1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Jump Threading pass.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Transforms/Scalar/JumpThreading.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/Loads.h"
26 #include "llvm/Analysis/LoopInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/ConstantRange.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Scalar.h"
40 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
41 #include "llvm/Transforms/Utils/Cloning.h"
42 #include "llvm/Transforms/Utils/Local.h"
43 #include "llvm/Transforms/Utils/SSAUpdater.h"
44 #include <algorithm>
45 #include <memory>
46 using namespace llvm;
47 using namespace jumpthreading;
48 
49 #define DEBUG_TYPE "jump-threading"
50 
51 STATISTIC(NumThreads, "Number of jumps threaded");
52 STATISTIC(NumFolds,   "Number of terminators folded");
53 STATISTIC(NumDupes,   "Number of branch blocks duplicated to eliminate phi");
54 
55 static cl::opt<unsigned>
56 BBDuplicateThreshold("jump-threading-threshold",
57           cl::desc("Max block size to duplicate for jump threading"),
58           cl::init(6), cl::Hidden);
59 
60 static cl::opt<unsigned>
61 ImplicationSearchThreshold(
62   "jump-threading-implication-search-threshold",
63   cl::desc("The number of predecessors to search for a stronger "
64            "condition to use to thread over a weaker condition"),
65   cl::init(3), cl::Hidden);
66 
67 static cl::opt<bool> PrintLVIAfterJumpThreading(
68     "print-lvi-after-jump-threading",
69     cl::desc("Print the LazyValueInfo cache after JumpThreading"), cl::init(false),
70     cl::Hidden);
71 
72 namespace {
73   /// This pass performs 'jump threading', which looks at blocks that have
74   /// multiple predecessors and multiple successors.  If one or more of the
75   /// predecessors of the block can be proven to always jump to one of the
76   /// successors, we forward the edge from the predecessor to the successor by
77   /// duplicating the contents of this block.
78   ///
79   /// An example of when this can occur is code like this:
80   ///
81   ///   if () { ...
82   ///     X = 4;
83   ///   }
84   ///   if (X < 3) {
85   ///
86   /// In this case, the unconditional branch at the end of the first if can be
87   /// revectored to the false side of the second if.
88   ///
89   class JumpThreading : public FunctionPass {
90     JumpThreadingPass Impl;
91 
92   public:
93     static char ID; // Pass identification
94     JumpThreading(int T = -1) : FunctionPass(ID), Impl(T) {
95       initializeJumpThreadingPass(*PassRegistry::getPassRegistry());
96     }
97 
98     bool runOnFunction(Function &F) override;
99 
100     void getAnalysisUsage(AnalysisUsage &AU) const override {
101       if (PrintLVIAfterJumpThreading)
102         AU.addRequired<DominatorTreeWrapperPass>();
103       AU.addRequired<AAResultsWrapperPass>();
104       AU.addRequired<LazyValueInfoWrapperPass>();
105       AU.addPreserved<GlobalsAAWrapperPass>();
106       AU.addRequired<TargetLibraryInfoWrapperPass>();
107     }
108 
109     void releaseMemory() override { Impl.releaseMemory(); }
110   };
111 }
112 
113 char JumpThreading::ID = 0;
114 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading",
115                 "Jump Threading", false, false)
116 INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
117 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
118 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
119 INITIALIZE_PASS_END(JumpThreading, "jump-threading",
120                 "Jump Threading", false, false)
121 
122 // Public interface to the Jump Threading pass
123 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); }
124 
125 JumpThreadingPass::JumpThreadingPass(int T) {
126   BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T);
127 }
128 
129 // Update branch probability information according to conditional
130 // branch probablity. This is usually made possible for cloned branches
131 // in inline instances by the context specific profile in the caller.
132 // For instance,
133 //
134 //  [Block PredBB]
135 //  [Branch PredBr]
136 //  if (t) {
137 //     Block A;
138 //  } else {
139 //     Block B;
140 //  }
141 //
142 //  [Block BB]
143 //  cond = PN([true, %A], [..., %B]); // PHI node
144 //  [Branch CondBr]
145 //  if (cond) {
146 //    ...  // P(cond == true) = 1%
147 //  }
148 //
149 //  Here we know that when block A is taken, cond must be true, which means
150 //      P(cond == true | A) = 1
151 //
152 //  Given that P(cond == true) = P(cond == true | A) * P(A) +
153 //                               P(cond == true | B) * P(B)
154 //  we get
155 //     P(cond == true ) = P(A) + P(cond == true | B) * P(B)
156 //
157 //  which gives us:
158 //     P(A) <= P(c == true), i.e.
159 //     P(t == true) <= P(cond == true)
160 //
161 //  In other words, if we know P(cond == true), we know that P(t == true)
162 //  can not be greater than 1%.
163 static void updatePredecessorProfileMetadata(PHINode *PN, BasicBlock *BB) {
164   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
165   if (!CondBr)
166     return;
167 
168   BranchProbability BP;
169   uint64_t TrueWeight, FalseWeight;
170   if (!CondBr->extractProfMetadata(TrueWeight, FalseWeight))
171     return;
172 
173   // Returns the outgoing edge of the dominating predecessor block
174   // that leads to the PhiNode's incoming block:
175   auto GetPredOutEdge =
176       [](BasicBlock *IncomingBB,
177          BasicBlock *PhiBB) -> std::pair<BasicBlock *, BasicBlock *> {
178     auto *PredBB = IncomingBB;
179     auto *SuccBB = PhiBB;
180     for (;;) {
181       BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
182       if (PredBr && PredBr->isConditional())
183         return {PredBB, SuccBB};
184       auto *SinglePredBB = PredBB->getSinglePredecessor();
185       if (!SinglePredBB)
186         return {nullptr, nullptr};
187       SuccBB = PredBB;
188       PredBB = SinglePredBB;
189     }
190   };
191 
192   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
193     Value *PhiOpnd = PN->getIncomingValue(i);
194     ConstantInt *CI = dyn_cast<ConstantInt>(PhiOpnd);
195 
196     if (!CI || !CI->getType()->isIntegerTy(1))
197       continue;
198 
199     BP = (CI->isOne() ? BranchProbability::getBranchProbability(
200                             TrueWeight, TrueWeight + FalseWeight)
201                       : BranchProbability::getBranchProbability(
202                             FalseWeight, TrueWeight + FalseWeight));
203 
204     auto PredOutEdge = GetPredOutEdge(PN->getIncomingBlock(i), BB);
205     if (!PredOutEdge.first)
206       return;
207 
208     BasicBlock *PredBB = PredOutEdge.first;
209     BranchInst *PredBr = cast<BranchInst>(PredBB->getTerminator());
210 
211     uint64_t PredTrueWeight, PredFalseWeight;
212     // FIXME: We currently only set the profile data when it is missing.
213     // With PGO, this can be used to refine even existing profile data with
214     // context information. This needs to be done after more performance
215     // testing.
216     if (PredBr->extractProfMetadata(PredTrueWeight, PredFalseWeight))
217       continue;
218 
219     // We can not infer anything useful when BP >= 50%, because BP is the
220     // upper bound probability value.
221     if (BP >= BranchProbability(50, 100))
222       continue;
223 
224     SmallVector<uint32_t, 2> Weights;
225     if (PredBr->getSuccessor(0) == PredOutEdge.second) {
226       Weights.push_back(BP.getNumerator());
227       Weights.push_back(BP.getCompl().getNumerator());
228     } else {
229       Weights.push_back(BP.getCompl().getNumerator());
230       Weights.push_back(BP.getNumerator());
231     }
232     PredBr->setMetadata(LLVMContext::MD_prof,
233                         MDBuilder(PredBr->getParent()->getContext())
234                             .createBranchWeights(Weights));
235   }
236 }
237 
238 /// runOnFunction - Toplevel algorithm.
239 ///
240 bool JumpThreading::runOnFunction(Function &F) {
241   if (skipFunction(F))
242     return false;
243   auto TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
244   auto LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
245   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
246   std::unique_ptr<BlockFrequencyInfo> BFI;
247   std::unique_ptr<BranchProbabilityInfo> BPI;
248   bool HasProfileData = F.getEntryCount().hasValue();
249   if (HasProfileData) {
250     LoopInfo LI{DominatorTree(F)};
251     BPI.reset(new BranchProbabilityInfo(F, LI, TLI));
252     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
253   }
254 
255   bool Changed = Impl.runImpl(F, TLI, LVI, AA, HasProfileData, std::move(BFI),
256                               std::move(BPI));
257   if (PrintLVIAfterJumpThreading) {
258     dbgs() << "LVI for function '" << F.getName() << "':\n";
259     LVI->printLVI(F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
260                   dbgs());
261   }
262   return Changed;
263 }
264 
265 PreservedAnalyses JumpThreadingPass::run(Function &F,
266                                          FunctionAnalysisManager &AM) {
267 
268   auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
269   auto &LVI = AM.getResult<LazyValueAnalysis>(F);
270   auto &AA = AM.getResult<AAManager>(F);
271 
272   std::unique_ptr<BlockFrequencyInfo> BFI;
273   std::unique_ptr<BranchProbabilityInfo> BPI;
274   bool HasProfileData = F.getEntryCount().hasValue();
275   if (HasProfileData) {
276     LoopInfo LI{DominatorTree(F)};
277     BPI.reset(new BranchProbabilityInfo(F, LI, &TLI));
278     BFI.reset(new BlockFrequencyInfo(F, *BPI, LI));
279   }
280 
281   bool Changed = runImpl(F, &TLI, &LVI, &AA, HasProfileData, std::move(BFI),
282                          std::move(BPI));
283 
284   if (!Changed)
285     return PreservedAnalyses::all();
286   PreservedAnalyses PA;
287   PA.preserve<GlobalsAA>();
288   return PA;
289 }
290 
291 bool JumpThreadingPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
292                                 LazyValueInfo *LVI_, AliasAnalysis *AA_,
293                                 bool HasProfileData_,
294                                 std::unique_ptr<BlockFrequencyInfo> BFI_,
295                                 std::unique_ptr<BranchProbabilityInfo> BPI_) {
296 
297   DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n");
298   TLI = TLI_;
299   LVI = LVI_;
300   AA = AA_;
301   BFI.reset();
302   BPI.reset();
303   // When profile data is available, we need to update edge weights after
304   // successful jump threading, which requires both BPI and BFI being available.
305   HasProfileData = HasProfileData_;
306   auto *GuardDecl = F.getParent()->getFunction(
307       Intrinsic::getName(Intrinsic::experimental_guard));
308   HasGuards = GuardDecl && !GuardDecl->use_empty();
309   if (HasProfileData) {
310     BPI = std::move(BPI_);
311     BFI = std::move(BFI_);
312   }
313 
314   // Remove unreachable blocks from function as they may result in infinite
315   // loop. We do threading if we found something profitable. Jump threading a
316   // branch can create other opportunities. If these opportunities form a cycle
317   // i.e. if any jump threading is undoing previous threading in the path, then
318   // we will loop forever. We take care of this issue by not jump threading for
319   // back edges. This works for normal cases but not for unreachable blocks as
320   // they may have cycle with no back edge.
321   bool EverChanged = false;
322   EverChanged |= removeUnreachableBlocks(F, LVI);
323 
324   FindLoopHeaders(F);
325 
326   bool Changed;
327   do {
328     Changed = false;
329     for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
330       BasicBlock *BB = &*I;
331       // Thread all of the branches we can over this block.
332       while (ProcessBlock(BB))
333         Changed = true;
334 
335       ++I;
336 
337       // If the block is trivially dead, zap it.  This eliminates the successor
338       // edges which simplifies the CFG.
339       if (pred_empty(BB) &&
340           BB != &BB->getParent()->getEntryBlock()) {
341         DEBUG(dbgs() << "  JT: Deleting dead block '" << BB->getName()
342               << "' with terminator: " << *BB->getTerminator() << '\n');
343         LoopHeaders.erase(BB);
344         LVI->eraseBlock(BB);
345         DeleteDeadBlock(BB);
346         Changed = true;
347         continue;
348       }
349 
350       BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
351 
352       // Can't thread an unconditional jump, but if the block is "almost
353       // empty", we can replace uses of it with uses of the successor and make
354       // this dead.
355       // We should not eliminate the loop header or latch either, because
356       // eliminating a loop header or latch might later prevent LoopSimplify
357       // from transforming nested loops into simplified form. We will rely on
358       // later passes in backend to clean up empty blocks.
359       if (BI && BI->isUnconditional() &&
360           BB != &BB->getParent()->getEntryBlock() &&
361           // If the terminator is the only non-phi instruction, try to nuke it.
362           BB->getFirstNonPHIOrDbg()->isTerminator() && !LoopHeaders.count(BB) &&
363           !LoopHeaders.count(BI->getSuccessor(0))) {
364         // FIXME: It is always conservatively correct to drop the info
365         // for a block even if it doesn't get erased.  This isn't totally
366         // awesome, but it allows us to use AssertingVH to prevent nasty
367         // dangling pointer issues within LazyValueInfo.
368         LVI->eraseBlock(BB);
369         if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
370           Changed = true;
371       }
372     }
373     EverChanged |= Changed;
374   } while (Changed);
375 
376   LoopHeaders.clear();
377   return EverChanged;
378 }
379 
380 // Replace uses of Cond with ToVal when safe to do so. If all uses are
381 // replaced, we can remove Cond. We cannot blindly replace all uses of Cond
382 // because we may incorrectly replace uses when guards/assumes are uses of
383 // of `Cond` and we used the guards/assume to reason about the `Cond` value
384 // at the end of block. RAUW unconditionally replaces all uses
385 // including the guards/assumes themselves and the uses before the
386 // guard/assume.
387 static void ReplaceFoldableUses(Instruction *Cond, Value *ToVal) {
388   assert(Cond->getType() == ToVal->getType());
389   auto *BB = Cond->getParent();
390   // We can unconditionally replace all uses in non-local blocks (i.e. uses
391   // strictly dominated by BB), since LVI information is true from the
392   // terminator of BB.
393   replaceNonLocalUsesWith(Cond, ToVal);
394   for (Instruction &I : reverse(*BB)) {
395     // Reached the Cond whose uses we are trying to replace, so there are no
396     // more uses.
397     if (&I == Cond)
398       break;
399     // We only replace uses in instructions that are guaranteed to reach the end
400     // of BB, where we know Cond is ToVal.
401     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
402       break;
403     I.replaceUsesOfWith(Cond, ToVal);
404   }
405   if (Cond->use_empty() && !Cond->mayHaveSideEffects())
406     Cond->eraseFromParent();
407 }
408 
409 /// Return the cost of duplicating a piece of this block from first non-phi
410 /// and before StopAt instruction to thread across it. Stop scanning the block
411 /// when exceeding the threshold. If duplication is impossible, returns ~0U.
412 static unsigned getJumpThreadDuplicationCost(BasicBlock *BB,
413                                              Instruction *StopAt,
414                                              unsigned Threshold) {
415   assert(StopAt->getParent() == BB && "Not an instruction from proper BB?");
416   /// Ignore PHI nodes, these will be flattened when duplication happens.
417   BasicBlock::const_iterator I(BB->getFirstNonPHI());
418 
419   // FIXME: THREADING will delete values that are just used to compute the
420   // branch, so they shouldn't count against the duplication cost.
421 
422   unsigned Bonus = 0;
423   if (BB->getTerminator() == StopAt) {
424     // Threading through a switch statement is particularly profitable.  If this
425     // block ends in a switch, decrease its cost to make it more likely to
426     // happen.
427     if (isa<SwitchInst>(StopAt))
428       Bonus = 6;
429 
430     // The same holds for indirect branches, but slightly more so.
431     if (isa<IndirectBrInst>(StopAt))
432       Bonus = 8;
433   }
434 
435   // Bump the threshold up so the early exit from the loop doesn't skip the
436   // terminator-based Size adjustment at the end.
437   Threshold += Bonus;
438 
439   // Sum up the cost of each instruction until we get to the terminator.  Don't
440   // include the terminator because the copy won't include it.
441   unsigned Size = 0;
442   for (; &*I != StopAt; ++I) {
443 
444     // Stop scanning the block if we've reached the threshold.
445     if (Size > Threshold)
446       return Size;
447 
448     // Debugger intrinsics don't incur code size.
449     if (isa<DbgInfoIntrinsic>(I)) continue;
450 
451     // If this is a pointer->pointer bitcast, it is free.
452     if (isa<BitCastInst>(I) && I->getType()->isPointerTy())
453       continue;
454 
455     // Bail out if this instruction gives back a token type, it is not possible
456     // to duplicate it if it is used outside this BB.
457     if (I->getType()->isTokenTy() && I->isUsedOutsideOfBlock(BB))
458       return ~0U;
459 
460     // All other instructions count for at least one unit.
461     ++Size;
462 
463     // Calls are more expensive.  If they are non-intrinsic calls, we model them
464     // as having cost of 4.  If they are a non-vector intrinsic, we model them
465     // as having cost of 2 total, and if they are a vector intrinsic, we model
466     // them as having cost 1.
467     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
468       if (CI->cannotDuplicate() || CI->isConvergent())
469         // Blocks with NoDuplicate are modelled as having infinite cost, so they
470         // are never duplicated.
471         return ~0U;
472       else if (!isa<IntrinsicInst>(CI))
473         Size += 3;
474       else if (!CI->getType()->isVectorTy())
475         Size += 1;
476     }
477   }
478 
479   return Size > Bonus ? Size - Bonus : 0;
480 }
481 
482 /// FindLoopHeaders - We do not want jump threading to turn proper loop
483 /// structures into irreducible loops.  Doing this breaks up the loop nesting
484 /// hierarchy and pessimizes later transformations.  To prevent this from
485 /// happening, we first have to find the loop headers.  Here we approximate this
486 /// by finding targets of backedges in the CFG.
487 ///
488 /// Note that there definitely are cases when we want to allow threading of
489 /// edges across a loop header.  For example, threading a jump from outside the
490 /// loop (the preheader) to an exit block of the loop is definitely profitable.
491 /// It is also almost always profitable to thread backedges from within the loop
492 /// to exit blocks, and is often profitable to thread backedges to other blocks
493 /// within the loop (forming a nested loop).  This simple analysis is not rich
494 /// enough to track all of these properties and keep it up-to-date as the CFG
495 /// mutates, so we don't allow any of these transformations.
496 ///
497 void JumpThreadingPass::FindLoopHeaders(Function &F) {
498   SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
499   FindFunctionBackedges(F, Edges);
500 
501   for (const auto &Edge : Edges)
502     LoopHeaders.insert(Edge.second);
503 }
504 
505 /// getKnownConstant - Helper method to determine if we can thread over a
506 /// terminator with the given value as its condition, and if so what value to
507 /// use for that. What kind of value this is depends on whether we want an
508 /// integer or a block address, but an undef is always accepted.
509 /// Returns null if Val is null or not an appropriate constant.
510 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) {
511   if (!Val)
512     return nullptr;
513 
514   // Undef is "known" enough.
515   if (UndefValue *U = dyn_cast<UndefValue>(Val))
516     return U;
517 
518   if (Preference == WantBlockAddress)
519     return dyn_cast<BlockAddress>(Val->stripPointerCasts());
520 
521   return dyn_cast<ConstantInt>(Val);
522 }
523 
524 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
525 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef
526 /// in any of our predecessors.  If so, return the known list of value and pred
527 /// BB in the result vector.
528 ///
529 /// This returns true if there were any known values.
530 ///
531 bool JumpThreadingPass::ComputeValueKnownInPredecessors(
532     Value *V, BasicBlock *BB, PredValueInfo &Result,
533     ConstantPreference Preference, Instruction *CxtI) {
534   // This method walks up use-def chains recursively.  Because of this, we could
535   // get into an infinite loop going around loops in the use-def chain.  To
536   // prevent this, keep track of what (value, block) pairs we've already visited
537   // and terminate the search if we loop back to them
538   if (!RecursionSet.insert(std::make_pair(V, BB)).second)
539     return false;
540 
541   // An RAII help to remove this pair from the recursion set once the recursion
542   // stack pops back out again.
543   RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB));
544 
545   // If V is a constant, then it is known in all predecessors.
546   if (Constant *KC = getKnownConstant(V, Preference)) {
547     for (BasicBlock *Pred : predecessors(BB))
548       Result.push_back(std::make_pair(KC, Pred));
549 
550     return !Result.empty();
551   }
552 
553   // If V is a non-instruction value, or an instruction in a different block,
554   // then it can't be derived from a PHI.
555   Instruction *I = dyn_cast<Instruction>(V);
556   if (!I || I->getParent() != BB) {
557 
558     // Okay, if this is a live-in value, see if it has a known value at the end
559     // of any of our predecessors.
560     //
561     // FIXME: This should be an edge property, not a block end property.
562     /// TODO: Per PR2563, we could infer value range information about a
563     /// predecessor based on its terminator.
564     //
565     // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if
566     // "I" is a non-local compare-with-a-constant instruction.  This would be
567     // able to handle value inequalities better, for example if the compare is
568     // "X < 4" and "X < 3" is known true but "X < 4" itself is not available.
569     // Perhaps getConstantOnEdge should be smart enough to do this?
570 
571     for (BasicBlock *P : predecessors(BB)) {
572       // If the value is known by LazyValueInfo to be a constant in a
573       // predecessor, use that information to try to thread this block.
574       Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI);
575       if (Constant *KC = getKnownConstant(PredCst, Preference))
576         Result.push_back(std::make_pair(KC, P));
577     }
578 
579     return !Result.empty();
580   }
581 
582   /// If I is a PHI node, then we know the incoming values for any constants.
583   if (PHINode *PN = dyn_cast<PHINode>(I)) {
584     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
585       Value *InVal = PN->getIncomingValue(i);
586       if (Constant *KC = getKnownConstant(InVal, Preference)) {
587         Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
588       } else {
589         Constant *CI = LVI->getConstantOnEdge(InVal,
590                                               PN->getIncomingBlock(i),
591                                               BB, CxtI);
592         if (Constant *KC = getKnownConstant(CI, Preference))
593           Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i)));
594       }
595     }
596 
597     return !Result.empty();
598   }
599 
600   // Handle Cast instructions.  Only see through Cast when the source operand is
601   // PHI or Cmp and the source type is i1 to save the compilation time.
602   if (CastInst *CI = dyn_cast<CastInst>(I)) {
603     Value *Source = CI->getOperand(0);
604     if (!Source->getType()->isIntegerTy(1))
605       return false;
606     if (!isa<PHINode>(Source) && !isa<CmpInst>(Source))
607       return false;
608     ComputeValueKnownInPredecessors(Source, BB, Result, Preference, CxtI);
609     if (Result.empty())
610       return false;
611 
612     // Convert the known values.
613     for (auto &R : Result)
614       R.first = ConstantExpr::getCast(CI->getOpcode(), R.first, CI->getType());
615 
616     return true;
617   }
618 
619   PredValueInfoTy LHSVals, RHSVals;
620 
621   // Handle some boolean conditions.
622   if (I->getType()->getPrimitiveSizeInBits() == 1) {
623     assert(Preference == WantInteger && "One-bit non-integer type?");
624     // X | true -> true
625     // X & false -> false
626     if (I->getOpcode() == Instruction::Or ||
627         I->getOpcode() == Instruction::And) {
628       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
629                                       WantInteger, CxtI);
630       ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals,
631                                       WantInteger, CxtI);
632 
633       if (LHSVals.empty() && RHSVals.empty())
634         return false;
635 
636       ConstantInt *InterestingVal;
637       if (I->getOpcode() == Instruction::Or)
638         InterestingVal = ConstantInt::getTrue(I->getContext());
639       else
640         InterestingVal = ConstantInt::getFalse(I->getContext());
641 
642       SmallPtrSet<BasicBlock*, 4> LHSKnownBBs;
643 
644       // Scan for the sentinel.  If we find an undef, force it to the
645       // interesting value: x|undef -> true and x&undef -> false.
646       for (const auto &LHSVal : LHSVals)
647         if (LHSVal.first == InterestingVal || isa<UndefValue>(LHSVal.first)) {
648           Result.emplace_back(InterestingVal, LHSVal.second);
649           LHSKnownBBs.insert(LHSVal.second);
650         }
651       for (const auto &RHSVal : RHSVals)
652         if (RHSVal.first == InterestingVal || isa<UndefValue>(RHSVal.first)) {
653           // If we already inferred a value for this block on the LHS, don't
654           // re-add it.
655           if (!LHSKnownBBs.count(RHSVal.second))
656             Result.emplace_back(InterestingVal, RHSVal.second);
657         }
658 
659       return !Result.empty();
660     }
661 
662     // Handle the NOT form of XOR.
663     if (I->getOpcode() == Instruction::Xor &&
664         isa<ConstantInt>(I->getOperand(1)) &&
665         cast<ConstantInt>(I->getOperand(1))->isOne()) {
666       ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result,
667                                       WantInteger, CxtI);
668       if (Result.empty())
669         return false;
670 
671       // Invert the known values.
672       for (auto &R : Result)
673         R.first = ConstantExpr::getNot(R.first);
674 
675       return true;
676     }
677 
678   // Try to simplify some other binary operator values.
679   } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
680     assert(Preference != WantBlockAddress
681             && "A binary operator creating a block address?");
682     if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
683       PredValueInfoTy LHSVals;
684       ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals,
685                                       WantInteger, CxtI);
686 
687       // Try to use constant folding to simplify the binary operator.
688       for (const auto &LHSVal : LHSVals) {
689         Constant *V = LHSVal.first;
690         Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI);
691 
692         if (Constant *KC = getKnownConstant(Folded, WantInteger))
693           Result.push_back(std::make_pair(KC, LHSVal.second));
694       }
695     }
696 
697     return !Result.empty();
698   }
699 
700   // Handle compare with phi operand, where the PHI is defined in this block.
701   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
702     assert(Preference == WantInteger && "Compares only produce integers");
703     Type *CmpType = Cmp->getType();
704     Value *CmpLHS = Cmp->getOperand(0);
705     Value *CmpRHS = Cmp->getOperand(1);
706     CmpInst::Predicate Pred = Cmp->getPredicate();
707 
708     PHINode *PN = dyn_cast<PHINode>(CmpLHS);
709     if (PN && PN->getParent() == BB) {
710       const DataLayout &DL = PN->getModule()->getDataLayout();
711       // We can do this simplification if any comparisons fold to true or false.
712       // See if any do.
713       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
714         BasicBlock *PredBB = PN->getIncomingBlock(i);
715         Value *LHS = PN->getIncomingValue(i);
716         Value *RHS = CmpRHS->DoPHITranslation(BB, PredBB);
717 
718         Value *Res = SimplifyCmpInst(Pred, LHS, RHS, {DL});
719         if (!Res) {
720           if (!isa<Constant>(RHS))
721             continue;
722 
723           LazyValueInfo::Tristate
724             ResT = LVI->getPredicateOnEdge(Pred, LHS,
725                                            cast<Constant>(RHS), PredBB, BB,
726                                            CxtI ? CxtI : Cmp);
727           if (ResT == LazyValueInfo::Unknown)
728             continue;
729           Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT);
730         }
731 
732         if (Constant *KC = getKnownConstant(Res, WantInteger))
733           Result.push_back(std::make_pair(KC, PredBB));
734       }
735 
736       return !Result.empty();
737     }
738 
739     // If comparing a live-in value against a constant, see if we know the
740     // live-in value on any predecessors.
741     if (isa<Constant>(CmpRHS) && !CmpType->isVectorTy()) {
742       Constant *CmpConst = cast<Constant>(CmpRHS);
743 
744       if (!isa<Instruction>(CmpLHS) ||
745           cast<Instruction>(CmpLHS)->getParent() != BB) {
746         for (BasicBlock *P : predecessors(BB)) {
747           // If the value is known by LazyValueInfo to be a constant in a
748           // predecessor, use that information to try to thread this block.
749           LazyValueInfo::Tristate Res =
750             LVI->getPredicateOnEdge(Pred, CmpLHS,
751                                     CmpConst, P, BB, CxtI ? CxtI : Cmp);
752           if (Res == LazyValueInfo::Unknown)
753             continue;
754 
755           Constant *ResC = ConstantInt::get(CmpType, Res);
756           Result.push_back(std::make_pair(ResC, P));
757         }
758 
759         return !Result.empty();
760       }
761 
762       // InstCombine can fold some forms of constant range checks into
763       // (icmp (add (x, C1)), C2). See if we have we have such a thing with
764       // x as a live-in.
765       {
766         using namespace PatternMatch;
767         Value *AddLHS;
768         ConstantInt *AddConst;
769         if (isa<ConstantInt>(CmpConst) &&
770             match(CmpLHS, m_Add(m_Value(AddLHS), m_ConstantInt(AddConst)))) {
771           if (!isa<Instruction>(AddLHS) ||
772               cast<Instruction>(AddLHS)->getParent() != BB) {
773             for (BasicBlock *P : predecessors(BB)) {
774               // If the value is known by LazyValueInfo to be a ConstantRange in
775               // a predecessor, use that information to try to thread this
776               // block.
777               ConstantRange CR = LVI->getConstantRangeOnEdge(
778                   AddLHS, P, BB, CxtI ? CxtI : cast<Instruction>(CmpLHS));
779               // Propagate the range through the addition.
780               CR = CR.add(AddConst->getValue());
781 
782               // Get the range where the compare returns true.
783               ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(
784                   Pred, cast<ConstantInt>(CmpConst)->getValue());
785 
786               Constant *ResC;
787               if (CmpRange.contains(CR))
788                 ResC = ConstantInt::getTrue(CmpType);
789               else if (CmpRange.inverse().contains(CR))
790                 ResC = ConstantInt::getFalse(CmpType);
791               else
792                 continue;
793 
794               Result.push_back(std::make_pair(ResC, P));
795             }
796 
797             return !Result.empty();
798           }
799         }
800       }
801 
802       // Try to find a constant value for the LHS of a comparison,
803       // and evaluate it statically if we can.
804       PredValueInfoTy LHSVals;
805       ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals,
806                                       WantInteger, CxtI);
807 
808       for (const auto &LHSVal : LHSVals) {
809         Constant *V = LHSVal.first;
810         Constant *Folded = ConstantExpr::getCompare(Pred, V, CmpConst);
811         if (Constant *KC = getKnownConstant(Folded, WantInteger))
812           Result.push_back(std::make_pair(KC, LHSVal.second));
813       }
814 
815       return !Result.empty();
816     }
817   }
818 
819   if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
820     // Handle select instructions where at least one operand is a known constant
821     // and we can figure out the condition value for any predecessor block.
822     Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference);
823     Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference);
824     PredValueInfoTy Conds;
825     if ((TrueVal || FalseVal) &&
826         ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds,
827                                         WantInteger, CxtI)) {
828       for (auto &C : Conds) {
829         Constant *Cond = C.first;
830 
831         // Figure out what value to use for the condition.
832         bool KnownCond;
833         if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) {
834           // A known boolean.
835           KnownCond = CI->isOne();
836         } else {
837           assert(isa<UndefValue>(Cond) && "Unexpected condition value");
838           // Either operand will do, so be sure to pick the one that's a known
839           // constant.
840           // FIXME: Do this more cleverly if both values are known constants?
841           KnownCond = (TrueVal != nullptr);
842         }
843 
844         // See if the select has a known constant value for this predecessor.
845         if (Constant *Val = KnownCond ? TrueVal : FalseVal)
846           Result.push_back(std::make_pair(Val, C.second));
847       }
848 
849       return !Result.empty();
850     }
851   }
852 
853   // If all else fails, see if LVI can figure out a constant value for us.
854   Constant *CI = LVI->getConstant(V, BB, CxtI);
855   if (Constant *KC = getKnownConstant(CI, Preference)) {
856     for (BasicBlock *Pred : predecessors(BB))
857       Result.push_back(std::make_pair(KC, Pred));
858   }
859 
860   return !Result.empty();
861 }
862 
863 
864 
865 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
866 /// in an undefined jump, decide which block is best to revector to.
867 ///
868 /// Since we can pick an arbitrary destination, we pick the successor with the
869 /// fewest predecessors.  This should reduce the in-degree of the others.
870 ///
871 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
872   TerminatorInst *BBTerm = BB->getTerminator();
873   unsigned MinSucc = 0;
874   BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
875   // Compute the successor with the minimum number of predecessors.
876   unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
877   for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
878     TestBB = BBTerm->getSuccessor(i);
879     unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
880     if (NumPreds < MinNumPreds) {
881       MinSucc = i;
882       MinNumPreds = NumPreds;
883     }
884   }
885 
886   return MinSucc;
887 }
888 
889 static bool hasAddressTakenAndUsed(BasicBlock *BB) {
890   if (!BB->hasAddressTaken()) return false;
891 
892   // If the block has its address taken, it may be a tree of dead constants
893   // hanging off of it.  These shouldn't keep the block alive.
894   BlockAddress *BA = BlockAddress::get(BB);
895   BA->removeDeadConstantUsers();
896   return !BA->use_empty();
897 }
898 
899 /// ProcessBlock - If there are any predecessors whose control can be threaded
900 /// through to a successor, transform them now.
901 bool JumpThreadingPass::ProcessBlock(BasicBlock *BB) {
902   // If the block is trivially dead, just return and let the caller nuke it.
903   // This simplifies other transformations.
904   if (pred_empty(BB) &&
905       BB != &BB->getParent()->getEntryBlock())
906     return false;
907 
908   // If this block has a single predecessor, and if that pred has a single
909   // successor, merge the blocks.  This encourages recursive jump threading
910   // because now the condition in this block can be threaded through
911   // predecessors of our predecessor block.
912   if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
913     const TerminatorInst *TI = SinglePred->getTerminator();
914     if (!TI->isExceptional() && TI->getNumSuccessors() == 1 &&
915         SinglePred != BB && !hasAddressTakenAndUsed(BB)) {
916       // If SinglePred was a loop header, BB becomes one.
917       if (LoopHeaders.erase(SinglePred))
918         LoopHeaders.insert(BB);
919 
920       LVI->eraseBlock(SinglePred);
921       MergeBasicBlockIntoOnlyPred(BB);
922 
923       // Now that BB is merged into SinglePred (i.e. SinglePred Code followed by
924       // BB code within one basic block `BB`), we need to invalidate the LVI
925       // information associated with BB, because the LVI information need not be
926       // true for all of BB after the merge. For example,
927       // Before the merge, LVI info and code is as follows:
928       // SinglePred: <LVI info1 for %p val>
929       // %y = use of %p
930       // call @exit() // need not transfer execution to successor.
931       // assume(%p) // from this point on %p is true
932       // br label %BB
933       // BB: <LVI info2 for %p val, i.e. %p is true>
934       // %x = use of %p
935       // br label exit
936       //
937       // Note that this LVI info for blocks BB and SinglPred is correct for %p
938       // (info2 and info1 respectively). After the merge and the deletion of the
939       // LVI info1 for SinglePred. We have the following code:
940       // BB: <LVI info2 for %p val>
941       // %y = use of %p
942       // call @exit()
943       // assume(%p)
944       // %x = use of %p <-- LVI info2 is correct from here onwards.
945       // br label exit
946       // LVI info2 for BB is incorrect at the beginning of BB.
947 
948       // Invalidate LVI information for BB if the LVI is not provably true for
949       // all of BB.
950       if (any_of(*BB, [](Instruction &I) {
951             return !isGuaranteedToTransferExecutionToSuccessor(&I);
952           }))
953         LVI->eraseBlock(BB);
954       return true;
955     }
956   }
957 
958   if (TryToUnfoldSelectInCurrBB(BB))
959     return true;
960 
961   // Look if we can propagate guards to predecessors.
962   if (HasGuards && ProcessGuards(BB))
963     return true;
964 
965   // What kind of constant we're looking for.
966   ConstantPreference Preference = WantInteger;
967 
968   // Look to see if the terminator is a conditional branch, switch or indirect
969   // branch, if not we can't thread it.
970   Value *Condition;
971   Instruction *Terminator = BB->getTerminator();
972   if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) {
973     // Can't thread an unconditional jump.
974     if (BI->isUnconditional()) return false;
975     Condition = BI->getCondition();
976   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) {
977     Condition = SI->getCondition();
978   } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) {
979     // Can't thread indirect branch with no successors.
980     if (IB->getNumSuccessors() == 0) return false;
981     Condition = IB->getAddress()->stripPointerCasts();
982     Preference = WantBlockAddress;
983   } else {
984     return false; // Must be an invoke.
985   }
986 
987   // Run constant folding to see if we can reduce the condition to a simple
988   // constant.
989   if (Instruction *I = dyn_cast<Instruction>(Condition)) {
990     Value *SimpleVal =
991         ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI);
992     if (SimpleVal) {
993       I->replaceAllUsesWith(SimpleVal);
994       if (isInstructionTriviallyDead(I, TLI))
995         I->eraseFromParent();
996       Condition = SimpleVal;
997     }
998   }
999 
1000   // If the terminator is branching on an undef, we can pick any of the
1001   // successors to branch to.  Let GetBestDestForJumpOnUndef decide.
1002   if (isa<UndefValue>(Condition)) {
1003     unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
1004 
1005     // Fold the branch/switch.
1006     TerminatorInst *BBTerm = BB->getTerminator();
1007     for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
1008       if (i == BestSucc) continue;
1009       BBTerm->getSuccessor(i)->removePredecessor(BB, true);
1010     }
1011 
1012     DEBUG(dbgs() << "  In block '" << BB->getName()
1013           << "' folding undef terminator: " << *BBTerm << '\n');
1014     BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
1015     BBTerm->eraseFromParent();
1016     return true;
1017   }
1018 
1019   // If the terminator of this block is branching on a constant, simplify the
1020   // terminator to an unconditional branch.  This can occur due to threading in
1021   // other blocks.
1022   if (getKnownConstant(Condition, Preference)) {
1023     DEBUG(dbgs() << "  In block '" << BB->getName()
1024           << "' folding terminator: " << *BB->getTerminator() << '\n');
1025     ++NumFolds;
1026     ConstantFoldTerminator(BB, true);
1027     return true;
1028   }
1029 
1030   Instruction *CondInst = dyn_cast<Instruction>(Condition);
1031 
1032   // All the rest of our checks depend on the condition being an instruction.
1033   if (!CondInst) {
1034     // FIXME: Unify this with code below.
1035     if (ProcessThreadableEdges(Condition, BB, Preference, Terminator))
1036       return true;
1037     return false;
1038   }
1039 
1040   if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
1041     // If we're branching on a conditional, LVI might be able to determine
1042     // it's value at the branch instruction.  We only handle comparisons
1043     // against a constant at this time.
1044     // TODO: This should be extended to handle switches as well.
1045     BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
1046     Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1));
1047     if (CondBr && CondConst) {
1048       // We should have returned as soon as we turn a conditional branch to
1049       // unconditional. Because its no longer interesting as far as jump
1050       // threading is concerned.
1051       assert(CondBr->isConditional() && "Threading on unconditional terminator");
1052 
1053       LazyValueInfo::Tristate Ret =
1054         LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0),
1055                             CondConst, CondBr);
1056       if (Ret != LazyValueInfo::Unknown) {
1057         unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0;
1058         unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1;
1059         CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true);
1060         BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr);
1061         CondBr->eraseFromParent();
1062         if (CondCmp->use_empty())
1063           CondCmp->eraseFromParent();
1064         // We can safely replace *some* uses of the CondInst if it has
1065         // exactly one value as returned by LVI. RAUW is incorrect in the
1066         // presence of guards and assumes, that have the `Cond` as the use. This
1067         // is because we use the guards/assume to reason about the `Cond` value
1068         // at the end of block, but RAUW unconditionally replaces all uses
1069         // including the guards/assumes themselves and the uses before the
1070         // guard/assume.
1071         else if (CondCmp->getParent() == BB) {
1072           auto *CI = Ret == LazyValueInfo::True ?
1073             ConstantInt::getTrue(CondCmp->getType()) :
1074             ConstantInt::getFalse(CondCmp->getType());
1075           ReplaceFoldableUses(CondCmp, CI);
1076         }
1077         return true;
1078       }
1079 
1080       // We did not manage to simplify this branch, try to see whether
1081       // CondCmp depends on a known phi-select pattern.
1082       if (TryToUnfoldSelect(CondCmp, BB))
1083         return true;
1084     }
1085   }
1086 
1087   // Check for some cases that are worth simplifying.  Right now we want to look
1088   // for loads that are used by a switch or by the condition for the branch.  If
1089   // we see one, check to see if it's partially redundant.  If so, insert a PHI
1090   // which can then be used to thread the values.
1091   //
1092   Value *SimplifyValue = CondInst;
1093   if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
1094     if (isa<Constant>(CondCmp->getOperand(1)))
1095       SimplifyValue = CondCmp->getOperand(0);
1096 
1097   // TODO: There are other places where load PRE would be profitable, such as
1098   // more complex comparisons.
1099   if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
1100     if (SimplifyPartiallyRedundantLoad(LI))
1101       return true;
1102 
1103   // Before threading, try to propagate profile data backwards:
1104   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1105     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1106       updatePredecessorProfileMetadata(PN, BB);
1107 
1108   // Handle a variety of cases where we are branching on something derived from
1109   // a PHI node in the current block.  If we can prove that any predecessors
1110   // compute a predictable value based on a PHI node, thread those predecessors.
1111   //
1112   if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator))
1113     return true;
1114 
1115   // If this is an otherwise-unfoldable branch on a phi node in the current
1116   // block, see if we can simplify.
1117   if (PHINode *PN = dyn_cast<PHINode>(CondInst))
1118     if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1119       return ProcessBranchOnPHI(PN);
1120 
1121   // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify.
1122   if (CondInst->getOpcode() == Instruction::Xor &&
1123       CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator()))
1124     return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst));
1125 
1126   // Search for a stronger dominating condition that can be used to simplify a
1127   // conditional branch leaving BB.
1128   if (ProcessImpliedCondition(BB))
1129     return true;
1130 
1131   return false;
1132 }
1133 
1134 bool JumpThreadingPass::ProcessImpliedCondition(BasicBlock *BB) {
1135   auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
1136   if (!BI || !BI->isConditional())
1137     return false;
1138 
1139   Value *Cond = BI->getCondition();
1140   BasicBlock *CurrentBB = BB;
1141   BasicBlock *CurrentPred = BB->getSinglePredecessor();
1142   unsigned Iter = 0;
1143 
1144   auto &DL = BB->getModule()->getDataLayout();
1145 
1146   while (CurrentPred && Iter++ < ImplicationSearchThreshold) {
1147     auto *PBI = dyn_cast<BranchInst>(CurrentPred->getTerminator());
1148     if (!PBI || !PBI->isConditional())
1149       return false;
1150     if (PBI->getSuccessor(0) != CurrentBB && PBI->getSuccessor(1) != CurrentBB)
1151       return false;
1152 
1153     bool CondIsTrue = PBI->getSuccessor(0) == CurrentBB;
1154     Optional<bool> Implication =
1155         isImpliedCondition(PBI->getCondition(), Cond, DL, CondIsTrue);
1156     if (Implication) {
1157       BI->getSuccessor(*Implication ? 1 : 0)->removePredecessor(BB);
1158       BranchInst::Create(BI->getSuccessor(*Implication ? 0 : 1), BI);
1159       BI->eraseFromParent();
1160       return true;
1161     }
1162     CurrentBB = CurrentPred;
1163     CurrentPred = CurrentBB->getSinglePredecessor();
1164   }
1165 
1166   return false;
1167 }
1168 
1169 /// Return true if Op is an instruction defined in the given block.
1170 static bool isOpDefinedInBlock(Value *Op, BasicBlock *BB) {
1171   if (Instruction *OpInst = dyn_cast<Instruction>(Op))
1172     if (OpInst->getParent() == BB)
1173       return true;
1174   return false;
1175 }
1176 
1177 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
1178 /// load instruction, eliminate it by replacing it with a PHI node.  This is an
1179 /// important optimization that encourages jump threading, and needs to be run
1180 /// interlaced with other jump threading tasks.
1181 bool JumpThreadingPass::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
1182   // Don't hack volatile and ordered loads.
1183   if (!LI->isUnordered()) return false;
1184 
1185   // If the load is defined in a block with exactly one predecessor, it can't be
1186   // partially redundant.
1187   BasicBlock *LoadBB = LI->getParent();
1188   if (LoadBB->getSinglePredecessor())
1189     return false;
1190 
1191   // If the load is defined in an EH pad, it can't be partially redundant,
1192   // because the edges between the invoke and the EH pad cannot have other
1193   // instructions between them.
1194   if (LoadBB->isEHPad())
1195     return false;
1196 
1197   Value *LoadedPtr = LI->getOperand(0);
1198 
1199   // If the loaded operand is defined in the LoadBB and its not a phi,
1200   // it can't be available in predecessors.
1201   if (isOpDefinedInBlock(LoadedPtr, LoadBB) && !isa<PHINode>(LoadedPtr))
1202     return false;
1203 
1204   // Scan a few instructions up from the load, to see if it is obviously live at
1205   // the entry to its block.
1206   BasicBlock::iterator BBIt(LI);
1207   bool IsLoadCSE;
1208   if (Value *AvailableVal = FindAvailableLoadedValue(
1209           LI, LoadBB, BBIt, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1210     // If the value of the load is locally available within the block, just use
1211     // it.  This frequently occurs for reg2mem'd allocas.
1212 
1213     if (IsLoadCSE) {
1214       LoadInst *NLI = cast<LoadInst>(AvailableVal);
1215       combineMetadataForCSE(NLI, LI);
1216     };
1217 
1218     // If the returned value is the load itself, replace with an undef. This can
1219     // only happen in dead loops.
1220     if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
1221     if (AvailableVal->getType() != LI->getType())
1222       AvailableVal =
1223           CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI);
1224     LI->replaceAllUsesWith(AvailableVal);
1225     LI->eraseFromParent();
1226     return true;
1227   }
1228 
1229   // Otherwise, if we scanned the whole block and got to the top of the block,
1230   // we know the block is locally transparent to the load.  If not, something
1231   // might clobber its value.
1232   if (BBIt != LoadBB->begin())
1233     return false;
1234 
1235   // If all of the loads and stores that feed the value have the same AA tags,
1236   // then we can propagate them onto any newly inserted loads.
1237   AAMDNodes AATags;
1238   LI->getAAMetadata(AATags);
1239 
1240   SmallPtrSet<BasicBlock*, 8> PredsScanned;
1241   typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
1242   AvailablePredsTy AvailablePreds;
1243   BasicBlock *OneUnavailablePred = nullptr;
1244   SmallVector<LoadInst*, 8> CSELoads;
1245 
1246   // If we got here, the loaded value is transparent through to the start of the
1247   // block.  Check to see if it is available in any of the predecessor blocks.
1248   for (BasicBlock *PredBB : predecessors(LoadBB)) {
1249     // If we already scanned this predecessor, skip it.
1250     if (!PredsScanned.insert(PredBB).second)
1251       continue;
1252 
1253     BBIt = PredBB->end();
1254     unsigned NumScanedInst = 0;
1255     Value *PredAvailable = nullptr;
1256     // NOTE: We don't CSE load that is volatile or anything stronger than
1257     // unordered, that should have been checked when we entered the function.
1258     assert(LI->isUnordered() && "Attempting to CSE volatile or atomic loads");
1259     // If this is a load on a phi pointer, phi-translate it and search
1260     // for available load/store to the pointer in predecessors.
1261     Value *Ptr = LoadedPtr->DoPHITranslation(LoadBB, PredBB);
1262     PredAvailable = FindAvailablePtrLoadStore(
1263         Ptr, LI->getType(), LI->isAtomic(), PredBB, BBIt, DefMaxInstsToScan,
1264         AA, &IsLoadCSE, &NumScanedInst);
1265 
1266     // If PredBB has a single predecessor, continue scanning through the
1267     // single precessor.
1268     BasicBlock *SinglePredBB = PredBB;
1269     while (!PredAvailable && SinglePredBB && BBIt == SinglePredBB->begin() &&
1270            NumScanedInst < DefMaxInstsToScan) {
1271       SinglePredBB = SinglePredBB->getSinglePredecessor();
1272       if (SinglePredBB) {
1273         BBIt = SinglePredBB->end();
1274         PredAvailable = FindAvailablePtrLoadStore(
1275             Ptr, LI->getType(), LI->isAtomic(), SinglePredBB, BBIt,
1276             (DefMaxInstsToScan - NumScanedInst), AA, &IsLoadCSE,
1277             &NumScanedInst);
1278       }
1279     }
1280 
1281     if (!PredAvailable) {
1282       OneUnavailablePred = PredBB;
1283       continue;
1284     }
1285 
1286     if (IsLoadCSE)
1287       CSELoads.push_back(cast<LoadInst>(PredAvailable));
1288 
1289     // If so, this load is partially redundant.  Remember this info so that we
1290     // can create a PHI node.
1291     AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
1292   }
1293 
1294   // If the loaded value isn't available in any predecessor, it isn't partially
1295   // redundant.
1296   if (AvailablePreds.empty()) return false;
1297 
1298   // Okay, the loaded value is available in at least one (and maybe all!)
1299   // predecessors.  If the value is unavailable in more than one unique
1300   // predecessor, we want to insert a merge block for those common predecessors.
1301   // This ensures that we only have to insert one reload, thus not increasing
1302   // code size.
1303   BasicBlock *UnavailablePred = nullptr;
1304 
1305   // If there is exactly one predecessor where the value is unavailable, the
1306   // already computed 'OneUnavailablePred' block is it.  If it ends in an
1307   // unconditional branch, we know that it isn't a critical edge.
1308   if (PredsScanned.size() == AvailablePreds.size()+1 &&
1309       OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
1310     UnavailablePred = OneUnavailablePred;
1311   } else if (PredsScanned.size() != AvailablePreds.size()) {
1312     // Otherwise, we had multiple unavailable predecessors or we had a critical
1313     // edge from the one.
1314     SmallVector<BasicBlock*, 8> PredsToSplit;
1315     SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
1316 
1317     for (const auto &AvailablePred : AvailablePreds)
1318       AvailablePredSet.insert(AvailablePred.first);
1319 
1320     // Add all the unavailable predecessors to the PredsToSplit list.
1321     for (BasicBlock *P : predecessors(LoadBB)) {
1322       // If the predecessor is an indirect goto, we can't split the edge.
1323       if (isa<IndirectBrInst>(P->getTerminator()))
1324         return false;
1325 
1326       if (!AvailablePredSet.count(P))
1327         PredsToSplit.push_back(P);
1328     }
1329 
1330     // Split them out to their own block.
1331     UnavailablePred = SplitBlockPreds(LoadBB, PredsToSplit, "thread-pre-split");
1332   }
1333 
1334   // If the value isn't available in all predecessors, then there will be
1335   // exactly one where it isn't available.  Insert a load on that edge and add
1336   // it to the AvailablePreds list.
1337   if (UnavailablePred) {
1338     assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
1339            "Can't handle critical edge here!");
1340     LoadInst *NewVal = new LoadInst(
1341         LoadedPtr->DoPHITranslation(LoadBB, UnavailablePred),
1342         LI->getName() + ".pr", false, LI->getAlignment(), LI->getOrdering(),
1343         LI->getSyncScopeID(), UnavailablePred->getTerminator());
1344     NewVal->setDebugLoc(LI->getDebugLoc());
1345     if (AATags)
1346       NewVal->setAAMetadata(AATags);
1347 
1348     AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
1349   }
1350 
1351   // Now we know that each predecessor of this block has a value in
1352   // AvailablePreds, sort them for efficient access as we're walking the preds.
1353   array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
1354 
1355   // Create a PHI node at the start of the block for the PRE'd load value.
1356   pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB);
1357   PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "",
1358                                 &LoadBB->front());
1359   PN->takeName(LI);
1360   PN->setDebugLoc(LI->getDebugLoc());
1361 
1362   // Insert new entries into the PHI for each predecessor.  A single block may
1363   // have multiple entries here.
1364   for (pred_iterator PI = PB; PI != PE; ++PI) {
1365     BasicBlock *P = *PI;
1366     AvailablePredsTy::iterator I =
1367       std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
1368                        std::make_pair(P, (Value*)nullptr));
1369 
1370     assert(I != AvailablePreds.end() && I->first == P &&
1371            "Didn't find entry for predecessor!");
1372 
1373     // If we have an available predecessor but it requires casting, insert the
1374     // cast in the predecessor and use the cast. Note that we have to update the
1375     // AvailablePreds vector as we go so that all of the PHI entries for this
1376     // predecessor use the same bitcast.
1377     Value *&PredV = I->second;
1378     if (PredV->getType() != LI->getType())
1379       PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "",
1380                                                P->getTerminator());
1381 
1382     PN->addIncoming(PredV, I->first);
1383   }
1384 
1385   for (LoadInst *PredLI : CSELoads) {
1386     combineMetadataForCSE(PredLI, LI);
1387   }
1388 
1389   LI->replaceAllUsesWith(PN);
1390   LI->eraseFromParent();
1391 
1392   return true;
1393 }
1394 
1395 /// FindMostPopularDest - The specified list contains multiple possible
1396 /// threadable destinations.  Pick the one that occurs the most frequently in
1397 /// the list.
1398 static BasicBlock *
1399 FindMostPopularDest(BasicBlock *BB,
1400                     const SmallVectorImpl<std::pair<BasicBlock*,
1401                                   BasicBlock*> > &PredToDestList) {
1402   assert(!PredToDestList.empty());
1403 
1404   // Determine popularity.  If there are multiple possible destinations, we
1405   // explicitly choose to ignore 'undef' destinations.  We prefer to thread
1406   // blocks with known and real destinations to threading undef.  We'll handle
1407   // them later if interesting.
1408   DenseMap<BasicBlock*, unsigned> DestPopularity;
1409   for (const auto &PredToDest : PredToDestList)
1410     if (PredToDest.second)
1411       DestPopularity[PredToDest.second]++;
1412 
1413   // Find the most popular dest.
1414   DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
1415   BasicBlock *MostPopularDest = DPI->first;
1416   unsigned Popularity = DPI->second;
1417   SmallVector<BasicBlock*, 4> SamePopularity;
1418 
1419   for (++DPI; DPI != DestPopularity.end(); ++DPI) {
1420     // If the popularity of this entry isn't higher than the popularity we've
1421     // seen so far, ignore it.
1422     if (DPI->second < Popularity)
1423       ; // ignore.
1424     else if (DPI->second == Popularity) {
1425       // If it is the same as what we've seen so far, keep track of it.
1426       SamePopularity.push_back(DPI->first);
1427     } else {
1428       // If it is more popular, remember it.
1429       SamePopularity.clear();
1430       MostPopularDest = DPI->first;
1431       Popularity = DPI->second;
1432     }
1433   }
1434 
1435   // Okay, now we know the most popular destination.  If there is more than one
1436   // destination, we need to determine one.  This is arbitrary, but we need
1437   // to make a deterministic decision.  Pick the first one that appears in the
1438   // successor list.
1439   if (!SamePopularity.empty()) {
1440     SamePopularity.push_back(MostPopularDest);
1441     TerminatorInst *TI = BB->getTerminator();
1442     for (unsigned i = 0; ; ++i) {
1443       assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
1444 
1445       if (!is_contained(SamePopularity, TI->getSuccessor(i)))
1446         continue;
1447 
1448       MostPopularDest = TI->getSuccessor(i);
1449       break;
1450     }
1451   }
1452 
1453   // Okay, we have finally picked the most popular destination.
1454   return MostPopularDest;
1455 }
1456 
1457 bool JumpThreadingPass::ProcessThreadableEdges(Value *Cond, BasicBlock *BB,
1458                                                ConstantPreference Preference,
1459                                                Instruction *CxtI) {
1460   // If threading this would thread across a loop header, don't even try to
1461   // thread the edge.
1462   if (LoopHeaders.count(BB))
1463     return false;
1464 
1465   PredValueInfoTy PredValues;
1466   if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI))
1467     return false;
1468 
1469   assert(!PredValues.empty() &&
1470          "ComputeValueKnownInPredecessors returned true with no values");
1471 
1472   DEBUG(dbgs() << "IN BB: " << *BB;
1473         for (const auto &PredValue : PredValues) {
1474           dbgs() << "  BB '" << BB->getName() << "': FOUND condition = "
1475             << *PredValue.first
1476             << " for pred '" << PredValue.second->getName() << "'.\n";
1477         });
1478 
1479   // Decide what we want to thread through.  Convert our list of known values to
1480   // a list of known destinations for each pred.  This also discards duplicate
1481   // predecessors and keeps track of the undefined inputs (which are represented
1482   // as a null dest in the PredToDestList).
1483   SmallPtrSet<BasicBlock*, 16> SeenPreds;
1484   SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
1485 
1486   BasicBlock *OnlyDest = nullptr;
1487   BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
1488   Constant *OnlyVal = nullptr;
1489   Constant *MultipleVal = (Constant *)(intptr_t)~0ULL;
1490 
1491   unsigned PredWithKnownDest = 0;
1492   for (const auto &PredValue : PredValues) {
1493     BasicBlock *Pred = PredValue.second;
1494     if (!SeenPreds.insert(Pred).second)
1495       continue;  // Duplicate predecessor entry.
1496 
1497     Constant *Val = PredValue.first;
1498 
1499     BasicBlock *DestBB;
1500     if (isa<UndefValue>(Val))
1501       DestBB = nullptr;
1502     else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1503       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1504       DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero());
1505     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1506       assert(isa<ConstantInt>(Val) && "Expecting a constant integer");
1507       DestBB = SI->findCaseValue(cast<ConstantInt>(Val))->getCaseSuccessor();
1508     } else {
1509       assert(isa<IndirectBrInst>(BB->getTerminator())
1510               && "Unexpected terminator");
1511       assert(isa<BlockAddress>(Val) && "Expecting a constant blockaddress");
1512       DestBB = cast<BlockAddress>(Val)->getBasicBlock();
1513     }
1514 
1515     // If we have exactly one destination, remember it for efficiency below.
1516     if (PredToDestList.empty()) {
1517       OnlyDest = DestBB;
1518       OnlyVal = Val;
1519     } else {
1520       if (OnlyDest != DestBB)
1521         OnlyDest = MultipleDestSentinel;
1522       // It possible we have same destination, but different value, e.g. default
1523       // case in switchinst.
1524       if (Val != OnlyVal)
1525         OnlyVal = MultipleVal;
1526     }
1527 
1528     // We know where this predecessor is going.
1529     ++PredWithKnownDest;
1530 
1531     // If the predecessor ends with an indirect goto, we can't change its
1532     // destination.
1533     if (isa<IndirectBrInst>(Pred->getTerminator()))
1534       continue;
1535 
1536     PredToDestList.push_back(std::make_pair(Pred, DestBB));
1537   }
1538 
1539   // If all edges were unthreadable, we fail.
1540   if (PredToDestList.empty())
1541     return false;
1542 
1543   // If all the predecessors go to a single known successor, we want to fold,
1544   // not thread. By doing so, we do not need to duplicate the current block and
1545   // also miss potential opportunities in case we dont/cant duplicate.
1546   if (OnlyDest && OnlyDest != MultipleDestSentinel) {
1547     if (PredWithKnownDest ==
1548         (size_t)std::distance(pred_begin(BB), pred_end(BB))) {
1549       bool SeenFirstBranchToOnlyDest = false;
1550       for (BasicBlock *SuccBB : successors(BB)) {
1551         if (SuccBB == OnlyDest && !SeenFirstBranchToOnlyDest)
1552           SeenFirstBranchToOnlyDest = true; // Don't modify the first branch.
1553         else
1554           SuccBB->removePredecessor(BB, true); // This is unreachable successor.
1555       }
1556 
1557       // Finally update the terminator.
1558       TerminatorInst *Term = BB->getTerminator();
1559       BranchInst::Create(OnlyDest, Term);
1560       Term->eraseFromParent();
1561 
1562       // If the condition is now dead due to the removal of the old terminator,
1563       // erase it.
1564       if (auto *CondInst = dyn_cast<Instruction>(Cond)) {
1565         if (CondInst->use_empty() && !CondInst->mayHaveSideEffects())
1566           CondInst->eraseFromParent();
1567         // We can safely replace *some* uses of the CondInst if it has
1568         // exactly one value as returned by LVI. RAUW is incorrect in the
1569         // presence of guards and assumes, that have the `Cond` as the use. This
1570         // is because we use the guards/assume to reason about the `Cond` value
1571         // at the end of block, but RAUW unconditionally replaces all uses
1572         // including the guards/assumes themselves and the uses before the
1573         // guard/assume.
1574         else if (OnlyVal && OnlyVal != MultipleVal &&
1575                  CondInst->getParent() == BB)
1576           ReplaceFoldableUses(CondInst, OnlyVal);
1577       }
1578       return true;
1579     }
1580   }
1581 
1582   // Determine which is the most common successor.  If we have many inputs and
1583   // this block is a switch, we want to start by threading the batch that goes
1584   // to the most popular destination first.  If we only know about one
1585   // threadable destination (the common case) we can avoid this.
1586   BasicBlock *MostPopularDest = OnlyDest;
1587 
1588   if (MostPopularDest == MultipleDestSentinel)
1589     MostPopularDest = FindMostPopularDest(BB, PredToDestList);
1590 
1591   // Now that we know what the most popular destination is, factor all
1592   // predecessors that will jump to it into a single predecessor.
1593   SmallVector<BasicBlock*, 16> PredsToFactor;
1594   for (const auto &PredToDest : PredToDestList)
1595     if (PredToDest.second == MostPopularDest) {
1596       BasicBlock *Pred = PredToDest.first;
1597 
1598       // This predecessor may be a switch or something else that has multiple
1599       // edges to the block.  Factor each of these edges by listing them
1600       // according to # occurrences in PredsToFactor.
1601       for (BasicBlock *Succ : successors(Pred))
1602         if (Succ == BB)
1603           PredsToFactor.push_back(Pred);
1604     }
1605 
1606   // If the threadable edges are branching on an undefined value, we get to pick
1607   // the destination that these predecessors should get to.
1608   if (!MostPopularDest)
1609     MostPopularDest = BB->getTerminator()->
1610                             getSuccessor(GetBestDestForJumpOnUndef(BB));
1611 
1612   // Ok, try to thread it!
1613   return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1614 }
1615 
1616 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on
1617 /// a PHI node in the current block.  See if there are any simplifications we
1618 /// can do based on inputs to the phi node.
1619 ///
1620 bool JumpThreadingPass::ProcessBranchOnPHI(PHINode *PN) {
1621   BasicBlock *BB = PN->getParent();
1622 
1623   // TODO: We could make use of this to do it once for blocks with common PHI
1624   // values.
1625   SmallVector<BasicBlock*, 1> PredBBs;
1626   PredBBs.resize(1);
1627 
1628   // If any of the predecessor blocks end in an unconditional branch, we can
1629   // *duplicate* the conditional branch into that block in order to further
1630   // encourage jump threading and to eliminate cases where we have branch on a
1631   // phi of an icmp (branch on icmp is much better).
1632   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1633     BasicBlock *PredBB = PN->getIncomingBlock(i);
1634     if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1635       if (PredBr->isUnconditional()) {
1636         PredBBs[0] = PredBB;
1637         // Try to duplicate BB into PredBB.
1638         if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs))
1639           return true;
1640       }
1641   }
1642 
1643   return false;
1644 }
1645 
1646 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on
1647 /// a xor instruction in the current block.  See if there are any
1648 /// simplifications we can do based on inputs to the xor.
1649 ///
1650 bool JumpThreadingPass::ProcessBranchOnXOR(BinaryOperator *BO) {
1651   BasicBlock *BB = BO->getParent();
1652 
1653   // If either the LHS or RHS of the xor is a constant, don't do this
1654   // optimization.
1655   if (isa<ConstantInt>(BO->getOperand(0)) ||
1656       isa<ConstantInt>(BO->getOperand(1)))
1657     return false;
1658 
1659   // If the first instruction in BB isn't a phi, we won't be able to infer
1660   // anything special about any particular predecessor.
1661   if (!isa<PHINode>(BB->front()))
1662     return false;
1663 
1664   // If this BB is a landing pad, we won't be able to split the edge into it.
1665   if (BB->isEHPad())
1666     return false;
1667 
1668   // If we have a xor as the branch input to this block, and we know that the
1669   // LHS or RHS of the xor in any predecessor is true/false, then we can clone
1670   // the condition into the predecessor and fix that value to true, saving some
1671   // logical ops on that path and encouraging other paths to simplify.
1672   //
1673   // This copies something like this:
1674   //
1675   //  BB:
1676   //    %X = phi i1 [1],  [%X']
1677   //    %Y = icmp eq i32 %A, %B
1678   //    %Z = xor i1 %X, %Y
1679   //    br i1 %Z, ...
1680   //
1681   // Into:
1682   //  BB':
1683   //    %Y = icmp ne i32 %A, %B
1684   //    br i1 %Y, ...
1685 
1686   PredValueInfoTy XorOpValues;
1687   bool isLHS = true;
1688   if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues,
1689                                        WantInteger, BO)) {
1690     assert(XorOpValues.empty());
1691     if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues,
1692                                          WantInteger, BO))
1693       return false;
1694     isLHS = false;
1695   }
1696 
1697   assert(!XorOpValues.empty() &&
1698          "ComputeValueKnownInPredecessors returned true with no values");
1699 
1700   // Scan the information to see which is most popular: true or false.  The
1701   // predecessors can be of the set true, false, or undef.
1702   unsigned NumTrue = 0, NumFalse = 0;
1703   for (const auto &XorOpValue : XorOpValues) {
1704     if (isa<UndefValue>(XorOpValue.first))
1705       // Ignore undefs for the count.
1706       continue;
1707     if (cast<ConstantInt>(XorOpValue.first)->isZero())
1708       ++NumFalse;
1709     else
1710       ++NumTrue;
1711   }
1712 
1713   // Determine which value to split on, true, false, or undef if neither.
1714   ConstantInt *SplitVal = nullptr;
1715   if (NumTrue > NumFalse)
1716     SplitVal = ConstantInt::getTrue(BB->getContext());
1717   else if (NumTrue != 0 || NumFalse != 0)
1718     SplitVal = ConstantInt::getFalse(BB->getContext());
1719 
1720   // Collect all of the blocks that this can be folded into so that we can
1721   // factor this once and clone it once.
1722   SmallVector<BasicBlock*, 8> BlocksToFoldInto;
1723   for (const auto &XorOpValue : XorOpValues) {
1724     if (XorOpValue.first != SplitVal && !isa<UndefValue>(XorOpValue.first))
1725       continue;
1726 
1727     BlocksToFoldInto.push_back(XorOpValue.second);
1728   }
1729 
1730   // If we inferred a value for all of the predecessors, then duplication won't
1731   // help us.  However, we can just replace the LHS or RHS with the constant.
1732   if (BlocksToFoldInto.size() ==
1733       cast<PHINode>(BB->front()).getNumIncomingValues()) {
1734     if (!SplitVal) {
1735       // If all preds provide undef, just nuke the xor, because it is undef too.
1736       BO->replaceAllUsesWith(UndefValue::get(BO->getType()));
1737       BO->eraseFromParent();
1738     } else if (SplitVal->isZero()) {
1739       // If all preds provide 0, replace the xor with the other input.
1740       BO->replaceAllUsesWith(BO->getOperand(isLHS));
1741       BO->eraseFromParent();
1742     } else {
1743       // If all preds provide 1, set the computed value to 1.
1744       BO->setOperand(!isLHS, SplitVal);
1745     }
1746 
1747     return true;
1748   }
1749 
1750   // Try to duplicate BB into PredBB.
1751   return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto);
1752 }
1753 
1754 
1755 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1756 /// predecessor to the PHIBB block.  If it has PHI nodes, add entries for
1757 /// NewPred using the entries from OldPred (suitably mapped).
1758 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1759                                             BasicBlock *OldPred,
1760                                             BasicBlock *NewPred,
1761                                      DenseMap<Instruction*, Value*> &ValueMap) {
1762   for (BasicBlock::iterator PNI = PHIBB->begin();
1763        PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1764     // Ok, we have a PHI node.  Figure out what the incoming value was for the
1765     // DestBlock.
1766     Value *IV = PN->getIncomingValueForBlock(OldPred);
1767 
1768     // Remap the value if necessary.
1769     if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1770       DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1771       if (I != ValueMap.end())
1772         IV = I->second;
1773     }
1774 
1775     PN->addIncoming(IV, NewPred);
1776   }
1777 }
1778 
1779 /// ThreadEdge - We have decided that it is safe and profitable to factor the
1780 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1781 /// across BB.  Transform the IR to reflect this change.
1782 bool JumpThreadingPass::ThreadEdge(BasicBlock *BB,
1783                                    const SmallVectorImpl<BasicBlock *> &PredBBs,
1784                                    BasicBlock *SuccBB) {
1785   // If threading to the same block as we come from, we would infinite loop.
1786   if (SuccBB == BB) {
1787     DEBUG(dbgs() << "  Not threading across BB '" << BB->getName()
1788           << "' - would thread to self!\n");
1789     return false;
1790   }
1791 
1792   // If threading this would thread across a loop header, don't thread the edge.
1793   // See the comments above FindLoopHeaders for justifications and caveats.
1794   if (LoopHeaders.count(BB) || LoopHeaders.count(SuccBB)) {
1795     DEBUG({
1796       bool BBIsHeader = LoopHeaders.count(BB);
1797       bool SuccIsHeader = LoopHeaders.count(SuccBB);
1798       dbgs() << "  Not threading across "
1799           << (BBIsHeader ? "loop header BB '" : "block BB '") << BB->getName()
1800           << "' to dest " << (SuccIsHeader ? "loop header BB '" : "block BB '")
1801           << SuccBB->getName() << "' - it might create an irreducible loop!\n";
1802     });
1803     return false;
1804   }
1805 
1806   unsigned JumpThreadCost =
1807       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
1808   if (JumpThreadCost > BBDupThreshold) {
1809     DEBUG(dbgs() << "  Not threading BB '" << BB->getName()
1810           << "' - Cost is too high: " << JumpThreadCost << "\n");
1811     return false;
1812   }
1813 
1814   // And finally, do it!  Start by factoring the predecessors if needed.
1815   BasicBlock *PredBB;
1816   if (PredBBs.size() == 1)
1817     PredBB = PredBBs[0];
1818   else {
1819     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
1820           << " common predecessors.\n");
1821     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
1822   }
1823 
1824   // And finally, do it!
1825   DEBUG(dbgs() << "  Threading edge from '" << PredBB->getName() << "' to '"
1826         << SuccBB->getName() << "' with cost: " << JumpThreadCost
1827         << ", across block:\n    "
1828         << *BB << "\n");
1829 
1830   LVI->threadEdge(PredBB, BB, SuccBB);
1831 
1832   // We are going to have to map operands from the original BB block to the new
1833   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
1834   // account for entry from PredBB.
1835   DenseMap<Instruction*, Value*> ValueMapping;
1836 
1837   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1838                                          BB->getName()+".thread",
1839                                          BB->getParent(), BB);
1840   NewBB->moveAfter(PredBB);
1841 
1842   // Set the block frequency of NewBB.
1843   if (HasProfileData) {
1844     auto NewBBFreq =
1845         BFI->getBlockFreq(PredBB) * BPI->getEdgeProbability(PredBB, BB);
1846     BFI->setBlockFreq(NewBB, NewBBFreq.getFrequency());
1847   }
1848 
1849   BasicBlock::iterator BI = BB->begin();
1850   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1851     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1852 
1853   // Clone the non-phi instructions of BB into NewBB, keeping track of the
1854   // mapping and using it to remap operands in the cloned instructions.
1855   for (; !isa<TerminatorInst>(BI); ++BI) {
1856     Instruction *New = BI->clone();
1857     New->setName(BI->getName());
1858     NewBB->getInstList().push_back(New);
1859     ValueMapping[&*BI] = New;
1860 
1861     // Remap operands to patch up intra-block references.
1862     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1863       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1864         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1865         if (I != ValueMapping.end())
1866           New->setOperand(i, I->second);
1867       }
1868   }
1869 
1870   // We didn't copy the terminator from BB over to NewBB, because there is now
1871   // an unconditional jump to SuccBB.  Insert the unconditional jump.
1872   BranchInst *NewBI = BranchInst::Create(SuccBB, NewBB);
1873   NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc());
1874 
1875   // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1876   // PHI nodes for NewBB now.
1877   AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
1878 
1879   // If there were values defined in BB that are used outside the block, then we
1880   // now have to update all uses of the value to use either the original value,
1881   // the cloned value, or some PHI derived value.  This can require arbitrary
1882   // PHI insertion, of which we are prepared to do, clean these up now.
1883   SSAUpdater SSAUpdate;
1884   SmallVector<Use*, 16> UsesToRename;
1885   for (Instruction &I : *BB) {
1886     // Scan all uses of this instruction to see if it is used outside of its
1887     // block, and if so, record them in UsesToRename.
1888     for (Use &U : I.uses()) {
1889       Instruction *User = cast<Instruction>(U.getUser());
1890       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1891         if (UserPN->getIncomingBlock(U) == BB)
1892           continue;
1893       } else if (User->getParent() == BB)
1894         continue;
1895 
1896       UsesToRename.push_back(&U);
1897     }
1898 
1899     // If there are no uses outside the block, we're done with this instruction.
1900     if (UsesToRename.empty())
1901       continue;
1902 
1903     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
1904 
1905     // We found a use of I outside of BB.  Rename all uses of I that are outside
1906     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
1907     // with the two values we know.
1908     SSAUpdate.Initialize(I.getType(), I.getName());
1909     SSAUpdate.AddAvailableValue(BB, &I);
1910     SSAUpdate.AddAvailableValue(NewBB, ValueMapping[&I]);
1911 
1912     while (!UsesToRename.empty())
1913       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1914     DEBUG(dbgs() << "\n");
1915   }
1916 
1917 
1918   // Ok, NewBB is good to go.  Update the terminator of PredBB to jump to
1919   // NewBB instead of BB.  This eliminates predecessors from BB, which requires
1920   // us to simplify any PHI nodes in BB.
1921   TerminatorInst *PredTerm = PredBB->getTerminator();
1922   for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1923     if (PredTerm->getSuccessor(i) == BB) {
1924       BB->removePredecessor(PredBB, true);
1925       PredTerm->setSuccessor(i, NewBB);
1926     }
1927 
1928   // At this point, the IR is fully up to date and consistent.  Do a quick scan
1929   // over the new instructions and zap any that are constants or dead.  This
1930   // frequently happens because of phi translation.
1931   SimplifyInstructionsInBlock(NewBB, TLI);
1932 
1933   // Update the edge weight from BB to SuccBB, which should be less than before.
1934   UpdateBlockFreqAndEdgeWeight(PredBB, BB, NewBB, SuccBB);
1935 
1936   // Threaded an edge!
1937   ++NumThreads;
1938   return true;
1939 }
1940 
1941 /// Create a new basic block that will be the predecessor of BB and successor of
1942 /// all blocks in Preds. When profile data is available, update the frequency of
1943 /// this new block.
1944 BasicBlock *JumpThreadingPass::SplitBlockPreds(BasicBlock *BB,
1945                                                ArrayRef<BasicBlock *> Preds,
1946                                                const char *Suffix) {
1947   // Collect the frequencies of all predecessors of BB, which will be used to
1948   // update the edge weight on BB->SuccBB.
1949   BlockFrequency PredBBFreq(0);
1950   if (HasProfileData)
1951     for (auto Pred : Preds)
1952       PredBBFreq += BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, BB);
1953 
1954   BasicBlock *PredBB = SplitBlockPredecessors(BB, Preds, Suffix);
1955 
1956   // Set the block frequency of the newly created PredBB, which is the sum of
1957   // frequencies of Preds.
1958   if (HasProfileData)
1959     BFI->setBlockFreq(PredBB, PredBBFreq.getFrequency());
1960   return PredBB;
1961 }
1962 
1963 bool JumpThreadingPass::doesBlockHaveProfileData(BasicBlock *BB) {
1964   const TerminatorInst *TI = BB->getTerminator();
1965   assert(TI->getNumSuccessors() > 1 && "not a split");
1966 
1967   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
1968   if (!WeightsNode)
1969     return false;
1970 
1971   MDString *MDName = cast<MDString>(WeightsNode->getOperand(0));
1972   if (MDName->getString() != "branch_weights")
1973     return false;
1974 
1975   // Ensure there are weights for all of the successors. Note that the first
1976   // operand to the metadata node is a name, not a weight.
1977   return WeightsNode->getNumOperands() == TI->getNumSuccessors() + 1;
1978 }
1979 
1980 /// Update the block frequency of BB and branch weight and the metadata on the
1981 /// edge BB->SuccBB. This is done by scaling the weight of BB->SuccBB by 1 -
1982 /// Freq(PredBB->BB) / Freq(BB->SuccBB).
1983 void JumpThreadingPass::UpdateBlockFreqAndEdgeWeight(BasicBlock *PredBB,
1984                                                      BasicBlock *BB,
1985                                                      BasicBlock *NewBB,
1986                                                      BasicBlock *SuccBB) {
1987   if (!HasProfileData)
1988     return;
1989 
1990   assert(BFI && BPI && "BFI & BPI should have been created here");
1991 
1992   // As the edge from PredBB to BB is deleted, we have to update the block
1993   // frequency of BB.
1994   auto BBOrigFreq = BFI->getBlockFreq(BB);
1995   auto NewBBFreq = BFI->getBlockFreq(NewBB);
1996   auto BB2SuccBBFreq = BBOrigFreq * BPI->getEdgeProbability(BB, SuccBB);
1997   auto BBNewFreq = BBOrigFreq - NewBBFreq;
1998   BFI->setBlockFreq(BB, BBNewFreq.getFrequency());
1999 
2000   // Collect updated outgoing edges' frequencies from BB and use them to update
2001   // edge probabilities.
2002   SmallVector<uint64_t, 4> BBSuccFreq;
2003   for (BasicBlock *Succ : successors(BB)) {
2004     auto SuccFreq = (Succ == SuccBB)
2005                         ? BB2SuccBBFreq - NewBBFreq
2006                         : BBOrigFreq * BPI->getEdgeProbability(BB, Succ);
2007     BBSuccFreq.push_back(SuccFreq.getFrequency());
2008   }
2009 
2010   uint64_t MaxBBSuccFreq =
2011       *std::max_element(BBSuccFreq.begin(), BBSuccFreq.end());
2012 
2013   SmallVector<BranchProbability, 4> BBSuccProbs;
2014   if (MaxBBSuccFreq == 0)
2015     BBSuccProbs.assign(BBSuccFreq.size(),
2016                        {1, static_cast<unsigned>(BBSuccFreq.size())});
2017   else {
2018     for (uint64_t Freq : BBSuccFreq)
2019       BBSuccProbs.push_back(
2020           BranchProbability::getBranchProbability(Freq, MaxBBSuccFreq));
2021     // Normalize edge probabilities so that they sum up to one.
2022     BranchProbability::normalizeProbabilities(BBSuccProbs.begin(),
2023                                               BBSuccProbs.end());
2024   }
2025 
2026   // Update edge probabilities in BPI.
2027   for (int I = 0, E = BBSuccProbs.size(); I < E; I++)
2028     BPI->setEdgeProbability(BB, I, BBSuccProbs[I]);
2029 
2030   // Update the profile metadata as well.
2031   //
2032   // Don't do this if the profile of the transformed blocks was statically
2033   // estimated.  (This could occur despite the function having an entry
2034   // frequency in completely cold parts of the CFG.)
2035   //
2036   // In this case we don't want to suggest to subsequent passes that the
2037   // calculated weights are fully consistent.  Consider this graph:
2038   //
2039   //                 check_1
2040   //             50% /  |
2041   //             eq_1   | 50%
2042   //                 \  |
2043   //                 check_2
2044   //             50% /  |
2045   //             eq_2   | 50%
2046   //                 \  |
2047   //                 check_3
2048   //             50% /  |
2049   //             eq_3   | 50%
2050   //                 \  |
2051   //
2052   // Assuming the blocks check_* all compare the same value against 1, 2 and 3,
2053   // the overall probabilities are inconsistent; the total probability that the
2054   // value is either 1, 2 or 3 is 150%.
2055   //
2056   // As a consequence if we thread eq_1 -> check_2 to check_3, check_2->check_3
2057   // becomes 0%.  This is even worse if the edge whose probability becomes 0% is
2058   // the loop exit edge.  Then based solely on static estimation we would assume
2059   // the loop was extremely hot.
2060   //
2061   // FIXME this locally as well so that BPI and BFI are consistent as well.  We
2062   // shouldn't make edges extremely likely or unlikely based solely on static
2063   // estimation.
2064   if (BBSuccProbs.size() >= 2 && doesBlockHaveProfileData(BB)) {
2065     SmallVector<uint32_t, 4> Weights;
2066     for (auto Prob : BBSuccProbs)
2067       Weights.push_back(Prob.getNumerator());
2068 
2069     auto TI = BB->getTerminator();
2070     TI->setMetadata(
2071         LLVMContext::MD_prof,
2072         MDBuilder(TI->getParent()->getContext()).createBranchWeights(Weights));
2073   }
2074 }
2075 
2076 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
2077 /// to BB which contains an i1 PHI node and a conditional branch on that PHI.
2078 /// If we can duplicate the contents of BB up into PredBB do so now, this
2079 /// improves the odds that the branch will be on an analyzable instruction like
2080 /// a compare.
2081 bool JumpThreadingPass::DuplicateCondBranchOnPHIIntoPred(
2082     BasicBlock *BB, const SmallVectorImpl<BasicBlock *> &PredBBs) {
2083   assert(!PredBBs.empty() && "Can't handle an empty set");
2084 
2085   // If BB is a loop header, then duplicating this block outside the loop would
2086   // cause us to transform this into an irreducible loop, don't do this.
2087   // See the comments above FindLoopHeaders for justifications and caveats.
2088   if (LoopHeaders.count(BB)) {
2089     DEBUG(dbgs() << "  Not duplicating loop header '" << BB->getName()
2090           << "' into predecessor block '" << PredBBs[0]->getName()
2091           << "' - it might create an irreducible loop!\n");
2092     return false;
2093   }
2094 
2095   unsigned DuplicationCost =
2096       getJumpThreadDuplicationCost(BB, BB->getTerminator(), BBDupThreshold);
2097   if (DuplicationCost > BBDupThreshold) {
2098     DEBUG(dbgs() << "  Not duplicating BB '" << BB->getName()
2099           << "' - Cost is too high: " << DuplicationCost << "\n");
2100     return false;
2101   }
2102 
2103   // And finally, do it!  Start by factoring the predecessors if needed.
2104   BasicBlock *PredBB;
2105   if (PredBBs.size() == 1)
2106     PredBB = PredBBs[0];
2107   else {
2108     DEBUG(dbgs() << "  Factoring out " << PredBBs.size()
2109           << " common predecessors.\n");
2110     PredBB = SplitBlockPreds(BB, PredBBs, ".thr_comm");
2111   }
2112 
2113   // Okay, we decided to do this!  Clone all the instructions in BB onto the end
2114   // of PredBB.
2115   DEBUG(dbgs() << "  Duplicating block '" << BB->getName() << "' into end of '"
2116         << PredBB->getName() << "' to eliminate branch on phi.  Cost: "
2117         << DuplicationCost << " block is:" << *BB << "\n");
2118 
2119   // Unless PredBB ends with an unconditional branch, split the edge so that we
2120   // can just clone the bits from BB into the end of the new PredBB.
2121   BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator());
2122 
2123   if (!OldPredBranch || !OldPredBranch->isUnconditional()) {
2124     PredBB = SplitEdge(PredBB, BB);
2125     OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
2126   }
2127 
2128   // We are going to have to map operands from the original BB block into the
2129   // PredBB block.  Evaluate PHI nodes in BB.
2130   DenseMap<Instruction*, Value*> ValueMapping;
2131 
2132   BasicBlock::iterator BI = BB->begin();
2133   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
2134     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
2135   // Clone the non-phi instructions of BB into PredBB, keeping track of the
2136   // mapping and using it to remap operands in the cloned instructions.
2137   for (; BI != BB->end(); ++BI) {
2138     Instruction *New = BI->clone();
2139 
2140     // Remap operands to patch up intra-block references.
2141     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
2142       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
2143         DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
2144         if (I != ValueMapping.end())
2145           New->setOperand(i, I->second);
2146       }
2147 
2148     // If this instruction can be simplified after the operands are updated,
2149     // just use the simplified value instead.  This frequently happens due to
2150     // phi translation.
2151     if (Value *IV = SimplifyInstruction(
2152             New,
2153             {BB->getModule()->getDataLayout(), TLI, nullptr, nullptr, New})) {
2154       ValueMapping[&*BI] = IV;
2155       if (!New->mayHaveSideEffects()) {
2156         New->deleteValue();
2157         New = nullptr;
2158       }
2159     } else {
2160       ValueMapping[&*BI] = New;
2161     }
2162     if (New) {
2163       // Otherwise, insert the new instruction into the block.
2164       New->setName(BI->getName());
2165       PredBB->getInstList().insert(OldPredBranch->getIterator(), New);
2166     }
2167   }
2168 
2169   // Check to see if the targets of the branch had PHI nodes. If so, we need to
2170   // add entries to the PHI nodes for branch from PredBB now.
2171   BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
2172   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
2173                                   ValueMapping);
2174   AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
2175                                   ValueMapping);
2176 
2177   // If there were values defined in BB that are used outside the block, then we
2178   // now have to update all uses of the value to use either the original value,
2179   // the cloned value, or some PHI derived value.  This can require arbitrary
2180   // PHI insertion, of which we are prepared to do, clean these up now.
2181   SSAUpdater SSAUpdate;
2182   SmallVector<Use*, 16> UsesToRename;
2183   for (Instruction &I : *BB) {
2184     // Scan all uses of this instruction to see if it is used outside of its
2185     // block, and if so, record them in UsesToRename.
2186     for (Use &U : I.uses()) {
2187       Instruction *User = cast<Instruction>(U.getUser());
2188       if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
2189         if (UserPN->getIncomingBlock(U) == BB)
2190           continue;
2191       } else if (User->getParent() == BB)
2192         continue;
2193 
2194       UsesToRename.push_back(&U);
2195     }
2196 
2197     // If there are no uses outside the block, we're done with this instruction.
2198     if (UsesToRename.empty())
2199       continue;
2200 
2201     DEBUG(dbgs() << "JT: Renaming non-local uses of: " << I << "\n");
2202 
2203     // We found a use of I outside of BB.  Rename all uses of I that are outside
2204     // its block to be uses of the appropriate PHI node etc.  See ValuesInBlocks
2205     // with the two values we know.
2206     SSAUpdate.Initialize(I.getType(), I.getName());
2207     SSAUpdate.AddAvailableValue(BB, &I);
2208     SSAUpdate.AddAvailableValue(PredBB, ValueMapping[&I]);
2209 
2210     while (!UsesToRename.empty())
2211       SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
2212     DEBUG(dbgs() << "\n");
2213   }
2214 
2215   // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
2216   // that we nuked.
2217   BB->removePredecessor(PredBB, true);
2218 
2219   // Remove the unconditional branch at the end of the PredBB block.
2220   OldPredBranch->eraseFromParent();
2221 
2222   ++NumDupes;
2223   return true;
2224 }
2225 
2226 /// TryToUnfoldSelect - Look for blocks of the form
2227 /// bb1:
2228 ///   %a = select
2229 ///   br bb2
2230 ///
2231 /// bb2:
2232 ///   %p = phi [%a, %bb1] ...
2233 ///   %c = icmp %p
2234 ///   br i1 %c
2235 ///
2236 /// And expand the select into a branch structure if one of its arms allows %c
2237 /// to be folded. This later enables threading from bb1 over bb2.
2238 bool JumpThreadingPass::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) {
2239   BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator());
2240   PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0));
2241   Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1));
2242 
2243   if (!CondBr || !CondBr->isConditional() || !CondLHS ||
2244       CondLHS->getParent() != BB)
2245     return false;
2246 
2247   for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) {
2248     BasicBlock *Pred = CondLHS->getIncomingBlock(I);
2249     SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I));
2250 
2251     // Look if one of the incoming values is a select in the corresponding
2252     // predecessor.
2253     if (!SI || SI->getParent() != Pred || !SI->hasOneUse())
2254       continue;
2255 
2256     BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator());
2257     if (!PredTerm || !PredTerm->isUnconditional())
2258       continue;
2259 
2260     // Now check if one of the select values would allow us to constant fold the
2261     // terminator in BB. We don't do the transform if both sides fold, those
2262     // cases will be threaded in any case.
2263     LazyValueInfo::Tristate LHSFolds =
2264         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1),
2265                                 CondRHS, Pred, BB, CondCmp);
2266     LazyValueInfo::Tristate RHSFolds =
2267         LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2),
2268                                 CondRHS, Pred, BB, CondCmp);
2269     if ((LHSFolds != LazyValueInfo::Unknown ||
2270          RHSFolds != LazyValueInfo::Unknown) &&
2271         LHSFolds != RHSFolds) {
2272       // Expand the select.
2273       //
2274       // Pred --
2275       //  |    v
2276       //  |  NewBB
2277       //  |    |
2278       //  |-----
2279       //  v
2280       // BB
2281       BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold",
2282                                              BB->getParent(), BB);
2283       // Move the unconditional branch to NewBB.
2284       PredTerm->removeFromParent();
2285       NewBB->getInstList().insert(NewBB->end(), PredTerm);
2286       // Create a conditional branch and update PHI nodes.
2287       BranchInst::Create(NewBB, BB, SI->getCondition(), Pred);
2288       CondLHS->setIncomingValue(I, SI->getFalseValue());
2289       CondLHS->addIncoming(SI->getTrueValue(), NewBB);
2290       // The select is now dead.
2291       SI->eraseFromParent();
2292 
2293       // Update any other PHI nodes in BB.
2294       for (BasicBlock::iterator BI = BB->begin();
2295            PHINode *Phi = dyn_cast<PHINode>(BI); ++BI)
2296         if (Phi != CondLHS)
2297           Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB);
2298       return true;
2299     }
2300   }
2301   return false;
2302 }
2303 
2304 /// TryToUnfoldSelectInCurrBB - Look for PHI/Select or PHI/CMP/Select in the
2305 /// same BB in the form
2306 /// bb:
2307 ///   %p = phi [false, %bb1], [true, %bb2], [false, %bb3], [true, %bb4], ...
2308 ///   %s = select %p, trueval, falseval
2309 ///
2310 /// or
2311 ///
2312 /// bb:
2313 ///   %p = phi [0, %bb1], [1, %bb2], [0, %bb3], [1, %bb4], ...
2314 ///   %c = cmp %p, 0
2315 ///   %s = select %c, trueval, falseval
2316 //
2317 /// And expand the select into a branch structure. This later enables
2318 /// jump-threading over bb in this pass.
2319 ///
2320 /// Using the similar approach of SimplifyCFG::FoldCondBranchOnPHI(), unfold
2321 /// select if the associated PHI has at least one constant.  If the unfolded
2322 /// select is not jump-threaded, it will be folded again in the later
2323 /// optimizations.
2324 bool JumpThreadingPass::TryToUnfoldSelectInCurrBB(BasicBlock *BB) {
2325   // If threading this would thread across a loop header, don't thread the edge.
2326   // See the comments above FindLoopHeaders for justifications and caveats.
2327   if (LoopHeaders.count(BB))
2328     return false;
2329 
2330   for (BasicBlock::iterator BI = BB->begin();
2331        PHINode *PN = dyn_cast<PHINode>(BI); ++BI) {
2332     // Look for a Phi having at least one constant incoming value.
2333     if (llvm::all_of(PN->incoming_values(),
2334                      [](Value *V) { return !isa<ConstantInt>(V); }))
2335       continue;
2336 
2337     auto isUnfoldCandidate = [BB](SelectInst *SI, Value *V) {
2338       // Check if SI is in BB and use V as condition.
2339       if (SI->getParent() != BB)
2340         return false;
2341       Value *Cond = SI->getCondition();
2342       return (Cond && Cond == V && Cond->getType()->isIntegerTy(1));
2343     };
2344 
2345     SelectInst *SI = nullptr;
2346     for (Use &U : PN->uses()) {
2347       if (ICmpInst *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
2348         // Look for a ICmp in BB that compares PN with a constant and is the
2349         // condition of a Select.
2350         if (Cmp->getParent() == BB && Cmp->hasOneUse() &&
2351             isa<ConstantInt>(Cmp->getOperand(1 - U.getOperandNo())))
2352           if (SelectInst *SelectI = dyn_cast<SelectInst>(Cmp->user_back()))
2353             if (isUnfoldCandidate(SelectI, Cmp->use_begin()->get())) {
2354               SI = SelectI;
2355               break;
2356             }
2357       } else if (SelectInst *SelectI = dyn_cast<SelectInst>(U.getUser())) {
2358         // Look for a Select in BB that uses PN as condtion.
2359         if (isUnfoldCandidate(SelectI, U.get())) {
2360           SI = SelectI;
2361           break;
2362         }
2363       }
2364     }
2365 
2366     if (!SI)
2367       continue;
2368     // Expand the select.
2369     TerminatorInst *Term =
2370         SplitBlockAndInsertIfThen(SI->getCondition(), SI, false);
2371     PHINode *NewPN = PHINode::Create(SI->getType(), 2, "", SI);
2372     NewPN->addIncoming(SI->getTrueValue(), Term->getParent());
2373     NewPN->addIncoming(SI->getFalseValue(), BB);
2374     SI->replaceAllUsesWith(NewPN);
2375     SI->eraseFromParent();
2376     return true;
2377   }
2378   return false;
2379 }
2380 
2381 /// Try to propagate a guard from the current BB into one of its predecessors
2382 /// in case if another branch of execution implies that the condition of this
2383 /// guard is always true. Currently we only process the simplest case that
2384 /// looks like:
2385 ///
2386 /// Start:
2387 ///   %cond = ...
2388 ///   br i1 %cond, label %T1, label %F1
2389 /// T1:
2390 ///   br label %Merge
2391 /// F1:
2392 ///   br label %Merge
2393 /// Merge:
2394 ///   %condGuard = ...
2395 ///   call void(i1, ...) @llvm.experimental.guard( i1 %condGuard )[ "deopt"() ]
2396 ///
2397 /// And cond either implies condGuard or !condGuard. In this case all the
2398 /// instructions before the guard can be duplicated in both branches, and the
2399 /// guard is then threaded to one of them.
2400 bool JumpThreadingPass::ProcessGuards(BasicBlock *BB) {
2401   using namespace PatternMatch;
2402   // We only want to deal with two predecessors.
2403   BasicBlock *Pred1, *Pred2;
2404   auto PI = pred_begin(BB), PE = pred_end(BB);
2405   if (PI == PE)
2406     return false;
2407   Pred1 = *PI++;
2408   if (PI == PE)
2409     return false;
2410   Pred2 = *PI++;
2411   if (PI != PE)
2412     return false;
2413   if (Pred1 == Pred2)
2414     return false;
2415 
2416   // Try to thread one of the guards of the block.
2417   // TODO: Look up deeper than to immediate predecessor?
2418   auto *Parent = Pred1->getSinglePredecessor();
2419   if (!Parent || Parent != Pred2->getSinglePredecessor())
2420     return false;
2421 
2422   if (auto *BI = dyn_cast<BranchInst>(Parent->getTerminator()))
2423     for (auto &I : *BB)
2424       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>()))
2425         if (ThreadGuard(BB, cast<IntrinsicInst>(&I), BI))
2426           return true;
2427 
2428   return false;
2429 }
2430 
2431 /// Try to propagate the guard from BB which is the lower block of a diamond
2432 /// to one of its branches, in case if diamond's condition implies guard's
2433 /// condition.
2434 bool JumpThreadingPass::ThreadGuard(BasicBlock *BB, IntrinsicInst *Guard,
2435                                     BranchInst *BI) {
2436   assert(BI->getNumSuccessors() == 2 && "Wrong number of successors?");
2437   assert(BI->isConditional() && "Unconditional branch has 2 successors?");
2438   Value *GuardCond = Guard->getArgOperand(0);
2439   Value *BranchCond = BI->getCondition();
2440   BasicBlock *TrueDest = BI->getSuccessor(0);
2441   BasicBlock *FalseDest = BI->getSuccessor(1);
2442 
2443   auto &DL = BB->getModule()->getDataLayout();
2444   bool TrueDestIsSafe = false;
2445   bool FalseDestIsSafe = false;
2446 
2447   // True dest is safe if BranchCond => GuardCond.
2448   auto Impl = isImpliedCondition(BranchCond, GuardCond, DL);
2449   if (Impl && *Impl)
2450     TrueDestIsSafe = true;
2451   else {
2452     // False dest is safe if !BranchCond => GuardCond.
2453     Impl = isImpliedCondition(BranchCond, GuardCond, DL, /* LHSIsTrue */ false);
2454     if (Impl && *Impl)
2455       FalseDestIsSafe = true;
2456   }
2457 
2458   if (!TrueDestIsSafe && !FalseDestIsSafe)
2459     return false;
2460 
2461   BasicBlock *UnguardedBlock = TrueDestIsSafe ? TrueDest : FalseDest;
2462   BasicBlock *GuardedBlock = FalseDestIsSafe ? TrueDest : FalseDest;
2463 
2464   ValueToValueMapTy UnguardedMapping, GuardedMapping;
2465   Instruction *AfterGuard = Guard->getNextNode();
2466   unsigned Cost = getJumpThreadDuplicationCost(BB, AfterGuard, BBDupThreshold);
2467   if (Cost > BBDupThreshold)
2468     return false;
2469   // Duplicate all instructions before the guard and the guard itself to the
2470   // branch where implication is not proved.
2471   GuardedBlock = DuplicateInstructionsInSplitBetween(
2472       BB, GuardedBlock, AfterGuard, GuardedMapping);
2473   assert(GuardedBlock && "Could not create the guarded block?");
2474   // Duplicate all instructions before the guard in the unguarded branch.
2475   // Since we have successfully duplicated the guarded block and this block
2476   // has fewer instructions, we expect it to succeed.
2477   UnguardedBlock = DuplicateInstructionsInSplitBetween(BB, UnguardedBlock,
2478                                                        Guard, UnguardedMapping);
2479   assert(UnguardedBlock && "Could not create the unguarded block?");
2480   DEBUG(dbgs() << "Moved guard " << *Guard << " to block "
2481                << GuardedBlock->getName() << "\n");
2482 
2483   // Some instructions before the guard may still have uses. For them, we need
2484   // to create Phi nodes merging their copies in both guarded and unguarded
2485   // branches. Those instructions that have no uses can be just removed.
2486   SmallVector<Instruction *, 4> ToRemove;
2487   for (auto BI = BB->begin(); &*BI != AfterGuard; ++BI)
2488     if (!isa<PHINode>(&*BI))
2489       ToRemove.push_back(&*BI);
2490 
2491   Instruction *InsertionPoint = &*BB->getFirstInsertionPt();
2492   assert(InsertionPoint && "Empty block?");
2493   // Substitute with Phis & remove.
2494   for (auto *Inst : reverse(ToRemove)) {
2495     if (!Inst->use_empty()) {
2496       PHINode *NewPN = PHINode::Create(Inst->getType(), 2);
2497       NewPN->addIncoming(UnguardedMapping[Inst], UnguardedBlock);
2498       NewPN->addIncoming(GuardedMapping[Inst], GuardedBlock);
2499       NewPN->insertBefore(InsertionPoint);
2500       Inst->replaceAllUsesWith(NewPN);
2501     }
2502     Inst->eraseFromParent();
2503   }
2504   return true;
2505 }
2506