 0; 480 } 481 482 /// FindLoopHeaders - We do not want jump threading to turn proper loop 483 /// structures into irreducible loops. Doing this breaks up the loop nesting 484 /// hierarchy and pessimizes later transformations. To prevent this from 485 /// happening, we first have to find the loop headers. Here we approximate this 486 /// by finding targets of backedges in the CFG. 487 /// 488 /// Note that there definitely are cases when we want to allow threading of 489 /// edges across a loop header. For example, threading a jump from outside the 490 /// loop (the preheader) to an exit block of the loop is definitely profitable. 491 /// It is also almost always profitable to thread backedges from within the loop 492 /// to exit blocks, and is often profitable to thread backedges to other blocks 493 /// within the loop (forming a nested loop). This simple analysis is not rich 494 /// enough to track all of these properties and keep it up-to-date as the CFG 495 /// mutates, so we don't allow any of these transformations. 496 /// 497 void JumpThreadingPass::FindLoopHeaders(Function &F) { 498 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 499 FindFunctionBackedges(F, Edges); 500 501 for (const auto &Edge : Edges) 502 LoopHeaders.insert(Edge.second); 503 } 504 505 /// getKnownConstant - Helper method to determine if we can thread over a 506 /// terminator with the given value as its condition, and if so what value to 507 /// use for that. What kind of value this is depends on whether we want an 508 /// integer or a block address, but an undef is always accepted. 509 /// Returns null if Val is null or not an appropriate constant. 510 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 511 if (!Val) 512 return nullptr; 513 514 // Undef is "known" enough. 515 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 516 return U; 517 518 if (Preference == WantBlockAddress) 519 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 520 521 return dyn_cast<ConstantInt>(Val); 522 } 523 524 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 525 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 526 /// in any of our predecessors. If so, return the known list of value and pred 527 /// BB in the result vector. 528 /// 529 /// This returns true if there were any known values. 530 /// 531 bool JumpThreadingPass::ComputeValueKnownInPredecessors( 532 Value *V, BasicBlock *BB, PredValueInfo &Result, 533 ConstantPreference Preference, Instruction *CxtI) { 534 // This method walks up use-def chains recursively. Because of this, we could 535 // get into an infinite loop going around loops in the use-def chain. To 536 // prevent this, keep track of what (value, block) pairs we've already visited 537 // and terminate the search if we loop back to them 538 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 539 return false; 540 541 // An RAII help to remove this pair from the recursion set once the recursion 542 // stack pops back out again. 543 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 544 545 // If V is a constant, then it is known in all predecessors. 546 if (Constant *KC = getKnownConstant(V, Preference)) { 547 for (BasicBlock *Pred : predecessors(BB)) 548 Result.push_back(std::make_pair(KC, Pred)); 549 550 return !Result.empty(); 551 } 552 553 // If V is a non-instruction value, or an instruction in a different block, 554 // then it can't be derived from a PHI. 555 Instruction *I = dyn_cast<Instruction>(V); 556 if (!I || I->getParent() != BB) { 557 558 // Okay, if this is a live-in value, see if it has a known value at the end 559 // of any of our predecessors. 560 // 561 // FIXME: This should be an edge property, not a block end property. 562 /// TODO: Per PR2563, we could infer value range information about a 563 /// predecessor based on its terminator. 564 // 565 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 566 // "I" is a non-local compare-with-a-constant instruction. This would be 567 // able to handle value inequalities better, for example if the compare is 568 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 569 // Perhaps getConstantOnEdge should be smart enough to do this? 570 571 for (BasicBlock *P : predecessors(BB)) { 572 // If the value is known by LazyValueInfo to be a constant in a 573 // predecessor, use that information to try to thread this block. 574 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 575 if (Constant *KC = getKnownConstant(PredCst, Preference)) 576 Result.push_back(std::make_pair(KC, P)); 577 } 578 579 return !Result.empty(); 580 } 581 582 /// If I is a PHI node, then we know the incoming values for any constants. 583 if (PHINode *PN = dyn_cast<PHINode>(I)) { 584 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 585 Value *InVal = PN->getIncomingValue(i); 586 if (Constant *KC = getKnownConstant(InVal, Preference)) { 587 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 588 } else { 589 Constant *CI = LVI->getConstantOnEdge(InVal, 590 PN->getIncomingBlock(i), 591 BB, CxtI); 592 if (Constant *KC = getKnownConstant(CI, Preference)) 593 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 594 } 595 } 596 597 return !Result.empty(); 598 } 599 600 // Handle Cast instructions. Only see through Cast when the source operand is 601 // PHI or Cmp and the source type is i1 to save the compilation time. 602 if (CastInst *CI = dyn_cast<CastInst>(I)) { 603 Value *Source = CI->getOperand(0); 604 if (!Source->getType()->isIntegerTy(1)) 605 return false; 606 if (!isa<PHINode>(Source) && !isa<CmpInst>(Source)) 607 return false; 608 ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI); 609 if (Result.empty()) 610 return false; 611 612 // Convert the known values. 613 for (auto &R : Result) 614 R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType()); 615 616 return true; 617 } 618 619 PredValueInfoTy LHSVals, RHSVals; 620 621 // Handle some boolean conditions. 622 if (I->getType()->getPrimitiveSizeInBits() == 1) { 623 assert(Preference == WantInteger && "One-bit non-integer type?"); 624 // X | true -> true 625 // X & false -> false 626 if (I->getOpcode() == Instruction::Or || 627 I->getOpcode() == Instruction::And) { 628 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 629 WantInteger, CxtI); 630 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 631 WantInteger, CxtI); 632 633 if (LHSVals.empty() && RHSVals.empty()) 634 return false; 635 636 ConstantInt *InterestingVal; 637 if (I->getOpcode() == Instruction::Or) 638 InterestingVal = ConstantInt::getTrue(I->getContext()); 639 else 640 InterestingVal = ConstantInt::getFalse(I->getContext()); 641 642 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 643 644 // Scan for the sentinel. If we find an undef, force it to the 645 // interesting value: x|undef -> true and x&undef -> false. 646 for (const auto &LHSVal : LHSVals) 647 if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) { 648 Result.emplace_back(InterestingVal, LHSVal.second); 649 LHSKnownBBs.insert(LHSVal.second); 650 } 651 for (const auto &RHSVal : RHSVals) 652 if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) { 653 // If we already inferred a value for this block on the LHS, don't 654 // re-add it. 655 if (!LHSKnownBBs.count(RHSVal.second)) 656 Result.emplace_back(InterestingVal, RHSVal.second); 657 } 658 659 return !Result.empty(); 660 } 661 662 // Handle the NOT form of XOR. 663 if (I->getOpcode() == Instruction::Xor && 664 isa<ConstantInt>(I->getOperand(1)) && 665 cast<ConstantInt>(I->getOperand(1))->isOne()) { 666 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 667 WantInteger, CxtI); 668 if (Result.empty()) 669 return false; 670 671 // Invert the known values. 672 for (auto &R : Result) 673 R.first = ConstantExpr::getNot(R.first); 674 675 return true; 676 } 677 678 // Try to simplify some other binary operator values. 679 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 680 assert(Preference != WantBlockAddress 681 && "A binary operator creating a block address?"); 682 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 683 PredValueInfoTy LHSVals; 684 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 685 WantInteger, CxtI); 686 687 // Try to use constant folding to simplify the binary operator. 688 for (const auto &LHSVal : LHSVals) { 689 Constant *V = LHSVal.first; 690 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 691 692 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 693 Result.push_back(std::make_pair(KC, LHSVal.second)); 694 } 695 } 696 697 return !Result.empty(); 698 } 699 700 // Handle compare with phi operand, where the PHI is defined in this block. 701 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 702 assert(Preference == WantInteger && "Compares only produce integers"); 703 Type *CmpType = Cmp->getType(); 704 Value *CmpLHS = Cmp->getOperand(0); 705 Value *CmpRHS = Cmp->getOperand(1); 706 CmpInst::Predicate Pred = Cmp->getPredicate(); 707 708 PHINode *PN = dyn_cast<PHINode>(CmpLHS); 709 if (PN && PN->getParent() == BB) { 710 const DataLayout &DL = PN->getModule()->getDataLayout(); 711 // We can do this simplification if any comparisons fold to true or false. 712 // See if any do. 713 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 714 BasicBlock *PredBB = PN->getIncomingBlock(i); 715 Value *LHS = PN->getIncomingValue(i); 716 Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB); 717 718 Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL}); 719 if (!Res) { 720 if (!isa<Constant>(RHS)) 721 continue; 722 723 LazyValueInfo::Tristate 724 ResT = LVI->getPredicateOnEdge(Pred, LHS, 725 cast<Constant>(RHS), PredBB, BB, 726 CxtI ? CxtI : Cmp); 727 if (ResT == LazyValueInfo::Unknown) 728 continue; 729 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 730 } 731 732 if (Constant *KC = getKnownConstant(Res, WantInteger)) 733 Result.push_back(std::make_pair(KC, PredBB)); 734 } 735 736 return !Result.empty(); 737 } 738 739 // If comparing a live-in value against a constant, see if we know the 740 // live-in value on any predecessors. 741 if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) { 742 Constant *CmpConst = cast<Constant>(CmpRHS); 743 744 if (!isa<Instruction>(CmpLHS) || 745 cast<Instruction>(CmpLHS)->getParent() != BB) { 746 for (BasicBlock *P : predecessors(BB)) { 747 // If the value is known by LazyValueInfo to be a constant in a 748 // predecessor, use that information to try to thread this block. 749 LazyValueInfo::Tristate Res = 750 LVI->getPredicateOnEdge(Pred, CmpLHS, 751 CmpConst, P, BB, CxtI ? CxtI : Cmp); 752 if (Res == LazyValueInfo::Unknown) 753 continue; 754 755 Constant *ResC = ConstantInt::get(CmpType, Res); 756 Result.push_back(std::make_pair(ResC, P)); 757 } 758 759 return !Result.empty(); 760 } 761 762 // InstCombine can fold some forms of constant range checks into 763 // (icmp (add (x, C1)), C2). See if we have we have such a thing with 764 // x as a live-in. 765 { 766 using namespace PatternMatch; 767 Value *AddLHS; 768 ConstantInt *AddConst; 769 if (isa<ConstantInt>(CmpConst) && 770 match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) { 771 if (!isa<Instruction>(AddLHS) || 772 cast<Instruction>(AddLHS)->getParent() != BB) { 773 for (BasicBlock *P : predecessors(BB)) { 774 // If the value is known by LazyValueInfo to be a ConstantRange in 775 // a predecessor, use that information to try to thread this 776 // block. 777 ConstantRange CR = LVI->getConstantRangeOnEdge( 778 AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS)); 779 // Propagate the range through the addition. 780 CR = CR.add(AddConst->getValue()); 781 782 // Get the range where the compare returns true. 783 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion( 784 Pred, cast<ConstantInt>(CmpConst)->getValue()); 785 786 Constant *ResC; 787 if (CmpRange.contains(CR)) 788 ResC = ConstantInt::getTrue(CmpType); 789 else if (CmpRange.inverse().contains(CR)) 790 ResC = ConstantInt::getFalse(CmpType); 791 else 792 continue; 793 794 Result.push_back(std::make_pair(ResC, P)); 795 } 796 797 return !Result.empty(); 798 } 799 } 800 } 801 802 // Try to find a constant value for the LHS of a comparison, 803 // and evaluate it statically if we can. 804 PredValueInfoTy LHSVals; 805 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 806 WantInteger, CxtI); 807 808 for (const auto &LHSVal : LHSVals) { 809 Constant *V = LHSVal.first; 810 Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst); 811 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 812 Result.push_back(std::make_pair(KC, LHSVal.second)); 813 } 814 815 return !Result.empty(); 816 } 817 } 818 819 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 820 // Handle select instructions where at least one operand is a known constant 821 // and we can figure out the condition value for any predecessor block. 822 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 823 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 824 PredValueInfoTy Conds; 825 if ((TrueVal || FalseVal) && 826 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 827 WantInteger, CxtI)) { 828 for (auto &C : Conds) { 829 Constant *Cond = C.first; 830 831 // Figure out what value to use for the condition. 832 bool KnownCond; 833 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 834 // A known boolean. 835 KnownCond = CI->isOne(); 836 } else { 837 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 838 // Either operand will do, so be sure to pick the one that's a known 839 // constant. 840 // FIXME: Do this more cleverly if both values are known constants? 841 KnownCond = (TrueVal != nullptr); 842 } 843 844 // See if the select has a known constant value for this predecessor. 845 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 846 Result.push_back(std::make_pair(Val, C.second)); 847 } 848 849 return !Result.empty(); 850 } 851 } 852 853 // If all else fails, see if LVI can figure out a constant value for us. 854 Constant *CI = LVI->getConstant(V, BB, CxtI); 855 if (Constant *KC = getKnownConstant(CI, Preference)) { 856 for (BasicBlock *Pred : predecessors(BB)) 857 Result.push_back(std::make_pair(KC, Pred)); 858 } 859 860 return !Result.empty(); 861 } 862 863 864 865 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 866 /// in an undefined jump, decide which block is best to revector to. 867 /// 868 /// Since we can pick an arbitrary destination, we pick the successor with the 869 /// fewest predecessors. This should reduce the in-degree of the others. 870 /// 871 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 872 TerminatorInst *BBTerm = BB->getTerminator(); 873 unsigned MinSucc = 0; 874 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 875 // Compute the successor with the minimum number of predecessors. 876 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 877 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 878 TestBB = BBTerm->getSuccessor(i); 879 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 880 if (NumPreds < MinNumPreds) { 881 MinSucc = i; 882 MinNumPreds = NumPreds; 883 } 884 } 885 886 return MinSucc; 887 } 888 889 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 890 if (!BB->hasAddressTaken()) return false; 891 892 // If the block has its address taken, it may be a tree of dead constants 893 // hanging off of it. These shouldn't keep the block alive. 894 BlockAddress *BA = BlockAddress::get(BB); 895 BA->removeDeadConstantUsers(); 896 return !BA->use_empty(); 897 } 898 899 /// ProcessBlock - If there are any predecessors whose control can be threaded 900 /// through to a successor, transform them now. 901 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) { 902 // If the block is trivially dead, just return and let the caller nuke it. 903 // This simplifies other transformations. 904 if (pred_empty(BB) && 905 BB != &BB->getParent()->getEntryBlock()) 906 return false; 907 908 // If this block has a single predecessor, and if that pred has a single 909 // successor, merge the blocks. This encourages recursive jump threading 910 // because now the condition in this block can be threaded through 911 // predecessors of our predecessor block. 912 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 913 const TerminatorInst *TI = SinglePred->getTerminator(); 914 if (!TI->isExceptional() && TI->getNumSuccessors() == 1 && 915 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 916 // If SinglePred was a loop header, BB becomes one. 917 if (LoopHeaders.erase(SinglePred)) 918 LoopHeaders.insert(BB); 919 920 LVI->eraseBlock(SinglePred); 921 MergeBasicBlockIntoOnlyPred(BB); 922 923 // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by 924 // BB code within one basic block `BB`), we need to invalidate the LVI 925 // information associated with BB, because the LVI information need not be 926 // true for all of BB after the merge. For example, 927 // Before the merge, LVI info and code is as follows: 928 // SinglePred: <LVI info1 for %p val> 929 // %y = use of %p 930 // call @exit() // need not transfer execution to successor. 931 // assume(%p) // from this point on %p is true 932 // br label %BB 933 // BB: <LVI info2 for %p val, i.e. %p is true> 934 // %x = use of %p 935 // br label exit 936 // 937 // Note that this LVI info for blocks BB and SinglPred is correct for %p 938 // (info2 and info1 respectively). After the merge and the deletion of the 939 // LVI info1 for SinglePred. We have the following code: 940 // BB: <LVI info2 for %p val> 941 // %y = use of %p 942 // call @exit() 943 // assume(%p) 944 // %x = use of %p <-- LVI info2 is correct from here onwards. 945 // br label exit 946 // LVI info2 for BB is incorrect at the beginning of BB. 947 948 // Invalidate LVI information for BB if the LVI is not provably true for 949 // all of BB. 950 if (any_of(*BB, [](Instruction &I) { 951 return !isGuaranteedToTransferExecutionToSuccessor(&I); 952 })) 953 LVI->eraseBlock(BB); 954 return true; 955 } 956 } 957 958 if (TryToUnfoldSelectInCurrBB(BB)) 959 return true; 960 961 // Look if we can propagate guards to predecessors. 962 if (HasGuards && ProcessGuards(BB)) 963 return true; 964 965 // What kind of constant we're looking for. 966 ConstantPreference Preference = WantInteger; 967 968 // Look to see if the terminator is a conditional branch, switch or indirect 969 // branch, if not we can't thread it. 970 Value *Condition; 971 Instruction *Terminator = BB->getTerminator(); 972 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 973 // Can't thread an unconditional jump. 974 if (BI->isUnconditional()) return false; 975 Condition = BI->getCondition(); 976 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 977 Condition = SI->getCondition(); 978 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 979 // Can't thread indirect branch with no successors. 980 if (IB->getNumSuccessors() == 0) return false; 981 Condition = IB->getAddress()->stripPointerCasts(); 982 Preference = WantBlockAddress; 983 } else { 984 return false; // Must be an invoke. 985 } 986 987 // Run constant folding to see if we can reduce the condition to a simple 988 // constant. 989 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 990 Value *SimpleVal = 991 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 992 if (SimpleVal) { 993 I->replaceAllUsesWith(SimpleVal); 994 if (isInstructionTriviallyDead(I, TLI)) 995 I->eraseFromParent(); 996 Condition = SimpleVal; 997 } 998 } 999 1000 // If the terminator is branching on an undef, we can pick any of the 1001 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 1002 if (isa<UndefValue>(Condition)) { 1003 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 1004 1005 // Fold the branch/switch. 1006 TerminatorInst *BBTerm = BB->getTerminator(); 1007 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 1008 if (i == BestSucc) continue; 1009 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 1010 } 1011 1012 DEBUG(dbgs() << " In block '" << BB->getName() 1013 << "' folding undef terminator: " << *BBTerm << '\n'); 1014 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 1015 BBTerm->eraseFromParent(); 1016 return true; 1017 } 1018 1019 // If the terminator of this block is branching on a constant, simplify the 1020 // terminator to an unconditional branch. This can occur due to threading in 1021 // other blocks. 1022 if (getKnownConstant(Condition, Preference)) { 1023 DEBUG(dbgs() << " In block '" << BB->getName() 1024 << "' folding terminator: " << *BB->getTerminator() << '\n'); 1025 ++NumFolds; 1026 ConstantFoldTerminator(BB, true); 1027 return true; 1028 } 1029 1030 Instruction *CondInst = dyn_cast<Instruction>(Condition); 1031 1032 // All the rest of our checks depend on the condition being an instruction. 1033 if (!CondInst) { 1034 // FIXME: Unify this with code below. 1035 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 1036 return true; 1037 return false; 1038 } 1039 1040 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 1041 // If we're branching on a conditional, LVI might be able to determine 1042 // it's value at the branch instruction. We only handle comparisons 1043 // against a constant at this time. 1044 // TODO: This should be extended to handle switches as well. 1045 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1046 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 1047 if (CondBr && CondConst) { 1048 // We should have returned as soon as we turn a conditional branch to 1049 // unconditional. Because its no longer interesting as far as jump 1050 // threading is concerned. 1051 assert(CondBr->isConditional() && "Threading on unconditional terminator"); 1052 1053 LazyValueInfo::Tristate Ret = 1054 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 1055 CondConst, CondBr); 1056 if (Ret != LazyValueInfo::Unknown) { 1057 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 1058 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 1059 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 1060 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 1061 CondBr->eraseFromParent(); 1062 if (CondCmp->use_empty()) 1063 CondCmp->eraseFromParent(); 1064 // We can safely replace *some* uses of the CondInst if it has 1065 // exactly one value as returned by LVI. RAUW is incorrect in the 1066 // presence of guards and assumes, that have the `Cond` as the use. This 1067 // is because we use the guards/assume to reason about the `Cond` value 1068 // at the end of block, but RAUW unconditionally replaces all uses 1069 // including the guards/assumes themselves and the uses before the 1070 // guard/assume. 1071 else if (CondCmp->getParent() == BB) { 1072 auto *CI = Ret == LazyValueInfo::True ? 1073 ConstantInt::getTrue(CondCmp->getType()) : 1074 ConstantInt::getFalse(CondCmp->getType()); 1075 ReplaceFoldableUses(CondCmp, CI); 1076 } 1077 return true; 1078 } 1079 1080 // We did not manage to simplify this branch, try to see whether 1081 // CondCmp depends on a known phi-select pattern. 1082 if (TryToUnfoldSelect(CondCmp, BB)) 1083 return true; 1084 } 1085 } 1086 1087 // Check for some cases that are worth simplifying. Right now we want to look 1088 // for loads that are used by a switch or by the condition for the branch. If 1089 // we see one, check to see if it's partially redundant. If so, insert a PHI 1090 // which can then be used to thread the values. 1091 // 1092 Value *SimplifyValue = CondInst; 1093 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 1094 if (isa<Constant>(CondCmp->getOperand(1))) 1095 SimplifyValue = CondCmp->getOperand(0); 1096 1097 // TODO: There are other places where load PRE would be profitable, such as 1098 // more complex comparisons. 1099 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 1100 if (SimplifyPartiallyRedundantLoad(LI)) 1101 return true; 1102 1103 // Before threading, try to propagate profile data backwards: 1104 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1105 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1106 updatePredecessorProfileMetadata(PN, BB); 1107 1108 // Handle a variety of cases where we are branching on something derived from 1109 // a PHI node in the current block. If we can prove that any predecessors 1110 // compute a predictable value based on a PHI node, thread those predecessors. 1111 // 1112 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 1113 return true; 1114 1115 // If this is an otherwise-unfoldable branch on a phi node in the current 1116 // block, see if we can simplify. 1117 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 1118 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1119 return ProcessBranchOnPHI(PN); 1120 1121 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 1122 if (CondInst->getOpcode() == Instruction::Xor && 1123 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 1124 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 1125 1126 // Search for a stronger dominating condition that can be used to simplify a 1127 // conditional branch leaving BB. 1128 if (ProcessImpliedCondition(BB)) 1129 return true; 1130 1131 return false; 1132 } 1133 1134 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) { 1135 auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); 1136 if (!BI || !BI->isConditional()) 1137 return false; 1138 1139 Value *Cond = BI->getCondition(); 1140 BasicBlock *CurrentBB = BB; 1141 BasicBlock *CurrentPred = BB->getSinglePredecessor(); 1142 unsigned Iter = 0; 1143 1144 auto &DL = BB->getModule()->getDataLayout(); 1145 1146 while (CurrentPred && Iter++ < ImplicationSearchThreshold) { 1147 auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator()); 1148 if (!PBI || !PBI->isConditional()) 1149 return false; 1150 if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB) 1151 return false; 1152 1153 bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB; 1154 Optional<bool> Implication = 1155 isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue); 1156 if (Implication) { 1157 BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB); 1158 BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI); 1159 BI->eraseFromParent(); 1160 return true; 1161 } 1162 CurrentBB = CurrentPred; 1163 CurrentPred = CurrentBB->getSinglePredecessor(); 1164 } 1165 1166 return false; 1167 } 1168 1169 /// Return true if Op is an instruction defined in the given block. 1170 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) { 1171 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1172 if (OpInst->getParent() == BB) 1173 return true; 1174 return false; 1175 } 1176 1177 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 1178 /// load instruction, eliminate it by replacing it with a PHI node. This is an 1179 /// important optimization that encourages jump threading, and needs to be run 1180 /// interlaced with other jump threading tasks. 1181 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 1182 // Don't hack volatile and ordered loads. 1183 if (!LI->isUnordered()) return false; 1184 1185 // If the load is defined in a block with exactly one predecessor, it can't be 1186 // partially redundant. 1187 BasicBlock *LoadBB = LI->getParent(); 1188 if (LoadBB->getSinglePredecessor()) 1189 return false; 1190 1191 // If the load is defined in an EH pad, it can't be partially redundant, 1192 // because the edges between the invoke and the EH pad cannot have other 1193 // instructions between them. 1194 if (LoadBB->isEHPad()) 1195 return false; 1196 1197 Value *LoadedPtr = LI->getOperand(0); 1198 1199 // If the loaded operand is defined in the LoadBB and its not a phi, 1200 // it can't be available in predecessors. 1201 if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr)) 1202 return false; 1203 1204 // Scan a few instructions up from the load, to see if it is obviously live at 1205 // the entry to its block. 1206 BasicBlock::iterator BBIt(LI); 1207 bool IsLoadCSE; 1208 if (Value *AvailableVal = FindAvailableLoadedValue( 1209 LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1210 // If the value of the load is locally available within the block, just use 1211 // it. This frequently occurs for reg2mem'd allocas. 1212 1213 if (IsLoadCSE) { 1214 LoadInst *NLI = cast<LoadInst>(AvailableVal); 1215 combineMetadataForCSE(NLI, LI); 1216 }; 1217 1218 // If the returned value is the load itself, replace with an undef. This can 1219 // only happen in dead loops. 1220 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 1221 if (AvailableVal->getType() != LI->getType()) 1222 AvailableVal = 1223 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 1224 LI->replaceAllUsesWith(AvailableVal); 1225 LI->eraseFromParent(); 1226 return true; 1227 } 1228 1229 // Otherwise, if we scanned the whole block and got to the top of the block, 1230 // we know the block is locally transparent to the load. If not, something 1231 // might clobber its value. 1232 if (BBIt != LoadBB->begin()) 1233 return false; 1234 1235 // If all of the loads and stores that feed the value have the same AA tags, 1236 // then we can propagate them onto any newly inserted loads. 1237 AAMDNodes AATags; 1238 LI->getAAMetadata(AATags); 1239 1240 SmallPtrSet<BasicBlock*, 8> PredsScanned; 1241 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 1242 AvailablePredsTy AvailablePreds; 1243 BasicBlock *OneUnavailablePred = nullptr; 1244 SmallVector<LoadInst*, 8> CSELoads; 1245 1246 // If we got here, the loaded value is transparent through to the start of the 1247 // block. Check to see if it is available in any of the predecessor blocks. 1248 for (BasicBlock *PredBB : predecessors(LoadBB)) { 1249 // If we already scanned this predecessor, skip it. 1250 if (!PredsScanned.insert(PredBB).second) 1251 continue; 1252 1253 BBIt = PredBB->end(); 1254 unsigned NumScanedInst = 0; 1255 Value *PredAvailable = nullptr; 1256 // NOTE: We don't CSE load that is volatile or anything stronger than 1257 // unordered, that should have been checked when we entered the function. 1258 assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads"); 1259 // If this is a load on a phi pointer, phi-translate it and search 1260 // for available load/store to the pointer in predecessors. 1261 Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB); 1262 PredAvailable = FindAvailablePtrLoadStore( 1263 Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan, 1264 AA, &IsLoadCSE, &NumScanedInst); 1265 1266 // If PredBB has a single predecessor, continue scanning through the 1267 // single precessor. 1268 BasicBlock *SinglePredBB = PredBB; 1269 while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() && 1270 NumScanedInst < DefMaxInstsToScan) { 1271 SinglePredBB = SinglePredBB->getSinglePredecessor(); 1272 if (SinglePredBB) { 1273 BBIt = SinglePredBB->end(); 1274 PredAvailable = FindAvailablePtrLoadStore( 1275 Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt, 1276 (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE, 1277 &NumScanedInst); 1278 } 1279 } 1280 1281 if (!PredAvailable) { 1282 OneUnavailablePred = PredBB; 1283 continue; 1284 } 1285 1286 if (IsLoadCSE) 1287 CSELoads.push_back(cast<LoadInst>(PredAvailable)); 1288 1289 // If so, this load is partially redundant. Remember this info so that we 1290 // can create a PHI node. 1291 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 1292 } 1293 1294 // If the loaded value isn't available in any predecessor, it isn't partially 1295 // redundant. 1296 if (AvailablePreds.empty()) return false; 1297 1298 // Okay, the loaded value is available in at least one (and maybe all!) 1299 // predecessors. If the value is unavailable in more than one unique 1300 // predecessor, we want to insert a merge block for those common predecessors. 1301 // This ensures that we only have to insert one reload, thus not increasing 1302 // code size. 1303 BasicBlock *UnavailablePred = nullptr; 1304 1305 // If there is exactly one predecessor where the value is unavailable, the 1306 // already computed 'OneUnavailablePred' block is it. If it ends in an 1307 // unconditional branch, we know that it isn't a critical edge. 1308 if (PredsScanned.size() == AvailablePreds.size()+1 && 1309 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 1310 UnavailablePred = OneUnavailablePred; 1311 } else if (PredsScanned.size() != AvailablePreds.size()) { 1312 // Otherwise, we had multiple unavailable predecessors or we had a critical 1313 // edge from the one. 1314 SmallVector<BasicBlock*, 8> PredsToSplit; 1315 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 1316 1317 for (const auto &AvailablePred : AvailablePreds) 1318 AvailablePredSet.insert(AvailablePred.first); 1319 1320 // Add all the unavailable predecessors to the PredsToSplit list. 1321 for (BasicBlock *P : predecessors(LoadBB)) { 1322 // If the predecessor is an indirect goto, we can't split the edge. 1323 if (isa<IndirectBrInst>(P->getTerminator())) 1324 return false; 1325 1326 if (!AvailablePredSet.count(P)) 1327 PredsToSplit.push_back(P); 1328 } 1329 1330 // Split them out to their own block. 1331 UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split"); 1332 } 1333 1334 // If the value isn't available in all predecessors, then there will be 1335 // exactly one where it isn't available. Insert a load on that edge and add 1336 // it to the AvailablePreds list. 1337 if (UnavailablePred) { 1338 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1339 "Can't handle critical edge here!"); 1340 LoadInst *NewVal = new LoadInst( 1341 LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred), 1342 LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(), 1343 LI->getSyncScopeID(), UnavailablePred->getTerminator()); 1344 NewVal->setDebugLoc(LI->getDebugLoc()); 1345 if (AATags) 1346 NewVal->setAAMetadata(AATags); 1347 1348 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1349 } 1350 1351 // Now we know that each predecessor of this block has a value in 1352 // AvailablePreds, sort them for efficient access as we're walking the preds. 1353 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1354 1355 // Create a PHI node at the start of the block for the PRE'd load value. 1356 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1357 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1358 &LoadBB->front()); 1359 PN->takeName(LI); 1360 PN->setDebugLoc(LI->getDebugLoc()); 1361 1362 // Insert new entries into the PHI for each predecessor. A single block may 1363 // have multiple entries here. 1364 for (pred_iterator PI = PB; PI != PE; ++PI) { 1365 BasicBlock *P = *PI; 1366 AvailablePredsTy::iterator I = 1367 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1368 std::make_pair(P, (Value*)nullptr)); 1369 1370 assert(I != AvailablePreds.end() && I->first == P && 1371 "Didn't find entry for predecessor!"); 1372 1373 // If we have an available predecessor but it requires casting, insert the 1374 // cast in the predecessor and use the cast. Note that we have to update the 1375 // AvailablePreds vector as we go so that all of the PHI entries for this 1376 // predecessor use the same bitcast. 1377 Value *&PredV = I->second; 1378 if (PredV->getType() != LI->getType()) 1379 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1380 P->getTerminator()); 1381 1382 PN->addIncoming(PredV, I->first); 1383 } 1384 1385 for (LoadInst *PredLI : CSELoads) { 1386 combineMetadataForCSE(PredLI, LI); 1387 } 1388 1389 LI->replaceAllUsesWith(PN); 1390 LI->eraseFromParent(); 1391 1392 return true; 1393 } 1394 1395 /// FindMostPopularDest - The specified list contains multiple possible 1396 /// threadable destinations. Pick the one that occurs the most frequently in 1397 /// the list. 1398 static BasicBlock * 1399 FindMostPopularDest(BasicBlock *BB, 1400 const SmallVectorImpl<std::pair<BasicBlock*, 1401 BasicBlock*> > &PredToDestList) { 1402 assert(!PredToDestList.empty()); 1403 1404 // Determine popularity. If there are multiple possible destinations, we 1405 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1406 // blocks with known and real destinations to threading undef. We'll handle 1407 // them later if interesting. 1408 DenseMap<BasicBlock*, unsigned> DestPopularity; 1409 for (const auto &PredToDest : PredToDestList) 1410 if (PredToDest.second) 1411 DestPopularity[PredToDest.second]++; 1412 1413 // Find the most popular dest. 1414 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1415 BasicBlock *MostPopularDest = DPI->first; 1416 unsigned Popularity = DPI->second; 1417 SmallVector<BasicBlock*, 4> SamePopularity; 1418 1419 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1420 // If the popularity of this entry isn't higher than the popularity we've 1421 // seen so far, ignore it. 1422 if (DPI->second < Popularity) 1423 ; // ignore. 1424 else if (DPI->second == Popularity) { 1425 // If it is the same as what we've seen so far, keep track of it. 1426 SamePopularity.push_back(DPI->first); 1427 } else { 1428 // If it is more popular, remember it. 1429 SamePopularity.clear(); 1430 MostPopularDest = DPI->first; 1431 Popularity = DPI->second; 1432 } 1433 } 1434 1435 // Okay, now we know the most popular destination. If there is more than one 1436 // destination, we need to determine one. This is arbitrary, but we need 1437 // to make a deterministic decision. Pick the first one that appears in the 1438 // successor list. 1439 if (!SamePopularity.empty()) { 1440 SamePopularity.push_back(MostPopularDest); 1441 TerminatorInst *TI = BB->getTerminator(); 1442 for (unsigned i = 0; ; ++i) { 1443 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1444 1445 if (!is_contained(SamePopularity, TI->getSuccessor(i))) 1446 continue; 1447 1448 MostPopularDest = TI->getSuccessor(i); 1449 break; 1450 } 1451 } 1452 1453 // Okay, we have finally picked the most popular destination. 1454 return MostPopularDest; 1455 } 1456 1457 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1458 ConstantPreference Preference, 1459 Instruction *CxtI) { 1460 // If threading this would thread across a loop header, don't even try to 1461 // thread the edge. 1462 if (LoopHeaders.count(BB)) 1463 return false; 1464 1465 PredValueInfoTy PredValues; 1466 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1467 return false; 1468 1469 assert(!PredValues.empty() && 1470 "ComputeValueKnownInPredecessors returned true with no values"); 1471 1472 DEBUG(dbgs() << "IN BB: " << *BB; 1473 for (const auto &PredValue : PredValues) { 1474 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1475 << *PredValue.first 1476 << " for pred '" << PredValue.second->getName() << "'.\n"; 1477 }); 1478 1479 // Decide what we want to thread through. Convert our list of known values to 1480 // a list of known destinations for each pred. This also discards duplicate 1481 // predecessors and keeps track of the undefined inputs (which are represented 1482 // as a null dest in the PredToDestList). 1483 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1484 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1485 1486 BasicBlock *OnlyDest = nullptr; 1487 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1488 Constant *OnlyVal = nullptr; 1489 Constant *MultipleVal = (Constant *)(intptr_t)~0ULL; 1490 1491 unsigned PredWithKnownDest = 0; 1492 for (const auto &PredValue : PredValues) { 1493 BasicBlock *Pred = PredValue.second; 1494 if (!SeenPreds.insert(Pred).second) 1495 continue; // Duplicate predecessor entry. 1496 1497 Constant *Val = PredValue.first; 1498 1499 BasicBlock *DestBB; 1500 if (isa<UndefValue>(Val)) 1501 DestBB = nullptr; 1502 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { 1503 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1504 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1505 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1506 assert(isa<ConstantInt>(Val) && "Expecting a constant integer"); 1507 DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor(); 1508 } else { 1509 assert(isa<IndirectBrInst>(BB->getTerminator()) 1510 && "Unexpected terminator"); 1511 assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress"); 1512 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1513 } 1514 1515 // If we have exactly one destination, remember it for efficiency below. 1516 if (PredToDestList.empty()) { 1517 OnlyDest = DestBB; 1518 OnlyVal = Val; 1519 } else { 1520 if (OnlyDest != DestBB) 1521 OnlyDest = MultipleDestSentinel; 1522 // It possible we have same destination, but different value, e.g. default 1523 // case in switchinst. 1524 if (Val != OnlyVal) 1525 OnlyVal = MultipleVal; 1526 } 1527 1528 // We know where this predecessor is going. 1529 ++PredWithKnownDest; 1530 1531 // If the predecessor ends with an indirect goto, we can't change its 1532 // destination. 1533 if (isa<IndirectBrInst>(Pred->getTerminator())) 1534 continue; 1535 1536 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1537 } 1538 1539 // If all edges were unthreadable, we fail. 1540 if (PredToDestList.empty()) 1541 return false; 1542 1543 // If all the predecessors go to a single known successor, we want to fold, 1544 // not thread. By doing so, we do not need to duplicate the current block and 1545 // also miss potential opportunities in case we dont/cant duplicate. 1546 if (OnlyDest && OnlyDest != MultipleDestSentinel) { 1547 if (PredWithKnownDest == 1548 (size_t)std::distance(pred_begin(BB), pred_end(BB))) { 1549 bool SeenFirstBranchToOnlyDest = false; 1550 for (BasicBlock *SuccBB : successors(BB)) { 1551 if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest) 1552 SeenFirstBranchToOnlyDest = true; // Don't modify the first branch. 1553 else 1554 SuccBB->removePredecessor(BB, true); // This is unreachable successor. 1555 } 1556 1557 // Finally update the terminator. 1558 TerminatorInst *Term = BB->getTerminator(); 1559 BranchInst::Create(OnlyDest, Term); 1560 Term->eraseFromParent(); 1561 1562 // If the condition is now dead due to the removal of the old terminator, 1563 // erase it. 1564 if (auto *CondInst = dyn_cast<Instruction>(Cond)) { 1565 if (CondInst->use_empty() && !CondInst->mayHaveSideEffects()) 1566 CondInst->eraseFromParent(); 1567 // We can safely replace *some* uses of the CondInst if it has 1568 // exactly one value as returned by LVI. RAUW is incorrect in the 1569 // presence of guards and assumes, that have the `Cond` as the use. This 1570 // is because we use the guards/assume to reason about the `Cond` value 1571 // at the end of block, but RAUW unconditionally replaces all uses 1572 // including the guards/assumes themselves and the uses before the 1573 // guard/assume. 1574 else if (OnlyVal && OnlyVal != MultipleVal && 1575 CondInst->getParent() == BB) 1576 ReplaceFoldableUses(CondInst, OnlyVal); 1577 } 1578 return true; 1579 } 1580 } 1581 1582 // Determine which is the most common successor. If we have many inputs and 1583 // this block is a switch, we want to start by threading the batch that goes 1584 // to the most popular destination first. If we only know about one 1585 // threadable destination (the common case) we can avoid this. 1586 BasicBlock *MostPopularDest = OnlyDest; 1587 1588 if (MostPopularDest == MultipleDestSentinel) 1589 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1590 1591 // Now that we know what the most popular destination is, factor all 1592 // predecessors that will jump to it into a single predecessor. 1593 SmallVector<BasicBlock*, 16> PredsToFactor; 1594 for (const auto &PredToDest : PredToDestList) 1595 if (PredToDest.second == MostPopularDest) { 1596 BasicBlock *Pred = PredToDest.first; 1597 1598 // This predecessor may be a switch or something else that has multiple 1599 // edges to the block. Factor each of these edges by listing them 1600 // according to # occurrences in PredsToFactor. 1601 for (BasicBlock *Succ : successors(Pred)) 1602 if (Succ == BB) 1603 PredsToFactor.push_back(Pred); 1604 } 1605 1606 // If the threadable edges are branching on an undefined value, we get to pick 1607 // the destination that these predecessors should get to. 1608 if (!MostPopularDest) 1609 MostPopularDest = BB->getTerminator()-> 1610 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1611 1612 // Ok, try to thread it! 1613 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1614 } 1615 1616 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1617 /// a PHI node in the current block. See if there are any simplifications we 1618 /// can do based on inputs to the phi node. 1619 /// 1620 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) { 1621 BasicBlock *BB = PN->getParent(); 1622 1623 // TODO: We could make use of this to do it once for blocks with common PHI 1624 // values. 1625 SmallVector<BasicBlock*, 1> PredBBs; 1626 PredBBs.resize(1); 1627 1628 // If any of the predecessor blocks end in an unconditional branch, we can 1629 // *duplicate* the conditional branch into that block in order to further 1630 // encourage jump threading and to eliminate cases where we have branch on a 1631 // phi of an icmp (branch on icmp is much better). 1632 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1633 BasicBlock *PredBB = PN->getIncomingBlock(i); 1634 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1635 if (PredBr->isUnconditional()) { 1636 PredBBs[0] = PredBB; 1637 // Try to duplicate BB into PredBB. 1638 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1639 return true; 1640 } 1641 } 1642 1643 return false; 1644 } 1645 1646 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1647 /// a xor instruction in the current block. See if there are any 1648 /// simplifications we can do based on inputs to the xor. 1649 /// 1650 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) { 1651 BasicBlock *BB = BO->getParent(); 1652 1653 // If either the LHS or RHS of the xor is a constant, don't do this 1654 // optimization. 1655 if (isa<ConstantInt>(BO->getOperand(0)) || 1656 isa<ConstantInt>(BO->getOperand(1))) 1657 return false; 1658 1659 // If the first instruction in BB isn't a phi, we won't be able to infer 1660 // anything special about any particular predecessor. 1661 if (!isa<PHINode>(BB->front())) 1662 return false; 1663 1664 // If this BB is a landing pad, we won't be able to split the edge into it. 1665 if (BB->isEHPad()) 1666 return false; 1667 1668 // If we have a xor as the branch input to this block, and we know that the 1669 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1670 // the condition into the predecessor and fix that value to true, saving some 1671 // logical ops on that path and encouraging other paths to simplify. 1672 // 1673 // This copies something like this: 1674 // 1675 // BB: 1676 // %X = phi i1 [1], [%X'] 1677 // %Y = icmp eq i32 %A, %B 1678 // %Z = xor i1 %X, %Y 1679 // br i1 %Z, ... 1680 // 1681 // Into: 1682 // BB': 1683 // %Y = icmp ne i32 %A, %B 1684 // br i1 %Y, ... 1685 1686 PredValueInfoTy XorOpValues; 1687 bool isLHS = true; 1688 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1689 WantInteger, BO)) { 1690 assert(XorOpValues.empty()); 1691 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1692 WantInteger, BO)) 1693 return false; 1694 isLHS = false; 1695 } 1696 1697 assert(!XorOpValues.empty() && 1698 "ComputeValueKnownInPredecessors returned true with no values"); 1699 1700 // Scan the information to see which is most popular: true or false. The 1701 // predecessors can be of the set true, false, or undef. 1702 unsigned NumTrue = 0, NumFalse = 0; 1703 for (const auto &XorOpValue : XorOpValues) { 1704 if (isa<UndefValue>(XorOpValue.first)) 1705 // Ignore undefs for the count. 1706 continue; 1707 if (cast<ConstantInt>(XorOpValue.first)->isZero()) 1708 ++NumFalse; 1709 else 1710 ++NumTrue; 1711 } 1712 1713 // Determine which value to split on, true, false, or undef if neither. 1714 ConstantInt *SplitVal = nullptr; 1715 if (NumTrue > NumFalse) 1716 SplitVal = ConstantInt::getTrue(BB->getContext()); 1717 else if (NumTrue != 0 || NumFalse != 0) 1718 SplitVal = ConstantInt::getFalse(BB->getContext()); 1719 1720 // Collect all of the blocks that this can be folded into so that we can 1721 // factor this once and clone it once. 1722 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1723 for (const auto &XorOpValue : XorOpValues) { 1724 if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first)) 1725 continue; 1726 1727 BlocksToFoldInto.push_back(XorOpValue.second); 1728 } 1729 1730 // If we inferred a value for all of the predecessors, then duplication won't 1731 // help us. However, we can just replace the LHS or RHS with the constant. 1732 if (BlocksToFoldInto.size() == 1733 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1734 if (!SplitVal) { 1735 // If all preds provide undef, just nuke the xor, because it is undef too. 1736 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1737 BO->eraseFromParent(); 1738 } else if (SplitVal->isZero()) { 1739 // If all preds provide 0, replace the xor with the other input. 1740 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1741 BO->eraseFromParent(); 1742 } else { 1743 // If all preds provide 1, set the computed value to 1. 1744 BO->setOperand(!isLHS, SplitVal); 1745 } 1746 1747 return true; 1748 } 1749 1750 // Try to duplicate BB into PredBB. 1751 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1752 } 1753 1754 1755 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1756 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1757 /// NewPred using the entries from OldPred (suitably mapped). 1758 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1759 BasicBlock *OldPred, 1760 BasicBlock *NewPred, 1761 DenseMap<Instruction*, Value*> &ValueMap) { 1762 for (BasicBlock::iterator PNI = PHIBB->begin(); 1763 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1764 // Ok, we have a PHI node. Figure out what the incoming value was for the 1765 // DestBlock. 1766 Value *IV = PN->getIncomingValueForBlock(OldPred); 1767 1768 // Remap the value if necessary. 1769 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1770 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1771 if (I != ValueMap.end()) 1772 IV = I->second; 1773 } 1774 1775 PN->addIncoming(IV, NewPred); 1776 } 1777 } 1778 1779 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1780 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1781 /// across BB. Transform the IR to reflect this change. 1782 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB, 1783 const SmallVectorImpl<BasicBlock *> &PredBBs, 1784 BasicBlock *SuccBB) { 1785 // If threading to the same block as we come from, we would infinite loop. 1786 if (SuccBB == BB) { 1787 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1788 << "' - would thread to self!\n"); 1789 return false; 1790 } 1791 1792 // If threading this would thread across a loop header, don't thread the edge. 1793 // See the comments above FindLoopHeaders for justifications and caveats. 1794 if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) { 1795 DEBUG({ 1796 bool BBIsHeader = LoopHeaders.count(BB); 1797 bool SuccIsHeader = LoopHeaders.count(SuccBB); 1798 dbgs() << " Not threading across " 1799 << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName() 1800 << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '") 1801 << SuccBB->getName() << "' - it might create an irreducible loop!\n"; 1802 }); 1803 return false; 1804 } 1805 1806 unsigned JumpThreadCost = 1807 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 1808 if (JumpThreadCost > BBDupThreshold) { 1809 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1810 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1811 return false; 1812 } 1813 1814 // And finally, do it! Start by factoring the predecessors if needed. 1815 BasicBlock *PredBB; 1816 if (PredBBs.size() == 1) 1817 PredBB = PredBBs[0]; 1818 else { 1819 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1820 << " common predecessors.\n"); 1821 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 1822 } 1823 1824 // And finally, do it! 1825 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1826 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1827 << ", across block:\n " 1828 << *BB << "\n"); 1829 1830 LVI->threadEdge(PredBB, BB, SuccBB); 1831 1832 // We are going to have to map operands from the original BB block to the new 1833 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1834 // account for entry from PredBB. 1835 DenseMap<Instruction*, Value*> ValueMapping; 1836 1837 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1838 BB->getName()+".thread", 1839 BB->getParent(), BB); 1840 NewBB->moveAfter(PredBB); 1841 1842 // Set the block frequency of NewBB. 1843 if (HasProfileData) { 1844 auto NewBBFreq = 1845 BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB); 1846 BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency()); 1847 } 1848 1849 BasicBlock::iterator BI = BB->begin(); 1850 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1851 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1852 1853 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1854 // mapping and using it to remap operands in the cloned instructions. 1855 for (; !isa<TerminatorInst>(BI); ++BI) { 1856 Instruction *New = BI->clone(); 1857 New->setName(BI->getName()); 1858 NewBB->getInstList().push_back(New); 1859 ValueMapping[&*BI] = New; 1860 1861 // Remap operands to patch up intra-block references. 1862 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1863 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1864 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1865 if (I != ValueMapping.end()) 1866 New->setOperand(i, I->second); 1867 } 1868 } 1869 1870 // We didn't copy the terminator from BB over to NewBB, because there is now 1871 // an unconditional jump to SuccBB. Insert the unconditional jump. 1872 BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB); 1873 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1874 1875 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1876 // PHI nodes for NewBB now. 1877 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1878 1879 // If there were values defined in BB that are used outside the block, then we 1880 // now have to update all uses of the value to use either the original value, 1881 // the cloned value, or some PHI derived value. This can require arbitrary 1882 // PHI insertion, of which we are prepared to do, clean these up now. 1883 SSAUpdater SSAUpdate; 1884 SmallVector<Use*, 16> UsesToRename; 1885 for (Instruction &I : *BB) { 1886 // Scan all uses of this instruction to see if it is used outside of its 1887 // block, and if so, record them in UsesToRename. 1888 for (Use &U : I.uses()) { 1889 Instruction *User = cast<Instruction>(U.getUser()); 1890 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1891 if (UserPN->getIncomingBlock(U) == BB) 1892 continue; 1893 } else if (User->getParent() == BB) 1894 continue; 1895 1896 UsesToRename.push_back(&U); 1897 } 1898 1899 // If there are no uses outside the block, we're done with this instruction. 1900 if (UsesToRename.empty()) 1901 continue; 1902 1903 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 1904 1905 // We found a use of I outside of BB. Rename all uses of I that are outside 1906 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1907 // with the two values we know. 1908 SSAUpdate.Initialize(I.getType(), I.getName()); 1909 SSAUpdate.AddAvailableValue(BB, &I); 1910 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]); 1911 1912 while (!UsesToRename.empty()) 1913 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1914 DEBUG(dbgs() << "\n"); 1915 } 1916 1917 1918 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1919 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1920 // us to simplify any PHI nodes in BB. 1921 TerminatorInst *PredTerm = PredBB->getTerminator(); 1922 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1923 if (PredTerm->getSuccessor(i) == BB) { 1924 BB->removePredecessor(PredBB, true); 1925 PredTerm->setSuccessor(i, NewBB); 1926 } 1927 1928 // At this point, the IR is fully up to date and consistent. Do a quick scan 1929 // over the new instructions and zap any that are constants or dead. This 1930 // frequently happens because of phi translation. 1931 SimplifyInstructionsInBlock(NewBB, TLI); 1932 1933 // Update the edge weight from BB to SuccBB, which should be less than before. 1934 UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB); 1935 1936 // Threaded an edge! 1937 ++NumThreads; 1938 return true; 1939 } 1940 1941 /// Create a new basic block that will be the predecessor of BB and successor of 1942 /// all blocks in Preds. When profile data is available, update the frequency of 1943 /// this new block. 1944 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB, 1945 ArrayRef<BasicBlock *> Preds, 1946 const char *Suffix) { 1947 // Collect the frequencies of all predecessors of BB, which will be used to 1948 // update the edge weight on BB->SuccBB. 1949 BlockFrequency PredBBFreq(0); 1950 if (HasProfileData) 1951 for (auto Pred : Preds) 1952 PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB); 1953 1954 BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix); 1955 1956 // Set the block frequency of the newly created PredBB, which is the sum of 1957 // frequencies of Preds. 1958 if (HasProfileData) 1959 BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency()); 1960 return PredBB; 1961 } 1962 1963 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) { 1964 const TerminatorInst *TI = BB->getTerminator(); 1965 assert(TI->getNumSuccessors() > 1 && "not a split"); 1966 1967 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 1968 if (!WeightsNode) 1969 return false; 1970 1971 MDString *MDName = cast<MDString>(WeightsNode->getOperand(0)); 1972 if (MDName->getString() != "branch_weights") 1973 return false; 1974 1975 // Ensure there are weights for all of the successors. Note that the first 1976 // operand to the metadata node is a name, not a weight. 1977 return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1; 1978 } 1979 1980 /// Update the block frequency of BB and branch weight and the metadata on the 1981 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 - 1982 /// Freq(PredBB->BB) / Freq(BB->SuccBB). 1983 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB, 1984 BasicBlock *BB, 1985 BasicBlock *NewBB, 1986 BasicBlock *SuccBB) { 1987 if (!HasProfileData) 1988 return; 1989 1990 assert(BFI && BPI && "BFI & BPI should have been created here"); 1991 1992 // As the edge from PredBB to BB is deleted, we have to update the block 1993 // frequency of BB. 1994 auto BBOrigFreq = BFI->getBlockFreq(BB); 1995 auto NewBBFreq = BFI->getBlockFreq(NewBB); 1996 auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB); 1997 auto BBNewFreq = BBOrigFreq - NewBBFreq; 1998 BFI->setBlockFreq(BB, BBNewFreq.getFrequency()); 1999 2000 // Collect updated outgoing edges' frequencies from BB and use them to update 2001 // edge probabilities. 2002 SmallVector<uint64_t, 4> BBSuccFreq; 2003 for (BasicBlock *Succ : successors(BB)) { 2004 auto SuccFreq = (Succ == SuccBB) 2005 ? BB2SuccBBFreq - NewBBFreq 2006 : BBOrigFreq * BPI->getEdgeProbability(BB, Succ); 2007 BBSuccFreq.push_back(SuccFreq.getFrequency()); 2008 } 2009 2010 uint64_t MaxBBSuccFreq = 2011 *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end()); 2012 2013 SmallVector<BranchProbability, 4> BBSuccProbs; 2014 if (MaxBBSuccFreq == 0) 2015 BBSuccProbs.assign(BBSuccFreq.size(), 2016 {1, static_cast<unsigned>(BBSuccFreq.size())}); 2017 else { 2018 for (uint64_t Freq : BBSuccFreq) 2019 BBSuccProbs.push_back( 2020 BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq)); 2021 // Normalize edge probabilities so that they sum up to one. 2022 BranchProbability::normalizeProbabilities(BBSuccProbs.begin(), 2023 BBSuccProbs.end()); 2024 } 2025 2026 // Update edge probabilities in BPI. 2027 for (int I = 0, E = BBSuccProbs.size(); I < E; I++) 2028 BPI->setEdgeProbability(BB, I, BBSuccProbs[I]); 2029 2030 // Update the profile metadata as well. 2031 // 2032 // Don't do this if the profile of the transformed blocks was statically 2033 // estimated. (This could occur despite the function having an entry 2034 // frequency in completely cold parts of the CFG.) 2035 // 2036 // In this case we don't want to suggest to subsequent passes that the 2037 // calculated weights are fully consistent. Consider this graph: 2038 // 2039 // check_1 2040 // 50% / | 2041 // eq_1 | 50% 2042 // \ | 2043 // check_2 2044 // 50% / | 2045 // eq_2 | 50% 2046 // \ | 2047 // check_3 2048 // 50% / | 2049 // eq_3 | 50% 2050 // \ | 2051 // 2052 // Assuming the blocks check_* all compare the same value against 1, 2 and 3, 2053 // the overall probabilities are inconsistent; the total probability that the 2054 // value is either 1, 2 or 3 is 150%. 2055 // 2056 // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3 2057 // becomes 0%. This is even worse if the edge whose probability becomes 0% is 2058 // the loop exit edge. Then based solely on static estimation we would assume 2059 // the loop was extremely hot. 2060 // 2061 // FIXME this locally as well so that BPI and BFI are consistent as well. We 2062 // shouldn't make edges extremely likely or unlikely based solely on static 2063 // estimation. 2064 if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) { 2065 SmallVector<uint32_t, 4> Weights; 2066 for (auto Prob : BBSuccProbs) 2067 Weights.push_back(Prob.getNumerator()); 2068 2069 auto TI = BB->getTerminator(); 2070 TI->setMetadata( 2071 LLVMContext::MD_prof, 2072 MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights)); 2073 } 2074 } 2075 2076 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 2077 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 2078 /// If we can duplicate the contents of BB up into PredBB do so now, this 2079 /// improves the odds that the branch will be on an analyzable instruction like 2080 /// a compare. 2081 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred( 2082 BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) { 2083 assert(!PredBBs.empty() && "Can't handle an empty set"); 2084 2085 // If BB is a loop header, then duplicating this block outside the loop would 2086 // cause us to transform this into an irreducible loop, don't do this. 2087 // See the comments above FindLoopHeaders for justifications and caveats. 2088 if (LoopHeaders.count(BB)) { 2089 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 2090 << "' into predecessor block '" << PredBBs[0]->getName() 2091 << "' - it might create an irreducible loop!\n"); 2092 return false; 2093 } 2094 2095 unsigned DuplicationCost = 2096 getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold); 2097 if (DuplicationCost > BBDupThreshold) { 2098 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 2099 << "' - Cost is too high: " << DuplicationCost << "\n"); 2100 return false; 2101 } 2102 2103 // And finally, do it! Start by factoring the predecessors if needed. 2104 BasicBlock *PredBB; 2105 if (PredBBs.size() == 1) 2106 PredBB = PredBBs[0]; 2107 else { 2108 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 2109 << " common predecessors.\n"); 2110 PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm"); 2111 } 2112 2113 // Okay, we decided to do this! Clone all the instructions in BB onto the end 2114 // of PredBB. 2115 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 2116 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 2117 << DuplicationCost << " block is:" << *BB << "\n"); 2118 2119 // Unless PredBB ends with an unconditional branch, split the edge so that we 2120 // can just clone the bits from BB into the end of the new PredBB. 2121 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 2122 2123 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 2124 PredBB = SplitEdge(PredBB, BB); 2125 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 2126 } 2127 2128 // We are going to have to map operands from the original BB block into the 2129 // PredBB block. Evaluate PHI nodes in BB. 2130 DenseMap<Instruction*, Value*> ValueMapping; 2131 2132 BasicBlock::iterator BI = BB->begin(); 2133 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 2134 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 2135 // Clone the non-phi instructions of BB into PredBB, keeping track of the 2136 // mapping and using it to remap operands in the cloned instructions. 2137 for (; BI != BB->end(); ++BI) { 2138 Instruction *New = BI->clone(); 2139 2140 // Remap operands to patch up intra-block references. 2141 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 2142 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 2143 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 2144 if (I != ValueMapping.end()) 2145 New->setOperand(i, I->second); 2146 } 2147 2148 // If this instruction can be simplified after the operands are updated, 2149 // just use the simplified value instead. This frequently happens due to 2150 // phi translation. 2151 if (Value *IV = SimplifyInstruction( 2152 New, 2153 {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) { 2154 ValueMapping[&*BI] = IV; 2155 if (!New->mayHaveSideEffects()) { 2156 New->deleteValue(); 2157 New = nullptr; 2158 } 2159 } else { 2160 ValueMapping[&*BI] = New; 2161 } 2162 if (New) { 2163 // Otherwise, insert the new instruction into the block. 2164 New->setName(BI->getName()); 2165 PredBB->getInstList().insert(OldPredBranch->getIterator(), New); 2166 } 2167 } 2168 2169 // Check to see if the targets of the branch had PHI nodes. If so, we need to 2170 // add entries to the PHI nodes for branch from PredBB now. 2171 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 2172 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 2173 ValueMapping); 2174 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 2175 ValueMapping); 2176 2177 // If there were values defined in BB that are used outside the block, then we 2178 // now have to update all uses of the value to use either the original value, 2179 // the cloned value, or some PHI derived value. This can require arbitrary 2180 // PHI insertion, of which we are prepared to do, clean these up now. 2181 SSAUpdater SSAUpdate; 2182 SmallVector<Use*, 16> UsesToRename; 2183 for (Instruction &I : *BB) { 2184 // Scan all uses of this instruction to see if it is used outside of its 2185 // block, and if so, record them in UsesToRename. 2186 for (Use &U : I.uses()) { 2187 Instruction *User = cast<Instruction>(U.getUser()); 2188 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 2189 if (UserPN->getIncomingBlock(U) == BB) 2190 continue; 2191 } else if (User->getParent() == BB) 2192 continue; 2193 2194 UsesToRename.push_back(&U); 2195 } 2196 2197 // If there are no uses outside the block, we're done with this instruction. 2198 if (UsesToRename.empty()) 2199 continue; 2200 2201 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n"); 2202 2203 // We found a use of I outside of BB. Rename all uses of I that are outside 2204 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 2205 // with the two values we know. 2206 SSAUpdate.Initialize(I.getType(), I.getName()); 2207 SSAUpdate.AddAvailableValue(BB, &I); 2208 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]); 2209 2210 while (!UsesToRename.empty()) 2211 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 2212 DEBUG(dbgs() << "\n"); 2213 } 2214 2215 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 2216 // that we nuked. 2217 BB->removePredecessor(PredBB, true); 2218 2219 // Remove the unconditional branch at the end of the PredBB block. 2220 OldPredBranch->eraseFromParent(); 2221 2222 ++NumDupes; 2223 return true; 2224 } 2225 2226 /// TryToUnfoldSelect - Look for blocks of the form 2227 /// bb1: 2228 /// %a = select 2229 /// br bb2 2230 /// 2231 /// bb2: 2232 /// %p = phi [%a, %bb1] ... 2233 /// %c = icmp %p 2234 /// br i1 %c 2235 /// 2236 /// And expand the select into a branch structure if one of its arms allows %c 2237 /// to be folded. This later enables threading from bb1 over bb2. 2238 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 2239 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 2240 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 2241 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 2242 2243 if (!CondBr || !CondBr->isConditional() || !CondLHS || 2244 CondLHS->getParent() != BB) 2245 return false; 2246 2247 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 2248 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 2249 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 2250 2251 // Look if one of the incoming values is a select in the corresponding 2252 // predecessor. 2253 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 2254 continue; 2255 2256 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 2257 if (!PredTerm || !PredTerm->isUnconditional()) 2258 continue; 2259 2260 // Now check if one of the select values would allow us to constant fold the 2261 // terminator in BB. We don't do the transform if both sides fold, those 2262 // cases will be threaded in any case. 2263 LazyValueInfo::Tristate LHSFolds = 2264 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 2265 CondRHS, Pred, BB, CondCmp); 2266 LazyValueInfo::Tristate RHSFolds = 2267 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 2268 CondRHS, Pred, BB, CondCmp); 2269 if ((LHSFolds != LazyValueInfo::Unknown || 2270 RHSFolds != LazyValueInfo::Unknown) && 2271 LHSFolds != RHSFolds) { 2272 // Expand the select. 2273 // 2274 // Pred -- 2275 // | v 2276 // | NewBB 2277 // | | 2278 // |----- 2279 // v 2280 // BB 2281 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 2282 BB->getParent(), BB); 2283 // Move the unconditional branch to NewBB. 2284 PredTerm->removeFromParent(); 2285 NewBB->getInstList().insert(NewBB->end(), PredTerm); 2286 // Create a conditional branch and update PHI nodes. 2287 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 2288 CondLHS->setIncomingValue(I, SI->getFalseValue()); 2289 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 2290 // The select is now dead. 2291 SI->eraseFromParent(); 2292 2293 // Update any other PHI nodes in BB. 2294 for (BasicBlock::iterator BI = BB->begin(); 2295 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 2296 if (Phi != CondLHS) 2297 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 2298 return true; 2299 } 2300 } 2301 return false; 2302 } 2303 2304 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the 2305 /// same BB in the form 2306 /// bb: 2307 /// %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ... 2308 /// %s = select %p, trueval, falseval 2309 /// 2310 /// or 2311 /// 2312 /// bb: 2313 /// %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ... 2314 /// %c = cmp %p, 0 2315 /// %s = select %c, trueval, falseval 2316 // 2317 /// And expand the select into a branch structure. This later enables 2318 /// jump-threading over bb in this pass. 2319 /// 2320 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold 2321 /// select if the associated PHI has at least one constant. If the unfolded 2322 /// select is not jump-threaded, it will be folded again in the later 2323 /// optimizations. 2324 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) { 2325 // If threading this would thread across a loop header, don't thread the edge. 2326 // See the comments above FindLoopHeaders for justifications and caveats. 2327 if (LoopHeaders.count(BB)) 2328 return false; 2329 2330 for (BasicBlock::iterator BI = BB->begin(); 2331 PHINode *PN = dyn_cast<PHINode>(BI); ++BI) { 2332 // Look for a Phi having at least one constant incoming value. 2333 if (llvm::all_of(PN->incoming_values(), 2334 [](Value *V) { return !isa<ConstantInt>(V); })) 2335 continue; 2336 2337 auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) { 2338 // Check if SI is in BB and use V as condition. 2339 if (SI->getParent() != BB) 2340 return false; 2341 Value *Cond = SI->getCondition(); 2342 return (Cond && Cond == V && Cond->getType()->isIntegerTy(1)); 2343 }; 2344 2345 SelectInst *SI = nullptr; 2346 for (Use &U : PN->uses()) { 2347 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) { 2348 // Look for a ICmp in BB that compares PN with a constant and is the 2349 // condition of a Select. 2350 if (Cmp->getParent() == BB && Cmp->hasOneUse() && 2351 isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo()))) 2352 if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back())) 2353 if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) { 2354 SI = SelectI; 2355 break; 2356 } 2357 } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) { 2358 // Look for a Select in BB that uses PN as condtion. 2359 if (isUnfoldCandidate(SelectI, U.get())) { 2360 SI = SelectI; 2361 break; 2362 } 2363 } 2364 } 2365 2366 if (!SI) 2367 continue; 2368 // Expand the select. 2369 TerminatorInst *Term = 2370 SplitBlockAndInsertIfThen(SI->getCondition(), SI, false); 2371 PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI); 2372 NewPN->addIncoming(SI->getTrueValue(), Term->getParent()); 2373 NewPN->addIncoming(SI->getFalseValue(), BB); 2374 SI->replaceAllUsesWith(NewPN); 2375 SI->eraseFromParent(); 2376 return true; 2377 } 2378 return false; 2379 } 2380 2381 /// Try to propagate a guard from the current BB into one of its predecessors 2382 /// in case if another branch of execution implies that the condition of this 2383 /// guard is always true. Currently we only process the simplest case that 2384 /// looks like: 2385 /// 2386 /// Start: 2387 /// %cond = ... 2388 /// br i1 %cond, label %T1, label %F1 2389 /// T1: 2390 /// br label %Merge 2391 /// F1: 2392 /// br label %Merge 2393 /// Merge: 2394 /// %condGuard = ... 2395 /// call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ] 2396 /// 2397 /// And cond either implies condGuard or !condGuard. In this case all the 2398 /// instructions before the guard can be duplicated in both branches, and the 2399 /// guard is then threaded to one of them. 2400 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) { 2401 using namespace PatternMatch; 2402 // We only want to deal with two predecessors. 2403 BasicBlock *Pred1, *Pred2; 2404 auto PI = pred_begin(BB), PE = pred_end(BB); 2405 if (PI == PE) 2406 return false; 2407 Pred1 = *PI++; 2408 if (PI == PE) 2409 return false; 2410 Pred2 = *PI++; 2411 if (PI != PE) 2412 return false; 2413 if (Pred1 == Pred2) 2414 return false; 2415 2416 // Try to thread one of the guards of the block. 2417 // TODO: Look up deeper than to immediate predecessor? 2418 auto *Parent = Pred1->getSinglePredecessor(); 2419 if (!Parent || Parent != Pred2->getSinglePredecessor()) 2420 return false; 2421 2422 if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator())) 2423 for (auto &I : *BB) 2424 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>())) 2425 if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI)) 2426 return true; 2427 2428 return false; 2429 } 2430 2431 /// Try to propagate the guard from BB which is the lower block of a diamond 2432 /// to one of its branches, in case if diamond's condition implies guard's 2433 /// condition. 2434 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard, 2435 BranchInst *BI) { 2436 assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?"); 2437 assert(BI->isConditional() && "Unconditional branch has 2 successors?"); 2438 Value *GuardCond = Guard->getArgOperand(0); 2439 Value *BranchCond = BI->getCondition(); 2440 BasicBlock *TrueDest = BI->getSuccessor(0); 2441 BasicBlock *FalseDest = BI->getSuccessor(1); 2442 2443 auto &DL = BB->getModule()->getDataLayout(); 2444 bool TrueDestIsSafe = false; 2445 bool FalseDestIsSafe = false; 2446 2447 // True dest is safe if BranchCond => GuardCond. 2448 auto Impl = isImpliedCondition(BranchCond, GuardCond, DL); 2449 if (Impl && *Impl) 2450 TrueDestIsSafe = true; 2451 else { 2452 // False dest is safe if !BranchCond => GuardCond. 2453 Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false); 2454 if (Impl && *Impl) 2455 FalseDestIsSafe = true; 2456 } 2457 2458 if (!TrueDestIsSafe && !FalseDestIsSafe) 2459 return false; 2460 2461 BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest; 2462 BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest; 2463 2464 ValueToValueMapTy UnguardedMapping, GuardedMapping; 2465 Instruction *AfterGuard = Guard->getNextNode(); 2466 unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold); 2467 if (Cost > BBDupThreshold) 2468 return false; 2469 // Duplicate all instructions before the guard and the guard itself to the 2470 // branch where implication is not proved. 2471 GuardedBlock = DuplicateInstructionsInSplitBetween( 2472 BB, GuardedBlock, AfterGuard, GuardedMapping); 2473 assert(GuardedBlock && "Could not create the guarded block?"); 2474 // Duplicate all instructions before the guard in the unguarded branch. 2475 // Since we have successfully duplicated the guarded block and this block 2476 // has fewer instructions, we expect it to succeed. 2477 UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock, 2478 Guard, UnguardedMapping); 2479 assert(UnguardedBlock && "Could not create the unguarded block?"); 2480 DEBUG(dbgs() << "Moved guard " << *Guard << " to block " 2481 << GuardedBlock->getName() << "\n"); 2482 2483 // Some instructions before the guard may still have uses. For them, we need 2484 // to create Phi nodes merging their copies in both guarded and unguarded 2485 // branches. Those instructions that have no uses can be just removed. 2486 SmallVector<Instruction *, 4> ToRemove; 2487 for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI) 2488 if (!isa<PHINode>(&*BI)) 2489 ToRemove.push_back(&*BI); 2490 2491 Instruction *InsertionPoint = &*BB->getFirstInsertionPt(); 2492 assert(InsertionPoint && "Empty block?"); 2493 // Substitute with Phis & remove. 2494 for (auto *Inst : reverse(ToRemove)) { 2495 if (!Inst->use_empty()) { 2496 PHINode *NewPN = PHINode::Create(Inst->getType(), 2); 2497 NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock); 2498 NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock); 2499 NewPN->insertBefore(InsertionPoint); 2500 Inst->replaceAllUsesWith(NewPN); 2501 } 2502 Inst->eraseFromParent(); 2503 } 2504 return true; 2505 } 2506